Convergent Slender Body Theory

Code: https://github.com/dmalhotra/CSBQ

Dhairya Malhotra, Alex Barnett

June 13, 2024

Slender Body Theory

Stokes simulations with fibers are key to modeling complex fluids (suspensions, rheology, industrial, biomedical, cellular biophysics).

Slender Body Theory (SBT):

- Asymptotic expansion in radius (ε) as $\varepsilon \to 0$ (Keller-Rubinow '76).
- Doublet correction to make velocity theta-independent (Johnson '80).

Drosophila oocyte (Stein et al. 2021)

Mitotic spindle (Nazockdast et al. 2015)

Slender Body Theory Error Estimates

Error estimates: Rigorous analysis difficult (few very recent studies)

- classical asymptotics claims: $\varepsilon^2 \log(\varepsilon)$
- rigorous analysis: $\varepsilon \log^{3/2}(\varepsilon)$ (Mori-Ohm-Spirn '19)
- numerical tests: $\varepsilon^{1.7}$ (Mitchell et al. '21 verify close-touching breakdown) close-to-touching with gap of 10ε , only 2.5-digits in the infty-norm.

Source: http://remf.dartmouth.edu/imagesindex.html

Slender Body Theory Error Estimates

Error estimates: Rigorous analysis difficult (few very recent studies)

- classical asymptotics claims: $\varepsilon^2 \log(\varepsilon)$
- rigorous analysis: $\varepsilon \log^{3/2}(\varepsilon)$ (Mori-Ohm-Spirn '19)
- numerical tests: $\varepsilon^{1.7}$ (Mitchell et al. '21 -- verify close-touching breakdown) close-to-touching with gap of 10ε , only 2.5-digits in the infty-norm.

ε	u _{exact}	Rel-Error
1e-1	6.1492138359856e-2	0.5e-2
1e-2	9.0984522324584e-2	0.1e-3
1e-3	1.2015655889904e-1	0.2e-5
1e-4	1.4931932907587e-1	0.2e-7
1e-5	1.7848191313097e-1	0.3e-9

Slender Body Theory Error Estimates

Error estimates: Rigorous analysis difficult (few very recent studies)

- \bullet classical asymptotics claims: $\varepsilon^2\log(\varepsilon)$
- rigorous analysis: $\varepsilon \log^{3/2}(\varepsilon)$ (Mori-Ohm-Spirn '19)
- numerical tests: $\varepsilon^{1.7}$ (Mitchell et al. '21 -- verify close-touching breakdown) close-to-touching with gap of 10ε , only 2.5-digits in the infty-norm.

Convergent Slender Body Theory

Goals: Develop boundary integral methods to solve the slender body BVP

- in a convergent way.
- adaptively when fibers get close.
- efficiently with effort independent of radius.

Convergent Slender Body Theory

Goals: Develop boundary integral methods to solve the slender body BVP

- in a convergent way.
- adaptively when fibers get close.
- efficiently with effort independent of radius.

Focus on rigid fibers in this talk -- flexible fibers for future.

Related work: Mitchell et al, '21 (mixed-BVP corresponding to flexible fiber loop)

Discretization

Geometry description:

- parameterization s along fiber length
- ullet coordinates $x_c(s)$ of centerline curve
- ullet circular cross-section with radius arepsilon(s)
- ullet orientation vector $e_1(s)$

Discretization

Geometry description:

- parameterization s along fiber length
- coordinates $x_c(s)$ of centerline curve
- circular cross-section with radius arepsilon(s)
- orientation vector $e_1(s)$

Discretization:

- piecewise Chebyshev (order q) discretization in s for $x_c(s)$, $\varepsilon(s)$, $e_1(s)$
- Collocation nodes: tensor product of Chebyshev and Fourier discretization in angle with order N_{θ} .

$$u(x) \ = \int_{\Gamma} \mathcal{K}(x-y) \ \sigma(y) \ da(y)$$

$$u(x) = \int_{\Gamma} \mathcal{K}(x-y) \ \sigma(y) \ da(y) = \sum_{k=1}^{N_{panel}} \int_{\Gamma_k} \mathcal{K}(x-y) \ \sigma(y) \ da(y)$$

$$\begin{split} u(x) &= \int_{\Gamma} \mathcal{K}(x-y) \ \sigma(y) \ da(y) \ = \sum_{k=1}^{N_{panel}} \int_{\Gamma_k} \mathcal{K}(x-y) \ \sigma(y) \ da(y) \\ &= \underbrace{\sum_{x \notin \mathcal{N}(\Gamma_k)} \int_{\Gamma_k} \mathcal{K}(x-y) \ \sigma(y) \ da(y)}_{\text{far-field}} + \underbrace{\sum_{x \in \mathcal{N}(\Gamma_k)} \int_{\Gamma_k} \mathcal{K}(x-y) \ \sigma(y) \ da(y)}_{\text{near interactions}} \end{split}$$

$$\begin{split} u(x) &= \int_{\Gamma} \mathcal{K}(x-y) \ \sigma(y) \ da(y) \ = \sum_{k=1}^{N_{panel}} \int_{\Gamma_k} \mathcal{K}(x-y) \ \sigma(y) \ da(y) \\ &= \underbrace{\sum_{x \notin \mathcal{N}(\Gamma_k)} \int_{\Gamma_k} \mathcal{K}(x-y) \ \sigma(y) \ da(y)}_{\text{far-field}} + \underbrace{\sum_{x \in \mathcal{N}(\Gamma_k)} \int_{\Gamma_k} \mathcal{K}(x-y) \ \sigma(y) \ da(y)}_{\text{near interactions}} \end{split}$$

Far-field

- Tensor product quad: Gauss-Legendre \times PTR
- Accelerate with PVFMM $\mathcal{O}(N^2) \rightarrow \mathcal{O}(N)$

Near interactions

Build special quadrature rules!

 $\sim 26M$ modal Green's function evaluations/sec/core (Skylake 2.4GHz)

Instead build special quadrature rules!

- replace composite panel quadratures with a single quadrature.
- Separate rules for different aspect ratios (1 10^4 in powers of 2)

Numerical Results - Stokes BVP

Exterior Stokes

 $\begin{array}{ll} \text{Dirichlet BVP:} & \boldsymbol{u}|_{\Gamma} = \boldsymbol{u}_{0}, \\ \Delta \boldsymbol{u} - \nabla p = \boldsymbol{0}, & \boldsymbol{u}(\boldsymbol{x}) \rightarrow \boldsymbol{0} \text{ as } |\boldsymbol{x}| \rightarrow \boldsymbol{0}, \\ \nabla \cdot \boldsymbol{u} = \boldsymbol{0}, \end{array}$

wire radius = 1.5e-3 to 4e-3wire length = 16

BIE formulation: $(I/2 + D + S / (2\varepsilon \log \varepsilon^{-1})) \sigma = u_0$

Numerical Results - Stokes BVP											
							1-core		40-c	ores	
N	N_{panel}	$N_{ heta}$	$\epsilon_{\rm GMRES}$	N _{iter}	$\ e\ _{\infty}$	T_{setup} (i	N/T_{setup})	T_{solve}	T_{setup}	T_{solve}	
1.0e4	49	8	1e-02	5	3.5e-02	0.193	(5.4e4)	0.130	0.042	0.017	
2.6e4	103	12	1e-05	22	5.5e-05	0.572	(4.5e4)	4.039	0.045	0.215	
1701	157	00	1 - 07	22	6 60 07	1 /16	(3 301)	10 5 1 8	0 134	1 160	
4.704	157	20	1e-07	- 33	0.08-07	1.410	(0.004)	17.010	0.154	1.102	
8.3e4	157 227	20 24	1e-07 1e-08	38	4.5e-07	3.623	(2.3e4)	78.907	0.134	3.689	

Numerical Results - close-to-touching

Numerical Results - close-to-touching

				1-core			40-cores		
N	$\epsilon_{\rm GMRES}$	N _{iter}	$\left\ e ight\ _\infty$	T _{setup}	(N/T_{setup})	T_{solve}	T _{setup}	T_{solve}	
6.5e4	1e-02	4	2.1e-02	8.1	(8.0e+3)	6.5	1.28	1.4	
6.5e4	1e-05	24	2.4e-03	16.8	(3.8e+3)	42.9	2.50	7.7	
6.5e4	1e-07	43	2.8e-06	23.5	(2.7e+3)	81.6	3.31	12.8	
6.5e4	1e-10	59	5.4e-08	35.6	(1.8e+3)	122.9	4.06	19.2	
6.5e4	1e-13	72	1.3e-10	49.9	(1.3e+3)	162.6	5.27	23.2	

Mobility problem

• *n* rigid bodies $\Omega = \sum_{i=1}^{n} \Omega_i$ with velocities $\boldsymbol{V}(\boldsymbol{x}) = \boldsymbol{v}_i + \boldsymbol{\omega}_i \times (\boldsymbol{x} - \boldsymbol{x}_i^c)$, and given forces \boldsymbol{F}_i , torques \boldsymbol{T}_i abount \boldsymbol{x}_i^c .

- Stokesian fluid in $\mathbb{R}^3 \setminus \Omega$ $\Delta \boldsymbol{u} - \nabla p = 0, \ \nabla \cdot \boldsymbol{u} = 0,$ $\boldsymbol{u} \to 0 \text{ as } \boldsymbol{x} \to \infty.$
- Boundary conditions on $\partial\Omega$,

$$u = V + u_s$$

Mobility problem

• *n* rigid bodies $\Omega = \sum_{i=1}^{n} \Omega_i$ with velocities $\mathbf{V}(\mathbf{x}) = \mathbf{v}_i + \boldsymbol{\omega}_i \times (\mathbf{x} - \mathbf{x}_i^c)$, and given forces \mathbf{F}_i , torques \mathbf{T}_i abount \mathbf{x}_i^c .

- Stokesian fluid in $\mathbb{R}^3 \setminus \Omega$ $\Delta \boldsymbol{u} - \nabla p = \boldsymbol{0}, \ \nabla \cdot \boldsymbol{u} = \boldsymbol{0},$ $\boldsymbol{u} \to 0 \text{ as } \boldsymbol{x} \to \infty.$
- Boundary conditions on $\partial \Omega$,

 $u = V + u_s$

unknown: $oldsymbol{V}(oldsymbol{u}_i,oldsymbol{\omega}_i)$

Mobility problem - double-layer formulation

Represent fluid velocity: $\boldsymbol{u} = S[\boldsymbol{\nu}(\boldsymbol{F}_i, \boldsymbol{T}_i)] + D[\boldsymbol{\sigma}]$ and rigid body velocity: $\boldsymbol{V} = -\sum_{i=1}^{6n} \boldsymbol{v}_i \boldsymbol{v}_i^T \boldsymbol{\sigma}$

Applying boundary conditions ($m{u} = m{V} + m{u}_s$ on $\partial \Omega$),

$$(I/2+D)\boldsymbol{\sigma}+\sum_{i=1}^{6n}\mathfrak{v}_i\mathfrak{v}_i^T\boldsymbol{\sigma}=\boldsymbol{u}_s-S\boldsymbol{\nu}$$

(Pozrikidis - Boundary Integral and Singularity Methods for Linearized Viscous Flow)

Mobility problem - double-layer formulation

Represent fluid velocity: $\boldsymbol{u} = S[\boldsymbol{\nu}(\boldsymbol{F}_i, \boldsymbol{T}_i)] + D[\boldsymbol{\sigma}]$ and rigid body velocity: $\boldsymbol{V} = -\sum_{i=1}^{6n} \mathfrak{v}_i \mathfrak{v}_i^T \boldsymbol{\sigma}$

Applying boundary conditions ($m{u}=m{V}+m{u}_s$ on $\partial\Omega$),

$$(I/2+D)\boldsymbol{\sigma}+\sum_{i=1}^{6n}\mathfrak{v}_i\mathfrak{v}_i^T\boldsymbol{\sigma}=\boldsymbol{u}_s-S\boldsymbol{\nu}$$

(Pozrikidis - Boundary Integral and Singularity Methods for Linearized Viscous Flow)

Second kind integral equation ... but doesn't work for slender bodies!

Mobility problem - double-layer formulation

Represent fluid velocity: $\boldsymbol{u} = S[\boldsymbol{\nu}(\boldsymbol{F}_i, \boldsymbol{T}_i)] + D[\boldsymbol{\sigma}]$ and rigid body velocity: $\boldsymbol{V} = -\sum_{i=1}^{6n} \mathfrak{v}_i \mathfrak{v}_i^T \boldsymbol{\sigma}$

Applying boundary conditions ($m{u} = m{V} + m{u}_s$ on $\partial \Omega$),

$$(I/2+D)\boldsymbol{\sigma}+\sum_{i=1}^{6n}\mathfrak{v}_i\mathfrak{v}_i^T\boldsymbol{\sigma}=\boldsymbol{u}_s-S\boldsymbol{\nu}$$

(Pozrikidis - Boundary Integral and Singularity Methods for Linearized Viscous Flow)

Second kind integral equation ... but doesn't work for slender bodies!

$$\kappa(I/2+D) \sim 1/(\varepsilon^2 \log \varepsilon^{-1})$$

Mobility problem - combined field formulation

Represent fluid velocity: $\boldsymbol{u} = \mathcal{S}[\boldsymbol{\nu}(\boldsymbol{F}_i, \boldsymbol{T}_i)] + \mathcal{K}[\boldsymbol{\sigma}]$

and rigid body velocity: $\boldsymbol{V} = -\sum_{i=1}^{6n} \mathfrak{v}_i \mathfrak{v}_i^T \boldsymbol{\sigma}$

where, $\mathcal{K} = \mathcal{D} + \mathcal{S}/(2\varepsilon\log\varepsilon^{-1}).$

Mobility problem - combined field formulation

Represent fluid velocity:
$$\boldsymbol{u} = S[\boldsymbol{\nu}(\boldsymbol{F}_i, \boldsymbol{T}_i)] + \mathcal{K}[\boldsymbol{\sigma} - \sum_{i=1}^{6n} \boldsymbol{v}_i \boldsymbol{v}_i^T \boldsymbol{\sigma}]$$

and rigid body velocity: $\boldsymbol{V} = -\sum_{i=1}^{6n} \boldsymbol{v}_i \boldsymbol{v}_i^T \boldsymbol{\sigma}$
where, $\mathcal{K} = \mathcal{D} + S/(2\varepsilon \log \varepsilon^{-1})$.

Mobility problem - combined field formulation

60

Represent fluid velocity:
$$\boldsymbol{u} = S[\boldsymbol{\nu}(\boldsymbol{F}_i, \boldsymbol{T}_i)] + \mathcal{K}[\boldsymbol{\sigma} - \sum_{i=1}^{6n} \boldsymbol{v}_i \boldsymbol{v}_i^T \boldsymbol{\sigma}]$$

and rigid body velocity: $\boldsymbol{V} = -\sum_{i=1}^{6n} \boldsymbol{v}_i \boldsymbol{v}_i^T \boldsymbol{\sigma}$
where, $\mathcal{K} = \mathcal{D} + S/(2\varepsilon \log \varepsilon^{-1})$.

Applying boundary conditions,

$$(\mathcal{I}/2 + \mathcal{K})[\boldsymbol{\sigma} - \sum_{i=1}^{6n} \mathfrak{v}_i \mathfrak{v}_i^T \boldsymbol{\sigma}] + \sum_{i=1}^{6n} \mathfrak{v}_i \mathfrak{v}_i^T \boldsymbol{\sigma} = \boldsymbol{u}_s - \mathcal{S}[\boldsymbol{\nu}]$$

Second kind integral equation and well-conditioned!

Time-stepping: 5-th order adaptive SDC

8-digits accuracy in quadratures, GMRES solve, and time-stepping.

40 CPU cores

Time-stepping: 5-th order adaptive SDC

8-digits accuracy in quadratures, GMRES solve, and time-stepping.

40 CPU cores

5-th order adaptive SDC

8-digits accuracy in quadratures, GMRES solve, and time-stepping.

0.5 million unknowns

64 rings.

160 CPU cores

CSBQ library

Code: https://github.com/dmalhotra/CSBQ (remember to checkout submodule SCTL)

Requirements: C++11 compiler with OpenMP

Build system: none (header only)

#include <csbq.hpp>

CSBQ library

Code: https://github.com/dmalhotra/CSBQ (remember to checkout submodule SCTL)

Requirements: C++11 compiler with OpenMP

Build system: none (header only)

#include <csbq.hpp>

Optional dependencies: BLAS, LAPACK, FFTW, MPI, and PVFMM

Library overview

Applications

Step 1: Stokes Dirichlet boundary value problem (exterior)

• Stokes equations:

$$egin{array}{lll} \Delta \mathbf{u} -
abla p = 0 & ext{in } \mathbb{R}^3 \setminus \overline{\Omega}, \
abla \cdot \mathbf{u} = 0 & ext{in } \mathbb{R}^3 \setminus \overline{\Omega}, \end{array}$$

Boundary conditions:

$$\begin{split} \mathbf{u}|_{\Gamma} &= \mathbf{u}_0 \qquad \text{on } \Gamma, \\ \mathbf{u}(\mathbf{x}) &\to \mathbf{0} \qquad \text{as } |\mathbf{x}| \to \infty \end{split}$$

Step 2: Integral Equation Formulation

• Boundary integral representation:

$$\mathbf{u} = \mathcal{D}[\sigma] + \eta \, \mathcal{S}[\sigma] \quad \text{ in } \mathbb{R}^3 \setminus \overline{\Omega},$$

where

$$egin{aligned} \mathcal{S}[\sigma](\mathbf{x}) &\coloneqq \int_{\Gamma} \mathbf{S}(\mathbf{x}-\mathbf{y}) \, \sigma(\mathbf{y}) \, d\mathbf{S}_{\mathbf{y}}, \ \mathcal{D}[\sigma](\mathbf{x}) &\coloneqq \int_{\Gamma} D(\mathbf{x}-\mathbf{y}) \, \sigma(\mathbf{y}) \, d\mathbf{S}_{\mathbf{y}}, \ \eta &= 1/(\epsilon \log \epsilon^{-1}) \end{aligned}$$

• Enforce boundary conditions:

$$(I/2 + D + \eta S)\sigma = \mathbf{u}_0 \quad \text{on } \Gamma,$$

Solve for unknown σ

Step 3: Discretize the geometry

Step 3: Discretize the geometry

• Geometry described by centerline γ .

Step 3: Discretize the geometry

- Geometry described by centerline γ .
- Partition into panels.
 - Choose panel order and Fourier order.

Step 3: Discretize the geometry

- Geometry described by centerline γ .
- Partition into panels.
 - Choose panel order and Fourier order.
- Determine nodes \mathbf{x}_c and radius ϵ .

Step 3: Discretize the geometry

• Geometry described by centerline γ .

- Partition into panels.
 - Choose panel order and Fourier order.
- Determine nodes \mathbf{x}_c and radius ϵ .

Code:

Vector<Long> ElemOrder, FourierOrder; Vector<double> Xc, eps; // set vector data ...

Step 4: Discretize Integral Operator

• Stokes combined field kernel:

Step 4: Discretize Integral Operator

• Stokes combined field kernel:

Boundary integral operator:

Step 5: Solve Integral Equation

```
Vector<double> sigma, U0(LayerPotenOp.Dim(0));
// set boundary condition U0
```

```
GMRES<double> solver;
solver(&sigma, BIO, U0, tol);
```


Step 6: Post-process

```
Vector<double> U;
LayerPotenOp.SetTargetCoord(Xtrg); // Set targets for LayerPotenOp
LayerPotenOp.ComputePotential(U, sigma); // Evaluate solution
//... Write to VTK file
```


Step 6: Post-process

```
Vector<double> U;
LayerPotenOp.SetTargetCoord(Xtrg); // Set targets for LayerPotenOp
LayerPotenOp.ComputePotential(U, sigma); // Evaluate solution
//... Write to VTK file
```


Conclusions

- Convergent boundary integral formulation for slender bodies,
 - unlike SBT, boundary conditions enforced to high accuracy.
- Special quadrature efficient for aspect ratios as large as 10^5 .
 - $\, \bullet \,$ quadrature setup rates $\sim 20,000$ unknowns/s/core (at 7-digits).
- Combined field BIE formulations,
 - well-conditioned for slender-body geometries.

Conclusions

- Convergent boundary integral formulation for slender bodies,
 - unlike SBT, boundary conditions enforced to high accuracy.
- Special quadrature efficient for aspect ratios as large as 10^5 .
 - $\, \bullet \,$ quadrature setup rates $\sim 20,000$ unknowns/s/core (at 7-digits).
- Combined field BIE formulations,
 - well-conditioned for slender-body geometries.

Limitations and ongoing work:

• Flexible fibers -- applications in biological fluids.

Extra

Extra

