% vim: set foldmethod=marker foldmarker=<<<,>>>: \begin{FIframe}{Problem Setup - Stokes Mobility}{} %<<< \vspace{-1em} \begin{columns} \column{0.7\textwidth} \begin{itemize} \item $n$ identical rigid discs ~~$\Omega = \sum\limits_{i=1}^{n} \Omega_i$ given radius $R$, ~centers $\vct{x}^c_i$, ~forces $\vct{F}_i$, ~torques $T_i$, \vspace{1.8ex} \only<1>{ velocity ~$\vct{V}(\vct{x}) = \vct{v}_i + \vct{\omega}_i \times (\vct{x}-\vct{x}^c_i)$. }% \only<2>{ velocity ~{\color{red}$\vct{V}(\vct{x}) = \vct{v}_i + \vct{\omega}_i \times (\vct{x}-\vct{x}^c_i)$}. } \vspace{1.4em} \item Stokesian fluid in $\Real^3 \setminus \Omega$ \vspace{0.7ex} \qquad $\displaystyle \Delta \vct{u} - \nabla p = 0, ~~\nabla \cdot \vct{u} = 0,$ \\ \vspace{0.6ex} \qquad $\displaystyle \vct{u} \rightarrow 0$ ~as~ $\vct{x} \rightarrow \infty$. \vspace{1.3em} \item Boundary conditions on $\partial\Omega$, \vspace{0.6ex} \only<1>{\qquad $\displaystyle \vct{u} = \vct{V} + \vct{u}_s$.} \only<2>{\qquad $\displaystyle \vct{u} = {\color{red}\vct{V}} + \vct{u}_s$.} \end{itemize} \vspace{1em} \qquad\quad \only<1>{\phantom{\color{red} unknown: $\vct{V}(\vct{u}_i, \vct{\omega}_i)$}} \only<2>{\color{red} unknown: $\vct{V}(\vct{u}_i, \vct{\omega}_i)$} \column{0.3\textwidth} \centering \resizebox{0.99\textwidth}{!}{\begin{tikzpicture} %\node[anchor=south west,inner sep=0] at (0,0) {\includegraphics[angle=90,origin=c,width=4cm]{figs/rigid-bodies.png}}; \draw[color=blue, line width=1pt, fill=gray!50] (2.19,0.975) circle (0.76cm); \draw[color=blue, line width=1pt, fill=gray!50] (1.5,-1.4) circle (0.76cm); \draw[color=blue, line width=1pt, fill=gray!50] (3.1,-2.0) circle (0.76cm); \draw[color=black, line width=1pt, fill=black] (2.19,0.975) circle (0.03cm); \node at (2.28,0.72) {$\vct{x}^c_1$}; \draw[ultra thick, -latex] (2.3,1.07) to (3,1.5); \node at (3.35, 1.6) {$\vct{F}_1$}; %\node (a) at (1.41, 0.975) {}; %\node (b) at (2.19, 1.755) {}; %\draw[thick, -latex] (a) arc [out=140,in=60, looseness=3] (b); \draw[-latex, ultra thick] (1.3,0.975) arc [ start angle=180, end angle=90, x radius=0.85cm, y radius=0.85cm ] ; \node at (1.35, 1.85) {$T_1$}; %\draw[color=red, ultra thick] (2.7,0.9) circle (1pt); %\node at (2.5, 0.5) {\color{red} \Large $x$}; %\draw[ultra thick, -latex] (4.3,0.45) to (3.1,0.5); %\node [rotate=-6] at (5.55, 0.25) {log singularity}; %\draw[ultra thick, -latex] (10.5,-0.25) to (12.1,-0.2); %\node [rotate=-4.5] at (9.5, -0.17) {$|s-s_0|^{-\alpha}$}; \end{tikzpicture}} \end{columns} \end{FIframe} %>>> \begin{FIframe}{Boundary Integral Formulation}{} %<<< \only<1>{ Represent fluid velocity: ~~$\displaystyle \vct{u}(\vct{x}) = \int_{\partial\Omega} \!\!\!\! S(\vct{x}-\vct{y}) \vct{\nu}(\vct{y}) + \int_{\partial\Omega} \!\!\!\! D(\vct{x}-\vct{y}) {\color{red}\vct{\sigma}}(\vct{y}) $ } \only<2->{ \vspace{0.25em} Represent fluid velocity: ~~$\displaystyle \vct{u} = \StokesSL[\vct{\nu}(\vct{F}_i, T_i)] + \StokesDL[{\color{red}\vct{\sigma}}] $ } \only<3->{ \vspace{0.3em} and rigid body velocity: ~~$\displaystyle \vct{V} = -\sum_{i=1}^{6n} \mathfrak{v}_i \mathfrak{v}_i^T {\color{red}\vct{\sigma}}$ } \only<4->{ \vspace{1.5em} Applying boundary conditions ~ ($\displaystyle \vct{u} = \vct{V} + \vct{u}_s$ ~on~ $\partial\Omega$), \vspace{0.3em} \qquad$\qquad\displaystyle (I/2 + D) \, {\color{red}\vct{\sigma}} + \sum_{i=1}^{6n} \mathfrak{v}_i \mathfrak{v}_i^T {\color{red}\vct{\sigma}} = \vct{u}_s - S \, \vct{\nu} $ \vspace{0.5em}{\em(Pozrikidis - Boundary Integral and Singularity Methods for Linearized Viscous Flow)} } %\vspace{0.5em} %\only<2->{Second kind integral equation \quad {\color{red} $\cdots$ but doesn't work for slender bodies!} % %, should be well-conditioned.\\ % %What can possibly go wrong? % \vspace{1em} % \only<3->{\color{red} $\kappa(I/2 + D) ~\sim~ 1/(\varepsilon^{2} \log \varepsilon^{-1})$} %} \end{FIframe} %>>> \begin{frame}[t,fragile] \frametitle{{Nystr\"om Discretization}} \framesubtitle{{}} %<<< \newcommand*\drawpanels[6]{% coord, radius, start, end, count \pgfmathsetmacro{\x}{{#1}} \pgfmathsetmacro{\y}{{#2}} \pgfmathsetmacro{\r}{{#3}} \pgfmathsetmacro{\a}{{#4}} \pgfmathsetmacro{\b}{{#5}} \pgfmathsetmacro{\N}{{#6-1}} \foreach \i in {0,...,\N} { \pgfmathsetmacro{\t}{\a+\i*(\b-\a)/\N}; \pgfmathsetmacro{\xx}{\r*cos(\t)}; \pgfmathsetmacro{\yy}{\r*sin(\t)}; \draw[black, line width=1pt] ({\x+0.96*\xx},{\y+0.96*\yy}) -- ({\x+1.04*\xx},{\y+1.04*\yy}); } } \vspace{-0.8em} \resizebox{0.62\textwidth}{!}{\begin{tikzpicture}[scale=0.8]%<<< \draw[color=blue, line width=2pt, fill=gray!50] (-4.2,0) circle (4cm); \draw[color=blue, line width=2pt, fill=gray!50] ( 4.2,0) circle (4cm); \only<2->{ \draw [red, line width=2pt, domain=-30:30] plot ({ 4*cos(\x)-4.2}, {4*sin(\x)}); \draw [red, line width=2pt, domain=-30:30] plot ({-4*cos(\x)+4.2}, {4*sin(\x)}); \draw[rounded corners=1cm,dotted,color=black!50!green, line width=2pt] (-1.5, -2.1) rectangle (1.5, 2.1) {}; } \node at (-5.5, 1.5) {\LARGE $\Omega_k$}; %\node at (-7.0, 3.6) {\Large $\partial\Omega_k$}; \drawpanels{-4.2}{0}{4}{30}{330}{8}; \drawpanels{ 4.2}{0}{4}{-150}{150}{8}; \drawpanels{-4.2}{0}{4}{-15}{15}{2}; \drawpanels{-4.2}{0}{4}{-7.5}{7.5}{2}; \drawpanels{-4.2}{0}{4}{-3.75}{3.75}{2}; \drawpanels{-4.2}{0}{4}{-1.875}{1.875}{3}; %\drawpanels{-4.2}{0}{4}{-0.9375}{0.9375}{3}; \drawpanels{ 4.2}{0}{4}{165}{195}{2}; \drawpanels{ 4.2}{0}{4}{172.5}{187.5}{2}; \drawpanels{ 4.2}{0}{4}{176.25}{183.75}{2}; \drawpanels{ 4.2}{0}{4}{178.125}{181.875}{3}; %\drawpanels{ 4.2}{0}{4}{179.0625}{180.9375}{3}; %\draw [dashed, line width=1pt] (-4.2,0) -- (-0.2,0); \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] (-4.2,0) -- (-1.371,2.828); %\draw [line width=2pt, domain=0:45] plot ({1*cos(\x)-4.2}, {1*sin(\x)}); \node at (-3.1, 1.6) {\Large $\radius$}; \node at (-4.55,0) {\Large $\vct{x}^c_{k}$}; \draw [dashed, line width=1pt] (-0.2,0) -- (-0.2,-3.55); \draw [dashed, line width=1pt] ( 0.2,0) -- ( 0.2,-3.55); \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] (-1.2,-3.45) -- (-0.2,-3.45); \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] ( 1.2,-3.45) -- ( 0.2,-3.45); \node at (0, -4.0) {\Large $d$}; %\node at (0, 1.75) {\color{red} \Large $\Gamma_{2}$}; %\node at (0, 1.25) {\color{red} \Large $\sigma_{2}$}; %\node at (4.0, 3.5) {\color{blue} \huge $\Gamma_{1}$}; %\node at (5.0, 3.5) {\color{blue} \Large $\sigma_{1}$}; \end{tikzpicture}}%>>> \resizebox{0.38\textwidth}{!}{\begin{tikzpicture}%<<< \node[anchor=south west,inner sep=0] at (0,0) {\includegraphics[width=5cm]{figs/plot-mobility-density_.png}}; \node at (-0.1, 2.1) {$\vct{\sigma}$}; \end{tikzpicture}}%>>> \begin{columns} \begin{column}[T]{0.61\textwidth} \begin{itemize} \setlength\itemsep{1.5ex} \item Discretize $\partial\Omega$ into panels. \item Layer-potential operators: \begin{itemize} \item adaptive quadrature for near integrals \item special quadrature for singular integrals \end{itemize} \item Solve BIE: ~~~\scalebox{1.3}{$K \sigma = g$} \end{itemize} \end{column} \begin{column}[T]{0.39\textwidth} \only<2->{ {\bf \color{red} \vspace{2em} \begin{center} Compress close-interactions, and interpolate in $d$. \end{center} } } \end{column} \end{columns} \end{frame} %>>> \begin{frame}[t,fragile] \frametitle{{Compressing Close Interactions}} \framesubtitle{{}} %<<< %\resizebox{0.34\textwidth}{!}{\input{figs/tikz/disc-suspension}} \newcommand*\drawpanels[6]{% coord, radius, start, end, count \pgfmathsetmacro{\x}{{#1}} \pgfmathsetmacro{\y}{{#2}} \pgfmathsetmacro{\r}{{#3}} \pgfmathsetmacro{\a}{{#4}} \pgfmathsetmacro{\b}{{#5}} \pgfmathsetmacro{\N}{{#6-1}} \foreach \i in {0,...,\N} { \pgfmathsetmacro{\t}{\a+\i*(\b-\a)/\N}; \pgfmathsetmacro{\xx}{\r*cos(\t)}; \pgfmathsetmacro{\yy}{\r*sin(\t)}; \draw[black, line width=1pt] ({\x+0.96*\xx},{\y+0.96*\yy}) -- ({\x+1.04*\xx},{\y+1.04*\yy}); } } \vspace{-1.6em} \begin{columns} \begin{column}[T]{0.63\textwidth} \hfill \resizebox{0.99\textwidth}{!}{\begin{tikzpicture}[scale=0.8]%<<< \draw[color=blue, line width=2pt, fill=gray!50] (-4.2,0) circle (4cm); \draw[color=blue, line width=2pt, fill=gray!50] ( 4.2,0) circle (4cm); \draw [red, line width=2pt, domain=-30:30] plot ({ 4*cos(\x)-4.2}, {4*sin(\x)}); \draw [red, line width=2pt, domain=-30:30] plot ({-4*cos(\x)+4.2}, {4*sin(\x)}); %\draw [orange, line width=2pt, domain=-30:30] plot ({ 3.85*cos(\x)-4.2}, {3.85*sin(\x)}); %\draw [orange, line width=2pt, domain=-30:30] plot ({-3.85*cos(\x)+4.2}, {3.85*sin(\x)}); %\node at (-0.73,-0.6) {\color{orange} \Large $\overline{\sigma}_{2}$}; %\draw[dotted,color=black!50!green, line width=2pt] (0,0) circle (2.09cm); \draw[rounded corners=1cm,dotted,color=black!50!green, line width=2pt] (-1.5, -2.1) rectangle (1.5, 2.1) {}; %\draw[fill=red, opacity=0.1] (0,0) circle (2.09cm); %\node at (2.25, -1) {\color{black!50!green} \Large $\Gamma_{3}$}; %\node at (-5.5, 1.5) {\huge $\Omega_k$}; %\node at (-7.0, 3.6) {\Large $\partial\Omega_k$}; \drawpanels{-4.2}{0}{4}{30}{330}{8}; \drawpanels{ 4.2}{0}{4}{-150}{150}{8}; \drawpanels{-4.2}{0}{4}{-15}{15}{2}; \drawpanels{-4.2}{0}{4}{-7.5}{7.5}{2}; \drawpanels{-4.2}{0}{4}{-3.75}{3.75}{2}; \drawpanels{-4.2}{0}{4}{-1.875}{1.875}{3}; %\drawpanels{-4.2}{0}{4}{-0.9375}{0.9375}{3}; \drawpanels{ 4.2}{0}{4}{165}{195}{2}; \drawpanels{ 4.2}{0}{4}{172.5}{187.5}{2}; \drawpanels{ 4.2}{0}{4}{176.25}{183.75}{2}; \drawpanels{ 4.2}{0}{4}{178.125}{181.875}{3}; %\drawpanels{ 4.2}{0}{4}{179.0625}{180.9375}{3}; %\draw [dashed, line width=1pt] (-4.2,0) -- (-0.2,0); \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] (-4.2,0) -- (-1.371,2.828); %\draw [line width=2pt, domain=0:45] plot ({1*cos(\x)-4.2}, {1*sin(\x)}); %\node at (-3.0, 0.5) {\Large $\theta$}; \node at (-3.1, 1.6) {\Large $\radius$}; \node at (-4.55,0) {\Large $\vct{x}^c_{k}$}; \draw [dashed, line width=1pt] (-0.2,0) -- (-0.2,-3.55); \draw [dashed, line width=1pt] ( 0.2,0) -- ( 0.2,-3.55); \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] (-1.2,-3.45) -- (-0.2,-3.45); \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] ( 1.2,-3.45) -- ( 0.2,-3.45); \node at (0, -4.0) {\Large $d$}; \node at (0.85, 0.35) {\color{red} \Large $\Gamma_{2}$}; \node at (0.85, -0.40) {\color{red} \Large $\sigma_{2}$}; \node at (4.0, 3.4) {\color{blue} \LARGE $\Gamma_{1}$}; \node at (5.0, 3.4) {\color{blue} \Large $\sigma_{1}$}; \end{tikzpicture}}%>>> \end{column} \begin{column}[T]{0.36\textwidth} \vspace{2em} \begin{align*} \begin{pmatrix} {\color{blue} \mathcal{K}_{11}} & {\color{black!50!green} \mathcal{K}_{12}} \\ {\color{black!50!green} \mathcal{K}_{21}} & {\color{red} \mathcal{K}_{22}} \end{pmatrix} \begin{pmatrix} {\color{blue} \sigma_1 } \\ {\color{red} \sigma_2 } \end{pmatrix} = \begin{pmatrix} {\color{blue} g_1 } \\ {\color{red} g_2 } \end{pmatrix} \end{align*} \only<2->{ Build compression using \\ RCIP method of Helsing } \end{column} \end{columns} \only<3->{ \vspace{0.5em} \begin{columns} \begin{column}{0.4\textwidth} Right precondition with $\mathcal{K}_{22}^{-1}$: \begin{align*} \begin{pmatrix} \mathcal{K}_{11} & \mathcal{K}_{12} \mathcal{K}_{22}^{-1} \\ \mathcal{K}_{21} & I \end{pmatrix} \begin{pmatrix} \sigma_1 \\ \overline{\sigma}_2 \end{pmatrix} = \begin{pmatrix} g_1 \\ g_2 \end{pmatrix} \end{align*} where $\overline{\sigma}_2 = \mathcal{K}_{22} \sigma_2$ \end{column} \begin{column}{0.2\textwidth} \only<4->{ \begin{center} $\implies$ coarsen \end{center} } \end{column} \begin{column}{0.4\textwidth} \only<4->{ \begin{align*} \begin{pmatrix} K_{11} & K^{c}_{12} R \\ K^{c}_{21} & I \end{pmatrix} \begin{pmatrix} \sigma_1 \\ \overline{\sigma}^{c}_2 \end{pmatrix} = \begin{pmatrix} g_1 \\ g^{c}_2 \end{pmatrix} \end{align*} where $R = W_c^{-1} P^{T} W_f K_{22}^{-1} P$. } \end{column} \end{columns} } \end{frame} %>>> \begin{FIframe}{Computing ~$R_d$~ On-the-Fly}{} %<<< {\bf Cost of computing $R_d$:} \vspace{0.4em} {\renewcommand{\arraystretch}{1.6} \begin{tabular}{ l l l } Direct: & $\mathcal{O}((q \log d)^3)$ & \\ RCIP: & $\mathcal{O}(q^3 \log d)$ & $\quad \left[~ \mathcal{O}(q^6 \log d) \text{ ~in~ 3D} ~\right]$ \\ \end{tabular}} \vspace{4em} \only<2->{ {\bf Interpolating $R_d$:} ~~~~Interpolated Compressed Inverse Preconditioning (ICIP) \vspace{1em} \begin{columns} \column{0.35\textwidth} $\displaystyle R_{ij}(d) = \sum\limits_{k=0}^{p-1} \alpha_k T_k(\log d)$ \column{0.64\textwidth} \begin{tikzpicture}%<<< % Draw the base line \draw[thick] (0,0) -- (8,0); % Draw the panel divisions \foreach \x in {0,2,4,6,8} { \draw[thick] (\x,0.2) -- (\x,-0.2); } % Add panel labels \node at (0,-0.5) {$10^{0}$}; \node at (2,-0.5) {$10^{-2}$}; \node at (4,-0.5) {$10^{-4}$}; \node at (6,-0.5) {$10^{-6}$}; \node at (8,-0.5) {$10^{-8}$}; \node at (4,-1.0) {$\log d \longrightarrow$}; % Compute and draw Chebyshev nodes for each panel \foreach \i in {0, 2, 4, 6} { \foreach \j in {1, 2, 3, 4, 5, 6, 7, 8} { \pgfmathsetmacro{\theta}{(2*\j-1)*180/16} \pgfmathsetmacro{\x}{\i + 1 + cos(\theta)} \filldraw[blue] (\x,0) circle (1.5pt); } } %\begin{axis}[ % xmode=log, % log basis x=10, % axis x line=bottom, % axis y line=none, % xmin=1e-8, xmax=1, % xtick={1,1e-1,1e-2,1e-3,1e-4,1e-5,1e-6,1e-7,1e-8}, % xticklabels={$10^0$, $$, $10^{-2}$, $$, $10^{-4}$, $$, $10^{-6}$, $$, $10^{-8}$}, % tick align=outside, % enlargelimits=false, % width=12cm, % height=2cm %] %\end{axis} \end{tikzpicture}%>>> \end{columns} \vspace{1em} Interpolation cost: \quad $\mathcal{O}(q^2 p)$ \quad $\quad \left[~ \mathcal{O}(q^4 p) \text{ ~in~ 3D} ~\right]$ } \end{FIframe}%>>> \begin{FIframe}{Convergence Results}{} %<<< \begin{columns} \column{0.5\textwidth} Errors (Stokes mobility with 2 discs): \column{0.5\textwidth} \resizebox{0.4\textwidth}{!}{\begin{tikzpicture}[scale=0.8]%<<< \draw[color=blue, line width=2pt, fill=gray!50] (-3.2,0) circle (3cm); \draw[color=blue, line width=2pt, fill=gray!50] ( 3.2,0) circle (3cm); \draw [dashed, line width=1pt] (-0.2,0) -- (-0.2,-3.55); \draw [dashed, line width=1pt] ( 0.2,0) -- ( 0.2,-3.55); \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] (-1.2,-3.45) -- (-0.2,-3.45); \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] ( 1.2,-3.45) -- ( 0.2,-3.45); \node at (0,-4.0) {\Huge $d$}; \end{tikzpicture}}%>>> \end{columns} \vspace{1em} \begin{tabular}{r r c r r r r r } \hline & ~ & Adaptive & ~ & \multicolumn{4}{c}{Interpolating $R_d$} \\ $d$ & ~ & Discretization & ~ & $p=8$ & ~~$p=16$ & ~~$p=24$ & ~~$p=32$ \\ % & ~~$p=40$ \hline 1e-1 & ~ & 7.6e-15 & ~ & 1.0e-4 & 2.9e-07 & 2.1e-09 & 9.1e-12 \\ % 3.419e-14 8.966e-15 %1e-2 & ~ & 1.8e-13 & ~ & 2.8e-3 & 3.6e-06 & 3.6e-08 & 6.5e-10 \\ % 2.635e-12 1.552e-14 1e-3 & ~ & 4.4e-13 & ~ & 3.4e-5 & 5.6e-10 & 4.8e-14 & \\ % 6.656e-14 8.237e-14 %1e-4 & ~ & 3.8e-11 & ~ & 1.5e-3 & 1.4e-09 & 1.4e-13 & \\ % 1.244e-13 8.435e-14 1e-5 & ~ & 9.0e-09 & ~ & 1.5e-5 & 2.1e-12 & & \\ % 1.170e-12 1.012e-12 %1e-6 & ~ & 2.0e-07 & ~ & 6.0e-4 & 1.4e-11 & & \\ % 1.487e-11 1.936e-11 1e-7 & ~ & 4.3e-07 & ~ & 1.7e-5 & 4.1e-11 & & \\ % 2.812e-11 1e-8 & ~ & 5.3e-08 & ~ & 6.3e-4 & 3.9e-09 & & \\ % 1.220e-09 \hline \end{tabular} \vspace{1em} $p$: interpolation order \end{FIframe}%>>> \begin{FIframe}{GMRES Iterations}{} %<<< %Iteration counts for 2-discs, and disc-chain \vspace{-0.8em} \begin{columns}[T] \column{0.25\textwidth} \centering Iteration counts \\ for $\epsilon_{\text{GMRES}}$=1e-8 \vspace{1em} \resizebox{0.4\textwidth}{!}{\begin{tikzpicture}[scale=0.8]%<<< \draw[color=blue, line width=2pt, fill=gray!50] (0,-3.2) circle (3cm); \draw[color=blue, line width=2pt, fill=gray!50] (0, 3.2) circle (3cm); \only<2->{ \draw[color=blue, line width=2pt, fill=gray!50] (0, -9.6) circle (3cm); \draw[color=blue, line width=2pt, fill=gray!50] (0,-16.0) circle (3cm); } \only<3->{ \draw[color=black, line width=2pt, fill=black] (0,-19.5) circle (0.15cm); \draw[color=black, line width=2pt, fill=black] (0,-20.4) circle (0.15cm); \draw[color=black, line width=2pt, fill=black] (0,-21.3) circle (0.15cm); \draw[color=blue, line width=2pt, fill=gray!50] (0,-24.8) circle (3cm); } \draw [dashed, line width=1pt] (0,-0.2) -- (-3.55,-0.2); \draw [dashed, line width=1pt] (0, 0.2) -- (-3.55, 0.2); \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] (-3.45,-1.2) -- (-3.45,-0.2); \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] (-3.45, 1.2) -- (-3.45, 0.2); \node at (-4.0,0) {\Huge $d$}; \end{tikzpicture}}%>>> \column{0.75\textwidth} {\bf Adaptive discretization:} \only<1>{\begin{tabular}{r r r r r r r r}%<<< \hline $N_{\text{disc}}$ & $d=$1e-1 & 1e-2 & 1e-3 & ~1e-4 & ~~~1e-5 & 1e-6 & 1e-7 \\ \hline 2 & 15 & 37 & 104 & 337 & 1283 & 1848 & 2344 \\ &&&&&&&\\ &&&&&&&\\ &&&&&&&\\ &&&&&&&\\ %\hline \end{tabular} }%>>> \only<2>{\begin{tabular}{r r r r r r r r}%<<< \hline $N_{\text{disc}}$ & $d=$1e-1 & 1e-2 & 1e-3 & ~1e-4 & ~~~1e-5 & 1e-6 & 1e-7 \\ \hline 2 & 15 & 37 & 104 & 337 & 1283 & 1848 & 2344 \\ 4 & 25 & 75 & 271 & 1134 & 3770 & 5301 & 6620 \\ &&&&&&&\\ &&&&&&&\\ &&&&&&&\\ %\hline \end{tabular} }%>>> \only<3>{\begin{tabular}{r r r r r r r r}%<<< \hline $N_{\text{disc}}$ & $d=$1e-1 & 1e-2 & 1e-3 & ~1e-4 & ~~~1e-5 & 1e-6 & 1e-7 \\ \hline 2 & 15 & 37 & 104 & 337 & 1283 & 1848 & 2344 \\ 4 & 25 & 75 & 271 & 1134 & 3770 & 5301 & 6620 \\ % 8 & 32 & 124 & 494 & 1939 & 7488 &>8000 &>8000 \\ 16 & 35 & 147 & 629 & 2754 &>8000 & & \\ % 32 & 36 & 148 & 682 & 3092 & & & \\ 64 & 36 & 148 & 683 & 3094 & & & \\ %128 & 37 & 149 & 683 & 3094 & & & \\ 256 & 37 & 149 & 683 & 3094 & & & \\ %\hline \end{tabular}}%>>> \vspace{1.5em} {\bf Interpolated Compressed Inverse Preconditioning (ICIP):} \only<1>{\begin{tabular}{r r r r r r r r}%<<< \hline $N_{\text{disc}}$ & $d=$1e-1 & 1e-2 & 1e-3 & 1e-4 & 1e-5 & 1e-6 & 1e-7 \\ \hline 2 & 18 & 20 & 21 & 21 & 21 & 21 & 21 \\ %\hline \end{tabular} }%>>> \only<2>{\begin{tabular}{r r r r r r r r}%<<< \hline $N_{\text{disc}}$ & $d=$1e-1 & 1e-2 & 1e-3 & 1e-4 & 1e-5 & 1e-6 & 1e-7 \\ \hline 2 & 18 & 20 & 21 & 21 & 21 & 21 & 21 \\ 4 & 28 & 34 & 36 & 37 & 37 & 37 & 37 \\ %\hline \end{tabular} }%>>> \only<3>{\begin{tabular}{r r r r r r r r}%<<< \hline $N_{\text{disc}}$ & $d=$1e-1 & 1e-2 & 1e-3 & 1e-4 & 1e-5 & 1e-6 & 1e-7 \\ \hline 2 & 18 & 20 & 21 & 21 & 21 & 21 & 21 \\ 4 & 28 & 34 & 36 & 37 & 37 & 37 & 37 \\ % 8 & 38 & 52 & 54 & 53 & 57 & 57 & 57 \\ 16 & 46 & 71 & 74 & 80 & 86 & 87 & 88 \\ % 32 & 48 & 90 & 98 & 113 & 139 & 146 & 150 \\ 64 & 49 & 96 & 108 & 131 & 186 & 237 & 251 \\ %128 & 49 & 98 & 110 & 134 & 215 & 326 & 431 \\ 256 & 49 & 98 & 110 & 134 & 220 & 371 & 608 \\ %\hline \end{tabular}}%>>> \end{columns} \end{FIframe}%>>>