123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373 |
- #include <omp.h>
- #include <cmath>
- #include <cstring>
- #include <cstdlib>
- #include <iostream>
- #include <iomanip>
- #include <vector>
- namespace SCTL_NAMESPACE {
- template <class Real, Integer bits = sizeof(Real)*8> struct GetSigBits {
- static constexpr Integer value() {
- return ((Real)(pow<bits>((Real)0.5)+1) == (Real)1 ? GetSigBits<Real,bits-1>::value() : bits);
- }
- };
- template <class Real> struct GetSigBits<Real,0> {
- static constexpr Integer value() {
- return 0;
- }
- };
- template <class Real> inline constexpr Integer significant_bits() {
- return GetSigBits<Real>::value();
- }
- template <class Real> inline constexpr Real machine_eps() {
- return pow<-GetSigBits<Real>::value()-1,Real>(2);
- }
- template <class Real> inline Real atoreal(const char* str) { // Warning: does not do correct rounding
- const auto get_num = [](const char* str, int& end) {
- Real val = 0, exp = 1;
- for (int i = end-1; i >= 0; i--) {
- char c = str[i];
- if ('0' <= c && c <= '9') {
- val += (c - '0') * exp;
- exp *= 10;
- } else if (c == '.') {
- val /= exp;
- exp = 1;
- } else if (c == '-') {
- val = -val;
- end = i - 1;
- break;
- } else if (c == '+') {
- end = i - 1;
- break;
- } else {
- end = i;
- break;
- }
- }
- return val;
- };
- Real val = 0;
- int i = std::strlen(str);
- for (; i > 0; i--) { // ignore trailing non-numeric characters
- if ('0' <= str[i-1] && str[i-1] <= '9') break;
- }
- val = get_num(str, i);
- if (i>0 && (str[i] == 'e' || str[i] == 'E')) {
- i--;
- val = get_num(str, i) * sctl::pow<Real,Real>((Real)10, val);
- }
- for (; i >= 0; i--) { // ignore leading whitespace
- SCTL_ASSERT(str[i] == ' ');
- }
- return val;
- }
- template <class Real> static inline constexpr Real const_pi_generic() {
- return 113187804032455044LL*pow<-55,Real>(2) + 59412220499329904LL*pow<-112,Real>(2);
- }
- template <class Real> static inline constexpr Real const_e_generic() {
- return 97936424237889173LL*pow<-55,Real>(2) + 30046841068362992LL*pow<-112,Real>(2);
- }
- template <class Real> static inline constexpr Real fabs_generic(const Real a) {
- return (a<0?-a:a);
- }
- template <class Real> static inline Real sqrt_generic(const Real a) {
- Real b = ::sqrt((double)a);
- if (a > 0) { // Newton iterations for greater accuracy
- b = (b + a / b) * 0.5;
- b = (b + a / b) * 0.5;
- }
- return b;
- }
- template <class Real> static inline Real sin_generic(const Real a) {
- const int N = 200;
- static std::vector<Real> theta;
- static std::vector<Real> sinval;
- static std::vector<Real> cosval;
- if (theta.size() == 0) {
- #pragma omp critical(SCTL_QUAD_SIN)
- if (theta.size() == 0) {
- sinval.resize(N);
- cosval.resize(N);
- Real t = 1.0;
- std::vector<Real> theta_(N);
- for (int i = 0; i < N; i++) {
- theta_[i] = t;
- t = t * 0.5;
- }
- sinval[N - 1] = theta_[N - 1];
- cosval[N - 1] = 1.0 - sinval[N - 1] * sinval[N - 1] / 2;
- for (int i = N - 2; i >= 0; i--) {
- sinval[i] = 2.0 * sinval[i + 1] * cosval[i + 1];
- cosval[i] = cosval[i + 1] * cosval[i + 1] - sinval[i + 1] * sinval[i + 1];
- Real s = 1 / sqrt<Real>(cosval[i] * cosval[i] + sinval[i] * sinval[i]);
- sinval[i] *= s;
- cosval[i] *= s;
- }
- theta_.swap(theta);
- }
- }
- Real t = (a < 0.0 ? -a : a);
- Real sval = 0.0;
- Real cval = 1.0;
- for (int i = 0; i < N; i++) {
- while (theta[i] <= t) {
- Real sval_ = sval * cosval[i] + cval * sinval[i];
- Real cval_ = cval * cosval[i] - sval * sinval[i];
- sval = sval_;
- cval = cval_;
- t = t - theta[i];
- }
- }
- return (a < 0.0 ? -sval : sval);
- }
- template <class Real> static inline Real cos_generic(const Real a) {
- const int N = 200;
- static std::vector<Real> theta;
- static std::vector<Real> sinval;
- static std::vector<Real> cosval;
- if (theta.size() == 0) {
- #pragma omp critical(SCTL_QUAD_COS)
- if (theta.size() == 0) {
- sinval.resize(N);
- cosval.resize(N);
- Real t = 1.0;
- std::vector<Real> theta_(N);
- for (int i = 0; i < N; i++) {
- theta_[i] = t;
- t = t * 0.5;
- }
- sinval[N - 1] = theta_[N - 1];
- cosval[N - 1] = 1.0 - sinval[N - 1] * sinval[N - 1] / 2;
- for (int i = N - 2; i >= 0; i--) {
- sinval[i] = 2.0 * sinval[i + 1] * cosval[i + 1];
- cosval[i] = cosval[i + 1] * cosval[i + 1] - sinval[i + 1] * sinval[i + 1];
- Real s = 1 / sqrt<Real>(cosval[i] * cosval[i] + sinval[i] * sinval[i]);
- sinval[i] *= s;
- cosval[i] *= s;
- }
- theta_.swap(theta);
- }
- }
- Real t = (a < 0.0 ? -a : a);
- Real sval = 0.0;
- Real cval = 1.0;
- for (int i = 0; i < N; i++) {
- while (theta[i] <= t) {
- Real sval_ = sval * cosval[i] + cval * sinval[i];
- Real cval_ = cval * cosval[i] - sval * sinval[i];
- sval = sval_;
- cval = cval_;
- t = t - theta[i];
- }
- }
- return cval;
- }
- template <class Real> static inline Real acos_generic(const Real a) {
- Real b = ::acos((double)a);
- if (b > 0) { // Newton iterations for greater accuracy
- b += (cos<Real>(b)-a)/sin<Real>(b);
- b += (cos<Real>(b)-a)/sin<Real>(b);
- }
- return b;
- }
- template <class Real> static inline Real exp_generic(const Real a) {
- const int N = 200;
- static std::vector<Real> theta0;
- static std::vector<Real> theta1;
- static std::vector<Real> expval0;
- static std::vector<Real> expval1;
- if (theta0.size() == 0) {
- #pragma omp critical(SCTL_QUAD_EXP)
- if (theta0.size() == 0) {
- std::vector<Real> theta0_(N);
- theta1.resize(N);
- expval0.resize(N);
- expval1.resize(N);
- theta0_[0] = 1.0;
- theta1[0] = 1.0;
- expval0[0] = const_e<Real>();
- expval1[0] = const_e<Real>();
- for (int i = 1; i < N; i++) {
- theta0_[i] = theta0_[i - 1] * 0.5;
- theta1[i] = theta1[i - 1] * 2.0;
- expval0[i] = sqrt<Real>(expval0[i - 1]);
- expval1[i] = expval1[i - 1] * expval1[i - 1];
- }
- theta0.swap(theta0_);
- }
- }
- Real t = (a < 0.0 ? -a : a);
- Real eval = 1.0;
- for (int i = N - 1; i > 0; i--) {
- while (theta1[i] <= t) {
- eval = eval * expval1[i];
- t = t - theta1[i];
- }
- }
- for (int i = 0; i < N; i++) {
- while (theta0[i] <= t) {
- eval = eval * expval0[i];
- t = t - theta0[i];
- }
- }
- eval = eval * (1.0 + t);
- return (a < 0.0 ? 1.0 / eval : eval);
- }
- template <class Real> static inline Real log_generic(const Real a) {
- if (a == 0) return (Real)NAN;
- Real y0 = ::log((double)a);
- { // Newton iterations
- y0 = y0 + (a / exp<Real>(y0) - 1.0);
- y0 = y0 + (a / exp<Real>(y0) - 1.0);
- }
- return y0;
- }
- template <class Real> static inline Real pow_generic(const Real b, const Real e) {
- if (e == 0) return 1;
- if (b == 0) return 0;
- if (b < 0) {
- Long e_ = (Long)e;
- SCTL_ASSERT(e == (Real)e_);
- return exp<Real>(log<Real>(-b) * e) * (e_ % 2 ? (Real)-1 : (Real)1.0);
- }
- return exp<Real>(log<Real>(b) * e);
- }
- template <class ValueType> static inline constexpr ValueType pow_integer_exp(ValueType b, Long e) {
- return (e > 0) ? ((e & 1) ? b : ValueType(1)) * pow_integer_exp(b*b, e>>1) : ValueType(1);
- }
- template <class Real, class ExpType> class pow_wrapper {
- public:
- static Real pow(Real b, ExpType e) {
- return (Real)std::pow(b, e);
- }
- };
- template <class ValueType> class pow_wrapper<ValueType,Long> {
- public:
- static constexpr ValueType pow(ValueType b, Long e) {
- return (e > 0) ? pow_integer_exp(b, e) : 1/pow_integer_exp(b, -e);
- }
- };
- template <Long e, class ValueType> inline constexpr ValueType pow(ValueType b) {
- return (e > 0) ? pow_integer_exp<ValueType>(b, e) : 1/pow_integer_exp<ValueType>(b, -e);
- }
- template <class Real> inline std::ostream& ostream_insertion_generic(std::ostream& output, const Real q_) {
- // int width=output.width();
- output << std::setw(1);
- Real q = q_;
- if (q < 0.0) {
- output << "-";
- q = -q;
- } else if (q > 0) {
- output << " ";
- } else {
- output << " ";
- output << "0.0";
- return output;
- }
- int exp = 0;
- static const Real ONETENTH = (Real)1 / 10;
- while (q < 1.0 && abs(exp) < 10000) {
- q = q * 10;
- exp--;
- }
- while (q >= 10 && abs(exp) < 10000) {
- q = q * ONETENTH;
- exp++;
- }
- for (int i = 0; i < 34; i++) {
- output << (int)q;
- if (i == 0) output << ".";
- q = (q - int(q)) * 10;
- if (q == 0 && i > 0) break;
- }
- if (exp > 0) {
- std::cout << "e+" << exp;
- } else if (exp < 0) {
- std::cout << "e" << exp;
- }
- return output;
- }
- #ifdef SCTL_QUAD_T
- template <> inline constexpr QuadReal const_pi<QuadReal>() { return const_pi_generic<QuadReal>(); }
- template <> inline constexpr QuadReal const_e<QuadReal>() { return const_e_generic<QuadReal>(); }
- template <> inline QuadReal fabs<QuadReal>(const QuadReal a) { return fabs_generic(a); }
- template <> inline QuadReal sqrt<QuadReal>(const QuadReal a) { return sqrt_generic(a); }
- template <> inline QuadReal sin<QuadReal>(const QuadReal a) { return sin_generic(a); }
- template <> inline QuadReal cos<QuadReal>(const QuadReal a) { return cos_generic(a); }
- template <> inline QuadReal acos<QuadReal>(const QuadReal a) { return acos_generic(a); }
- template <> inline QuadReal exp<QuadReal>(const QuadReal a) { return exp_generic(a); }
- template <> inline QuadReal log<QuadReal>(const QuadReal a) { return log_generic(a); }
- template <class ExpType> class pow_wrapper<QuadReal,ExpType> {
- public:
- static QuadReal pow(QuadReal b, ExpType e) {
- return pow_generic<QuadReal>(b, (QuadReal)e);
- }
- };
- template <> class pow_wrapper<QuadReal,Long> {
- public:
- static constexpr QuadReal pow(QuadReal b, Long e) {
- return (e > 0) ? pow_integer_exp(b, e) : 1/pow_integer_exp(b, -e);
- }
- };
- inline std::ostream& operator<<(std::ostream& output, const QuadReal& q) { return ostream_insertion_generic(output, q); }
- inline std::istream& operator>>(std::istream& inputstream, QuadReal& x) {
- long double x_;
- inputstream>>x_;
- x = x_;
- return inputstream;
- }
- #endif
- template <class Real, class ExpType> inline Real pow(const Real b, const ExpType e) {
- return pow_wrapper<Real,ExpType>::pow(b, e);
- }
- } // end namespace
|