% vim: set foldmethod=marker foldmarker=<<<,>>>: \section{Introduction} %<<< \begin{FIframe}{Slender Body Theory}{} %<<< \vspace{-1.5em} \begin{columns}[t] \column{0.5\textwidth} \vspace{1em} Stokes simulations with fibers are key to modeling complex fluids (suspensions, rheology, industrial, biomedical, cellular biophysics). %\only<2-> { \vspace{2em} {\bf Slender Body Theory (SBT):} \begin{itemize} \item Asymptotic expansion in radius ($\varepsilon$) \\ as $\varepsilon \to\ 0$ (Keller-Rubinow '76). \vspace{1em} \item Doublet correction to make velocity theta-independent (Johnson '80). \end{itemize} %\vspace{1em} %The force rep w/ plain Stokeslets doesn't make velocity theta-independent on the surface, so the doublet is added to do that better. %With doublet correction , error $\sim r^2. \log(r)$. } %\only<3->{ %\vspace{1em} %SBT has only very recently been placed on rigorous footing. %(Koens-Lauga '18, Mori-Ohm-Spirn '19). %(error $\sim r \log^k(r)$) %} \column{0.5\textwidth} \begin{columns} \column{0.5\textwidth} \only<1>{\embedvideo{\includegraphics[width=0.99\textwidth]{videos/starfish}}{videos/starfish.mov}}% %\starttext % \setupinteraction[state=start] % \enabletrackers[graphics.locating] % \externalfigure[sample.mov][width=10cm, height=10cm] %\stoptext %\only<2->{\includegraphics[width=0.99\textwidth]{videos/starfish1}} \\Starfish larvae \\ (Gilpin et al. 2016) \column{0.5\textwidth} \vspace{1em} \includegraphics[width=0.99\textwidth]{figs/oocyte} \\ Drosophila oocyte (Stein et al. 2021) \end{columns} \centering \includegraphics[width=0.6\textwidth]{figs/mitosis} \\ Mitotic spindle (Nazockdast et al. 2015) \end{columns} \end{FIframe} %>>> \begin{FIframe}{Slender Body Theory Error Estimates}{} %<<< {\bf Error estimates:} Rigorous analysis difficult (few very recent studies) \begin{itemize} \item classical asymptotics claims: $\varepsilon^2 \log(\varepsilon)$ \item rigorous analysis: $\varepsilon \log^{3/2}(\varepsilon)$ \qquad (Mori-Ohm-Spirn '19) \item numerical tests: $\varepsilon^{1.7}$ \qquad (Mitchell et al. '21 -- verify close-touching breakdown)\\ \quad close-to-touching with gap of 10$\varepsilon$,~~ only 2.5-digits in the infty-norm.\\ %\quad $\varepsilon$=1e-2 ~~only 1-2 digits achievable by SBT.\\ \end{itemize} \only<1>{ \centering \includegraphics[width=0.30\textwidth]{figs/cilia.jpg} \vspace{-2ex} {\tiny Source: http://remf.dartmouth.edu/imagesindex.html} } \only<2>{ \vspace{1em} \begin{columns} \column{0.5\textwidth} \begin{tabular}{| r r r|} \hline $\varepsilon$ & $\vct{u}_{exact}$ & Rel-Error \\ \hline 1e-1 & 6.1492138359856e-2 & 0.5e-2 \\ 1e-2 & 9.0984522324584e-2 & 0.1e-3 \\ 1e-3 & 1.2015655889904e-1 & 0.2e-5 \\ 1e-4 & 1.4931932907587e-1 & 0.2e-7 \\ 1e-5 & 1.7848191313097e-1 & 0.3e-9 \\ \hline \end{tabular} %\begin{tabular}{r r r r | c r r r r} // these are for elipse % \hline % $\varepsilon$ & $\bm u_0$ & Error \\ % \hline % $0.1$ & $0.0518$ & $0.7e-2$ \\ % $0.01$ & $0.0736$ & $0.2e-3$ \\ % $0.001$ & $0.0950$ & $0.3e-5$ \\ % $0.0001$ & $0.1163$ & $0.4e-7$ \\ % %$0.00001$ & $0.1377$ & $0.6e-9$ \\ % \hline %\end{tabular} % ellipse (semiaxes 2,0.5) radius eps=0.1... % N=480: L=8.578421775156826 drag force % F. = 19.17234313264176 % Fexact = 19.31188135187 % % ellipse (semiaxes 2,0.5) radius eps=0.01... % N=480: L=8.578421775156826 drag force % F = 13.58844162453679 % Fexact = 13.59082284902 % % ellipse (semiaxes 2,0.5) radius eps=0.001... % N=480: L=8.578421775156826 drag force % F = 10.52899298797188 % Fexact = 10.52902479066 % % ellipse (semiaxes 2,0.5) radius eps=0.0001... % N=480: L=8.578421775156826 drag force % F. = 8.594914613917958 % Fexact = 8.594914990618 % % ellipse (semiaxes 2,0.5) radius eps=1e-05... % N=480: L=8.578421775156826 drag force % F = 7.261368067858561 % Fexact = 7.2613680720 \column{0.5\textwidth} \includegraphics[width=0.95\textwidth]{figs/ring-sed} \end{columns} } \only<3>{ \centering \includegraphics[align=c,width=0.50\textwidth]{figs/sbt-close-error2} \includegraphics[align=c,width=0.40\textwidth]{figs/sbt-close-error1} } \end{FIframe} %>>> \begin{FIframe}{Convergent Slender Body Theory}{} %<<< %Goals: Develop a boundary integral framework %\begin{itemize} % \item to actually solve the slender body BVP \\ % (in convergent way, not just asymptotically) % \item with efficient quadratures \\ % (effort independent of radius) % \item %\end{itemize} \vspace{1.5em} {\bf Goals:} Develop boundary integral methods to solve the slender body BVP \begin{itemize} \item in a convergent way. \item adaptively when fibers get close. \item efficiently with effort independent of radius. \end{itemize} %\begin{itemize} % \item No convergence analysis for fibers of given nonzero radius. %, you do not know errors in simulation . % \item Uncontrolled errors when fibers close $O(\varepsilon)$. %, SBT assumptions break down. %\end{itemize} %%Efficient convergent BIE method needed, allowing adaptivity for close interactions. %\only<2->{ % \vspace{1.5em} % {\bf Goals:} Develop boundary integral methods to solve the slender body BVP % \begin{itemize} % \item in a convergent way. % \item adaptively when fibers get close. % \item efficiently with effort independent of radius. % \end{itemize} % Validate current SBT simulations. %} %%\vspace{0.5em} %%Most existing qudaratures cannot resolve high aspect ratio geometries. \only<2->{ \vspace{3.5em} Focus on rigid fibers in this talk ~~--~~ flexible fibers for future. \vspace{0.5em} {\em Related work:} ~~ Mitchell et al, '21 (mixed-BVP corresponding to flexible fiber loop) } %Only loops for now, to avoids complications with endpoint singularities. %\textcolor{blue}{\bf Quadratures for slender bodies} %\begin{itemize} % \item compute interactions of filaments (eg. microtubules) in viscous fluids without asymptotic approximations. % \item fully resolved boundary-integral formulation; have to deal with highly anisotropic elements. %\end{itemize} \end{FIframe} %>>> %\begin{FIframe}{Challenges for Boundary Integral Methods}{} %<<< % Slender body aspect ratio $\sim$ $\mathcal{O}(10)$ to $\mathcal{O}(10^5)$ % \vspace{1em} % {\bf Layer-potential quadrature} % \begin{itemize} % \item efficient with cost independent of aspect ratio. % \end{itemize} % \vspace{1em} % {\bf Boundary integral equation formulations} % \begin{itemize} % \item remain well-conditioned as $\epsilon \rightarrow 0$ % \end{itemize} %\end{FIframe} %%\begin{FIframe}{Motivation}{} %<<< %% \begin{itemize} %% \item aspect ratios of $10^4$ or greater %% \item existing quadrature schemes are not efficient in this regime %% \end{itemize} %%\end{FIframe} %>>> %%\begin{FIframe}{Outline}{} %<<< %%{\large %% \begin{itemize} %% \item Slender Body Quadrature %% \vspace{1em} %% \item Stokes Mobility Problem %% \end{itemize} %%} %%\end{FIframe} %>>> %%>>>