kernel_functions.hpp 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293
  1. #ifndef _SCTL_KERNEL_FUNCTIONS_HPP_
  2. #define _SCTL_KERNEL_FUNCTIONS_HPP_
  3. #include SCTL_INCLUDE(matrix.hpp)
  4. #include SCTL_INCLUDE(vector.hpp)
  5. #include SCTL_INCLUDE(math_utils.hpp)
  6. #include SCTL_INCLUDE(common.hpp)
  7. namespace SCTL_NAMESPACE {
  8. struct Laplace3D_FxU {
  9. template <class Real> static constexpr Real ScaleFactor() {
  10. return 1 / (4 * const_pi<Real>());
  11. }
  12. template <class Real> static void Eval(Real (&u)[1][1], const Real (&r)[3], const Real (&n)[3], void* ctx_ptr) {
  13. Real r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  14. Real rinv = (r2>1e-16 ? 1/sqrt<Real>(r2) : 0);
  15. u[0][0] = rinv;
  16. }
  17. };
  18. struct Laplace3D_DxU {
  19. template <class Real> static constexpr Real ScaleFactor() {
  20. return 1 / (4 * const_pi<Real>());
  21. }
  22. template <class Real> static void Eval(Real (&u)[1][1], const Real (&r)[3], const Real (&n)[3], void* ctx_ptr) {
  23. Real r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  24. Real rinv = (r2>1e-16 ? 1/sqrt<Real>(r2) : 0);
  25. Real rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2];
  26. Real rinv3 = rinv * rinv * rinv;
  27. u[0][0] = rdotn * rinv3;
  28. }
  29. };
  30. struct Laplace3D_FxdU{
  31. template <class Real> static constexpr Real ScaleFactor() {
  32. return 1 / (4 * const_pi<Real>());
  33. }
  34. template <class Real> static void Eval(Real (&u)[1][3], const Real (&r)[3], const Real (&n)[3], void* ctx_ptr) {
  35. Real r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  36. Real rinv = (r2>1e-16 ? 1/sqrt<Real>(r2) : 0);
  37. Real rinv3 = rinv * rinv * rinv;
  38. u[0][0] = -r[0] * rinv3;
  39. u[0][1] = -r[1] * rinv3;
  40. u[0][2] = -r[2] * rinv3;
  41. }
  42. };
  43. struct Stokes3D_FxU {
  44. template <class Real> static constexpr Real ScaleFactor() {
  45. return 1 / (8 * const_pi<Real>());
  46. }
  47. template <class Real> static void Eval(Real (&u)[3][3], const Real (&r)[3], const Real (&n)[3], void* ctx_ptr) {
  48. Real r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  49. Real rinv = (r2>1e-16 ? 1/sqrt<Real>(r2) : 0);
  50. Real rinv3 = rinv*rinv*rinv;
  51. for (Integer i = 0; i < 3; i++) {
  52. for (Integer j = 0; j < 3; j++) {
  53. u[i][j] = (i==j ? rinv : 0) + r[i]*r[j]*rinv3;
  54. }
  55. }
  56. }
  57. };
  58. struct Stokes3D_DxU {
  59. template <class Real> static constexpr Real ScaleFactor() {
  60. return -3 / (4 * const_pi<Real>());
  61. }
  62. template <class Real> static void Eval(Real (&u)[3][3], const Real (&r)[3], const Real (&n)[3], void* ctx_ptr) {
  63. Real r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  64. Real rinv = (r2>1e-16 ? 1/sqrt<Real>(r2) : 0);
  65. Real rinv2 = rinv*rinv;
  66. Real rinv5 = rinv2*rinv2*rinv;
  67. Real rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2];
  68. for (Integer i = 0; i < 3; i++) {
  69. for (Integer j = 0; j < 3; j++) {
  70. u[i][j] = r[i]*r[j]*rdotn*rinv5;
  71. }
  72. }
  73. }
  74. };
  75. struct Stokes3D_FxT {
  76. template <class Real> static constexpr Real ScaleFactor() {
  77. return -3 / (4 * const_pi<Real>());
  78. }
  79. template <class Real> static void Eval(Real (&u)[3][9], const Real (&r)[3], const Real (&n)[3], void* ctx_ptr) {
  80. Real r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  81. Real rinv = (r2>1e-16 ? 1/sqrt<Real>(r2) : 0);
  82. Real rinv2 = rinv*rinv;
  83. Real rinv5 = rinv2*rinv2*rinv;
  84. for (Integer i = 0; i < 3; i++) {
  85. for (Integer j = 0; j < 3; j++) {
  86. for (Integer k = 0; k < 3; k++) {
  87. u[i][j*3+k] = r[i]*r[j]*r[k]*rinv5;
  88. }
  89. }
  90. }
  91. }
  92. };
  93. template <class uKernel> class GenericKernel {
  94. template <class Real, Integer D, Integer K0, Integer K1> static constexpr Integer get_DIM (void (*uKer)(Real (&u)[K0][K1], const Real (&r)[D], const Real (&n)[D], void* ctx_ptr)) { return D; }
  95. template <class Real, Integer D, Integer K0, Integer K1> static constexpr Integer get_KDIM0(void (*uKer)(Real (&u)[K0][K1], const Real (&r)[D], const Real (&n)[D], void* ctx_ptr)) { return K0; }
  96. template <class Real, Integer D, Integer K0, Integer K1> static constexpr Integer get_KDIM1(void (*uKer)(Real (&u)[K0][K1], const Real (&r)[D], const Real (&n)[D], void* ctx_ptr)) { return K1; }
  97. static constexpr Integer DIM = get_DIM (uKernel::template Eval<double>);
  98. static constexpr Integer KDIM0 = get_KDIM0(uKernel::template Eval<double>);
  99. static constexpr Integer KDIM1 = get_KDIM1(uKernel::template Eval<double>);
  100. public:
  101. static constexpr Integer CoordDim() {
  102. return DIM;
  103. }
  104. static constexpr Integer SrcDim() {
  105. return KDIM0;
  106. }
  107. static constexpr Integer TrgDim() {
  108. return KDIM1;
  109. }
  110. template <class Real> static constexpr Real ScaleFactor() {
  111. return uKernel::template ScaleFactor<Real>();
  112. }
  113. template <class Real, Integer DOF> void uKernelEval(Iterator<Real> u, ConstIterator<Real> r, ConstIterator<Real> n, ConstIterator<Real> f) const {
  114. SCTL_UNUSED(u[0]);
  115. SCTL_UNUSED(f[0]);
  116. SCTL_UNUSED(r[0]);
  117. SCTL_UNUSED(n[0]);
  118. SCTL_UNUSED(u[KDIM1*DOF-1]);
  119. SCTL_UNUSED(f[KDIM0*DOF-1]);
  120. SCTL_UNUSED(r[DIM-1]);
  121. SCTL_UNUSED(n[DIM-1]);
  122. Real M[KDIM0][KDIM1];
  123. uKernel::Eval(M, *(Real (*)[DIM])(&r[0]), *(Real (*)[DIM])(&n[0]), ctx_ptr);
  124. for (Integer i = 0; i < DOF; i++) {
  125. for (Integer k0 = 0; k0 < KDIM0; k0++) {
  126. for (Integer k1 = 0; k1 < KDIM1; k1++) {
  127. u[i*KDIM1+k1] += M[k0][k1] * f[i*KDIM0+k0];
  128. }
  129. }
  130. }
  131. }
  132. template <class Real, Integer DOF_ = 0> void Eval(Vector<Real>& U, const Vector<Real>& Xt, const Vector<Real>& Xs, const Vector<Real>& Xn, const Vector<Real>& F) const {
  133. Long Ns = Xs.Dim() / DIM;
  134. Long Nt = Xt.Dim() / DIM;
  135. Long DOF = (DOF_ ? DOF_ : F.Dim() / Ns / KDIM0);
  136. SCTL_ASSERT(Xs.Dim() == Ns * DIM);
  137. SCTL_ASSERT(Xt.Dim() == Nt * DIM);
  138. SCTL_ASSERT(F.Dim() == Ns * DOF * KDIM0);
  139. if (!DOF_) {
  140. if (DOF == 1) Eval<Real,1>(U,Xt,Xs,Xn,F);
  141. if (DOF == 2) Eval<Real,2>(U,Xt,Xs,Xn,F);
  142. if (DOF == 3) Eval<Real,3>(U,Xt,Xs,Xn,F);
  143. if (DOF == 4) Eval<Real,4>(U,Xt,Xs,Xn,F);
  144. if (DOF == 5) Eval<Real,5>(U,Xt,Xs,Xn,F);
  145. if (DOF == 6) Eval<Real,6>(U,Xt,Xs,Xn,F);
  146. if (DOF <= 6) return;
  147. }
  148. if (U.Dim() != Nt * DOF * KDIM1) {
  149. U.ReInit(Nt * DOF * KDIM1);
  150. U.SetZero();
  151. }
  152. #pragma omp parallel for schedule(static)
  153. for (Long t = 0; t < Nt; t++) {
  154. Iterator<Real> u;
  155. Vector<Real> u_buff0;
  156. StaticArray<Real,DOF_*KDIM1> u_buff1;
  157. if (!DOF_) { // Set u
  158. u_buff0.ReInit(DOF*KDIM1);
  159. u = u_buff0.begin();
  160. } else {
  161. u = (Iterator<Real>)u_buff1;
  162. }
  163. for (Integer k = 0; k < DOF*KDIM1; k++) {
  164. u[k] = 0;
  165. }
  166. StaticArray<Real,DIM> r;
  167. for (Long s = 0; s < Ns; s++) {
  168. for (Integer k = 0; k < DIM; k++) {
  169. r[k] = Xs[s*DIM+k] - Xt[t*DIM+k];
  170. }
  171. ConstIterator<Real> n = Xn.begin() + s*DIM;
  172. if (DOF_) {
  173. ConstIterator<Real> f = F.begin() + s*DOF_*KDIM0;
  174. this->template uKernelEval<Real,DOF_>(u,r,n,f);
  175. } else {
  176. ConstIterator<Real> f = F.begin() + s*DOF*KDIM0;
  177. for (Integer k = 0; k < DOF; k++) {
  178. this->template uKernelEval<Real,1>(u + k*KDIM1,r,n,f + k*KDIM0);
  179. }
  180. }
  181. }
  182. for (Integer k = 0; k < DOF*KDIM1; k++) {
  183. U[t*DOF*KDIM1 + k] += u[k];
  184. }
  185. }
  186. }
  187. template <class Real> void KernelMatrix(Matrix<Real>& M, const Vector<Real>& Xt, const Vector<Real>& Xs, const Vector<Real>& Xn) const {
  188. Long Ns = Xs.Dim() / DIM;
  189. Long Nt = Xt.Dim() / DIM;
  190. SCTL_ASSERT(Xs.Dim() == Ns * DIM);
  191. SCTL_ASSERT(Xt.Dim() == Nt * DIM);
  192. if (M.Dim(0) != Ns * KDIM0 || M.Dim(1) != Nt * KDIM1) {
  193. M.ReInit(Ns * KDIM0, Nt * KDIM1);
  194. }
  195. #pragma omp parallel for schedule(static)
  196. for (Long t = 0; t < Nt; t++) {
  197. StaticArray<Real,DIM> r;
  198. StaticArray<Real,KDIM0> f;
  199. for (Integer k = 0; k < KDIM0; k++) {
  200. f[k] = 0;
  201. }
  202. for (Long s = 0; s < Ns; s++) {
  203. for (Integer k = 0; k < DIM; k++) {
  204. r[k] = Xs[s*DIM+k] - Xt[t*DIM+k];
  205. }
  206. ConstIterator<Real> n = Xn.begin() + s*DIM;
  207. for (Integer k = 0; k < KDIM0; k++) {
  208. f[k] = 1;
  209. Iterator<Real> u = M[s*KDIM0+k] + t*KDIM1;
  210. for (Integer i = 0; i < KDIM1; i++) u[i] = 0;
  211. this->template uKernelEval<Real,1>(u,r,n,f);
  212. f[k] = 0;
  213. }
  214. }
  215. }
  216. }
  217. private:
  218. void* ctx_ptr;
  219. };
  220. template <class Real, Integer DIM> class ParticleFMM {
  221. public:
  222. template <class Kernel> static void Eval(Vector<Real>& U, const Vector<Real>& Xt, const Vector<Real>& Xs, const Vector<Real>& Xn, const Vector<Real>& F, const Kernel& kernel, const Comm& comm) {
  223. #ifdef SCTL_HAVE_PVFMM
  224. SCTL_ASSERT(false);
  225. #else
  226. constexpr Integer KDIM0 = Kernel::SrcDim();
  227. constexpr Integer KDIM1 = Kernel::TrgDim();
  228. const Integer rank = comm.Rank();
  229. const Integer np = comm.Size();
  230. const Long Ns = Xs.Dim() / DIM;
  231. const Long Nt = Xt.Dim() / DIM;
  232. SCTL_ASSERT(Xt.Dim() == Nt * DIM);
  233. const Long dof = F.Dim() / (Ns * KDIM0);
  234. SCTL_ASSERT(Ns && F.Dim() == Ns * dof * KDIM0);
  235. Vector<Real> Xs_, Xn_, F_;
  236. if (U.Dim() != Nt * dof * KDIM1) {
  237. U.ReInit(Nt * dof * KDIM1);
  238. U.SetZero();
  239. }
  240. for (Long i = 0; i < np; i++) {
  241. auto send_recv_vec = [comm,rank,np](Vector<Real>& X_, const Vector<Real>& X, Integer offset){
  242. Integer send_partner = (rank + offset) % np;
  243. Integer recv_partner = (rank + np - offset) % np;
  244. Long send_cnt = X.Dim(), recv_cnt;
  245. void* recv_req = comm.Irecv( Ptr2Itr<Long>(&recv_cnt,1), 1, recv_partner, offset);
  246. void* send_req = comm.Isend(Ptr2ConstItr<Long>(&send_cnt,1), 1, send_partner, offset);
  247. comm.Wait(recv_req);
  248. comm.Wait(send_req);
  249. X_.ReInit(recv_cnt);
  250. recv_req = comm.Irecv(X_.begin(), recv_cnt, recv_partner, offset);
  251. send_req = comm.Isend(X .begin(), send_cnt, send_partner, offset);
  252. comm.Wait(recv_req);
  253. comm.Wait(send_req);
  254. };
  255. send_recv_vec(Xs_, Xs, i);
  256. send_recv_vec(Xn_, Xn, i);
  257. send_recv_vec(F_ , F , i);
  258. kernel.Eval(U, Xt, Xs_, Xn_, F_);
  259. }
  260. #endif
  261. }
  262. private:
  263. };
  264. } // end namespace
  265. #endif //_SCTL_KERNEL_FUNCTIONS_HPP_