virtual-casing.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450
  1. #include <biest.hpp>
  2. #include <sctl.hpp>
  3. template <class Real> class CoilsField {
  4. static constexpr sctl::Integer COORD_DIM = 3;
  5. static constexpr Real vacuum_permeability = 1.25663706212e-6;
  6. public:
  7. void Init(std::string fname_coils, Real CoilUpsampleFactor = 2) {
  8. auto read_coils = [](sctl::Vector<sctl::Vector<Real>>& Xcoil, sctl::Vector<Real>& current, std::string fname) {
  9. std::ifstream file(fname);
  10. if (!file.good()) {
  11. std::cout << "Unable to open file for reading:" << fname << '\n';
  12. return;
  13. }
  14. std::string line;
  15. { // Read file header
  16. std::getline(file, line);
  17. std::getline(file, line);
  18. std::getline(file, line);
  19. }
  20. sctl::Vector<Real> current_;
  21. sctl::Vector<sctl::Vector<Real>> Xcoil_;
  22. { // Set current_, Xcoil_
  23. sctl::Vector<Real> VecX, VecY, VecZ, VecI;
  24. while (std::getline(file, line)) { // Read coils
  25. Real x,y,z,I;
  26. std::istringstream iss(line);
  27. if (iss >> x >> y >> z >> I) {
  28. if (!iss.eof()) {
  29. SCTL_ASSERT(I==0);
  30. SCTL_ASSERT(VecI.Dim());
  31. current_.PushBack(VecI[0]);
  32. sctl::Vector<Real> XYZ;
  33. for (auto a : VecX) XYZ.PushBack(a);
  34. for (auto a : VecY) XYZ.PushBack(a);
  35. for (auto a : VecZ) XYZ.PushBack(a);
  36. Xcoil_.PushBack(XYZ);
  37. VecX.ReInit(0);
  38. VecY.ReInit(0);
  39. VecZ.ReInit(0);
  40. VecI.ReInit(0);
  41. continue;
  42. }
  43. VecX.PushBack(x);
  44. VecY.PushBack(y);
  45. VecZ.PushBack(z);
  46. VecI.PushBack(I);
  47. }
  48. }
  49. }
  50. current = current_;
  51. Xcoil = Xcoil_;
  52. };
  53. read_coils(Xcoil, current, fname_coils);
  54. { // Set dIcoil
  55. sctl::Comm comm = sctl::Comm::Self();
  56. for (sctl::Long i = 0; i < current.Dim(); i++) {
  57. sctl::Vector<Real>& X = Xcoil[i];
  58. const sctl::Long N0 = X.Dim() / COORD_DIM;
  59. const sctl::Long N = N0 * CoilUpsampleFactor;
  60. { // Upsample X
  61. sctl::Vector<Real> X_;
  62. biest::SurfaceOp<Real>::Upsample(X,N0,1, X_,N,1);
  63. X = X_;
  64. }
  65. sctl::Vector<Real> dX(COORD_DIM*N);
  66. { // Set dX
  67. biest::SurfaceOp<Real> SurfOp(comm,N,1);
  68. sctl::Vector<Real> dX_;
  69. SurfOp.Grad2D(dX_, X);
  70. for (sctl::Long j = 0; j < N; j++) {
  71. for (sctl::Integer k = 0; k < COORD_DIM; k++) {
  72. dX[k*N+j] = dX_[(2*k+0)*N+j];
  73. }
  74. }
  75. }
  76. dIcoil.PushBack(dX*current[i]/N);
  77. }
  78. }
  79. }
  80. sctl::Vector<Real> EvalBcoil(const sctl::Vector<Real>& Xtrg) const {
  81. sctl::Vector<Real> Bcoil(Xtrg.Dim()); Bcoil = 0;
  82. for (sctl::Long i = 0; i < Xcoil.Dim(); i++) {
  83. sctl::Vector<Real> Bcoil_;
  84. biest::BiotSavart3D<Real>::FxU()(Xcoil[i], Xcoil[i], dIcoil[i], Xtrg, Bcoil_);
  85. Bcoil += Bcoil_;
  86. }
  87. Bcoil *= vacuum_permeability;
  88. return Bcoil;
  89. }
  90. void WriteVTK(std::string fname) const {
  91. biest::VTUData vtu_data;
  92. sctl::Long Ncoil = Xcoil.Dim();
  93. for (sctl::Long j = 0; j < Ncoil; j++) {
  94. sctl::Long CoilLength = Xcoil[j].Dim() / COORD_DIM;
  95. for (sctl::Long i = 0; i < CoilLength; i++) {
  96. vtu_data.connect.PushBack(vtu_data.coord.Dim()/COORD_DIM);
  97. for (sctl::Long k = 0; k < COORD_DIM; k++) {
  98. vtu_data.coord.PushBack(Xcoil[j][k*CoilLength+i]);
  99. }
  100. }
  101. vtu_data.offset.PushBack(vtu_data.connect.Dim());
  102. vtu_data.types.PushBack(4);
  103. }
  104. vtu_data.WriteVTK(fname);
  105. }
  106. private:
  107. sctl::Vector<Real> current;
  108. sctl::Vector<sctl::Vector<Real>> Xcoil, dIcoil;
  109. };
  110. template <class Real> class VirtualCasing {
  111. static constexpr sctl::Integer COORD_DIM = 3;
  112. public:
  113. void Init(std::string fname_Bfield, Real NtUpsampleFactor = 8, Real NpUpsampleFactor = 4) {
  114. auto read_surface_field = [](biest::Surface<Real>& S, sctl::Vector<Real>& B, std::string fname) {
  115. std::ifstream file(fname);
  116. if (!file.good()) {
  117. std::cout << "Unable to open file for reading:" << fname << '\n';
  118. return;
  119. }
  120. std::string line;
  121. { // Read file header
  122. std::getline(file, line);
  123. }
  124. sctl::Vector<Real> theta_vec, phi_vec;
  125. sctl::Vector<Real> X_vec, Y_vec, Z_vec;
  126. sctl::Vector<Real> Bx_vec, By_vec, Bz_vec;
  127. while (std::getline(file, line)) {
  128. Real theta,phi, x,y,z, Bx,By,Bz;
  129. std::istringstream iss(line);
  130. if (iss >> theta >> phi >> x >> y >> z >> Bx >> By >> Bz) {
  131. theta_vec.PushBack(theta);
  132. phi_vec.PushBack(phi);
  133. X_vec.PushBack(x);
  134. Y_vec.PushBack(y);
  135. Z_vec.PushBack(z);
  136. Bx_vec.PushBack(Bx);
  137. By_vec.PushBack(By);
  138. Bz_vec.PushBack(Bz);
  139. }
  140. }
  141. sctl::Long theta_run = 0, phi_run = 0;
  142. for (sctl::Long i = 1; (i<theta_vec.Dim()) && (theta_vec[i]==theta_vec[0]); i++) {
  143. theta_run = i;
  144. }
  145. for (sctl::Long i = 1; (i<phi_vec.Dim()) && (phi_vec[i]==phi_vec[0]); i++) {
  146. phi_run = i;
  147. }
  148. sctl::Long N = theta_vec.Dim();
  149. if (theta_run) { // Set S, B
  150. SCTL_ASSERT(!phi_run);
  151. sctl::Long Nt = theta_run; // toroidal dimension
  152. sctl::Long Np = N/(Nt+1)-1; // poloidal dimension
  153. SCTL_ASSERT(N == (Nt+1)*(Np+1));
  154. S = biest::Surface<Real>(Nt, Np);
  155. if (B.Dim() != 3*Nt*Np) B.ReInit(3*Nt*Np);
  156. for (sctl::Long p = 0; p < Np; p++) {
  157. for (sctl::Long t = 0; t < Nt; t++) {
  158. S.Coord(t, p, 0) = X_vec[p*(Nt+1)+t];
  159. S.Coord(t, p, 1) = Y_vec[p*(Nt+1)+t];
  160. S.Coord(t, p, 2) = Z_vec[p*(Nt+1)+t];
  161. B[(0*Nt+t)*Np+p] = Bx_vec[p*(Nt+1)+t];
  162. B[(1*Nt+t)*Np+p] = By_vec[p*(Nt+1)+t];
  163. B[(2*Nt+t)*Np+p] = Bz_vec[p*(Nt+1)+t];
  164. }
  165. }
  166. } else {
  167. SCTL_ASSERT(phi_run);
  168. sctl::Long Np = phi_run; // poloidal dimension
  169. sctl::Long Nt = N/(Np+1)-1; // toroidal dimension
  170. SCTL_ASSERT(N == (Nt+1)*(Np+1));
  171. S = biest::Surface<Real>(Nt, Np);
  172. if (B.Dim() != 3*Nt*Np) B.ReInit(3*Nt*Np);
  173. for (sctl::Long t = 0; t < Nt; t++) {
  174. for (sctl::Long p = 0; p < Np; p++) {
  175. S.Coord(t, p, 0) = X_vec[t*(Np+1)+p];
  176. S.Coord(t, p, 1) = Y_vec[t*(Np+1)+p];
  177. S.Coord(t, p, 2) = Z_vec[t*(Np+1)+p];
  178. B[(0*Nt+t)*Np+p] = Bx_vec[t*(Np+1)+p];
  179. B[(1*Nt+t)*Np+p] = By_vec[t*(Np+1)+p];
  180. B[(2*Nt+t)*Np+p] = Bz_vec[t*(Np+1)+p];
  181. }
  182. }
  183. }
  184. };
  185. read_surface_field(S, B, fname_Bfield);
  186. { // Upsample S, B
  187. sctl::Vector<Real> B_;
  188. biest::Surface<Real> S_(S.NTor()*NtUpsampleFactor, S.NPol()*NpUpsampleFactor);
  189. biest::SurfaceOp<Real>::Upsample(S.Coord(),S.NTor(),S.NPol(), S_.Coord(),S_.NTor(),S_.NPol());
  190. biest::SurfaceOp<Real>::Upsample(B,S.NTor(),S.NPol(), B_,S_.NTor(),S_.NPol());
  191. S = S_;
  192. B = B_;
  193. }
  194. if (0) { // generate artifical Bplasma from internal current loop (for testing)
  195. sctl::Long N = 10000;
  196. sctl::Vector<Real> X(COORD_DIM*N), dX(COORD_DIM*N);
  197. { // Set X, dX
  198. sctl::Long Nt = S.NTor(), Np = S.NPol();
  199. sctl::Vector<Real> coord(COORD_DIM*Nt); coord = 0;
  200. for (sctl::Long i = 0; i < Nt; i++) { // Set coord
  201. for (sctl::Long j = 0; j < Np; j++) {
  202. coord[0*Nt+i] += S.Coord(i,j,0)/Np;
  203. coord[1*Nt+i] += S.Coord(i,j,1)/Np;
  204. coord[2*Nt+i] += S.Coord(i,j,2)/Np;
  205. }
  206. }
  207. sctl::Vector<Real> dX_;
  208. biest::SurfaceOp<Real>::Upsample(coord,Nt,1, X,N,1);
  209. biest::SurfaceOp<Real> SurfOp(sctl::Comm::Self(),N,1);
  210. SurfOp.Grad2D(dX_, X);
  211. for (sctl::Long i = 0; i < N; i++) {
  212. for (sctl::Integer k = 0; k < COORD_DIM; k++) {
  213. dX[k*N+i] = dX_[(2*k+0)*N+i];
  214. }
  215. }
  216. }
  217. sctl::Vector<Real> Bplasma;
  218. biest::BiotSavart3D<Real>::FxU()(X, X, dX, S.Coord(), Bplasma);
  219. B = Bplasma;
  220. }
  221. { // Set sources (BdotN, J, BdotN_dA, J_dA) for virtual-casing
  222. sctl::Vector<Real> area_elem;
  223. { // Set normal, area_elem
  224. sctl::Vector<Real> dX;
  225. biest::SurfaceOp<Real> SurfOp(sctl::Comm::Self(), S.NTor(), S.NPol());
  226. SurfOp.Grad2D(dX, S.Coord());
  227. SurfOp.SurfNormalAreaElem(&normal, &area_elem, dX, &S.Coord());
  228. }
  229. auto DotProd = [](sctl::Vector<Real>& AdotB, const sctl::Vector<Real>& A, const sctl::Vector<Real>& B) {
  230. sctl::Long N = A.Dim() / COORD_DIM;
  231. SCTL_ASSERT(A.Dim() == COORD_DIM * N);
  232. SCTL_ASSERT(B.Dim() == COORD_DIM * N);
  233. if (AdotB.Dim() != N) AdotB.ReInit(N);
  234. for (sctl::Long i = 0; i < N; i++) {
  235. Real AdotB_ = 0;
  236. for (sctl::Integer k = 0; k < COORD_DIM; k++) {
  237. AdotB_ += A[k*N+i] * B[k*N+i];
  238. }
  239. AdotB[i] = AdotB_;
  240. }
  241. };
  242. auto CrossProd = [](sctl::Vector<Real>& AcrossB, const sctl::Vector<Real>& A, const sctl::Vector<Real>& B) {
  243. sctl::Long N = A.Dim() / COORD_DIM;
  244. SCTL_ASSERT(A.Dim() == COORD_DIM * N);
  245. SCTL_ASSERT(B.Dim() == COORD_DIM * N);
  246. if (AcrossB.Dim() != COORD_DIM * N) AcrossB.ReInit(COORD_DIM * N);
  247. for (sctl::Long i = 0; i < N; i++) {
  248. sctl::StaticArray<Real,COORD_DIM> A_, B_, AcrossB_;
  249. for (sctl::Integer k = 0; k < COORD_DIM; k++) {
  250. A_[k] = A[k*N+i];
  251. B_[k] = B[k*N+i];
  252. }
  253. AcrossB_[0] = A_[1] * B_[2] - B_[1] * A_[2];
  254. AcrossB_[1] = A_[2] * B_[0] - B_[2] * A_[0];
  255. AcrossB_[2] = A_[0] * B_[1] - B_[0] * A_[1];
  256. for (sctl::Integer k = 0; k < COORD_DIM; k++) {
  257. AcrossB[k*N+i] = AcrossB_[k];
  258. }
  259. }
  260. };
  261. DotProd(BdotN, B, normal);
  262. CrossProd(J, normal, B);
  263. BdotN_dA.ReInit(area_elem.Dim());
  264. J_dA.ReInit(COORD_DIM*area_elem.Dim());
  265. for (sctl::Long i = 0; i < area_elem.Dim(); i++) {
  266. BdotN_dA[i] = BdotN[i] * area_elem[i];
  267. J_dA[0*area_elem.Dim()+i] = J[0*area_elem.Dim()+i] * area_elem[i];
  268. J_dA[1*area_elem.Dim()+i] = J[1*area_elem.Dim()+i] * area_elem[i];
  269. J_dA[2*area_elem.Dim()+i] = J[2*area_elem.Dim()+i] * area_elem[i];
  270. }
  271. }
  272. }
  273. const biest::Surface<Real>& GetSurface() const {
  274. return S;
  275. }
  276. const sctl::Vector<Real>& GetBOnSurface() const {
  277. return B;
  278. }
  279. template <sctl::Integer PDIM=30, sctl::Integer RDIM=60, sctl::Integer UPSAMPLE=2> sctl::Vector<Real> EvalBplasmaOnSurface() const {
  280. biest::BoundaryIntegralOp<Real, 3, 3, UPSAMPLE, PDIM, RDIM> BiotSavartFxU(sctl::Comm::Self());
  281. biest::BoundaryIntegralOp<Real, 1, 3, UPSAMPLE, PDIM, RDIM> LaplaceFxdU(sctl::Comm::Self());
  282. { // Setup BiotSavartFxU, LaplaceFxdU
  283. sctl::Vector<biest::Surface<Real>> Svec(1); Svec[0] = S;
  284. BiotSavartFxU.SetupSingular(Svec, biest::BiotSavart3D<Real>::FxU());
  285. LaplaceFxdU.SetupSingular(Svec, biest::Laplace3D<Real>::FxdU());
  286. }
  287. sctl::Vector<Real> B0, B1;
  288. LaplaceFxdU(B0, BdotN);
  289. BiotSavartFxU(B1, J);
  290. return 0.5 * B - B0 - B1;
  291. }
  292. sctl::Vector<Real> EvalBplasma(const sctl::Vector<Real>& Xtrg) const {
  293. sctl::Vector<Real> B0, B1;
  294. biest::Laplace3D<Real>::FxdU()(S.Coord(), normal, BdotN_dA, Xtrg, B0);
  295. biest::BiotSavart3D<Real>::FxU()(S.Coord(), normal, J_dA, Xtrg, B1);
  296. return (B0 + B1)*(-1);
  297. }
  298. static void test() {
  299. CoilsField<Real> coils;
  300. coils.Init("ellipse.coils");
  301. VirtualCasing virtual_casing;
  302. virtual_casing.Init("BetaScan_run_20.Bxyz.txt");
  303. auto B = virtual_casing.GetBOnSurface();
  304. auto Bplasma = virtual_casing.EvalBplasmaOnSurface();
  305. auto Bcoil = coils.EvalBcoil(virtual_casing.GetSurface().Coord());
  306. auto inf_norm = [](const sctl::Vector<Real>& X) {
  307. Real norm = 0;
  308. for (const auto& a : X) norm = std::max<Real>(norm, fabs(a));
  309. return norm;
  310. };
  311. std::cout<<"err = "<<inf_norm(B-Bplasma-Bcoil)<<'\n';
  312. if (0) { // Eval Bplasma_offsurf
  313. biest::Surface<Real> Strg;
  314. { // Set Strg
  315. Strg = virtual_casing.GetSurface();
  316. sctl::Vector<Real> normal, dX;
  317. biest::SurfaceOp<Real> SurfOp(sctl::Comm::Self(), Strg.NTor(), Strg.NPol());
  318. SurfOp.Grad2D(dX, Strg.Coord());
  319. SurfOp.SurfNormalAreaElem(&normal, nullptr, dX, &Strg.Coord());
  320. Strg.Coord() += normal*0.05;
  321. }
  322. auto Bplasma_offsurf = virtual_casing.EvalBplasma(Strg.Coord());
  323. biest::WriteVTK("Bplasma-offsurf", Strg, Bplasma_offsurf);
  324. }
  325. biest::WriteVTK("B", virtual_casing.GetSurface(), B);
  326. biest::WriteVTK("Bcoil", virtual_casing.GetSurface(), Bcoil);
  327. biest::WriteVTK("Bplasma", virtual_casing.GetSurface(), Bplasma);
  328. coils.WriteVTK("coils");
  329. }
  330. private:
  331. sctl::Vector<Real> B;
  332. biest::Surface<Real> S;
  333. sctl::Vector<Real> normal;
  334. sctl::Vector<Real> BdotN, J;
  335. sctl::Vector<Real> BdotN_dA, J_dA;
  336. };
  337. int main(int argc, char** argv) {
  338. static constexpr sctl::Integer COORD_DIM = 3;
  339. using Real = double;
  340. // Read coil data
  341. CoilsField<Real> coils;
  342. coils.Init("ellipse.coils", 2); // upsample by factor 2
  343. coils.WriteVTK("coils"); // Write VTK visualization of coils
  344. // Read plasma surface and B-field data
  345. VirtualCasing<Real> virtual_casing;
  346. virtual_casing.Init("BetaScan_run_20.Bxyz.txt", 4, 2); // upsample grid by factor {4,2}
  347. biest::WriteVTK("B", virtual_casing.GetSurface(), virtual_casing.GetBOnSurface()); // Write VTK visualization of B
  348. biest::WriteVTK("Bplasma", virtual_casing.GetSurface(), virtual_casing.EvalBplasma(virtual_casing.GetSurface().Coord())); // Write VTK visualization of Bplasma
  349. // Funcation to evaluate B field in region outside the plasma
  350. // Xtrg (input): location to evaluation points in the format {x1,x2,...,xn, y1,y2,...,yn, z1,z2,...,zn}
  351. // B (output): B-field in the format {Bx1,Bx2,...,Bxn, By1,By2,...,Byn, Bz1,Bz2,...,Bzn}
  352. std::function<void(sctl::Vector<Real>*, const sctl::Vector<Real>&)> compute_B =[&virtual_casing,&coils](sctl::Vector<Real>* B, const sctl::Vector<Real>& Xtrg) {
  353. auto Bcoil = coils.EvalBcoil(Xtrg);
  354. auto Bplasma = virtual_casing.EvalBplasma(Xtrg);
  355. (*B) = Bcoil + Bplasma;
  356. };
  357. // Initial points for field tracing
  358. sctl::Vector<Real> Xpath, X(COORD_DIM*2); // {x1,x2, y1,y2, z1,z2}
  359. X[0] = 8.6; X[2] = 0; X[4] = 0;
  360. X[1] = 11.4; X[3] = 0; X[5] = 0;
  361. // Trace field lines and print paths
  362. Real t = 0.0, dt = 1.0e-1, tol = 1e-8;
  363. constexpr sctl::Integer TimeStepOrder = 6;
  364. sctl::SDC<Real, TimeStepOrder> ode_solver;
  365. std::cout<<" x1 x2 y1 y2 z1 z2\n";
  366. while (t < 100.0) { // Adaptive time-stepping loop
  367. sctl::Vector<Real> X_;
  368. Real error_interp, error_picard;
  369. ode_solver(&X_, dt, X, compute_B, TimeStepOrder, tol*0.1, &error_interp, &error_picard);
  370. Real error = std::max(error_interp, error_picard);
  371. if (error < tol) { // Accept solution
  372. std::cout<<X; // print position
  373. for (auto a : X) {
  374. Xpath.PushBack(a);
  375. }
  376. X = X_;
  377. t = t + dt;
  378. if (error < tol*0.1) { // increase step-size
  379. dt = dt * 1.2;
  380. }
  381. } else { // reduce step-size
  382. dt = dt * 0.8;
  383. }
  384. }
  385. { // Write VTK output of field-lines
  386. biest::VTUData vtu_data;
  387. sctl::Long Npt = X.Dim() / COORD_DIM;
  388. sctl::Long Nsteps = Xpath.Dim() / X.Dim();
  389. for (sctl::Long j = 0; j < Npt; j++) {
  390. for (sctl::Long i = 0; i < Nsteps; i++) {
  391. for (sctl::Long k = 0; k < COORD_DIM; k++) {
  392. vtu_data.coord.PushBack(Xpath[(i*COORD_DIM+k)*Npt+j]);
  393. }
  394. }
  395. }
  396. for (sctl::Long i = 0; i < Npt*Nsteps; i++) {
  397. vtu_data.connect.PushBack(i);
  398. }
  399. for (sctl::Long i = 0; i < Npt; i++) {
  400. vtu_data.offset.PushBack((i+1)*Nsteps);
  401. vtu_data.types.PushBack(4);
  402. }
  403. vtu_data.WriteVTK("field_lines");
  404. }
  405. return 0;
  406. }