12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001 |
- % vim: set foldmethod=marker foldmarker=<<<,>>>:
- \section{Memory/bandwidth optimization}
- % 1) (malloc, first-touch, bandwidth, free) for (writing to array)
- % 2) (bandwidth) for (reading array) [reduction]
- % 3) (flop,bandwidth) for (vector copy, vector-add) (write causes read -- unless streaming write)
- % 4) (latency) for (sequential access, strided access) (integer array with indices)
- % x2 - single and multi threaded
- % plot: X (size), Y (cycles) ---- vary stride length
- % spatial and temporal data locality
- % hyper threading - shared cache - useful for latency bound
- \begin{frame} \frametitle{Memory}{} %<<<
- \begin{columns}
- \column{0.5\textwidth}
- How does computer memory work?
- \vspace{2em}
- References:
- {\small
- \begin{itemize}
- \setlength\itemsep{1em}
- \item Ulrich Drepper -- What every programmer should know about memory (2007)
- %https://lwn.net/Articles/252125/
- \item Igor Ostrovsky -- Gallery of Processor Cache Effects %\url{http://igoro.com/archive/gallery-of-processor-cache-effects}
- \end{itemize}
- }
- \column{0.5\textwidth}
- \center
- \includegraphics[width=0.99\textwidth]{figs/cache-hierarchy}
- {\footnotesize Source: Intel Software Developer Manual}
- \end{columns}
- \end{frame}
- %>>>
- \begin{frame}[t,fragile] \frametitle{Memory benchmarks}{} %<<<
- \begin{columns}
- \column{0,55\textwidth}
- \footnotesize
- \begin{overprint}
- \onslide<1->%<<<
- \begin{minted}[
- frame=lines,
- fontsize=\footnotesize,
- linenos,
- autogobble,
- mathescape
- ]{C++}
- long N = 1e9; // 8 GB
- // Allocate memory
- double* X = (double*)malloc(N*sizeof(double));
- // Write to array
- for (long i = 0; i < N; i++) X[i] = i;
- // Update array
- for (long i = 0; i < N; i++) X[i] = 2*i;
- // Free memory
- free(X);
- \end{minted}
- %>>>
- \end{overprint}
- \column{0.05\textwidth}
- \column{0.4\textwidth}
- \vspace{0.3em}
- \begin{overprint}
- \onslide<2->%<<<
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- Allocate memory
- T = 1.60821e-05
- Write to array
- T = 1.75352 --- 4.6 GB/s
- Update array
- T = 0.84467 --- 9.5 GB/s
- Free memory
- T = 0.0141113
- \end{minted}
- %\textcolor{red}{\qquad only $1.5\times$ speedup :(}
- %>>>
- \end{overprint}
- \end{columns}
- \vspace{0.5em}
- \only<3->{
- \vspace{0.5em}
- \begin{columns}
- \column{0.6\textwidth}
- \textcolor{red}{Memory allocations are not free!}
- \begin{itemize}
- \item \textcolor{red}{cost is hidden in initialization (first-touch)}
- \end{itemize}
- \end{columns}
- }
- \end{frame}
- %>>>
- \begin{frame}[t,fragile] \frametitle{Main memory bandwidth}{} %<<<
- \begin{columns}
- \column{0,6\textwidth}
- \footnotesize
- \begin{overprint}
- \onslide<1->%<<<
- \begin{minted}[
- frame=lines,
- fontsize=\footnotesize,
- linenos,
- autogobble,
- mathescape
- ]{C++}
- long N = 1e9; // 8 GB
- // Initialize X, Y
- for (long i = 0; i < N; i++) X[i] = Y[i] = i;
- // Write to array
- #pragma omp parallel for schedule(static)
- for (long i = 0; i < N; i++) X[i] = 3.14;
- // Read from array
- double sum = 0;
- #pragma omp parallel for schedule(static) reduction(+:sum)
- for (long i = 0; i < N; i++) sum += X[i];
- // Adding arrays: 2-reads, 1-write
- #pragma omp parallel for schedule(static)
- for (long i = 0; i < N; i++) Y[i] += X[i];
- \end{minted}
- %>>>
- \end{overprint}
- \column{0.05\textwidth}
- \column{0.35\textwidth}
- \vspace{0.5em}
- \begin{overprint}
- \onslide<2->%<<<
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- Writing to array
- Bandwidth = 35.4136 GB/s
- Reading from array
- Bandwidth = 69.4623 GB/s
- Adding arrays
- Bandwidth = 113.637 GB/s
- \end{minted}
- %\textcolor{red}{\qquad only $1.5\times$ speedup :(}
- %>>>
- \end{overprint}
- \end{columns}
- \end{frame}
- %>>>
- \begin{frame} \frametitle{Non-uniform Memory Access}{} %<<<
- \begin{itemize}
- %\item {\bf Cores:} individual processing units.
- %\item {\bf Sockets:} collection of cores on the same silicon die.
- \item Each sockets connected to its own DRAM.
- \item Sockets interconnected using a network: QPI (Intel), HT (AMD).
- \item Location of memory pages determined by first-touch policy.
- \end{itemize}
- \center
- \includegraphics[width=0.7\textwidth]{figs/numa1}
- {\scriptsize Source: \url{https://frankdenneman.nl/2016/07/07/numa-deep-dive-part-1-uma-numa}}
- \end{frame}
- %>>>
- \begin{frame}[t,fragile] \frametitle{Main memory bandwidth (NUMA aware)}{} %<<<
- \begin{columns}
- \column{0,6\textwidth}
- \footnotesize
- \begin{overprint}
- \onslide<1-2>%<<<
- \begin{minted}[
- frame=lines,
- fontsize=\footnotesize,
- linenos,
- autogobble,
- mathescape
- ]{C++}
- long N = 1e9; // 8 GB
- // Initialize X, Y
- #pragma omp parallel for schedule(static)
- for (long i = 0; i < N; i++) X[i] = Y[i] = i;
- // Write to array
- #pragma omp parallel for schedule(static)
- for (long i = 0; i < N; i++) X[i] = 3.14;
- // Read from array
- double sum = 0;
- #pragma omp parallel for schedule(static) reduction(+:sum)
- for (long i = 0; i < N; i++) sum += X[i];
- // Adding arrays: 2-reads, 1-write
- #pragma omp parallel for schedule(static)
- for (long i = 0; i < N; i++) Y[i] += X[i];
- \end{minted}
- %>>>
- \onslide<3>%<<<
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- \end{minted}
- \center
- \vspace{8em}
- \textcolor{red}{\normalsize Many shared-memory codes scale poorly \\
- because they don't account for NUMA!}
- %>>>
- \end{overprint}
- \column{0.05\textwidth}
- \column{0.35\textwidth}
- \begin{overprint}
- \onslide<1>%<<<
- Set thread affinity:
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- export OMP_PLACES=cores
- export OMP_PROC_BIND=spread
- \end{minted}
- %>>>
- \onslide<2->%<<<
- \vspace{-1.5em}
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- \end{minted}
- {\footnotesize \underline{Original:}}
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- Writing to array
- Bandwidth = 35.4136 GB/s
- \end{minted}
- \vspace{0.1ex}
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- Reading from array
- Bandwidth = 69.4623 GB/s
- \end{minted}
- \vspace{0.1ex}
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- Adding arrays
- Bandwidth = 113.637 GB/s
- \end{minted}
- \vspace{0.2em}
- {\footnotesize \underline{NUMA aware:}}
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- Writing to array
- Bandwidth = 87.1515 GB/s
- \end{minted}
- \vspace{0.1ex}
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- Reading from array
- Bandwidth = 160.663 GB/s
- \end{minted}
- \vspace{0.1ex}
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- Adding arrays
- Bandwidth = 180.069 GB/s
- \end{minted}
- %>>>
- \end{overprint}
- \end{columns}
- \end{frame}
- %>>>
- \begin{frame}[t,fragile] \frametitle{L1-cache bandwidth}{} %<<<
- \begin{columns}
- \column{0,55\textwidth}
- \footnotesize
- \begin{overprint}
- \onslide<1->%<<<
- \begin{minted}[
- frame=lines,
- fontsize=\footnotesize,
- linenos,
- autogobble,
- mathescape
- ]{C++}
- long N = 2048; // 16KB
- double* X = (double*)malloc(N*sizeof(double));
- double* Y = (double*)malloc(N*sizeof(double));
- // Initialize X, Y
- // Write to array
- for (long i = 0; i < N; i++) X[i] = 3.14;
- // Read from array
- double sum = 0;
- for (long i = 0; i < N; i++) sum += X[i];
- // Adding arrays: 2-reads, 1-write
- for (long i = 0; i < N; i++) Y[i] += X[i];
- \end{minted}
- %>>>
- \end{overprint}
- \column{0.05\textwidth}
- \column{0.4\textwidth}
- \vspace{0.5em}
- \begin{overprint}
- \onslide<2->%<<<
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- Writing to array
- Bandwidth = 26.2744 GB/s
- Reading from array
- Bandwidth = 6.57305 GB/s
- Adding arrays
- Bandwidth = 131.203 GB/s
- \end{minted}
- %\textcolor{red}{\qquad only $1.5\times$ speedup :(}
- %>>>
- \end{overprint}
- \end{columns}
- \end{frame}
- %>>>
- \begin{frame}[t,fragile] \frametitle{L1-cache bandwidth (vectorized)}{} %<<<
- \begin{columns}
- \column{0,55\textwidth}
- \footnotesize
- \begin{overprint}
- \onslide<1-2>%<<<
- \begin{minted}[
- frame=lines,
- fontsize=\footnotesize,
- linenos,
- autogobble,
- mathescape
- ]{C++}
- using Vec = sctl::Vec<double,8>;
- long N = 2048; // 16KB
- double* X = (double*)malloc(N*sizeof(double));
- double* Y = (double*)malloc(N*sizeof(double));
- // Initialize X, Y
- // Write to array
- Vec v = 3.14;
- #pragma GCC unroll (4)
- for (long i = 0; i < N; i+=8) v.Store(X+i);
- \end{minted}
- %>>>
- \onslide<3-4>%<<<
- \begin{minted}[
- frame=lines,
- fontsize=\footnotesize,
- linenos,
- autogobble,
- mathescape
- ]{C++}
- // Read from array
- Vec sum[8] = {0.,0.,0.,0.,0.,0.,0.,0.};
- for (long i = 0; i < N; i+=8*8) {
- sum[0] = sum[0] + Vec::Load(X +i);
- sum[1] = sum[1] + Vec::Load(X+8 +i);
- sum[2] = sum[2] + Vec::Load(X+16+i);
- sum[3] = sum[3] + Vec::Load(X+24+i);
- sum[4] = sum[4] + Vec::Load(X+32+i);
- sum[5] = sum[5] + Vec::Load(X+40+i);
- sum[6] = sum[6] + Vec::Load(X+48+i);
- sum[7] = sum[7] + Vec::Load(X+56+i);
- }
- \end{minted}
- %>>>
- \onslide<5-6>%<<<
- \begin{minted}[
- frame=lines,
- fontsize=\footnotesize,
- linenos,
- autogobble,
- mathescape
- ]{C++}
- // Adding arrays: 2-reads, 1-write
- for (long i = 0; i < N; i+=8*2) {
- Vec X0 = Vec::Load(X+0+i);
- Vec X1 = Vec::Load(X+8+i);
- Vec Y0 = Vec::Load(Y+0+i);
- Vec Y1 = Vec::Load(Y+8+i);
- (X0+Y0).Store(Y+VecLen*0+i);
- (X1+Y1).Store(Y+VecLen*1+i);
- }
- \end{minted}
- %>>>
- \end{overprint}
- \column{0.05\textwidth}
- \column{0.4\textwidth}
- \vspace{0.5em}
- \begin{overprint}
- \onslide<2-3>%<<<
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- Writing to array
- Bandwidth = 89.5993 GB/s
- cycles/iter = 2.35716
- \end{minted}
- %>>>
- \onslide<4-5>%<<<
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- Writing to array
- Bandwidth = 89.5993 GB/s
- cycles/iter = 2.35716
- Reading from array
- Bandwidth = 210.375 GB/s
- cycles/iter = 1.00392
- \end{minted}
- %>>>
- \onslide<6->%<<<
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- Writing to array
- Bandwidth = 89.5993 GB/s
- cycles/iter = 2.35716
- Reading from array
- Bandwidth = 210.375 GB/s
- cycles/iter = 1.00392
- Adding arrays
- Bandwidth = 148.29 GB/s
- cycles/iter = 4.27271
- \end{minted}
- %>>>
- \end{overprint}
- \end{columns}
- \end{frame}
- %>>>
- \begin{frame}[t,fragile] \frametitle{L1-cache bandwidth (vectorized \& aligned)}{} %<<<
- \begin{columns}
- \column{0,55\textwidth}
- \begin{overprint}
- \onslide<1>%<<<
- \vspace{0.5em}
- Unaligned read:\\
- \resizebox{0.8\textwidth}{!}{\begin{tikzpicture} %<<<
- \fill[c3] (0.75,1) rectangle (2.75,1.25);
- \draw[step=0.25,thick, darkgray] (0.749,0.99) grid (2.75,1.25);
- \node at (3.3,1.125) {\footnotesize register};
- \fill[c2] (0,0) rectangle (2,-0.25);
- \draw[step=0.25,thick, darkgray] (0,0) grid (2,-0.25);
- \fill[c2] (2.25,0) rectangle (4.25,-0.25);
- \draw[step=0.25,thick, darkgray] (2.249,0) grid (4.25,-0.25);
- \node at (2.1,-0.4) {\footnotesize L1 cache};
- \draw[-latex, thick] (0.875,0.1) -- (0.875,0.9);
- \draw[-latex, thick] (1.125,0.1) -- (1.125,0.9);
- \draw[-latex, thick] (1.375,0.1) -- (1.375,0.9);
- \draw[-latex, thick] (1.625,0.1) -- (1.625,0.9);
- \draw[-latex, thick] (1.875,0.1) -- (1.875,0.9);
- \draw[-latex, thick] (2.375,0.1) -- (2.125,0.9);
- \draw[-latex, thick] (2.625,0.1) -- (2.375,0.9);
- \draw[-latex, thick] (2.875,0.1) -- (2.625,0.9);
- \end{tikzpicture}}%>>>
- %>>>
- \onslide<2->%<<<
- \vspace{0.5em}
- Aligned read:\\
- \resizebox{0.8\textwidth}{!}{\begin{tikzpicture} %<<<
- \fill[c3] (0,1) rectangle (2,1.25);
- \draw[step=0.25,thick, darkgray] (0,0.99) grid (2,1.25);
- \node at (2.55,1.125) {\footnotesize register};
- \fill[c2] (0,0) rectangle (2,-0.25);
- \draw[step=0.25,thick, darkgray] (0,0) grid (2,-0.25);
- \fill[c2] (2.25,0) rectangle (4.25,-0.25);
- \draw[step=0.25,thick, darkgray] (2.249,0) grid (4.25,-0.25);
- \node at (2.1,-0.4) {\footnotesize L1 cache};
- \draw[-latex, thick] (0.125,0.1) -- (0.125,0.9);
- \draw[-latex, thick] (0.375,0.1) -- (0.375,0.9);
- \draw[-latex, thick] (0.625,0.1) -- (0.625,0.9);
- \draw[-latex, thick] (0.875,0.1) -- (0.875,0.9);
- \draw[-latex, thick] (1.125,0.1) -- (1.125,0.9);
- \draw[-latex, thick] (1.375,0.1) -- (1.375,0.9);
- \draw[-latex, thick] (1.625,0.1) -- (1.625,0.9);
- \draw[-latex, thick] (1.875,0.1) -- (1.875,0.9);
- \end{tikzpicture}}%>>>
- \vspace{0.2em}
- \small
- Replace:
- \begin{itemize}
- \item malloc $\rightarrow$ sctl::aligned\_new
- \item Vec::Load $\rightarrow$ Vec::AlignedLoad
- \item Vec::Store $\rightarrow$ Vec::AlignedStore
- \end{itemize}
- %>>>
- \end{overprint}
- \column{0.05\textwidth}
- \column{0.4\textwidth}
- \begin{overprint}
- \onslide<3->%<<<
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- Writing to array
- Bandwidth = 210.273 GB/s
- cycles/iter = 1.00441
- Reading from array
- Bandwidth = 380.953 GB/s
- cycles/iter = 0.554399
- Adding arrays
- Bandwidth = 325.592 GB/s
- cycles/iter = 1.94599
- \end{minted}
- %>>>
- \end{overprint}
- \end{columns}
- \vspace{1em}
- \begin{columns}
- \column{0.65\textwidth}
- \only<3>{\textcolor{red}{Aligned memory acceses to L1 can be $2\times$ faster!}}
- \end{columns}
- \end{frame}
- %>>>
- \begin{frame} \frametitle{Memory bandwidth and latency}{} %<<<
- \begin{columns}
- \column{0.5\textwidth}
- \center
- {$32\times$ difference between \\
- L1 and main memory bandwidth!}
- \vspace{1em}
- \resizebox{1.0\textwidth}{!}{\begin{tikzpicture} %<<<
- \begin{loglogaxis}[width=12cm,height=8cm, xmin=8192, xmax=256000000, ymin=80, ymax=6000,
- xlabel={array size per core (bytes)}, ylabel=Bandwidth (GB/s), legend pos=south west, legend style={draw=none}]
- \addplot[mark=none, thick, color=blue] table [x={size}, y={read-bw}] {data/bw.txt};
- \addplot[mark=none, thick, color=red] table [x={size}, y={write-bw}] {data/bw.txt};
- \addplot[mark=none, thick, color=black] table [x={size}, y={vecadd-bw}] {data/bw.txt};
- \addplot[mark=none, color=gray, thick] coordinates { (32768,8) (32768,80000)};
- \addplot[mark=none, color=gray, thick] coordinates { (1048576,8) (1048576,80000)};
- \addplot[mark=none, color=gray, thick] coordinates { (3244032,8) (3244032,80000)};
- \legend{{read-bw},{write-bw},{read+write-bw}}
- \end{loglogaxis}
- \end{tikzpicture}} %>>>
- \column{0.5\textwidth}
- \center
- {$56\times$ difference between \\
- L1 and main memory latency!}
- \vspace{1em}
- \resizebox{1.0\textwidth}{!}{\begin{tikzpicture} %<<<
- \begin{loglogaxis}[width=12cm,height=8cm, xmin=8192, xmax=256000000, ymin=4, ymax=300,
- xlabel={array size (bytes)}, ylabel=cycles, legend pos=north west, legend style={draw=none}]
- \addplot[mark=none, thick, color=black] table [x={bytes}, y={cycles}] {data/latency.txt};
- \addplot[mark=none, color=gray, thick] coordinates { (32768,1) (32768,5000)};
- \addplot[mark=none, color=gray, thick] coordinates { (1048576,1) (1048576,5000)};
- \addplot[mark=none, color=gray, thick] coordinates {(25952256,1) (25952256,5000)};
- \legend{{latency}}
- \end{loglogaxis}
- \end{tikzpicture}} %>>>
- \end{columns}
- \end{frame}
- %>>>
- \begin{frame}[fragile] \frametitle{Optimizing GEMM for memory access}{} %<<<
- \begin{columns}
- \column{0.5\textwidth}
- \begin{overprint}
- \onslide<1->%<<<
- \resizebox{0.99\textwidth}{!}{\begin{tikzpicture} %<<<
- \node at (-0.5,-1) {$M$};
- \node at (1,0.5) {$N$};
- \draw[latex-latex, thick] (0,0.25) -- (2,0.25);
- \draw[latex-latex, thick] (-0.25,0) -- (-0.25,-2);
- \fill[c2] (0,0) rectangle (2,-2);
- \draw[step=0.25,thick, darkgray] (0,0) grid (2,-2);
- \node at (1,-1) {\Large C};
- \node at (2.5,-1) {$=$};
- \node at (4.25,0.5) {$K$};
- \draw[latex-latex, thick] (3,0.25) -- (5.5,0.25);
- \fill[c3] (3,0) rectangle (5.5,-2);
- \draw[step=0.25,thick, darkgray] (2.99,0) grid (5.5,-2);
- \node at (4.25,-1) {\Large A};
- \node at (6,-1) {$\times$};
- \fill[c4] (6.5,0) rectangle (8.5,-2.5);
- \draw[step=0.25,thick, darkgray] (6.49,0) grid (8.5,-2.5);
- \node at (7.5,-1.25) {\Large B};
- \end{tikzpicture}}%>>>
- \begin{minted}[
- frame=lines,
- fontsize=\scriptsize,
- baselinestretch=1,
- numbersep=5pt,
- linenos,
- autogobble,
- framesep=1mm,
- mathescape
- ]{C++}
- void GEMM(int M, int N, int K, double* A, int LDA,
- double* B, int LDB, double* C, int LDC) {
- for (int j = 0; j < N; j++)
- for (int k = 0; k < K; k++)
- for (int i = 0; i < M; i++)
- C[i+j*LDC] += A[i+k*LDA] * B[k+j*LDB];
- }
- \end{minted}
- %>>>
- \qquad {\small Dimensions: M = N = K = 2000}
- \end{overprint}
- \column{0.05\textwidth}
- \column{0.5\textwidth}
- \begin{overprint}
- \onslide<1>%<<<
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- \end{minted}
- {\bf perf:} performance monitoring tool which samples hardware counters
- %>>>
- \onslide<2->%<<<
- \begin{minted}[autogobble,fontsize=\footnotesize]{text}
- \end{minted}
- {\bf perf:} performance monitoring tool which samples hardware counters
- \vspace{1em}
- \begin{minted}[autogobble,fontsize=\scriptsize]{text}
- ~> g++ -O3 -march=native gemm.cpp
- ~> perf stat -e L1-dcache-load-misses \
- -e L1-dcache-loads -e l2_rqsts.miss \
- -e l2_rqsts.references -e LLC-load-misses \
- -e LLC-loads ./a.out
- FLOP rate = 4.87547 GFLOP/s
- 30,311,624,911 L1-dcache-loads
- 14,900,283,807 L1-dcache-load-misses 49.16% of all L1-dcache accesses
- 24,387,281,512 l2_rqsts.references
- 10,034,752,513 l2_rqsts.miss
- 2,260,778,457 LLC-loads
- 1,310,606,484 LLC-load-misses 57.97% of all LL-cache accesses
- \end{minted}
- %>>>
- \end{overprint}
- \end{columns}
- \end{frame}
- %>>>
- \begin{frame}[fragile] \frametitle{GEMM blocking}{} %<<<
- \begin{columns}
- \column{0.5\textwidth}
- \begin{overprint}
- \onslide<1>%<<<
- \begin{minted}[
- frame=lines,
- fontsize=\scriptsize,
- baselinestretch=1,
- numbersep=5pt,
- linenos,
- autogobble,
- framesep=1mm,
- mathescape
- ]{C++}
- template <int M, int N, int K>
- void GEMM_blocked(double* A, int LDA,
- double* B, int LDB, double* C, int LDC) {
- for (int j = 0; j < N; j++)
- for (int k = 0; k < K; k++)
- for (int i = 0; i < M; i++)
- C[i+j*LDC] += A[i+k*LDA] * B[k+j*LDB];
- }
- template <int M, int N, int K,
- int Mb, int Nb, int Kb, int... NN>
- void GEMM_blocked(double* A, int LDA,
- double* B, int LDB, double* C, int LDC) {
- for (int j = 0; j < N; j+=Nb)
- for (int i = 0; i < M; i+=Mb)
- for (int k = 0; k < K; k+=Kb)
- GEMM_blocked<Mb,Nb,Kb, NN...>(A+i+k*LDA,LDA,
- B+k+j*LDB,LDB, C+i+j*LDC,LDC);
- }
- \end{minted}
- %>>>
- \onslide<2->%<<<
- \begin{minted}[
- frame=lines,
- fontsize=\scriptsize,
- baselinestretch=1,
- numbersep=5pt,
- linenos,
- autogobble,
- framesep=1mm,
- mathescape
- ]{C++}
- template <int M, int N, int K>
- void GEMM_blocked(double* A, int LDA,
- double* B, int LDB, double* C, int LDC) {
- GEMM_ker_vec_unrolled<M,N,K>(A,LDA, B,LDB, C,LDC);
- }
- template <int M, int N, int K,
- int Mb, int Nb, int Kb, int... NN>
- void GEMM_blocked(double* A, int LDA,
- double* B, int LDB, double* C, int LDC) {
- for (int j = 0; j < N; j+=Nb)
- for (int i = 0; i < M; i+=Mb)
- for (int k = 0; k < K; k+=Kb)
- GEMM_blocked<Mb,Nb,Kb, NN...>(A+i+k*LDA,LDA,
- B+k+j*LDB,LDB, C+i+j*LDC,LDC);
- }
- \end{minted}
- %>>>
- \end{overprint}
- \column{0.05\textwidth}
- \column{0.55\textwidth}
- \begin{overprint}
- \onslide<1-2>%<<<
- \begin{minted}[autogobble,fontsize=\scriptsize,baselinestretch=0.01]{text}
- \end{minted}
- \vspace{3em}
- \includegraphics[width=0.99\textwidth]{figs/gemm-tiling}
- %{\tiny Source: Tuning and optimization for a variety of many-core architectures}
- \vspace{-0.6em}
- {\tiny without changing a single line of implementation code using the Alpaka library}
- %>>>
- \onslide<3>%<<<
- \begin{minted}[autogobble,fontsize=\scriptsize]{text}
- \end{minted}
- {\small GEMM\_blocked<M,N,K, 8,10,40>(...)}
- \begin{minted}[autogobble,fontsize=\scriptsize]{text}
- FLOP rate = 11.803 GFLOP/s
- 11,514,598,988 L1-dcache-loads
- 3,274,256,252 L1-dcache-load-misses 28.44% of all L1-dcache accesses
- 3,283,717,404 l2_rqsts.references
- 1,047,408,896 l2_rqsts.miss
- 1,032,604,200 LLC-loads
- 293,256,535 LLC-load-misses 28.40% of all LL-cache accesses
- \end{minted}
- %>>>
- \onslide<4>%<<<
- \begin{minted}[autogobble,fontsize=\scriptsize]{text}
- \end{minted}
- {\small GEMM\_blocked<M,N,K, 8,10,40>(...)}
- \begin{minted}[autogobble,fontsize=\scriptsize]{text}
- FLOP rate = 11.803 GFLOP/s
- 11,514,598,988 L1-dcache-loads
- 3,274,256,252 L1-dcache-load-misses 28.44% of all L1-dcache accesses
- 3,283,717,404 l2_rqsts.references
- 1,047,408,896 l2_rqsts.miss
- 1,032,604,200 LLC-loads
- 293,256,535 LLC-load-misses 28.40% of all LL-cache accesses
- \end{minted}
- \vspace{0.5em}
- {\small GEMM\_blocked<M,N,K, 40,40,40, 8,10,40>(...)}
- \begin{minted}[autogobble,fontsize=\scriptsize]{text}
- FLOP rate = 26.5831 GFLOP/s
- 11,533,695,903 L1-dcache-loads
- 1,084,624,171 L1-dcache-load-misses 9.40% of all L1-dcache accesses
- 1,091,155,596 l2_rqsts.references
- 538,256,077 l2_rqsts.miss
- 470,615,736 LLC-loads
- 112,816,293 LLC-load-misses 23.97% of all LL-cache accesses
- \end{minted}
- %>>>
- \onslide<5>%<<<
- \begin{minted}[autogobble,fontsize=\scriptsize]{text}
- \end{minted}
- {\small GEMM\_blocked<M,N,K, 40,40,40, 8,10,40>(...)}
- \begin{minted}[autogobble,fontsize=\scriptsize]{text}
- FLOP rate = 26.5831 GFLOP/s
- 11,533,695,903 L1-dcache-loads
- 1,084,624,171 L1-dcache-load-misses 9.40% of all L1-dcache accesses
- 1,091,155,596 l2_rqsts.references
- 538,256,077 l2_rqsts.miss
- 470,615,736 LLC-loads
- 112,816,293 LLC-load-misses 23.97% of all LL-cache accesses
- \end{minted}
- %>>>
- \onslide<6>%<<<
- \begin{minted}[autogobble,fontsize=\scriptsize]{text}
- \end{minted}
- {\small GEMM\_blocked<M,N,K, 40,40,40, 8,10,40>(...)}
- \begin{minted}[autogobble,fontsize=\scriptsize]{text}
- FLOP rate = 26.5831 GFLOP/s
- 11,533,695,903 L1-dcache-loads
- 1,084,624,171 L1-dcache-load-misses 9.40% of all L1-dcache accesses
- 1,091,155,596 l2_rqsts.references
- 538,256,077 l2_rqsts.miss
- 470,615,736 LLC-loads
- 112,816,293 LLC-load-misses 23.97% of all LL-cache accesses
- \end{minted}
- {\small GEMM\_blocked<M,N,K, 200,200,200, \\
- \phantom{000000000000000000} 40,40,40, 8,10,40>(...)}
- \begin{minted}[autogobble,fontsize=\scriptsize]{text}
- FLOP rate = 43.1604 GFLOP/s
- 11,531,903,350 L1-dcache-loads
- 1,094,841,388 L1-dcache-load-misses 9.49% of all L1-dcache accesses
- 1,194,502,755 l2_rqsts.references
- 201,888,454 l2_rqsts.miss
- 116,940,584 LLC-loads
- 44,894,302 LLC-load-misses 38.39% of all LL-cache accesses
- \end{minted}
- %>>>
- \end{overprint}
- \end{columns}
- \end{frame}
- %>>>
- \begin{frame} \frametitle{GEMM benchmarks}{} %<<<
- \center
- \resizebox{0.7\textwidth}{!}{\begin{tikzpicture} %<<<
- \begin{axis}[width=12cm,height=8cm, xmin=5, xmax=440, ymin=0, ymax=105,
- xlabel={N=M=K}, ylabel=FLOP-rate (GFLOP/s), legend pos=south east, legend style={draw=none}]
- \addplot[mark=none, thick, color=blue] table [x={size}, y={myGEMM}] {data/gemm-flops-multiple-of-40};
- \addplot[mark=none, thick, color=red] table [x={size}, y={MKL}] {data/gemm-flops-multiple-of-40};
- \legend{{GEMM\_blocked},{MKL}}
- \end{axis}
- \end{tikzpicture}} %>>>
- \end{frame}
- %>>>
- \begin{frame}[fragile] \frametitle{Optimizing GEMM -- references}{} %<<<
- \begin{columns}
- \column{0.5\textwidth}
- BLIS framework:\\
- Van Zee and van de Geijn 2015
- \column{0.5\textwidth}
- \includegraphics[width=0.99\textwidth]{figs/goto-blocking1}
- \end{columns}
- \end{frame}
- %>>>
- \begin{frame} \frametitle{Memory and caches -- summary}{} %<<<
- \begin{columns}
- \column{0.42\textwidth}
- {\small
- \begin{itemize}
- \setlength\itemsep{1em}
- \item Memory bandwidth and latency are lagging behind FLOP rates
- \item Latency is a bigger issue: avoid linked lists, pointer chasing, etc. --- use arrays, regular memory accesses instead
- \item Caches are fast - use them optimally
- \item Account for NUMA
- \item New technologies (HBM) are probably on the way
- \end{itemize}
- }
- \column{0.58\textwidth}
- \includegraphics[width=0.99\textwidth]{figs/sustained-memory-bw-falling-graph-mccalpin-1000x}
- {\tiny Source: John McCalpin - Memory bandwidth and system balance in HPC systems, 2016}
- \end{columns}
- % many ways to shoot yourself in the foot:
- % thread contention
- % cache coherency
- % thread pinning
- % NUMA
- % locks / atomic / synchronization
- \end{frame}
- %>>>
- % Stack vs heap memory
- % vector vs linked list
- %\begin{frame} \frametitle{Shared memory pitfalls}{} %<<<
- %
- % % many ways to shoot yourself in the foot:
- %
- % % thread contention
- % % cache coherency
- % % thread pinning
- % % NUMA
- % % locks / atomic / synchronization
- %
- %\end{frame}
- %%>>>
|