|
@@ -2050,7 +2050,7 @@ template <class Real> class Quadrature {
|
|
|
|
|
|
template <class Real, Integer ORDER=10> class Stellarator {
|
|
|
private:
|
|
|
- static constexpr Integer order_singular = 15;
|
|
|
+ static constexpr Integer order_singular = 25;
|
|
|
static constexpr Integer order_direct = 35;
|
|
|
static constexpr Integer COORD_DIM = 3;
|
|
|
static constexpr Integer ELEM_DIM = COORD_DIM-1;
|
|
@@ -3686,7 +3686,131 @@ template <class Real, Integer ORDER=10> class Stellarator {
|
|
|
}
|
|
|
|
|
|
{ // find equilibrium flux surfaces
|
|
|
- auto filter = [](const Stellarator<Real,ORDER>& S, Vector<ElemBasis>& f) {
|
|
|
+ {
|
|
|
+ //auto filter = [](const Stellarator<Real,ORDER>& S, Vector<ElemBasis>& f) {
|
|
|
+ // auto cheb2grid = [] (const Vector<ElemBasis>& X, Long Mt, Long Mp, Long Nt, Long Np) {
|
|
|
+ // const Long dof = X.Dim() / (Mt * Mp);
|
|
|
+ // SCTL_ASSERT(X.Dim() == Mt * Mp *dof);
|
|
|
+
|
|
|
+ // Vector<Real> Xf(dof*Nt*Np); Xf = 0;
|
|
|
+ // const Long Nnodes = ElemBasis::Size();
|
|
|
+ // const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
|
|
|
+ // for (Long t = 0; t < Nt; t++) {
|
|
|
+ // for (Long p = 0; p < Np; p++) {
|
|
|
+ // Real theta = t / (Real)Nt;
|
|
|
+ // Real phi = p / (Real)Np;
|
|
|
+ // Long i = (Long)(theta * Mt);
|
|
|
+ // Long j = (Long)(phi * Mp);
|
|
|
+ // Real x = theta * Mt - i;
|
|
|
+ // Real y = phi * Mp - j;
|
|
|
+ // Long elem_idx = i * Mp + j;
|
|
|
+
|
|
|
+ // Vector<Real> Interp0(ORDER);
|
|
|
+ // Vector<Real> Interp1(ORDER);
|
|
|
+ // { // Set Interp0, Interp1
|
|
|
+ // auto node = [&Mnodes] (Long i) {
|
|
|
+ // return Mnodes[0][i];
|
|
|
+ // };
|
|
|
+ // for (Long i = 0; i < ORDER; i++) {
|
|
|
+ // Real wt_x = 1, wt_y = 1;
|
|
|
+ // for (Long j = 0; j < ORDER; j++) {
|
|
|
+ // if (j != i) {
|
|
|
+ // wt_x *= (x - node(j)) / (node(i) - node(j));
|
|
|
+ // wt_y *= (y - node(j)) / (node(i) - node(j));
|
|
|
+ // }
|
|
|
+ // Interp0[i] = wt_x;
|
|
|
+ // Interp1[i] = wt_y;
|
|
|
+ // }
|
|
|
+ // }
|
|
|
+ // }
|
|
|
+
|
|
|
+ // for (Long ii = 0; ii < ORDER; ii++) {
|
|
|
+ // for (Long jj = 0; jj < ORDER; jj++) {
|
|
|
+ // Long node_idx = jj * ORDER + ii;
|
|
|
+ // for (Long k = 0; k < dof; k++) {
|
|
|
+ // Xf[(k*Nt+t)*Np+p] += X[elem_idx*dof+k][node_idx] * Interp0[ii] * Interp1[jj];
|
|
|
+ // }
|
|
|
+ // }
|
|
|
+ // }
|
|
|
+ // }
|
|
|
+ // }
|
|
|
+ // return Xf;
|
|
|
+ // };
|
|
|
+ // auto grid2cheb = [] (const Vector<Real>& Xf, Long Nt, Long Np, Long Mt, Long Mp) {
|
|
|
+ // Long dof = Xf.Dim() / (Nt*Np);
|
|
|
+ // SCTL_ASSERT(Xf.Dim() == dof*Nt*Np);
|
|
|
+ // Vector<ElemBasis> X(Mt*Mp*dof);
|
|
|
+ // constexpr Integer INTERP_ORDER = 12;
|
|
|
+
|
|
|
+ // for (Long tt = 0; tt < Mt; tt++) {
|
|
|
+ // for (Long pp = 0; pp < Mp; pp++) {
|
|
|
+ // for (Long t = 0; t < ORDER; t++) {
|
|
|
+ // for (Long p = 0; p < ORDER; p++) {
|
|
|
+ // Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
|
|
|
+ // Real theta = (tt + Mnodes[0][t]) / Mt;
|
|
|
+ // Real phi = (pp + Mnodes[0][p]) / Mp;
|
|
|
+ // Long i = (Long)(theta * Nt);
|
|
|
+ // Long j = (Long)(phi * Np);
|
|
|
+ // Real x = theta * Nt - i;
|
|
|
+ // Real y = phi * Np - j;
|
|
|
+
|
|
|
+ // Vector<Real> Interp0(INTERP_ORDER);
|
|
|
+ // Vector<Real> Interp1(INTERP_ORDER);
|
|
|
+ // { // Set Interp0, Interp1
|
|
|
+ // auto node = [] (Long i) {
|
|
|
+ // return (Real)i - (INTERP_ORDER-1)/2;
|
|
|
+ // };
|
|
|
+ // for (Long i = 0; i < INTERP_ORDER; i++) {
|
|
|
+ // Real wt_x = 1, wt_y = 1;
|
|
|
+ // for (Long j = 0; j < INTERP_ORDER; j++) {
|
|
|
+ // if (j != i) {
|
|
|
+ // wt_x *= (x - node(j)) / (node(i) - node(j));
|
|
|
+ // wt_y *= (y - node(j)) / (node(i) - node(j));
|
|
|
+ // }
|
|
|
+ // Interp0[i] = wt_x;
|
|
|
+ // Interp1[i] = wt_y;
|
|
|
+ // }
|
|
|
+ // }
|
|
|
+ // }
|
|
|
+
|
|
|
+ // for (Long k = 0; k < dof; k++) {
|
|
|
+ // Real X0 = 0;
|
|
|
+ // for (Long ii = 0; ii < INTERP_ORDER; ii++) {
|
|
|
+ // for (Long jj = 0; jj < INTERP_ORDER; jj++) {
|
|
|
+ // Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
|
|
|
+ // Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
|
|
|
+ // X0 += Interp0[ii] * Interp1[jj] * Xf[(k*Nt+idx_i)*Np+idx_j];
|
|
|
+ // }
|
|
|
+ // }
|
|
|
+ // Long elem_idx = tt * Mp + pp;
|
|
|
+ // Long node_idx = p * ORDER + t;
|
|
|
+ // X[elem_idx*dof+k][node_idx] = X0;
|
|
|
+ // }
|
|
|
+ // }
|
|
|
+ // }
|
|
|
+ // }
|
|
|
+ // }
|
|
|
+ // return X;
|
|
|
+ // };
|
|
|
+
|
|
|
+ // Long dof = f.Dim() / S.NElem();
|
|
|
+ // SCTL_ASSERT(f.Dim() == S.NElem() * dof);
|
|
|
+ // for (Long i = 0; i < S.Nsurf(); i++) {
|
|
|
+ // const Long Mt = S.NTor(i);
|
|
|
+ // const Long Mp = S.NPol(i);
|
|
|
+ // const Long Nelem = Mt * Mp;
|
|
|
+ // const Long offset = S.ElemDsp(i);
|
|
|
+ // const Long Nt = Mt * ORDER / 5;
|
|
|
+ // const Long Np = Mp * ORDER / 5;
|
|
|
+
|
|
|
+ // Vector<ElemBasis> f_(Nelem*dof, f.begin() + offset*dof, false);
|
|
|
+ // Vector<Real> f_fourier = cheb2grid(f_, Mt, Mp, Nt, Np);
|
|
|
+ // f_ = grid2cheb(f_fourier, Nt, Np, Mt, Mp);
|
|
|
+ // }
|
|
|
+ //};
|
|
|
+ }
|
|
|
+
|
|
|
+ auto filter = [](const Stellarator<Real,ORDER>& S, const Comm& comm, Vector<ElemBasis>& f, Real sigma) {
|
|
|
auto cheb2grid = [] (const Vector<ElemBasis>& X, Long Mt, Long Mp, Long Nt, Long Np) {
|
|
|
const Long dof = X.Dim() / (Mt * Mp);
|
|
|
SCTL_ASSERT(X.Dim() == Mt * Mp *dof);
|
|
@@ -3791,6 +3915,40 @@ template <class Real, Integer ORDER=10> class Stellarator {
|
|
|
}
|
|
|
return X;
|
|
|
};
|
|
|
+ auto fourier_filter = [](sctl::Vector<Real>& X, long Nt_, long Np_, Real sigma, const Comm& comm) {
|
|
|
+ long dof = X.Dim() / (Nt_ * Np_);
|
|
|
+ SCTL_ASSERT(X.Dim() == dof * Nt_ * Np_);
|
|
|
+
|
|
|
+ sctl::FFT<Real> fft_r2c, fft_c2r;
|
|
|
+ sctl::StaticArray<sctl::Long, 2> fft_dim = {Nt_, Np_};
|
|
|
+ fft_r2c.Setup(sctl::FFT_Type::R2C, 1, sctl::Vector<sctl::Long>(2, fft_dim, false), omp_get_max_threads());
|
|
|
+ fft_c2r.Setup(sctl::FFT_Type::C2R, 1, sctl::Vector<sctl::Long>(2, fft_dim, false), omp_get_max_threads());
|
|
|
+
|
|
|
+ long Nt = Nt_;
|
|
|
+ long Np = fft_r2c.Dim(1) / (Nt * 2);
|
|
|
+ SCTL_ASSERT(fft_r2c.Dim(1) == Nt * Np * 2);
|
|
|
+
|
|
|
+ //auto filter_fn = [](Real x2, Real sigma) {return exp(-x2/(2*sigma*sigma));};
|
|
|
+ auto filter_fn = [](Real x2, Real sigma) {return (x2<sigma*sigma?1.0:0.0);};
|
|
|
+
|
|
|
+ sctl::Vector<Real> normal, gradX;
|
|
|
+ biest::SurfaceOp<Real> op(comm, Nt_, Np_);
|
|
|
+ sctl::Vector<Real> coeff(fft_r2c.Dim(1));
|
|
|
+ for (long k = 0; k < dof; k++) {
|
|
|
+ sctl::Vector<Real> X_(Nt_*Np_, X.begin() + k*Nt_*Np_, false);
|
|
|
+ fft_r2c.Execute(X_, coeff);
|
|
|
+ for (long t = 0; t < Nt; t++) {
|
|
|
+ for (long p = 0; p < Np; p++) {
|
|
|
+ Real tt = (t - (t > Nt / 2 ? Nt : 0)) / (Real)(Nt / 2);
|
|
|
+ Real pp = p / (Real)Np;
|
|
|
+ Real f = filter_fn(tt*tt+pp*pp, sigma);
|
|
|
+ coeff[(t * Np + p) * 2 + 0] *= f;
|
|
|
+ coeff[(t * Np + p) * 2 + 1] *= f;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ fft_c2r.Execute(coeff, X_);
|
|
|
+ }
|
|
|
+ };
|
|
|
|
|
|
Long dof = f.Dim() / S.NElem();
|
|
|
SCTL_ASSERT(f.Dim() == S.NElem() * dof);
|
|
@@ -3799,11 +3957,12 @@ template <class Real, Integer ORDER=10> class Stellarator {
|
|
|
const Long Mp = S.NPol(i);
|
|
|
const Long Nelem = Mt * Mp;
|
|
|
const Long offset = S.ElemDsp(i);
|
|
|
- const Long Nt = Mt * ORDER / 5;
|
|
|
- const Long Np = Mp * ORDER / 5;
|
|
|
+ const Long Nt = Mt * ORDER * 4;
|
|
|
+ const Long Np = Mp * ORDER * 4;
|
|
|
|
|
|
Vector<ElemBasis> f_(Nelem*dof, f.begin() + offset*dof, false);
|
|
|
Vector<Real> f_fourier = cheb2grid(f_, Mt, Mp, Nt, Np);
|
|
|
+ fourier_filter(f_fourier, Nt, Np, 0.25 * sigma, comm);
|
|
|
f_ = grid2cheb(f_fourier, Nt, Np, Mt, Mp);
|
|
|
}
|
|
|
};
|
|
@@ -3827,7 +3986,7 @@ template <class Real, Integer ORDER=10> class Stellarator {
|
|
|
dXdt[i*COORD_DIM+2][j] = normal[i*COORD_DIM+2][j] * dgdnu[i][j];
|
|
|
}
|
|
|
}
|
|
|
- filter(S, dXdt);
|
|
|
+ filter(S, comm, dXdt, 0.1);
|
|
|
}
|
|
|
{ // Update dt
|
|
|
const Long Nelem = S.NElem();
|
|
@@ -3886,11 +4045,11 @@ template <class Real, Integer ORDER=10> class Stellarator {
|
|
|
const Long Nelem = S.NElem();
|
|
|
Vector<ElemBasis> X(Nelem*COORD_DIM);
|
|
|
for (Long i = 0; i < S.NElem(); i++) {
|
|
|
- X[i*COORD_DIM+0] = S.Elem(i, 0) + dXdt[i*COORD_DIM+0] * dt * 0.5;
|
|
|
- X[i*COORD_DIM+1] = S.Elem(i, 1) + dXdt[i*COORD_DIM+1] * dt * 0.5;
|
|
|
- X[i*COORD_DIM+2] = S.Elem(i, 2) + dXdt[i*COORD_DIM+2] * dt * 0.5;
|
|
|
+ X[i*COORD_DIM+0] = S.Elem(i, 0) + dXdt[i*COORD_DIM+0] * dt;
|
|
|
+ X[i*COORD_DIM+1] = S.Elem(i, 1) + dXdt[i*COORD_DIM+1] * dt;
|
|
|
+ X[i*COORD_DIM+2] = S.Elem(i, 2) + dXdt[i*COORD_DIM+2] * dt;
|
|
|
}
|
|
|
- filter(S, X);
|
|
|
+ filter(S, comm, X, 0.3);
|
|
|
for (Long i = 0; i < S.NElem(); i++) {
|
|
|
S.Elem(i, 0) = X[i*COORD_DIM+0];
|
|
|
S.Elem(i, 1) = X[i*COORD_DIM+1];
|
|
@@ -4915,8 +5074,8 @@ template <class Real, Integer ORDER=10> class MHDEquilib {
|
|
|
long Np = fft_r2c.Dim(1) / (Nt * 2);
|
|
|
SCTL_ASSERT(fft_r2c.Dim(1) == Nt * Np * 2);
|
|
|
|
|
|
- //auto filter_fn = [](Real x2, Real sigma) {return exp(-x2/(2*sigma*sigma));};
|
|
|
- auto filter_fn = [](Real x2, Real sigma) {return (x2<sigma*sigma?1.0:0.0);};
|
|
|
+ auto filter_fn = [](Real x2, Real sigma) {return exp(-x2/(2*sigma*sigma));};
|
|
|
+ //auto filter_fn = [](Real x2, Real sigma) {return (x2<sigma*sigma?1.0:0.0);};
|
|
|
|
|
|
sctl::Vector<Real> normal, gradX;
|
|
|
biest::SurfaceOp<Real> op(comm, Nt_, Np_);
|
|
@@ -4939,7 +5098,7 @@ template <class Real, Integer ORDER=10> class MHDEquilib {
|
|
|
|
|
|
Long dof = f.Dim() / S.NElem();
|
|
|
SCTL_ASSERT(f.Dim() == S.NElem() * dof);
|
|
|
- for (Long i = 0; i < S.Nsurf(); i++) {
|
|
|
+ for (Long i = 0; i < S.Nsurf()-1; i++) {
|
|
|
const Long Mt = S.NTor(i);
|
|
|
const Long Mp = S.NPol(i);
|
|
|
const Long Nelem = Mt * Mp;
|
|
@@ -4962,6 +5121,23 @@ template <class Real, Integer ORDER=10> class MHDEquilib {
|
|
|
S_.Elem(i,2)[j] = x[(i*Nnodes+j)*COORD_DIM+2];
|
|
|
}
|
|
|
}
|
|
|
+ Stellarator<Real,ORDER> SS; //////////////////////////
|
|
|
+ { // Update S <-- filter(S)
|
|
|
+ const Long Nelem = S_.NElem();
|
|
|
+ Vector<ElemBasis> X(Nelem*COORD_DIM);
|
|
|
+ for (Long i = 0; i < S_.NElem(); i++) {
|
|
|
+ X[i*COORD_DIM+0] = S_.Elem(i, 0);
|
|
|
+ X[i*COORD_DIM+1] = S_.Elem(i, 1);
|
|
|
+ X[i*COORD_DIM+2] = S_.Elem(i, 2);
|
|
|
+ }
|
|
|
+ SS = S_;
|
|
|
+ filter(S_, comm, X, 0.1);
|
|
|
+ for (Long i = 0; i < S_.NElem(); i++) {
|
|
|
+ S_.Elem(i, 0) = X[i*COORD_DIM+0];
|
|
|
+ S_.Elem(i, 1) = X[i*COORD_DIM+1];
|
|
|
+ S_.Elem(i, 2) = X[i*COORD_DIM+2];
|
|
|
+ }
|
|
|
+ }
|
|
|
Vector<ElemBasis> dgdnu = Stellarator<Real,ORDER>::compute_gradient(S_, pressure_, flux_tor_, flux_pol_, &g);
|
|
|
Vector<ElemBasis> dXdt(Nelem*COORD_DIM);
|
|
|
{ // Set dXdt
|
|
@@ -4976,7 +5152,7 @@ template <class Real, Integer ORDER=10> class MHDEquilib {
|
|
|
dXdt[i*COORD_DIM+2][j] = normal[i*COORD_DIM+2][j] * dgdnu[i][j];
|
|
|
}
|
|
|
}
|
|
|
- filter(S_, comm, dXdt, 0.3333);
|
|
|
+ //filter(S_, comm, dXdt, 0.1);
|
|
|
}
|
|
|
for (Long i = 0; i < Nelem; i++) { // Set grad
|
|
|
for (Long j = 0; j < Nnodes; j++) {
|
|
@@ -4996,6 +5172,11 @@ template <class Real, Integer ORDER=10> class MHDEquilib {
|
|
|
vtu.AddElems(S_.GetElemList(), dXdt, ORDER);
|
|
|
vtu.WriteVTK("dXdt"+std::to_string(iter), comm);
|
|
|
}
|
|
|
+ if (1) { // Write VTU
|
|
|
+ VTUData vtu;
|
|
|
+ vtu.AddElems(SS.GetElemList(), dgdnu, ORDER);
|
|
|
+ vtu.WriteVTK("S"+std::to_string(iter), comm);
|
|
|
+ }
|
|
|
std::cout<<"iter = "<<iter<<" g = "<<g<<'\n';
|
|
|
|
|
|
iter++;
|
|
@@ -5008,7 +5189,7 @@ template <class Real, Integer ORDER=10> class MHDEquilib {
|
|
|
const Long N = Nelem * COORD_DIM * Nnodes;
|
|
|
|
|
|
LBFGSpp::LBFGSParam<Real> param;
|
|
|
- param.epsilon = 1e-6;
|
|
|
+ param.epsilon = 1e-8;
|
|
|
param.max_iterations = 100;
|
|
|
|
|
|
// Create solver and function object
|