|  | @@ -1152,22 +1152,22 @@ template <class Real> void SphericalHarmonics<Real>::StokesEvalKL(const Vector<R
 | 
	
		
			
				|  |  |              Xt_t += ( Xr) / R[i];
 | 
	
		
			
				|  |  |            }
 | 
	
		
			
				|  |  |            { // Set Vr_p, Vt_p, Vp_p, Wr_p, Wt_p, Wp_p, Xr_p, Xt_p, Xp_p
 | 
	
		
			
				|  |  | -            auto C0 = Ynm_1p;
 | 
	
		
			
				|  |  | -            auto C1 = Ynm_1p * csc_theta;
 | 
	
		
			
				|  |  | -            auto C2 = (Anm * Ynm_2p - Bnm * Ynm_0p) * csc_theta;
 | 
	
		
			
				|  |  | +            auto C0 = -Ynm_1p;
 | 
	
		
			
				|  |  | +            auto C1 = -Ynm_1p * csc_theta;
 | 
	
		
			
				|  |  | +            auto C2 = -(Anm * Ynm_2p - Bnm * Ynm_0p) * csc_theta;
 | 
	
		
			
				|  |  |              SetVecSH(Vr_p, Vt_p, Vp_p, Wr_p, Wt_p, Wp_p, Xr_p, Xt_p, Xp_p, C0, C1, C2);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -            Vr_p -= (-sin_theta * Vp                 ) * csc_theta / R[i];
 | 
	
		
			
				|  |  | -            Vt_p -= (-cos_theta * Vp                 ) * csc_theta / R[i];
 | 
	
		
			
				|  |  | -            Vp_p -= ( sin_theta * Vr + cos_theta * Vt) * csc_theta / R[i];
 | 
	
		
			
				|  |  | +            Vr_p += (-sin_theta * Vp                 ) * csc_theta / R[i];
 | 
	
		
			
				|  |  | +            Vt_p += (-cos_theta * Vp                 ) * csc_theta / R[i];
 | 
	
		
			
				|  |  | +            Vp_p += ( sin_theta * Vr + cos_theta * Vt) * csc_theta / R[i];
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -            Wr_p -= (-sin_theta * Wp                 ) * csc_theta / R[i];
 | 
	
		
			
				|  |  | -            Wt_p -= (-cos_theta * Wp                 ) * csc_theta / R[i];
 | 
	
		
			
				|  |  | -            Wp_p -= ( sin_theta * Wr + cos_theta * Wt) * csc_theta / R[i];
 | 
	
		
			
				|  |  | +            Wr_p += (-sin_theta * Wp                 ) * csc_theta / R[i];
 | 
	
		
			
				|  |  | +            Wt_p += (-cos_theta * Wp                 ) * csc_theta / R[i];
 | 
	
		
			
				|  |  | +            Wp_p += ( sin_theta * Wr + cos_theta * Wt) * csc_theta / R[i];
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -            Xr_p -= (-sin_theta * Xp                 ) * csc_theta / R[i];
 | 
	
		
			
				|  |  | -            Xt_p -= (-cos_theta * Xp                 ) * csc_theta / R[i];
 | 
	
		
			
				|  |  | -            Xp_p -= ( sin_theta * Xr + cos_theta * Xt) * csc_theta / R[i];
 | 
	
		
			
				|  |  | +            Xr_p += (-sin_theta * Xp                 ) * csc_theta / R[i];
 | 
	
		
			
				|  |  | +            Xt_p += (-cos_theta * Xp                 ) * csc_theta / R[i];
 | 
	
		
			
				|  |  | +            Xp_p += ( sin_theta * Xr + cos_theta * Xt) * csc_theta / R[i];
 | 
	
		
			
				|  |  |            }
 | 
	
		
			
				|  |  |          }
 | 
	
		
			
				|  |  |  
 | 
	
	
		
			
				|  | @@ -1256,24 +1256,18 @@ template <class Real> void SphericalHarmonics<Real>::StokesEvalKL(const Vector<R
 | 
	
		
			
				|  |  |            SX[2][2] = a * Xp_p;
 | 
	
		
			
				|  |  |          }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -        { //////////////////////
 | 
	
		
			
				|  |  | -          norm0[0] = 0;
 | 
	
		
			
				|  |  | -          norm0[1] = 1;
 | 
	
		
			
				|  |  | -          norm0[2] = 0;
 | 
	
		
			
				|  |  | -        }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  |          Complex<Real> KV[COORD_DIM][COORD_DIM], KW[COORD_DIM][COORD_DIM], KX[COORD_DIM][COORD_DIM];
 | 
	
		
			
				|  |  | -        KV[0][0] = SV[0][0] + SV[0][0]*0;   KV[0][1] = SV[0][1] + SV[0][1]*0;   KV[0][2] = SV[0][2] + SV[0][2]*0;
 | 
	
		
			
				|  |  | -        KV[1][0] = SV[1][0] + SV[1][0]*0;   KV[1][1] = SV[1][1] + SV[1][1]*0;   KV[1][2] = SV[1][2] + SV[1][2]*0;
 | 
	
		
			
				|  |  | -        KV[2][0] = SV[2][0] + SV[2][0]*0;   KV[2][1] = SV[2][1] + SV[2][1]*0;   KV[2][2] = SV[2][2] + SV[2][2]*0;
 | 
	
		
			
				|  |  | +        KV[0][0] = SV[0][0] + SV[0][0];   KV[0][1] = SV[0][1] + SV[1][0];   KV[0][2] = SV[0][2] + SV[2][0];
 | 
	
		
			
				|  |  | +        KV[1][0] = SV[1][0] + SV[0][1];   KV[1][1] = SV[1][1] + SV[1][1];   KV[1][2] = SV[1][2] + SV[2][1];
 | 
	
		
			
				|  |  | +        KV[2][0] = SV[2][0] + SV[0][2];   KV[2][1] = SV[2][1] + SV[1][2];   KV[2][2] = SV[2][2] + SV[2][2];
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -        KW[0][0] = SW[0][0] + SW[0][0]*0;   KW[0][1] = SW[0][1] + SW[0][1]*0;   KW[0][2] = SW[0][2] + SW[0][2]*0;
 | 
	
		
			
				|  |  | -        KW[1][0] = SW[1][0] + SW[1][0]*0;   KW[1][1] = SW[1][1] + SW[1][1]*0;   KW[1][2] = SW[1][2] + SW[1][2]*0;
 | 
	
		
			
				|  |  | -        KW[2][0] = SW[2][0] + SW[2][0]*0;   KW[2][1] = SW[2][1] + SW[2][1]*0;   KW[2][2] = SW[2][2] + SW[2][2]*0;
 | 
	
		
			
				|  |  | +        KW[0][0] = SW[0][0] + SW[0][0];   KW[0][1] = SW[0][1] + SW[1][0];   KW[0][2] = SW[0][2] + SW[2][0];
 | 
	
		
			
				|  |  | +        KW[1][0] = SW[1][0] + SW[0][1];   KW[1][1] = SW[1][1] + SW[1][1];   KW[1][2] = SW[1][2] + SW[2][1];
 | 
	
		
			
				|  |  | +        KW[2][0] = SW[2][0] + SW[0][2];   KW[2][1] = SW[2][1] + SW[1][2];   KW[2][2] = SW[2][2] + SW[2][2];
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -        KX[0][0] = SX[0][0] + SX[0][0]*0;   KX[0][1] = SX[0][1] + SX[0][1]*0;   KX[0][2] = SX[0][2] + SX[0][2]*0;
 | 
	
		
			
				|  |  | -        KX[1][0] = SX[1][0] + SX[1][0]*0;   KX[1][1] = SX[1][1] + SX[1][1]*0;   KX[1][2] = SX[1][2] + SX[1][2]*0;
 | 
	
		
			
				|  |  | -        KX[2][0] = SX[2][0] + SX[2][0]*0;   KX[2][1] = SX[2][1] + SX[2][1]*0;   KX[2][2] = SX[2][2] + SX[2][2]*0;
 | 
	
		
			
				|  |  | +        KX[0][0] = SX[0][0] + SX[0][0];   KX[0][1] = SX[0][1] + SX[1][0];   KX[0][2] = SX[0][2] + SX[2][0];
 | 
	
		
			
				|  |  | +        KX[1][0] = SX[1][0] + SX[0][1];   KX[1][1] = SX[1][1] + SX[1][1];   KX[1][2] = SX[1][2] + SX[2][1];
 | 
	
		
			
				|  |  | +        KX[2][0] = SX[2][0] + SX[0][2];   KX[2][1] = SX[2][1] + SX[1][2];   KX[2][2] = SX[2][2] + SX[2][2];
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |          write_coeff(KV[0][0]*norm0[0] + KV[0][1]*norm0[1] + KV[0][2]*norm0[2], n, m, 0, 0);
 |