|
|
@@ -635,12 +635,12 @@ template <class Real> void SphericalHarmonics<Real>::StokesEvalSL(const Vector<R
|
|
|
assert(B1.Dim(1) == COORD_DIM * M);
|
|
|
assert(B1.Dim(0) == dof);
|
|
|
|
|
|
- Long N, p_, M_;
|
|
|
+ Long N, p_;
|
|
|
Matrix<Real> SHBasis;
|
|
|
Vector<Real> R, cos_theta_phi;
|
|
|
- { // Set N, p_, M_, R, SHBasis
|
|
|
- p_ = p0+1;
|
|
|
- M_ = (p_+1) * (p_+1);
|
|
|
+ { // Set N, p_, R, SHBasis
|
|
|
+ p_ = p0 + 1;
|
|
|
+ Real M_ = (p_+1) * (p_+1);
|
|
|
N = coord.Dim() / COORD_DIM;
|
|
|
assert(coord.Dim() == N * COORD_DIM);
|
|
|
|
|
|
@@ -655,6 +655,7 @@ template <class Real> void SphericalHarmonics<Real>::StokesEvalSL(const Vector<R
|
|
|
SHBasisEval(p_, cos_theta_phi, SHBasis);
|
|
|
assert(SHBasis.Dim(1) == M_);
|
|
|
assert(SHBasis.Dim(0) == N);
|
|
|
+ SCTL_UNUSED(M_);
|
|
|
}
|
|
|
|
|
|
Matrix<Real> StokesOp(N * COORD_DIM, COORD_DIM * M);
|
|
|
@@ -824,12 +825,12 @@ template <class Real> void SphericalHarmonics<Real>::StokesEvalDL(const Vector<R
|
|
|
assert(B1.Dim(1) == COORD_DIM * M);
|
|
|
assert(B1.Dim(0) == dof);
|
|
|
|
|
|
- Long N, p_, M_;
|
|
|
+ Long N, p_;
|
|
|
Matrix<Real> SHBasis;
|
|
|
Vector<Real> R, cos_theta_phi;
|
|
|
- { // Set N, p_, M_, R, SHBasis
|
|
|
- p_ = p0+1;
|
|
|
- M_ = (p_+1) * (p_+1);
|
|
|
+ { // Set N, p_, R, SHBasis
|
|
|
+ p_ = p0 + 1;
|
|
|
+ Real M_ = (p_+1) * (p_+1);
|
|
|
N = coord.Dim() / COORD_DIM;
|
|
|
assert(coord.Dim() == N * COORD_DIM);
|
|
|
|
|
|
@@ -844,6 +845,7 @@ template <class Real> void SphericalHarmonics<Real>::StokesEvalDL(const Vector<R
|
|
|
SHBasisEval(p_, cos_theta_phi, SHBasis);
|
|
|
assert(SHBasis.Dim(1) == M_);
|
|
|
assert(SHBasis.Dim(0) == N);
|
|
|
+ SCTL_UNUSED(M_);
|
|
|
}
|
|
|
|
|
|
Matrix<Real> StokesOp(N * COORD_DIM, COORD_DIM * M);
|
|
|
@@ -1013,12 +1015,12 @@ template <class Real> void SphericalHarmonics<Real>::StokesEvalKL(const Vector<R
|
|
|
assert(B1.Dim(1) == COORD_DIM * M);
|
|
|
assert(B1.Dim(0) == dof);
|
|
|
|
|
|
- Long N, p_, M_;
|
|
|
+ Long N, p_;
|
|
|
Matrix<Real> SHBasis;
|
|
|
Vector<Real> R, cos_theta_phi;
|
|
|
- { // Set N, p_, M_, R, SHBasis
|
|
|
- p_ = p0+1;
|
|
|
- M_ = (p_+1) * (p_+1);
|
|
|
+ { // Set N, p_, R, SHBasis
|
|
|
+ p_ = p0 + 1;
|
|
|
+ Real M_ = (p_+1) * (p_+1);
|
|
|
N = coord.Dim() / COORD_DIM;
|
|
|
assert(coord.Dim() == N * COORD_DIM);
|
|
|
|
|
|
@@ -1033,6 +1035,7 @@ template <class Real> void SphericalHarmonics<Real>::StokesEvalKL(const Vector<R
|
|
|
SHBasisEval(p_, cos_theta_phi, SHBasis);
|
|
|
assert(SHBasis.Dim(1) == M_);
|
|
|
assert(SHBasis.Dim(0) == N);
|
|
|
+ SCTL_UNUSED(M_);
|
|
|
}
|
|
|
|
|
|
Matrix<Real> StokesOp(N * COORD_DIM, COORD_DIM * M);
|