|
@@ -5,12 +5,17 @@
|
|
|
\title
|
|
|
[Convergent Slender Body Quadrature]
|
|
|
{Convergent Slender Body Quadrature}
|
|
|
- \author[Dhairya Malhotra]{ \underline{Dhairya~Malhotra}, ~{Alex Barnett}}
|
|
|
+ %\author[Dhairya Malhotra]{ \underline{Dhairya~Malhotra}, ~{Alex Barnett}}
|
|
|
+ \author[Dhairya Malhotra]{Code: {\color{blue} \url{https://github.com/dmalhotra/CSBQ}} \\
|
|
|
+ \phantom{.}\\
|
|
|
+ \underline{Dhairya~Malhotra}, ~{Alex Barnett}}
|
|
|
+
|
|
|
|
|
|
%\institute{Flatiron Institute\\ \mbox{} \\ \pgfuseimage{FIbig} }
|
|
|
%\institute{\pgfuseimage{FIbig} }
|
|
|
|
|
|
- \date[]{{\color{blue} https://github.com/dmalhotra/CSBQ} \\ June 13, 2024}
|
|
|
+ %\date[]{Code: {\color{blue} \url{https://github.com/dmalhotra/CSBQ}} \\ June 13, 2024}
|
|
|
+ \date[]{June 13, 2024}
|
|
|
%>>>
|
|
|
%<<< packages
|
|
|
\usepackage{tikz}
|
|
@@ -62,6 +67,16 @@
|
|
|
\def\ie{\latinabbrev{i.e}}
|
|
|
|
|
|
\definecolor{DarkGreen}{RGB}{0,130,0}
|
|
|
+
|
|
|
+ \usepackage{minted}
|
|
|
+ \usemintedstyle{vs}
|
|
|
+ %\usemintedstyle{borland}
|
|
|
+
|
|
|
+ %\usemintedstyle{emacs}
|
|
|
+ %\usemintedstyle{perldoc}
|
|
|
+ %\usemintedstyle{friendly}
|
|
|
+ %%\usemintedstyle{pastie}
|
|
|
+ %%\usemintedstyle{vim}
|
|
|
%>>>
|
|
|
|
|
|
\newcommand\vct[1]{{\ensuremath{\bm{#1}}}}
|
|
@@ -985,7 +1000,7 @@
|
|
|
\vspace{1.0em}
|
|
|
{\bf BIE formulation:}\quad
|
|
|
$
|
|
|
- \displaystyle (\mathcal{I}/2 + \StokesDL + \StokesSL~/~({\color{red}2 \varepsilon \log \varepsilon^{-1}}) )[{\bm \sigma}] = {\bm u_0}
|
|
|
+ \displaystyle (I/2 + D + S~/~({\color{red}2 \varepsilon \log \varepsilon^{-1}}) ) \, {\bm \sigma} = {\bm u_0}
|
|
|
$
|
|
|
|
|
|
|
|
@@ -1197,7 +1212,7 @@
|
|
|
|
|
|
\vspace{0.3em}
|
|
|
\qquad$\qquad\displaystyle
|
|
|
- (\convop{I}/2 + \StokesDL)[{\color{red}\vct{\sigma}}] + \sum_{i=1}^{6n} \mathfrak{v}_i \mathfrak{v}_i^T {\color{red}\vct{\sigma}} = \vct{u}_s - \StokesSL[\vct{\nu}]
|
|
|
+ (I/2 + D) \, {\color{red}\vct{\sigma}} + \sum_{i=1}^{6n} \mathfrak{v}_i \mathfrak{v}_i^T {\color{red}\vct{\sigma}} = \vct{u}_s - S \, \vct{\nu}
|
|
|
$
|
|
|
|
|
|
\vspace{0.5em}{\em(Pozrikidis - Boundary Integral and Singularity Methods for Linearized Viscous Flow)}
|
|
@@ -1226,13 +1241,13 @@
|
|
|
%\quad $\displaystyle u(x) \rightarrow 0 ~\text{as}~ |x|\rightarrow \infty$
|
|
|
|
|
|
\vspace{1em}
|
|
|
- $\kappa(\StokesSL)$ \hfill $\sim 2.6e6$
|
|
|
+ $\kappa(S)$ \hfill $\sim 2.6e6$
|
|
|
|
|
|
\vspace{1em}
|
|
|
- $\kappa(\mathcal{I}/2 + \StokesDL)$ \hfill $\sim 4.3e6$
|
|
|
+ $\kappa(I/2 + D)$ \hfill $\sim 4.3e6$
|
|
|
|
|
|
\vspace{1em}
|
|
|
- $\kappa(\mathcal{I}/2 + \StokesDL + 16 \StokesSL)$ \hfill $\sim 80$
|
|
|
+ $\kappa(I/2 + D + 16 S)$ \hfill $\sim 80$
|
|
|
|
|
|
\column{0.1\textwidth}
|
|
|
|
|
@@ -1242,10 +1257,10 @@
|
|
|
|
|
|
\vspace{3em}
|
|
|
\begin{itemize}
|
|
|
- \item For infinite cylinder (Laplace case): ~~ $\kappa(\mathcal{I}/2 + \StokesDL) ~\sim~ 1/(\varepsilon^{2} \log \varepsilon^{-1})$
|
|
|
+ \item For infinite cylinder (Laplace case): ~~ $\kappa(I/2 + D) ~\sim~ 1/(\varepsilon^{2} \log \varepsilon^{-1})$
|
|
|
|
|
|
\vspace{0.5em}
|
|
|
- \item Combined field operator well-conditioned: ~~ $\mathcal{I}/2 + \StokesDL + \StokesSL ~/~ (2\varepsilon \log \varepsilon^{-1})$
|
|
|
+ \item Combined field operator well-conditioned: ~~ $I/2 + D + S ~/~ (2\varepsilon \log \varepsilon^{-1})$
|
|
|
\end{itemize}
|
|
|
|
|
|
\end{FIframe} %>>>
|
|
@@ -1306,7 +1321,7 @@
|
|
|
|
|
|
\vspace{0.3em}
|
|
|
\qquad$\qquad\displaystyle
|
|
|
- (\convop{I}/2 + \StokesCF)[{\color{red}\vct{\sigma}} - \sum_{i=1}^{6n} \mathfrak{v}_i \mathfrak{v}_i^T {\color{red}\vct{\sigma}} ] + \sum_{i=1}^{6n} \mathfrak{v}_i \mathfrak{v}_i^T {\color{red}\vct{\sigma}} = \vct{u}_s - \StokesSL[\vct{\nu}]
|
|
|
+ (I/2 + K) \, \left( {\color{red}\vct{\sigma}} - \sum_{i=1}^{6n} \mathfrak{v}_i \mathfrak{v}_i^T {\color{red}\vct{\sigma}} \right) + \sum_{i=1}^{6n} \mathfrak{v}_i \mathfrak{v}_i^T {\color{red}\vct{\sigma}} = \vct{u}_s - S \, \vct{\nu}
|
|
|
$
|
|
|
|
|
|
\vspace{1em}
|
|
@@ -1520,7 +1535,7 @@
|
|
|
|
|
|
\vspace{0.5em}
|
|
|
\begin{tabular}{r | r r r r r}
|
|
|
- \parbox[t]{2mm}{\multirow{5}{*}{\rotatebox[origin=c]{-90}{correction $\rightarrow$}}}
|
|
|
+ \parbox[t]{2mm}{\multirow{5}{*}{\rotatebox[origin=c]{-90}{correction $\rightarrow$}}}
|
|
|
& \multicolumn{5}{c}{sub-step $\rightarrow$} \\
|
|
|
\hline
|
|
|
& 66 & 66 & 66 & 66 & 66 \\
|
|
@@ -1536,7 +1551,7 @@
|
|
|
|
|
|
\vspace{0.5em}
|
|
|
\begin{tabular}{r | r r r r r}
|
|
|
- \parbox[t]{2mm}{\multirow{5}{*}{\rotatebox[origin=c]{-90}{correction $\rightarrow$}}}
|
|
|
+ \parbox[t]{2mm}{\multirow{5}{*}{\rotatebox[origin=c]{-90}{correction $\rightarrow$}}}
|
|
|
& \multicolumn{5}{c}{sub-step $\rightarrow$} \\
|
|
|
\hline
|
|
|
& 66 & 30 & 22 & 45 & 30 \\
|
|
@@ -1620,6 +1635,107 @@
|
|
|
\end{FIframe} %>>>
|
|
|
%>>>
|
|
|
|
|
|
+ \section{Software} %<<<
|
|
|
+
|
|
|
+ \begin{frame}[t,fragile] \frametitle{CSBQ library}{} %<<<
|
|
|
+
|
|
|
+ \vspace{1em}
|
|
|
+ {\bf Code:} ~~ {\color{blue} \url{https://github.com/dmalhotra/CSBQ}}
|
|
|
+
|
|
|
+ \vspace{1em}
|
|
|
+ {\bf Requirements:} ~~ C++11 compiler ~~with~~ OpenMP 4.0
|
|
|
+
|
|
|
+ \vspace{1em}
|
|
|
+ {\bf Build system:} ~~ none (header only)
|
|
|
+
|
|
|
+ \vspace{0.5em}
|
|
|
+ \begin{minted}[
|
|
|
+ %frame=lines,
|
|
|
+ fontsize=\footnotesize,
|
|
|
+ %linenos,
|
|
|
+ gobble=0,
|
|
|
+ mathescape
|
|
|
+ ]{C++}
|
|
|
+ #include <csbq.hpp>
|
|
|
+ \end{minted}
|
|
|
+
|
|
|
+
|
|
|
+ \vspace{3em}
|
|
|
+ {\bf Optional dependencies:} ~~ BLAS, LAPACK, MPI, and PVFMM
|
|
|
+
|
|
|
+ %\begin{itemize}
|
|
|
+ %\item includes simple `Makefile' for example codes.
|
|
|
+ %\end{itemize}
|
|
|
+
|
|
|
+ \end{frame}
|
|
|
+ %>>>
|
|
|
+
|
|
|
+ \begin{frame} \frametitle{Library classes}{} %<<<
|
|
|
+
|
|
|
+ \resizebox{1.05\linewidth}{!}{\begin{tikzpicture}
|
|
|
+
|
|
|
+ \node[anchor=north west, draw=none, rounded corners=.45cm, minimum height=7cm, minimum width=15.2cm] at (-0.1,1.6) {};
|
|
|
+
|
|
|
+ \only<3->{
|
|
|
+ \node[anchor=north west, draw=blue,thick, rounded corners=.45cm] at (1.0,1.5) {\begin{tabular}{c} \bf Taylor states \end{tabular}};
|
|
|
+ \node[anchor=north west, draw=blue,thick, rounded corners=.45cm] at (5.3,1.5) {\begin{tabular}{c} \bf Vacuum fields \end{tabular}};
|
|
|
+ \node[anchor=north west, draw=blue,thick, rounded corners=.45cm] at (9.8,1.5) {\begin{tabular}{c} \bf Virtual casing \end{tabular}};
|
|
|
+
|
|
|
+ \draw [line width=1mm] (0,0.25) -- (15.0,0.25);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ \only<2->{
|
|
|
+ \node[anchor=north west, draw=red,thick, rounded corners=.55cm] at (0,0) {\small
|
|
|
+ \begin{tabular}{c}
|
|
|
+ {\bf Surface} \\
|
|
|
+ W7X, LHD, \\
|
|
|
+ QAS3, etc, \\
|
|
|
+ $(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$
|
|
|
+ \end{tabular}};
|
|
|
+
|
|
|
+ \node[anchor=north west, draw=red,thick, rounded corners=.55cm] at (2.7,0) {\small
|
|
|
+ \begin{tabular}{c}
|
|
|
+ {\bf SurfaceOp} \\
|
|
|
+ resample, $\mathbf{n}$, \\
|
|
|
+ $\nabla_{\Gamma}$,~
|
|
|
+ $\nabla_{\Gamma} \cdot$, \\
|
|
|
+ $\nabla_{\Gamma} \times$,~
|
|
|
+ $\Delta_{\Gamma}$,\\
|
|
|
+ $\Delta^{-1}_{\Gamma}$
|
|
|
+ \end{tabular}};
|
|
|
+
|
|
|
+ \node[anchor=north west, draw=red,thick, rounded corners=.55cm] at (5.8,0) {\small
|
|
|
+ \begin{tabular}{c}
|
|
|
+ {\bf BoundaryIntegralOp}\\
|
|
|
+ $\int\limits_\Gamma \sigma(\mathbf{r}') K(\mathbf{r}-\mathbf{r}') d a(\mathbf{r}')$
|
|
|
+ \end{tabular}};
|
|
|
+
|
|
|
+ \node[anchor=north west, draw=red,thick, rounded corners=.55cm] at (10.9,0) {\small
|
|
|
+ \begin{tabular}{c}
|
|
|
+ {\bf KernelFunction}\\
|
|
|
+ Laplace, Helmholtz, \\
|
|
|
+ Biot-Savart, etc.
|
|
|
+ \end{tabular}};
|
|
|
+ }
|
|
|
+
|
|
|
+ \node[anchor=north west, draw=black,thick, rounded corners=.55cm] at (1,-3.3) {\small
|
|
|
+ \begin{tabular}{c}
|
|
|
+ {\bf SCTL:} Scientific Computing Template Library\\
|
|
|
+ \hspace{30em} \\
|
|
|
+ \\
|
|
|
+ \end{tabular}};
|
|
|
+
|
|
|
+ \node[anchor=north west, draw=red,thick, rounded corners=.45cm] at (2,-4.1) {\begin{tabular}{c} \bf Vector \end{tabular}};
|
|
|
+ \node[anchor=north west, draw=red,thick, rounded corners=.45cm] at (5,-4.1) {\begin{tabular}{c} \bf Matrix \end{tabular}};
|
|
|
+ \node[anchor=north west, draw=red,thick, rounded corners=.45cm] at (8,-4.1) {\begin{tabular}{c} \bf GMRES \end{tabular}};
|
|
|
+ \node[anchor=north west, draw=red,thick, rounded corners=.45cm] at (11,-4.1) {\begin{tabular}{c} \bf FFT \end{tabular}};
|
|
|
+
|
|
|
+ \end{tikzpicture}}
|
|
|
+
|
|
|
+ \end{frame}%>>>
|
|
|
+
|
|
|
+ %>>>
|
|
|
|
|
|
\section{Conclusions} %<<<
|
|
|
|