|
@@ -4936,53 +4936,86 @@ template <class Real, Integer ORDER=10> class Stellarator {
|
|
|
};
|
|
|
|
|
|
template <class Real, Integer ORDER=10> class MHDEquilib {
|
|
|
+ static constexpr Integer fourier_upsample = 2;
|
|
|
static constexpr Integer COORD_DIM = 3;
|
|
|
static constexpr Integer ELEM_DIM = COORD_DIM-1;
|
|
|
using ElemBasis = Basis<Real, ELEM_DIM, ORDER>;
|
|
|
|
|
|
- public:
|
|
|
- MHDEquilib(const Stellarator<Real,ORDER>& S, const Vector<Real>& pressure, const Vector<Real>& flux_tor, const Vector<Real>& flux_pol) {
|
|
|
- S_ = S;
|
|
|
- pressure_ = pressure;
|
|
|
- flux_tor_ = flux_tor;
|
|
|
- flux_pol_ = flux_pol;
|
|
|
- iter = 0;
|
|
|
- }
|
|
|
+ static Vector<Real> cheb2grid(const Vector<ElemBasis>& X, Long Mt, Long Mp, Long Nt, Long Np) {
|
|
|
+ const Long dof = X.Dim() / (Mt * Mp);
|
|
|
+ SCTL_ASSERT(X.Dim() == Mt * Mp *dof);
|
|
|
|
|
|
- Real operator()(const Eigen::VectorXd& x, Eigen::VectorXd& grad) {
|
|
|
- const Comm comm = Comm::World();
|
|
|
- const Long Nelem = S_.NElem();
|
|
|
+ Vector<Real> Xf(dof*Nt*Np); Xf = 0;
|
|
|
const Long Nnodes = ElemBasis::Size();
|
|
|
- const Long N = Nelem * COORD_DIM * Nnodes;
|
|
|
- SCTL_ASSERT(x.rows() == N);
|
|
|
-
|
|
|
- auto filter = [](const Stellarator<Real,ORDER>& S, const Comm& comm, Vector<ElemBasis>& f, Real sigma) {
|
|
|
- auto cheb2grid = [] (const Vector<ElemBasis>& X, Long Mt, Long Mp, Long Nt, Long Np) {
|
|
|
- const Long dof = X.Dim() / (Mt * Mp);
|
|
|
- SCTL_ASSERT(X.Dim() == Mt * Mp *dof);
|
|
|
+ const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
|
|
|
+ for (Long t = 0; t < Nt; t++) {
|
|
|
+ for (Long p = 0; p < Np; p++) {
|
|
|
+ Real theta = t / (Real)Nt;
|
|
|
+ Real phi = p / (Real)Np;
|
|
|
+ Long i = (Long)(theta * Mt);
|
|
|
+ Long j = (Long)(phi * Mp);
|
|
|
+ Real x = theta * Mt - i;
|
|
|
+ Real y = phi * Mp - j;
|
|
|
+ Long elem_idx = i * Mp + j;
|
|
|
+
|
|
|
+ Vector<Real> Interp0(ORDER);
|
|
|
+ Vector<Real> Interp1(ORDER);
|
|
|
+ { // Set Interp0, Interp1
|
|
|
+ auto node = [&Mnodes] (Long i) {
|
|
|
+ return Mnodes[0][i];
|
|
|
+ };
|
|
|
+ for (Long i = 0; i < ORDER; i++) {
|
|
|
+ Real wt_x = 1, wt_y = 1;
|
|
|
+ for (Long j = 0; j < ORDER; j++) {
|
|
|
+ if (j != i) {
|
|
|
+ wt_x *= (x - node(j)) / (node(i) - node(j));
|
|
|
+ wt_y *= (y - node(j)) / (node(i) - node(j));
|
|
|
+ }
|
|
|
+ Interp0[i] = wt_x;
|
|
|
+ Interp1[i] = wt_y;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- Vector<Real> Xf(dof*Nt*Np); Xf = 0;
|
|
|
- const Long Nnodes = ElemBasis::Size();
|
|
|
- const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
|
|
|
- for (Long t = 0; t < Nt; t++) {
|
|
|
- for (Long p = 0; p < Np; p++) {
|
|
|
- Real theta = t / (Real)Nt;
|
|
|
- Real phi = p / (Real)Np;
|
|
|
- Long i = (Long)(theta * Mt);
|
|
|
- Long j = (Long)(phi * Mp);
|
|
|
- Real x = theta * Mt - i;
|
|
|
- Real y = phi * Mp - j;
|
|
|
- Long elem_idx = i * Mp + j;
|
|
|
-
|
|
|
- Vector<Real> Interp0(ORDER);
|
|
|
- Vector<Real> Interp1(ORDER);
|
|
|
+ for (Long ii = 0; ii < ORDER; ii++) {
|
|
|
+ for (Long jj = 0; jj < ORDER; jj++) {
|
|
|
+ Long node_idx = jj * ORDER + ii;
|
|
|
+ for (Long k = 0; k < dof; k++) {
|
|
|
+ Xf[(k*Nt+t)*Np+p] += X[elem_idx*dof+k][node_idx] * Interp0[ii] * Interp1[jj];
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return Xf;
|
|
|
+ }
|
|
|
+ static Vector<ElemBasis> grid2cheb(const Vector<Real>& Xf, Long Nt, Long Np, Long Mt, Long Mp) {
|
|
|
+ Long dof = Xf.Dim() / (Nt*Np);
|
|
|
+ SCTL_ASSERT(Xf.Dim() == dof*Nt*Np);
|
|
|
+ Vector<ElemBasis> X(Mt*Mp*dof);
|
|
|
+ constexpr Integer INTERP_ORDER = 12;
|
|
|
+
|
|
|
+ for (Long tt = 0; tt < Mt; tt++) {
|
|
|
+ for (Long pp = 0; pp < Mp; pp++) {
|
|
|
+ for (Long t = 0; t < ORDER; t++) {
|
|
|
+ for (Long p = 0; p < ORDER; p++) {
|
|
|
+ Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
|
|
|
+ Real theta = (tt + Mnodes[0][t]) / Mt;
|
|
|
+ Real phi = (pp + Mnodes[0][p]) / Mp;
|
|
|
+ Long i = (Long)(theta * Nt);
|
|
|
+ Long j = (Long)(phi * Np);
|
|
|
+ Real x = theta * Nt - i;
|
|
|
+ Real y = phi * Np - j;
|
|
|
+
|
|
|
+ Vector<Real> Interp0(INTERP_ORDER);
|
|
|
+ Vector<Real> Interp1(INTERP_ORDER);
|
|
|
{ // Set Interp0, Interp1
|
|
|
- auto node = [&Mnodes] (Long i) {
|
|
|
- return Mnodes[0][i];
|
|
|
+ auto node = [] (Long i) {
|
|
|
+ return (Real)i - (INTERP_ORDER-1)/2;
|
|
|
};
|
|
|
- for (Long i = 0; i < ORDER; i++) {
|
|
|
+ for (Long i = 0; i < INTERP_ORDER; i++) {
|
|
|
Real wt_x = 1, wt_y = 1;
|
|
|
- for (Long j = 0; j < ORDER; j++) {
|
|
|
+ for (Long j = 0; j < INTERP_ORDER; j++) {
|
|
|
if (j != i) {
|
|
|
wt_x *= (x - node(j)) / (node(i) - node(j));
|
|
|
wt_y *= (y - node(j)) / (node(i) - node(j));
|
|
@@ -4993,172 +5026,214 @@ template <class Real, Integer ORDER=10> class MHDEquilib {
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- for (Long ii = 0; ii < ORDER; ii++) {
|
|
|
- for (Long jj = 0; jj < ORDER; jj++) {
|
|
|
- Long node_idx = jj * ORDER + ii;
|
|
|
- for (Long k = 0; k < dof; k++) {
|
|
|
- Xf[(k*Nt+t)*Np+p] += X[elem_idx*dof+k][node_idx] * Interp0[ii] * Interp1[jj];
|
|
|
+ for (Long k = 0; k < dof; k++) {
|
|
|
+ Real X0 = 0;
|
|
|
+ for (Long ii = 0; ii < INTERP_ORDER; ii++) {
|
|
|
+ for (Long jj = 0; jj < INTERP_ORDER; jj++) {
|
|
|
+ Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
|
|
|
+ Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
|
|
|
+ X0 += Interp0[ii] * Interp1[jj] * Xf[(k*Nt+idx_i)*Np+idx_j];
|
|
|
}
|
|
|
}
|
|
|
+ Long elem_idx = tt * Mp + pp;
|
|
|
+ Long node_idx = p * ORDER + t;
|
|
|
+ X[elem_idx*dof+k][node_idx] = X0;
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
- return Xf;
|
|
|
- };
|
|
|
- auto grid2cheb = [] (const Vector<Real>& Xf, Long Nt, Long Np, Long Mt, Long Mp) {
|
|
|
- Long dof = Xf.Dim() / (Nt*Np);
|
|
|
- SCTL_ASSERT(Xf.Dim() == dof*Nt*Np);
|
|
|
- Vector<ElemBasis> X(Mt*Mp*dof);
|
|
|
- constexpr Integer INTERP_ORDER = 12;
|
|
|
-
|
|
|
- for (Long tt = 0; tt < Mt; tt++) {
|
|
|
- for (Long pp = 0; pp < Mp; pp++) {
|
|
|
- for (Long t = 0; t < ORDER; t++) {
|
|
|
- for (Long p = 0; p < ORDER; p++) {
|
|
|
- Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
|
|
|
- Real theta = (tt + Mnodes[0][t]) / Mt;
|
|
|
- Real phi = (pp + Mnodes[0][p]) / Mp;
|
|
|
- Long i = (Long)(theta * Nt);
|
|
|
- Long j = (Long)(phi * Np);
|
|
|
- Real x = theta * Nt - i;
|
|
|
- Real y = phi * Np - j;
|
|
|
-
|
|
|
- Vector<Real> Interp0(INTERP_ORDER);
|
|
|
- Vector<Real> Interp1(INTERP_ORDER);
|
|
|
- { // Set Interp0, Interp1
|
|
|
- auto node = [] (Long i) {
|
|
|
- return (Real)i - (INTERP_ORDER-1)/2;
|
|
|
- };
|
|
|
- for (Long i = 0; i < INTERP_ORDER; i++) {
|
|
|
- Real wt_x = 1, wt_y = 1;
|
|
|
- for (Long j = 0; j < INTERP_ORDER; j++) {
|
|
|
- if (j != i) {
|
|
|
- wt_x *= (x - node(j)) / (node(i) - node(j));
|
|
|
- wt_y *= (y - node(j)) / (node(i) - node(j));
|
|
|
- }
|
|
|
- Interp0[i] = wt_x;
|
|
|
- Interp1[i] = wt_y;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return X;
|
|
|
+ }
|
|
|
+ static void fourier_filter(sctl::Vector<Real>& X, long Nt_, long Np_, Real sigma, const Comm& comm) {
|
|
|
+ long dof = X.Dim() / (Nt_ * Np_);
|
|
|
+ SCTL_ASSERT(X.Dim() == dof * Nt_ * Np_);
|
|
|
+
|
|
|
+ sctl::FFT<Real> fft_r2c, fft_c2r;
|
|
|
+ sctl::StaticArray<sctl::Long, 2> fft_dim = {Nt_, Np_};
|
|
|
+ fft_r2c.Setup(sctl::FFT_Type::R2C, 1, sctl::Vector<sctl::Long>(2, fft_dim, false), omp_get_max_threads());
|
|
|
+ fft_c2r.Setup(sctl::FFT_Type::C2R, 1, sctl::Vector<sctl::Long>(2, fft_dim, false), omp_get_max_threads());
|
|
|
+
|
|
|
+ long Nt = Nt_;
|
|
|
+ long Np = fft_r2c.Dim(1) / (Nt * 2);
|
|
|
+ SCTL_ASSERT(fft_r2c.Dim(1) == Nt * Np * 2);
|
|
|
+
|
|
|
+ auto filter_fn = [](Real x2, Real sigma) {return exp(-x2/(2*sigma*sigma));};
|
|
|
+ //auto filter_fn = [](Real x2, Real sigma) {return (x2<sigma*sigma?1.0:0.0);};
|
|
|
+
|
|
|
+ sctl::Vector<Real> normal, gradX;
|
|
|
+ biest::SurfaceOp<Real> op(comm, Nt_, Np_);
|
|
|
+ sctl::Vector<Real> coeff(fft_r2c.Dim(1));
|
|
|
+ for (long k = 0; k < dof; k++) {
|
|
|
+ sctl::Vector<Real> X_(Nt_*Np_, X.begin() + k*Nt_*Np_, false);
|
|
|
+ fft_r2c.Execute(X_, coeff);
|
|
|
+ for (long t = 0; t < Nt; t++) {
|
|
|
+ for (long p = 0; p < Np; p++) {
|
|
|
+ Real tt = (t - (t > Nt / 2 ? Nt : 0)) / (Real)(Nt / 2);
|
|
|
+ Real pp = p / (Real)Np;
|
|
|
+ Real f = filter_fn(tt*tt+pp*pp, sigma);
|
|
|
+ coeff[(t * Np + p) * 2 + 0] *= f;
|
|
|
+ coeff[(t * Np + p) * 2 + 1] *= f;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ fft_c2r.Execute(coeff, X_);
|
|
|
+ }
|
|
|
+ };
|
|
|
|
|
|
- for (Long k = 0; k < dof; k++) {
|
|
|
- Real X0 = 0;
|
|
|
- for (Long ii = 0; ii < INTERP_ORDER; ii++) {
|
|
|
- for (Long jj = 0; jj < INTERP_ORDER; jj++) {
|
|
|
- Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
|
|
|
- Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
|
|
|
- X0 += Interp0[ii] * Interp1[jj] * Xf[(k*Nt+idx_i)*Np+idx_j];
|
|
|
- }
|
|
|
- }
|
|
|
- Long elem_idx = tt * Mp + pp;
|
|
|
- Long node_idx = p * ORDER + t;
|
|
|
- X[elem_idx*dof+k][node_idx] = X0;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- return X;
|
|
|
- };
|
|
|
- auto fourier_filter = [](sctl::Vector<Real>& X, long Nt_, long Np_, Real sigma, const Comm& comm) {
|
|
|
- long dof = X.Dim() / (Nt_ * Np_);
|
|
|
- SCTL_ASSERT(X.Dim() == dof * Nt_ * Np_);
|
|
|
-
|
|
|
- sctl::FFT<Real> fft_r2c, fft_c2r;
|
|
|
- sctl::StaticArray<sctl::Long, 2> fft_dim = {Nt_, Np_};
|
|
|
- fft_r2c.Setup(sctl::FFT_Type::R2C, 1, sctl::Vector<sctl::Long>(2, fft_dim, false), omp_get_max_threads());
|
|
|
- fft_c2r.Setup(sctl::FFT_Type::C2R, 1, sctl::Vector<sctl::Long>(2, fft_dim, false), omp_get_max_threads());
|
|
|
-
|
|
|
- long Nt = Nt_;
|
|
|
- long Np = fft_r2c.Dim(1) / (Nt * 2);
|
|
|
- SCTL_ASSERT(fft_r2c.Dim(1) == Nt * Np * 2);
|
|
|
-
|
|
|
- auto filter_fn = [](Real x2, Real sigma) {return exp(-x2/(2*sigma*sigma));};
|
|
|
- //auto filter_fn = [](Real x2, Real sigma) {return (x2<sigma*sigma?1.0:0.0);};
|
|
|
-
|
|
|
- sctl::Vector<Real> normal, gradX;
|
|
|
- biest::SurfaceOp<Real> op(comm, Nt_, Np_);
|
|
|
- sctl::Vector<Real> coeff(fft_r2c.Dim(1));
|
|
|
- for (long k = 0; k < dof; k++) {
|
|
|
- sctl::Vector<Real> X_(Nt_*Np_, X.begin() + k*Nt_*Np_, false);
|
|
|
- fft_r2c.Execute(X_, coeff);
|
|
|
- for (long t = 0; t < Nt; t++) {
|
|
|
- for (long p = 0; p < Np; p++) {
|
|
|
- Real tt = (t - (t > Nt / 2 ? Nt : 0)) / (Real)(Nt / 2);
|
|
|
- Real pp = p / (Real)Np;
|
|
|
- Real f = filter_fn(tt*tt+pp*pp, sigma);
|
|
|
- coeff[(t * Np + p) * 2 + 0] *= f;
|
|
|
- coeff[(t * Np + p) * 2 + 1] *= f;
|
|
|
- }
|
|
|
- }
|
|
|
- fft_c2r.Execute(coeff, X_);
|
|
|
- }
|
|
|
- };
|
|
|
+ static void filter(const Stellarator<Real,ORDER>& S, const Comm& comm, Vector<ElemBasis>& f, Real sigma) {
|
|
|
+ Long dof = f.Dim() / S.NElem();
|
|
|
+ SCTL_ASSERT(f.Dim() == S.NElem() * dof);
|
|
|
+ for (Long i = 0; i < S.Nsurf()-1; i++) {
|
|
|
+ const Long Mt = S.NTor(i);
|
|
|
+ const Long Mp = S.NPol(i);
|
|
|
+ const Long Nelem = Mt * Mp;
|
|
|
+ const Long offset = S.ElemDsp(i);
|
|
|
+ const Long Nt = Mt * ORDER * 4;
|
|
|
+ const Long Np = Mp * ORDER * 4;
|
|
|
+
|
|
|
+ Vector<ElemBasis> f_(Nelem*dof, f.begin() + offset*dof, false);
|
|
|
+ Vector<Real> f_fourier = cheb2grid(f_, Mt, Mp, Nt, Np);
|
|
|
+ fourier_filter(f_fourier, Nt, Np, 0.25 * sigma, comm);
|
|
|
+ f_ = grid2cheb(f_fourier, Nt, Np, Mt, Mp);
|
|
|
+ }
|
|
|
+ };
|
|
|
|
|
|
- Long dof = f.Dim() / S.NElem();
|
|
|
- SCTL_ASSERT(f.Dim() == S.NElem() * dof);
|
|
|
- for (Long i = 0; i < S.Nsurf()-1; i++) {
|
|
|
- const Long Mt = S.NTor(i);
|
|
|
- const Long Mp = S.NPol(i);
|
|
|
- const Long Nelem = Mt * Mp;
|
|
|
- const Long offset = S.ElemDsp(i);
|
|
|
- const Long Nt = Mt * ORDER * 4;
|
|
|
- const Long Np = Mp * ORDER * 4;
|
|
|
-
|
|
|
- Vector<ElemBasis> f_(Nelem*dof, f.begin() + offset*dof, false);
|
|
|
- Vector<Real> f_fourier = cheb2grid(f_, Mt, Mp, Nt, Np);
|
|
|
- fourier_filter(f_fourier, Nt, Np, 0.25 * sigma, comm);
|
|
|
- f_ = grid2cheb(f_fourier, Nt, Np, Mt, Mp);
|
|
|
- }
|
|
|
- };
|
|
|
+ static Vector<Real> cheb2grid(const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& f) {
|
|
|
+ const Long Nnodes = ElemBasis::Size();
|
|
|
+ const Long Nelem = S.NElem();
|
|
|
+ const Long dof = f.Dim() / Nelem;
|
|
|
+ SCTL_ASSERT(Nelem * dof == f.Dim());
|
|
|
+
|
|
|
+ Vector<Real> f_fourier(dof * Nelem * (ORDER*ORDER*fourier_upsample*fourier_upsample));
|
|
|
+ for (Long i = 0; i < S.Nsurf(); i++) {
|
|
|
+ const Long Mt = S.NTor(i);
|
|
|
+ const Long Mp = S.NPol(i);
|
|
|
+ const Long offset = S.ElemDsp(i);
|
|
|
+ const Long Nt = Mt * ORDER * fourier_upsample;
|
|
|
+ const Long Np = Mp * ORDER * fourier_upsample;
|
|
|
+
|
|
|
+ const Vector<ElemBasis> f_(Mt*Mp*dof, (Iterator<ElemBasis>)f.begin() + offset*dof, false);
|
|
|
+ Vector<Real> f_fourier_(dof*Nt*Np, f_fourier.begin() + dof*offset * (ORDER*ORDER*fourier_upsample*fourier_upsample), false);
|
|
|
+ f_fourier_ = cheb2grid(f_, Mt, Mp, Nt, Np);
|
|
|
+ SCTL_ASSERT(f_fourier_.Dim() == dof*Nt*Np);
|
|
|
+ }
|
|
|
+ return f_fourier;
|
|
|
+ }
|
|
|
+ static Vector<ElemBasis> grid2cheb(const Stellarator<Real,ORDER>& S, const Vector<Real>& f_fourier) {
|
|
|
+ const Long Nnodes = ElemBasis::Size();
|
|
|
+ const Long Nelem = S.NElem();
|
|
|
+ const Long dof = f_fourier.Dim() / (Nelem * (ORDER*ORDER*fourier_upsample*fourier_upsample));
|
|
|
+ SCTL_ASSERT(dof * Nelem * (ORDER*ORDER*fourier_upsample*fourier_upsample) == f_fourier.Dim());
|
|
|
+
|
|
|
+ Vector<ElemBasis> f(Nelem * dof);
|
|
|
+ for (Long i = 0; i < S.Nsurf(); i++) {
|
|
|
+ const Long Mt = S.NTor(i);
|
|
|
+ const Long Mp = S.NPol(i);
|
|
|
+ const Long offset = S.ElemDsp(i);
|
|
|
+ const Long Nt = Mt * ORDER * fourier_upsample;
|
|
|
+ const Long Np = Mp * ORDER * fourier_upsample;
|
|
|
+
|
|
|
+ Vector<ElemBasis> f_(Mt*Mp*dof, f.begin() + offset*dof, false);
|
|
|
+ const Vector<Real> f_fourier_(dof*Nt*Np, (Iterator<Real>)f_fourier.begin() + dof*offset * (ORDER*ORDER*fourier_upsample*fourier_upsample), false);
|
|
|
+ f_ = grid2cheb(f_fourier_, Nt, Np, Mt, Mp);
|
|
|
+ SCTL_ASSERT(f_.Dim() == Mt*Mp*dof);
|
|
|
+ }
|
|
|
+ return f;
|
|
|
+ }
|
|
|
+
|
|
|
+ template <class Real, class GradOp> static Long GradientDescent(GradOp& grad_op, Eigen::VectorXd& x, Real& fx, Long max_iter, Real tol) {
|
|
|
+ Real dt = 0.1;
|
|
|
+ for (Long iter = 0; iter < max_iter; iter++) {
|
|
|
+ Eigen::VectorXd grad(x.size());
|
|
|
+ fx = grad_op(x, grad);
|
|
|
+ { // Update dt
|
|
|
+ Eigen::VectorXd grad_(x.size());
|
|
|
+ Eigen::VectorXd x1 = x - grad * dt * 0.5;
|
|
|
+ Eigen::VectorXd x2 = x - grad * dt * 1.0;
|
|
|
+ Real fx1 = grad_op(x1, grad_);
|
|
|
+ Real fx2 = grad_op(x2, grad_);
|
|
|
+
|
|
|
+ { // Calculate optimal step size dt
|
|
|
+ Real a = 2*fx - 4*fx1 + 2*fx2;
|
|
|
+ Real b =-3*fx + 4*fx1 - fx2;
|
|
|
+ Real c = fx;
|
|
|
+ Real s = -b/(2*a);
|
|
|
+ dt *= s;
|
|
|
+
|
|
|
+ Real fx_ = a*s*s + b*s + c;
|
|
|
+ std::cout<<"g = "<<fx_<<' ';
|
|
|
+ std::cout<<fx<<' ';
|
|
|
+ std::cout<<fx1<<' ';
|
|
|
+ std::cout<<fx2<<' ';
|
|
|
+ std::cout<<dt<<'\n';
|
|
|
+ }
|
|
|
+ }
|
|
|
+ x = x - grad * dt;
|
|
|
+ if (fx < tol) return iter;
|
|
|
+ }
|
|
|
+ return max_iter;
|
|
|
+ }
|
|
|
+
|
|
|
+ public:
|
|
|
+ MHDEquilib(const Stellarator<Real,ORDER>& S, const Vector<Real>& pressure, const Vector<Real>& flux_tor, const Vector<Real>& flux_pol) {
|
|
|
+ S_ = S;
|
|
|
+ pressure_ = pressure;
|
|
|
+ flux_tor_ = flux_tor;
|
|
|
+ flux_pol_ = flux_pol;
|
|
|
+ iter = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ Real operator()(const Eigen::VectorXd& x, Eigen::VectorXd& grad) {
|
|
|
+ const Comm comm = Comm::World();
|
|
|
+ const Long Nelem = S_.NElem();
|
|
|
+ const Long Nnodes = ElemBasis::Size();
|
|
|
+ const Long N = Nelem * COORD_DIM * Nnodes;
|
|
|
+
|
|
|
+ Vector<Real> X_fourier(x.size());
|
|
|
+ for (Long i = 0; i < x.size(); i++) { // Set X_fourier
|
|
|
+ X_fourier[i] = x(i);
|
|
|
+ }
|
|
|
+ Vector<ElemBasis> X = grid2cheb(S_, X_fourier);
|
|
|
|
|
|
Real g;
|
|
|
for (Long i = 0; i < Nelem; i++) { // Set S_
|
|
|
for (Long j = 0; j < Nnodes; j++) {
|
|
|
- S_.Elem(i,0)[j] = x[(i*Nnodes+j)*COORD_DIM+0];
|
|
|
- S_.Elem(i,1)[j] = x[(i*Nnodes+j)*COORD_DIM+1];
|
|
|
- S_.Elem(i,2)[j] = x[(i*Nnodes+j)*COORD_DIM+2];
|
|
|
- }
|
|
|
- }
|
|
|
- Stellarator<Real,ORDER> SS; //////////////////////////
|
|
|
- { // Update S <-- filter(S)
|
|
|
- const Long Nelem = S_.NElem();
|
|
|
- Vector<ElemBasis> X(Nelem*COORD_DIM);
|
|
|
- for (Long i = 0; i < S_.NElem(); i++) {
|
|
|
- X[i*COORD_DIM+0] = S_.Elem(i, 0);
|
|
|
- X[i*COORD_DIM+1] = S_.Elem(i, 1);
|
|
|
- X[i*COORD_DIM+2] = S_.Elem(i, 2);
|
|
|
- }
|
|
|
- SS = S_;
|
|
|
- filter(S_, comm, X, 0.1);
|
|
|
- for (Long i = 0; i < S_.NElem(); i++) {
|
|
|
- S_.Elem(i, 0) = X[i*COORD_DIM+0];
|
|
|
- S_.Elem(i, 1) = X[i*COORD_DIM+1];
|
|
|
- S_.Elem(i, 2) = X[i*COORD_DIM+2];
|
|
|
+ S_.Elem(i,0)[j] = X[i*COORD_DIM+0][j];
|
|
|
+ S_.Elem(i,1)[j] = X[i*COORD_DIM+1][j];
|
|
|
+ S_.Elem(i,2)[j] = X[i*COORD_DIM+2][j];
|
|
|
}
|
|
|
}
|
|
|
Vector<ElemBasis> dgdnu = Stellarator<Real,ORDER>::compute_gradient(S_, pressure_, flux_tor_, flux_pol_, &g);
|
|
|
- Vector<ElemBasis> dXdt(Nelem*COORD_DIM);
|
|
|
- { // Set dXdt
|
|
|
- dXdt = 0;
|
|
|
- const Long Nnodes = ElemBasis::Size();
|
|
|
- Vector<ElemBasis> normal, area_elem;
|
|
|
- Stellarator<Real,ORDER>::compute_norm_area_elem(S_, normal, area_elem);
|
|
|
- for (Long i = 0; i < S_.ElemDsp(S_.Nsurf()-1); i++) {
|
|
|
- for (Long j = 0; j < Nnodes; j++) {
|
|
|
- dXdt[i*COORD_DIM+0][j] = normal[i*COORD_DIM+0][j] * dgdnu[i][j];
|
|
|
- dXdt[i*COORD_DIM+1][j] = normal[i*COORD_DIM+1][j] * dgdnu[i][j];
|
|
|
- dXdt[i*COORD_DIM+2][j] = normal[i*COORD_DIM+2][j] * dgdnu[i][j];
|
|
|
+ //Vector<ElemBasis> dgdnu = Stellarator<Real,ORDER>::compute_pressure_jump(S_, pressure_, flux_tor_, flux_pol_, &g);
|
|
|
+
|
|
|
+ Vector<Real> dXdt_fourier;
|
|
|
+ { // Set grad
|
|
|
+ //filter(S_, comm, dgdnu, 0.1);
|
|
|
+ //Vector<Real> dgdnu_fourier = cheb2grid(S_, dgdnu);
|
|
|
+
|
|
|
+ { // deprecate
|
|
|
+ Vector<ElemBasis> dXdt(Nelem*COORD_DIM);
|
|
|
+ { // Set dXdt
|
|
|
+ dXdt = 0;
|
|
|
+ const Long Nnodes = ElemBasis::Size();
|
|
|
+ Vector<ElemBasis> normal, area_elem;
|
|
|
+ Stellarator<Real,ORDER>::compute_norm_area_elem(S_, normal, area_elem);
|
|
|
+ for (Long i = 0; i < S_.ElemDsp(S_.Nsurf()-1); i++) {
|
|
|
+ for (Long j = 0; j < Nnodes; j++) {
|
|
|
+ dXdt[i*COORD_DIM+0][j] = normal[i*COORD_DIM+0][j] * dgdnu[i][j];
|
|
|
+ dXdt[i*COORD_DIM+1][j] = normal[i*COORD_DIM+1][j] * dgdnu[i][j];
|
|
|
+ dXdt[i*COORD_DIM+2][j] = normal[i*COORD_DIM+2][j] * dgdnu[i][j];
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ { // Filter dXdt
|
|
|
+ filter(S_, comm, dXdt, 0.1);
|
|
|
+ }
|
|
|
+ dXdt_fourier = cheb2grid(S_, dXdt);
|
|
|
+ SCTL_ASSERT(grad.size() == dXdt_fourier.Dim());
|
|
|
+ for (Long i = 0; i < grad.size(); i++) { // Set grad
|
|
|
+ grad(i) = dXdt_fourier[i];
|
|
|
}
|
|
|
- }
|
|
|
- //filter(S_, comm, dXdt, 0.1);
|
|
|
- }
|
|
|
- for (Long i = 0; i < Nelem; i++) { // Set grad
|
|
|
- for (Long j = 0; j < Nnodes; j++) {
|
|
|
- grad[(i*Nnodes+j)*COORD_DIM+0] = dXdt[i*COORD_DIM+0][j];
|
|
|
- grad[(i*Nnodes+j)*COORD_DIM+1] = dXdt[i*COORD_DIM+1][j];
|
|
|
- grad[(i*Nnodes+j)*COORD_DIM+2] = dXdt[i*COORD_DIM+2][j];
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -5169,14 +5244,10 @@ template <class Real, Integer ORDER=10> class MHDEquilib {
|
|
|
}
|
|
|
if (1) { // Write VTU
|
|
|
VTUData vtu;
|
|
|
+ Vector<ElemBasis> dXdt = grid2cheb(S_, dXdt_fourier);
|
|
|
vtu.AddElems(S_.GetElemList(), dXdt, ORDER);
|
|
|
vtu.WriteVTK("dXdt"+std::to_string(iter), comm);
|
|
|
}
|
|
|
- if (1) { // Write VTU
|
|
|
- VTUData vtu;
|
|
|
- vtu.AddElems(SS.GetElemList(), dgdnu, ORDER);
|
|
|
- vtu.WriteVTK("S"+std::to_string(iter), comm);
|
|
|
- }
|
|
|
std::cout<<"iter = "<<iter<<" g = "<<g<<'\n';
|
|
|
|
|
|
iter++;
|
|
@@ -5184,39 +5255,39 @@ template <class Real, Integer ORDER=10> class MHDEquilib {
|
|
|
}
|
|
|
|
|
|
static void ComputeEquilibrium(MHDEquilib& mhd_equilib) {
|
|
|
+ Comm comm = Comm::World();
|
|
|
const Long Nelem = mhd_equilib.S_.NElem();
|
|
|
const Long Nnodes = ElemBasis::Size();
|
|
|
- const Long N = Nelem * COORD_DIM * Nnodes;
|
|
|
-
|
|
|
- LBFGSpp::LBFGSParam<Real> param;
|
|
|
- param.epsilon = 1e-8;
|
|
|
- param.max_iterations = 100;
|
|
|
-
|
|
|
- // Create solver and function object
|
|
|
- LBFGSpp::LBFGSSolver<Real> solver(param);
|
|
|
|
|
|
// Initial guess
|
|
|
- Eigen::VectorXd x = Eigen::VectorXd::Zero(N);
|
|
|
- for (Long i = 0; i < Nelem; i++) { // Set x
|
|
|
- for (Long j = 0; j < Nnodes; j++) {
|
|
|
- x((i*Nnodes+j)*COORD_DIM+0) = mhd_equilib.S_.Elem(i,0)[j];
|
|
|
- x((i*Nnodes+j)*COORD_DIM+1) = mhd_equilib.S_.Elem(i,1)[j];
|
|
|
- x((i*Nnodes+j)*COORD_DIM+2) = mhd_equilib.S_.Elem(i,2)[j];
|
|
|
+ Eigen::VectorXd x;
|
|
|
+ { // Set x
|
|
|
+ Vector<ElemBasis> X(Nelem * COORD_DIM);
|
|
|
+ for (Long i = 0; i < Nelem; i++) { // Set x
|
|
|
+ X[i*COORD_DIM+0] = mhd_equilib.S_.Elem(i,0);
|
|
|
+ X[i*COORD_DIM+1] = mhd_equilib.S_.Elem(i,1);
|
|
|
+ X[i*COORD_DIM+2] = mhd_equilib.S_.Elem(i,2);
|
|
|
+ }
|
|
|
+ Vector<Real> X_fourier = cheb2grid(mhd_equilib.S_, X);
|
|
|
+ x.resize(X_fourier.Dim());
|
|
|
+ for (Long i = 0; i < X_fourier.Dim(); i++) {
|
|
|
+ x(i) = X_fourier[i];
|
|
|
}
|
|
|
}
|
|
|
|
|
|
Real fx;
|
|
|
- Integer niter = solver.minimize(mhd_equilib, x, fx);
|
|
|
- for (Long i = 0; i < Nelem; i++) { // Set x
|
|
|
- for (Long j = 0; j < Nnodes; j++) {
|
|
|
- mhd_equilib.S_.Elem(i,0)[j] = x((i*Nnodes+j)*COORD_DIM+0);
|
|
|
- mhd_equilib.S_.Elem(i,1)[j] = x((i*Nnodes+j)*COORD_DIM+1);
|
|
|
- mhd_equilib.S_.Elem(i,2)[j] = x((i*Nnodes+j)*COORD_DIM+2);
|
|
|
- }
|
|
|
+ if (0) {
|
|
|
+ LBFGSpp::LBFGSParam<Real> param;
|
|
|
+ param.max_iterations = 100;
|
|
|
+ param.epsilon = 1e-8;
|
|
|
+ LBFGSpp::LBFGSSolver<Real> solver(param);
|
|
|
+ Integer niter = solver.minimize(mhd_equilib, x, fx);
|
|
|
+ } else {
|
|
|
+ Integer niter = GradientDescent(mhd_equilib, x, fx, 100, 1e-8);
|
|
|
+ }
|
|
|
+ { // Set x
|
|
|
+ // TODO
|
|
|
}
|
|
|
-
|
|
|
- std::cout << niter << " iterations" <<'\n';
|
|
|
- std::cout << "f(x) = " << fx <<'\n';
|
|
|
}
|
|
|
|
|
|
static void test() {
|