#ifndef _SCTL_BOUNDARY_QUADRATURE_HPP_ #define _SCTL_BOUNDARY_QUADRATURE_HPP_ #include #include #include #include namespace SCTL_NAMESPACE { template class Basis { public: using ValueType = Real; // class EvalOperator { // public: // }; using EvalOpType = Matrix; static constexpr Long Dim() { return DIM; } static constexpr Long Size() { return pow(ORDER); } static const Matrix& Nodes() { static Matrix nodes_(DIM,Size()); auto nodes_1d = [](Integer i) { return 0.5 - 0.5 * sctl::cos((2*i+1) * const_pi() / (2*ORDER)); }; { // Set nodes_ static std::mutex mutex; static std::atomic first_time(true); if (first_time.load(std::memory_order_relaxed)) { std::lock_guard guard(mutex); if (first_time.load(std::memory_order_relaxed)) { Integer N = 1; for (Integer d = 0; d < DIM; d++) { for (Integer j = 0; j < ORDER; j++) { for (Integer i = 0; i < N; i++) { for (Integer k = 0; k < d; k++) { nodes_[k][j*N+i] = nodes_[k][i]; } nodes_[d][j*N+i] = nodes_1d(j); } } N *= ORDER; } std::atomic_thread_fence(std::memory_order_seq_cst); first_time.store(false); } } } return nodes_; } static const Vector& QuadWts() { static Vector wts(Size()); { // Set nodes_ static std::mutex mutex; static std::atomic first_time(true); if (first_time.load(std::memory_order_relaxed)) { std::lock_guard guard(mutex); if (first_time.load(std::memory_order_relaxed)) { StaticArray wts_1d; { // Set wts_1d Vector x_(ORDER); ChebBasis::template Nodes<1>(ORDER, x_); Vector V_cheb(ORDER * ORDER); { // Set V_cheb Vector I(ORDER*ORDER); I = 0; for (Long i = 0; i < ORDER; i++) I[i*ORDER+i] = 1; ChebBasis::template Approx<1>(ORDER, I, V_cheb); } Matrix M(ORDER, ORDER, V_cheb.begin()); Vector w_sample(ORDER); for (Integer i = 0; i < ORDER; i++) { w_sample[i] = (i % 2 ? 0 : -(ORDER/(ValueType)(i*i-1))); } for (Integer j = 0; j < ORDER; j++) { wts_1d[j] = 0; for (Integer i = 0; i < ORDER; i++) { wts_1d[j] += M[j][i] * w_sample[i] / ORDER; } } } wts[0] = 1; Integer N = 1; for (Integer d = 0; d < DIM; d++) { for (Integer j = 1; j < ORDER; j++) { for (Integer i = 0; i < N; i++) { wts[j*N+i] = wts[i] * wts_1d[j]; } } for (Integer i = 0; i < N; i++) { wts[i] *= wts_1d[0]; } N *= ORDER; } std::atomic_thread_fence(std::memory_order_seq_cst); first_time.store(false); } } } return wts; } static void Grad(Vector& dX, const Vector& X) { static Matrix GradOp[DIM]; static std::mutex mutex; static std::atomic first_time(true); if (first_time.load(std::memory_order_relaxed)) { std::lock_guard guard(mutex); if (first_time.load(std::memory_order_relaxed)) { { // Set GradOp auto nodes = Basis::Nodes(); SCTL_ASSERT(nodes.Dim(1) == ORDER); Matrix M(ORDER, ORDER); for (Integer i = 0; i < ORDER; i++) { // Set M Real x = nodes[0][i]; for (Integer j = 0; j < ORDER; j++) { M[j][i] = 0; for (Integer l = 0; l < ORDER; l++) { if (l != j) { Real M_ = 1; for (Integer k = 0; k < ORDER; k++) { if (k != j && k != l) M_ *= (x - nodes[0][k]); if (k != j) M_ /= (nodes[0][j] - nodes[0][k]); } M[j][i] += M_; } } } } for (Integer d = 0; d < DIM; d++) { GradOp[d].ReInit(Size(), Size()); GradOp[d] = 0; Integer stride0 = sctl::pow(ORDER, d); Integer repeat0 = sctl::pow(ORDER, d); Integer stride1 = sctl::pow(ORDER, d+1); Integer repeat1 = sctl::pow(ORDER, DIM-d-1); for (Integer k1 = 0; k1 < repeat1; k1++) { for (Integer i = 0; i < ORDER; i++) { for (Integer j = 0; j < ORDER; j++) { for (Integer k0 = 0; k0 < repeat0; k0++) { GradOp[d][k1*stride1 + i*stride0 + k0][k1*stride1 + j*stride0 + k0] = M[i][j]; } } } } } } std::atomic_thread_fence(std::memory_order_seq_cst); first_time.store(false); } } if (dX.Dim() != X.Dim()*DIM) dX.ReInit(X.Dim()*DIM); for (Long i = 0; i < X.Dim(); i++) { const Matrix Vi(1, Size(), (Iterator)(ConstIterator)X[i].NodeValues_, false); for (Integer k = 0; k < DIM; k++) { Matrix Vo(1, Size(), dX[i*DIM+k].NodeValues_, false); Matrix::GEMM(Vo, Vi, GradOp[k]); } } } static EvalOpType SetupEval(const Matrix& X) { Long N = X.Dim(1); SCTL_ASSERT(X.Dim(0) == DIM); Matrix M(Size(), N); { // Set M auto nodes = Basis::Nodes(); Integer NN = Basis::Size(); Matrix M_(NN, DIM*N); for (Long i = 0; i < DIM*N; i++) { ValueType x = X[0][i]; for (Integer j = 0; j < NN; j++) { ValueType y = 1; for (Integer k = 0; k < NN; k++) { y *= (j==k ? 1 : (nodes[0][k] - x) / (nodes[0][k] - nodes[0][j])); } M_[j][i] = y; } } if (DIM == 1) { SCTL_ASSERT(M.Dim(0) == M_.Dim(0)); SCTL_ASSERT(M.Dim(1) == M_.Dim(1)); M = M_; } else { Integer NNN = 1; M = 1; for (Integer d = 0; d < DIM; d++) { for (Integer k = 1; k < NN; k++) { for (Integer j = 0; j < NNN; j++) { for (Long i = 0; i < N; i++) { M[k*NNN+j][i] = M[j][i] * M_[k][d*N+i]; } } } { // k = 0 for (Integer j = 0; j < NNN; j++) { for (Long i = 0; i < N; i++) { M[j][i] *= M_[0][d*N+i]; } } } NNN *= NN; } } } return M; } static void Eval(Matrix& Y, const Vector& X, const EvalOpType& M) { Long N0 = X.Dim(); Long N1 = M.Dim(1); SCTL_ASSERT(M.Dim(0) == Size()); if (Y.Dim(0) != N0 || Y.Dim(1) != N1) Y.ReInit(N0, N1); for (Long i = 0; i < N0; i++) { const Matrix X_(1,Size(),(Iterator)(ConstIterator)X[i].NodeValues_,false); Matrix Y_(1,N1,Y[i],false); Matrix::GEMM(Y_,X_,M); } } Basis operator+(Basis X) const { for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] + X[i]; return X; } Basis operator-(Basis X) const { for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] - X[i]; return X; } Basis operator*(Basis X) const { for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] * X[i]; return X; } Basis operator*(Real a) const { Basis X = (*this); for (Long i = 0; i < Size(); i++) X[i] *= a; return X; } Basis operator+(Real a) const { Basis X = (*this); for (Long i = 0; i < Size(); i++) X[i] += a; return X; } Basis& operator+=(const Basis& X) { for (Long i = 0; i < Size(); i++) (*this)[i] += X[i]; return *this; } Basis& operator-=(const Basis& X) { for (Long i = 0; i < Size(); i++) (*this)[i] -= X[i]; return *this; } Basis& operator*=(const Basis& X) { for (Long i = 0; i < Size(); i++) (*this)[i] *= X[i]; return *this; } Basis& operator*=(Real a) { for (Long i = 0; i < Size(); i++) (*this)[i] *= a; return *this; } Basis& operator+=(Real a) { for (Long i = 0; i < Size(); i++) (*this)[i] += a; return *this; } Basis& operator=(Real a) { for (Long i = 0; i < Size(); i++) (*this)[i] = a; return *this; } const ValueType& operator[](Long i) const { SCTL_ASSERT(i < Size()); return NodeValues_[i]; } ValueType& operator[](Long i) { SCTL_ASSERT(i < Size()); return NodeValues_[i]; } private: StaticArray NodeValues_; }; template class ElemList { public: using CoordBasis = Basis; using CoordType = typename CoordBasis::ValueType; static constexpr Integer CoordDim() { return COORD_DIM; } static constexpr Integer ElemDim() { return CoordBasis::Dim(); } ElemList(Long Nelem = 0) { ReInit(Nelem); } void ReInit(Long Nelem = 0) { Nelem_ = Nelem; X_.ReInit(Nelem_ * COORD_DIM); } void ReInit(const Vector& X) { Nelem_ = X.Dim() / COORD_DIM; SCTL_ASSERT(X.Dim() == Nelem_ * COORD_DIM); X_ = X; } Long NElem() const { return Nelem_; } CoordBasis& operator()(Long elem, Integer dim) { SCTL_ASSERT(elem >= 0 && elem < Nelem_); SCTL_ASSERT(dim >= 0 && dim < COORD_DIM); return X_[elem*COORD_DIM+dim]; } const CoordBasis& operator()(Long elem, Integer dim) const { SCTL_ASSERT(elem >= 0 && elem < Nelem_); SCTL_ASSERT(dim >= 0 && dim < COORD_DIM); return X_[elem*COORD_DIM+dim]; } const Vector& ElemVector() const { return X_; } private: static_assert(CoordBasis::Dim() <= CoordDim(), "Basis dimension can not be greater than COORD_DIM."); Vector X_; Long Nelem_; mutable Vector dX_; }; template class Quadrature { static Real machine_epsilon() { Real eps=1; while(eps*(Real)0.5+(Real)1.0>1.0) eps*=0.5; return eps; } template static void DuffyQuad(Matrix& nodes, Vector& weights, const Vector& coord, Integer order, Real adapt = -1.0) { SCTL_ASSERT(coord.Dim() == DIM); static Real eps = machine_epsilon()*16; Matrix qx; Vector qw; { // Set qx, qw Vector qx0, qw0; ChebBasis::quad_rule(order, qx0, qw0); Integer N = sctl::pow(order); qx.ReInit(DIM,N); qw.ReInit(N); qw[0] = 1; Integer N_ = 1; for (Integer d = 0; d < DIM; d++) { for (Integer j = 0; j < order; j++) { for (Integer i = 0; i < N_; i++) { for (Integer k = 0; k < d; k++) { qx[k][j*N_+i] = qx[k][i]; } qx[d][j*N_+i] = qx0[j]; qw[j*N_+i] = qw[i]; } } for (Integer j = 0; j < order; j++) { for (Integer i = 0; i < N_; i++) { qw[j*N_+i] *= qw0[j]; } } N_ *= order; } } Vector X; { // Set X StaticArray X_; X_[0] = 0; X_[1] = adapt; for (Integer i = 0; i < DIM; i++) { X_[2*i+2] = sctl::fabs(coord[i]); X_[2*i+3] = sctl::fabs(coord[i]-1); } std::sort((Iterator)X_, (Iterator)X_+2*DIM+2); X.PushBack(std::max(0, X_[2*DIM]-1)); for (Integer i = 0; i < 2*DIM+2; i++) { if (X[X.Dim()-1] < X_[i]) { if (X.Dim()) X.PushBack(X_[i]); } } ///////////////////////////////////////////////////////////////////////////////////////////////// Vector r(1); r[0] = X[0]; for (Integer i = 1; i < X.Dim(); i++) { while (r[r.Dim() - 1] > 0.0 && (order*0.5) * r[r.Dim() - 1] < X[i]) r.PushBack((order*0.5) * r[r.Dim() - 1]); // TODO r.PushBack(X[i]); } X = r; ///////////////////////////////////////////////////////////////////////////////////////////////// } Vector nds, wts; for (Integer k = 0; k < X.Dim()-1; k++) { for (Integer dd = 0; dd < 2*DIM; dd++) { Integer d0 = (dd>>1); StaticArray range0, range1; { // Set range0, range1 Integer d1 = (dd%2?1:-1); for (Integer d = 0; d < DIM; d++) { range0[d*2+0] = std::max(0,std::min(1,coord[d] - X[k] )); range0[d*2+1] = std::max(0,std::min(1,coord[d] + X[k] )); range1[d*2+0] = std::max(0,std::min(1,coord[d] - X[k+1])); range1[d*2+1] = std::max(0,std::min(1,coord[d] + X[k+1])); } range0[d0*2+0] = std::max(0,std::min(1,coord[d0] + d1*X[k+0])); range0[d0*2+1] = std::max(0,std::min(1,coord[d0] + d1*X[k+0])); range1[d0*2+0] = std::max(0,std::min(1,coord[d0] + d1*X[k+1])); range1[d0*2+1] = std::max(0,std::min(1,coord[d0] + d1*X[k+1])); } { // if volume(range0, range1) == 0 then continue Real v0 = 1, v1 = 1; for (Integer d = 0; d < DIM; d++) { if (d == d0) { v0 *= sctl::fabs(range0[d*2+0]-range1[d*2+0]); v1 *= sctl::fabs(range0[d*2+0]-range1[d*2+0]); } else { v0 *= range0[d*2+1]-range0[d*2+0]; v1 *= range1[d*2+1]-range1[d*2+0]; } } if (v0 < eps && v1 < eps) continue; } for (Integer i = 0; i < qx.Dim(1); i++) { // Set nds, wts Real w = qw[i]; Real z = qx[d0][i]; for (Integer d = 0; d < DIM; d++) { Real y = qx[d][i]; nds.PushBack((range0[d*2+0]*(1-y) + range0[d*2+1]*y)*(1-z) + (range1[d*2+0]*(1-y) + range1[d*2+1]*y)*z); if (d == d0) { w *= abs(range1[d*2+0] - range0[d*2+0]); } else { w *= (range0[d*2+1] - range0[d*2+0])*(1-z) + (range1[d*2+1] - range1[d*2+0])*z; } } wts.PushBack(w); } } } nodes = Matrix(nds.Dim()/DIM,DIM,nds.begin()).Transpose(); weights = wts; } template static void TensorProductGaussQuad(Matrix& nodes, Vector& weights, Integer order) { Vector coord(DIM); coord = 0; coord[0] = -10; DuffyQuad(nodes, weights, coord, order); } template static void SetupSingular(Matrix& M_singular, const Matrix& trg_nds, const ElemList& elem_lst, const Kernel& kernel, Integer order_singular = 10, Integer order_direct = 10, Real Rqbx = 0) { using CoordBasis = typename ElemList::CoordBasis; using CoordEvalOpType = typename CoordBasis::EvalOpType; using DensityEvalOpType = typename DensityBasis::EvalOpType; constexpr Integer CoordDim = ElemList::CoordDim(); constexpr Integer ElemDim = ElemList::ElemDim(); constexpr Integer KDIM0 = Kernel::SrcDim(); constexpr Integer KDIM1 = Kernel::TrgDim(); const Long Nelem = elem_lst.NElem(); const Integer Ntrg = trg_nds.Dim(1); SCTL_ASSERT(trg_nds.Dim(0) == ElemDim); const Vector& X = elem_lst.ElemVector(); Vector dX; CoordBasis::Grad(dX, X); Vector Xt, Xnt; { // Set Xt, Xnt auto Meval = CoordBasis::SetupEval(trg_nds); eval_basis(Xt, X, CoordDim, trg_nds.Dim(1), Meval); Xnt = Xt; Vector dX_; eval_basis(dX_, dX, 2*CoordDim, trg_nds.Dim(1), Meval); for (Long i = 0; i < Ntrg; i++) { for (Long j = 0; j < Nelem; j++) { auto Xn = Xnt.begin() + (j*Ntrg+i)*CoordDim; auto dX0 = dX_.begin() + (j*Ntrg+i)*2*CoordDim; StaticArray normal; normal[0] = dX0[2]*dX0[5] - dX0[4]*dX0[3]; normal[1] = dX0[4]*dX0[1] - dX0[0]*dX0[5]; normal[2] = dX0[0]*dX0[3] - dX0[2]*dX0[1]; Real Xa = sctl::sqrt(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]); Real invXa = 1/Xa; normal[0] *= invXa; normal[1] *= invXa; normal[2] *= invXa; Real sqrt_Xa = sqrt(Xa); Xn[0] = normal[0]*sqrt_Xa*Rqbx; Xn[1] = normal[1]*sqrt_Xa*Rqbx; Xn[2] = normal[2]*sqrt_Xa*Rqbx; } } } SCTL_ASSERT(Xt.Dim() == Nelem * Ntrg * CoordDim); auto& M = M_singular; M.ReInit(Nelem * KDIM0 * DensityBasis::Size(), KDIM1 * Ntrg); #pragma omp parallel for schedule(static) for (Long i = 0; i < Ntrg; i++) { // Set M (singular) Matrix quad_nds; Vector quad_wts; { // Set quad_nds, quad_wts StaticArray trg_node_; for (Integer k = 0; k < ElemDim; k++) { trg_node_[k] = trg_nds[k][i]; } Vector trg_node(ElemDim, trg_node_, false); DuffyQuad(quad_nds, quad_wts, trg_node, order_singular, fabs(Rqbx)); } const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds); Integer Nnds = quad_wts.Dim(); Vector X_, dX_, Xa_, Xn_; { // Set X_, dX_ eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp); eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp); } if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_ Long N = Nelem*Nnds; Xa_.ReInit(N); Xn_.ReInit(N*CoordDim); for (Long j = 0; j < N; j++) { StaticArray normal; normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3]; normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5]; normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1]; Xa_[j] = sctl::sqrt(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]); Real invXa = 1/Xa_[j]; Xn_[j*3+0] = normal[0] * invXa; Xn_[j*3+1] = normal[1] * invXa; Xn_[j*3+2] = normal[2] * invXa; } } DensityEvalOpType DensityEvalOp; if (std::is_same::value) { DensityEvalOp = CoordEvalOp; } else { DensityEvalOp = DensityBasis::SetupEval(quad_nds); } for (Long j = 0; j < Nelem; j++) { Matrix M__(Nnds * KDIM0, KDIM1); if (Rqbx == 0) { // Set kernel matrix M__ const Vector X0_(CoordDim, Xt.begin() + (j * Ntrg + i) * CoordDim, false); const Vector X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false); const Vector Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false); kernel.template KernelMatrix(M__, X0_, X__, Xn__); } else { Vector X0_(CoordDim); constexpr Integer qbx_order = 6; StaticArray,qbx_order> M___; for (Integer k = 0; k < qbx_order; k++) { // Set kernel matrix M___ for (Integer kk = 0; kk < CoordDim; kk++) X0_[kk] = Xt[(j * Ntrg + i) * CoordDim + kk] + (k+1) * Xnt[(j * Ntrg + i) * CoordDim + kk]; const Vector X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false); const Vector Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false); kernel.template KernelMatrix(M___[k], X0_, X__, Xn__); } for (Long k = 0; k < Nnds * KDIM0 * KDIM1; k++) { M__[0][k] = 0; M__[0][k] += 6*M___[0][0][k]; M__[0][k] += -15*M___[1][0][k]; M__[0][k] += 20*M___[2][0][k]; M__[0][k] += -15*M___[3][0][k]; M__[0][k] += 6*M___[4][0][k]; M__[0][k] += -1*M___[5][0][k]; } } for (Long k0 = 0; k0 < KDIM0; k0++) { for (Long k1 = 0; k1 < KDIM1; k1++) { for (Long l = 0; l < DensityBasis::Size(); l++) { Real M_lk = 0; for (Long n = 0; n < Nnds; n++) { Real quad_wt = Xa_[j * Nnds + n] * quad_wts[n]; M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1]; } M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1 * Ntrg + i] = M_lk; } } } } } { // Set M (subtract direct) Matrix quad_nds; Vector quad_wts; TensorProductGaussQuad(quad_nds, quad_wts, order_direct); const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds); Integer Nnds = quad_wts.Dim(); Vector X_, dX_, Xa_, Xn_; { // Set X_, dX_ eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp); eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp); } if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_ Long N = Nelem*Nnds; Xa_.ReInit(N); Xn_.ReInit(N*CoordDim); for (Long j = 0; j < N; j++) { StaticArray normal; normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3]; normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5]; normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1]; Xa_[j] = sctl::sqrt(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]); Real invXa = 1/Xa_[j]; Xn_[j*3+0] = normal[0] * invXa; Xn_[j*3+1] = normal[1] * invXa; Xn_[j*3+2] = normal[2] * invXa; } } DensityEvalOpType DensityEvalOp; if (std::is_same::value) { DensityEvalOp = CoordEvalOp; } else { DensityEvalOp = DensityBasis::SetupEval(quad_nds); } #pragma omp parallel for schedule(static) for (Long i = 0; i < Ntrg; i++) { // Subtract direct contribution for (Long j = 0; j < Nelem; j++) { Matrix M__(Nnds * KDIM0, KDIM1); { // Set kernel matrix M__ const Vector X0_(CoordDim, (Iterator)Xt.begin() + (j * Ntrg + i) * CoordDim, false); const Vector X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false); const Vector Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false); kernel.template KernelMatrix(M__, X0_, X__, Xn__); } for (Long k0 = 0; k0 < KDIM0; k0++) { for (Long k1 = 0; k1 < KDIM1; k1++) { for (Long l = 0; l < DensityBasis::Size(); l++) { Real M_lk = 0; for (Long n = 0; n < Nnds; n++) { Real quad_wt = Xa_[j * Nnds + n] * quad_wts[n]; M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1]; } M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1 * Ntrg + i] -= M_lk; } } } } } } } template static void EvalSingular(Matrix& U, const Vector& density, const Matrix& M, Integer KDIM0_, Integer KDIM1_) { if (M.Dim(0) == 0 || M.Dim(1) == 0) { U.ReInit(0,0); return; } const Long Ntrg = M.Dim(1) / KDIM1_; SCTL_ASSERT(M.Dim(1) == KDIM1_ * Ntrg); const Long Nelem = M.Dim(0) / (KDIM0_ * DensityBasis::Size()); SCTL_ASSERT(M.Dim(0) == Nelem * KDIM0_ * DensityBasis::Size()); const Integer dof = density.Dim() / (Nelem * KDIM0_); SCTL_ASSERT(density.Dim() == Nelem * dof * KDIM0_); if (U.Dim(0) != Nelem * dof * KDIM1_ || U.Dim(1) != Ntrg) { U.ReInit(Nelem * dof * KDIM1_, Ntrg); U = 0; } for (Long j = 0; j < Nelem; j++) { const Matrix M_(KDIM0_ * DensityBasis::Size(), KDIM1_ * Ntrg, (Iterator)M[j * KDIM0_ * DensityBasis::Size()], false); Matrix U_(dof, KDIM1_ * Ntrg, U[j*dof*KDIM1_], false); Matrix F_(dof, KDIM0_ * DensityBasis::Size()); for (Long i = 0; i < dof; i++) { for (Long k = 0; k < KDIM0_; k++) { for (Long l = 0; l < DensityBasis::Size(); l++) { F_[i][k * DensityBasis::Size() + l] = density[(j * dof + i) * KDIM0_ + k][l]; } } } Matrix::GEMM(U_, F_, M_); } } template struct PointData { bool operator<(const PointData& p) const { return mid < p.mid; } Long rank; Long surf_rank; Morton mid; StaticArray coord; Real radius2; }; template struct Pair { Pair() {} Pair(T1 x, T2 y) : first(x), second(y) {} bool operator<(const Pair& p) const { return (first < p.first) || (((first == p.first) && (second < p.second))); } T1 first; T2 second; }; template static void BuildNbrList(Vector>& pair_lst, const Vector& Xt, const Vector& trg_surf, const ElemList& elem_lst, Real distance_factor, Real period_length, const Comm& comm) { using CoordBasis = typename ElemList::CoordBasis; constexpr Integer CoordDim = ElemList::CoordDim(); constexpr Integer ElemDim = ElemList::ElemDim(); using PtData = PointData; const Integer rank = comm.Rank(); Real R0 = 0; StaticArray X0; { // Find bounding box Long N = Xt.Dim() / CoordDim; SCTL_ASSERT(Xt.Dim() == N * CoordDim); SCTL_ASSERT(N); StaticArray Xloc; StaticArray Xglb; for (Integer k = 0; k < CoordDim; k++) { Xloc[0*CoordDim+k] = Xt[k]; Xloc[1*CoordDim+k] = Xt[k]; } for (Long i = 0; i < N; i++) { for (Integer k = 0; k < CoordDim; k++) { Xloc[0*CoordDim+k] = std::min(Xloc[0*CoordDim+k], Xt[i*CoordDim+k]); Xloc[1*CoordDim+k] = std::max(Xloc[1*CoordDim+k], Xt[i*CoordDim+k]); } } comm.Allreduce((ConstIterator)Xloc+0*CoordDim, (Iterator)Xglb+0*CoordDim, CoordDim, Comm::CommOp::MIN); comm.Allreduce((ConstIterator)Xloc+1*CoordDim, (Iterator)Xglb+1*CoordDim, CoordDim, Comm::CommOp::MAX); for (Integer k = 0; k < CoordDim; k++) { R0 = std::max(R0, Xglb[1*CoordDim+k]-Xglb[0*CoordDim+k]); } R0 = R0 * 2.0; for (Integer k = 0; k < CoordDim; k++) { X0[k] = Xglb[k] - R0*0.25; } } if (period_length > 0) { R0 = period_length; } Vector PtSrc, PtTrg; Integer order_upsample = (Integer)(const_pi() / distance_factor + 0.5); { // Set PtSrc const Vector& X_elem_lst = elem_lst.ElemVector(); Vector dX_elem_lst; CoordBasis::Grad(dX_elem_lst, X_elem_lst); Matrix nds; Vector wts; TensorProductGaussQuad(nds, wts, order_upsample); const Long Nnds = nds.Dim(1); Vector X, dX; const auto CoordEvalOp = CoordBasis::SetupEval(nds); eval_basis(X, X_elem_lst, CoordDim, Nnds, CoordEvalOp); eval_basis(dX, dX_elem_lst, CoordDim * ElemDim, Nnds, CoordEvalOp); const Long N = X.Dim() / CoordDim; const Long Nelem = elem_lst.NElem(); SCTL_ASSERT(X.Dim() == N * CoordDim); SCTL_ASSERT(N == Nelem * Nnds); Long rank_offset, surf_rank_offset; { // Set rank_offset, surf_rank_offset comm.Scan(Ptr2ConstItr(&N,1), Ptr2Itr(&rank_offset,1), 1, Comm::CommOp::SUM); comm.Scan(Ptr2ConstItr(&Nelem,1), Ptr2Itr(&surf_rank_offset,1), 1, Comm::CommOp::SUM); surf_rank_offset -= Nelem; rank_offset -= N; } PtSrc.ReInit(N); const Real R0inv = 1.0 / R0; for (Long i = 0; i < N; i++) { // Set coord for (Integer k = 0; k < CoordDim; k++) { PtSrc[i].coord[k] = (X[i*CoordDim+k] - X0[k]) * R0inv; } } if (period_length > 0) { // Wrap-around coord for (Long i = 0; i < N; i++) { auto& x = PtSrc[i].coord; for (Integer k = 0; k < CoordDim; k++) { x[k] -= (Long)(x[k]); } } } for (Long i = 0; i < N; i++) { // Set radius2, mid, rank Integer depth = 0; { // Set radius2, depth Real radius2 = 0; for (Integer k0 = 0; k0 < ElemDim; k0++) { Real R2 = 0; for (Integer k1 = 0; k1 < CoordDim; k1++) { Real dX_ = dX[(i*CoordDim+k1)*ElemDim+k0]; R2 += dX_*dX_; } radius2 = std::max(radius2, R2); } radius2 *= R0inv*R0inv * distance_factor*distance_factor; PtSrc[i].radius2 = radius2; Long Rinv = (Long)(1.0/radius2); while (Rinv > 0) { Rinv = (Rinv>>2); depth++; } } PtSrc[i].mid = Morton((Iterator)PtSrc[i].coord, std::min(Morton::MaxDepth(),depth)); PtSrc[i].rank = rank_offset + i; } for (Long i = 0 ; i < Nelem; i++) { // Set surf_rank for (Long j = 0; j < Nnds; j++) { PtSrc[i*Nnds+j].surf_rank = surf_rank_offset + i; } } Vector PtSrcSorted; comm.HyperQuickSort(PtSrc, PtSrcSorted); PtSrc.Swap(PtSrcSorted); } { // Set PtTrg const Long N = Xt.Dim() / CoordDim; SCTL_ASSERT(Xt.Dim() == N * CoordDim); Long rank_offset; { // Set rank_offset comm.Scan(Ptr2ConstItr(&N,1), Ptr2Itr(&rank_offset,1), 1, Comm::CommOp::SUM); rank_offset -= N; } PtTrg.ReInit(N); const Real R0inv = 1.0 / R0; for (Long i = 0; i < N; i++) { // Set coord for (Integer k = 0; k < CoordDim; k++) { PtTrg[i].coord[k] = (Xt[i*CoordDim+k] - X0[k]) * R0inv; } } if (period_length > 0) { // Wrap-around coord for (Long i = 0; i < N; i++) { auto& x = PtTrg[i].coord; for (Integer k = 0; k < CoordDim; k++) { x[k] -= (Long)(x[k]); } } } for (Long i = 0; i < N; i++) { // Set radius2, mid, rank PtTrg[i].radius2 = 0; PtTrg[i].mid = Morton((Iterator)PtTrg[i].coord); PtTrg[i].rank = rank_offset + i; } if (trg_surf.Dim()) { // Set surf_rank SCTL_ASSERT(trg_surf.Dim() == N); for (Long i = 0; i < N; i++) { PtTrg[i].surf_rank = trg_surf[i]; } } else { for (Long i = 0; i < N; i++) { PtTrg[i].surf_rank = -1; } } Vector PtTrgSorted; comm.HyperQuickSort(PtTrg, PtTrgSorted); PtTrg.Swap(PtTrgSorted); } Tree tree(comm); { // Init tree Vector Xall(PtSrc.Dim()+PtTrg.Dim()); { // Set Xall Xall.ReInit((PtSrc.Dim()+PtTrg.Dim())*CoordDim); Long Nsrc = PtSrc.Dim(); Long Ntrg = PtTrg.Dim(); for (Long i = 0; i < Nsrc; i++) { for (Integer k = 0; k < CoordDim; k++) { Xall[i*CoordDim+k] = PtSrc[i].coord[k]; } } for (Long i = 0; i < Ntrg; i++) { for (Integer k = 0; k < CoordDim; k++) { Xall[(Nsrc+i)*CoordDim+k] = PtTrg[i].coord[k]; } } } tree.UpdateRefinement(Xall, 1000, true, period_length>0); } { // Repartition PtSrc, PtTrg PtData splitter; splitter.mid = tree.GetPartitionMID()[rank]; comm.PartitionS(PtSrc, splitter); comm.PartitionS(PtTrg, splitter); } { // Add tree data PtSrc const auto& node_mid = tree.GetNodeMID(); const Long N = node_mid.Dim(); SCTL_ASSERT(N); Vector dsp(N), cnt(N); for (Long i = 0; i < N; i++) { PtData m0; m0.mid = node_mid[i]; dsp[i] = std::lower_bound(PtSrc.begin(), PtSrc.end(), m0) - PtSrc.begin(); } for (Long i = 0; i < N-1; i++) { cnt[i] = dsp[i+1] - dsp[i]; } cnt[N-1] = PtSrc.Dim() - dsp[N-1]; tree.AddData("PtSrc", PtSrc, cnt); } tree.template Broadcast("PtSrc"); { // Build pair_lst Vector cnt; Vector PtSrc; tree.GetData(PtSrc, cnt, "PtSrc"); const auto& node_mid = tree.GetNodeMID(); const auto& node_attr = tree.GetNodeAttr(); Vector> nbr_mid_tmp; for (Long i = 0; i < node_mid.Dim(); i++) { if (node_attr[i].Leaf && !node_attr[i].Ghost) { Vector> child_mid; node_mid[i].Children(child_mid); for (const auto& trg_mid : child_mid) { Integer d0 = trg_mid.Depth(); Vector Src, Trg; { // Set Trg PtData m0, m1; m0.mid = trg_mid; m1.mid = trg_mid.Next(); Long a = std::lower_bound(PtTrg.begin(), PtTrg.end(), m0) - PtTrg.begin(); Long b = std::lower_bound(PtTrg.begin(), PtTrg.end(), m1) - PtTrg.begin(); Trg.ReInit(b-a, PtTrg.begin()+a, false); if (!Trg.Dim()) continue; } Vector> near_elem(Trg.Dim()); for (Integer d = 0; d <= d0; d++) { trg_mid.NbrList(nbr_mid_tmp, d, period_length>0); for (const auto& src_mid : nbr_mid_tmp) { // Set Src PtData m0, m1; m0.mid = src_mid; m1.mid = (d==d0 ? src_mid.Next() : src_mid.Ancestor(d+1)); Long a = std::lower_bound(PtSrc.begin(), PtSrc.end(), m0) - PtSrc.begin(); Long b = std::lower_bound(PtSrc.begin(), PtSrc.end(), m1) - PtSrc.begin(); Src.ReInit(b-a, PtSrc.begin()+a, false); if (!Src.Dim()) continue; for (Long t = 0; t < Trg.Dim(); t++) { // set near_elem[t] <-- {s : dist(s,t) < radius(s)} for (Long s = 0; s < Src.Dim(); s++) { if (Trg[t].surf_rank != Src[s].surf_rank) { Real R2 = 0; for (Integer k = 0; k < CoordDim; k++) { Real dx = (Src[s].coord[k] - Trg[t].coord[k]); R2 += dx * dx; } if (R2 < Src[s].radius2) { near_elem[t].insert(Src[s].surf_rank); } } } } } } for (Long t = 0; t < Trg.Dim(); t++) { // Set pair_lst for (Long elem_idx : near_elem[t]) { pair_lst.PushBack(Pair(elem_idx,Trg[t].rank)); } } } } } } { // Sort and repartition pair_lst Vector> pair_lst_sorted; comm.HyperQuickSort(pair_lst, pair_lst_sorted); Long surf_rank_offset; const Long Nelem = elem_lst.NElem(); comm.Scan(Ptr2ConstItr(&Nelem,1), Ptr2Itr(&surf_rank_offset,1), 1, Comm::CommOp::SUM); surf_rank_offset -= Nelem; comm.PartitionS(pair_lst_sorted, Pair(surf_rank_offset,0)); pair_lst.Swap(pair_lst_sorted); } } template static void BuildNbrListDeprecated(Vector>& pair_lst, const Vector& Xt, const ElemList& elem_lst, const Matrix& surf_nds, Real distance_factor) { using CoordBasis = typename ElemList::CoordBasis; constexpr Integer CoordDim = ElemList::CoordDim(); constexpr Integer ElemDim = ElemList::ElemDim(); const Long Nelem = elem_lst.NElem(); const Long Ntrg = Xt.Dim() / CoordDim; SCTL_ASSERT(Xt.Dim() == Ntrg * CoordDim); Long Nnds, Nsurf_nds; Vector X_surf, X, dX; Integer order_upsample = (Integer)(const_pi() / distance_factor + 0.5); { // Set X, dX const Vector& X_elem_lst = elem_lst.ElemVector(); Vector dX_elem_lst; CoordBasis::Grad(dX_elem_lst, X_elem_lst); Matrix nds_upsample; Vector wts_upsample; TensorProductGaussQuad(nds_upsample, wts_upsample, order_upsample); Nnds = nds_upsample.Dim(1); const auto CoordEvalOp = CoordBasis::SetupEval(nds_upsample); eval_basis(X, X_elem_lst, CoordDim, nds_upsample.Dim(1), CoordEvalOp); eval_basis(dX, dX_elem_lst, CoordDim * ElemDim, nds_upsample.Dim(1), CoordEvalOp); Nsurf_nds = surf_nds.Dim(1); const auto CoordEvalOp_surf = CoordBasis::SetupEval(surf_nds); eval_basis(X_surf, X_elem_lst, CoordDim, Nsurf_nds, CoordEvalOp_surf); } Real d2 = distance_factor * distance_factor; for (Long i = 0; i < Nelem; i++) { std::set near_pts; std::set self_pts; for (Long j = 0; j < Nnds; j++) { Real R2_max = 0; StaticArray X0; for (Integer k = 0; k < CoordDim; k++) { X0[k] = X[(i*Nnds+j)*CoordDim+k]; } for (Integer k0 = 0; k0 < ElemDim; k0++) { Real R2 = 0; for (Integer k1 = 0; k1 < CoordDim; k1++) { Real dX_ = dX[((i*Nnds+j)*CoordDim+k1)*ElemDim+k0]; R2 += dX_*dX_; } R2_max = std::max(R2_max, R2*d2); } for (Long k = 0; k < Ntrg; k++) { Real R2 = 0; for (Integer l = 0; l < CoordDim; l++) { Real dX = Xt[k*CoordDim+l]- X0[l]; R2 += dX * dX; } if (R2 < R2_max) near_pts.insert(k); } } for (Long j = 0; j < Nsurf_nds; j++) { StaticArray X0; for (Integer k = 0; k < CoordDim; k++) { X0[k] = X_surf[(i*Nsurf_nds+j)*CoordDim+k]; } for (Long k = 0; k < Ntrg; k++) { Real R2 = 0; for (Integer l = 0; l < CoordDim; l++) { Real dX = Xt[k*CoordDim+l]- X0[l]; R2 += dX * dX; } if (R2 == 0) self_pts.insert(k); } } for (Long trg_idx : self_pts) { near_pts.erase(trg_idx); } for (Long trg_idx : near_pts) { pair_lst.PushBack(Pair(i,trg_idx)); } } } template static void SetupNearSingular(Matrix& M_near_singular, Vector>& pair_lst, const Vector& Xt_, const Vector& trg_surf, const ElemList& elem_lst, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) { static_assert(std::is_same::value); static_assert(std::is_same::value); static_assert(DensityBasis::Dim() == ElemList::ElemDim()); using CoordBasis = typename ElemList::CoordBasis; using CoordEvalOpType = typename CoordBasis::EvalOpType; using DensityEvalOpType = typename DensityBasis::EvalOpType; constexpr Integer CoordDim = ElemList::CoordDim(); constexpr Integer ElemDim = ElemList::ElemDim(); constexpr Integer KDIM0 = Kernel::SrcDim(); constexpr Integer KDIM1 = Kernel::TrgDim(); const Long Nelem = elem_lst.NElem(); BuildNbrList(pair_lst, Xt_, trg_surf, elem_lst, 2.5/order_direct, period_length, comm); const Long Ninterac = pair_lst.Dim(); Vector Xt; { // Set Xt Integer rank = comm.Rank(); Integer np = comm.Size(); Vector splitter_ranks; { // Set splitter_ranks Vector cnt(np); const Long N = Xt_.Dim() / CoordDim; comm.Allgather(Ptr2ConstItr(&N,1), 1, cnt.begin(), 1); scan(splitter_ranks, cnt); } Vector scatter_index, recv_index, recv_cnt(np), recv_dsp(np); { // Set scatter_index, recv_index, recv_cnt, recv_dsp { // Set scatter_index, recv_index Vector> scatter_pair(pair_lst.Dim()); for (Long i = 0; i < pair_lst.Dim(); i++) { scatter_pair[i] = Pair(pair_lst[i].second,i); } omp_par::merge_sort(scatter_pair.begin(), scatter_pair.end()); recv_index.ReInit(scatter_pair.Dim()); scatter_index.ReInit(scatter_pair.Dim()); for (Long i = 0; i < scatter_index.Dim(); i++) { recv_index[i] = scatter_pair[i].first; scatter_index[i] = scatter_pair[i].second; } } for (Integer i = 0; i < np; i++) { recv_dsp[i] = std::lower_bound(recv_index.begin(), recv_index.end(), splitter_ranks[i]) - recv_index.begin(); } for (Integer i = 0; i < np-1; i++) { recv_cnt[i] = recv_dsp[i+1] - recv_dsp[i]; } recv_cnt[np-1] = recv_index.Dim() - recv_dsp[np-1]; } Vector send_index, send_cnt(np), send_dsp(np); { // Set send_index, send_cnt, send_dsp comm.Alltoall(recv_cnt.begin(), 1, send_cnt.begin(), 1); scan(send_dsp, send_cnt); send_index.ReInit(send_cnt[np-1] + send_dsp[np-1]); comm.Alltoallv(recv_index.begin(), recv_cnt.begin(), recv_dsp.begin(), send_index.begin(), send_cnt.begin(), send_dsp.begin()); } Vector Xt_send(send_index.Dim() * CoordDim); for (Long i = 0; i < send_index.Dim(); i++) { // Set Xt_send Long idx = send_index[i] - splitter_ranks[rank]; for (Integer k = 0; k < CoordDim; k++) { Xt_send[i*CoordDim+k] = Xt_[idx*CoordDim+k]; } } Vector Xt_recv(recv_index.Dim() * CoordDim); { // Set Xt_recv for (Long i = 0; i < np; i++) { send_cnt[i] *= CoordDim; send_dsp[i] *= CoordDim; recv_cnt[i] *= CoordDim; recv_dsp[i] *= CoordDim; } comm.Alltoallv(Xt_send.begin(), send_cnt.begin(), send_dsp.begin(), Xt_recv.begin(), recv_cnt.begin(), recv_dsp.begin()); } Xt.ReInit(scatter_index.Dim() * CoordDim); for (Long i = 0; i < scatter_index.Dim(); i++) { // Set Xt Long idx = scatter_index[i]; for (Integer k = 0; k < CoordDim; k++) { Xt[idx*CoordDim+k] = Xt_recv[i*CoordDim+k]; } } } const Vector& X = elem_lst.ElemVector(); Vector dX; CoordBasis::Grad(dX, X); Long elem_rank_offset; { // Set elem_rank_offset comm.Scan(Ptr2ConstItr(&Nelem,1), Ptr2Itr(&elem_rank_offset,1), 1, Comm::CommOp::SUM); elem_rank_offset -= Nelem; } auto& M = M_near_singular; M.ReInit(Ninterac * KDIM0 * DensityBasis::Size(), KDIM1); #pragma omp parallel for schedule(static) for (Long j = 0; j < Ninterac; j++) { // Set M (near-singular) const Long src_idx = pair_lst[j].first - elem_rank_offset; Real adapt = -1.0; Tensor u0; { // Set u0 (project target point to the surface patch in parameter space) ConstIterator Xt_ = Xt.begin() + j * CoordDim; const auto& nodes = CoordBasis::Nodes(); Long min_idx = -1; Real min_R2 = 1e10; for (Long i = 0; i < CoordBasis::Size(); i++) { Real R2 = 0; for (Integer k = 0; k < CoordDim; k++) { Real dX = X[src_idx * CoordDim + k][i] - Xt_[k]; R2 += dX * dX; } if (R2 < min_R2) { min_R2 = R2; min_idx = i; } } SCTL_ASSERT(min_idx >= 0); for (Integer k = 0; k < ElemDim; k++) { u0(k,0) = nodes[k][min_idx]; } for (Integer i = 0; i < 2; i++) { // iterate Matrix X_, dX_; for (Integer k = 0; k < ElemDim; k++) { u0(k,0) = std::min(1.0, u0(k,0)); u0(k,0) = std::max(0.0, u0(k,0)); } const auto eval_op = CoordBasis::SetupEval(Matrix(ElemDim,1,u0.begin(),false)); CoordBasis::Eval(X_, Vector(CoordDim,(Iterator)X.begin()+src_idx*CoordDim,false),eval_op); CoordBasis::Eval(dX_, Vector(CoordDim*ElemDim,dX.begin()+src_idx*CoordDim*ElemDim,false),eval_op); const Tensor x0((Iterator)Xt_); const Tensor x(X_.begin()); const Tensor x_u(dX_.begin()); auto inv = [](const Tensor& M) { Tensor Minv; Real det_inv = 1.0 / (M(0,0)*M(1,1) - M(1,0)*M(0,1)); Minv(0,0) = M(1,1) * det_inv; Minv(0,1) =-M(0,1) * det_inv; Minv(1,0) =-M(1,0) * det_inv; Minv(1,1) = M(0,0) * det_inv; return Minv; }; auto du = inv(x_u.RotateRight()*x_u) * x_u.RotateRight()*(x0-x); u0 = u0 + du; auto x_u_squared = x_u.RotateRight() * x_u; adapt = sctl::sqrt( ((x0-x).RotateRight()*(x0-x))(0,0) / std::max(x_u_squared(0,0),x_u_squared(1,1)) ); } } Matrix quad_nds; Vector quad_wts; DuffyQuad(quad_nds, quad_wts, Vector(ElemDim,u0.begin(),false), order_singular, adapt); const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds); Integer Nnds = quad_wts.Dim(); Vector X_, dX_, Xa_, Xn_; { // Set X_, dX_ const Vector X__(CoordDim, (Iterator)X.begin() + src_idx * CoordDim, false); const Vector dX__(CoordDim * ElemDim, (Iterator)dX.begin() + src_idx * CoordDim * ElemDim, false); eval_basis(X_, X__, CoordDim, Nnds, CoordEvalOp); eval_basis(dX_, dX__, CoordDim * ElemDim, Nnds, CoordEvalOp); } if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_ Xa_.ReInit(Nnds); Xn_.ReInit(Nnds*CoordDim); for (Long j = 0; j < Nnds; j++) { StaticArray normal; normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3]; normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5]; normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1]; Xa_[j] = sctl::sqrt(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]); Real invXa = 1/Xa_[j]; Xn_[j*3+0] = normal[0] * invXa; Xn_[j*3+1] = normal[1] * invXa; Xn_[j*3+2] = normal[2] * invXa; } } DensityEvalOpType DensityEvalOp; if (std::is_same::value) { DensityEvalOp = CoordEvalOp; } else { DensityEvalOp = DensityBasis::SetupEval(quad_nds); } Matrix M__(Nnds * KDIM0, KDIM1); { // Set kernel matrix M__ const Vector X0_(CoordDim, (Iterator)Xt.begin() + j * CoordDim, false); kernel.template KernelMatrix(M__, X0_, X_, Xn_); } for (Long k0 = 0; k0 < KDIM0; k0++) { for (Long k1 = 0; k1 < KDIM1; k1++) { for (Long l = 0; l < DensityBasis::Size(); l++) { Real M_lk = 0; for (Long n = 0; n < Nnds; n++) { Real quad_wt = Xa_[n] * quad_wts[n]; M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1]; } M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1] = M_lk; } } } } { // Set M (subtract direct) Matrix quad_nds; Vector quad_wts; TensorProductGaussQuad(quad_nds, quad_wts, order_direct); const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds); Integer Nnds = quad_wts.Dim(); Vector X_, dX_, Xa_, Xn_; { // Set X_, dX_ eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp); eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp); } if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_ Long N = Nelem*Nnds; Xa_.ReInit(N); Xn_.ReInit(N*CoordDim); for (Long j = 0; j < N; j++) { StaticArray normal; normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3]; normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5]; normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1]; Xa_[j] = sctl::sqrt(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]); Real invXa = 1/Xa_[j]; Xn_[j*3+0] = normal[0] * invXa; Xn_[j*3+1] = normal[1] * invXa; Xn_[j*3+2] = normal[2] * invXa; } } DensityEvalOpType DensityEvalOp; if (std::is_same::value) { DensityEvalOp = CoordEvalOp; } else { DensityEvalOp = DensityBasis::SetupEval(quad_nds); } #pragma omp parallel for schedule(static) for (Long j = 0; j < Ninterac; j++) { // Subtract direct contribution const Long src_idx = pair_lst[j].first - elem_rank_offset; Matrix M__(Nnds * KDIM0, KDIM1); { // Set kernel matrix M__ const Vector X0_(CoordDim, (Iterator)Xt.begin() + j * CoordDim, false); Vector X__(Nnds * CoordDim, X_.begin() + src_idx * Nnds * CoordDim, false); Vector Xn__(Nnds * CoordDim, Xn_.begin() + src_idx * Nnds * CoordDim, false); kernel.template KernelMatrix(M__, X0_, X__, Xn__); } for (Long k0 = 0; k0 < KDIM0; k0++) { for (Long k1 = 0; k1 < KDIM1; k1++) { for (Long l = 0; l < DensityBasis::Size(); l++) { Real M_lk = 0; for (Long n = 0; n < Nnds; n++) { Real quad_wt = Xa_[src_idx * Nnds + n] * quad_wts[n]; M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1]; } M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1] -= M_lk; } } } } } } template static void EvalNearSingular(Vector& U, const Vector& density, const Matrix& M, const Vector>& pair_lst, Long Nelem_, Long Ntrg_, Integer KDIM0_, Integer KDIM1_, const Comm& comm) { const Long Ninterac = pair_lst.Dim(); const Integer dof = density.Dim() / Nelem_ / KDIM0_; SCTL_ASSERT(density.Dim() == Nelem_ * dof * KDIM0_); Long elem_rank_offset; { // Set elem_rank_offset comm.Scan(Ptr2ConstItr(&Nelem_,1), Ptr2Itr(&elem_rank_offset,1), 1, Comm::CommOp::SUM); elem_rank_offset -= Nelem_; } Vector U_loc(Ninterac*dof*KDIM1_); for (Long j = 0; j < Ninterac; j++) { const Long src_idx = pair_lst[j].first - elem_rank_offset; const Matrix M_(KDIM0_ * DensityBasis::Size(), KDIM1_, (Iterator)M[j * KDIM0_ * DensityBasis::Size()], false); Matrix U_(dof, KDIM1_, U_loc.begin() + j*dof*KDIM1_, false); Matrix F_(dof, KDIM0_ * DensityBasis::Size()); for (Long i = 0; i < dof; i++) { for (Long k = 0; k < KDIM0_; k++) { for (Long l = 0; l < DensityBasis::Size(); l++) { F_[i][k * DensityBasis::Size() + l] = density[(src_idx * dof + i) * KDIM0_ + k][l]; } } } Matrix::GEMM(U_, F_, M_); } if (U.Dim() != Ntrg_ * dof * KDIM1_) { U.ReInit(Ntrg_ * dof * KDIM1_); U = 0; } { // Set U Integer rank = comm.Rank(); Integer np = comm.Size(); Vector splitter_ranks; { // Set splitter_ranks Vector cnt(np); comm.Allgather(Ptr2ConstItr(&Ntrg_,1), 1, cnt.begin(), 1); scan(splitter_ranks, cnt); } Vector scatter_index, send_index, send_cnt(np), send_dsp(np); { // Set scatter_index, send_index, send_cnt, send_dsp { // Set scatter_index, send_index Vector> scatter_pair(pair_lst.Dim()); for (Long i = 0; i < pair_lst.Dim(); i++) { scatter_pair[i] = Pair(pair_lst[i].second,i); } omp_par::merge_sort(scatter_pair.begin(), scatter_pair.end()); send_index.ReInit(scatter_pair.Dim()); scatter_index.ReInit(scatter_pair.Dim()); for (Long i = 0; i < scatter_index.Dim(); i++) { send_index[i] = scatter_pair[i].first; scatter_index[i] = scatter_pair[i].second; } } for (Integer i = 0; i < np; i++) { send_dsp[i] = std::lower_bound(send_index.begin(), send_index.end(), splitter_ranks[i]) - send_index.begin(); } for (Integer i = 0; i < np-1; i++) { send_cnt[i] = send_dsp[i+1] - send_dsp[i]; } send_cnt[np-1] = send_index.Dim() - send_dsp[np-1]; } Vector recv_index, recv_cnt(np), recv_dsp(np); { // Set recv_index, recv_cnt, recv_dsp comm.Alltoall(send_cnt.begin(), 1, recv_cnt.begin(), 1); scan(recv_dsp, recv_cnt); recv_index.ReInit(recv_cnt[np-1] + recv_dsp[np-1]); comm.Alltoallv(send_index.begin(), send_cnt.begin(), send_dsp.begin(), recv_index.begin(), recv_cnt.begin(), recv_dsp.begin()); } Vector U_send(scatter_index.Dim() * dof * KDIM1_); for (Long i = 0; i < scatter_index.Dim(); i++) { Long idx = scatter_index[i]*dof*KDIM1_; for (Long k = 0; k < dof * KDIM1_; k++) { U_send[i*dof*KDIM1_ + k] = U_loc[idx + k]; } } Vector U_recv(recv_index.Dim() * dof * KDIM1_); { // Set U_recv for (Long i = 0; i < np; i++) { send_cnt[i] *= dof * KDIM1_; send_dsp[i] *= dof * KDIM1_; recv_cnt[i] *= dof * KDIM1_; recv_dsp[i] *= dof * KDIM1_; } comm.Alltoallv(U_send.begin(), send_cnt.begin(), send_dsp.begin(), U_recv.begin(), recv_cnt.begin(), recv_dsp.begin()); } for (Long i = 0; i < recv_index.Dim(); i++) { // Set U Long idx = (recv_index[i] - splitter_ranks[rank]) * dof * KDIM1_; for (Integer k = 0; k < dof * KDIM1_; k++) { U[idx + k] += U_recv[i*dof*KDIM1_ + k]; } } } } template static void Direct(Vector& U, const Vector& Xt, const ElemList& elem_lst, const Vector& density, const Kernel& kernel, Integer order_direct, const Comm& comm) { using CoordBasis = typename ElemList::CoordBasis; using CoordEvalOpType = typename CoordBasis::EvalOpType; using DensityEvalOpType = typename DensityBasis::EvalOpType; constexpr Integer CoordDim = ElemList::CoordDim(); constexpr Integer ElemDim = ElemList::ElemDim(); constexpr Integer KDIM0 = Kernel::SrcDim(); constexpr Integer KDIM1 = Kernel::TrgDim(); const Long Nelem = elem_lst.NElem(); const Integer dof = density.Dim() / Nelem / KDIM0; SCTL_ASSERT(density.Dim() == Nelem * dof * KDIM0); Matrix quad_nds; Vector quad_wts; TensorProductGaussQuad(quad_nds, quad_wts, order_direct); const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds); Integer Nnds = quad_wts.Dim(); const Vector& X = elem_lst.ElemVector(); Vector dX; CoordBasis::Grad(dX, X); Vector X_, dX_, Xa_, Xn_; eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp); eval_basis(dX_, dX, CoordDim*ElemDim, Nnds, CoordEvalOp); if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_ Long N = Nelem*Nnds; Xa_.ReInit(N); Xn_.ReInit(N*CoordDim); for (Long j = 0; j < N; j++) { StaticArray normal; normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3]; normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5]; normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1]; Xa_[j] = sctl::sqrt(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]); Real invXa = 1/Xa_[j]; Xn_[j*3+0] = normal[0] * invXa; Xn_[j*3+1] = normal[1] * invXa; Xn_[j*3+2] = normal[2] * invXa; } } Vector Fa_; { // Set Fa_ Vector F_; if (std::is_same::value) { eval_basis(F_, density, dof * KDIM0, Nnds, CoordEvalOp); } else { const DensityEvalOpType EvalOp = DensityBasis::SetupEval(quad_nds); eval_basis(F_, density, dof * KDIM0, Nnds, EvalOp); } Fa_.ReInit(F_.Dim()); const Integer DensityDOF = dof * KDIM0; SCTL_ASSERT(F_.Dim() == Nelem * Nnds * DensityDOF); for (Long j = 0; j < Nelem; j++) { for (Integer k = 0; k < Nnds; k++) { Long idx = j * Nnds + k; Real quad_wt = Xa_[idx] * quad_wts[k]; for (Integer l = 0; l < DensityDOF; l++) { Fa_[idx * DensityDOF + l] = F_[idx * DensityDOF + l] * quad_wt; } } } } { // Evaluate potential const Long Ntrg = Xt.Dim() / CoordDim; SCTL_ASSERT(Xt.Dim() == Ntrg * CoordDim); if (U.Dim() != Ntrg * dof * KDIM1) { U.ReInit(Ntrg * dof * KDIM1); U = 0; } ParticleFMM::Eval(U, Xt, X_, Xn_, Fa_, kernel, comm); } } public: template void Setup(const ElemList& elem_lst, const Vector& Xt, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) { Xt_.ReInit(0); M_singular.ReInit(0,0); M_near_singular.ReInit(0,0); pair_lst.ReInit(0); order_direct_ = order_direct; period_length_ = period_length; comm_ = comm; Profile::Tic("Setup", &comm_); static_assert(std::is_same::value); static_assert(std::is_same::value); static_assert(DensityBasis::Dim() == ElemList::ElemDim()); Xt_ = Xt; M_singular.ReInit(0,0); Profile::Tic("SetupNearSingular", &comm_); SetupNearSingular(M_near_singular, pair_lst, Xt_, Vector(), elem_lst, kernel, order_singular, order_direct_, period_length_, comm_); Profile::Toc(); Profile::Toc(); } template void Setup(const ElemList& elem_lst, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm, Real Rqbx = 0) { Xt_.ReInit(0); M_singular.ReInit(0,0); M_near_singular.ReInit(0,0); pair_lst.ReInit(0); order_direct_ = order_direct; period_length_ = period_length; comm_ = comm; Profile::Tic("Setup", &comm_); static_assert(std::is_same::value); static_assert(std::is_same::value); static_assert(std::is_same::value); static_assert(PotentialBasis::Dim() == ElemList::ElemDim()); static_assert(DensityBasis::Dim() == ElemList::ElemDim()); Vector trg_surf; { // Set Xt_ using CoordBasis = typename ElemList::CoordBasis; Matrix trg_nds = PotentialBasis::Nodes(); auto Meval = CoordBasis::SetupEval(trg_nds); eval_basis(Xt_, elem_lst.ElemVector(), ElemList::CoordDim(), trg_nds.Dim(1), Meval); { // Set trg_surf const Long Nelem = elem_lst.NElem(); const Long Nnds = trg_nds.Dim(1); Long elem_offset; { // Set elem_offset comm.Scan(Ptr2ConstItr(&Nelem,1), Ptr2Itr(&elem_offset,1), 1, Comm::CommOp::SUM); elem_offset -= Nelem; } trg_surf.ReInit(elem_lst.NElem() * trg_nds.Dim(1)); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnds; j++) { trg_surf[i*Nnds+j] = elem_offset + i; } } } } Profile::Tic("SetupSingular", &comm_); SetupSingular(M_singular, PotentialBasis::Nodes(), elem_lst, kernel, order_singular, order_direct_, Rqbx); Profile::Toc(); Profile::Tic("SetupNearSingular", &comm_); SetupNearSingular(M_near_singular, pair_lst, Xt_, trg_surf, elem_lst, kernel, order_singular, order_direct_, period_length_, comm_); Profile::Toc(); Profile::Toc(); } template void Eval(Vector& U, const ElemList& elements, const Vector& F, const Kernel& kernel) { Profile::Tic("Eval", &comm_); Matrix U_singular; Vector U_direct, U_near_sing; Profile::Tic("EvalDirect", &comm_); Direct(U_direct, Xt_, elements, F, kernel, order_direct_, comm_); Profile::Toc(); Profile::Tic("EvalSingular", &comm_); EvalSingular(U_singular, F, M_singular, kernel.SrcDim(), kernel.TrgDim()); Profile::Toc(); Profile::Tic("EvalNearSingular", &comm_); EvalNearSingular(U_near_sing, F, M_near_singular, pair_lst, elements.NElem(), Xt_.Dim() / ElemList::CoordDim(), kernel.SrcDim(), kernel.TrgDim(), comm_); SCTL_ASSERT(U_near_sing.Dim() == U_direct.Dim()); Profile::Toc(); const Long dof = U_direct.Dim() / (elements.NElem() * PotentialBasis::Size() * kernel.TrgDim()); SCTL_ASSERT(U_direct .Dim() == elements.NElem() * PotentialBasis::Size() * dof * kernel.TrgDim()); SCTL_ASSERT(U_near_sing.Dim() == elements.NElem() * PotentialBasis::Size() * dof * kernel.TrgDim()); if (U.Dim() != elements.NElem() * dof * kernel.TrgDim()) { U.ReInit(elements.NElem() * dof * kernel.TrgDim()); } for (int i = 0; i < elements.NElem(); i++) { for (int j = 0; j < PotentialBasis::Size(); j++) { for (int k = 0; k < dof*kernel.TrgDim(); k++) { Real& U_ = U[i*dof*kernel.TrgDim()+k][j]; U_ = 0; U_ += U_direct [(i*PotentialBasis::Size()+j)*dof*kernel.TrgDim()+k]; U_ += U_near_sing[(i*PotentialBasis::Size()+j)*dof*kernel.TrgDim()+k]; U_ *= kernel.template ScaleFactor(); } } } if (U_singular.Dim(1)) { SCTL_ASSERT(U_singular.Dim(0) == elements.NElem() * dof * kernel.TrgDim()); SCTL_ASSERT(U_singular.Dim(1) == PotentialBasis::Size()); for (int i = 0; i < elements.NElem(); i++) { for (int j = 0; j < PotentialBasis::Size(); j++) { for (int k = 0; k < dof*kernel.TrgDim(); k++) { U[i*dof*kernel.TrgDim()+k][j] += U_singular[i*dof*kernel.TrgDim()+k][j] * kernel.template ScaleFactor(); } } } } Profile::Toc(); } template void Eval(Vector& U, const ElemList& elements, const Vector& F, const Kernel& kernel) { Profile::Tic("Eval", &comm_); Matrix U_singular; Vector U_direct, U_near_sing; Profile::Tic("EvalDirect", &comm_); Direct(U_direct, Xt_, elements, F, kernel, order_direct_, comm_); Profile::Toc(); Profile::Tic("EvalSingular", &comm_); EvalSingular(U_singular, F, M_singular, kernel.SrcDim(), kernel.TrgDim()); Profile::Toc(); Profile::Tic("EvalNearSingular", &comm_); EvalNearSingular(U_near_sing, F, M_near_singular, pair_lst, elements.NElem(), Xt_.Dim() / ElemList::CoordDim(), kernel.SrcDim(), kernel.TrgDim(), comm_); SCTL_ASSERT(U_near_sing.Dim() == U_direct.Dim()); Profile::Toc(); Long Nt = Xt_.Dim() / ElemList::CoordDim(); const Long dof = U_direct.Dim() / (Nt * kernel.TrgDim()); SCTL_ASSERT(U_direct.Dim() == Nt * dof * kernel.TrgDim()); if (U.Dim() != U_direct.Dim()) { U.ReInit(U_direct.Dim()); } for (int i = 0; i < U.Dim(); i++) { U[i] = (U_direct[i] + U_near_sing[i]) * kernel.template ScaleFactor(); } if (U_singular.Dim(1)) { SCTL_ASSERT(U_singular.Dim(0) == elements.NElem() * dof * kernel.TrgDim()); const Long Nnodes = U_singular.Dim(1); for (int i = 0; i < elements.NElem(); i++) { for (int j = 0; j < Nnodes; j++) { for (int k = 0; k < dof*kernel.TrgDim(); k++) { Real& U_ = U[(i*Nnodes+j)*dof*kernel.TrgDim()+k]; U_ += U_singular[i*dof*kernel.TrgDim()+k][j] * kernel.template ScaleFactor(); } } } } Profile::Toc(); } template static void test(Integer order_singular = 10, Integer order_direct = 5, const Comm& comm = Comm::World()) { constexpr Integer COORD_DIM = 3; constexpr Integer ELEM_DIM = COORD_DIM-1; using ElemList = ElemList>; using DensityBasis = Basis; using PotentialBasis = Basis; int np = comm.Size(); int rank = comm.Rank(); auto build_torus = [rank,np](ElemList& elements, long Nt, long Np, Real Rmajor, Real Rminor){ auto nodes = ElemList::CoordBasis::Nodes(); auto torus = [](Real theta, Real phi, Real Rmajor, Real Rminor) { Real R = Rmajor + Rminor * cos(phi); Real X = R * cos(theta); Real Y = R * sin(theta); Real Z = Rminor * sin(phi); return std::make_tuple(X,Y,Z); }; long start = Nt*Np*(rank+0)/np; long end = Nt*Np*(rank+1)/np; elements.ReInit(end - start); for (long ii = start; ii < end; ii++) { long i = ii / Np; long j = ii % Np; for (int k = 0; k < ElemList::CoordBasis::Size(); k++) { Real X, Y, Z; Real theta = 2 * const_pi() * (i + nodes[0][k]) / Nt; Real phi = 2 * const_pi() * (j + nodes[1][k]) / Np; std::tie(X,Y,Z) = torus(theta, phi, Rmajor, Rminor); elements(ii-start,0)[k] = X; elements(ii-start,1)[k] = Y; elements(ii-start,2)[k] = Z; } } }; ElemList elements_src, elements_trg; build_torus(elements_src, 28, 16, 2, 1.0); build_torus(elements_trg, 29, 17, 2, 0.99); Vector Xt; Vector U_onsurf, U_offsurf; Vector density_sl, density_dl; { // Set Xt, elements_src, elements_trg, density_sl, density_dl, U Real X0[COORD_DIM] = {3,2,1}; std::function potential = [X0](Real* U, Real* X, Real* Xn) { Real dX[COORD_DIM] = {X[0]-X0[0],X[1]-X0[1],X[2]-X0[2]}; Real Rinv = 1/sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dX[2]); U[0] = Rinv; }; std::function potential_normal_derivative = [X0](Real* U, Real* X, Real* Xn) { Real dX[COORD_DIM] = {X[0]-X0[0],X[1]-X0[1],X[2]-X0[2]}; Real Rinv = 1/sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dX[2]); Real RdotN = dX[0]*Xn[0]+dX[1]*Xn[1]+dX[2]*Xn[2]; U[0] = -RdotN * Rinv*Rinv*Rinv; }; DiscretizeSurfaceFn(density_sl, elements_src, potential_normal_derivative); DiscretizeSurfaceFn(density_dl, elements_src, potential); DiscretizeSurfaceFn(U_onsurf , elements_src, potential); DiscretizeSurfaceFn(U_offsurf , elements_trg, potential); for (long i = 0; i < elements_trg.NElem(); i++) { // Set Xt for (long j = 0; j < PotentialBasis::Size(); j++) { for (int k = 0; k < COORD_DIM; k++) { Xt.PushBack(elements_trg(i,k)[j]); } } } } GenericKernel Laplace_DxU; GenericKernel Laplace_FxU; Profile::Enable(true); if (1) { // Greeen's identity test (Laplace, on-surface) Profile::Tic("OnSurface", &comm); Quadrature quadrature_DxU, quadrature_FxU; quadrature_FxU.Setup(elements_src, Laplace_FxU, order_singular, order_direct, -1.0, comm); quadrature_DxU.Setup(elements_src, Laplace_DxU, order_singular, order_direct, -1.0, comm); Vector U_sl, U_dl; quadrature_FxU.Eval(U_sl, elements_src, density_sl, Laplace_FxU); quadrature_DxU.Eval(U_dl, elements_src, density_dl, Laplace_DxU); Profile::Toc(); Real max_err = 0; Vector err(U_onsurf.Dim()); for (long i = 0; i < U_sl.Dim(); i++) { for (long j = 0; j < PotentialBasis::Size(); j++) { err[i][j] = 0.5*U_onsurf[i][j] - (U_sl[i][j] + U_dl[i][j]); max_err = std::max(max_err, fabs(err[i][j])); } } { // Print error Real glb_err; comm.Allreduce(Ptr2ConstItr(&max_err,1), Ptr2Itr(&glb_err,1), 1, Comm::CommOp::MAX); if (!comm.Rank()) std::cout<<"Error = "< quadrature_DxU, quadrature_FxU; quadrature_FxU.Setup(elements_src, Xt, Laplace_FxU, order_singular, order_direct, -1.0, comm); quadrature_DxU.Setup(elements_src, Xt, Laplace_DxU, order_singular, order_direct, -1.0, comm); Vector U_sl, U_dl; quadrature_FxU.Eval(U_sl, elements_src, density_sl, Laplace_FxU); quadrature_DxU.Eval(U_dl, elements_src, density_dl, Laplace_DxU); Profile::Toc(); Real max_err = 0; Vector err(elements_trg.NElem()); for (long i = 0; i < elements_trg.NElem(); i++) { for (long j = 0; j < PotentialBasis::Size(); j++) { err[i][j] = U_offsurf[i][j] - (U_sl[i*PotentialBasis::Size()+j] + U_dl[i*PotentialBasis::Size()+j]); max_err = std::max(max_err, fabs(err[i][j])); } } { // Print error Real glb_err; comm.Allreduce(Ptr2ConstItr(&max_err,1), Ptr2Itr(&glb_err,1), 1, Comm::CommOp::MAX); if (!comm.Rank()) std::cout<<"Error = "<>; using DensityBasis = Basis; using PotentialBasis = Basis; int np = comm.Size(); int rank = comm.Rank(); auto build_sphere = [rank,np](ElemList& elements, Real X, Real Y, Real Z, Real R){ auto nodes = ElemList::CoordBasis::Nodes(); long start = 2*COORD_DIM*(rank+0)/np; long end = 2*COORD_DIM*(rank+1)/np; elements.ReInit(end - start); for (long ii = start; ii < end; ii++) { long i = ii / 2; long j = ii % 2; for (int k = 0; k < ElemList::CoordBasis::Size(); k++) { Real coord[COORD_DIM]; coord[(i+0)%COORD_DIM] = (j ? -1.0 : 1.0); coord[(i+1)%COORD_DIM] = 2.0 * nodes[j?1:0][k] - 1.0; coord[(i+2)%COORD_DIM] = 2.0 * nodes[j?0:1][k] - 1.0; Real R0 = sqrt(coord[0]*coord[0] + coord[1]*coord[1] + coord[2]*coord[2]); elements(ii-start,0)[k] = X + R * coord[0] / R0; elements(ii-start,1)[k] = Y + R * coord[1] / R0; elements(ii-start,2)[k] = Z + R * coord[2] / R0; } } }; ElemList elements; build_sphere(elements, 0.0, 0.0, 0.0, 1.00); Vector density_sl; { // Set density_sl std::function sigma = [](Real* U, Real* X, Real* Xn) { Real R = sqrt(X[0]*X[0]+X[1]*X[1]+X[2]*X[2]); Real sinp = sqrt(X[1]*X[1] + X[2]*X[2]) / R; Real cosp = -X[0] / R; U[0] = -1.5; U[1] = 0; U[2] = 0; }; DiscretizeSurfaceFn(density_sl, elements, sigma); } GenericKernel Stokes_DxU; GenericKernel Stokes_FxU; Profile::Enable(true); if (1) { Vector U; Quadrature quadrature_FxU; quadrature_FxU.Setup(elements, Stokes_FxU, order_singular, order_direct, -1.0, comm); quadrature_FxU.Eval(U, elements, density_sl, Stokes_FxU); { // Write VTK output VTUData vtu; vtu.AddElems(elements, U, ORDER); vtu.WriteVTK("U", comm); } { // Write VTK output VTUData vtu; vtu.AddElems(elements, density_sl, ORDER); vtu.WriteVTK("sigma", comm); } } Profile::print(&comm); } private: static void scan(Vector& dsp, const Vector& cnt) { dsp.ReInit(cnt.Dim()); if (cnt.Dim()) dsp[0] = 0; omp_par::scan(cnt.begin(), dsp.begin(), cnt.Dim()); } template static void eval_basis(Vector& value, const Vector X, Integer dof, Integer Nnds, const typename Basis::EvalOpType& EvalOp) { Long Nelem = X.Dim() / dof; SCTL_ASSERT(X.Dim() == Nelem * dof); value.ReInit(Nelem*Nnds*dof); Matrix X_(Nelem*dof, Nnds, value.begin(),false); Basis::Eval(X_, X, EvalOp); for (Long j = 0; j < Nelem; j++) { // Rearrange data Matrix X(Nnds, dof, X_[j*dof], false); X = Matrix(dof, Nnds, X_[j*dof], false).Transpose(); } } template static void DiscretizeSurfaceFn(Vector& U, const ElemList& elements, std::function fn) { using CoordBasis = typename ElemList::CoordBasis; const long Nelem = elements.NElem(); U.ReInit(Nelem * FnDim); Matrix X, X_grad; { // Set X, X_grad Vector coord = elements.ElemVector(); Vector coord_grad; CoordBasis::Grad(coord_grad, coord); const auto Meval = CoordBasis::SetupEval(FnBasis::Nodes()); CoordBasis::Eval(X, coord, Meval); CoordBasis::Eval(X_grad, coord_grad, Meval); } for (long i = 0; i < Nelem; i++) { for (long j = 0; j < FnBasis::Size(); j++) { Real X_[CoordDim], Xn[CoordDim], U_[FnDim]; for (long k = 0; k < CoordDim; k++) { X_[k] = X[i*CoordDim+k][j]; } { // Set Xn Real Xu[CoordDim], Xv[CoordDim]; for (long k = 0; k < CoordDim; k++) { Xu[k] = X_grad[(i*CoordDim+k)*2+0][j]; Xv[k] = X_grad[(i*CoordDim+k)*2+1][j]; } Real dA = 0; for (long k = 0; k < CoordDim; k++) { Xn[k] = Xu[(k+1)%CoordDim] * Xv[(k+2)%CoordDim]; Xn[k] -= Xv[(k+1)%CoordDim] * Xu[(k+2)%CoordDim]; dA += Xn[k] * Xn[k]; } dA = sqrt(dA); for (long k = 0; k < CoordDim; k++) { Xn[k] /= dA; } } fn(U_, X_, Xn); for (long k = 0; k < FnDim; k++) { U[i*FnDim+k][j] = U_[k]; } } } } Vector Xt_; Matrix M_singular; Matrix M_near_singular; Vector> pair_lst; Integer order_direct_; Real period_length_; Comm comm_; }; template class Stellarator { private: static constexpr Integer COORD_DIM = 3; static constexpr Integer ELEM_DIM = COORD_DIM-1; using ElemBasis = Basis; using ElemLst = ElemList; struct Laplace3D_dUxF { template static constexpr ValueType ScaleFactor() { return 1 / (4 * const_pi()); } template static void Eval(ValueType (&u)[3][1], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) { ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2]; ValueType rinv = (r2>1e-16 ? 1/sqrt(r2) : 0); ValueType rinv3 = rinv * rinv * rinv; u[0][0] = -r[0] * rinv3; u[1][0] = -r[1] * rinv3; u[2][0] = -r[2] * rinv3; } }; struct BiotSavart3D { template static constexpr ValueType ScaleFactor() { return 1 / (4 * const_pi()); } template static void Eval(ValueType (&u)[3][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) { ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2]; ValueType rinv = (r2>1e-16 ? 1/sqrt(r2) : 0); ValueType rinv3 = rinv * rinv * rinv; u[0][0] = (0) * rinv3; u[1][0] = r[2] * rinv3; u[2][0] = -r[1] * rinv3; u[0][1] = -r[2] * rinv3; u[1][1] = (0) * rinv3; u[2][1] = r[0] * rinv3; u[0][2] = r[1] * rinv3; u[1][2] = -r[0] * rinv3; u[2][2] = (0) * rinv3; } }; struct BiotSavartGrad3D { template static constexpr ValueType ScaleFactor() { return 1 / (4 * const_pi()); } template static void Eval(ValueType (&u)[3][9], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) { ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2]; ValueType rinv = (r2>1e-16 ? 1/sqrt(r2) : 0); ValueType rinv2 = rinv * rinv; ValueType rinv3 = rinv2 * rinv; ValueType rinv5 = rinv2 * rinv3; u[0][0] = 0; u[1][0] = - 3 * r[2] * r[0] * rinv5; u[2][0] = 3 * r[1] * r[0] * rinv5; u[0][1] = 0; u[1][1] = - 3 * r[2] * r[1] * rinv5; u[2][1] = -(1) * rinv3 + 3 * r[1] * r[1] * rinv5; u[0][2] = 0; u[1][2] = (1) * rinv3 - 3 * r[2] * r[2] * rinv5; u[2][2] = 3 * r[1] * r[2] * rinv5; u[0][3] = 3 * r[2] * r[0] * rinv5; u[1][3] = 0; u[2][3] = (1) * rinv3 - 3 * r[0] * r[0] * rinv5; u[0][4] = 3 * r[2] * r[1] * rinv5; u[1][4] = 0; u[2][4] = - 3 * r[0] * r[1] * rinv5; u[0][5] = -(1) * rinv3 + 3 * r[2] * r[2] * rinv5; u[1][5] = 0; u[2][5] = - 3 * r[0] * r[2] * rinv5; u[0][6] = - 3 * r[1] * r[0] * rinv5; u[1][6] = -(1) * rinv3 + 3 * r[0] * r[0] * rinv5; u[2][6] = 0; u[0][7] = (1) * rinv3 - 3 * r[1] * r[1] * rinv5; u[1][7] = 3 * r[0] * r[1] * rinv5; u[2][7] = 0; u[0][8] = - 3 * r[1] * r[2] * rinv5; u[1][8] = 3 * r[0] * r[2] * rinv5; u[2][8] = 0; } }; struct Laplace3D_dUxD { template static constexpr ValueType ScaleFactor() { return 1 / (4 * const_pi()); } template static void Eval(ValueType (&u)[3][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) { ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2]; ValueType rinv = (r2>1e-16 ? 1/sqrt(r2) : 0); ValueType rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2]; ValueType rinv2 = rinv * rinv; ValueType rinv3 = rinv * rinv2; ValueType rinv5 = rinv3 * rinv2; u[0][0] = -1 * rinv3 + 3 * r[0] * r[0] * rinv5; u[0][1] = -0 * rinv3 + 3 * r[0] * r[1] * rinv5; u[0][2] = -0 * rinv3 + 3 * r[0] * r[2] * rinv5; u[1][0] = -0 * rinv3 + 3 * r[1] * r[0] * rinv5; u[1][1] = -1 * rinv3 + 3 * r[1] * r[1] * rinv5; u[1][2] = -0 * rinv3 + 3 * r[1] * r[2] * rinv5; u[2][0] = -0 * rinv3 + 3 * r[2] * r[0] * rinv5; u[2][1] = -0 * rinv3 + 3 * r[2] * r[1] * rinv5; u[2][2] = -1 * rinv3 + 3 * r[2] * r[2] * rinv5; } }; struct Laplace3D_DxdU { template static constexpr ValueType ScaleFactor() { return 1 / (4 * const_pi()); } template static void Eval(ValueType (&u)[1][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) { ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2]; ValueType rinv = (r2>1e-16 ? 1/sqrt(r2) : 0); ValueType rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2]; ValueType rinv2 = rinv * rinv; ValueType rinv3 = rinv * rinv2; ValueType rinv5 = rinv3 * rinv2; u[0][0] = -n[0] * rinv3 + 3*rdotn * r[0] * rinv5; u[0][1] = -n[1] * rinv3 + 3*rdotn * r[1] * rinv5; u[0][2] = -n[2] * rinv3 + 3*rdotn * r[2] * rinv5; } }; struct Laplace3D_Fxd2U { template static constexpr ValueType ScaleFactor() { return 1 / (4 * const_pi()); } template static void Eval(ValueType (&u)[1][9], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) { ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2]; ValueType rinv = (r2>1e-16 ? 1/sqrt(r2) : 0); ValueType rinv2 = rinv * rinv; ValueType rinv3 = rinv * rinv2; ValueType rinv5 = rinv3 * rinv2; u[0][0+3*0] = -1 * rinv3 + 3 * r[0] * r[0] * rinv5; u[0][1+3*0] = -0 * rinv3 + 3 * r[0] * r[1] * rinv5; u[0][2+3*0] = -0 * rinv3 + 3 * r[0] * r[2] * rinv5; u[0][0+3*1] = -0 * rinv3 + 3 * r[1] * r[0] * rinv5; u[0][1+3*1] = -1 * rinv3 + 3 * r[1] * r[1] * rinv5; u[0][2+3*1] = -0 * rinv3 + 3 * r[1] * r[2] * rinv5; u[0][0+3*2] = -0 * rinv3 + 3 * r[2] * r[0] * rinv5; u[0][1+3*2] = -0 * rinv3 + 3 * r[2] * r[1] * rinv5; u[0][2+3*2] = -1 * rinv3 + 3 * r[2] * r[2] * rinv5; } }; static Real max_norm(const sctl::Vector& x) { Real err = 0; for (const auto& a : x) err = std::max(err, sctl::fabs(a)); return err; } public: Stellarator(const Vector& NtNp = Vector()) { NtNp_ = NtNp; Long Nsurf = NtNp_.Dim() / 2; SCTL_ASSERT(Nsurf*2 == NtNp_.Dim()); Long Nelem = 0; elem_dsp.ReInit(Nsurf); if (elem_dsp.Dim()) elem_dsp[0] = 0; for (Long i = 0; i < Nsurf; i++) { Nelem += NtNp_[i*2+0]*NtNp_[i*2+1]; if (i+1 < Nsurf) elem_dsp[i+1] = Nelem; } elements.ReInit(Nelem); for (Long i = 0; i < Nsurf; i++) { InitSurf(i); } } Long ElemIdx(Long s, Long t, Long p) { SCTL_ASSERT(0 <= s && s < elem_dsp.Dim()); SCTL_ASSERT(0 <= t && t < NtNp_[s*2+0]); SCTL_ASSERT(0 <= p && p < NtNp_[s*2+1]); return elem_dsp[s] + t*NtNp_[s*2+1] + p; } ElemBasis& Elem(Long elem, Integer dim) { return elements(elem,dim); } const ElemBasis& Elem(Long elem, Integer dim) const { return elements(elem,dim); } const ElemLst& GetElemList() { return elements; } Long Nsurf() const { return elem_dsp.Dim(); } Long ElemDsp(Long s) const { return elem_dsp[s]; } Long NTor(Long s) const { return NtNp_[s*2+0]; } Long NPol(Long s) const { return NtNp_[s*2+1]; } static void test() { constexpr Integer order_singular = 15; constexpr Integer order_direct = 35; Comm comm = Comm::World(); Profile::Enable(true); Real gmres_tol = 1e-8; Long max_iter = 100; Stellarator S; { // Init S Vector NtNp; NtNp.PushBack(20); NtNp.PushBack(4); S = Stellarator(NtNp); } auto cheb2grid = [] (const Vector& X, Long Mt, Long Mp, Long Nt, Long Np) { const Long dof = X.Dim() / (Mt * Mp); SCTL_ASSERT(X.Dim() == Mt * Mp *dof); Vector Xf(dof*Nt*Np); Xf = 0; const Long Nnodes = ElemBasis::Size(); const Matrix& Mnodes = Basis::Nodes(); for (Long t = 0; t < Nt; t++) { for (Long p = 0; p < Np; p++) { Real theta = t / (Real)Nt; Real phi = p / (Real)Np; Long i = (Long)(theta * Mt); Long j = (Long)(phi * Mp); Real x = theta * Mt - i; Real y = phi * Mp - j; Long elem_idx = i * Mp + j; Vector Interp0(ORDER); Vector Interp1(ORDER); { // Set Interp0, Interp1 auto node = [&Mnodes] (Long i) { return Mnodes[0][i]; }; for (Long i = 0; i < ORDER; i++) { Real wt_x = 1, wt_y = 1; for (Long j = 0; j < ORDER; j++) { if (j != i) { wt_x *= (x - node(j)) / (node(i) - node(j)); wt_y *= (y - node(j)) / (node(i) - node(j)); } Interp0[i] = wt_x; Interp1[i] = wt_y; } } } for (Long ii = 0; ii < ORDER; ii++) { for (Long jj = 0; jj < ORDER; jj++) { Long node_idx = jj * ORDER + ii; for (Long k = 0; k < dof; k++) { Xf[(k*Nt+t)*Np+p] += X[elem_idx*dof+k][node_idx] * Interp0[ii] * Interp1[jj]; } } } } } return Xf; }; auto grid2cheb = [] (const Vector& Xf, Long Nt, Long Np, Long Mt, Long Mp) { Long dof = Xf.Dim() / (Nt*Np); SCTL_ASSERT(Xf.Dim() == dof*Nt*Np); Vector X(Mt*Mp*dof); constexpr Integer INTERP_ORDER = 12; for (Long tt = 0; tt < Mt; tt++) { for (Long pp = 0; pp < Mp; pp++) { for (Long t = 0; t < ORDER; t++) { for (Long p = 0; p < ORDER; p++) { Matrix Mnodes = Basis::Nodes(); Real theta = (tt + Mnodes[0][t]) / Mt; Real phi = (pp + Mnodes[0][p]) / Mp; Long i = (Long)(theta * Nt); Long j = (Long)(phi * Np); Real x = theta * Nt - i; Real y = phi * Np - j; Vector Interp0(INTERP_ORDER); Vector Interp1(INTERP_ORDER); { // Set Interp0, Interp1 auto node = [] (Long i) { return (Real)i - (INTERP_ORDER-1)/2; }; for (Long i = 0; i < INTERP_ORDER; i++) { Real wt_x = 1, wt_y = 1; for (Long j = 0; j < INTERP_ORDER; j++) { if (j != i) { wt_x *= (x - node(j)) / (node(i) - node(j)); wt_y *= (y - node(j)) / (node(i) - node(j)); } Interp0[i] = wt_x; Interp1[i] = wt_y; } } } for (Long k = 0; k < dof; k++) { Real X0 = 0; for (Long ii = 0; ii < INTERP_ORDER; ii++) { for (Long jj = 0; jj < INTERP_ORDER; jj++) { Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt; Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np; X0 += Interp0[ii] * Interp1[jj] * Xf[(k*Nt+idx_i)*Np+idx_j]; } } Long elem_idx = tt * Mp + pp; Long node_idx = p * ORDER + t; X[elem_idx*dof+k][node_idx] = X0; } } } } } return X; }; Long Nelem = S.GetElemList().NElem(); Vector Jt(Nelem*COORD_DIM), Jp(Nelem*COORD_DIM); auto compute_harmonic_vector_potentials = [&S,&comm,&cheb2grid,&grid2cheb,max_iter,gmres_tol](Vector& Jt, Vector& Jp) { for (Long k = 0; k < S.Nsurf(); k++) { Long Nt = S.NTor(k)*ORDER, Np = S.NPol(k)*ORDER; const auto& X_ = S.GetElemList().ElemVector(); Vector X(S.NTor(k)*S.NPol(k)*COORD_DIM, (Iterator)X_.begin()+S.ElemDsp(k)*COORD_DIM, false); biest::Surface SS(Nt, Np); biest::SurfaceOp surf_op(comm, Nt, Np); SS.Coord() = cheb2grid(X, S.NTor(k), S.NPol(k), Nt, Np); Vector dX, d2X; surf_op.Grad2D(dX, SS.Coord()); surf_op.Grad2D(d2X, dX); sctl::Vector Jt_(COORD_DIM * Nt * Np); sctl::Vector Jp_(COORD_DIM * Nt * Np); { // Set Jt_, Jp_ Vector DivV, InvLapDivV, GradInvLapDivV; for (sctl::Long i = 0; i < Nt*Np; i++) { // Set V for (sctl::Long k =0; k < COORD_DIM; k++) { Jt_[k * Nt*Np + i] = dX[(k*2+0) * Nt*Np + i]; Jp_[k * Nt*Np + i] = dX[(k*2+1) * Nt*Np + i]; } } surf_op.SurfDiv(DivV, dX, Jt_); surf_op.GradInvSurfLap(GradInvLapDivV, dX, d2X, DivV, gmres_tol * max_norm(Jt_) / max_norm(DivV), max_iter, 1.5); Jt_ = Jt_ - GradInvLapDivV; surf_op.SurfDiv(DivV, dX, Jp_); surf_op.GradInvSurfLap(GradInvLapDivV, dX, d2X, DivV, gmres_tol * max_norm(Jp_) / max_norm(DivV), max_iter, 1.5); Jp_ = Jp_ - GradInvLapDivV; } Vector Jt__(S.NTor(k)*S.NPol(k)*COORD_DIM, (Iterator)Jt.begin()+S.ElemDsp(k)*COORD_DIM, false); Vector Jp__(S.NTor(k)*S.NPol(k)*COORD_DIM, (Iterator)Jp.begin()+S.ElemDsp(k)*COORD_DIM, false); Jt__ = grid2cheb(Jt_, Nt, Np, S.NTor(k), S.NPol(k)); Jp__ = grid2cheb(Jp_, Nt, Np, S.NTor(k), S.NPol(k)); } }; compute_harmonic_vector_potentials(Jt, Jp); Vector normal, area_elem; auto compute_dot_prod = [](const Vector& A, const Vector& B) { const Long Nelem = A.Dim() / COORD_DIM; const Long Nnodes = ElemBasis::Size(); SCTL_ASSERT(A.Dim() == Nelem * COORD_DIM); SCTL_ASSERT(B.Dim() == Nelem * COORD_DIM); Vector AdotB(Nelem); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { Real a_dot_b = 0; a_dot_b += A[i*COORD_DIM+0][j]*B[i*COORD_DIM+0][j]; a_dot_b += A[i*COORD_DIM+1][j]*B[i*COORD_DIM+1][j]; a_dot_b += A[i*COORD_DIM+2][j]*B[i*COORD_DIM+2][j]; AdotB[i][j] = a_dot_b; } } return AdotB; }; auto compute_inner_prod = [](const Vector& area_elem, const Vector& A, const Vector& B) { const auto& quad_wts = ElemBasis::QuadWts(); const Long Nnodes = ElemBasis::Size(); const Long Nelem = area_elem.Dim(); const Long dof = B.Dim() / Nelem; Real sum = 0; for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { Real AdotB = 0; for (Long k = 0; k < dof; k++) { AdotB += A[i*dof+k][j] * B[i*dof+k][j]; } sum += AdotB * area_elem[i][j] * quad_wts[j]; } } return sum; }; auto compute_norm_area_elem = [](const ElemList& elem_lst, Vector& normal, Vector& area_elem){ // Set normal, area_elem const Vector& X = elem_lst.ElemVector(); const Long Nelem = X.Dim() / COORD_DIM; const Long Nnodes = ElemBasis::Size(); Vector dX; ElemBasis::Grad(dX, X); area_elem.ReInit(Nelem); normal.ReInit(Nelem * COORD_DIM); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { Tensor x, n; Tensor dx; x(0) = X[i*COORD_DIM+0][j]; x(1) = X[i*COORD_DIM+1][j]; x(2) = X[i*COORD_DIM+2][j]; dx(0,0) = dX[i*COORD_DIM*2+0][j]; dx(0,1) = dX[i*COORD_DIM*2+1][j]; dx(1,0) = dX[i*COORD_DIM*2+2][j]; dx(1,1) = dX[i*COORD_DIM*2+3][j]; dx(2,0) = dX[i*COORD_DIM*2+4][j]; dx(2,1) = dX[i*COORD_DIM*2+5][j]; n(0) = dx(1,0) * dx(2,1) - dx(2,0) * dx(1,1); n(1) = dx(2,0) * dx(0,1) - dx(0,0) * dx(2,1); n(2) = dx(0,0) * dx(1,1) - dx(1,0) * dx(0,1); Real area_elem_ = sqrt(n(0)*n(0) + n(1)*n(1) + n(2)*n(2)); Real ooae = 1 / area_elem_; n(0) *= ooae; n(1) *= ooae; n(2) *= ooae; normal[i*COORD_DIM+0][j] = n(0); normal[i*COORD_DIM+1][j] = n(1); normal[i*COORD_DIM+2][j] = n(2); area_elem[i][j] = area_elem_; } } }; compute_norm_area_elem(S.GetElemList(), normal, area_elem); S.quadrature_BS .template Setup(S.GetElemList(), S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER)); S.quadrature_dBS .template Setup(S.GetElemList(), S.BiotSavartGrad, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER)); S.quadrature_FxU .template Setup(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm); S.quadrature_DxU .template Setup(S.GetElemList(), S.Laplace_DxU , order_singular, order_direct, -1.0, comm); S.quadrature_FxdU.template Setup(S.GetElemList(), S.Laplace_FxdU , order_singular, order_direct, -1.0, comm); S.quadrature_dUxF.template Setup(S.GetElemList(), S.Laplace_dUxF , order_singular, order_direct, -1.0, comm); s.quadrature_dUxD .template Setup(S.GetElemList(), S.Laplace_dUxD, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER)); s.quadrature_Fxd2U.template Setup(S.GetElemList(), S.Laplace_Fxd2U, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER)); auto compute_B0_deprecated = [&S](const Real alpha) { // alpha/|r| \hat{\theta} const Vector X = S.GetElemList().ElemVector(); const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector B0(Nelem * COORD_DIM); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { Tensor x, b0, axis; x(0) = X[i*COORD_DIM+0][j]; x(1) = X[i*COORD_DIM+1][j]; x(2) = X[i*COORD_DIM+2][j]; axis(0) = 0; axis(1) = 0; axis(2) = 1; b0(0) = axis(1) * x(2) - axis(2) * x(1); b0(1) = axis(2) * x(0) - axis(0) * x(2); b0(2) = axis(0) * x(1) - axis(1) * x(0); Real scale = 1 / (b0(0)*b0(0) + b0(1)*b0(1) + b0(2)*b0(2)); b0(0) *= scale; b0(1) *= scale; b0(2) *= scale; B0[i*COORD_DIM+0][j] = alpha * b0(0); B0[i*COORD_DIM+1][j] = alpha * b0(1); B0[i*COORD_DIM+2][j] = alpha * b0(2); } } return B0; }; auto compute_dB0_deprecated = [&S](const Real alpha) { // alpha/|r| \hat{\theta} const Vector X = S.GetElemList().ElemVector(); const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector dB0(Nelem * COORD_DIM * COORD_DIM); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { Tensor x; x(0) = X[i*COORD_DIM+0][j]; x(1) = X[i*COORD_DIM+1][j]; x(2) = X[i*COORD_DIM+2][j]; Real R2inv = 1 / (x(0)*x(0) + x(1)*x(1)); dB0[(i*COORD_DIM+0)*COORD_DIM+0][j] = -alpha * (2*x(0)*x(1) * R2inv*R2inv); dB0[(i*COORD_DIM+0)*COORD_DIM+1][j] = -alpha * (-R2inv + 2*x(1)*x(1) * R2inv*R2inv); dB0[(i*COORD_DIM+0)*COORD_DIM+2][j] = 0; dB0[(i*COORD_DIM+1)*COORD_DIM+0][j] = -alpha * (R2inv - 2*x(0)*x(0) * R2inv*R2inv); dB0[(i*COORD_DIM+1)*COORD_DIM+1][j] = -alpha * (-2*x(0)*x(1) * R2inv*R2inv); dB0[(i*COORD_DIM+1)*COORD_DIM+2][j] = 0; dB0[(i*COORD_DIM+2)*COORD_DIM+0][j] = 0; dB0[(i*COORD_DIM+2)*COORD_DIM+1][j] = 0; dB0[(i*COORD_DIM+2)*COORD_DIM+2][j] = 0; } } return dB0; }; auto compute_B0 = [&S, &Jp](const Real alpha) { Vector B0; S.quadrature_BS.Eval(B0, S.GetElemList(), Jp, S.BiotSavart); return B0*alpha; }; auto compute_dB0 = [&S, &Jp](const Real alpha) { Vector dB0; S.quadrature_dBS.Eval(dB0, S.GetElemList(), Jp, S.BiotSavartGrad); return dB0*alpha; }; auto compute_half_n_plus_dG = [&S, &normal](const Vector& sigma) { // B = n sigma/2 + dG[sigma] const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector B; S.quadrature_FxdU.Eval(B, S.GetElemList(), sigma, S.Laplace_FxdU); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { for (Long k = 0; k < COORD_DIM; k++) { B[i*COORD_DIM+k][j] -= 0.5*sigma[i][j]*normal[i*COORD_DIM+k][j]; } } } return B; }; auto compute_A11 = [&S,&normal,&compute_half_n_plus_dG,&compute_dot_prod](Vector& B_dot_n, const Vector& sigma) { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); B_dot_n.ReInit(Nelem * Nnodes); Vector sigma_(Nelem); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { sigma_[i][j] = sigma[i*Nnodes+j]; } } Vector B_dot_n_ = compute_dot_prod(normal, compute_half_n_plus_dG(sigma_)); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { B_dot_n[i*Nnodes+j] = B_dot_n_[i][j]; } } }; auto compute_A12 = [&S,&normal,&compute_dot_prod,&compute_B0](Vector& B_dot_n, const Real alpha) { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); B_dot_n.ReInit(Nelem * Nnodes); Vector B_dot_n_ = compute_dot_prod(normal, compute_B0(alpha)); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { B_dot_n[i*Nnodes+j] = B_dot_n_[i][j]; } } }; auto compute_A21 = [&S,&normal,&compute_half_n_plus_dG](const Vector& sigma) { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector sigma_(Nelem); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { sigma_[i][j] = sigma[i*Nnodes+j]; } } Vector B = compute_half_n_plus_dG(sigma_); Vector J(Nelem * COORD_DIM); for (Long i = 0; i < Nelem; i++) { // Set J for (Long j = 0; j < Nnodes; j++) { Tensor b, n; b(0) = B[i*COORD_DIM+0][j]; b(1) = B[i*COORD_DIM+1][j]; b(2) = B[i*COORD_DIM+2][j]; n(0) = normal[i*COORD_DIM+0][j]; n(1) = normal[i*COORD_DIM+1][j]; n(2) = normal[i*COORD_DIM+2][j]; J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1); J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2); J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0); } } Vector A; S.quadrature_FxU.Eval(A, S.GetElemList(), J, S.Laplace_FxU); Real pol_circ = 0; { // compute pol_circ Vector dX; ElemBasis::Grad(dX, S.GetElemList().ElemVector()); const auto& quad_wts = ElemBasis::QuadWts(); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { pol_circ += A[i*COORD_DIM+0][j] * dX[i*COORD_DIM*2+1][j] * quad_wts[j] / S.NtNp_[0]; pol_circ += A[i*COORD_DIM+1][j] * dX[i*COORD_DIM*2+3][j] * quad_wts[j] / S.NtNp_[0]; pol_circ += A[i*COORD_DIM+2][j] * dX[i*COORD_DIM*2+5][j] * quad_wts[j] / S.NtNp_[0]; } } } return pol_circ; }; auto compute_A22 = [&S,&compute_B0,&normal](const Real alpha) { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector B = compute_B0(alpha); Vector J(Nelem * COORD_DIM); for (Long i = 0; i < Nelem; i++) { // Set J for (Long j = 0; j < Nnodes; j++) { Tensor b, n; b(0) = B[i*COORD_DIM+0][j]; b(1) = B[i*COORD_DIM+1][j]; b(2) = B[i*COORD_DIM+2][j]; n(0) = normal[i*COORD_DIM+0][j]; n(1) = normal[i*COORD_DIM+1][j]; n(2) = normal[i*COORD_DIM+2][j]; J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1); J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2); J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0); } } Vector A; S.quadrature_FxU.Eval(A, S.GetElemList(), J, S.Laplace_FxU); Real pol_circ = 0; { // compute pol_circ Vector dX; ElemBasis::Grad(dX, S.GetElemList().ElemVector()); const auto& quad_wts = ElemBasis::QuadWts(); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { pol_circ += A[i*COORD_DIM+0][j] * dX[i*COORD_DIM*2+1][j] * quad_wts[j] / S.NtNp_[0]; pol_circ += A[i*COORD_DIM+1][j] * dX[i*COORD_DIM*2+3][j] * quad_wts[j] / S.NtNp_[0]; pol_circ += A[i*COORD_DIM+2][j] * dX[i*COORD_DIM*2+5][j] * quad_wts[j] / S.NtNp_[0]; } } } return pol_circ; }; auto compute_A = [&compute_A11,&compute_A12,&compute_A21,&compute_A22] (const Vector& x) { const Vector sigma(x.Dim()-1,(Iterator)x.begin(),false); const Real& alpha = x[x.Dim()-1]; Vector Ax; Ax.ReInit(x.Dim()); Vector Bdotn(x.Dim()-1,Ax.begin(),false); Real& flux = Ax[x.Dim()-1]; Vector Adotn_0, Adotn_1; compute_A11(Adotn_0, sigma); compute_A12(Adotn_1, alpha); Bdotn = Adotn_0 + Adotn_1; flux = compute_A21(sigma) + compute_A22(alpha); return Ax; }; auto compute_A11adj = [&S](Vector& U, const Vector& sigma) { // A11adj = I/2 + D const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector sigma_(Nelem); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { sigma_[i][j] = sigma[i*Nnodes+j]; } } S.quadrature_DxU.Eval(U, S.GetElemList(), sigma_, S.Laplace_DxU); U = sigma*(-0.5) + U; }; auto compute_A12adj = [&S,&compute_A12,&compute_inner_prod,&area_elem](const Vector& sigma_) { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector A12_sigma_; compute_A12(A12_sigma_, 1); Vector A12_sigma(Nelem), sigma(Nelem); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { sigma[i][j] = sigma_[i*Nnodes+j]; A12_sigma[i][j] = A12_sigma_[i*Nnodes+j]; } } return compute_inner_prod(area_elem, A12_sigma, sigma); }; auto compute_A21adj = [&S,&area_elem,&normal](Vector& A21adj_flux, Real flux) { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector density(Nelem * COORD_DIM); { // Set density Vector dX; ElemBasis::Grad(dX, S.GetElemList().ElemVector()); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { Real s = 1 / (area_elem[i][j] * S.NtNp_[0]); density[i*COORD_DIM+0][j] = dX[i*COORD_DIM*2+1][j] * s; density[i*COORD_DIM+1][j] = dX[i*COORD_DIM*2+3][j] * s; density[i*COORD_DIM+2][j] = dX[i*COORD_DIM*2+5][j] * s; } } } Vector Gdensity; S.quadrature_FxU.Eval(Gdensity, S.GetElemList(), density, S.Laplace_FxU); Vector nxGdensity(Nelem * COORD_DIM); for (Long i = 0; i < Nelem; i++) { // Set nxGdensity for (Long j = 0; j < Nnodes; j++) { Tensor Gdensity_, n; Gdensity_(0) = Gdensity[i*COORD_DIM+0][j]; Gdensity_(1) = Gdensity[i*COORD_DIM+1][j]; Gdensity_(2) = Gdensity[i*COORD_DIM+2][j]; n(0) = normal[i*COORD_DIM+0][j]; n(1) = normal[i*COORD_DIM+1][j]; n(2) = normal[i*COORD_DIM+2][j]; nxGdensity[i*COORD_DIM+0][j] = n(1) * Gdensity_(2) - n(2) * Gdensity_(1); nxGdensity[i*COORD_DIM+1][j] = n(2) * Gdensity_(0) - n(0) * Gdensity_(2); nxGdensity[i*COORD_DIM+2][j] = n(0) * Gdensity_(1) - n(1) * Gdensity_(0); } } S.quadrature_dUxF.Eval(A21adj_flux, S.GetElemList(), nxGdensity, S.Laplace_dUxF); A21adj_flux *= flux; }; auto compute_A22adj = [&compute_A22] (const Real alpha) { return compute_A22(alpha); }; auto compute_Aadj = [&compute_A11adj,&compute_A12adj,&compute_A21adj,&compute_A22adj] (const Vector& x) { const Vector sigma(x.Dim()-1,(Iterator)x.begin(),false); const Real& alpha = x[x.Dim()-1]; Vector Ax; Ax.ReInit(x.Dim()); Vector Bdotn(x.Dim()-1,Ax.begin(),false); Real& flux = Ax[x.Dim()-1]; Vector Adotn_0, Adotn_1; compute_A11adj(Adotn_0, sigma); compute_A21adj(Adotn_1, alpha); Bdotn = Adotn_0 + Adotn_1; flux = compute_A12adj(sigma) + compute_A22adj(alpha); return Ax; }; ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// const auto pressure = area_elem; auto compute_gvec = [&S,&pressure] (const Vector& B) { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); SCTL_ASSERT(B.Dim() == Nelem * COORD_DIM); SCTL_ASSERT(pressure.Dim() == Nelem); Vector gvec(Nelem); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { Real B2 = 0; B2 += B[i*COORD_DIM+0][j] * B[i*COORD_DIM+0][j]; B2 += B[i*COORD_DIM+1][j] * B[i*COORD_DIM+1][j]; B2 += B[i*COORD_DIM+2][j] * B[i*COORD_DIM+2][j]; gvec[i][j] = (B2*0.5 - pressure[i][j]) * (B2*0.5 - pressure[i][j]); } } return gvec; }; auto compute_dgdB = [&S,&pressure] (const Vector& B) { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); SCTL_ASSERT(B.Dim() == Nelem * COORD_DIM); SCTL_ASSERT(pressure.Dim() == Nelem); Vector dgdB(Nelem*COORD_DIM); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { Real B2 = 0; B2 += B[i*COORD_DIM+0][j] * B[i*COORD_DIM+0][j]; B2 += B[i*COORD_DIM+1][j] * B[i*COORD_DIM+1][j]; B2 += B[i*COORD_DIM+2][j] * B[i*COORD_DIM+2][j]; dgdB[i*COORD_DIM+0][j] = 2 * (B2*0.5 - pressure[i][j]) * B[i*COORD_DIM+0][j]; dgdB[i*COORD_DIM+1][j] = 2 * (B2*0.5 - pressure[i][j]) * B[i*COORD_DIM+1][j]; dgdB[i*COORD_DIM+2][j] = 2 * (B2*0.5 - pressure[i][j]) * B[i*COORD_DIM+2][j]; } } return dgdB; }; auto compute_invA = [&S,&comm,&compute_A] (Vector& sigma, Real& alpha, Real flux) { typename sctl::ParallelSolver::ParallelOp BIOp = [&compute_A](sctl::Vector* Ax, const sctl::Vector& x) { (*Ax) = compute_A(x); }; const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector rhs_(Nelem * Nnodes + 1); rhs_ = 0; rhs_[Nelem * Nnodes] = flux; Vector x_(Nelem * Nnodes + 1); x_ = 0; ParallelSolver linear_solver(comm, true); linear_solver(&x_, BIOp, rhs_, 1e-8, 50); sigma.ReInit(Nelem); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { sigma[i][j] = x_[i*Nnodes+j]; } } alpha = x_[Nelem * Nnodes]; }; Real flux = 1.0, alpha; Vector sigma(S.GetElemList().NElem()); compute_invA(sigma, alpha, flux); Vector B = compute_half_n_plus_dG(sigma) + compute_B0(alpha); Real g = compute_inner_prod(area_elem, compute_gvec(B), area_elem*0+1); std::cout<<"g = "<& sigma, Real alpha, const Vector& B) { // dg_dnu = (B*B) 2H - (2 B) \cdot (n \cdnot nabla) \nabla G[sigma] + (2 B) \alpha dB0_dnu \hat{\theta} + sigma (\nabla D)^T [2 B] + (2H) sigma (\nabla G)^T [2 B] const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector gvec = compute_gvec(B); Vector v = compute_dgdB(B); Vector dg_dnu0(Nelem), dg_dnu1(Nelem), dg_dnu2(Nelem), dg_dnu3(Nelem), dg_dnu4(Nelem); dg_dnu0 = 0; dg_dnu1 = 0; dg_dnu2 = 0; dg_dnu3 = 0; dg_dnu4 = 0; Vector H(Nelem); { // Set mean curvature H const Vector X = S.GetElemList().ElemVector(); Vector dX, d2X; ElemBasis::Grad(dX, X); ElemBasis::Grad(d2X, dX); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { Tensor I, invI, II; for (Long k0 = 0; k0 < 2; k0++) { for (Long k1 = 0; k1 < 2; k1++) { I(k0,k1) = 0; I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j]; I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j]; I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j]; II(k0,k1) = 0; II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j]; II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j]; II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j]; } } { // Set invI Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0); invI(0,0) = I(1,1) / detI; invI(0,1) = -I(0,1) / detI; invI(1,0) = -I(1,0) / detI; invI(1,1) = I(0,0) / detI; } { // Set H H[i][j] = 0; H[i][j] += -0.5 * II(0,0)*invI(0,0); H[i][j] += -0.5 * II(0,1)*invI(0,1); H[i][j] += -0.5 * II(1,0)*invI(1,0); H[i][j] += -0.5 * II(1,1)*invI(1,1); } } } } // dg_dnu0 = (B*B) 2H for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { dg_dnu0[i][j] = 0; dg_dnu0[i][j] += gvec[i][j] * (2.0*H[i][j]); } } // dg_dnu1 = (2 B) \cdot (n \cdnot \nabla) \nabla G[sigma] Vector d2Gsigma; Quadrature quadrature_Fxd2U; quadrature_Fxd2U.template Setup(S.GetElemList(), S.Laplace_Fxd2U, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER)); quadrature_Fxd2U.Eval(d2Gsigma, S.GetElemList(), sigma, S.Laplace_Fxd2U); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { dg_dnu1[i][j] = 0; dg_dnu1[i][j] -= d2Gsigma[i*9+0][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+0][j]; dg_dnu1[i][j] -= d2Gsigma[i*9+1][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+1][j]; dg_dnu1[i][j] -= d2Gsigma[i*9+2][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+2][j]; dg_dnu1[i][j] -= d2Gsigma[i*9+3][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+0][j]; dg_dnu1[i][j] -= d2Gsigma[i*9+4][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+1][j]; dg_dnu1[i][j] -= d2Gsigma[i*9+5][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+2][j]; dg_dnu1[i][j] -= d2Gsigma[i*9+6][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+0][j]; dg_dnu1[i][j] -= d2Gsigma[i*9+7][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+1][j]; dg_dnu1[i][j] -= d2Gsigma[i*9+8][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+2][j]; } } // dg_dnu2 = (2 B) \alpha (n \cdot \nabla) \hat{\theta} / |r| Vector dB0 = compute_dB0(alpha); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { dg_dnu2[i][j] = 0; dg_dnu2[i][j] -= dB0[i*9+0][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+0][j]; dg_dnu2[i][j] -= dB0[i*9+1][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+0][j]; dg_dnu2[i][j] -= dB0[i*9+2][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+0][j]; dg_dnu2[i][j] -= dB0[i*9+3][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+1][j]; dg_dnu2[i][j] -= dB0[i*9+4][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+1][j]; dg_dnu2[i][j] -= dB0[i*9+5][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+1][j]; dg_dnu2[i][j] -= dB0[i*9+6][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+2][j]; dg_dnu2[i][j] -= dB0[i*9+7][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+2][j]; dg_dnu2[i][j] -= dB0[i*9+8][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+2][j]; } } // dg_dnu3 = (sigma (\nabla D)^T [2 B] Vector nablaDtv; Quadrature quadrature_dUxD; quadrature_dUxD.template Setup(S.GetElemList(), S.Laplace_dUxD, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER)); quadrature_dUxD.Eval(nablaDtv, S.GetElemList(), v, S.Laplace_dUxD); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { dg_dnu3[i][j] = 0; dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j]; dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j]; dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j]; } } // dg_dnu4 = (2H) sigma (\nabla G)^T [2 B] S.quadrature_dUxF.Eval(dg_dnu4, S.GetElemList(), v, S.Laplace_dUxF); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { dg_dnu4[i][j] += 0.5 * v[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j]; dg_dnu4[i][j] += 0.5 * v[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j]; dg_dnu4[i][j] += 0.5 * v[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j]; dg_dnu4[i][j] *= 2*H[i][j] * sigma[i][j]; } } return dg_dnu0 + dg_dnu1 + dg_dnu2 + dg_dnu3 - dg_dnu4; }; Vector dg_dnu = compute_dg_dnu(sigma, alpha, B); auto compute_dg_dsigma = [&S,&compute_dgdB,&normal,&compute_dot_prod](const Vector& B) { // dg_dsigma = \int 2 B \cdot (\nabla G + n/2) Vector B_dot_gradG; Vector dgdB = compute_dgdB(B); S.quadrature_dUxF.Eval(B_dot_gradG, S.GetElemList(), dgdB, S.Laplace_dUxF); return B_dot_gradG * (-1.0) + compute_dot_prod(dgdB,normal) * 0.5; }; auto compute_dg_dalpha = [&S,&compute_dgdB,&compute_B0,&compute_inner_prod,&area_elem] (const Vector& B) { auto dB_dalpha = compute_B0(1); Vector dgdB = compute_dgdB(B); return compute_inner_prod(area_elem, dgdB,dB_dalpha); }; Vector dg_dsigma(Nelem*Nnodes+1); { // Set dg_dsigma Vector dg_dsigma_ = compute_dg_dsigma(B); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { dg_dsigma[i*Nnodes+j] = dg_dsigma_[i][j]; } } dg_dsigma[Nelem*Nnodes] = compute_dg_dalpha(B); } auto compute_invAadj = [&S,&comm,&compute_Aadj] (Vector& b) { typename sctl::ParallelSolver::ParallelOp BIOp = [&compute_Aadj](sctl::Vector* Ax, const sctl::Vector& x) { (*Ax) = compute_Aadj(x); }; const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector x(b.Dim()); x = 0; ParallelSolver linear_solver(comm, true); linear_solver(&x, BIOp, b, 1e-8, 50); return x; }; Vector dg_dsigma_invA = compute_invAadj(dg_dsigma); auto compute_grad_adj = [&S,&area_elem] (const Vector& V) { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector du_dX(Nelem*COORD_DIM*2); { // Set du_dX Vector dX; ElemBasis::Grad(dX, S.GetElemList().ElemVector()); auto inv2x2 = [](Tensor M) { Tensor Mout; Real oodet = 1 / (M(0,0) * M(1,1) - M(0,1) * M(1,0)); Mout(0,0) = M(1,1) * oodet; Mout(0,1) = -M(0,1) * oodet; Mout(1,0) = -M(1,0) * oodet; Mout(1,1) = M(0,0) * oodet; return Mout; }; for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { Tensor dX_du; dX_du(0,0) = dX[(i*COORD_DIM+0)*2+0][j]; dX_du(1,0) = dX[(i*COORD_DIM+1)*2+0][j]; dX_du(2,0) = dX[(i*COORD_DIM+2)*2+0][j]; dX_du(0,1) = dX[(i*COORD_DIM+0)*2+1][j]; dX_du(1,1) = dX[(i*COORD_DIM+1)*2+1][j]; dX_du(2,1) = dX[(i*COORD_DIM+2)*2+1][j]; Tensor G; // = dX_du.Transpose() * dX_du; G(0,0) = dX_du(0,0) * dX_du(0,0) + dX_du(1,0) * dX_du(1,0) + dX_du(2,0) * dX_du(2,0); G(0,1) = dX_du(0,0) * dX_du(0,1) + dX_du(1,0) * dX_du(1,1) + dX_du(2,0) * dX_du(2,1); G(1,0) = dX_du(0,1) * dX_du(0,0) + dX_du(1,1) * dX_du(1,0) + dX_du(2,1) * dX_du(2,0); G(1,1) = dX_du(0,1) * dX_du(0,1) + dX_du(1,1) * dX_du(1,1) + dX_du(2,1) * dX_du(2,1); Tensor Ginv = inv2x2(G); du_dX[(i*COORD_DIM+0)*2+0][j] = Ginv(0,0) * dX_du(0,0) + Ginv(0,1) * dX_du(0,1); du_dX[(i*COORD_DIM+1)*2+0][j] = Ginv(0,0) * dX_du(1,0) + Ginv(0,1) * dX_du(1,1); du_dX[(i*COORD_DIM+2)*2+0][j] = Ginv(0,0) * dX_du(2,0) + Ginv(0,1) * dX_du(2,1); du_dX[(i*COORD_DIM+0)*2+1][j] = Ginv(1,0) * dX_du(0,0) + Ginv(1,1) * dX_du(0,1); du_dX[(i*COORD_DIM+1)*2+1][j] = Ginv(1,0) * dX_du(1,0) + Ginv(1,1) * dX_du(1,1); du_dX[(i*COORD_DIM+2)*2+1][j] = Ginv(1,0) * dX_du(2,0) + Ginv(1,1) * dX_du(2,1); } } } Vector dudX_V(Nelem*2); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { dudX_V[i*2+0][j] = 0; dudX_V[i*2+1][j] = 0; dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+0)*2+0][j] * V[i*COORD_DIM+0][j] * area_elem[i][j]; dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+1)*2+0][j] * V[i*COORD_DIM+1][j] * area_elem[i][j]; dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+2)*2+0][j] * V[i*COORD_DIM+2][j] * area_elem[i][j]; dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+0)*2+1][j] * V[i*COORD_DIM+0][j] * area_elem[i][j]; dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+1)*2+1][j] * V[i*COORD_DIM+1][j] * area_elem[i][j]; dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+2)*2+1][j] * V[i*COORD_DIM+2][j] * area_elem[i][j]; } } Vector grad_dudX_V; ElemBasis::Grad(grad_dudX_V, dudX_V); Vector grad_adj_V(Nelem); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { grad_adj_V[i][j] = -(grad_dudX_V[(i*2+0)*2+0][j] + grad_dudX_V[(i*2+1)*2+1][j]) / area_elem[i][j]; } } return grad_adj_V; }; auto compute_u_dAdnu_v_00 = [&S,&normal,&comm,&compute_half_n_plus_dG,&compute_grad_adj] (const Vector& u_, const Vector& v_) { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector u(Nelem), u_n(Nelem*COORD_DIM), v(Nelem); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { u[i][j] = u_[i*Nnodes+j]; v[i][j] = v_[i*Nnodes+j]; u_n[i*COORD_DIM+0][j] = u[i][j] * normal[i*COORD_DIM+0][j]; u_n[i*COORD_DIM+1][j] = u[i][j] * normal[i*COORD_DIM+1][j]; u_n[i*COORD_DIM+2][j] = u[i][j] * normal[i*COORD_DIM+2][j]; } } Vector dAdnu0(Nelem), dAdnu1(Nelem), dAdnu2(Nelem), dAdnu3(Nelem); dAdnu0 = 0; dAdnu1 = 0; dAdnu2 = 0; dAdnu3 = 0; Vector H(Nelem); { // Set mean curvature H const Vector X = S.GetElemList().ElemVector(); Vector dX, d2X; ElemBasis::Grad(dX, X); ElemBasis::Grad(d2X, dX); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { Tensor I, invI, II; for (Long k0 = 0; k0 < 2; k0++) { for (Long k1 = 0; k1 < 2; k1++) { I(k0,k1) = 0; I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j]; I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j]; I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j]; II(k0,k1) = 0; II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j]; II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j]; II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j]; } } { // Set invI Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0); invI(0,0) = I(1,1) / detI; invI(0,1) = -I(0,1) / detI; invI(1,0) = -I(1,0) / detI; invI(1,1) = I(0,0) / detI; } { // Set H H[i][j] = 0; H[i][j] += -0.5 * II(0,0)*invI(0,0); H[i][j] += -0.5 * II(0,1)*invI(0,1); H[i][j] += -0.5 * II(1,0)*invI(1,0); H[i][j] += -0.5 * II(1,1)*invI(1,1); } } } } // dAdnu0 = u B \cdot grad_nu Vector B = compute_half_n_plus_dG(v); Vector u_B(Nelem*COORD_DIM); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { u_B[i*COORD_DIM+0][j] = u[i][j] * B[i*COORD_DIM+0][j]; u_B[i*COORD_DIM+1][j] = u[i][j] * B[i*COORD_DIM+1][j]; u_B[i*COORD_DIM+2][j] = u[i][j] * B[i*COORD_DIM+2][j]; } } dAdnu0 = compute_grad_adj(u_B)*(-1.0); // dAdnu1 = (2H) v (I/2 + \nabla G)^T [u n] S.quadrature_dUxF.Eval(dAdnu1, S.GetElemList(), u_n, S.Laplace_dUxF); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { dAdnu1[i][j] += 0.5 * u_n[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j]; dAdnu1[i][j] += 0.5 * u_n[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j]; dAdnu1[i][j] += 0.5 * u_n[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j]; dAdnu1[i][j] *= -2*H[i][j] * v[i][j]; } } // dAdnu2 = (u n) \cdot (n \cdnot \nabla) \nabla G[v] Vector d2G_v; Quadrature quadrature_Fxd2U; quadrature_Fxd2U.template Setup(S.GetElemList(), S.Laplace_Fxd2U, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER)); quadrature_Fxd2U.Eval(d2G_v, S.GetElemList(), v, S.Laplace_Fxd2U); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { dAdnu2[i][j] = 0; dAdnu2[i][j] -= d2G_v[i*9+0][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+0][j]; dAdnu2[i][j] -= d2G_v[i*9+1][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+1][j]; dAdnu2[i][j] -= d2G_v[i*9+2][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+2][j]; dAdnu2[i][j] -= d2G_v[i*9+3][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+0][j]; dAdnu2[i][j] -= d2G_v[i*9+4][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+1][j]; dAdnu2[i][j] -= d2G_v[i*9+5][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+2][j]; dAdnu2[i][j] -= d2G_v[i*9+6][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+0][j]; dAdnu2[i][j] -= d2G_v[i*9+7][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+1][j]; dAdnu2[i][j] -= d2G_v[i*9+8][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+2][j]; } } // dAdnu3 = (v n \cdot \nabla D[u] Vector nablaDt_u_n; Quadrature quadrature_dUxD; quadrature_dUxD.template Setup(S.GetElemList(), S.Laplace_dUxD, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER)); quadrature_dUxD.Eval(nablaDt_u_n, S.GetElemList(), u_n, S.Laplace_dUxD); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { dAdnu3[i][j] = 0; dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j]; dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j]; dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j]; } } return dAdnu0 + dAdnu1 + dAdnu2 + dAdnu3; }; auto compute_u_dAdnu_v_01 = [&S,&comm,&compute_dB0,&normal,&area_elem,&compute_B0,&compute_grad_adj] (const Vector& u, const Vector& v) { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector dAdnu(Nelem); Vector dB0 = compute_dB0(v[Nelem*Nnodes]); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { Real n_n_dB0 = 0; n_n_dB0 -= dB0[i*9+0][j] * normal[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j]; n_n_dB0 -= dB0[i*9+1][j] * normal[i*COORD_DIM+1][j] * normal[i*COORD_DIM+0][j]; n_n_dB0 -= dB0[i*9+2][j] * normal[i*COORD_DIM+2][j] * normal[i*COORD_DIM+0][j]; n_n_dB0 -= dB0[i*9+3][j] * normal[i*COORD_DIM+0][j] * normal[i*COORD_DIM+1][j]; n_n_dB0 -= dB0[i*9+4][j] * normal[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j]; n_n_dB0 -= dB0[i*9+5][j] * normal[i*COORD_DIM+2][j] * normal[i*COORD_DIM+1][j]; n_n_dB0 -= dB0[i*9+6][j] * normal[i*COORD_DIM+0][j] * normal[i*COORD_DIM+2][j]; n_n_dB0 -= dB0[i*9+7][j] * normal[i*COORD_DIM+1][j] * normal[i*COORD_DIM+2][j]; n_n_dB0 -= dB0[i*9+8][j] * normal[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j]; dAdnu[i][j] = u[i*Nnodes+j] * n_n_dB0; } } Vector B0 = compute_B0(v[Nelem*Nnodes]); Vector u_B0(Nelem*COORD_DIM); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { u_B0[i*COORD_DIM+0][j] = u[i*Nnodes+j] * B0[i*COORD_DIM+0][j]; u_B0[i*COORD_DIM+1][j] = u[i*Nnodes+j] * B0[i*COORD_DIM+1][j]; u_B0[i*COORD_DIM+2][j] = u[i*Nnodes+j] * B0[i*COORD_DIM+2][j]; } } dAdnu -= compute_grad_adj(u_B0); return dAdnu; }; auto compute_u_dAdnu_v_10 = [&S,&comm,&area_elem,&normal,&compute_dot_prod,&compute_grad_adj,&compute_half_n_plus_dG] (const Vector& u, const Vector& v) { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector sigma(Nelem); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { sigma[i][j] = v[i*Nnodes+j]; } } auto compute_v = [&S,&area_elem] () { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector v(Nelem * COORD_DIM); Vector dX; ElemBasis::Grad(dX, S.GetElemList().ElemVector()); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { Tensor dx; dx(0,0) = dX[i*COORD_DIM*2+0][j]; dx(0,1) = dX[i*COORD_DIM*2+1][j]; dx(1,0) = dX[i*COORD_DIM*2+2][j]; dx(1,1) = dX[i*COORD_DIM*2+3][j]; dx(2,0) = dX[i*COORD_DIM*2+4][j]; dx(2,1) = dX[i*COORD_DIM*2+5][j]; Real s = 1 / (area_elem[i][j] * S.NtNp_[0]); for (Long k = 0; k < COORD_DIM; k++) { v[i*COORD_DIM+k][j] = dx(k,1) * s; } } } return v; }; auto compute_AxB = [&S] (const Vector& A, const Vector& B) { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector J(Nelem * COORD_DIM); for (Long i = 0; i < Nelem; i++) { // Set J for (Long j = 0; j < Nnodes; j++) { Tensor a, b; a(0) = A[i*COORD_DIM+0][j]; a(1) = A[i*COORD_DIM+1][j]; a(2) = A[i*COORD_DIM+2][j]; b(0) = B[i*COORD_DIM+0][j]; b(1) = B[i*COORD_DIM+1][j]; b(2) = B[i*COORD_DIM+2][j]; J[i*COORD_DIM+0][j] = a(1) * b(2) - a(2) * b(1); J[i*COORD_DIM+1][j] = a(2) * b(0) - a(0) * b(2); J[i*COORD_DIM+2][j] = a(0) * b(1) - a(1) * b(0); } } return J; }; auto compute_dphi_dnu0 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,compute_grad_adj,sigma] () { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector Gv; Vector v = compute_v(); S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU); Vector B = compute_half_n_plus_dG(sigma); Vector BxGv = compute_AxB(B,Gv); return compute_grad_adj(BxGv)*(-1.0); }; auto compute_dphi_dnu1 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,&compute_dot_prod,sigma] () { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector H(Nelem); { // Set mean curvature H const Vector X = S.GetElemList().ElemVector(); Vector dX, d2X; ElemBasis::Grad(dX, X); ElemBasis::Grad(d2X, dX); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { Tensor I, invI, II; for (Long k0 = 0; k0 < 2; k0++) { for (Long k1 = 0; k1 < 2; k1++) { I(k0,k1) = 0; I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j]; I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j]; I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j]; II(k0,k1) = 0; II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j]; II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j]; II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j]; } } { // Set invI Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0); invI(0,0) = I(1,1) / detI; invI(0,1) = -I(0,1) / detI; invI(1,0) = -I(1,0) / detI; invI(1,1) = I(0,0) / detI; } { // Set H H[i][j] = 0; H[i][j] += -0.5 * II(0,0)*invI(0,0); H[i][j] += -0.5 * II(0,1)*invI(0,1); H[i][j] += -0.5 * II(1,0)*invI(1,0); H[i][j] += -0.5 * II(1,1)*invI(1,1); } } } } Vector Gv; Vector v = compute_v(); S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU); Vector B = compute_half_n_plus_dG(sigma); Vector BxGv = compute_AxB(B,Gv); Vector n_dot_BxGv = compute_dot_prod(normal,BxGv); Vector dphi_dnu(Nelem); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { dphi_dnu[i][j] = n_dot_BxGv[i][j] * 2*H[i][j]; } } return dphi_dnu; }; auto compute_dphi_dnu2 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,&compute_dot_prod,sigma] () { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector H(Nelem); { // Set mean curvature H const Vector X = S.GetElemList().ElemVector(); Vector dX, d2X; ElemBasis::Grad(dX, X); ElemBasis::Grad(d2X, dX); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { Tensor I, invI, II; for (Long k0 = 0; k0 < 2; k0++) { for (Long k1 = 0; k1 < 2; k1++) { I(k0,k1) = 0; I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j]; I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j]; I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j]; II(k0,k1) = 0; II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j]; II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j]; II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j]; } } { // Set invI Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0); invI(0,0) = I(1,1) / detI; invI(0,1) = -I(0,1) / detI; invI(1,0) = -I(1,0) / detI; invI(1,1) = I(0,0) / detI; } { // Set H H[i][j] = 0; H[i][j] += -0.5 * II(0,0)*invI(0,0); H[i][j] += -0.5 * II(0,1)*invI(0,1); H[i][j] += -0.5 * II(1,0)*invI(1,0); H[i][j] += -0.5 * II(1,1)*invI(1,1); } } } } Vector GnxB; Vector B = compute_half_n_plus_dG(sigma); Vector nxB = compute_AxB(normal,B); S.quadrature_FxU.Eval(GnxB, S.GetElemList(), nxB, S.Laplace_FxU); Vector v = compute_v(); Vector v_dot_GnxB = compute_dot_prod(v,GnxB); Vector dphi_dnu(Nelem); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { dphi_dnu[i][j] = v_dot_GnxB[i][j] * 2*H[i][j]; } } return dphi_dnu; }; auto compute_dphi_dnu3 = [&S,&normal,&area_elem,&compute_AxB,&compute_half_n_plus_dG,sigma] () { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector GnxB; Vector B = compute_half_n_plus_dG(sigma); Vector nxB = compute_AxB(normal,B); S.quadrature_FxU.Eval(GnxB, S.GetElemList(), nxB, S.Laplace_FxU); Vector H(Nelem); { // Set mean curvature H const Vector X = S.GetElemList().ElemVector(); Vector dX, d2X; ElemBasis::Grad(dX, X); ElemBasis::Grad(d2X, dX); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { Tensor I, invI, II; for (Long k0 = 0; k0 < 2; k0++) { for (Long k1 = 0; k1 < 2; k1++) { I(k0,k1) = 0; I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j]; I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j]; I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j]; II(k0,k1) = 0; II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j]; II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j]; II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j]; } } { // Set invI Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0); invI(0,0) = I(1,1) / detI; invI(0,1) = -I(0,1) / detI; invI(1,0) = -I(1,0) / detI; invI(1,1) = I(0,0) / detI; } { // Set H H[i][j] = 0; H[i][j] += -0.5 * II(0,0)*invI(0,0); H[i][j] += -0.5 * II(0,1)*invI(0,1); H[i][j] += -0.5 * II(1,0)*invI(1,0); H[i][j] += -0.5 * II(1,1)*invI(1,1); } } } } Vector dv_dnu1(Nelem), dv_dnu2(Nelem); { // Set dv_dnu1, dv_dnu2 Vector dX, dGnxB; ElemBasis::Grad(dX, S.GetElemList().ElemVector()); ElemBasis::Grad(dGnxB, GnxB); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { dv_dnu1[i][j] = 0; dv_dnu1[i][j] += -GnxB[i*COORD_DIM+0][j] * dX[(i*COORD_DIM+0)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]); dv_dnu1[i][j] += -GnxB[i*COORD_DIM+1][j] * dX[(i*COORD_DIM+1)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]); dv_dnu1[i][j] += -GnxB[i*COORD_DIM+2][j] * dX[(i*COORD_DIM+2)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]); dv_dnu2[i][j] = 0; dv_dnu2[i][j] += -dGnxB[(i*COORD_DIM+0)*2+1][j] * normal[i*COORD_DIM+0][j] / (area_elem[i][j] * S.NtNp_[0]); dv_dnu2[i][j] += -dGnxB[(i*COORD_DIM+1)*2+1][j] * normal[i*COORD_DIM+1][j] / (area_elem[i][j] * S.NtNp_[0]); dv_dnu2[i][j] += -dGnxB[(i*COORD_DIM+2)*2+1][j] * normal[i*COORD_DIM+2][j] / (area_elem[i][j] * S.NtNp_[0]); } } } return dv_dnu1 + dv_dnu2; }; auto compute_dphi_dnu4 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,sigma] () { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector dGnxB; Vector B = compute_half_n_plus_dG(sigma); Vector nxB = compute_AxB(normal,B); S.quadrature_FxdU.Eval(dGnxB, S.GetElemList(), nxB, S.Laplace_FxdU); Vector v = compute_v(); Vector dphi_dnu(Nelem); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { Real dphi_dnu_ = 0; dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+0][j] * v[i*COORD_DIM+0][j]; dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+1][j] * v[i*COORD_DIM+0][j]; dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+2][j] * v[i*COORD_DIM+0][j]; dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+0][j] * v[i*COORD_DIM+1][j]; dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+1][j] * v[i*COORD_DIM+1][j]; dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+2][j] * v[i*COORD_DIM+1][j]; dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+0][j] * v[i*COORD_DIM+2][j]; dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+1][j] * v[i*COORD_DIM+2][j]; dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+2][j] * v[i*COORD_DIM+2][j]; dphi_dnu[i][j] = dphi_dnu_; } } return dphi_dnu; }; auto compute_dphi_dnu5 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,sigma] () { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector B = compute_half_n_plus_dG(sigma); Vector nxB = compute_AxB(normal,B); Vector dGv; Vector v = compute_v(); S.quadrature_FxdU.Eval(dGv, S.GetElemList(), v, S.Laplace_FxdU); Vector dphi_dnu(Nelem); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { Real dphi_dnu_ = 0; dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+0][j] * nxB[i*COORD_DIM+0][j]; dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+1][j] * nxB[i*COORD_DIM+0][j]; dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+2][j] * nxB[i*COORD_DIM+0][j]; dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+0][j] * nxB[i*COORD_DIM+1][j]; dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+1][j] * nxB[i*COORD_DIM+1][j]; dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+2][j] * nxB[i*COORD_DIM+1][j]; dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+0][j] * nxB[i*COORD_DIM+2][j]; dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+1][j] * nxB[i*COORD_DIM+2][j]; dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+2][j] * nxB[i*COORD_DIM+2][j]; dphi_dnu[i][j] = dphi_dnu_; } } return dphi_dnu; }; auto compute_dphi_dnu6 = [&S,&normal,&compute_AxB,&compute_v,sigma,&comm] () { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector Gv; Vector v = compute_v(); S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU); Vector nxGv = compute_AxB(Gv,normal); Vector gradB; Quadrature quadrature_Fxd2U; quadrature_Fxd2U.template Setup(S.GetElemList(), S.Laplace_Fxd2U, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER)); quadrature_Fxd2U.Eval(gradB, S.GetElemList(), sigma, S.Laplace_Fxd2U); Vector dphi_dnu(Nelem); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { Real dphi_dnu_ = 0; dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j]; dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+1][j] * normal[i*COORD_DIM+0][j]; dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+2][j] * normal[i*COORD_DIM+0][j]; dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+0][j] * normal[i*COORD_DIM+1][j]; dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j]; dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+2][j] * normal[i*COORD_DIM+1][j]; dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+0][j] * normal[i*COORD_DIM+2][j]; dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+1][j] * normal[i*COORD_DIM+2][j]; dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j]; dphi_dnu[i][j] = dphi_dnu_; } } return dphi_dnu; }; auto compute_dphi_dnu7 = [&S,&normal,&compute_AxB,&compute_v,sigma,&comm] () { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector H(Nelem); { // Set mean curvature H const Vector X = S.GetElemList().ElemVector(); Vector dX, d2X; ElemBasis::Grad(dX, X); ElemBasis::Grad(d2X, dX); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { Tensor I, invI, II; for (Long k0 = 0; k0 < 2; k0++) { for (Long k1 = 0; k1 < 2; k1++) { I(k0,k1) = 0; I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j]; I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j]; I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j]; II(k0,k1) = 0; II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j]; II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j]; II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j]; } } { // Set invI Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0); invI(0,0) = I(1,1) / detI; invI(0,1) = -I(0,1) / detI; invI(1,0) = -I(1,0) / detI; invI(1,1) = I(0,0) / detI; } { // Set H H[i][j] = 0; H[i][j] += -0.5 * II(0,0)*invI(0,0); H[i][j] += -0.5 * II(0,1)*invI(0,1); H[i][j] += -0.5 * II(1,0)*invI(1,0); H[i][j] += -0.5 * II(1,1)*invI(1,1); } } } } Vector Gv; Vector v = compute_v(); S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU); Vector nxGv = compute_AxB(Gv,normal); Vector dphi_dnu(Nelem); S.quadrature_dUxF.Eval(dphi_dnu, S.GetElemList(), nxGv, S.Laplace_dUxF); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { dphi_dnu[i][j] *= -2*H[i][j] * sigma[i][j]; } } return dphi_dnu; }; auto compute_dphi_dnu8 = [&S,&normal,&compute_AxB,&compute_v,sigma,&comm] () { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector H(Nelem); { // Set mean curvature H const Vector X = S.GetElemList().ElemVector(); Vector dX, d2X; ElemBasis::Grad(dX, X); ElemBasis::Grad(d2X, dX); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { Tensor I, invI, II; for (Long k0 = 0; k0 < 2; k0++) { for (Long k1 = 0; k1 < 2; k1++) { I(k0,k1) = 0; I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j]; I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j]; I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j]; II(k0,k1) = 0; II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j]; II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j]; II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j]; } } { // Set invI Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0); invI(0,0) = I(1,1) / detI; invI(0,1) = -I(0,1) / detI; invI(1,0) = -I(1,0) / detI; invI(1,1) = I(0,0) / detI; } { // Set H H[i][j] = 0; H[i][j] += -0.5 * II(0,0)*invI(0,0); H[i][j] += -0.5 * II(0,1)*invI(0,1); H[i][j] += -0.5 * II(1,0)*invI(1,0); H[i][j] += -0.5 * II(1,1)*invI(1,1); } } } } Vector Gv; Vector v = compute_v(); S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU); Vector nxGv = compute_AxB(Gv,normal); Vector dphi_dnu(Nelem); Vector nablaDt_nxGv; Quadrature quadrature_dUxD; quadrature_dUxD.template Setup(S.GetElemList(), S.Laplace_dUxD, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER)); quadrature_dUxD.Eval(nablaDt_nxGv, S.GetElemList(), nxGv, S.Laplace_dUxD); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { dphi_dnu[i][j] = 0; dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j]; dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j]; dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j]; } } return dphi_dnu; }; auto dphi_dnu0 = compute_dphi_dnu0(); auto dphi_dnu1 = compute_dphi_dnu1(); auto dphi_dnu2 = compute_dphi_dnu2(); auto dphi_dnu3 = compute_dphi_dnu3(); auto dphi_dnu4 = compute_dphi_dnu4(); auto dphi_dnu5 = compute_dphi_dnu5(); auto dphi_dnu6 = compute_dphi_dnu6(); auto dphi_dnu7 = compute_dphi_dnu7(); auto dphi_dnu8 = compute_dphi_dnu8(); return (dphi_dnu0+dphi_dnu1+dphi_dnu2+dphi_dnu3+dphi_dnu4+dphi_dnu5+dphi_dnu6+dphi_dnu7+dphi_dnu8) * u[Nelem*Nnodes]; }; auto compute_u_dAdnu_v_11 = [&S,&comm,&area_elem,&normal,&compute_dot_prod,&compute_grad_adj,&compute_B0,&compute_dB0] (const Vector& u, const Vector& v) { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); auto compute_v = [&S,&area_elem] () { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector v(Nelem * COORD_DIM); Vector dX; ElemBasis::Grad(dX, S.GetElemList().ElemVector()); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { Tensor dx; dx(0,0) = dX[i*COORD_DIM*2+0][j]; dx(0,1) = dX[i*COORD_DIM*2+1][j]; dx(1,0) = dX[i*COORD_DIM*2+2][j]; dx(1,1) = dX[i*COORD_DIM*2+3][j]; dx(2,0) = dX[i*COORD_DIM*2+4][j]; dx(2,1) = dX[i*COORD_DIM*2+5][j]; Real s = 1 / (area_elem[i][j] * S.NtNp_[0]); for (Long k = 0; k < COORD_DIM; k++) { v[i*COORD_DIM+k][j] = dx(k,1) * s; } } } return v; }; auto compute_AxB = [&S] (const Vector& A, const Vector& B) { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector J(Nelem * COORD_DIM); for (Long i = 0; i < Nelem; i++) { // Set J for (Long j = 0; j < Nnodes; j++) { Tensor a, b; a(0) = A[i*COORD_DIM+0][j]; a(1) = A[i*COORD_DIM+1][j]; a(2) = A[i*COORD_DIM+2][j]; b(0) = B[i*COORD_DIM+0][j]; b(1) = B[i*COORD_DIM+1][j]; b(2) = B[i*COORD_DIM+2][j]; J[i*COORD_DIM+0][j] = a(1) * b(2) - a(2) * b(1); J[i*COORD_DIM+1][j] = a(2) * b(0) - a(0) * b(2); J[i*COORD_DIM+2][j] = a(0) * b(1) - a(1) * b(0); } } return J; }; auto compute_dphi_dnu0 = [&S,&normal,&compute_AxB,&compute_v,&compute_dB0] () { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector Gv; Vector v = compute_v(); S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU); Vector nxGv = compute_AxB(Gv,normal); Vector gradB = compute_dB0(1.0); Vector dphi_dnu(Nelem); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { Real dphi_dnu_ = 0; dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j]; dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+1][j] * normal[i*COORD_DIM+0][j]; dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+2][j] * normal[i*COORD_DIM+0][j]; dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+0][j] * normal[i*COORD_DIM+1][j]; dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j]; dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+2][j] * normal[i*COORD_DIM+1][j]; dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+0][j] * normal[i*COORD_DIM+2][j]; dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+1][j] * normal[i*COORD_DIM+2][j]; dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j]; dphi_dnu[i][j] = dphi_dnu_; } } return dphi_dnu; }; auto compute_dphi_dnu1 = [&S,&normal,&compute_AxB,&compute_v,&compute_B0,compute_grad_adj] () { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector Gv; Vector v = compute_v(); S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU); Vector B = compute_B0(1.0); Vector BxGv = compute_AxB(B,Gv); return compute_grad_adj(BxGv)*(-1.0); }; auto compute_dphi_dnu2 = [&S,&normal,&compute_AxB,&compute_v,&compute_B0,&compute_dot_prod] () { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector H(Nelem); { // Set mean curvature H const Vector X = S.GetElemList().ElemVector(); Vector dX, d2X; ElemBasis::Grad(dX, X); ElemBasis::Grad(d2X, dX); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { Tensor I, invI, II; for (Long k0 = 0; k0 < 2; k0++) { for (Long k1 = 0; k1 < 2; k1++) { I(k0,k1) = 0; I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j]; I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j]; I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j]; II(k0,k1) = 0; II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j]; II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j]; II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j]; } } { // Set invI Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0); invI(0,0) = I(1,1) / detI; invI(0,1) = -I(0,1) / detI; invI(1,0) = -I(1,0) / detI; invI(1,1) = I(0,0) / detI; } { // Set H H[i][j] = 0; H[i][j] += -0.5 * II(0,0)*invI(0,0); H[i][j] += -0.5 * II(0,1)*invI(0,1); H[i][j] += -0.5 * II(1,0)*invI(1,0); H[i][j] += -0.5 * II(1,1)*invI(1,1); } } } } Vector Gv; Vector v = compute_v(); S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU); Vector B = compute_B0(1.0); Vector BxGv = compute_AxB(B,Gv); Vector n_dot_BxGv = compute_dot_prod(normal,BxGv); Vector dphi_dnu(Nelem); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { dphi_dnu[i][j] = n_dot_BxGv[i][j] * 2*H[i][j]; } } return dphi_dnu; }; auto compute_dphi_dnu3 = [&S,&normal,&compute_AxB,&compute_v,&compute_B0,&compute_dot_prod] () { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector H(Nelem); { // Set mean curvature H const Vector X = S.GetElemList().ElemVector(); Vector dX, d2X; ElemBasis::Grad(dX, X); ElemBasis::Grad(d2X, dX); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { Tensor I, invI, II; for (Long k0 = 0; k0 < 2; k0++) { for (Long k1 = 0; k1 < 2; k1++) { I(k0,k1) = 0; I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j]; I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j]; I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j]; II(k0,k1) = 0; II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j]; II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j]; II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j]; } } { // Set invI Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0); invI(0,0) = I(1,1) / detI; invI(0,1) = -I(0,1) / detI; invI(1,0) = -I(1,0) / detI; invI(1,1) = I(0,0) / detI; } { // Set H H[i][j] = 0; H[i][j] += -0.5 * II(0,0)*invI(0,0); H[i][j] += -0.5 * II(0,1)*invI(0,1); H[i][j] += -0.5 * II(1,0)*invI(1,0); H[i][j] += -0.5 * II(1,1)*invI(1,1); } } } } Vector GnxB; Vector B = compute_B0(1.0); Vector nxB = compute_AxB(normal,B); S.quadrature_FxU.Eval(GnxB, S.GetElemList(), nxB, S.Laplace_FxU); Vector v = compute_v(); Vector v_dot_GnxB = compute_dot_prod(v,GnxB); Vector dphi_dnu(Nelem); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { dphi_dnu[i][j] = v_dot_GnxB[i][j] * 2*H[i][j]; } } return dphi_dnu; }; auto compute_dphi_dnu4 = [&S,&normal,&area_elem,&compute_AxB,&compute_B0] () { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector GnxB; Vector B = compute_B0(1.0); Vector nxB = compute_AxB(normal,B); S.quadrature_FxU.Eval(GnxB, S.GetElemList(), nxB, S.Laplace_FxU); Vector H(Nelem); { // Set mean curvature H const Vector X = S.GetElemList().ElemVector(); Vector dX, d2X; ElemBasis::Grad(dX, X); ElemBasis::Grad(d2X, dX); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { Tensor I, invI, II; for (Long k0 = 0; k0 < 2; k0++) { for (Long k1 = 0; k1 < 2; k1++) { I(k0,k1) = 0; I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j]; I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j]; I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j]; II(k0,k1) = 0; II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j]; II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j]; II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j]; } } { // Set invI Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0); invI(0,0) = I(1,1) / detI; invI(0,1) = -I(0,1) / detI; invI(1,0) = -I(1,0) / detI; invI(1,1) = I(0,0) / detI; } { // Set H H[i][j] = 0; H[i][j] += -0.5 * II(0,0)*invI(0,0); H[i][j] += -0.5 * II(0,1)*invI(0,1); H[i][j] += -0.5 * II(1,0)*invI(1,0); H[i][j] += -0.5 * II(1,1)*invI(1,1); } } } } Vector dv_dnu1(Nelem), dv_dnu2(Nelem); { // Set dv_dnu1, dv_dnu2 Vector dX, dGnxB; ElemBasis::Grad(dX, S.GetElemList().ElemVector()); ElemBasis::Grad(dGnxB, GnxB); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { dv_dnu1[i][j] = 0; dv_dnu1[i][j] += -GnxB[i*COORD_DIM+0][j] * dX[(i*COORD_DIM+0)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]); dv_dnu1[i][j] += -GnxB[i*COORD_DIM+1][j] * dX[(i*COORD_DIM+1)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]); dv_dnu1[i][j] += -GnxB[i*COORD_DIM+2][j] * dX[(i*COORD_DIM+2)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]); dv_dnu2[i][j] = 0; dv_dnu2[i][j] += -dGnxB[(i*COORD_DIM+0)*2+1][j] * normal[i*COORD_DIM+0][j] / (area_elem[i][j] * S.NtNp_[0]); dv_dnu2[i][j] += -dGnxB[(i*COORD_DIM+1)*2+1][j] * normal[i*COORD_DIM+1][j] / (area_elem[i][j] * S.NtNp_[0]); dv_dnu2[i][j] += -dGnxB[(i*COORD_DIM+2)*2+1][j] * normal[i*COORD_DIM+2][j] / (area_elem[i][j] * S.NtNp_[0]); } } } return dv_dnu1 + dv_dnu2; }; auto compute_dphi_dnu5 = [&S,&normal,&compute_AxB,&compute_v,&compute_B0] () { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector dGnxB; Vector B = compute_B0(1.0); Vector nxB = compute_AxB(normal,B); S.quadrature_FxdU.Eval(dGnxB, S.GetElemList(), nxB, S.Laplace_FxdU); Vector v = compute_v(); Vector dphi_dnu(Nelem); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { Real dphi_dnu_ = 0; dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+0][j] * v[i*COORD_DIM+0][j]; dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+1][j] * v[i*COORD_DIM+0][j]; dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+2][j] * v[i*COORD_DIM+0][j]; dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+0][j] * v[i*COORD_DIM+1][j]; dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+1][j] * v[i*COORD_DIM+1][j]; dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+2][j] * v[i*COORD_DIM+1][j]; dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+0][j] * v[i*COORD_DIM+2][j]; dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+1][j] * v[i*COORD_DIM+2][j]; dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+2][j] * v[i*COORD_DIM+2][j]; dphi_dnu[i][j] = dphi_dnu_; } } return dphi_dnu; }; auto compute_dphi_dnu6 = [&S,&normal,&compute_AxB,&compute_v,&compute_B0] () { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector B = compute_B0(1.0); Vector nxB = compute_AxB(normal,B); Vector dGv; Vector v = compute_v(); S.quadrature_FxdU.Eval(dGv, S.GetElemList(), v, S.Laplace_FxdU); Vector dphi_dnu(Nelem); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { Real dphi_dnu_ = 0; dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+0][j] * nxB[i*COORD_DIM+0][j]; dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+1][j] * nxB[i*COORD_DIM+0][j]; dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+2][j] * nxB[i*COORD_DIM+0][j]; dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+0][j] * nxB[i*COORD_DIM+1][j]; dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+1][j] * nxB[i*COORD_DIM+1][j]; dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+2][j] * nxB[i*COORD_DIM+1][j]; dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+0][j] * nxB[i*COORD_DIM+2][j]; dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+1][j] * nxB[i*COORD_DIM+2][j]; dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+2][j] * nxB[i*COORD_DIM+2][j]; dphi_dnu[i][j] = dphi_dnu_; } } return dphi_dnu; }; auto dphi_dnu0 = compute_dphi_dnu0(); auto dphi_dnu1 = compute_dphi_dnu1(); auto dphi_dnu2 = compute_dphi_dnu2(); auto dphi_dnu3 = compute_dphi_dnu3(); auto dphi_dnu4 = compute_dphi_dnu4(); auto dphi_dnu5 = compute_dphi_dnu5(); auto dphi_dnu6 = compute_dphi_dnu6(); return (dphi_dnu0+dphi_dnu1+dphi_dnu2+dphi_dnu3+dphi_dnu4+dphi_dnu5+dphi_dnu6) * (u[Nelem*Nnodes] * v[Nelem*Nnodes]); }; { // Set dg_dnu -= dg_dsigma invA dA_dnu sigma Vector sigma_(Nelem*Nnodes+1); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { sigma_[i*Nnodes+j] = sigma[i][j]; } } sigma_[Nelem*Nnodes] = alpha; auto dg_dnu1 = compute_u_dAdnu_v_00(dg_dsigma_invA, sigma_)*(-1); auto dg_dnu2 = compute_u_dAdnu_v_01(dg_dsigma_invA, sigma_)*(-1); auto dg_dnu3 = compute_u_dAdnu_v_10(dg_dsigma_invA, sigma_)*(-1); auto dg_dnu4 = compute_u_dAdnu_v_11(dg_dsigma_invA, sigma_)*(-1); dg_dnu += dg_dnu1; dg_dnu += dg_dnu2; dg_dnu += dg_dnu3; dg_dnu += dg_dnu4; } return dg_dnu; }; ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// if (1) { // test grad_g const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); auto dg_dnu = compute_gradient(); { // Write VTU VTUData vtu; vtu.AddElems(S.GetElemList(), dg_dnu, ORDER); vtu.WriteVTK("dg_dnu", comm); } { // Save data Matrix M(S.NtNp_[0]*ORDER, S.NtNp_[1]*ORDER); for (Long tt = 0; tt < S.NtNp_[0]; tt++) { for (Long pp = 0; pp < S.NtNp_[1]; pp++) { for (Long t = 0; t < ORDER; t++) { for (Long p = 0; p < ORDER; p++) { Long elem_idx = tt * S.NtNp_[1] + pp; Long node_idx = p * ORDER + t; M[tt*ORDER+t][pp*ORDER+p] = dg_dnu[elem_idx][node_idx]; } } } } M.Write("dg_dnu.mat"); } if (0) { // filter dg_dnu and write VTU const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); const Integer INTERP_ORDER = 12; Long Nt = S.NtNp_[0]*ORDER/5, Np = S.NtNp_[1]*ORDER/5; Matrix M(Nt, Np); M = 0; const auto& quad_wts = ElemBasis::QuadWts(); const Matrix& Mnodes = Basis::Nodes(); for (Long tt = 0; tt < S.NtNp_[0]; tt++) { for (Long pp = 0; pp < S.NtNp_[1]; pp++) { for (Long t = 0; t < ORDER; t++) { for (Long p = 0; p < ORDER; p++) { Real theta = (tt + Mnodes[0][t]) / S.NtNp_[0]; Real phi = (pp + Mnodes[0][p]) / S.NtNp_[1]; Long i = (Long)(theta * Nt); Long j = (Long)(phi * Np); Real x = theta * Nt - i; Real y = phi * Np - j; Long elem_idx = tt * S.NtNp_[1] + pp; Long node_idx = p * ORDER + t; Vector Interp0(INTERP_ORDER); Vector Interp1(INTERP_ORDER); { // Set Interp0, Interp1 auto node = [] (Long i) { return (Real)i - (INTERP_ORDER-1)/2; }; for (Long i = 0; i < INTERP_ORDER; i++) { Real wt_x = 1, wt_y = 1; for (Long j = 0; j < INTERP_ORDER; j++) { if (j != i) { wt_x *= (x - node(j)) / (node(i) - node(j)); wt_y *= (y - node(j)) / (node(i) - node(j)); } Interp0[i] = wt_x; Interp1[i] = wt_y; } } } for (Long ii = 0; ii < INTERP_ORDER; ii++) { for (Long jj = 0; jj < INTERP_ORDER; jj++) { Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt; Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np; M[idx_i][idx_j] += dg_dnu[elem_idx][node_idx] * quad_wts[node_idx] * Interp0[ii] * Interp1[jj] / (S.NtNp_[0] * S.NtNp_[1]) * (Nt * Np); } } } } } } Vector f(Nelem); for (Long tt = 0; tt < S.NtNp_[0]; tt++) { for (Long pp = 0; pp < S.NtNp_[1]; pp++) { for (Long t = 0; t < ORDER; t++) { for (Long p = 0; p < ORDER; p++) { Matrix Mnodes = Basis::Nodes(); Real theta = (tt + Mnodes[0][t]) / S.NtNp_[0]; Real phi = (pp + Mnodes[0][p]) / S.NtNp_[1]; Long i = (Long)(theta * Nt); Long j = (Long)(phi * Np); Real x = theta * Nt - i; Real y = phi * Np - j; Vector Interp0(INTERP_ORDER); Vector Interp1(INTERP_ORDER); { // Set Interp0, Interp1 auto node = [] (Long i) { return (Real)i - (INTERP_ORDER-1)/2; }; for (Long i = 0; i < INTERP_ORDER; i++) { Real wt_x = 1, wt_y = 1; for (Long j = 0; j < INTERP_ORDER; j++) { if (j != i) { wt_x *= (x - node(j)) / (node(i) - node(j)); wt_y *= (y - node(j)) / (node(i) - node(j)); } Interp0[i] = wt_x; Interp1[i] = wt_y; } } } Real f0 = 0; for (Long ii = 0; ii < INTERP_ORDER; ii++) { for (Long jj = 0; jj < INTERP_ORDER; jj++) { Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt; Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np; f0 += Interp0[ii] * Interp1[jj] * M[idx_i][idx_j]; } } Long elem_idx = tt * S.NtNp_[1] + pp; Long node_idx = p * ORDER + t; f[elem_idx][node_idx] = f0; } } } } { // Write VTU VTUData vtu; vtu.AddElems(S.GetElemList(), f, ORDER); vtu.WriteVTK("dg_dnu_filtered", comm); } dg_dnu = f; } auto compute_g = [&compute_gvec,&sigma,&alpha,&S,&area_elem,&normal,&Jt,&Jp,&compute_harmonic_vector_potentials,&compute_norm_area_elem,&compute_invA,&compute_half_n_plus_dG,&compute_B0,&compute_inner_prod,&comm] (const Vector& nu, Real eps) { const Long Nelem = S.GetElemList().NElem(); const Long Nnodes = ElemBasis::Size(); Vector X_orig(Nelem*COORD_DIM); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { X_orig[i*COORD_DIM+0][j] = S.Elem(i,0)[j]; X_orig[i*COORD_DIM+1][j] = S.Elem(i,1)[j]; X_orig[i*COORD_DIM+2][j] = S.Elem(i,2)[j]; S.Elem(i,0)[j] += eps*nu[i][j] * normal[i*COORD_DIM+0][j]; S.Elem(i,1)[j] += eps*nu[i][j] * normal[i*COORD_DIM+1][j]; S.Elem(i,2)[j] += eps*nu[i][j] * normal[i*COORD_DIM+2][j]; } } compute_harmonic_vector_potentials(Jt, Jp); compute_norm_area_elem(S.GetElemList(), normal, area_elem); S.quadrature_BS .template Setup(S.GetElemList(), S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER)); S.quadrature_FxU .template Setup(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm); S.quadrature_DxU .template Setup(S.GetElemList(), S.Laplace_DxU , order_singular, order_direct, -1.0, comm); S.quadrature_FxdU.template Setup(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm); S.quadrature_dUxF.template Setup(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm); Real flux = 1.0, alpha; Vector sigma; compute_invA(sigma, alpha, flux); Vector B = compute_half_n_plus_dG(sigma) + compute_B0(alpha); Real g = compute_inner_prod(area_elem,compute_gvec(B), area_elem*0+1); for (Long i = 0; i < Nelem; i++) { for (Long j = 0; j < Nnodes; j++) { S.Elem(i,0)[j] = X_orig[i*COORD_DIM+0][j]; S.Elem(i,1)[j] = X_orig[i*COORD_DIM+1][j]; S.Elem(i,2)[j] = X_orig[i*COORD_DIM+2][j]; } } compute_harmonic_vector_potentials(Jt, Jp); compute_norm_area_elem(S.GetElemList(), normal, area_elem); S.quadrature_BS .template Setup(S.GetElemList(), S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER)); S.quadrature_FxU .template Setup(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm); S.quadrature_DxU .template Setup(S.GetElemList(), S.Laplace_DxU , order_singular, order_direct, -1.0, comm); S.quadrature_FxdU.template Setup(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm); S.quadrature_dUxF.template Setup(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm); return g; }; { Vector nu(Nelem); nu = dg_dnu; Real eps = 1e-4; Real g0 = compute_g(nu,-eps); Real g1 = compute_g(nu,eps); std::cout<<"g = "< rhs; BIOpL(rhs, U); Vector sigma; { // Set sigma Long Nnode = DensityBasis::Size(); Long Nelem = S.GetElem().NElem(); typename sctl::ParallelSolver::ParallelOp A = [&S,&BIOp_half_S_D](sctl::Vector* Ax, const sctl::Vector& x) { Long Nnode = DensityBasis::Size(); Long Nelem = S.GetElem().NElem(); Ax->ReInit(Nelem*COORD_DIM*Nnode); Vector x_(Nelem*COORD_DIM), Ax_(Nelem*COORD_DIM); for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set x_ for (Long k = 0; k < Nnode; k++) { x_[i][k] = x[i*Nnode+k]; } } BIOp_half_S_D(Ax_, x_); for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set Ax for (Long k = 0; k < Nnode; k++) { (*Ax)[i*Nnode+k] = Ax_[i][k]; } } }; Vector sigma_(Nelem*COORD_DIM*Nnode), rhs_(Nelem*COORD_DIM*Nnode); for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set rhs_ for (Long k = 0; k < Nnode; k++) { rhs_[i*Nnode+k] = rhs[i][k]; } } sigma_ = 0; ParallelSolver linear_solver(comm, true); linear_solver(&sigma_, A, rhs_, 1e-6, 50); sigma.ReInit(Nelem * COORD_DIM); for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set sigma for (Long k = 0; k < Nnode; k++) { sigma[i][k] = sigma_[i*Nnode+k]; } } } Vector U1; BIOp_half_S_D(U1, sigma); { // Write VTU VTUData vtu_sigma; vtu_sigma.AddElems(S.elements, sigma, ORDER); vtu_sigma.WriteVTK("sphere-sigma1", comm); VTUData vtu_U; vtu_U.AddElems(S.elements, U1, ORDER); vtu_U.WriteVTK("sphere-U1", comm); } } Profile::print(&comm); } private: template void SurfInteg(Vector& I, const Vector& f) { static_assert(std::is_same::value, "FnBasis is different from CoordBasis"); const Long Nelem = elements.NElem(); const Long dof = f.Dim() / Nelem; SCTL_ASSERT(f.Dim() == Nelem * dof); auto nodes = FnBasis::Nodes(); auto quad_wts = FnBasis::QuadWts(); const Long Nnodes = FnBasis::Size(); auto EvalOp = CoordBasis::SetupEval(nodes); Vector dX; const auto& X = elements.ElemVector(); SCTL_ASSERT(X.Dim() == Nelem * COORD_DIM); CoordBasis::Grad(dX, X); Matrix I_(Nelem, dof); for (Long i = 0; i < Nelem; i++) { for (Long k = 0; k < dof; k++) { I_[i][k] = 0; } for (Long j = 0; j < Nnodes; j++) { Real dA = 0; StaticArray Xn; Xn[0] = dX[i*COORD_DIM*2+2][j] * dX[i*COORD_DIM*2+5][j] - dX[i*COORD_DIM*2+3][j] * dX[i*COORD_DIM*2+4][j]; Xn[1] = dX[i*COORD_DIM*2+4][j] * dX[i*COORD_DIM*2+1][j] - dX[i*COORD_DIM*2+5][j] * dX[i*COORD_DIM*2+0][j]; Xn[2] = dX[i*COORD_DIM*2+0][j] * dX[i*COORD_DIM*2+3][j] - dX[i*COORD_DIM*2+1][j] * dX[i*COORD_DIM*2+2][j]; dA += sqrt(Xn[0]*Xn[0] + Xn[1]*Xn[1] + Xn[2]*Xn[2]) * quad_wts[j]; for (Long k = 0; k < dof; k++) { I_[i][k] += dA * f[i*dof+k][j]; } } } Long Ns = elem_cnt.Dim(); if (I.Dim() != Ns * dof) I.ReInit(Ns * dof); I = 0; Long elem_itr = 0; for (Long i = 0; i < Ns; i++) { for (Long j = 0; j < elem_cnt[i]; j++) { for (Long k = 0; k < dof; k++) { I[i*dof+k] += I_[elem_itr][k]; } elem_itr++; } } } void InitSpheres(const Vector X, const Vector& R){ SCTL_ASSERT(X.Dim() == R.Dim() * COORD_DIM); Long N = R.Dim(); elements.ReInit(2*COORD_DIM*N); auto nodes = ElemLst::CoordBasis::Nodes(); for (Long l = 0; l < N; l++) { for (Integer i = 0; i < COORD_DIM; i++) { for (Integer j = 0; j < 2; j++) { for (int k = 0; k < ElemLst::CoordBasis::Size(); k++) { Real coord[COORD_DIM]; coord[(i+0)%COORD_DIM] = (j ? -1.0 : 1.0); coord[(i+1)%COORD_DIM] = 2.0 * nodes[j?1:0][k] - 1.0; coord[(i+2)%COORD_DIM] = 2.0 * nodes[j?0:1][k] - 1.0; Real R0 = sqrt(coord[0]*coord[0] + coord[1]*coord[1] + coord[2]*coord[2]); elements((l*COORD_DIM+i)*2+j,0)[k] = X[l*COORD_DIM+0] + R[l] * coord[0] / R0; elements((l*COORD_DIM+i)*2+j,1)[k] = X[l*COORD_DIM+1] + R[l] * coord[1] / R0; elements((l*COORD_DIM+i)*2+j,2)[k] = X[l*COORD_DIM+2] + R[l] * coord[2] / R0; } } } } elem_cnt.ReInit(N); elem_cnt = 6; } GenericKernel Stokes_DxU; GenericKernel Stokes_FxU; GenericKernel Stokes_FxT; Quadrature quadrature_DxU; Quadrature quadrature_FxU; Quadrature quadrature_FxT; ElemLst elements; Vector elem_cnt; }; } // end namespace #endif //_SCTL_BOUNDARY_QUADRATURE_HPP_