123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997 |
- % vim: set foldmethod=marker foldmarker=<<<,>>>:
- \section{Memory/bandwidth optimization}
- % 1) (malloc, first-touch, bandwidth, free) for (writing to array)
- % 2) (bandwidth) for (reading array) [reduction]
- % 3) (flop,bandwidth) for (vector copy, vector-add) (write causes read -- unless streaming write)
- % 4) (latency) for (sequential access, strided access) (integer array with indices)
- % x2 - single and multi threaded
- % plot: X (size), Y (cycles) ---- vary stride length
- % spatial and temporal data locality
- % hyper threading - shared cache - useful for latency bound
- \begin{frame} \frametitle{Memory}{} %<<<
- \begin{columns}
- \column{0.5\textwidth}
- How does computer memory work?
- \vspace{2em}
- References:
- {\small
- \begin{itemize}
- \setlength\itemsep{1em}
- \item Ulrich Drepper -- What every programmer should know about memory (2007)
- %https://lwn.net/Articles/252125/
- \item Igor Ostrovsky -- Gallery of Processor Cache Effects %\url{http://igoro.com/archive/gallery-of-processor-cache-effects}
- \end{itemize}
- }
- \column{0.5\textwidth}
- \center
- \includegraphics[width=0.99\textwidth]{figs/cache-hierarchy}
- {\footnotesize Source: Intel Software Developer Manual}
- \end{columns}
- \end{frame}
- %>>>
- \begin{frame}[t,fragile] \frametitle{Memory benchmarks}{} %<<<
- \begin{columns}
- \column{0,55\textwidth}
- \footnotesize
- \begin{overprint}
- \onslide<1->%<<<
- \begin{minted}[
- frame=lines,
- fontsize=\footnotesize,
- linenos,
- autogobble,
- mathescape
- ]{C++}
- long N = 1e9; // 8 GB
- // Allocate memory
- double* X = (double*)malloc(N*sizeof(double));
- // Write to array
- for (long i = 0; i < N; i++) X[i] = i;
- // Update array
- for (long i = 0; i < N; i++) X[i] = 2*i;
- // Free memory
- free(X);
- \end{minted}
- %>>>
- \end{overprint}
- \column{0.05\textwidth}
- \column{0.4\textwidth}
- \vspace{0.3em}
- \begin{overprint}
- \onslide<2->%<<<
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- Allocate memory
- T = 1.60821e-05
- Write to array
- T = 1.75352 --- 4.6 GB/s
- Update array
- T = 0.84467 --- 9.5 GB/s
- Free memory
- T = 0.0141113
- \end{minted}
- %\textcolor{red}{\qquad only $1.5\times$ speedup :(}
- %>>>
- \end{overprint}
- \end{columns}
- \vspace{0.5em}
- \only<3->{
- \vspace{0.5em}
- \begin{columns}
- \column{0.6\textwidth}
- \textcolor{red}{Memory allocations are not free!}
- \begin{itemize}
- \item \textcolor{red}{cost is hidden in initialization (first-touch)}
- \end{itemize}
- \end{columns}
- }
- \end{frame}
- %>>>
- \begin{frame}[t,fragile] \frametitle{Main memory bandwidth}{} %<<<
- \begin{columns}
- \column{0,6\textwidth}
- \footnotesize
- \begin{overprint}
- \onslide<1->%<<<
- \begin{minted}[
- frame=lines,
- fontsize=\footnotesize,
- linenos,
- autogobble,
- mathescape
- ]{C++}
- long N = 1e9; // 8 GB
- // Initialize X, Y
- for (long i = 0; i < N; i++) X[i] = Y[i] = i;
- // Write to array
- #pragma omp parallel for schedule(static)
- for (long i = 0; i < N; i++) X[i] = 3.14;
- // Read from array
- double sum = 0;
- #pragma omp parallel for schedule(static) reduction(+:sum)
- for (long i = 0; i < N; i++) sum += X[i];
- // Adding arrays: 2-reads, 1-write
- #pragma omp parallel for schedule(static)
- for (long i = 0; i < N; i++) Y[i] += X[i];
- \end{minted}
- %>>>
- \end{overprint}
- \column{0.05\textwidth}
- \column{0.35\textwidth}
- \vspace{0.5em}
- \begin{overprint}
- \onslide<2->%<<<
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- Writing to array
- Bandwidth = 35.4136 GB/s
- Reading from array
- Bandwidth = 69.4623 GB/s
- Adding arrays
- Bandwidth = 113.637 GB/s
- \end{minted}
- %\textcolor{red}{\qquad only $1.5\times$ speedup :(}
- %>>>
- \end{overprint}
- \end{columns}
- \end{frame}
- %>>>
- \begin{frame} \frametitle{Non-uniform Memory Access}{} %<<<
- \begin{itemize}
- %\item {\bf Cores:} individual processing units.
- %\item {\bf Sockets:} collection of cores on the same silicon die.
- \item Each sockets connected to its own DRAM.
- \item Sockets interconnected using a network: QPI (Intel), HT (AMD).
- \item Location of memory pages determined by first-touch policy.
- \end{itemize}
- \center
- \includegraphics[width=0.7\textwidth]{figs/numa1}
- {\scriptsize Source: \url{https://frankdenneman.nl/2016/07/07/numa-deep-dive-part-1-uma-numa}}
- \end{frame}
- %>>>
- \begin{frame}[t,fragile] \frametitle{Main memory bandwidth (NUMA aware)}{} %<<<
- \begin{columns}
- \column{0,6\textwidth}
- \footnotesize
- \begin{overprint}
- \onslide<1-2>%<<<
- \begin{minted}[
- frame=lines,
- fontsize=\footnotesize,
- linenos,
- autogobble,
- mathescape
- ]{C++}
- long N = 1e9; // 8 GB
- // Initialize X, Y
- #pragma omp parallel for schedule(static)
- for (long i = 0; i < N; i++) X[i] = Y[i] = i;
- // Write to array
- #pragma omp parallel for schedule(static)
- for (long i = 0; i < N; i++) X[i] = 3.14;
- // Read from array
- double sum = 0;
- #pragma omp parallel for schedule(static) reduction(+:sum)
- for (long i = 0; i < N; i++) sum += X[i];
- // Adding arrays: 2-reads, 1-write
- #pragma omp parallel for schedule(static)
- for (long i = 0; i < N; i++) Y[i] += X[i];
- \end{minted}
- %>>>
- \onslide<3>%<<<
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- \end{minted}
- \center
- \vspace{8em}
- \textcolor{red}{\normalsize Many shared-memory codes scale poorly \\
- because they don't account for NUMA!}
- %>>>
- \end{overprint}
- \column{0.05\textwidth}
- \column{0.35\textwidth}
- \begin{overprint}
- \onslide<1>%<<<
- Set thread affinity:
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- export OMP_PLACES=cores
- export OMP_PROC_BIND=spread
- \end{minted}
- %>>>
- \onslide<2->%<<<
- \vspace{-1.5em}
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- \end{minted}
- {\footnotesize \underline{Original:}}
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- Writing to array
- Bandwidth = 35.4136 GB/s
- \end{minted}
- \vspace{0.1ex}
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- Reading from array
- Bandwidth = 69.4623 GB/s
- \end{minted}
- \vspace{0.1ex}
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- Adding arrays
- Bandwidth = 113.637 GB/s
- \end{minted}
- \vspace{0.2em}
- {\footnotesize \underline{NUMA aware:}}
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- Writing to array
- Bandwidth = 87.1515 GB/s
- \end{minted}
- \vspace{0.1ex}
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- Reading from array
- Bandwidth = 160.663 GB/s
- \end{minted}
- \vspace{0.1ex}
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- Adding arrays
- Bandwidth = 180.069 GB/s
- \end{minted}
- %>>>
- \end{overprint}
- \end{columns}
- \end{frame}
- %>>>
- \begin{frame}[t,fragile] \frametitle{L1-cache bandwidth}{} %<<<
- \begin{columns}
- \column{0,55\textwidth}
- \footnotesize
- \begin{overprint}
- \onslide<1->%<<<
- \begin{minted}[
- frame=lines,
- fontsize=\footnotesize,
- linenos,
- autogobble,
- mathescape
- ]{C++}
- long N = 2048; // 16KB
- double* X = (double*)malloc(N*sizeof(double));
- double* Y = (double*)malloc(N*sizeof(double));
- // Initialize X, Y
- // Write to array
- for (long i = 0; i < N; i++) X[i] = 3.14;
- // Read from array
- double sum = 0;
- for (long i = 0; i < N; i++) sum += X[i];
- // Adding arrays: 2-reads, 1-write
- for (long i = 0; i < N; i++) Y[i] += X[i];
- \end{minted}
- %>>>
- \end{overprint}
- \column{0.05\textwidth}
- \column{0.4\textwidth}
- \vspace{0.5em}
- \begin{overprint}
- \onslide<2->%<<<
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- Writing to array
- Bandwidth = 26.2744 GB/s
- Reading from array
- Bandwidth = 6.57305 GB/s
- Adding arrays
- Bandwidth = 131.203 GB/s
- \end{minted}
- %\textcolor{red}{\qquad only $1.5\times$ speedup :(}
- %>>>
- \end{overprint}
- \end{columns}
- \end{frame}
- %>>>
- \begin{frame}[t,fragile] \frametitle{L1-cache bandwidth (vectorized)}{} %<<<
- \begin{columns}
- \column{0,55\textwidth}
- \footnotesize
- \begin{overprint}
- \onslide<1-2>%<<<
- \begin{minted}[
- frame=lines,
- fontsize=\footnotesize,
- linenos,
- autogobble,
- mathescape
- ]{C++}
- using Vec = sctl::Vec<double,8>;
- long N = 2048; // 16KB
- double* X = (double*)malloc(N*sizeof(double));
- double* Y = (double*)malloc(N*sizeof(double));
- // Initialize X, Y
- // Write to array
- Vec v = 3.14;
- #pragma GCC unroll (4)
- for (long i = 0; i < N; i+=8) v.Store(X+i);
- \end{minted}
- %>>>
- \onslide<3-4>%<<<
- \begin{minted}[
- frame=lines,
- fontsize=\footnotesize,
- linenos,
- autogobble,
- mathescape
- ]{C++}
- // Read from array
- Vec sum[8] = {0.,0.,0.,0.,0.,0.,0.,0.};
- for (long i = 0; i < N; i+=8*8) {
- sum[0] = sum[0] + Vec::Load(X +i);
- sum[1] = sum[1] + Vec::Load(X+8 +i);
- sum[2] = sum[2] + Vec::Load(X+16+i);
- sum[3] = sum[3] + Vec::Load(X+24+i);
- sum[4] = sum[4] + Vec::Load(X+32+i);
- sum[5] = sum[5] + Vec::Load(X+40+i);
- sum[6] = sum[6] + Vec::Load(X+48+i);
- sum[7] = sum[7] + Vec::Load(X+56+i);
- }
- \end{minted}
- %>>>
- \onslide<5-6>%<<<
- \begin{minted}[
- frame=lines,
- fontsize=\footnotesize,
- linenos,
- autogobble,
- mathescape
- ]{C++}
- // Adding arrays: 2-reads, 1-write
- for (long i = 0; i < N; i+=8*2) {
- Vec X0 = Vec::Load(X+0+i);
- Vec X1 = Vec::Load(X+8+i);
- Vec Y0 = Vec::Load(Y+0+i);
- Vec Y1 = Vec::Load(Y+8+i);
- (X0+Y0).Store(Y+VecLen*0+i);
- (X1+Y1).Store(Y+VecLen*1+i);
- }
- \end{minted}
- %>>>
- \end{overprint}
- \column{0.05\textwidth}
- \column{0.4\textwidth}
- \vspace{0.5em}
- \begin{overprint}
- \onslide<2-3>%<<<
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- Writing to array
- Bandwidth = 89.5993 GB/s
- cycles/iter = 2.35716
- \end{minted}
- %>>>
- \onslide<4-5>%<<<
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- Writing to array
- Bandwidth = 89.5993 GB/s
- cycles/iter = 2.35716
- Reading from array
- Bandwidth = 210.375 GB/s
- cycles/iter = 1.00392
- \end{minted}
- %>>>
- \onslide<6->%<<<
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- Writing to array
- Bandwidth = 89.5993 GB/s
- cycles/iter = 2.35716
- Reading from array
- Bandwidth = 210.375 GB/s
- cycles/iter = 1.00392
- Adding arrays
- Bandwidth = 148.29 GB/s
- cycles/iter = 4.27271
- \end{minted}
- %>>>
- \end{overprint}
- \end{columns}
- \end{frame}
- %>>>
- \begin{frame}[t,fragile] \frametitle{L1-cache bandwidth (vectorized \& aligned)}{} %<<<
- \begin{columns}
- \column{0,55\textwidth}
- \begin{overprint}
- \onslide<1>%<<<
- \vspace{0.5em}
- Unaligned read:\\
- \resizebox{0.8\textwidth}{!}{\begin{tikzpicture} %<<<
- \fill[c3] (0.75,1) rectangle (2.75,1.25);
- \draw[step=0.25,thick, darkgray] (0.749,0.99) grid (2.75,1.25);
- \node at (3.3,1.125) {\footnotesize register};
- \fill[c2] (0,0) rectangle (2,-0.25);
- \draw[step=0.25,thick, darkgray] (0,0) grid (2,-0.25);
- \fill[c2] (2.25,0) rectangle (4.25,-0.25);
- \draw[step=0.25,thick, darkgray] (2.249,0) grid (4.25,-0.25);
- \node at (2.1,-0.4) {\footnotesize L1 cache};
- \draw[-latex, thick] (0.875,0.1) -- (0.875,0.9);
- \draw[-latex, thick] (1.125,0.1) -- (1.125,0.9);
- \draw[-latex, thick] (1.375,0.1) -- (1.375,0.9);
- \draw[-latex, thick] (1.625,0.1) -- (1.625,0.9);
- \draw[-latex, thick] (1.875,0.1) -- (1.875,0.9);
- \draw[-latex, thick] (2.375,0.1) -- (2.125,0.9);
- \draw[-latex, thick] (2.625,0.1) -- (2.375,0.9);
- \draw[-latex, thick] (2.875,0.1) -- (2.625,0.9);
- \end{tikzpicture}}%>>>
- %>>>
- \onslide<2->%<<<
- \vspace{0.5em}
- Aligned read:\\
- \resizebox{0.8\textwidth}{!}{\begin{tikzpicture} %<<<
- \fill[c3] (0,1) rectangle (2,1.25);
- \draw[step=0.25,thick, darkgray] (0,0.99) grid (2,1.25);
- \node at (2.55,1.125) {\footnotesize register};
- \fill[c2] (0,0) rectangle (2,-0.25);
- \draw[step=0.25,thick, darkgray] (0,0) grid (2,-0.25);
- \fill[c2] (2.25,0) rectangle (4.25,-0.25);
- \draw[step=0.25,thick, darkgray] (2.249,0) grid (4.25,-0.25);
- \node at (2.1,-0.4) {\footnotesize L1 cache};
- \draw[-latex, thick] (0.125,0.1) -- (0.125,0.9);
- \draw[-latex, thick] (0.375,0.1) -- (0.375,0.9);
- \draw[-latex, thick] (0.625,0.1) -- (0.625,0.9);
- \draw[-latex, thick] (0.875,0.1) -- (0.875,0.9);
- \draw[-latex, thick] (1.125,0.1) -- (1.125,0.9);
- \draw[-latex, thick] (1.375,0.1) -- (1.375,0.9);
- \draw[-latex, thick] (1.625,0.1) -- (1.625,0.9);
- \draw[-latex, thick] (1.875,0.1) -- (1.875,0.9);
- \end{tikzpicture}}%>>>
- \vspace{0.2em}
- \small
- Replace:
- \begin{itemize}
- \item malloc $\rightarrow$ sctl::aligned\_new
- \item Vec::Load $\rightarrow$ Vec::AlignedLoad
- \item Vec::Store $\rightarrow$ Vec::AlignedStore
- \end{itemize}
- %>>>
- \end{overprint}
- \column{0.05\textwidth}
- \column{0.4\textwidth}
- \begin{overprint}
- \onslide<3->%<<<
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- Writing to array
- Bandwidth = 210.273 GB/s
- cycles/iter = 1.00441
- Reading from array
- Bandwidth = 380.953 GB/s
- cycles/iter = 0.554399
- Adding arrays
- Bandwidth = 325.592 GB/s
- cycles/iter = 1.94599
- \end{minted}
- %>>>
- \end{overprint}
- \end{columns}
- \vspace{1em}
- \begin{columns}
- \column{0.65\textwidth}
- \only<3>{\textcolor{red}{Aligned memory acceses to L1 can be $2\times$ faster!}}
- \end{columns}
- \end{frame}
- %>>>
- \begin{frame} \frametitle{Memory bandwidth and latency}{} %<<<
- \begin{columns}
- \column{0.5\textwidth}
- \center
- {$32\times$ difference between \\
- L1 and main memory bandwidth!}
- \vspace{1em}
- \resizebox{1.0\textwidth}{!}{\begin{tikzpicture} %<<<
- \begin{loglogaxis}[width=12cm,height=8cm, xmin=8192, xmax=256000000, ymin=80, ymax=6000,
- xlabel={array size per core (bytes)}, ylabel=Bandwidth (GB/s), legend pos=south west, legend style={draw=none}]
- \addplot[mark=none, thick, color=blue] table [x={size}, y={read-bw}] {data/bw.txt};
- \addplot[mark=none, thick, color=red] table [x={size}, y={write-bw}] {data/bw.txt};
- \addplot[mark=none, thick, color=black] table [x={size}, y={vecadd-bw}] {data/bw.txt};
- \addplot[mark=none, color=gray, thick] coordinates { (32768,8) (32768,80000)};
- \addplot[mark=none, color=gray, thick] coordinates { (1048576,8) (1048576,80000)};
- \addplot[mark=none, color=gray, thick] coordinates { (3244032,8) (3244032,80000)};
- \legend{{read-bw},{write-bw},{read+write-bw}}
- \end{loglogaxis}
- \end{tikzpicture}} %>>>
- \column{0.5\textwidth}
- \center
- {$56\times$ difference between \\
- L1 and main memory latency!}
- \vspace{1em}
- \resizebox{1.0\textwidth}{!}{\begin{tikzpicture} %<<<
- \begin{loglogaxis}[width=12cm,height=8cm, xmin=8192, xmax=256000000, ymin=4, ymax=300,
- xlabel={array size (bytes)}, ylabel=cycles, legend pos=north west, legend style={draw=none}]
- \addplot[mark=none, thick, color=black] table [x={bytes}, y={cycles}] {data/latency.txt};
- \addplot[mark=none, color=gray, thick] coordinates { (32768,1) (32768,5000)};
- \addplot[mark=none, color=gray, thick] coordinates { (1048576,1) (1048576,5000)};
- \addplot[mark=none, color=gray, thick] coordinates {(25952256,1) (25952256,5000)};
- \legend{{latency}}
- \end{loglogaxis}
- \end{tikzpicture}} %>>>
- \end{columns}
- \end{frame}
- %>>>
- \begin{frame}[fragile] \frametitle{Optimizing GEMM for memory access}{} %<<<
- \begin{columns}
- \column{0.5\textwidth}
- \begin{overprint}
- \onslide<1->%<<<
- \resizebox{0.99\textwidth}{!}{\begin{tikzpicture} %<<<
- \node at (-0.5,-1) {$M$};
- \node at (1,0.5) {$N$};
- \draw[latex-latex, thick] (0,0.25) -- (2,0.25);
- \draw[latex-latex, thick] (-0.25,0) -- (-0.25,-2);
- \fill[c2] (0,0) rectangle (2,-2);
- \draw[step=0.25,thick, darkgray] (0,0) grid (2,-2);
- \node at (1,-1) {\Large C};
- \node at (2.5,-1) {$=$};
- \node at (4.25,0.5) {$K$};
- \draw[latex-latex, thick] (3,0.25) -- (5.5,0.25);
- \fill[c3] (3,0) rectangle (5.5,-2);
- \draw[step=0.25,thick, darkgray] (2.99,0) grid (5.5,-2);
- \node at (4.25,-1) {\Large A};
- \node at (6,-1) {$\times$};
- \fill[c4] (6.5,0) rectangle (8.5,-2.5);
- \draw[step=0.25,thick, darkgray] (6.49,0) grid (8.5,-2.5);
- \node at (7.5,-1.25) {\Large B};
- \end{tikzpicture}}%>>>
- \begin{minted}[
- frame=lines,
- fontsize=\scriptsize,
- baselinestretch=1,
- numbersep=5pt,
- linenos,
- autogobble,
- framesep=1mm,
- mathescape
- ]{C++}
- void GEMM(int M, int N, int K, double* A, int LDA,
- double* B, int LDB, double* C, int LDC) {
- for (int j = 0; j < N; j++)
- for (int k = 0; k < K; k++)
- for (int i = 0; i < M; i++)
- C[i+j*LDC] += A[i+k*LDA] * B[k+j*LDB];
- }
- \end{minted}
- %>>>
- \qquad {\small Dimensions: M = N = K = 2000}
- \end{overprint}
- \column{0.05\textwidth}
- \column{0.5\textwidth}
- \begin{overprint}
- \onslide<1>%<<<
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- \end{minted}
- {\bf perf:} performance monitoring tool which samples hardware counters
- %>>>
- \onslide<2->%<<<
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- \end{minted}
- {\bf perf:} performance monitoring tool which samples hardware counters
- \vspace{1em}
- \begin{minted}[autogobble,fontsize=\scriptsize]{text}
- ~> g++ -O3 -march=native gemm.cpp
- ~> perf stat -e L1-dcache-load-misses \
- -e L1-dcache-loads -e l2_rqsts.miss \
- -e l2_rqsts.references -e LLC-load-misses \
- -e LLC-loads ./a.out
- FLOP rate = 4.87547 GFLOP/s
- 30,311,624,911 L1-dcache-loads
- 14,900,283,807 L1-dcache-load-misses 49.16% of all L1-dcache accesses
- 24,387,281,512 l2_rqsts.references
- 10,034,752,513 l2_rqsts.miss
- 2,260,778,457 LLC-loads
- 1,310,606,484 LLC-load-misses 57.97% of all LL-cache accesses
- \end{minted}
- %>>>
- \end{overprint}
- \end{columns}
- \end{frame}
- %>>>
- \begin{frame}[fragile] \frametitle{GEMM blocking}{} %<<<
- \begin{columns}
- \column{0.5\textwidth}
- \begin{overprint}
- \onslide<1>%<<<
- \begin{minted}[
- frame=lines,
- fontsize=\scriptsize,
- baselinestretch=1,
- numbersep=5pt,
- linenos,
- autogobble,
- framesep=1mm,
- mathescape
- ]{C++}
- template <int M, int N, int K>
- void GEMM_blocked(double* A, int LDA,
- double* B, int LDB, double* C, int LDC) {
- for (int j = 0; j < N; j++)
- for (int k = 0; k < K; k++)
- for (int i = 0; i < M; i++)
- C[i+j*LDC] += A[i+k*LDA] * B[k+j*LDB];
- }
- template <int M, int N, int K,
- int Mb, int Nb, int Kb, int... NN>
- void GEMM_blocked(double* A, int LDA,
- double* B, int LDB, double* C, int LDC) {
- for (int j = 0; j < N; j+=Nb)
- for (int i = 0; i < M; i+=Mb)
- for (int k = 0; k < K; k+=Kb)
- GEMM_blocked<Mb,Nb,Kb, NN...>(A+i+k*LDA,LDA,
- B+k+j*LDB,LDB, C+i+j*LDC,LDC);
- }
- \end{minted}
- %>>>
- \onslide<2->%<<<
- \begin{minted}[
- frame=lines,
- fontsize=\scriptsize,
- baselinestretch=1,
- numbersep=5pt,
- linenos,
- autogobble,
- framesep=1mm,
- mathescape
- ]{C++}
- template <int M, int N, int K>
- void GEMM_blocked(double* A, int LDA,
- double* B, int LDB, double* C, int LDC) {
- GEMM_ker_vec_unrolled<M,N,K>(A,LDA, B,LDB, C,LDC);
- }
- template <int M, int N, int K,
- int Mb, int Nb, int Kb, int... NN>
- void GEMM_blocked(double* A, int LDA,
- double* B, int LDB, double* C, int LDC) {
- for (int j = 0; j < N; j+=Nb)
- for (int i = 0; i < M; i+=Mb)
- for (int k = 0; k < K; k+=Kb)
- GEMM_blocked<Mb,Nb,Kb, NN...>(A+i+k*LDA,LDA,
- B+k+j*LDB,LDB, C+i+j*LDC,LDC);
- }
- \end{minted}
- %>>>
- \end{overprint}
- \column{0.05\textwidth}
- \column{0.55\textwidth}
- \begin{overprint}
- \onslide<1-2>%<<<
- \begin{minted}[autogobble,fontsize=\scriptsize,baselinestretch=0.01]{text}
- \end{minted}
- \vspace{3em}
- \includegraphics[width=0.99\textwidth]{figs/gemm-tiling}
- %>>>
- \onslide<3>%<<<
- \begin{minted}[autogobble,fontsize=\scriptsize]{text}
- \end{minted}
- {\small GEMM\_blocked<M,N,K, 8,10,40>(...)}
- \begin{minted}[autogobble,fontsize=\scriptsize]{text}
- FLOP rate = 11.803 GFLOP/s
- 11,514,598,988 L1-dcache-loads
- 3,274,256,252 L1-dcache-load-misses 28.44% of all L1-dcache accesses
- 3,283,717,404 l2_rqsts.references
- 1,047,408,896 l2_rqsts.miss
- 1,032,604,200 LLC-loads
- 293,256,535 LLC-load-misses 28.40% of all LL-cache accesses
- \end{minted}
- %>>>
- \onslide<4>%<<<
- \begin{minted}[autogobble,fontsize=\scriptsize]{text}
- \end{minted}
- {\small GEMM\_blocked<M,N,K, 8,10,40>(...)}
- \begin{minted}[autogobble,fontsize=\scriptsize]{text}
- FLOP rate = 11.803 GFLOP/s
- 11,514,598,988 L1-dcache-loads
- 3,274,256,252 L1-dcache-load-misses 28.44% of all L1-dcache accesses
- 3,283,717,404 l2_rqsts.references
- 1,047,408,896 l2_rqsts.miss
- 1,032,604,200 LLC-loads
- 293,256,535 LLC-load-misses 28.40% of all LL-cache accesses
- \end{minted}
- \vspace{0.5em}
- {\small GEMM\_blocked<M,N,K, 40,40,40, 8,10,40>(...)}
- \begin{minted}[autogobble,fontsize=\scriptsize]{text}
- FLOP rate = 26.5831 GFLOP/s
- 11,533,695,903 L1-dcache-loads
- 1,084,624,171 L1-dcache-load-misses 9.40% of all L1-dcache accesses
- 1,091,155,596 l2_rqsts.references
- 538,256,077 l2_rqsts.miss
- 470,615,736 LLC-loads
- 112,816,293 LLC-load-misses 23.97% of all LL-cache accesses
- \end{minted}
- %>>>
- \onslide<5>%<<<
- \begin{minted}[autogobble,fontsize=\scriptsize]{text}
- \end{minted}
- {\small GEMM\_blocked<M,N,K, 40,40,40, 8,10,40>(...)}
- \begin{minted}[autogobble,fontsize=\scriptsize]{text}
- FLOP rate = 26.5831 GFLOP/s
- 11,533,695,903 L1-dcache-loads
- 1,084,624,171 L1-dcache-load-misses 9.40% of all L1-dcache accesses
- 1,091,155,596 l2_rqsts.references
- 538,256,077 l2_rqsts.miss
- 470,615,736 LLC-loads
- 112,816,293 LLC-load-misses 23.97% of all LL-cache accesses
- \end{minted}
- %>>>
- \onslide<6>%<<<
- \begin{minted}[autogobble,fontsize=\scriptsize]{text}
- \end{minted}
- {\small GEMM\_blocked<M,N,K, 40,40,40, 8,10,40>(...)}
- \begin{minted}[autogobble,fontsize=\scriptsize]{text}
- FLOP rate = 26.5831 GFLOP/s
- 11,533,695,903 L1-dcache-loads
- 1,084,624,171 L1-dcache-load-misses 9.40% of all L1-dcache accesses
- 1,091,155,596 l2_rqsts.references
- 538,256,077 l2_rqsts.miss
- 470,615,736 LLC-loads
- 112,816,293 LLC-load-misses 23.97% of all LL-cache accesses
- \end{minted}
- {\small GEMM\_blocked<M,N,K, 200,200,200, \\
- \phantom{000000000000000000} 40,40,40, 8,10,40>(...)}
- \begin{minted}[autogobble,fontsize=\scriptsize]{text}
- FLOP rate = 43.1604 GFLOP/s
- 11,531,903,350 L1-dcache-loads
- 1,094,841,388 L1-dcache-load-misses 9.49% of all L1-dcache accesses
- 1,194,502,755 l2_rqsts.references
- 201,888,454 l2_rqsts.miss
- 116,940,584 LLC-loads
- 44,894,302 LLC-load-misses 38.39% of all LL-cache accesses
- \end{minted}
- %>>>
- \end{overprint}
- \end{columns}
- \end{frame}
- %>>>
- \begin{frame} \frametitle{GEMM benchmarks}{} %<<<
- \center
- \resizebox{0.7\textwidth}{!}{\begin{tikzpicture} %<<<
- \begin{axis}[width=12cm,height=8cm, xmin=5, xmax=440, ymin=0, ymax=105,
- xlabel={N=M=K}, ylabel=FLOP-rate (GFLOP/s), legend pos=south east, legend style={draw=none}]
- \addplot[mark=none, thick, color=blue] table [x={size}, y={myGEMM}] {data/gemm-flops-multiple-of-40};
- \addplot[mark=none, thick, color=red] table [x={size}, y={MKL}] {data/gemm-flops-multiple-of-40};
- \legend{{GEMM\_blocked},{MKL}}
- \end{axis}
- \end{tikzpicture}} %>>>
- \end{frame}
- %>>>
- \begin{frame}[fragile] \frametitle{Optimizing GEMM -- references}{} %<<<
- \begin{columns}
- \column{0.5\textwidth}
- BLIS framework:\\
- Van Zee and van de Geijn 2015
- \column{0.5\textwidth}
- \includegraphics[width=0.99\textwidth]{figs/goto-blocking1}
- \end{columns}
- \end{frame}
- %>>>
- \begin{frame} \frametitle{Memory and caches -- summary}{} %<<<
- \begin{columns}
- \column{0.42\textwidth}
- {\small
- \begin{itemize}
- \setlength\itemsep{1em}
- \item Memory bandwidth and latency are lagging behind FLOP rates
- \item Latency is a bigger issue: avoid linked lists, pointer chasing, etc. --- use arrays, regular memory accesses instead
- \item Caches are fast - use them optimally
- \item Account for NUMA
- \item New technologies (HBM) are probably on the way
- \end{itemize}
- }
- \column{0.58\textwidth}
- \includegraphics[width=0.99\textwidth]{figs/sustained-memory-bw-falling-graph-mccalpin-1000x}
- {\tiny Source: John McCalpin - Memory bandwidth and system balance in HPC systems, 2016}
- \end{columns}
- % many ways to shoot yourself in the foot:
- % thread contention
- % cache coherency
- % thread pinning
- % NUMA
- % locks / atomic / synchronization
- \end{frame}
- %>>>
- % Stack vs heap memory
- % vector vs linked list
- %\begin{frame} \frametitle{Shared memory pitfalls}{} %<<<
- %
- % % many ways to shoot yourself in the foot:
- %
- % % thread contention
- % % cache coherency
- % % thread pinning
- % % NUMA
- % % locks / atomic / synchronization
- %
- %\end{frame}
- %%>>>
|