mem_mgr.txx 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547
  1. #include <omp.h>
  2. #include <cmath>
  3. #include <cstring>
  4. #include <cassert>
  5. #include <algorithm>
  6. #include <type_traits>
  7. #include SCTL_INCLUDE(profile.hpp)
  8. namespace SCTL_NAMESPACE {
  9. #ifdef SCTL_MEMDEBUG
  10. template <class ValueType> inline ConstIterator<ValueType>::ConstIterator(const ValueType* base_, difference_type len_, bool dynamic_alloc) {
  11. this->base = (char*)base_;
  12. this->len = len_ * (Long)sizeof(ValueType);
  13. this->offset = 0;
  14. SCTL_ASSERT_MSG((uintptr_t)(this->base + this->offset) % alignof(ValueType) == 0, "invalid alignment during pointer type conversion.");
  15. if (dynamic_alloc) {
  16. MemoryManager::MemHead& mh = *&MemoryManager::GetMemHead((char*)this->base);
  17. MemoryManager::CheckMemHead(mh);
  18. alloc_ctr = mh.alloc_ctr;
  19. mem_head = &mh;
  20. } else
  21. mem_head = nullptr;
  22. }
  23. template <class ValueType> inline void ConstIterator<ValueType>::IteratorAssertChecks(Long j) const {
  24. //const auto& base = this->base;
  25. const auto& offset = this->offset + j * (Long)sizeof(ValueType);
  26. const auto& len = this->len;
  27. const auto& mem_head = this->mem_head;
  28. const auto& alloc_ctr = this->alloc_ctr;
  29. if (*this == NullIterator<ValueType>()) SCTL_WARN("dereferencing a nullptr is undefined.");
  30. SCTL_ASSERT_MSG(offset >= 0 && offset + (Long)sizeof(ValueType) <= len, "access to pointer [B" << (offset < 0 ? "" : "+") << offset << ",B" << (offset + (Long)sizeof(ValueType) < 0 ? "" : "+") << offset + (Long)sizeof(ValueType) << ") is outside of the range [B,B+" << len << ").");
  31. if (mem_head) {
  32. MemoryManager::MemHead& mh = *(MemoryManager::MemHead*)(mem_head);
  33. SCTL_ASSERT_MSG(mh.alloc_ctr == alloc_ctr, "invalid memory address or corrupted memory.");
  34. }
  35. }
  36. template <class ValueType> inline typename ConstIterator<ValueType>::reference ConstIterator<ValueType>::operator*() const {
  37. this->IteratorAssertChecks();
  38. return *(ValueType*)(base + offset);
  39. }
  40. template <class ValueType> inline typename ConstIterator<ValueType>::pointer ConstIterator<ValueType>::operator->() const {
  41. this->IteratorAssertChecks();
  42. return (ValueType*)(base + offset);
  43. }
  44. template <class ValueType> inline typename ConstIterator<ValueType>::reference ConstIterator<ValueType>::operator[](difference_type j) const {
  45. this->IteratorAssertChecks(j);
  46. return *(ValueType*)(base + offset + j * (Long)sizeof(ValueType));
  47. }
  48. template <class ValueType> inline typename Iterator<ValueType>::reference Iterator<ValueType>::operator*() const {
  49. this->IteratorAssertChecks();
  50. return *(ValueType*)(this->base + this->offset);
  51. }
  52. template <class ValueType> inline typename Iterator<ValueType>::value_type* Iterator<ValueType>::operator->() const {
  53. this->IteratorAssertChecks();
  54. return (ValueType*)(this->base + this->offset);
  55. }
  56. template <class ValueType> inline typename Iterator<ValueType>::reference Iterator<ValueType>::operator[](difference_type j) const {
  57. this->IteratorAssertChecks(j);
  58. return *(ValueType*)(this->base + this->offset + j * (Long)sizeof(ValueType));
  59. }
  60. #endif
  61. inline MemoryManager::MemoryManager(Long N) {
  62. buff_size = N;
  63. { // Allocate buff
  64. SCTL_ASSERT(SCTL_MEM_ALIGN <= 0x8000);
  65. Long alignment = SCTL_MEM_ALIGN - 1;
  66. char* base_ptr = (char*)::malloc(N + 2 + alignment);
  67. SCTL_ASSERT_MSG(base_ptr, "memory allocation failed.");
  68. buff = (char*)((uintptr_t)(base_ptr + 2 + alignment) & ~(uintptr_t)alignment);
  69. ((uint16_t*)buff)[-1] = (uint16_t)(buff - base_ptr);
  70. }
  71. { // Initialize to init_mem_val
  72. #ifdef SCTL_MEMDEBUG
  73. #pragma omp parallel for
  74. for (Long i = 0; i < buff_size; i++) {
  75. buff[i] = init_mem_val;
  76. }
  77. #endif
  78. }
  79. n_dummy_indx = new_node();
  80. Long n_indx = new_node();
  81. MemNode& n_dummy = node_buff[n_dummy_indx - 1];
  82. MemNode& n = node_buff[n_indx - 1];
  83. n_dummy.size = 0;
  84. n_dummy.free = false;
  85. n_dummy.prev = 0;
  86. n_dummy.next = n_indx;
  87. n_dummy.mem_ptr = &buff[0];
  88. SCTL_ASSERT(n_indx);
  89. n.size = N;
  90. n.free = true;
  91. n.prev = n_dummy_indx;
  92. n.next = 0;
  93. n.mem_ptr = &buff[0];
  94. n.it = free_map.insert(std::make_pair(N, n_indx));
  95. omp_init_lock(&omp_lock);
  96. }
  97. inline MemoryManager::~MemoryManager() {
  98. Check();
  99. MemNode* n_dummy = &node_buff[n_dummy_indx - 1];
  100. MemNode* n = &node_buff[n_dummy->next - 1];
  101. if (!n->free || n->size != buff_size || node_stack.size() != node_buff.size() - 2 || !system_malloc.empty()) {
  102. SCTL_WARN("memory leak detected.");
  103. }
  104. omp_destroy_lock(&omp_lock);
  105. { // free buff
  106. SCTL_ASSERT(buff);
  107. ::free(buff - ((uint16_t*)buff)[-1]);
  108. buff = nullptr;
  109. }
  110. }
  111. inline MemoryManager::MemHead& MemoryManager::GetMemHead(char* I) {
  112. SCTL_ASSERT_MSG(I != nullptr, "nullptr exception.");
  113. static uintptr_t alignment = SCTL_MEM_ALIGN - 1;
  114. static uintptr_t header_size = (uintptr_t)(sizeof(MemHead) + alignment) & ~(uintptr_t)alignment;
  115. return *(MemHead*)(((char*)I) - header_size);
  116. }
  117. inline void MemoryManager::CheckMemHead(const MemHead& mem_head) { // Verify header check_sum
  118. #ifdef SCTL_MEMDEBUG
  119. Long check_sum = 0;
  120. const unsigned char* base_ = (const unsigned char*)&mem_head;
  121. for (Integer i = 0; i < (Integer)sizeof(MemHead); i++) {
  122. check_sum += base_[i];
  123. }
  124. check_sum -= mem_head.check_sum;
  125. check_sum = check_sum & ((1UL << (8 * sizeof(mem_head.check_sum))) - 1);
  126. SCTL_ASSERT_MSG(check_sum == mem_head.check_sum, "invalid memory address or corrupted memory.");
  127. #endif
  128. }
  129. inline Iterator<char> MemoryManager::malloc(const Long n_elem, const Long type_size, const MemHead::TypeID type_id) const {
  130. if (!n_elem) return NullIterator<char>();
  131. static uintptr_t alignment = SCTL_MEM_ALIGN - 1;
  132. static uintptr_t header_size = (uintptr_t)(sizeof(MemHead) + alignment) & ~(uintptr_t)alignment;
  133. Long size = n_elem * type_size + header_size;
  134. size = (uintptr_t)(size + alignment) & ~(uintptr_t)alignment;
  135. char* base = nullptr;
  136. omp_set_lock(&omp_lock);
  137. static Long alloc_ctr = 0;
  138. alloc_ctr++;
  139. Long head_alloc_ctr = alloc_ctr;
  140. std::multimap<Long, Long>::iterator it = free_map.lower_bound(size);
  141. Long n_indx = (it != free_map.end() ? it->second : 0);
  142. if (n_indx) { // Allocate from buff
  143. Long n_free_indx = (it->first > size ? new_node() : 0);
  144. MemNode& n = node_buff[n_indx - 1];
  145. assert(n.size == it->first);
  146. assert(n.it == it);
  147. assert(n.free);
  148. if (n_free_indx) { // Create a node for the remaining free part.
  149. MemNode& n_free = node_buff[n_free_indx - 1];
  150. n_free = n;
  151. n_free.size -= size;
  152. n_free.mem_ptr = (char*)n_free.mem_ptr + size;
  153. { // Insert n_free to the link list
  154. n_free.prev = n_indx;
  155. if (n_free.next) {
  156. Long n_next_indx = n_free.next;
  157. MemNode& n_next = node_buff[n_next_indx - 1];
  158. n_next.prev = n_free_indx;
  159. }
  160. n.next = n_free_indx;
  161. }
  162. assert(n_free.free); // Insert n_free to free map
  163. n_free.it = free_map.insert(std::make_pair(n_free.size, n_free_indx));
  164. n.size = size; // Update n
  165. }
  166. n.free = false;
  167. free_map.erase(it);
  168. base = n.mem_ptr;
  169. }
  170. omp_unset_lock(&omp_lock);
  171. if (!base) { // Use system malloc
  172. char* p = (char*)::malloc(size + 2 + alignment + end_padding);
  173. SCTL_ASSERT_MSG(p, "memory allocation failed.");
  174. #ifdef SCTL_MEMDEBUG
  175. { // system_malloc.insert(p)
  176. omp_set_lock(&omp_lock);
  177. system_malloc.insert(p);
  178. omp_unset_lock(&omp_lock);
  179. }
  180. { // set p[*] to init_mem_val
  181. #pragma omp parallel for
  182. for (Long i = 0; i < (Long)(size + 2 + alignment + end_padding); i++) p[i] = init_mem_val;
  183. }
  184. #endif
  185. { // base <-- align(p)
  186. base = (char*)((uintptr_t)(p + 2 + alignment) & ~(uintptr_t)alignment);
  187. ((uint16_t*)base)[-1] = (uint16_t)(base - p);
  188. }
  189. }
  190. { // Check out-of-bounds write
  191. #ifdef SCTL_MEMDEBUG
  192. if (n_indx) {
  193. #pragma omp parallel for
  194. for (Long i = 0; i < size; i++) SCTL_ASSERT_MSG(base[i] == init_mem_val, "memory corruption detected.");
  195. }
  196. #endif
  197. }
  198. MemHead& mem_head = *(MemHead*)base;
  199. { // Set mem_head
  200. #ifdef SCTL_MEMDEBUG
  201. for (Integer i = 0; i < (Integer)sizeof(MemHead); i++) base[i] = init_mem_val;
  202. #endif
  203. mem_head.n_indx = n_indx;
  204. mem_head.n_elem = n_elem;
  205. mem_head.type_size = type_size;
  206. mem_head.alloc_ctr = head_alloc_ctr;
  207. mem_head.type_id = type_id;
  208. }
  209. { // Set header check_sum
  210. #ifdef SCTL_MEMDEBUG
  211. Long check_sum = 0;
  212. unsigned char* base_ = (unsigned char*)base;
  213. mem_head.check_sum = 0;
  214. for (Integer i = 0; i < (Integer)sizeof(MemHead); i++) check_sum += base_[i];
  215. check_sum = check_sum & ((1UL << (8 * sizeof(mem_head.check_sum))) - 1);
  216. mem_head.check_sum = check_sum;
  217. #endif
  218. }
  219. Profile::Add_MEM(n_elem * type_size);
  220. #ifdef SCTL_MEMDEBUG
  221. return Iterator<char>(base + header_size, n_elem * type_size, true);
  222. #else
  223. return base + header_size;
  224. #endif
  225. }
  226. inline void MemoryManager::free(Iterator<char> p) const {
  227. if (p == NullIterator<char>()) return;
  228. static uintptr_t alignment = SCTL_MEM_ALIGN - 1;
  229. static uintptr_t header_size = (uintptr_t)(sizeof(MemHead) + alignment) & ~(uintptr_t)alignment;
  230. SCTL_UNUSED(header_size);
  231. MemHead& mem_head = GetMemHead(&p[0]);
  232. Long n_indx = mem_head.n_indx;
  233. Long n_elem = mem_head.n_elem;
  234. Long type_size = mem_head.type_size;
  235. char* base = (char*)&mem_head;
  236. { // Verify header check_sum; set array to init_mem_val
  237. #ifdef SCTL_MEMDEBUG
  238. CheckMemHead(mem_head);
  239. Long size = mem_head.n_elem * mem_head.type_size;
  240. #pragma omp parallel for
  241. for (Long i = 0; i < size; i++) p[i] = init_mem_val;
  242. for (Integer i = 0; i < (Integer)sizeof(MemHead); i++) base[i] = init_mem_val;
  243. #endif
  244. }
  245. if (n_indx == 0) { // Use system free
  246. assert(base < &buff[0] || base >= &buff[buff_size]);
  247. char* p_;
  248. { // p_ <-- unalign(base)
  249. p_ = (char*)((uintptr_t)base - ((uint16_t*)base)[-1]);
  250. }
  251. #ifdef SCTL_MEMDEBUG
  252. { // Check out-of-bounds write
  253. base[-1] = init_mem_val;
  254. base[-2] = init_mem_val;
  255. Long size = n_elem * type_size + header_size;
  256. size = (uintptr_t)(size + alignment) & ~(uintptr_t)alignment;
  257. #pragma omp parallel for
  258. for (Long i = 0; i < (Long)(size + 2 + alignment + end_padding); i++) {
  259. SCTL_ASSERT_MSG(p_[i] == init_mem_val, "memory corruption detected.");
  260. }
  261. }
  262. if (buff != nullptr) { // system_malloc.erase(p_)
  263. omp_set_lock(&omp_lock);
  264. SCTL_ASSERT_MSG(system_malloc.erase(p_) == 1, "double free or corruption.");
  265. omp_unset_lock(&omp_lock);
  266. }
  267. #endif
  268. ::free(p_);
  269. } else {
  270. #ifdef SCTL_MEMDEBUG
  271. { // Check out-of-bounds write
  272. MemNode& n = node_buff[n_indx - 1];
  273. char* base = n.mem_ptr;
  274. #pragma omp parallel for
  275. for (Long i = 0; i < n.size; i++) {
  276. SCTL_ASSERT_MSG(base[i] == init_mem_val, "memory corruption detected.");
  277. }
  278. }
  279. #endif
  280. assert(n_indx <= (Long)node_buff.size());
  281. omp_set_lock(&omp_lock);
  282. MemNode& n = node_buff[n_indx - 1];
  283. assert(!n.free && n.size > 0 && n.mem_ptr == base);
  284. if (n.prev != 0 && node_buff[n.prev - 1].free) {
  285. Long n_prev_indx = n.prev;
  286. MemNode& n_prev = node_buff[n_prev_indx - 1];
  287. n.size += n_prev.size;
  288. n.mem_ptr = n_prev.mem_ptr;
  289. n.prev = n_prev.prev;
  290. free_map.erase(n_prev.it);
  291. delete_node(n_prev_indx);
  292. if (n.prev) {
  293. node_buff[n.prev - 1].next = n_indx;
  294. }
  295. }
  296. if (n.next != 0 && node_buff[n.next - 1].free) {
  297. Long n_next_indx = n.next;
  298. MemNode& n_next = node_buff[n_next_indx - 1];
  299. n.size += n_next.size;
  300. n.next = n_next.next;
  301. free_map.erase(n_next.it);
  302. delete_node(n_next_indx);
  303. if (n.next) {
  304. node_buff[n.next - 1].prev = n_indx;
  305. }
  306. }
  307. n.free = true; // Insert n to free_map
  308. n.it = free_map.insert(std::make_pair(n.size, n_indx));
  309. omp_unset_lock(&omp_lock);
  310. }
  311. Profile::Add_MEM(-n_elem * type_size);
  312. }
  313. inline void MemoryManager::print() const {
  314. if (!buff_size) return;
  315. omp_set_lock(&omp_lock);
  316. Long size = 0;
  317. Long largest_size = 0;
  318. MemNode* n = &node_buff[n_dummy_indx - 1];
  319. std::cout << "\n|";
  320. while (n->next) {
  321. n = &node_buff[n->next - 1];
  322. if (n->free) {
  323. std::cout << ' ';
  324. largest_size = std::max(largest_size, n->size);
  325. } else {
  326. std::cout << '#';
  327. size += n->size;
  328. }
  329. }
  330. std::cout << "| allocated=" << round(size * 1000.0 / buff_size) / 10 << "%";
  331. std::cout << " largest_free=" << round(largest_size * 1000.0 / buff_size) / 10 << "%\n";
  332. omp_unset_lock(&omp_lock);
  333. }
  334. inline void MemoryManager::test() {
  335. Long M = 2000000000;
  336. { // With memory manager
  337. Long N = (Long)(M * sizeof(double) * 1.1);
  338. double tt;
  339. Iterator<double> tmp;
  340. std::cout << "With memory manager: ";
  341. MemoryManager memgr(N);
  342. for (Integer j = 0; j < 3; j++) {
  343. tmp = (Iterator<double>)memgr.malloc(M * sizeof(double));
  344. SCTL_ASSERT(tmp != NullIterator<double>());
  345. tt = omp_get_wtime();
  346. #pragma omp parallel for
  347. for (Long i = 0; i < M; i += 64) tmp[i] = (double)i;
  348. tt = omp_get_wtime() - tt;
  349. std::cout << tt << ' ';
  350. memgr.free((Iterator<char>)tmp);
  351. }
  352. std::cout << '\n';
  353. }
  354. { // Without memory manager
  355. double tt;
  356. double* tmp;
  357. std::cout << "Without memory manager: ";
  358. for (Integer j = 0; j < 3; j++) {
  359. tmp = (double*)::malloc(M * sizeof(double));
  360. SCTL_ASSERT(tmp != nullptr);
  361. tt = omp_get_wtime();
  362. #pragma omp parallel for
  363. for (Long i = 0; i < M; i += 64) tmp[i] = (double)i;
  364. tt = omp_get_wtime() - tt;
  365. std::cout << tt << ' ';
  366. ::free(tmp);
  367. }
  368. std::cout << '\n';
  369. }
  370. }
  371. inline void MemoryManager::Check() const {
  372. #ifdef SCTL_MEMDEBUG
  373. // print();
  374. omp_set_lock(&omp_lock);
  375. MemNode* curr_node = &node_buff[n_dummy_indx - 1];
  376. while (curr_node->next) {
  377. curr_node = &node_buff[curr_node->next - 1];
  378. if (curr_node->free) {
  379. char* base = curr_node->mem_ptr;
  380. #pragma omp parallel for
  381. for (Long i = 0; i < curr_node->size; i++) {
  382. SCTL_ASSERT_MSG(base[i] == init_mem_val, "memory corruption detected.");
  383. }
  384. }
  385. }
  386. omp_unset_lock(&omp_lock);
  387. #endif
  388. }
  389. inline Long MemoryManager::new_node() const {
  390. if (node_stack.empty()) {
  391. node_buff.resize(node_buff.size() + 1);
  392. node_stack.push(node_buff.size());
  393. }
  394. Long indx = node_stack.top();
  395. node_stack.pop();
  396. assert(indx);
  397. return indx;
  398. }
  399. inline void MemoryManager::delete_node(Long indx) const {
  400. assert(indx);
  401. assert(indx <= (Long)node_buff.size());
  402. MemNode& n = node_buff[indx - 1];
  403. n.free = false;
  404. n.size = 0;
  405. n.prev = 0;
  406. n.next = 0;
  407. n.mem_ptr = nullptr;
  408. node_stack.push(indx);
  409. }
  410. template <class ValueType> inline Iterator<ValueType> aligned_new(Long n_elem, const MemoryManager* mem_mgr) {
  411. if (!n_elem) return NullIterator<ValueType>();
  412. static MemoryManager def_mem_mgr(0);
  413. if (!mem_mgr) mem_mgr = &def_mem_mgr;
  414. Iterator<ValueType> A = (Iterator<ValueType>)mem_mgr->malloc(n_elem, sizeof(ValueType), typeid(ValueType).hash_code());
  415. SCTL_ASSERT_MSG(A != NullIterator<ValueType>(), "memory allocation failed.");
  416. if (!std::is_trivial<ValueType>::value) { // Call constructors
  417. // printf("%s\n", __PRETTY_FUNCTION__);
  418. #pragma omp parallel for schedule(static)
  419. for (Long i = 0; i < n_elem; i++) {
  420. ValueType* Ai = new (&A[i]) ValueType();
  421. assert(Ai == (&A[i]));
  422. SCTL_UNUSED(Ai);
  423. }
  424. } else {
  425. #ifdef SCTL_MEMDEBUG
  426. static Long random_init_val = 1;
  427. Iterator<char> A_ = (Iterator<char>)A;
  428. #pragma omp parallel for schedule(static)
  429. for (Long i = 0; i < n_elem * (Long)sizeof(ValueType); i++) {
  430. A_[i] = random_init_val + i;
  431. }
  432. random_init_val += n_elem * sizeof(ValueType);
  433. #endif
  434. }
  435. return A;
  436. }
  437. template <class ValueType> inline void aligned_delete(Iterator<ValueType> A, const MemoryManager* mem_mgr) {
  438. if (A == NullIterator<ValueType>()) return;
  439. if (!std::is_trivial<ValueType>::value) { // Call destructors
  440. // printf("%s\n", __PRETTY_FUNCTION__);
  441. MemoryManager::MemHead& mem_head = MemoryManager::GetMemHead((char*)&A[0]);
  442. #ifdef SCTL_MEMDEBUG
  443. MemoryManager::CheckMemHead(mem_head);
  444. SCTL_ASSERT_MSG(mem_head.type_id==typeid(ValueType).hash_code(), "pointer to aligned_delete has different type than what was used in aligned_new.");
  445. #endif
  446. Long n_elem = mem_head.n_elem;
  447. for (Long i = 0; i < n_elem; i++) {
  448. A[i].~ValueType();
  449. }
  450. } else {
  451. #ifdef SCTL_MEMDEBUG
  452. MemoryManager::MemHead& mem_head = MemoryManager::GetMemHead((char*)&A[0]);
  453. MemoryManager::CheckMemHead(mem_head);
  454. SCTL_ASSERT_MSG(mem_head.type_id==typeid(ValueType).hash_code(), "pointer to aligned_delete has different type than what was used in aligned_new.");
  455. Long size = mem_head.n_elem * mem_head.type_size;
  456. Iterator<char> A_ = (Iterator<char>)A;
  457. #pragma omp parallel for
  458. for (Long i = 0; i < size; i++) {
  459. A_[i] = 0;
  460. }
  461. #endif
  462. }
  463. static MemoryManager def_mem_mgr(0);
  464. if (!mem_mgr) mem_mgr = &def_mem_mgr;
  465. mem_mgr->free((Iterator<char>)A);
  466. }
  467. template <class ValueType> inline Iterator<ValueType> memcopy(Iterator<ValueType> destination, ConstIterator<ValueType> source, Long num) {
  468. if (destination != source && num) {
  469. #ifdef SCTL_MEMDEBUG
  470. SCTL_UNUSED(destination[num - 1]);
  471. SCTL_UNUSED(source[num - 1] );
  472. #endif
  473. if (std::is_trivially_copyable<ValueType>::value) {
  474. memcpy((void*)&destination[0], (const void*)&source[0], num * sizeof(ValueType));
  475. } else {
  476. for (Long i = 0; i < num; i++) destination[i] = source[i];
  477. }
  478. }
  479. return destination;
  480. }
  481. template <class ValueType> inline Iterator<ValueType> memset(Iterator<ValueType> ptr, int value, Long num) {
  482. if (num) {
  483. #ifdef SCTL_MEMDEBUG
  484. SCTL_UNUSED(ptr[0] );
  485. SCTL_UNUSED(ptr[num - 1]);
  486. #endif
  487. SCTL_ASSERT(std::is_trivially_copyable<ValueType>::value);
  488. ::memset((void*)&ptr[0], value, num * sizeof(ValueType));
  489. }
  490. return ptr;
  491. }
  492. } // end namespace