% vim: set foldmethod=marker foldmarker=<<<,>>>: \section{Conclusions} %<<< \begin{FIframe}{Conclusions}{} %<<< %\vspace{1.2em} \begin{itemize} \item Convergent boundary integral formulation for slender bodies, \begin{itemize} \item unlike SBT, boundary conditions enforced to high accuracy. \end{itemize} \vspace{0.5ex} \item Special quadrature - efficient for aspect ratios as large as $10^5$. \begin{itemize} %\item fast computation of modal/toroidal Green's function. %\item special (Chebyshev) quadratures for singular integrals along length of fibers. \item quadrature setup rates $\sim 20,\!000$ unknowns/s/core (at 7-digits). \end{itemize} \vspace{0.5ex} \item Combined field BIE formulations, \begin{itemize} \item well-conditioned for slender-body geometries. %\item high-order time stepping (SDC), Krylov subspace preconditioner. \end{itemize} \end{itemize} \only<2>{ \vspace{1.5em} {\bf Limitations and ongoing work:} \begin{itemize} \item Flexible fibers -- applications in biological fluids. %\item Open problems: collision handling. %\item Open fibers (singularities at ends). %Special elements (and quadratures) for fiber endpoints (non-loop geometries). %%\item Replace Chebyshev quadratures with generalized Gaussian quadratures% of Bremer, Gimbutas and Rokhlin - SISC 2010. %%\item Parallelisation with proper load balancing. %%\item FMM acceleration of far-field computation. %%\item Apply to problems in biological fluids. %\item Mobility problem and flexible fibers. %\item Comparison w/ SBT efficiency when SBT is sufficiently accurate. \end{itemize} } % - end-caps so that we can have non-loop geometries % - replace Chebyshev quadratures with Generalized Gaussian Quadratures %%%%%%%% - develop preconditioners for close to touching geometries? % direct comparison with slender-body theory % develop applications ... % parallelization %\vspace{1em} %\textcolor{blue}{\bf Future directions} %\vspace{0.5em} %\begin{columns} % \column{0.9\textwidth} % \begin{itemize} % \item apply quadratures to numerical simulations of biological processes (collaboration with CCB). % \end{itemize} % \column{0.1\textwidth} %\end{columns} %\vspace{0.5em} %\begin{columns} % \column{0.65\textwidth} % \begin{itemize} % \item study convergence in close-to-touching setups; ~~ require adaptivity in length as well as $\theta$-dimensions. % \end{itemize} % \column{0.35\textwidth} % \includegraphics[width=0.9\textwidth]{figs/close-touching} % {\small (fig from Morse et al.)} %\end{columns} % - end-caps so that we can have non-loop geometries % - replace Chebyshev quadratures with Generalized Gaussian Quadratures %%%%%%%% - develop preconditioners for close to touching geometries? % direct comparison with slender-body theory % develop applications ... % parallelization %\vspace{0.75em} %\begin{columns} % \column{0.9\textwidth} % \begin{itemize} % \item develop similar ideas for other special cases and more generally for high aspect ratio panels % \begin{center} % \includegraphics[width=0.6\textwidth]{slender-body/high-aspect-panels.png} % \end{center} % \end{itemize} % \column{0.1\textwidth} %\end{columns} \end{FIframe} %>>> %>>> \begin{FIframe}{Extra}{} %<<< \end{FIframe} %>>> \begin{FIframe}{Extra}{} %<<< \end{FIframe} %>>> \begin{FIframe}{Numerical Results - Sedimentation Flow}{} %<<< \vspace{-1.9em} \centering \only<1>{ \embedvideo{\includegraphics[width=0.94\textwidth]{videos/bacteria2_.png}}{videos/bacteria2_.mov} }% \only<2>{ \embedvideo{\includegraphics[width=0.47\textwidth]{videos/bacteria64-density.png}}{videos/bacteria64-density.mov} } \end{FIframe} %>>>