boundary_quadrature.hpp 229 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503
  1. #ifndef _SCTL_BOUNDARY_QUADRATURE_HPP_
  2. #define _SCTL_BOUNDARY_QUADRATURE_HPP_
  3. #include <biest.hpp>
  4. #include <mutex>
  5. #include <atomic>
  6. #include <tuple>
  7. #include <Eigen/Core>
  8. #include <LBFGS.h>
  9. namespace SCTL_NAMESPACE {
  10. template <class Real, Integer DIM, Integer ORDER> class Basis {
  11. public:
  12. using ValueType = Real;
  13. // class EvalOperator {
  14. // public:
  15. // };
  16. using EvalOpType = Matrix<ValueType>;
  17. static constexpr Long Dim() {
  18. return DIM;
  19. }
  20. static constexpr Long Size() {
  21. return pow<DIM,Long>(ORDER);
  22. }
  23. static const Matrix<ValueType>& Nodes() {
  24. static Matrix<ValueType> nodes_(DIM,Size());
  25. auto nodes_1d = [](Integer i) {
  26. return 0.5 - 0.5 * sctl::cos<ValueType>((2*i+1) * const_pi<ValueType>() / (2*ORDER));
  27. };
  28. { // Set nodes_
  29. static std::mutex mutex;
  30. static std::atomic<Integer> first_time(true);
  31. if (first_time.load(std::memory_order_relaxed)) {
  32. std::lock_guard<std::mutex> guard(mutex);
  33. if (first_time.load(std::memory_order_relaxed)) {
  34. Integer N = 1;
  35. for (Integer d = 0; d < DIM; d++) {
  36. for (Integer j = 0; j < ORDER; j++) {
  37. for (Integer i = 0; i < N; i++) {
  38. for (Integer k = 0; k < d; k++) {
  39. nodes_[k][j*N+i] = nodes_[k][i];
  40. }
  41. nodes_[d][j*N+i] = nodes_1d(j);
  42. }
  43. }
  44. N *= ORDER;
  45. }
  46. std::atomic_thread_fence(std::memory_order_seq_cst);
  47. first_time.store(false);
  48. }
  49. }
  50. }
  51. return nodes_;
  52. }
  53. static const Vector<ValueType>& QuadWts() {
  54. static Vector<ValueType> wts(Size());
  55. { // Set nodes_
  56. static std::mutex mutex;
  57. static std::atomic<Integer> first_time(true);
  58. if (first_time.load(std::memory_order_relaxed)) {
  59. std::lock_guard<std::mutex> guard(mutex);
  60. if (first_time.load(std::memory_order_relaxed)) {
  61. StaticArray<ValueType,ORDER> wts_1d;
  62. { // Set wts_1d
  63. Vector<ValueType> x_(ORDER);
  64. ChebBasis<ValueType>::template Nodes<1>(ORDER, x_);
  65. Vector<ValueType> V_cheb(ORDER * ORDER);
  66. { // Set V_cheb
  67. Vector<ValueType> I(ORDER*ORDER);
  68. I = 0;
  69. for (Long i = 0; i < ORDER; i++) I[i*ORDER+i] = 1;
  70. ChebBasis<ValueType>::template Approx<1>(ORDER, I, V_cheb);
  71. }
  72. Matrix<ValueType> M(ORDER, ORDER, V_cheb.begin());
  73. Vector<ValueType> w_sample(ORDER);
  74. for (Integer i = 0; i < ORDER; i++) {
  75. w_sample[i] = (i % 2 ? 0 : -(ORDER/(ValueType)(i*i-1)));
  76. }
  77. for (Integer j = 0; j < ORDER; j++) {
  78. wts_1d[j] = 0;
  79. for (Integer i = 0; i < ORDER; i++) {
  80. wts_1d[j] += M[j][i] * w_sample[i] / ORDER;
  81. }
  82. }
  83. }
  84. wts[0] = 1;
  85. Integer N = 1;
  86. for (Integer d = 0; d < DIM; d++) {
  87. for (Integer j = 1; j < ORDER; j++) {
  88. for (Integer i = 0; i < N; i++) {
  89. wts[j*N+i] = wts[i] * wts_1d[j];
  90. }
  91. }
  92. for (Integer i = 0; i < N; i++) {
  93. wts[i] *= wts_1d[0];
  94. }
  95. N *= ORDER;
  96. }
  97. std::atomic_thread_fence(std::memory_order_seq_cst);
  98. first_time.store(false);
  99. }
  100. }
  101. }
  102. return wts;
  103. }
  104. static void Grad(Vector<Basis>& dX, const Vector<Basis>& X) {
  105. static Matrix<ValueType> GradOp[DIM];
  106. static std::mutex mutex;
  107. static std::atomic<Integer> first_time(true);
  108. if (first_time.load(std::memory_order_relaxed)) {
  109. std::lock_guard<std::mutex> guard(mutex);
  110. if (first_time.load(std::memory_order_relaxed)) {
  111. { // Set GradOp
  112. auto nodes = Basis<ValueType,1,ORDER>::Nodes();
  113. SCTL_ASSERT(nodes.Dim(1) == ORDER);
  114. Matrix<ValueType> M(ORDER, ORDER);
  115. for (Integer i = 0; i < ORDER; i++) { // Set M
  116. Real x = nodes[0][i];
  117. for (Integer j = 0; j < ORDER; j++) {
  118. M[j][i] = 0;
  119. for (Integer l = 0; l < ORDER; l++) {
  120. if (l != j) {
  121. Real M_ = 1;
  122. for (Integer k = 0; k < ORDER; k++) {
  123. if (k != j && k != l) M_ *= (x - nodes[0][k]);
  124. if (k != j) M_ /= (nodes[0][j] - nodes[0][k]);
  125. }
  126. M[j][i] += M_;
  127. }
  128. }
  129. }
  130. }
  131. for (Integer d = 0; d < DIM; d++) {
  132. GradOp[d].ReInit(Size(), Size());
  133. GradOp[d] = 0;
  134. Integer stride0 = sctl::pow<Integer>(ORDER, d);
  135. Integer repeat0 = sctl::pow<Integer>(ORDER, d);
  136. Integer stride1 = sctl::pow<Integer>(ORDER, d+1);
  137. Integer repeat1 = sctl::pow<Integer>(ORDER, DIM-d-1);
  138. for (Integer k1 = 0; k1 < repeat1; k1++) {
  139. for (Integer i = 0; i < ORDER; i++) {
  140. for (Integer j = 0; j < ORDER; j++) {
  141. for (Integer k0 = 0; k0 < repeat0; k0++) {
  142. GradOp[d][k1*stride1 + i*stride0 + k0][k1*stride1 + j*stride0 + k0] = M[i][j];
  143. }
  144. }
  145. }
  146. }
  147. }
  148. }
  149. std::atomic_thread_fence(std::memory_order_seq_cst);
  150. first_time.store(false);
  151. }
  152. }
  153. if (dX.Dim() != X.Dim()*DIM) dX.ReInit(X.Dim()*DIM);
  154. for (Long i = 0; i < X.Dim(); i++) {
  155. const Matrix<ValueType> Vi(1, Size(), (Iterator<ValueType>)(ConstIterator<ValueType>)X[i].NodeValues_, false);
  156. for (Integer k = 0; k < DIM; k++) {
  157. Matrix<ValueType> Vo(1, Size(), dX[i*DIM+k].NodeValues_, false);
  158. Matrix<ValueType>::GEMM(Vo, Vi, GradOp[k]);
  159. }
  160. }
  161. }
  162. static EvalOpType SetupEval(const Matrix<ValueType>& X) {
  163. Long N = X.Dim(1);
  164. SCTL_ASSERT(X.Dim(0) == DIM);
  165. Matrix<ValueType> M(Size(), N);
  166. { // Set M
  167. auto nodes = Basis<ValueType,1,ORDER>::Nodes();
  168. Integer NN = Basis<ValueType,1,ORDER>::Size();
  169. Matrix<ValueType> M_(NN, DIM*N);
  170. for (Long i = 0; i < DIM*N; i++) {
  171. ValueType x = X[0][i];
  172. for (Integer j = 0; j < NN; j++) {
  173. ValueType y = 1;
  174. for (Integer k = 0; k < NN; k++) {
  175. y *= (j==k ? 1 : (nodes[0][k] - x) / (nodes[0][k] - nodes[0][j]));
  176. }
  177. M_[j][i] = y;
  178. }
  179. }
  180. if (DIM == 1) {
  181. SCTL_ASSERT(M.Dim(0) == M_.Dim(0));
  182. SCTL_ASSERT(M.Dim(1) == M_.Dim(1));
  183. M = M_;
  184. } else {
  185. Integer NNN = 1;
  186. M = 1;
  187. for (Integer d = 0; d < DIM; d++) {
  188. for (Integer k = 1; k < NN; k++) {
  189. for (Integer j = 0; j < NNN; j++) {
  190. for (Long i = 0; i < N; i++) {
  191. M[k*NNN+j][i] = M[j][i] * M_[k][d*N+i];
  192. }
  193. }
  194. }
  195. { // k = 0
  196. for (Integer j = 0; j < NNN; j++) {
  197. for (Long i = 0; i < N; i++) {
  198. M[j][i] *= M_[0][d*N+i];
  199. }
  200. }
  201. }
  202. NNN *= NN;
  203. }
  204. }
  205. }
  206. return M;
  207. }
  208. static void Eval(Matrix<ValueType>& Y, const Vector<Basis>& X, const EvalOpType& M) {
  209. Long N0 = X.Dim();
  210. Long N1 = M.Dim(1);
  211. SCTL_ASSERT(M.Dim(0) == Size());
  212. if (Y.Dim(0) != N0 || Y.Dim(1) != N1) Y.ReInit(N0, N1);
  213. for (Long i = 0; i < N0; i++) {
  214. const Matrix<ValueType> X_(1,Size(),(Iterator<ValueType>)(ConstIterator<ValueType>)X[i].NodeValues_,false);
  215. Matrix<ValueType> Y_(1,N1,Y[i],false);
  216. Matrix<ValueType>::GEMM(Y_,X_,M);
  217. }
  218. }
  219. Basis operator+(Basis X) const {
  220. for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] + X[i];
  221. return X;
  222. }
  223. Basis operator-(Basis X) const {
  224. for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] - X[i];
  225. return X;
  226. }
  227. Basis operator*(Basis X) const {
  228. for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] * X[i];
  229. return X;
  230. }
  231. Basis operator*(Real a) const {
  232. Basis X = (*this);
  233. for (Long i = 0; i < Size(); i++) X[i] *= a;
  234. return X;
  235. }
  236. Basis operator+(Real a) const {
  237. Basis X = (*this);
  238. for (Long i = 0; i < Size(); i++) X[i] += a;
  239. return X;
  240. }
  241. Basis& operator+=(const Basis& X) {
  242. for (Long i = 0; i < Size(); i++) (*this)[i] += X[i];
  243. return *this;
  244. }
  245. Basis& operator-=(const Basis& X) {
  246. for (Long i = 0; i < Size(); i++) (*this)[i] -= X[i];
  247. return *this;
  248. }
  249. Basis& operator*=(const Basis& X) {
  250. for (Long i = 0; i < Size(); i++) (*this)[i] *= X[i];
  251. return *this;
  252. }
  253. Basis& operator*=(Real a) {
  254. for (Long i = 0; i < Size(); i++) (*this)[i] *= a;
  255. return *this;
  256. }
  257. Basis& operator+=(Real a) {
  258. for (Long i = 0; i < Size(); i++) (*this)[i] += a;
  259. return *this;
  260. }
  261. Basis& operator=(Real a) {
  262. for (Long i = 0; i < Size(); i++) (*this)[i] = a;
  263. return *this;
  264. }
  265. const ValueType& operator[](Long i) const {
  266. SCTL_ASSERT(i < Size());
  267. return NodeValues_[i];
  268. }
  269. ValueType& operator[](Long i) {
  270. SCTL_ASSERT(i < Size());
  271. return NodeValues_[i];
  272. }
  273. private:
  274. StaticArray<ValueType,Size()> NodeValues_;
  275. };
  276. template <Integer COORD_DIM, class Basis> class ElemList {
  277. public:
  278. using CoordBasis = Basis;
  279. using CoordType = typename CoordBasis::ValueType;
  280. static constexpr Integer CoordDim() {
  281. return COORD_DIM;
  282. }
  283. static constexpr Integer ElemDim() {
  284. return CoordBasis::Dim();
  285. }
  286. ElemList(Long Nelem = 0) {
  287. ReInit(Nelem);
  288. }
  289. void ReInit(Long Nelem = 0) {
  290. Nelem_ = Nelem;
  291. X_.ReInit(Nelem_ * COORD_DIM);
  292. }
  293. void ReInit(const Vector<CoordBasis>& X) {
  294. Nelem_ = X.Dim() / COORD_DIM;
  295. SCTL_ASSERT(X.Dim() == Nelem_ * COORD_DIM);
  296. X_ = X;
  297. }
  298. Long NElem() const {
  299. return Nelem_;
  300. }
  301. CoordBasis& operator()(Long elem, Integer dim) {
  302. SCTL_ASSERT(elem >= 0 && elem < Nelem_);
  303. SCTL_ASSERT(dim >= 0 && dim < COORD_DIM);
  304. return X_[elem*COORD_DIM+dim];
  305. }
  306. const CoordBasis& operator()(Long elem, Integer dim) const {
  307. if (!(elem >= 0 && elem < Nelem_)) exit(0);
  308. SCTL_ASSERT(elem >= 0 && elem < Nelem_);
  309. SCTL_ASSERT(dim >= 0 && dim < COORD_DIM);
  310. return X_[elem*COORD_DIM+dim];
  311. }
  312. const Vector<CoordBasis>& ElemVector() const {
  313. return X_;
  314. }
  315. private:
  316. static_assert(CoordBasis::Dim() <= CoordDim(), "Basis dimension can not be greater than COORD_DIM.");
  317. Vector<CoordBasis> X_;
  318. Long Nelem_;
  319. //mutable Vector<CoordBasis> dX_;
  320. };
  321. template <class Real> class Quadrature {
  322. static Real machine_epsilon() {
  323. Real eps=1;
  324. while(eps*(Real)0.5+(Real)1.0>1.0) eps*=0.5;
  325. return eps;
  326. }
  327. template <Integer DIM> static void DuffyQuad(Matrix<Real>& nodes, Vector<Real>& weights, const Vector<Real>& coord, Integer order, Real adapt = -1.0) {
  328. SCTL_ASSERT(coord.Dim() == DIM);
  329. static Real eps = machine_epsilon()*16;
  330. Matrix<Real> qx;
  331. Vector<Real> qw;
  332. { // Set qx, qw
  333. Vector<Real> qx0, qw0;
  334. ChebBasis<Real>::quad_rule(order, qx0, qw0);
  335. Integer N = sctl::pow<DIM,Integer>(order);
  336. qx.ReInit(DIM,N);
  337. qw.ReInit(N);
  338. qw[0] = 1;
  339. Integer N_ = 1;
  340. for (Integer d = 0; d < DIM; d++) {
  341. for (Integer j = 0; j < order; j++) {
  342. for (Integer i = 0; i < N_; i++) {
  343. for (Integer k = 0; k < d; k++) {
  344. qx[k][j*N_+i] = qx[k][i];
  345. }
  346. qx[d][j*N_+i] = qx0[j];
  347. qw[j*N_+i] = qw[i];
  348. }
  349. }
  350. for (Integer j = 0; j < order; j++) {
  351. for (Integer i = 0; i < N_; i++) {
  352. qw[j*N_+i] *= qw0[j];
  353. }
  354. }
  355. N_ *= order;
  356. }
  357. }
  358. Vector<Real> X;
  359. { // Set X
  360. StaticArray<Real,2*DIM+2> X_;
  361. X_[0] = 0;
  362. X_[1] = adapt;
  363. for (Integer i = 0; i < DIM; i++) {
  364. X_[2*i+2] = sctl::fabs<Real>(coord[i]);
  365. X_[2*i+3] = sctl::fabs<Real>(coord[i]-1);
  366. }
  367. std::sort((Iterator<Real>)X_, (Iterator<Real>)X_+2*DIM+2);
  368. X.PushBack(std::max<Real>(0, X_[2*DIM]-1));
  369. for (Integer i = 0; i < 2*DIM+2; i++) {
  370. if (X[X.Dim()-1] < X_[i]) {
  371. if (X.Dim())
  372. X.PushBack(X_[i]);
  373. }
  374. }
  375. /////////////////////////////////////////////////////////////////////////////////////////////////
  376. Vector<Real> r(1);
  377. r[0] = X[0];
  378. for (Integer i = 1; i < X.Dim(); i++) {
  379. while (r[r.Dim() - 1] > 0.0 && (order*0.5) * r[r.Dim() - 1] < X[i]) r.PushBack((order*0.5) * r[r.Dim() - 1]); // TODO
  380. r.PushBack(X[i]);
  381. }
  382. X = r;
  383. /////////////////////////////////////////////////////////////////////////////////////////////////
  384. }
  385. Vector<Real> nds, wts;
  386. for (Integer k = 0; k < X.Dim()-1; k++) {
  387. for (Integer dd = 0; dd < 2*DIM; dd++) {
  388. Integer d0 = (dd>>1);
  389. StaticArray<Real,2*DIM> range0, range1;
  390. { // Set range0, range1
  391. Integer d1 = (dd%2?1:-1);
  392. for (Integer d = 0; d < DIM; d++) {
  393. range0[d*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d] - X[k] ));
  394. range0[d*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d] + X[k] ));
  395. range1[d*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d] - X[k+1]));
  396. range1[d*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d] + X[k+1]));
  397. }
  398. range0[d0*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+0]));
  399. range0[d0*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+0]));
  400. range1[d0*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+1]));
  401. range1[d0*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+1]));
  402. }
  403. { // if volume(range0, range1) == 0 then continue
  404. Real v0 = 1, v1 = 1;
  405. for (Integer d = 0; d < DIM; d++) {
  406. if (d == d0) {
  407. v0 *= sctl::fabs<Real>(range0[d*2+0]-range1[d*2+0]);
  408. v1 *= sctl::fabs<Real>(range0[d*2+0]-range1[d*2+0]);
  409. } else {
  410. v0 *= range0[d*2+1]-range0[d*2+0];
  411. v1 *= range1[d*2+1]-range1[d*2+0];
  412. }
  413. }
  414. if (v0 < eps && v1 < eps) continue;
  415. }
  416. for (Integer i = 0; i < qx.Dim(1); i++) { // Set nds, wts
  417. Real w = qw[i];
  418. Real z = qx[d0][i];
  419. for (Integer d = 0; d < DIM; d++) {
  420. Real y = qx[d][i];
  421. nds.PushBack((range0[d*2+0]*(1-y) + range0[d*2+1]*y)*(1-z) + (range1[d*2+0]*(1-y) + range1[d*2+1]*y)*z);
  422. if (d == d0) {
  423. w *= abs(range1[d*2+0] - range0[d*2+0]);
  424. } else {
  425. w *= (range0[d*2+1] - range0[d*2+0])*(1-z) + (range1[d*2+1] - range1[d*2+0])*z;
  426. }
  427. }
  428. wts.PushBack(w);
  429. }
  430. }
  431. }
  432. nodes = Matrix<Real>(nds.Dim()/DIM,DIM,nds.begin()).Transpose();
  433. weights = wts;
  434. }
  435. template <Integer DIM> static void TensorProductGaussQuad(Matrix<Real>& nodes, Vector<Real>& weights, Integer order) {
  436. Vector<Real> coord(DIM);
  437. coord = 0;
  438. coord[0] = -10;
  439. DuffyQuad<DIM>(nodes, weights, coord, order);
  440. }
  441. template <class DensityBasis, class ElemList, class Kernel> static void SetupSingular(Matrix<Real>& M_singular, const Matrix<Real>& trg_nds, const ElemList& elem_lst, const Kernel& kernel, Integer order_singular = 10, Integer order_direct = 10, Real Rqbx = 0) {
  442. using CoordBasis = typename ElemList::CoordBasis;
  443. using CoordEvalOpType = typename CoordBasis::EvalOpType;
  444. using DensityEvalOpType = typename DensityBasis::EvalOpType;
  445. constexpr Integer CoordDim = ElemList::CoordDim();
  446. constexpr Integer ElemDim = ElemList::ElemDim();
  447. constexpr Integer KDIM0 = Kernel::SrcDim();
  448. constexpr Integer KDIM1 = Kernel::TrgDim();
  449. const Long Nelem = elem_lst.NElem();
  450. const Integer Ntrg = trg_nds.Dim(1);
  451. SCTL_ASSERT(trg_nds.Dim(0) == ElemDim);
  452. const Vector<CoordBasis>& X = elem_lst.ElemVector();
  453. Vector<CoordBasis> dX;
  454. CoordBasis::Grad(dX, X);
  455. Vector<Real> Xt, Xnt;
  456. { // Set Xt, Xnt
  457. auto Meval = CoordBasis::SetupEval(trg_nds);
  458. eval_basis(Xt, X, CoordDim, trg_nds.Dim(1), Meval);
  459. Xnt = Xt;
  460. Vector<Real> dX_;
  461. eval_basis(dX_, dX, 2*CoordDim, trg_nds.Dim(1), Meval);
  462. for (Long i = 0; i < Ntrg; i++) {
  463. for (Long j = 0; j < Nelem; j++) {
  464. auto Xn = Xnt.begin() + (j*Ntrg+i)*CoordDim;
  465. auto dX0 = dX_.begin() + (j*Ntrg+i)*2*CoordDim;
  466. StaticArray<Real,CoordDim> normal;
  467. normal[0] = dX0[2]*dX0[5] - dX0[4]*dX0[3];
  468. normal[1] = dX0[4]*dX0[1] - dX0[0]*dX0[5];
  469. normal[2] = dX0[0]*dX0[3] - dX0[2]*dX0[1];
  470. Real Xa = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  471. Real invXa = 1/Xa;
  472. normal[0] *= invXa;
  473. normal[1] *= invXa;
  474. normal[2] *= invXa;
  475. Real sqrt_Xa = sqrt<Real>(Xa);
  476. Xn[0] = normal[0]*sqrt_Xa*Rqbx;
  477. Xn[1] = normal[1]*sqrt_Xa*Rqbx;
  478. Xn[2] = normal[2]*sqrt_Xa*Rqbx;
  479. }
  480. }
  481. }
  482. SCTL_ASSERT(Xt.Dim() == Nelem * Ntrg * CoordDim);
  483. auto& M = M_singular;
  484. M.ReInit(Nelem * KDIM0 * DensityBasis::Size(), KDIM1 * Ntrg);
  485. #pragma omp parallel for schedule(static)
  486. for (Long i = 0; i < Ntrg; i++) { // Set M (singular)
  487. Matrix<Real> quad_nds;
  488. Vector<Real> quad_wts;
  489. { // Set quad_nds, quad_wts
  490. StaticArray<Real,ElemDim> trg_node_;
  491. for (Integer k = 0; k < ElemDim; k++) {
  492. trg_node_[k] = trg_nds[k][i];
  493. }
  494. Vector<Real> trg_node(ElemDim, trg_node_, false);
  495. DuffyQuad<ElemDim>(quad_nds, quad_wts, trg_node, order_singular, fabs(Rqbx));
  496. }
  497. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  498. Integer Nnds = quad_wts.Dim();
  499. Vector<Real> X_, dX_, Xa_, Xn_;
  500. { // Set X_, dX_
  501. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  502. eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
  503. }
  504. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  505. Long N = Nelem*Nnds;
  506. Xa_.ReInit(N);
  507. Xn_.ReInit(N*CoordDim);
  508. for (Long j = 0; j < N; j++) {
  509. StaticArray<Real,CoordDim> normal;
  510. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  511. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  512. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  513. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  514. Real invXa = 1/Xa_[j];
  515. Xn_[j*3+0] = normal[0] * invXa;
  516. Xn_[j*3+1] = normal[1] * invXa;
  517. Xn_[j*3+2] = normal[2] * invXa;
  518. }
  519. }
  520. DensityEvalOpType DensityEvalOp;
  521. if (std::is_same<CoordBasis,DensityBasis>::value) {
  522. DensityEvalOp = CoordEvalOp;
  523. } else {
  524. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  525. }
  526. for (Long j = 0; j < Nelem; j++) {
  527. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  528. if (Rqbx == 0) { // Set kernel matrix M__
  529. const Vector<Real> X0_(CoordDim, Xt.begin() + (j * Ntrg + i) * CoordDim, false);
  530. const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
  531. const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
  532. kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
  533. } else {
  534. Vector<Real> X0_(CoordDim);
  535. constexpr Integer qbx_order = 6;
  536. StaticArray<Matrix<Real>,qbx_order> M___;
  537. for (Integer k = 0; k < qbx_order; k++) { // Set kernel matrix M___
  538. for (Integer kk = 0; kk < CoordDim; kk++) X0_[kk] = Xt[(j * Ntrg + i) * CoordDim + kk] + (k+1) * Xnt[(j * Ntrg + i) * CoordDim + kk];
  539. const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
  540. const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
  541. kernel.template KernelMatrix<Real>(M___[k], X0_, X__, Xn__);
  542. }
  543. for (Long k = 0; k < Nnds * KDIM0 * KDIM1; k++) {
  544. M__[0][k] = 0;
  545. M__[0][k] += 6*M___[0][0][k];
  546. M__[0][k] += -15*M___[1][0][k];
  547. M__[0][k] += 20*M___[2][0][k];
  548. M__[0][k] += -15*M___[3][0][k];
  549. M__[0][k] += 6*M___[4][0][k];
  550. M__[0][k] += -1*M___[5][0][k];
  551. }
  552. }
  553. for (Long k0 = 0; k0 < KDIM0; k0++) {
  554. for (Long k1 = 0; k1 < KDIM1; k1++) {
  555. for (Long l = 0; l < DensityBasis::Size(); l++) {
  556. Real M_lk = 0;
  557. for (Long n = 0; n < Nnds; n++) {
  558. Real quad_wt = Xa_[j * Nnds + n] * quad_wts[n];
  559. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  560. }
  561. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1 * Ntrg + i] = M_lk;
  562. }
  563. }
  564. }
  565. }
  566. }
  567. { // Set M (subtract direct)
  568. Matrix<Real> quad_nds;
  569. Vector<Real> quad_wts;
  570. TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
  571. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  572. Integer Nnds = quad_wts.Dim();
  573. Vector<Real> X_, dX_, Xa_, Xn_;
  574. { // Set X_, dX_
  575. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  576. eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
  577. }
  578. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  579. Long N = Nelem*Nnds;
  580. Xa_.ReInit(N);
  581. Xn_.ReInit(N*CoordDim);
  582. for (Long j = 0; j < N; j++) {
  583. StaticArray<Real,CoordDim> normal;
  584. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  585. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  586. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  587. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  588. Real invXa = 1/Xa_[j];
  589. Xn_[j*3+0] = normal[0] * invXa;
  590. Xn_[j*3+1] = normal[1] * invXa;
  591. Xn_[j*3+2] = normal[2] * invXa;
  592. }
  593. }
  594. DensityEvalOpType DensityEvalOp;
  595. if (std::is_same<CoordBasis,DensityBasis>::value) {
  596. DensityEvalOp = CoordEvalOp;
  597. } else {
  598. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  599. }
  600. #pragma omp parallel for schedule(static)
  601. for (Long i = 0; i < Ntrg; i++) { // Subtract direct contribution
  602. for (Long j = 0; j < Nelem; j++) {
  603. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  604. { // Set kernel matrix M__
  605. const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + (j * Ntrg + i) * CoordDim, false);
  606. const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
  607. const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
  608. kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
  609. }
  610. for (Long k0 = 0; k0 < KDIM0; k0++) {
  611. for (Long k1 = 0; k1 < KDIM1; k1++) {
  612. for (Long l = 0; l < DensityBasis::Size(); l++) {
  613. Real M_lk = 0;
  614. for (Long n = 0; n < Nnds; n++) {
  615. Real quad_wt = Xa_[j * Nnds + n] * quad_wts[n];
  616. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  617. }
  618. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1 * Ntrg + i] -= M_lk;
  619. }
  620. }
  621. }
  622. }
  623. }
  624. }
  625. }
  626. template <class DensityBasis> static void EvalSingular(Matrix<Real>& U, const Vector<DensityBasis>& density, const Matrix<Real>& M, Integer KDIM0_, Integer KDIM1_) {
  627. if (M.Dim(0) == 0 || M.Dim(1) == 0) {
  628. U.ReInit(0,0);
  629. return;
  630. }
  631. const Long Ntrg = M.Dim(1) / KDIM1_;
  632. SCTL_ASSERT(M.Dim(1) == KDIM1_ * Ntrg);
  633. const Long Nelem = M.Dim(0) / (KDIM0_ * DensityBasis::Size());
  634. SCTL_ASSERT(M.Dim(0) == Nelem * KDIM0_ * DensityBasis::Size());
  635. const Integer dof = density.Dim() / (Nelem * KDIM0_);
  636. SCTL_ASSERT(density.Dim() == Nelem * dof * KDIM0_);
  637. if (U.Dim(0) != Nelem * dof * KDIM1_ || U.Dim(1) != Ntrg) {
  638. U.ReInit(Nelem * dof * KDIM1_, Ntrg);
  639. U = 0;
  640. }
  641. for (Long j = 0; j < Nelem; j++) {
  642. const Matrix<Real> M_(KDIM0_ * DensityBasis::Size(), KDIM1_ * Ntrg, (Iterator<Real>)M[j * KDIM0_ * DensityBasis::Size()], false);
  643. Matrix<Real> U_(dof, KDIM1_ * Ntrg, U[j*dof*KDIM1_], false);
  644. Matrix<Real> F_(dof, KDIM0_ * DensityBasis::Size());
  645. for (Long i = 0; i < dof; i++) {
  646. for (Long k = 0; k < KDIM0_; k++) {
  647. for (Long l = 0; l < DensityBasis::Size(); l++) {
  648. F_[i][k * DensityBasis::Size() + l] = density[(j * dof + i) * KDIM0_ + k][l];
  649. }
  650. }
  651. }
  652. Matrix<Real>::GEMM(U_, F_, M_);
  653. }
  654. }
  655. template <Integer DIM> struct PointData {
  656. bool operator<(const PointData& p) const {
  657. return mid < p.mid;
  658. }
  659. Long rank;
  660. Long surf_rank;
  661. Morton<DIM> mid;
  662. StaticArray<Real,DIM> coord;
  663. Real radius2;
  664. };
  665. template <class T1, class T2> struct Pair {
  666. Pair() {}
  667. Pair(T1 x, T2 y) : first(x), second(y) {}
  668. bool operator<(const Pair& p) const {
  669. return (first < p.first) || (((first == p.first) && (second < p.second)));
  670. }
  671. T1 first;
  672. T2 second;
  673. };
  674. template <class ElemList> static void BuildNbrList(Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt, const Vector<Long>& trg_surf, const ElemList& elem_lst, Real distance_factor, Real period_length, const Comm& comm) {
  675. using CoordBasis = typename ElemList::CoordBasis;
  676. constexpr Integer CoordDim = ElemList::CoordDim();
  677. constexpr Integer ElemDim = ElemList::ElemDim();
  678. using PtData = PointData<CoordDim>;
  679. const Integer rank = comm.Rank();
  680. Real R0 = 0;
  681. StaticArray<Real,CoordDim> X0;
  682. { // Find bounding box
  683. Long N = Xt.Dim() / CoordDim;
  684. SCTL_ASSERT(Xt.Dim() == N * CoordDim);
  685. SCTL_ASSERT(N);
  686. StaticArray<Real,CoordDim*2> Xloc;
  687. StaticArray<Real,CoordDim*2> Xglb;
  688. for (Integer k = 0; k < CoordDim; k++) {
  689. Xloc[0*CoordDim+k] = Xt[k];
  690. Xloc[1*CoordDim+k] = Xt[k];
  691. }
  692. for (Long i = 0; i < N; i++) {
  693. for (Integer k = 0; k < CoordDim; k++) {
  694. Xloc[0*CoordDim+k] = std::min<Real>(Xloc[0*CoordDim+k], Xt[i*CoordDim+k]);
  695. Xloc[1*CoordDim+k] = std::max<Real>(Xloc[1*CoordDim+k], Xt[i*CoordDim+k]);
  696. }
  697. }
  698. comm.Allreduce((ConstIterator<Real>)Xloc+0*CoordDim, (Iterator<Real>)Xglb+0*CoordDim, CoordDim, Comm::CommOp::MIN);
  699. comm.Allreduce((ConstIterator<Real>)Xloc+1*CoordDim, (Iterator<Real>)Xglb+1*CoordDim, CoordDim, Comm::CommOp::MAX);
  700. for (Integer k = 0; k < CoordDim; k++) {
  701. R0 = std::max(R0, Xglb[1*CoordDim+k]-Xglb[0*CoordDim+k]);
  702. }
  703. R0 = R0 * 2.0;
  704. for (Integer k = 0; k < CoordDim; k++) {
  705. X0[k] = Xglb[k] - R0*0.25;
  706. }
  707. }
  708. if (period_length > 0) {
  709. R0 = period_length;
  710. }
  711. Vector<PtData> PtSrc, PtTrg;
  712. Integer order_upsample = (Integer)(const_pi<Real>() / distance_factor + 0.5);
  713. { // Set PtSrc
  714. const Vector<CoordBasis>& X_elem_lst = elem_lst.ElemVector();
  715. Vector<CoordBasis> dX_elem_lst;
  716. CoordBasis::Grad(dX_elem_lst, X_elem_lst);
  717. Matrix<Real> nds;
  718. Vector<Real> wts;
  719. TensorProductGaussQuad<ElemDim>(nds, wts, order_upsample);
  720. const Long Nnds = nds.Dim(1);
  721. Vector<Real> X, dX;
  722. const auto CoordEvalOp = CoordBasis::SetupEval(nds);
  723. eval_basis(X, X_elem_lst, CoordDim, Nnds, CoordEvalOp);
  724. eval_basis(dX, dX_elem_lst, CoordDim * ElemDim, Nnds, CoordEvalOp);
  725. const Long N = X.Dim() / CoordDim;
  726. const Long Nelem = elem_lst.NElem();
  727. SCTL_ASSERT(X.Dim() == N * CoordDim);
  728. SCTL_ASSERT(N == Nelem * Nnds);
  729. Long rank_offset, surf_rank_offset;
  730. { // Set rank_offset, surf_rank_offset
  731. comm.Scan(Ptr2ConstItr<Long>(&N,1), Ptr2Itr<Long>(&rank_offset,1), 1, Comm::CommOp::SUM);
  732. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&surf_rank_offset,1), 1, Comm::CommOp::SUM);
  733. surf_rank_offset -= Nelem;
  734. rank_offset -= N;
  735. }
  736. PtSrc.ReInit(N);
  737. const Real R0inv = 1.0 / R0;
  738. for (Long i = 0; i < N; i++) { // Set coord
  739. for (Integer k = 0; k < CoordDim; k++) {
  740. PtSrc[i].coord[k] = (X[i*CoordDim+k] - X0[k]) * R0inv;
  741. }
  742. }
  743. if (period_length > 0) { // Wrap-around coord
  744. for (Long i = 0; i < N; i++) {
  745. auto& x = PtSrc[i].coord;
  746. for (Integer k = 0; k < CoordDim; k++) {
  747. x[k] -= (Long)(x[k]);
  748. }
  749. }
  750. }
  751. for (Long i = 0; i < N; i++) { // Set radius2, mid, rank
  752. Integer depth = 0;
  753. { // Set radius2, depth
  754. Real radius2 = 0;
  755. for (Integer k0 = 0; k0 < ElemDim; k0++) {
  756. Real R2 = 0;
  757. for (Integer k1 = 0; k1 < CoordDim; k1++) {
  758. Real dX_ = dX[(i*CoordDim+k1)*ElemDim+k0];
  759. R2 += dX_*dX_;
  760. }
  761. radius2 = std::max(radius2, R2);
  762. }
  763. radius2 *= R0inv*R0inv * distance_factor*distance_factor;
  764. PtSrc[i].radius2 = radius2;
  765. Long Rinv = (Long)(1.0/radius2);
  766. while (Rinv > 0) {
  767. Rinv = (Rinv>>2);
  768. depth++;
  769. }
  770. }
  771. PtSrc[i].mid = Morton<CoordDim>((Iterator<Real>)PtSrc[i].coord, std::min(Morton<CoordDim>::MaxDepth(),depth));
  772. PtSrc[i].rank = rank_offset + i;
  773. }
  774. for (Long i = 0 ; i < Nelem; i++) { // Set surf_rank
  775. for (Long j = 0; j < Nnds; j++) {
  776. PtSrc[i*Nnds+j].surf_rank = surf_rank_offset + i;
  777. }
  778. }
  779. Vector<PtData> PtSrcSorted;
  780. comm.HyperQuickSort(PtSrc, PtSrcSorted);
  781. PtSrc.Swap(PtSrcSorted);
  782. }
  783. { // Set PtTrg
  784. const Long N = Xt.Dim() / CoordDim;
  785. SCTL_ASSERT(Xt.Dim() == N * CoordDim);
  786. Long rank_offset;
  787. { // Set rank_offset
  788. comm.Scan(Ptr2ConstItr<Long>(&N,1), Ptr2Itr<Long>(&rank_offset,1), 1, Comm::CommOp::SUM);
  789. rank_offset -= N;
  790. }
  791. PtTrg.ReInit(N);
  792. const Real R0inv = 1.0 / R0;
  793. for (Long i = 0; i < N; i++) { // Set coord
  794. for (Integer k = 0; k < CoordDim; k++) {
  795. PtTrg[i].coord[k] = (Xt[i*CoordDim+k] - X0[k]) * R0inv;
  796. }
  797. }
  798. if (period_length > 0) { // Wrap-around coord
  799. for (Long i = 0; i < N; i++) {
  800. auto& x = PtTrg[i].coord;
  801. for (Integer k = 0; k < CoordDim; k++) {
  802. x[k] -= (Long)(x[k]);
  803. }
  804. }
  805. }
  806. for (Long i = 0; i < N; i++) { // Set radius2, mid, rank
  807. PtTrg[i].radius2 = 0;
  808. PtTrg[i].mid = Morton<CoordDim>((Iterator<Real>)PtTrg[i].coord);
  809. PtTrg[i].rank = rank_offset + i;
  810. }
  811. if (trg_surf.Dim()) { // Set surf_rank
  812. SCTL_ASSERT(trg_surf.Dim() == N);
  813. for (Long i = 0; i < N; i++) {
  814. PtTrg[i].surf_rank = trg_surf[i];
  815. }
  816. } else {
  817. for (Long i = 0; i < N; i++) {
  818. PtTrg[i].surf_rank = -1;
  819. }
  820. }
  821. Vector<PtData> PtTrgSorted;
  822. comm.HyperQuickSort(PtTrg, PtTrgSorted);
  823. PtTrg.Swap(PtTrgSorted);
  824. }
  825. Tree<CoordDim> tree(comm);
  826. { // Init tree
  827. Vector<Real> Xall(PtSrc.Dim()+PtTrg.Dim());
  828. { // Set Xall
  829. Xall.ReInit((PtSrc.Dim()+PtTrg.Dim())*CoordDim);
  830. Long Nsrc = PtSrc.Dim();
  831. Long Ntrg = PtTrg.Dim();
  832. for (Long i = 0; i < Nsrc; i++) {
  833. for (Integer k = 0; k < CoordDim; k++) {
  834. Xall[i*CoordDim+k] = PtSrc[i].coord[k];
  835. }
  836. }
  837. for (Long i = 0; i < Ntrg; i++) {
  838. for (Integer k = 0; k < CoordDim; k++) {
  839. Xall[(Nsrc+i)*CoordDim+k] = PtTrg[i].coord[k];
  840. }
  841. }
  842. }
  843. tree.UpdateRefinement(Xall, 1000, true, period_length>0);
  844. }
  845. { // Repartition PtSrc, PtTrg
  846. PtData splitter;
  847. splitter.mid = tree.GetPartitionMID()[rank];
  848. comm.PartitionS(PtSrc, splitter);
  849. comm.PartitionS(PtTrg, splitter);
  850. }
  851. { // Add tree data PtSrc
  852. const auto& node_mid = tree.GetNodeMID();
  853. const Long N = node_mid.Dim();
  854. SCTL_ASSERT(N);
  855. Vector<Long> dsp(N), cnt(N);
  856. for (Long i = 0; i < N; i++) {
  857. PtData m0;
  858. m0.mid = node_mid[i];
  859. dsp[i] = std::lower_bound(PtSrc.begin(), PtSrc.end(), m0) - PtSrc.begin();
  860. }
  861. for (Long i = 0; i < N-1; i++) {
  862. cnt[i] = dsp[i+1] - dsp[i];
  863. }
  864. cnt[N-1] = PtSrc.Dim() - dsp[N-1];
  865. tree.AddData("PtSrc", PtSrc, cnt);
  866. }
  867. tree.template Broadcast<PtData>("PtSrc");
  868. { // Build pair_lst
  869. Vector<Long> cnt;
  870. Vector<PtData> PtSrc;
  871. tree.GetData(PtSrc, cnt, "PtSrc");
  872. const auto& node_mid = tree.GetNodeMID();
  873. const auto& node_attr = tree.GetNodeAttr();
  874. Vector<Morton<CoordDim>> nbr_mid_tmp;
  875. for (Long i = 0; i < node_mid.Dim(); i++) {
  876. if (node_attr[i].Leaf && !node_attr[i].Ghost) {
  877. Vector<Morton<CoordDim>> child_mid;
  878. node_mid[i].Children(child_mid);
  879. for (const auto& trg_mid : child_mid) {
  880. Integer d0 = trg_mid.Depth();
  881. Vector<PtData> Src, Trg;
  882. { // Set Trg
  883. PtData m0, m1;
  884. m0.mid = trg_mid;
  885. m1.mid = trg_mid.Next();
  886. Long a = std::lower_bound(PtTrg.begin(), PtTrg.end(), m0) - PtTrg.begin();
  887. Long b = std::lower_bound(PtTrg.begin(), PtTrg.end(), m1) - PtTrg.begin();
  888. Trg.ReInit(b-a, PtTrg.begin()+a, false);
  889. if (!Trg.Dim()) continue;
  890. }
  891. Vector<std::set<Long>> near_elem(Trg.Dim());
  892. for (Integer d = 0; d <= d0; d++) {
  893. trg_mid.NbrList(nbr_mid_tmp, d, period_length>0);
  894. for (const auto& src_mid : nbr_mid_tmp) { // Set Src
  895. PtData m0, m1;
  896. m0.mid = src_mid;
  897. m1.mid = (d==d0 ? src_mid.Next() : src_mid.Ancestor(d+1));
  898. Long a = std::lower_bound(PtSrc.begin(), PtSrc.end(), m0) - PtSrc.begin();
  899. Long b = std::lower_bound(PtSrc.begin(), PtSrc.end(), m1) - PtSrc.begin();
  900. Src.ReInit(b-a, PtSrc.begin()+a, false);
  901. if (!Src.Dim()) continue;
  902. for (Long t = 0; t < Trg.Dim(); t++) { // set near_elem[t] <-- {s : dist(s,t) < radius(s)}
  903. for (Long s = 0; s < Src.Dim(); s++) {
  904. if (Trg[t].surf_rank != Src[s].surf_rank) {
  905. Real R2 = 0;
  906. for (Integer k = 0; k < CoordDim; k++) {
  907. Real dx = (Src[s].coord[k] - Trg[t].coord[k]);
  908. R2 += dx * dx;
  909. }
  910. if (R2 < Src[s].radius2) {
  911. near_elem[t].insert(Src[s].surf_rank);
  912. }
  913. }
  914. }
  915. }
  916. }
  917. }
  918. for (Long t = 0; t < Trg.Dim(); t++) { // Set pair_lst
  919. for (Long elem_idx : near_elem[t]) {
  920. pair_lst.PushBack(Pair<Long,Long>(elem_idx,Trg[t].rank));
  921. }
  922. }
  923. }
  924. }
  925. }
  926. }
  927. { // Sort and repartition pair_lst
  928. Vector<Pair<Long,Long>> pair_lst_sorted;
  929. comm.HyperQuickSort(pair_lst, pair_lst_sorted);
  930. Long surf_rank_offset;
  931. const Long Nelem = elem_lst.NElem();
  932. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&surf_rank_offset,1), 1, Comm::CommOp::SUM);
  933. surf_rank_offset -= Nelem;
  934. comm.PartitionS(pair_lst_sorted, Pair<Long,Long>(surf_rank_offset,0));
  935. pair_lst.Swap(pair_lst_sorted);
  936. }
  937. }
  938. template <class ElemList> static void BuildNbrListDeprecated(Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt, const ElemList& elem_lst, const Matrix<Real>& surf_nds, Real distance_factor) {
  939. using CoordBasis = typename ElemList::CoordBasis;
  940. constexpr Integer CoordDim = ElemList::CoordDim();
  941. constexpr Integer ElemDim = ElemList::ElemDim();
  942. const Long Nelem = elem_lst.NElem();
  943. const Long Ntrg = Xt.Dim() / CoordDim;
  944. SCTL_ASSERT(Xt.Dim() == Ntrg * CoordDim);
  945. Long Nnds, Nsurf_nds;
  946. Vector<Real> X_surf, X, dX;
  947. Integer order_upsample = (Integer)(const_pi<Real>() / distance_factor + 0.5);
  948. { // Set X, dX
  949. const Vector<CoordBasis>& X_elem_lst = elem_lst.ElemVector();
  950. Vector<CoordBasis> dX_elem_lst;
  951. CoordBasis::Grad(dX_elem_lst, X_elem_lst);
  952. Matrix<Real> nds_upsample;
  953. Vector<Real> wts_upsample;
  954. TensorProductGaussQuad<ElemDim>(nds_upsample, wts_upsample, order_upsample);
  955. Nnds = nds_upsample.Dim(1);
  956. const auto CoordEvalOp = CoordBasis::SetupEval(nds_upsample);
  957. eval_basis(X, X_elem_lst, CoordDim, nds_upsample.Dim(1), CoordEvalOp);
  958. eval_basis(dX, dX_elem_lst, CoordDim * ElemDim, nds_upsample.Dim(1), CoordEvalOp);
  959. Nsurf_nds = surf_nds.Dim(1);
  960. const auto CoordEvalOp_surf = CoordBasis::SetupEval(surf_nds);
  961. eval_basis(X_surf, X_elem_lst, CoordDim, Nsurf_nds, CoordEvalOp_surf);
  962. }
  963. Real d2 = distance_factor * distance_factor;
  964. for (Long i = 0; i < Nelem; i++) {
  965. std::set<Long> near_pts;
  966. std::set<Long> self_pts;
  967. for (Long j = 0; j < Nnds; j++) {
  968. Real R2_max = 0;
  969. StaticArray<Real, CoordDim> X0;
  970. for (Integer k = 0; k < CoordDim; k++) {
  971. X0[k] = X[(i*Nnds+j)*CoordDim+k];
  972. }
  973. for (Integer k0 = 0; k0 < ElemDim; k0++) {
  974. Real R2 = 0;
  975. for (Integer k1 = 0; k1 < CoordDim; k1++) {
  976. Real dX_ = dX[((i*Nnds+j)*CoordDim+k1)*ElemDim+k0];
  977. R2 += dX_*dX_;
  978. }
  979. R2_max = std::max(R2_max, R2*d2);
  980. }
  981. for (Long k = 0; k < Ntrg; k++) {
  982. Real R2 = 0;
  983. for (Integer l = 0; l < CoordDim; l++) {
  984. Real dX = Xt[k*CoordDim+l]- X0[l];
  985. R2 += dX * dX;
  986. }
  987. if (R2 < R2_max) near_pts.insert(k);
  988. }
  989. }
  990. for (Long j = 0; j < Nsurf_nds; j++) {
  991. StaticArray<Real, CoordDim> X0;
  992. for (Integer k = 0; k < CoordDim; k++) {
  993. X0[k] = X_surf[(i*Nsurf_nds+j)*CoordDim+k];
  994. }
  995. for (Long k = 0; k < Ntrg; k++) {
  996. Real R2 = 0;
  997. for (Integer l = 0; l < CoordDim; l++) {
  998. Real dX = Xt[k*CoordDim+l]- X0[l];
  999. R2 += dX * dX;
  1000. }
  1001. if (R2 == 0) self_pts.insert(k);
  1002. }
  1003. }
  1004. for (Long trg_idx : self_pts) {
  1005. near_pts.erase(trg_idx);
  1006. }
  1007. for (Long trg_idx : near_pts) {
  1008. pair_lst.PushBack(Pair<Long,Long>(i,trg_idx));
  1009. }
  1010. }
  1011. }
  1012. template <class DensityBasis, class ElemList, class Kernel> static void SetupNearSingular(Matrix<Real>& M_near_singular, Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt_, const Vector<Long>& trg_surf, const ElemList& elem_lst, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) {
  1013. static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
  1014. static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
  1015. static_assert(DensityBasis::Dim() == ElemList::ElemDim());
  1016. using CoordBasis = typename ElemList::CoordBasis;
  1017. using CoordEvalOpType = typename CoordBasis::EvalOpType;
  1018. using DensityEvalOpType = typename DensityBasis::EvalOpType;
  1019. constexpr Integer CoordDim = ElemList::CoordDim();
  1020. constexpr Integer ElemDim = ElemList::ElemDim();
  1021. constexpr Integer KDIM0 = Kernel::SrcDim();
  1022. constexpr Integer KDIM1 = Kernel::TrgDim();
  1023. const Long Nelem = elem_lst.NElem();
  1024. BuildNbrList(pair_lst, Xt_, trg_surf, elem_lst, 2.5/order_direct, period_length, comm);
  1025. const Long Ninterac = pair_lst.Dim();
  1026. Vector<Real> Xt;
  1027. { // Set Xt
  1028. Integer rank = comm.Rank();
  1029. Integer np = comm.Size();
  1030. Vector<Long> splitter_ranks;
  1031. { // Set splitter_ranks
  1032. Vector<Long> cnt(np);
  1033. const Long N = Xt_.Dim() / CoordDim;
  1034. comm.Allgather(Ptr2ConstItr<Long>(&N,1), 1, cnt.begin(), 1);
  1035. scan(splitter_ranks, cnt);
  1036. }
  1037. Vector<Long> scatter_index, recv_index, recv_cnt(np), recv_dsp(np);
  1038. { // Set scatter_index, recv_index, recv_cnt, recv_dsp
  1039. { // Set scatter_index, recv_index
  1040. Vector<Pair<Long,Long>> scatter_pair(pair_lst.Dim());
  1041. for (Long i = 0; i < pair_lst.Dim(); i++) {
  1042. scatter_pair[i] = Pair<Long,Long>(pair_lst[i].second,i);
  1043. }
  1044. omp_par::merge_sort(scatter_pair.begin(), scatter_pair.end());
  1045. recv_index.ReInit(scatter_pair.Dim());
  1046. scatter_index.ReInit(scatter_pair.Dim());
  1047. for (Long i = 0; i < scatter_index.Dim(); i++) {
  1048. recv_index[i] = scatter_pair[i].first;
  1049. scatter_index[i] = scatter_pair[i].second;
  1050. }
  1051. }
  1052. for (Integer i = 0; i < np; i++) {
  1053. recv_dsp[i] = std::lower_bound(recv_index.begin(), recv_index.end(), splitter_ranks[i]) - recv_index.begin();
  1054. }
  1055. for (Integer i = 0; i < np-1; i++) {
  1056. recv_cnt[i] = recv_dsp[i+1] - recv_dsp[i];
  1057. }
  1058. recv_cnt[np-1] = recv_index.Dim() - recv_dsp[np-1];
  1059. }
  1060. Vector<Long> send_index, send_cnt(np), send_dsp(np);
  1061. { // Set send_index, send_cnt, send_dsp
  1062. comm.Alltoall(recv_cnt.begin(), 1, send_cnt.begin(), 1);
  1063. scan(send_dsp, send_cnt);
  1064. send_index.ReInit(send_cnt[np-1] + send_dsp[np-1]);
  1065. comm.Alltoallv(recv_index.begin(), recv_cnt.begin(), recv_dsp.begin(), send_index.begin(), send_cnt.begin(), send_dsp.begin());
  1066. }
  1067. Vector<Real> Xt_send(send_index.Dim() * CoordDim);
  1068. for (Long i = 0; i < send_index.Dim(); i++) { // Set Xt_send
  1069. Long idx = send_index[i] - splitter_ranks[rank];
  1070. for (Integer k = 0; k < CoordDim; k++) {
  1071. Xt_send[i*CoordDim+k] = Xt_[idx*CoordDim+k];
  1072. }
  1073. }
  1074. Vector<Real> Xt_recv(recv_index.Dim() * CoordDim);
  1075. { // Set Xt_recv
  1076. for (Long i = 0; i < np; i++) {
  1077. send_cnt[i] *= CoordDim;
  1078. send_dsp[i] *= CoordDim;
  1079. recv_cnt[i] *= CoordDim;
  1080. recv_dsp[i] *= CoordDim;
  1081. }
  1082. comm.Alltoallv(Xt_send.begin(), send_cnt.begin(), send_dsp.begin(), Xt_recv.begin(), recv_cnt.begin(), recv_dsp.begin());
  1083. }
  1084. Xt.ReInit(scatter_index.Dim() * CoordDim);
  1085. for (Long i = 0; i < scatter_index.Dim(); i++) { // Set Xt
  1086. Long idx = scatter_index[i];
  1087. for (Integer k = 0; k < CoordDim; k++) {
  1088. Xt[idx*CoordDim+k] = Xt_recv[i*CoordDim+k];
  1089. }
  1090. }
  1091. }
  1092. const Vector<CoordBasis>& X = elem_lst.ElemVector();
  1093. Vector<CoordBasis> dX;
  1094. CoordBasis::Grad(dX, X);
  1095. Long elem_rank_offset;
  1096. { // Set elem_rank_offset
  1097. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&elem_rank_offset,1), 1, Comm::CommOp::SUM);
  1098. elem_rank_offset -= Nelem;
  1099. }
  1100. auto& M = M_near_singular;
  1101. M.ReInit(Ninterac * KDIM0 * DensityBasis::Size(), KDIM1);
  1102. #pragma omp parallel for schedule(static)
  1103. for (Long j = 0; j < Ninterac; j++) { // Set M (near-singular)
  1104. const Long src_idx = pair_lst[j].first - elem_rank_offset;
  1105. Real adapt = -1.0;
  1106. Tensor<Real,true,ElemDim,1> u0;
  1107. { // Set u0 (project target point to the surface patch in parameter space)
  1108. ConstIterator<Real> Xt_ = Xt.begin() + j * CoordDim;
  1109. const auto& nodes = CoordBasis::Nodes();
  1110. Long min_idx = -1;
  1111. Real min_R2 = 1e10;
  1112. for (Long i = 0; i < CoordBasis::Size(); i++) {
  1113. Real R2 = 0;
  1114. for (Integer k = 0; k < CoordDim; k++) {
  1115. Real dX = X[src_idx * CoordDim + k][i] - Xt_[k];
  1116. R2 += dX * dX;
  1117. }
  1118. if (R2 < min_R2) {
  1119. min_R2 = R2;
  1120. min_idx = i;
  1121. }
  1122. }
  1123. SCTL_ASSERT(min_idx >= 0);
  1124. for (Integer k = 0; k < ElemDim; k++) {
  1125. u0(k,0) = nodes[k][min_idx];
  1126. }
  1127. for (Integer i = 0; i < 2; i++) { // iterate
  1128. Matrix<Real> X_, dX_;
  1129. for (Integer k = 0; k < ElemDim; k++) {
  1130. u0(k,0) = std::min<Real>(1.0, u0(k,0));
  1131. u0(k,0) = std::max<Real>(0.0, u0(k,0));
  1132. }
  1133. const auto eval_op = CoordBasis::SetupEval(Matrix<Real>(ElemDim,1,u0.begin(),false));
  1134. CoordBasis::Eval(X_, Vector<CoordBasis>(CoordDim,(Iterator<CoordBasis>)X.begin()+src_idx*CoordDim,false),eval_op);
  1135. CoordBasis::Eval(dX_, Vector<CoordBasis>(CoordDim*ElemDim,dX.begin()+src_idx*CoordDim*ElemDim,false),eval_op);
  1136. const Tensor<Real,false,CoordDim,1> x0((Iterator<Real>)Xt_);
  1137. const Tensor<Real,false,CoordDim,1> x(X_.begin());
  1138. const Tensor<Real,false,CoordDim,ElemDim> x_u(dX_.begin());
  1139. auto inv = [](const Tensor<Real,true,2,2>& M) {
  1140. Tensor<Real,true,2,2> Minv;
  1141. Real det_inv = 1.0 / (M(0,0)*M(1,1) - M(1,0)*M(0,1));
  1142. Minv(0,0) = M(1,1) * det_inv;
  1143. Minv(0,1) =-M(0,1) * det_inv;
  1144. Minv(1,0) =-M(1,0) * det_inv;
  1145. Minv(1,1) = M(0,0) * det_inv;
  1146. return Minv;
  1147. };
  1148. auto du = inv(x_u.RotateRight()*x_u) * x_u.RotateRight()*(x0-x);
  1149. u0 = u0 + du;
  1150. auto x_u_squared = x_u.RotateRight() * x_u;
  1151. adapt = sctl::sqrt<Real>( ((x0-x).RotateRight()*(x0-x))(0,0) / std::max<Real>(x_u_squared(0,0),x_u_squared(1,1)) );
  1152. }
  1153. }
  1154. Matrix<Real> quad_nds;
  1155. Vector<Real> quad_wts;
  1156. DuffyQuad<ElemDim>(quad_nds, quad_wts, Vector<Real>(ElemDim,u0.begin(),false), order_singular, adapt);
  1157. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  1158. Integer Nnds = quad_wts.Dim();
  1159. Vector<Real> X_, dX_, Xa_, Xn_;
  1160. { // Set X_, dX_
  1161. const Vector<CoordBasis> X__(CoordDim, (Iterator<CoordBasis>)X.begin() + src_idx * CoordDim, false);
  1162. const Vector<CoordBasis> dX__(CoordDim * ElemDim, (Iterator<CoordBasis>)dX.begin() + src_idx * CoordDim * ElemDim, false);
  1163. eval_basis(X_, X__, CoordDim, Nnds, CoordEvalOp);
  1164. eval_basis(dX_, dX__, CoordDim * ElemDim, Nnds, CoordEvalOp);
  1165. }
  1166. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  1167. Xa_.ReInit(Nnds);
  1168. Xn_.ReInit(Nnds*CoordDim);
  1169. for (Long j = 0; j < Nnds; j++) {
  1170. StaticArray<Real,CoordDim> normal;
  1171. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  1172. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  1173. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  1174. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  1175. Real invXa = 1/Xa_[j];
  1176. Xn_[j*3+0] = normal[0] * invXa;
  1177. Xn_[j*3+1] = normal[1] * invXa;
  1178. Xn_[j*3+2] = normal[2] * invXa;
  1179. }
  1180. }
  1181. DensityEvalOpType DensityEvalOp;
  1182. if (std::is_same<CoordBasis,DensityBasis>::value) {
  1183. DensityEvalOp = CoordEvalOp;
  1184. } else {
  1185. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  1186. }
  1187. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  1188. { // Set kernel matrix M__
  1189. const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + j * CoordDim, false);
  1190. kernel.template KernelMatrix<Real>(M__, X0_, X_, Xn_);
  1191. }
  1192. for (Long k0 = 0; k0 < KDIM0; k0++) {
  1193. for (Long k1 = 0; k1 < KDIM1; k1++) {
  1194. for (Long l = 0; l < DensityBasis::Size(); l++) {
  1195. Real M_lk = 0;
  1196. for (Long n = 0; n < Nnds; n++) {
  1197. Real quad_wt = Xa_[n] * quad_wts[n];
  1198. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  1199. }
  1200. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1] = M_lk;
  1201. }
  1202. }
  1203. }
  1204. }
  1205. { // Set M (subtract direct)
  1206. Matrix<Real> quad_nds;
  1207. Vector<Real> quad_wts;
  1208. TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
  1209. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  1210. Integer Nnds = quad_wts.Dim();
  1211. Vector<Real> X_, dX_, Xa_, Xn_;
  1212. { // Set X_, dX_
  1213. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  1214. eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
  1215. }
  1216. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  1217. Long N = Nelem*Nnds;
  1218. Xa_.ReInit(N);
  1219. Xn_.ReInit(N*CoordDim);
  1220. for (Long j = 0; j < N; j++) {
  1221. StaticArray<Real,CoordDim> normal;
  1222. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  1223. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  1224. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  1225. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  1226. Real invXa = 1/Xa_[j];
  1227. Xn_[j*3+0] = normal[0] * invXa;
  1228. Xn_[j*3+1] = normal[1] * invXa;
  1229. Xn_[j*3+2] = normal[2] * invXa;
  1230. }
  1231. }
  1232. DensityEvalOpType DensityEvalOp;
  1233. if (std::is_same<CoordBasis,DensityBasis>::value) {
  1234. DensityEvalOp = CoordEvalOp;
  1235. } else {
  1236. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  1237. }
  1238. #pragma omp parallel for schedule(static)
  1239. for (Long j = 0; j < Ninterac; j++) { // Subtract direct contribution
  1240. const Long src_idx = pair_lst[j].first - elem_rank_offset;
  1241. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  1242. { // Set kernel matrix M__
  1243. const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + j * CoordDim, false);
  1244. Vector<Real> X__(Nnds * CoordDim, X_.begin() + src_idx * Nnds * CoordDim, false);
  1245. Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + src_idx * Nnds * CoordDim, false);
  1246. kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
  1247. }
  1248. for (Long k0 = 0; k0 < KDIM0; k0++) {
  1249. for (Long k1 = 0; k1 < KDIM1; k1++) {
  1250. for (Long l = 0; l < DensityBasis::Size(); l++) {
  1251. Real M_lk = 0;
  1252. for (Long n = 0; n < Nnds; n++) {
  1253. Real quad_wt = Xa_[src_idx * Nnds + n] * quad_wts[n];
  1254. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  1255. }
  1256. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1] -= M_lk;
  1257. }
  1258. }
  1259. }
  1260. }
  1261. }
  1262. }
  1263. template <class DensityBasis> static void EvalNearSingular(Vector<Real>& U, const Vector<DensityBasis>& density, const Matrix<Real>& M, const Vector<Pair<Long,Long>>& pair_lst, Long Nelem_, Long Ntrg_, Integer KDIM0_, Integer KDIM1_, const Comm& comm) {
  1264. const Long Ninterac = pair_lst.Dim();
  1265. const Integer dof = density.Dim() / Nelem_ / KDIM0_;
  1266. SCTL_ASSERT(density.Dim() == Nelem_ * dof * KDIM0_);
  1267. Long elem_rank_offset;
  1268. { // Set elem_rank_offset
  1269. comm.Scan(Ptr2ConstItr<Long>(&Nelem_,1), Ptr2Itr<Long>(&elem_rank_offset,1), 1, Comm::CommOp::SUM);
  1270. elem_rank_offset -= Nelem_;
  1271. }
  1272. Vector<Real> U_loc(Ninterac*dof*KDIM1_);
  1273. for (Long j = 0; j < Ninterac; j++) {
  1274. const Long src_idx = pair_lst[j].first - elem_rank_offset;
  1275. const Matrix<Real> M_(KDIM0_ * DensityBasis::Size(), KDIM1_, (Iterator<Real>)M[j * KDIM0_ * DensityBasis::Size()], false);
  1276. Matrix<Real> U_(dof, KDIM1_, U_loc.begin() + j*dof*KDIM1_, false);
  1277. Matrix<Real> F_(dof, KDIM0_ * DensityBasis::Size());
  1278. for (Long i = 0; i < dof; i++) {
  1279. for (Long k = 0; k < KDIM0_; k++) {
  1280. for (Long l = 0; l < DensityBasis::Size(); l++) {
  1281. F_[i][k * DensityBasis::Size() + l] = density[(src_idx * dof + i) * KDIM0_ + k][l];
  1282. }
  1283. }
  1284. }
  1285. Matrix<Real>::GEMM(U_, F_, M_);
  1286. }
  1287. if (U.Dim() != Ntrg_ * dof * KDIM1_) {
  1288. U.ReInit(Ntrg_ * dof * KDIM1_);
  1289. U = 0;
  1290. }
  1291. { // Set U
  1292. Integer rank = comm.Rank();
  1293. Integer np = comm.Size();
  1294. Vector<Long> splitter_ranks;
  1295. { // Set splitter_ranks
  1296. Vector<Long> cnt(np);
  1297. comm.Allgather(Ptr2ConstItr<Long>(&Ntrg_,1), 1, cnt.begin(), 1);
  1298. scan(splitter_ranks, cnt);
  1299. }
  1300. Vector<Long> scatter_index, send_index, send_cnt(np), send_dsp(np);
  1301. { // Set scatter_index, send_index, send_cnt, send_dsp
  1302. { // Set scatter_index, send_index
  1303. Vector<Pair<Long,Long>> scatter_pair(pair_lst.Dim());
  1304. for (Long i = 0; i < pair_lst.Dim(); i++) {
  1305. scatter_pair[i] = Pair<Long,Long>(pair_lst[i].second,i);
  1306. }
  1307. omp_par::merge_sort(scatter_pair.begin(), scatter_pair.end());
  1308. send_index.ReInit(scatter_pair.Dim());
  1309. scatter_index.ReInit(scatter_pair.Dim());
  1310. for (Long i = 0; i < scatter_index.Dim(); i++) {
  1311. send_index[i] = scatter_pair[i].first;
  1312. scatter_index[i] = scatter_pair[i].second;
  1313. }
  1314. }
  1315. for (Integer i = 0; i < np; i++) {
  1316. send_dsp[i] = std::lower_bound(send_index.begin(), send_index.end(), splitter_ranks[i]) - send_index.begin();
  1317. }
  1318. for (Integer i = 0; i < np-1; i++) {
  1319. send_cnt[i] = send_dsp[i+1] - send_dsp[i];
  1320. }
  1321. send_cnt[np-1] = send_index.Dim() - send_dsp[np-1];
  1322. }
  1323. Vector<Long> recv_index, recv_cnt(np), recv_dsp(np);
  1324. { // Set recv_index, recv_cnt, recv_dsp
  1325. comm.Alltoall(send_cnt.begin(), 1, recv_cnt.begin(), 1);
  1326. scan(recv_dsp, recv_cnt);
  1327. recv_index.ReInit(recv_cnt[np-1] + recv_dsp[np-1]);
  1328. comm.Alltoallv(send_index.begin(), send_cnt.begin(), send_dsp.begin(), recv_index.begin(), recv_cnt.begin(), recv_dsp.begin());
  1329. }
  1330. Vector<Real> U_send(scatter_index.Dim() * dof * KDIM1_);
  1331. for (Long i = 0; i < scatter_index.Dim(); i++) {
  1332. Long idx = scatter_index[i]*dof*KDIM1_;
  1333. for (Long k = 0; k < dof * KDIM1_; k++) {
  1334. U_send[i*dof*KDIM1_ + k] = U_loc[idx + k];
  1335. }
  1336. }
  1337. Vector<Real> U_recv(recv_index.Dim() * dof * KDIM1_);
  1338. { // Set U_recv
  1339. for (Long i = 0; i < np; i++) {
  1340. send_cnt[i] *= dof * KDIM1_;
  1341. send_dsp[i] *= dof * KDIM1_;
  1342. recv_cnt[i] *= dof * KDIM1_;
  1343. recv_dsp[i] *= dof * KDIM1_;
  1344. }
  1345. comm.Alltoallv(U_send.begin(), send_cnt.begin(), send_dsp.begin(), U_recv.begin(), recv_cnt.begin(), recv_dsp.begin());
  1346. }
  1347. for (Long i = 0; i < recv_index.Dim(); i++) { // Set U
  1348. Long idx = (recv_index[i] - splitter_ranks[rank]) * dof * KDIM1_;
  1349. for (Integer k = 0; k < dof * KDIM1_; k++) {
  1350. U[idx + k] += U_recv[i*dof*KDIM1_ + k];
  1351. }
  1352. }
  1353. }
  1354. }
  1355. template <class ElemList, class DensityBasis, class Kernel> static void Direct(Vector<Real>& U, const Vector<Real>& Xt, const ElemList& elem_lst, const Vector<DensityBasis>& density, const Kernel& kernel, Integer order_direct, const Comm& comm) {
  1356. using CoordBasis = typename ElemList::CoordBasis;
  1357. using CoordEvalOpType = typename CoordBasis::EvalOpType;
  1358. using DensityEvalOpType = typename DensityBasis::EvalOpType;
  1359. constexpr Integer CoordDim = ElemList::CoordDim();
  1360. constexpr Integer ElemDim = ElemList::ElemDim();
  1361. constexpr Integer KDIM0 = Kernel::SrcDim();
  1362. constexpr Integer KDIM1 = Kernel::TrgDim();
  1363. const Long Nelem = elem_lst.NElem();
  1364. const Integer dof = density.Dim() / Nelem / KDIM0;
  1365. SCTL_ASSERT(density.Dim() == Nelem * dof * KDIM0);
  1366. Matrix<Real> quad_nds;
  1367. Vector<Real> quad_wts;
  1368. TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
  1369. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  1370. Integer Nnds = quad_wts.Dim();
  1371. const Vector<CoordBasis>& X = elem_lst.ElemVector();
  1372. Vector<CoordBasis> dX;
  1373. CoordBasis::Grad(dX, X);
  1374. Vector<Real> X_, dX_, Xa_, Xn_;
  1375. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  1376. eval_basis(dX_, dX, CoordDim*ElemDim, Nnds, CoordEvalOp);
  1377. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  1378. Long N = Nelem*Nnds;
  1379. Xa_.ReInit(N);
  1380. Xn_.ReInit(N*CoordDim);
  1381. for (Long j = 0; j < N; j++) {
  1382. StaticArray<Real,CoordDim> normal;
  1383. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  1384. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  1385. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  1386. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  1387. Real invXa = 1/Xa_[j];
  1388. Xn_[j*3+0] = normal[0] * invXa;
  1389. Xn_[j*3+1] = normal[1] * invXa;
  1390. Xn_[j*3+2] = normal[2] * invXa;
  1391. }
  1392. }
  1393. Vector<Real> Fa_;
  1394. { // Set Fa_
  1395. Vector<Real> F_;
  1396. if (std::is_same<CoordBasis,DensityBasis>::value) {
  1397. eval_basis(F_, density, dof * KDIM0, Nnds, CoordEvalOp);
  1398. } else {
  1399. const DensityEvalOpType EvalOp = DensityBasis::SetupEval(quad_nds);
  1400. eval_basis(F_, density, dof * KDIM0, Nnds, EvalOp);
  1401. }
  1402. Fa_.ReInit(F_.Dim());
  1403. const Integer DensityDOF = dof * KDIM0;
  1404. SCTL_ASSERT(F_.Dim() == Nelem * Nnds * DensityDOF);
  1405. for (Long j = 0; j < Nelem; j++) {
  1406. for (Integer k = 0; k < Nnds; k++) {
  1407. Long idx = j * Nnds + k;
  1408. Real quad_wt = Xa_[idx] * quad_wts[k];
  1409. for (Integer l = 0; l < DensityDOF; l++) {
  1410. Fa_[idx * DensityDOF + l] = F_[idx * DensityDOF + l] * quad_wt;
  1411. }
  1412. }
  1413. }
  1414. }
  1415. { // Evaluate potential
  1416. const Long Ntrg = Xt.Dim() / CoordDim;
  1417. SCTL_ASSERT(Xt.Dim() == Ntrg * CoordDim);
  1418. if (U.Dim() != Ntrg * dof * KDIM1) {
  1419. U.ReInit(Ntrg * dof * KDIM1);
  1420. U = 0;
  1421. }
  1422. ParticleFMM<Real,CoordDim>::Eval(U, Xt, X_, Xn_, Fa_, kernel, comm);
  1423. }
  1424. }
  1425. public:
  1426. template <class DensityBasis, class ElemList, class Kernel> void Setup(const ElemList& elem_lst, const Vector<Real>& Xt, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) {
  1427. Xt_.ReInit(0);
  1428. M_singular.ReInit(0,0);
  1429. M_near_singular.ReInit(0,0);
  1430. pair_lst.ReInit(0);
  1431. order_direct_ = order_direct;
  1432. period_length_ = period_length;
  1433. comm_ = comm;
  1434. Profile::Tic("Setup", &comm_);
  1435. static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
  1436. static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
  1437. static_assert(DensityBasis::Dim() == ElemList::ElemDim());
  1438. Xt_ = Xt;
  1439. M_singular.ReInit(0,0);
  1440. Profile::Tic("SetupNearSingular", &comm_);
  1441. SetupNearSingular<DensityBasis>(M_near_singular, pair_lst, Xt_, Vector<Long>(), elem_lst, kernel, order_singular, order_direct_, period_length_, comm_);
  1442. Profile::Toc();
  1443. Profile::Toc();
  1444. }
  1445. template <class DensityBasis, class PotentialBasis, class ElemList, class Kernel> void Setup(const ElemList& elem_lst, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm, Real Rqbx = 0) {
  1446. Xt_.ReInit(0);
  1447. M_singular.ReInit(0,0);
  1448. M_near_singular.ReInit(0,0);
  1449. pair_lst.ReInit(0);
  1450. order_direct_ = order_direct;
  1451. period_length_ = period_length;
  1452. comm_ = comm;
  1453. Profile::Tic("Setup", &comm_);
  1454. static_assert(std::is_same<Real,typename PotentialBasis::ValueType>::value);
  1455. static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
  1456. static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
  1457. static_assert(PotentialBasis::Dim() == ElemList::ElemDim());
  1458. static_assert(DensityBasis::Dim() == ElemList::ElemDim());
  1459. Vector<Long> trg_surf;
  1460. { // Set Xt_
  1461. using CoordBasis = typename ElemList::CoordBasis;
  1462. Matrix<Real> trg_nds = PotentialBasis::Nodes();
  1463. auto Meval = CoordBasis::SetupEval(trg_nds);
  1464. eval_basis(Xt_, elem_lst.ElemVector(), ElemList::CoordDim(), trg_nds.Dim(1), Meval);
  1465. { // Set trg_surf
  1466. const Long Nelem = elem_lst.NElem();
  1467. const Long Nnds = trg_nds.Dim(1);
  1468. Long elem_offset;
  1469. { // Set elem_offset
  1470. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&elem_offset,1), 1, Comm::CommOp::SUM);
  1471. elem_offset -= Nelem;
  1472. }
  1473. trg_surf.ReInit(elem_lst.NElem() * trg_nds.Dim(1));
  1474. for (Long i = 0; i < Nelem; i++) {
  1475. for (Long j = 0; j < Nnds; j++) {
  1476. trg_surf[i*Nnds+j] = elem_offset + i;
  1477. }
  1478. }
  1479. }
  1480. }
  1481. Profile::Tic("SetupSingular", &comm_);
  1482. SetupSingular<DensityBasis>(M_singular, PotentialBasis::Nodes(), elem_lst, kernel, order_singular, order_direct_, Rqbx);
  1483. Profile::Toc();
  1484. Profile::Tic("SetupNearSingular", &comm_);
  1485. SetupNearSingular<DensityBasis>(M_near_singular, pair_lst, Xt_, trg_surf, elem_lst, kernel, order_singular, order_direct_, period_length_, comm_);
  1486. Profile::Toc();
  1487. Profile::Toc();
  1488. }
  1489. template <class DensityBasis, class PotentialBasis, class ElemList, class Kernel> void Eval(Vector<PotentialBasis>& U, const ElemList& elements, const Vector<DensityBasis>& F, const Kernel& kernel) const {
  1490. Profile::Tic("Eval", &comm_);
  1491. Matrix<Real> U_singular;
  1492. Vector<Real> U_direct, U_near_sing;
  1493. Profile::Tic("EvalDirect", &comm_);
  1494. Direct(U_direct, Xt_, elements, F, kernel, order_direct_, comm_);
  1495. Profile::Toc();
  1496. Profile::Tic("EvalSingular", &comm_);
  1497. EvalSingular(U_singular, F, M_singular, kernel.SrcDim(), kernel.TrgDim());
  1498. Profile::Toc();
  1499. Profile::Tic("EvalNearSingular", &comm_);
  1500. EvalNearSingular(U_near_sing, F, M_near_singular, pair_lst, elements.NElem(), Xt_.Dim() / ElemList::CoordDim(), kernel.SrcDim(), kernel.TrgDim(), comm_);
  1501. SCTL_ASSERT(U_near_sing.Dim() == U_direct.Dim());
  1502. Profile::Toc();
  1503. const Long dof = U_direct.Dim() / (elements.NElem() * PotentialBasis::Size() * kernel.TrgDim());
  1504. SCTL_ASSERT(U_direct .Dim() == elements.NElem() * PotentialBasis::Size() * dof * kernel.TrgDim());
  1505. SCTL_ASSERT(U_near_sing.Dim() == elements.NElem() * PotentialBasis::Size() * dof * kernel.TrgDim());
  1506. if (U.Dim() != elements.NElem() * dof * kernel.TrgDim()) {
  1507. U.ReInit(elements.NElem() * dof * kernel.TrgDim());
  1508. }
  1509. for (int i = 0; i < elements.NElem(); i++) {
  1510. for (int j = 0; j < PotentialBasis::Size(); j++) {
  1511. for (int k = 0; k < dof*kernel.TrgDim(); k++) {
  1512. Real& U_ = U[i*dof*kernel.TrgDim()+k][j];
  1513. U_ = 0;
  1514. U_ += U_direct [(i*PotentialBasis::Size()+j)*dof*kernel.TrgDim()+k];
  1515. U_ += U_near_sing[(i*PotentialBasis::Size()+j)*dof*kernel.TrgDim()+k];
  1516. U_ *= kernel.template ScaleFactor<Real>();
  1517. }
  1518. }
  1519. }
  1520. if (U_singular.Dim(1)) {
  1521. SCTL_ASSERT(U_singular.Dim(0) == elements.NElem() * dof * kernel.TrgDim());
  1522. SCTL_ASSERT(U_singular.Dim(1) == PotentialBasis::Size());
  1523. for (int i = 0; i < elements.NElem(); i++) {
  1524. for (int j = 0; j < PotentialBasis::Size(); j++) {
  1525. for (int k = 0; k < dof*kernel.TrgDim(); k++) {
  1526. U[i*dof*kernel.TrgDim()+k][j] += U_singular[i*dof*kernel.TrgDim()+k][j] * kernel.template ScaleFactor<Real>();
  1527. }
  1528. }
  1529. }
  1530. }
  1531. Profile::Toc();
  1532. }
  1533. template <class DensityBasis, class ElemList, class Kernel> void Eval(Vector<Real>& U, const ElemList& elements, const Vector<DensityBasis>& F, const Kernel& kernel) const {
  1534. Profile::Tic("Eval", &comm_);
  1535. Matrix<Real> U_singular;
  1536. Vector<Real> U_direct, U_near_sing;
  1537. Profile::Tic("EvalDirect", &comm_);
  1538. Direct(U_direct, Xt_, elements, F, kernel, order_direct_, comm_);
  1539. Profile::Toc();
  1540. Profile::Tic("EvalSingular", &comm_);
  1541. EvalSingular(U_singular, F, M_singular, kernel.SrcDim(), kernel.TrgDim());
  1542. Profile::Toc();
  1543. Profile::Tic("EvalNearSingular", &comm_);
  1544. EvalNearSingular(U_near_sing, F, M_near_singular, pair_lst, elements.NElem(), Xt_.Dim() / ElemList::CoordDim(), kernel.SrcDim(), kernel.TrgDim(), comm_);
  1545. SCTL_ASSERT(U_near_sing.Dim() == U_direct.Dim());
  1546. Profile::Toc();
  1547. Long Nt = Xt_.Dim() / ElemList::CoordDim();
  1548. const Long dof = U_direct.Dim() / (Nt * kernel.TrgDim());
  1549. SCTL_ASSERT(U_direct.Dim() == Nt * dof * kernel.TrgDim());
  1550. if (U.Dim() != U_direct.Dim()) {
  1551. U.ReInit(U_direct.Dim());
  1552. }
  1553. for (int i = 0; i < U.Dim(); i++) {
  1554. U[i] = (U_direct[i] + U_near_sing[i]) * kernel.template ScaleFactor<Real>();
  1555. }
  1556. if (U_singular.Dim(1)) {
  1557. SCTL_ASSERT(U_singular.Dim(0) == elements.NElem() * dof * kernel.TrgDim());
  1558. const Long Nnodes = U_singular.Dim(1);
  1559. for (int i = 0; i < elements.NElem(); i++) {
  1560. for (int j = 0; j < Nnodes; j++) {
  1561. for (int k = 0; k < dof*kernel.TrgDim(); k++) {
  1562. Real& U_ = U[(i*Nnodes+j)*dof*kernel.TrgDim()+k];
  1563. U_ += U_singular[i*dof*kernel.TrgDim()+k][j] * kernel.template ScaleFactor<Real>();
  1564. }
  1565. }
  1566. }
  1567. }
  1568. Profile::Toc();
  1569. }
  1570. template <Integer ORDER = 5> static void test(Integer order_singular = 10, Integer order_direct = 5, const Comm& comm = Comm::World()) {
  1571. constexpr Integer COORD_DIM = 3;
  1572. constexpr Integer ELEM_DIM = COORD_DIM-1;
  1573. using ElemList = ElemList<COORD_DIM, Basis<Real, ELEM_DIM, ORDER>>;
  1574. using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
  1575. using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
  1576. int np = comm.Size();
  1577. int rank = comm.Rank();
  1578. auto build_torus = [rank,np](ElemList& elements, long Nt, long Np, Real Rmajor, Real Rminor){
  1579. auto nodes = ElemList::CoordBasis::Nodes();
  1580. auto torus = [](Real theta, Real phi, Real Rmajor, Real Rminor) {
  1581. Real R = Rmajor + Rminor * cos<Real>(phi);
  1582. Real X = R * cos<Real>(theta);
  1583. Real Y = R * sin<Real>(theta);
  1584. Real Z = Rminor * sin<Real>(phi);
  1585. return std::make_tuple(X,Y,Z);
  1586. };
  1587. long start = Nt*Np*(rank+0)/np;
  1588. long end = Nt*Np*(rank+1)/np;
  1589. elements.ReInit(end - start);
  1590. for (long ii = start; ii < end; ii++) {
  1591. long i = ii / Np;
  1592. long j = ii % Np;
  1593. for (int k = 0; k < ElemList::CoordBasis::Size(); k++) {
  1594. Real X, Y, Z;
  1595. Real theta = 2 * const_pi<Real>() * (i + nodes[0][k]) / Nt;
  1596. Real phi = 2 * const_pi<Real>() * (j + nodes[1][k]) / Np;
  1597. std::tie(X,Y,Z) = torus(theta, phi, Rmajor, Rminor);
  1598. elements(ii-start,0)[k] = X;
  1599. elements(ii-start,1)[k] = Y;
  1600. elements(ii-start,2)[k] = Z;
  1601. }
  1602. }
  1603. };
  1604. ElemList elements_src, elements_trg;
  1605. build_torus(elements_src, 28, 16, 2, 1.0);
  1606. build_torus(elements_trg, 29, 17, 2, 0.99);
  1607. Vector<Real> Xt;
  1608. Vector<PotentialBasis> U_onsurf, U_offsurf;
  1609. Vector<DensityBasis> density_sl, density_dl;
  1610. { // Set Xt, elements_src, elements_trg, density_sl, density_dl, U
  1611. Real X0[COORD_DIM] = {3,2,1};
  1612. std::function<void(Real*,Real*,Real*)> potential = [X0](Real* U, Real* X, Real* Xn) {
  1613. Real dX[COORD_DIM] = {X[0]-X0[0],X[1]-X0[1],X[2]-X0[2]};
  1614. Real Rinv = 1/sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dX[2]);
  1615. U[0] = Rinv;
  1616. };
  1617. std::function<void(Real*,Real*,Real*)> potential_normal_derivative = [X0](Real* U, Real* X, Real* Xn) {
  1618. Real dX[COORD_DIM] = {X[0]-X0[0],X[1]-X0[1],X[2]-X0[2]};
  1619. Real Rinv = 1/sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dX[2]);
  1620. Real RdotN = dX[0]*Xn[0]+dX[1]*Xn[1]+dX[2]*Xn[2];
  1621. U[0] = -RdotN * Rinv*Rinv*Rinv;
  1622. };
  1623. DiscretizeSurfaceFn<COORD_DIM,1>(density_sl, elements_src, potential_normal_derivative);
  1624. DiscretizeSurfaceFn<COORD_DIM,1>(density_dl, elements_src, potential);
  1625. DiscretizeSurfaceFn<COORD_DIM,1>(U_onsurf , elements_src, potential);
  1626. DiscretizeSurfaceFn<COORD_DIM,1>(U_offsurf , elements_trg, potential);
  1627. for (long i = 0; i < elements_trg.NElem(); i++) { // Set Xt
  1628. for (long j = 0; j < PotentialBasis::Size(); j++) {
  1629. for (int k = 0; k < COORD_DIM; k++) {
  1630. Xt.PushBack(elements_trg(i,k)[j]);
  1631. }
  1632. }
  1633. }
  1634. }
  1635. GenericKernel<Laplace3D_DxU> Laplace_DxU;
  1636. GenericKernel<Laplace3D_FxU> Laplace_FxU;
  1637. Profile::Enable(true);
  1638. if (1) { // Greeen's identity test (Laplace, on-surface)
  1639. Profile::Tic("OnSurface", &comm);
  1640. Quadrature<Real> quadrature_DxU, quadrature_FxU;
  1641. quadrature_FxU.Setup<DensityBasis, PotentialBasis>(elements_src, Laplace_FxU, order_singular, order_direct, -1.0, comm);
  1642. quadrature_DxU.Setup<DensityBasis, PotentialBasis>(elements_src, Laplace_DxU, order_singular, order_direct, -1.0, comm);
  1643. Vector<PotentialBasis> U_sl, U_dl;
  1644. quadrature_FxU.Eval(U_sl, elements_src, density_sl, Laplace_FxU);
  1645. quadrature_DxU.Eval(U_dl, elements_src, density_dl, Laplace_DxU);
  1646. Profile::Toc();
  1647. Real max_err = 0;
  1648. Vector<PotentialBasis> err(U_onsurf.Dim());
  1649. for (long i = 0; i < U_sl.Dim(); i++) {
  1650. for (long j = 0; j < PotentialBasis::Size(); j++) {
  1651. err[i][j] = 0.5*U_onsurf[i][j] - (U_sl[i][j] + U_dl[i][j]);
  1652. max_err = std::max<Real>(max_err, fabs(err[i][j]));
  1653. }
  1654. }
  1655. { // Print error
  1656. Real glb_err;
  1657. comm.Allreduce(Ptr2ConstItr<Real>(&max_err,1), Ptr2Itr<Real>(&glb_err,1), 1, Comm::CommOp::MAX);
  1658. if (!comm.Rank()) std::cout<<"Error = "<<glb_err<<'\n';
  1659. }
  1660. { // Write VTK output
  1661. VTUData vtu;
  1662. vtu.AddElems(elements_src, err, ORDER);
  1663. vtu.WriteVTK("err", comm);
  1664. }
  1665. { // Write VTK output
  1666. VTUData vtu;
  1667. vtu.AddElems(elements_src, U_onsurf, ORDER);
  1668. vtu.WriteVTK("U", comm);
  1669. }
  1670. }
  1671. if (1) { // Greeen's identity test (Laplace, off-surface)
  1672. Profile::Tic("OffSurface", &comm);
  1673. Quadrature<Real> quadrature_DxU, quadrature_FxU;
  1674. quadrature_FxU.Setup<DensityBasis>(elements_src, Xt, Laplace_FxU, order_singular, order_direct, -1.0, comm);
  1675. quadrature_DxU.Setup<DensityBasis>(elements_src, Xt, Laplace_DxU, order_singular, order_direct, -1.0, comm);
  1676. Vector<Real> U_sl, U_dl;
  1677. quadrature_FxU.Eval(U_sl, elements_src, density_sl, Laplace_FxU);
  1678. quadrature_DxU.Eval(U_dl, elements_src, density_dl, Laplace_DxU);
  1679. Profile::Toc();
  1680. Real max_err = 0;
  1681. Vector<PotentialBasis> err(elements_trg.NElem());
  1682. for (long i = 0; i < elements_trg.NElem(); i++) {
  1683. for (long j = 0; j < PotentialBasis::Size(); j++) {
  1684. err[i][j] = U_offsurf[i][j] - (U_sl[i*PotentialBasis::Size()+j] + U_dl[i*PotentialBasis::Size()+j]);
  1685. max_err = std::max<Real>(max_err, fabs(err[i][j]));
  1686. }
  1687. }
  1688. { // Print error
  1689. Real glb_err;
  1690. comm.Allreduce(Ptr2ConstItr<Real>(&max_err,1), Ptr2Itr<Real>(&glb_err,1), 1, Comm::CommOp::MAX);
  1691. if (!comm.Rank()) std::cout<<"Error = "<<glb_err<<'\n';
  1692. }
  1693. { // Write VTK output
  1694. VTUData vtu;
  1695. vtu.AddElems(elements_trg, err, ORDER);
  1696. vtu.WriteVTK("err", comm);
  1697. }
  1698. { // Write VTK output
  1699. VTUData vtu;
  1700. vtu.AddElems(elements_trg, U_offsurf, ORDER);
  1701. vtu.WriteVTK("U", comm);
  1702. }
  1703. }
  1704. Profile::print(&comm);
  1705. }
  1706. static void test1() {
  1707. const Comm& comm = Comm::World();
  1708. constexpr Integer ORDER = 15;
  1709. Integer order_singular = 20;
  1710. Integer order_direct = 20;
  1711. constexpr Integer COORD_DIM = 3;
  1712. constexpr Integer ELEM_DIM = COORD_DIM-1;
  1713. using ElemList = ElemList<COORD_DIM, Basis<Real, ELEM_DIM, ORDER>>;
  1714. using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
  1715. using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
  1716. int np = comm.Size();
  1717. int rank = comm.Rank();
  1718. auto build_sphere = [rank,np](ElemList& elements, Real X, Real Y, Real Z, Real R){
  1719. auto nodes = ElemList::CoordBasis::Nodes();
  1720. long start = 2*COORD_DIM*(rank+0)/np;
  1721. long end = 2*COORD_DIM*(rank+1)/np;
  1722. elements.ReInit(end - start);
  1723. for (long ii = start; ii < end; ii++) {
  1724. long i = ii / 2;
  1725. long j = ii % 2;
  1726. for (int k = 0; k < ElemList::CoordBasis::Size(); k++) {
  1727. Real coord[COORD_DIM];
  1728. coord[(i+0)%COORD_DIM] = (j ? -1.0 : 1.0);
  1729. coord[(i+1)%COORD_DIM] = 2.0 * nodes[j?1:0][k] - 1.0;
  1730. coord[(i+2)%COORD_DIM] = 2.0 * nodes[j?0:1][k] - 1.0;
  1731. Real R0 = sqrt<Real>(coord[0]*coord[0] + coord[1]*coord[1] + coord[2]*coord[2]);
  1732. elements(ii-start,0)[k] = X + R * coord[0] / R0;
  1733. elements(ii-start,1)[k] = Y + R * coord[1] / R0;
  1734. elements(ii-start,2)[k] = Z + R * coord[2] / R0;
  1735. }
  1736. }
  1737. };
  1738. ElemList elements;
  1739. build_sphere(elements, 0.0, 0.0, 0.0, 1.00);
  1740. Vector<DensityBasis> density_sl;
  1741. { // Set density_sl
  1742. std::function<void(Real*,Real*,Real*)> sigma = [](Real* U, Real* X, Real* Xn) {
  1743. Real R = sqrt(X[0]*X[0]+X[1]*X[1]+X[2]*X[2]);
  1744. Real sinp = sqrt(X[1]*X[1] + X[2]*X[2]) / R;
  1745. Real cosp = -X[0] / R;
  1746. U[0] = -1.5;
  1747. U[1] = 0;
  1748. U[2] = 0;
  1749. };
  1750. DiscretizeSurfaceFn<COORD_DIM,3>(density_sl, elements, sigma);
  1751. }
  1752. GenericKernel<Stokes3D_DxU> Stokes_DxU;
  1753. GenericKernel<Stokes3D_FxU> Stokes_FxU;
  1754. Profile::Enable(true);
  1755. if (1) {
  1756. Vector<PotentialBasis> U;
  1757. Quadrature<Real> quadrature_FxU;
  1758. quadrature_FxU.Setup<DensityBasis, PotentialBasis>(elements, Stokes_FxU, order_singular, order_direct, -1.0, comm);
  1759. quadrature_FxU.Eval(U, elements, density_sl, Stokes_FxU);
  1760. { // Write VTK output
  1761. VTUData vtu;
  1762. vtu.AddElems(elements, U, ORDER);
  1763. vtu.WriteVTK("U", comm);
  1764. }
  1765. { // Write VTK output
  1766. VTUData vtu;
  1767. vtu.AddElems(elements, density_sl, ORDER);
  1768. vtu.WriteVTK("sigma", comm);
  1769. }
  1770. }
  1771. Profile::print(&comm);
  1772. }
  1773. private:
  1774. static void scan(Vector<Long>& dsp, const Vector<Long>& cnt) {
  1775. dsp.ReInit(cnt.Dim());
  1776. if (cnt.Dim()) dsp[0] = 0;
  1777. omp_par::scan(cnt.begin(), dsp.begin(), cnt.Dim());
  1778. }
  1779. template <class Basis> static void eval_basis(Vector<Real>& value, const Vector<Basis> X, Integer dof, Integer Nnds, const typename Basis::EvalOpType& EvalOp) {
  1780. Long Nelem = X.Dim() / dof;
  1781. SCTL_ASSERT(X.Dim() == Nelem * dof);
  1782. value.ReInit(Nelem*Nnds*dof);
  1783. Matrix<Real> X_(Nelem*dof, Nnds, value.begin(),false);
  1784. Basis::Eval(X_, X, EvalOp);
  1785. for (Long j = 0; j < Nelem; j++) { // Rearrange data
  1786. Matrix<Real> X(Nnds, dof, X_[j*dof], false);
  1787. X = Matrix<Real>(dof, Nnds, X_[j*dof], false).Transpose();
  1788. }
  1789. }
  1790. template <int CoordDim, int FnDim, class FnBasis, class ElemList> static void DiscretizeSurfaceFn(Vector<FnBasis>& U, const ElemList& elements, std::function<void(Real*,Real*,Real*)> fn) {
  1791. using CoordBasis = typename ElemList::CoordBasis;
  1792. const long Nelem = elements.NElem();
  1793. U.ReInit(Nelem * FnDim);
  1794. Matrix<Real> X, X_grad;
  1795. { // Set X, X_grad
  1796. Vector<CoordBasis> coord = elements.ElemVector();
  1797. Vector<CoordBasis> coord_grad;
  1798. CoordBasis::Grad(coord_grad, coord);
  1799. const auto Meval = CoordBasis::SetupEval(FnBasis::Nodes());
  1800. CoordBasis::Eval(X, coord, Meval);
  1801. CoordBasis::Eval(X_grad, coord_grad, Meval);
  1802. }
  1803. for (long i = 0; i < Nelem; i++) {
  1804. for (long j = 0; j < FnBasis::Size(); j++) {
  1805. Real X_[CoordDim], Xn[CoordDim], U_[FnDim];
  1806. for (long k = 0; k < CoordDim; k++) {
  1807. X_[k] = X[i*CoordDim+k][j];
  1808. }
  1809. { // Set Xn
  1810. Real Xu[CoordDim], Xv[CoordDim];
  1811. for (long k = 0; k < CoordDim; k++) {
  1812. Xu[k] = X_grad[(i*CoordDim+k)*2+0][j];
  1813. Xv[k] = X_grad[(i*CoordDim+k)*2+1][j];
  1814. }
  1815. Real dA = 0;
  1816. for (long k = 0; k < CoordDim; k++) {
  1817. Xn[k] = Xu[(k+1)%CoordDim] * Xv[(k+2)%CoordDim];
  1818. Xn[k] -= Xv[(k+1)%CoordDim] * Xu[(k+2)%CoordDim];
  1819. dA += Xn[k] * Xn[k];
  1820. }
  1821. dA = sqrt(dA);
  1822. for (long k = 0; k < CoordDim; k++) {
  1823. Xn[k] /= dA;
  1824. }
  1825. }
  1826. fn(U_, X_, Xn);
  1827. for (long k = 0; k < FnDim; k++) {
  1828. U[i*FnDim+k][j] = U_[k];
  1829. }
  1830. }
  1831. }
  1832. }
  1833. Vector<Real> Xt_;
  1834. Matrix<Real> M_singular;
  1835. Matrix<Real> M_near_singular;
  1836. Vector<Pair<Long,Long>> pair_lst;
  1837. Integer order_direct_;
  1838. Real period_length_;
  1839. Comm comm_;
  1840. };
  1841. template <class Real, Integer ORDER=10> class Stellarator {
  1842. private:
  1843. static constexpr Integer order_singular = 15;
  1844. static constexpr Integer order_direct = 35;
  1845. static constexpr Integer COORD_DIM = 3;
  1846. static constexpr Integer ELEM_DIM = COORD_DIM-1;
  1847. using ElemBasis = Basis<Real, ELEM_DIM, ORDER>;
  1848. using ElemLst = ElemList<COORD_DIM, ElemBasis>;
  1849. struct Laplace3D_dUxF {
  1850. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1851. return 1 / (4 * const_pi<ValueType>());
  1852. }
  1853. template <class ValueType> static void Eval(ValueType (&u)[3][1], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1854. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1855. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1856. ValueType rinv3 = rinv * rinv * rinv;
  1857. u[0][0] = -r[0] * rinv3;
  1858. u[1][0] = -r[1] * rinv3;
  1859. u[2][0] = -r[2] * rinv3;
  1860. }
  1861. };
  1862. struct BiotSavart3D {
  1863. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1864. return 1 / (4 * const_pi<ValueType>());
  1865. }
  1866. template <class ValueType> static void Eval(ValueType (&u)[3][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1867. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1868. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1869. ValueType rinv3 = rinv * rinv * rinv;
  1870. u[0][0] = (0) * rinv3; u[1][0] = r[2] * rinv3; u[2][0] = -r[1] * rinv3;
  1871. u[0][1] = -r[2] * rinv3; u[1][1] = (0) * rinv3; u[2][1] = r[0] * rinv3;
  1872. u[0][2] = r[1] * rinv3; u[1][2] = -r[0] * rinv3; u[2][2] = (0) * rinv3;
  1873. }
  1874. };
  1875. struct BiotSavartGrad3D {
  1876. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1877. return 1 / (4 * const_pi<ValueType>());
  1878. }
  1879. template <class ValueType> static void Eval(ValueType (&u)[3][9], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1880. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1881. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1882. ValueType rinv2 = rinv * rinv;
  1883. ValueType rinv3 = rinv2 * rinv;
  1884. ValueType rinv5 = rinv2 * rinv3;
  1885. u[0][0] = 0; u[1][0] = - 3 * r[2] * r[0] * rinv5; u[2][0] = 3 * r[1] * r[0] * rinv5;
  1886. u[0][1] = 0; u[1][1] = - 3 * r[2] * r[1] * rinv5; u[2][1] = -(1) * rinv3 + 3 * r[1] * r[1] * rinv5;
  1887. u[0][2] = 0; u[1][2] = (1) * rinv3 - 3 * r[2] * r[2] * rinv5; u[2][2] = 3 * r[1] * r[2] * rinv5;
  1888. u[0][3] = 3 * r[2] * r[0] * rinv5; u[1][3] = 0; u[2][3] = (1) * rinv3 - 3 * r[0] * r[0] * rinv5;
  1889. u[0][4] = 3 * r[2] * r[1] * rinv5; u[1][4] = 0; u[2][4] = - 3 * r[0] * r[1] * rinv5;
  1890. u[0][5] = -(1) * rinv3 + 3 * r[2] * r[2] * rinv5; u[1][5] = 0; u[2][5] = - 3 * r[0] * r[2] * rinv5;
  1891. u[0][6] = - 3 * r[1] * r[0] * rinv5; u[1][6] = -(1) * rinv3 + 3 * r[0] * r[0] * rinv5; u[2][6] = 0;
  1892. u[0][7] = (1) * rinv3 - 3 * r[1] * r[1] * rinv5; u[1][7] = 3 * r[0] * r[1] * rinv5; u[2][7] = 0;
  1893. u[0][8] = - 3 * r[1] * r[2] * rinv5; u[1][8] = 3 * r[0] * r[2] * rinv5; u[2][8] = 0;
  1894. }
  1895. };
  1896. struct Laplace3D_dUxD {
  1897. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1898. return 1 / (4 * const_pi<ValueType>());
  1899. }
  1900. template <class ValueType> static void Eval(ValueType (&u)[3][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1901. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1902. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1903. ValueType rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2];
  1904. ValueType rinv2 = rinv * rinv;
  1905. ValueType rinv3 = rinv * rinv2;
  1906. ValueType rinv5 = rinv3 * rinv2;
  1907. u[0][0] = -1 * rinv3 + 3 * r[0] * r[0] * rinv5;
  1908. u[0][1] = -0 * rinv3 + 3 * r[0] * r[1] * rinv5;
  1909. u[0][2] = -0 * rinv3 + 3 * r[0] * r[2] * rinv5;
  1910. u[1][0] = -0 * rinv3 + 3 * r[1] * r[0] * rinv5;
  1911. u[1][1] = -1 * rinv3 + 3 * r[1] * r[1] * rinv5;
  1912. u[1][2] = -0 * rinv3 + 3 * r[1] * r[2] * rinv5;
  1913. u[2][0] = -0 * rinv3 + 3 * r[2] * r[0] * rinv5;
  1914. u[2][1] = -0 * rinv3 + 3 * r[2] * r[1] * rinv5;
  1915. u[2][2] = -1 * rinv3 + 3 * r[2] * r[2] * rinv5;
  1916. }
  1917. };
  1918. struct Laplace3D_DxdU {
  1919. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1920. return 1 / (4 * const_pi<ValueType>());
  1921. }
  1922. template <class ValueType> static void Eval(ValueType (&u)[1][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1923. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1924. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1925. ValueType rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2];
  1926. ValueType rinv2 = rinv * rinv;
  1927. ValueType rinv3 = rinv * rinv2;
  1928. ValueType rinv5 = rinv3 * rinv2;
  1929. u[0][0] = -n[0] * rinv3 + 3*rdotn * r[0] * rinv5;
  1930. u[0][1] = -n[1] * rinv3 + 3*rdotn * r[1] * rinv5;
  1931. u[0][2] = -n[2] * rinv3 + 3*rdotn * r[2] * rinv5;
  1932. }
  1933. };
  1934. struct Laplace3D_Fxd2U {
  1935. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1936. return 1 / (4 * const_pi<ValueType>());
  1937. }
  1938. template <class ValueType> static void Eval(ValueType (&u)[1][9], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1939. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1940. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1941. ValueType rinv2 = rinv * rinv;
  1942. ValueType rinv3 = rinv * rinv2;
  1943. ValueType rinv5 = rinv3 * rinv2;
  1944. u[0][0+3*0] = -1 * rinv3 + 3 * r[0] * r[0] * rinv5;
  1945. u[0][1+3*0] = -0 * rinv3 + 3 * r[0] * r[1] * rinv5;
  1946. u[0][2+3*0] = -0 * rinv3 + 3 * r[0] * r[2] * rinv5;
  1947. u[0][0+3*1] = -0 * rinv3 + 3 * r[1] * r[0] * rinv5;
  1948. u[0][1+3*1] = -1 * rinv3 + 3 * r[1] * r[1] * rinv5;
  1949. u[0][2+3*1] = -0 * rinv3 + 3 * r[1] * r[2] * rinv5;
  1950. u[0][0+3*2] = -0 * rinv3 + 3 * r[2] * r[0] * rinv5;
  1951. u[0][1+3*2] = -0 * rinv3 + 3 * r[2] * r[1] * rinv5;
  1952. u[0][2+3*2] = -1 * rinv3 + 3 * r[2] * r[2] * rinv5;
  1953. }
  1954. };
  1955. static Real max_norm(const sctl::Vector<Real>& x) {
  1956. Real err = 0;
  1957. for (const auto& a : x) err = std::max(err, sctl::fabs<Real>(a));
  1958. return err;
  1959. }
  1960. public:
  1961. static Vector<ElemBasis> compute_dot_prod(const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  1962. const Long Nelem = A.Dim() / COORD_DIM;
  1963. const Long Nnodes = ElemBasis::Size();
  1964. SCTL_ASSERT(A.Dim() == Nelem * COORD_DIM);
  1965. SCTL_ASSERT(B.Dim() == Nelem * COORD_DIM);
  1966. Vector<ElemBasis> AdotB(Nelem);
  1967. for (Long i = 0; i < Nelem; i++) {
  1968. for (Long j = 0; j < Nnodes; j++) {
  1969. Real a_dot_b = 0;
  1970. a_dot_b += A[i*COORD_DIM+0][j]*B[i*COORD_DIM+0][j];
  1971. a_dot_b += A[i*COORD_DIM+1][j]*B[i*COORD_DIM+1][j];
  1972. a_dot_b += A[i*COORD_DIM+2][j]*B[i*COORD_DIM+2][j];
  1973. AdotB[i][j] = a_dot_b;
  1974. }
  1975. }
  1976. return AdotB;
  1977. }
  1978. static Real compute_inner_prod(const Vector<ElemBasis>& area_elem, const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  1979. const auto& quad_wts = ElemBasis::QuadWts();
  1980. const Long Nnodes = ElemBasis::Size();
  1981. const Long Nelem = area_elem.Dim();
  1982. const Long dof = B.Dim() / Nelem;
  1983. Real sum = 0;
  1984. for (Long i = 0; i < Nelem; i++) {
  1985. for (Long j = 0; j < Nnodes; j++) {
  1986. Real AdotB = 0;
  1987. for (Long k = 0; k < dof; k++) {
  1988. AdotB += A[i*dof+k][j] * B[i*dof+k][j];
  1989. }
  1990. sum += AdotB * area_elem[i][j] * quad_wts[j];
  1991. }
  1992. }
  1993. return sum;
  1994. }
  1995. static void compute_harmonic_vector_potentials(Vector<ElemBasis>& Jt, Vector<ElemBasis>& Jp, const Stellarator<Real,ORDER>& S) {
  1996. Comm comm = Comm::World();
  1997. Real gmres_tol = 1e-8;
  1998. Long max_iter = 100;
  1999. auto cheb2grid = [] (const Vector<ElemBasis>& X, Long Mt, Long Mp, Long Nt, Long Np) {
  2000. const Long dof = X.Dim() / (Mt * Mp);
  2001. SCTL_ASSERT(X.Dim() == Mt * Mp *dof);
  2002. Vector<Real> Xf(dof*Nt*Np); Xf = 0;
  2003. const Long Nnodes = ElemBasis::Size();
  2004. const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
  2005. for (Long t = 0; t < Nt; t++) {
  2006. for (Long p = 0; p < Np; p++) {
  2007. Real theta = t / (Real)Nt;
  2008. Real phi = p / (Real)Np;
  2009. Long i = (Long)(theta * Mt);
  2010. Long j = (Long)(phi * Mp);
  2011. Real x = theta * Mt - i;
  2012. Real y = phi * Mp - j;
  2013. Long elem_idx = i * Mp + j;
  2014. Vector<Real> Interp0(ORDER);
  2015. Vector<Real> Interp1(ORDER);
  2016. { // Set Interp0, Interp1
  2017. auto node = [&Mnodes] (Long i) {
  2018. return Mnodes[0][i];
  2019. };
  2020. for (Long i = 0; i < ORDER; i++) {
  2021. Real wt_x = 1, wt_y = 1;
  2022. for (Long j = 0; j < ORDER; j++) {
  2023. if (j != i) {
  2024. wt_x *= (x - node(j)) / (node(i) - node(j));
  2025. wt_y *= (y - node(j)) / (node(i) - node(j));
  2026. }
  2027. Interp0[i] = wt_x;
  2028. Interp1[i] = wt_y;
  2029. }
  2030. }
  2031. }
  2032. for (Long ii = 0; ii < ORDER; ii++) {
  2033. for (Long jj = 0; jj < ORDER; jj++) {
  2034. Long node_idx = jj * ORDER + ii;
  2035. for (Long k = 0; k < dof; k++) {
  2036. Xf[(k*Nt+t)*Np+p] += X[elem_idx*dof+k][node_idx] * Interp0[ii] * Interp1[jj];
  2037. }
  2038. }
  2039. }
  2040. }
  2041. }
  2042. return Xf;
  2043. };
  2044. auto grid2cheb = [] (const Vector<Real>& Xf, Long Nt, Long Np, Long Mt, Long Mp) {
  2045. Long dof = Xf.Dim() / (Nt*Np);
  2046. SCTL_ASSERT(Xf.Dim() == dof*Nt*Np);
  2047. Vector<ElemBasis> X(Mt*Mp*dof);
  2048. constexpr Integer INTERP_ORDER = 12;
  2049. for (Long tt = 0; tt < Mt; tt++) {
  2050. for (Long pp = 0; pp < Mp; pp++) {
  2051. for (Long t = 0; t < ORDER; t++) {
  2052. for (Long p = 0; p < ORDER; p++) {
  2053. Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
  2054. Real theta = (tt + Mnodes[0][t]) / Mt;
  2055. Real phi = (pp + Mnodes[0][p]) / Mp;
  2056. Long i = (Long)(theta * Nt);
  2057. Long j = (Long)(phi * Np);
  2058. Real x = theta * Nt - i;
  2059. Real y = phi * Np - j;
  2060. Vector<Real> Interp0(INTERP_ORDER);
  2061. Vector<Real> Interp1(INTERP_ORDER);
  2062. { // Set Interp0, Interp1
  2063. auto node = [] (Long i) {
  2064. return (Real)i - (INTERP_ORDER-1)/2;
  2065. };
  2066. for (Long i = 0; i < INTERP_ORDER; i++) {
  2067. Real wt_x = 1, wt_y = 1;
  2068. for (Long j = 0; j < INTERP_ORDER; j++) {
  2069. if (j != i) {
  2070. wt_x *= (x - node(j)) / (node(i) - node(j));
  2071. wt_y *= (y - node(j)) / (node(i) - node(j));
  2072. }
  2073. Interp0[i] = wt_x;
  2074. Interp1[i] = wt_y;
  2075. }
  2076. }
  2077. }
  2078. for (Long k = 0; k < dof; k++) {
  2079. Real X0 = 0;
  2080. for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  2081. for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  2082. Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  2083. Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  2084. X0 += Interp0[ii] * Interp1[jj] * Xf[(k*Nt+idx_i)*Np+idx_j];
  2085. }
  2086. }
  2087. Long elem_idx = tt * Mp + pp;
  2088. Long node_idx = p * ORDER + t;
  2089. X[elem_idx*dof+k][node_idx] = X0;
  2090. }
  2091. }
  2092. }
  2093. }
  2094. }
  2095. return X;
  2096. };
  2097. Long Nelem = S.NElem();
  2098. if (Jp.Dim() != Nelem * COORD_DIM) Jp.ReInit(Nelem * COORD_DIM);
  2099. if (Jt.Dim() != Nelem * COORD_DIM) Jt.ReInit(Nelem * COORD_DIM);
  2100. for (Long k = 0; k < S.Nsurf(); k++) {
  2101. Long Nt = S.NTor(k)*ORDER, Np = S.NPol(k)*ORDER;
  2102. const auto& X_ = S.GetElemList().ElemVector();
  2103. Vector<ElemBasis> X(S.NTor(k)*S.NPol(k)*COORD_DIM, (Iterator<ElemBasis>)X_.begin()+S.ElemDsp(k)*COORD_DIM, false);
  2104. biest::Surface<Real> SS(Nt, Np);
  2105. biest::SurfaceOp<Real> surf_op(comm, Nt, Np);
  2106. SS.Coord() = cheb2grid(X, S.NTor(k), S.NPol(k), Nt, Np);
  2107. Vector<Real> dX, d2X;
  2108. surf_op.Grad2D(dX, SS.Coord());
  2109. surf_op.Grad2D(d2X, dX);
  2110. sctl::Vector<Real> Jt_(COORD_DIM * Nt * Np);
  2111. sctl::Vector<Real> Jp_(COORD_DIM * Nt * Np);
  2112. { // Set Jt_, Jp_
  2113. Vector<Real> DivV, InvLapDivV, GradInvLapDivV;
  2114. for (sctl::Long i = 0; i < Nt*Np; i++) { // Set V
  2115. for (sctl::Long k =0; k < COORD_DIM; k++) {
  2116. Jt_[k * Nt*Np + i] = dX[(k*2+0) * Nt*Np + i];
  2117. Jp_[k * Nt*Np + i] = dX[(k*2+1) * Nt*Np + i];
  2118. }
  2119. }
  2120. surf_op.SurfDiv(DivV, dX, Jt_);
  2121. surf_op.GradInvSurfLap(GradInvLapDivV, dX, d2X, DivV, gmres_tol * max_norm(Jt_) / max_norm(DivV), max_iter, 1.5);
  2122. Jt_ = Jt_ - GradInvLapDivV;
  2123. surf_op.SurfDiv(DivV, dX, Jp_);
  2124. surf_op.GradInvSurfLap(GradInvLapDivV, dX, d2X, DivV, gmres_tol * max_norm(Jp_) / max_norm(DivV), max_iter, 1.5);
  2125. Jp_ = Jp_ - GradInvLapDivV;
  2126. }
  2127. Vector<ElemBasis> Jt__(S.NTor(k)*S.NPol(k)*COORD_DIM, (Iterator<ElemBasis>)Jt.begin()+S.ElemDsp(k)*COORD_DIM, false);
  2128. Vector<ElemBasis> Jp__(S.NTor(k)*S.NPol(k)*COORD_DIM, (Iterator<ElemBasis>)Jp.begin()+S.ElemDsp(k)*COORD_DIM, false);
  2129. Jt__ = grid2cheb(Jt_, Nt, Np, S.NTor(k), S.NPol(k));
  2130. Jp__ = grid2cheb(Jp_, Nt, Np, S.NTor(k), S.NPol(k));
  2131. }
  2132. }
  2133. static void compute_norm_area_elem(const Stellarator<Real,10>& S, Vector<ElemBasis>& normal, Vector<ElemBasis>& area_elem){ // Set normal, area_elem
  2134. const Vector<ElemBasis>& X = S.GetElemList().ElemVector();
  2135. const Long Nelem = X.Dim() / COORD_DIM;
  2136. const Long Nnodes = ElemBasis::Size();
  2137. Vector<ElemBasis> dX;
  2138. ElemBasis::Grad(dX, X);
  2139. area_elem.ReInit(Nelem);
  2140. normal.ReInit(Nelem * COORD_DIM);
  2141. for (Long i = 0; i < Nelem; i++) {
  2142. for (Long j = 0; j < Nnodes; j++) {
  2143. Tensor<Real,true,COORD_DIM> x, n;
  2144. Tensor<Real,true,COORD_DIM,2> dx;
  2145. x(0) = X[i*COORD_DIM+0][j];
  2146. x(1) = X[i*COORD_DIM+1][j];
  2147. x(2) = X[i*COORD_DIM+2][j];
  2148. dx(0,0) = dX[i*COORD_DIM*2+0][j];
  2149. dx(0,1) = dX[i*COORD_DIM*2+1][j];
  2150. dx(1,0) = dX[i*COORD_DIM*2+2][j];
  2151. dx(1,1) = dX[i*COORD_DIM*2+3][j];
  2152. dx(2,0) = dX[i*COORD_DIM*2+4][j];
  2153. dx(2,1) = dX[i*COORD_DIM*2+5][j];
  2154. n(0) = dx(1,0) * dx(2,1) - dx(2,0) * dx(1,1);
  2155. n(1) = dx(2,0) * dx(0,1) - dx(0,0) * dx(2,1);
  2156. n(2) = dx(0,0) * dx(1,1) - dx(1,0) * dx(0,1);
  2157. Real area_elem_ = sqrt<Real>(n(0)*n(0) + n(1)*n(1) + n(2)*n(2));
  2158. Real ooae = 1 / area_elem_;
  2159. n(0) *= ooae;
  2160. n(1) *= ooae;
  2161. n(2) *= ooae;
  2162. normal[i*COORD_DIM+0][j] = n(0);
  2163. normal[i*COORD_DIM+1][j] = n(1);
  2164. normal[i*COORD_DIM+2][j] = n(2);
  2165. area_elem[i][j] = area_elem_;
  2166. }
  2167. }
  2168. }
  2169. static Vector<ElemBasis> compute_B(const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  2170. const Long Nelem = S.NElem();
  2171. Vector<ElemBasis> B(S.NElem() * COORD_DIM);
  2172. if (sigma.Dim()) {
  2173. const Long Nnodes = ElemBasis::Size();
  2174. Vector<ElemBasis> normal, area_elem;
  2175. compute_norm_area_elem(S, normal, area_elem);
  2176. if (S.Nsurf() == 2) {
  2177. Long Nelem0 = S.NTor(0)*S.NPol(0);
  2178. for (Long i = 0; i < Nelem0*COORD_DIM; i++) {
  2179. for (Long j = 0; j < Nnodes; j++) {
  2180. normal[i][j] *= -1.0;
  2181. }
  2182. }
  2183. }
  2184. EvalQuadrature(B, S.quadrature_FxdU, S, sigma, S.Laplace_FxdU);
  2185. for (Long i = 0; i < Nelem; i++) {
  2186. for (Long j = 0; j < Nnodes; j++) {
  2187. for (Long k = 0; k < COORD_DIM; k++) {
  2188. B[i*COORD_DIM+k][j] -= 0.5*sigma[i][j]*normal[i*COORD_DIM+k][j];
  2189. }
  2190. }
  2191. }
  2192. } else {
  2193. B = 0;
  2194. }
  2195. if (S.Nsurf() >= 1) B += S.Bt0*alpha;
  2196. if (S.Nsurf() >= 2) B += S.Bp0*beta;
  2197. return B;
  2198. }
  2199. static Vector<ElemBasis> compute_dB(const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  2200. const Long Nelem = S.NElem();
  2201. Vector<ElemBasis> dB(S.NElem() * COORD_DIM * COORD_DIM);
  2202. if (sigma.Dim()) {
  2203. EvalQuadrature(dB, S.quadrature_Fxd2U, S, sigma, S.Laplace_Fxd2U);
  2204. } else {
  2205. dB = 0;
  2206. }
  2207. if (S.Nsurf() >= 1) dB += S.dBt0*alpha;
  2208. if (S.Nsurf() >= 2) dB += S.dBp0*beta;
  2209. return dB;
  2210. }
  2211. static void compute_flux(Real& flux_tor, Real& flux_pol, const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& B, const Vector<ElemBasis>& normal) {
  2212. const Long Nelem = S.NElem();
  2213. const Long Nnodes = ElemBasis::Size();
  2214. SCTL_ASSERT(B.Dim() == Nelem*COORD_DIM);
  2215. SCTL_ASSERT(normal.Dim() == Nelem*COORD_DIM);
  2216. Vector<ElemBasis> J(Nelem * COORD_DIM);
  2217. for (Long i = 0; i < Nelem; i++) { // Set J
  2218. for (Long j = 0; j < Nnodes; j++) {
  2219. Tensor<Real,true,COORD_DIM> b, n;
  2220. b(0) = B[i*COORD_DIM+0][j];
  2221. b(1) = B[i*COORD_DIM+1][j];
  2222. b(2) = B[i*COORD_DIM+2][j];
  2223. n(0) = normal[i*COORD_DIM+0][j];
  2224. n(1) = normal[i*COORD_DIM+1][j];
  2225. n(2) = normal[i*COORD_DIM+2][j];
  2226. J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
  2227. J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
  2228. J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
  2229. }
  2230. }
  2231. Vector<ElemBasis> A;
  2232. EvalQuadrature(A, S.quadrature_FxU, S, J, S.Laplace_FxU);
  2233. Vector<Real> circ_pol(S.Nsurf()), circ_tor(S.Nsurf());
  2234. { // compute circ
  2235. Vector<ElemBasis> dX;
  2236. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2237. const auto& quad_wts = ElemBasis::QuadWts();
  2238. for (Long k = 0; k < S.Nsurf(); k++) {
  2239. circ_pol[k] = 0;
  2240. circ_tor[k] = 0;
  2241. Long Ndsp = S.ElemDsp(k);
  2242. for (Long i = 0; i < S.NTor(k)*S.NPol(k); i++) {
  2243. for (Long j = 0; j < Nnodes; j++) {
  2244. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+1][j] * quad_wts[j] / S.NTor(k);
  2245. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+3][j] * quad_wts[j] / S.NTor(k);
  2246. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+5][j] * quad_wts[j] / S.NTor(k);
  2247. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+0][j] * quad_wts[j] / S.NPol(k);
  2248. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+2][j] * quad_wts[j] / S.NPol(k);
  2249. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+4][j] * quad_wts[j] / S.NPol(k);
  2250. }
  2251. }
  2252. }
  2253. }
  2254. if (S.Nsurf() == 1) {
  2255. flux_tor = circ_pol[0];
  2256. flux_pol = 0;
  2257. } else if (S.Nsurf() == 2) {
  2258. flux_tor = circ_pol[1] - circ_pol[0];
  2259. flux_pol = circ_tor[0] - circ_tor[1];
  2260. } else {
  2261. SCTL_ASSERT(false);
  2262. }
  2263. }
  2264. static Vector<Real> compute_A(const Stellarator<Real,ORDER>& S, const Vector<Real>& x) {
  2265. const Long Nelem = S.NElem();
  2266. const Long Nnodes = ElemBasis::Size();
  2267. SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
  2268. Vector<ElemBasis> normal, area_elem;
  2269. compute_norm_area_elem(S, normal, area_elem);
  2270. if (S.Nsurf() == 2) {
  2271. Long Nelem0 = S.NTor(0)*S.NPol(0);
  2272. for (Long i = 0; i < Nelem0*COORD_DIM; i++) {
  2273. for (Long j = 0; j < Nnodes; j++) {
  2274. normal[i][j] *= -1.0;
  2275. }
  2276. }
  2277. }
  2278. Vector<ElemBasis> sigma(Nelem);
  2279. for (Long i = 0; i < Nelem; i++) {
  2280. for (Long j = 0; j < Nnodes; j++) {
  2281. sigma[i][j] = x[i*Nnodes+j];
  2282. }
  2283. }
  2284. Real alpha = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
  2285. Real beta = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
  2286. Vector<ElemBasis> B = compute_B(S, sigma, alpha, beta);
  2287. Vector<ElemBasis> BdotN = compute_dot_prod(B, normal);
  2288. Real flux_tor, flux_pol;
  2289. compute_flux(flux_tor, flux_pol, S, B, normal);
  2290. Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
  2291. for (Long i = 0; i < Nelem; i++) {
  2292. for (Long j = 0; j < Nnodes; j++) {
  2293. Ax[i*Nnodes+j] = BdotN[i][j];
  2294. }
  2295. }
  2296. if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = flux_tor;
  2297. if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = flux_pol;
  2298. return Ax;
  2299. }
  2300. static void compute_invA(Vector<ElemBasis>& sigma, Real& alpha, Real& beta, const Stellarator<Real,ORDER>& S, Real flux_tor, Real flux_pol, const Comm& comm) {
  2301. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&S](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  2302. (*Ax) = compute_A(S, x);
  2303. };
  2304. const Long Nelem = S.NElem();
  2305. const Long Nnodes = ElemBasis::Size();
  2306. Vector<Real> rhs_(Nelem * Nnodes + S.Nsurf());
  2307. rhs_ = 0;
  2308. if (S.Nsurf() >= 1) rhs_[Nelem * Nnodes + 0] = flux_tor;
  2309. if (S.Nsurf() >= 2) rhs_[Nelem * Nnodes + 1] = flux_pol;
  2310. Vector<Real> x_(Nelem * Nnodes + S.Nsurf());
  2311. x_ = 0;
  2312. ParallelSolver<Real> linear_solver(comm, true);
  2313. linear_solver(&x_, BIOp, rhs_, 1e-6, 100);
  2314. sigma.ReInit(Nelem);
  2315. for (Long i = 0; i < Nelem; i++) {
  2316. for (Long j = 0; j < Nnodes; j++) {
  2317. sigma[i][j] = x_[i*Nnodes+j];
  2318. }
  2319. }
  2320. alpha = (S.Nsurf() >= 1 ? x_[Nelem * Nnodes + 0] : 0);
  2321. beta = (S.Nsurf() >= 2 ? x_[Nelem * Nnodes + 1] : 0);
  2322. }
  2323. static Vector<Real> compute_Aadj(const Stellarator<Real,ORDER>& S, const Vector<Real>& x) {
  2324. const Long Nelem = S.NElem();
  2325. const Long Nnodes = ElemBasis::Size();
  2326. SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
  2327. Vector<ElemBasis> normal, area_elem;
  2328. compute_norm_area_elem(S, normal, area_elem);
  2329. if (S.Nsurf() == 2) {
  2330. Long Nelem0 = S.NTor(0)*S.NPol(0);
  2331. for (Long i = 0; i < Nelem0*COORD_DIM; i++) {
  2332. for (Long j = 0; j < Nnodes; j++) {
  2333. normal[i][j] *= -1.0;
  2334. }
  2335. }
  2336. }
  2337. Vector<ElemBasis> x0(Nelem);
  2338. for (Long i = 0; i < Nelem; i++) {
  2339. for (Long j = 0; j < Nnodes; j++) {
  2340. x0[i][j] = x[i*Nnodes+j];
  2341. }
  2342. }
  2343. Real x1 = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
  2344. Real x2 = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
  2345. Vector<ElemBasis> Ax0;
  2346. Real Ax1, Ax2;
  2347. { // Set Ax0, Ax1, Ax2
  2348. Vector<ElemBasis> x0_n(Nelem*COORD_DIM);
  2349. for (Long i = 0; i < Nelem; i++) {
  2350. for (Long j = 0; j < Nnodes; j++) {
  2351. x0_n[i*COORD_DIM+0][j] = x0[i][j] * normal[i*COORD_DIM+0][j];
  2352. x0_n[i*COORD_DIM+1][j] = x0[i][j] * normal[i*COORD_DIM+1][j];
  2353. x0_n[i*COORD_DIM+2][j] = x0[i][j] * normal[i*COORD_DIM+2][j];
  2354. }
  2355. }
  2356. EvalQuadrature(Ax0, S.quadrature_dUxF, S, x0_n, S.Laplace_dUxF);
  2357. Ax0 = x0*(-0.5) - Ax0;
  2358. Ax1 = (S.Nsurf() >= 1 ? compute_inner_prod(area_elem, compute_dot_prod(S.Bt0, normal), x0) : 0);
  2359. Ax2 = (S.Nsurf() >= 2 ? compute_inner_prod(area_elem, compute_dot_prod(S.Bp0, normal), x0) : 0);
  2360. }
  2361. // TODO: precompute A21adj, A22adj
  2362. auto compute_A21adj = [&S,&normal,&area_elem] (bool toroidal_flux) {
  2363. const Long Nelem = S.NElem();
  2364. const Long Nnodes = ElemBasis::Size();
  2365. Vector<ElemBasis> density(Nelem * COORD_DIM);
  2366. { // Set density
  2367. Real scal[2];
  2368. if (S.Nsurf() == 1) {
  2369. SCTL_ASSERT(toroidal_flux == true);
  2370. scal[0] = 1.0 / S.NTor(0);
  2371. scal[1] = 0;
  2372. } else if (S.Nsurf() == 2) {
  2373. if (toroidal_flux == true) {
  2374. scal[0] = -1.0 / S.NTor(0);
  2375. scal[1] = 1.0 / S.NTor(1);
  2376. } else {
  2377. scal[0] = 1.0 / S.NPol(0);
  2378. scal[1] = -1.0 / S.NPol(1);
  2379. }
  2380. } else {
  2381. SCTL_ASSERT(false);
  2382. }
  2383. Vector<ElemBasis> dX;
  2384. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2385. for (Long k = 0; k < S.Nsurf(); k++) {
  2386. for (Long i_ = 0; i_ < S.NTor(k)*S.NPol(k); i_++) {
  2387. Long i = S.ElemDsp(k) + i_;
  2388. for (Long j = 0; j < Nnodes; j++) {
  2389. Real s = scal[k] / area_elem[i][j];
  2390. density[i*COORD_DIM+0][j] = dX[i*COORD_DIM*2+0+(toroidal_flux?1:0)][j] * s;
  2391. density[i*COORD_DIM+1][j] = dX[i*COORD_DIM*2+2+(toroidal_flux?1:0)][j] * s;
  2392. density[i*COORD_DIM+2][j] = dX[i*COORD_DIM*2+4+(toroidal_flux?1:0)][j] * s;
  2393. }
  2394. }
  2395. }
  2396. }
  2397. Vector<ElemBasis> Gdensity, nxGdensity(Nelem * COORD_DIM), A21adj;
  2398. EvalQuadrature(Gdensity, S.quadrature_FxU, S, density, S.Laplace_FxU);
  2399. for (Long i = 0; i < Nelem; i++) { // Set nxGdensity
  2400. for (Long j = 0; j < Nnodes; j++) {
  2401. Tensor<Real,true,COORD_DIM> Gdensity_, n;
  2402. Gdensity_(0) = Gdensity[i*COORD_DIM+0][j];
  2403. Gdensity_(1) = Gdensity[i*COORD_DIM+1][j];
  2404. Gdensity_(2) = Gdensity[i*COORD_DIM+2][j];
  2405. n(0) = normal[i*COORD_DIM+0][j];
  2406. n(1) = normal[i*COORD_DIM+1][j];
  2407. n(2) = normal[i*COORD_DIM+2][j];
  2408. nxGdensity[i*COORD_DIM+0][j] = n(1) * Gdensity_(2) - n(2) * Gdensity_(1);
  2409. nxGdensity[i*COORD_DIM+1][j] = n(2) * Gdensity_(0) - n(0) * Gdensity_(2);
  2410. nxGdensity[i*COORD_DIM+2][j] = n(0) * Gdensity_(1) - n(1) * Gdensity_(0);
  2411. }
  2412. }
  2413. EvalQuadrature(A21adj, S.quadrature_dUxF, S, nxGdensity, S.Laplace_dUxF);
  2414. return A21adj;
  2415. };
  2416. if (S.Nsurf() >= 1) Ax0 += compute_A21adj( true) * x1;
  2417. if (S.Nsurf() >= 2) Ax0 += compute_A21adj(false) * x2;
  2418. if (S.Nsurf() == 1) { // Add flux part of Ax1, Ax2
  2419. Real flux_tor, flux_pol;
  2420. compute_flux(flux_tor, flux_pol, S, S.Bt0, normal);
  2421. Ax1 += flux_tor * x1;
  2422. Ax2 += 0;
  2423. } else if (S.Nsurf() == 2) {
  2424. Real flux_tor, flux_pol;
  2425. compute_flux(flux_tor, flux_pol, S, S.Bt0, normal);
  2426. Ax1 += flux_tor * x1 + flux_pol * x2;
  2427. compute_flux(flux_tor, flux_pol, S, S.Bp0, normal);
  2428. Ax2 += flux_tor * x1 + flux_pol * x2;
  2429. } else {
  2430. SCTL_ASSERT(false);
  2431. }
  2432. Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
  2433. for (Long i = 0; i < Nelem; i++) {
  2434. for (Long j = 0; j < Nnodes; j++) {
  2435. Ax[i*Nnodes+j] = Ax0[i][j];
  2436. }
  2437. }
  2438. if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = Ax1;
  2439. if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = Ax2;
  2440. return Ax;
  2441. }
  2442. static Vector<Real> compute_invAadj(const Stellarator<Real,ORDER>& S, const Vector<Real>& b, const Comm& comm) {
  2443. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&S](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  2444. (*Ax) = compute_Aadj(S,x);
  2445. };
  2446. const Long Nelem = S.NElem();
  2447. const Long Nnodes = ElemBasis::Size();
  2448. Vector<Real> x(b.Dim());
  2449. x = 0;
  2450. ParallelSolver<Real> linear_solver(comm, true);
  2451. linear_solver(&x, BIOp, b, 1e-6, 100);
  2452. return x;
  2453. }
  2454. static Vector<ElemBasis> compute_pressure_jump(const Vector<Stellarator<Real,ORDER>>& Svec, const Vector<Real>& pressure) {
  2455. const Long Nnodes = ElemBasis::Size();
  2456. const Long Nsurf = Svec.Dim();
  2457. SCTL_ASSERT(pressure.Dim() == Nsurf);
  2458. Vector<Vector<ElemBasis>> total_pressure(Nsurf);
  2459. for (Long i = 0; i < Nsurf; i++) { // Set total_pressure
  2460. const Long Nelem = Svec[i].NElem();
  2461. const auto& B = Svec[i].B;
  2462. total_pressure[i].ReInit(Nelem);
  2463. for (Long j = 0; j < Nelem; j++) {
  2464. for (Long k = 0; k < Nnodes; k++) {
  2465. Real B2 = 0;
  2466. B2 += B[j*COORD_DIM+0][k] * B[j*COORD_DIM+0][k];
  2467. B2 += B[j*COORD_DIM+1][k] * B[j*COORD_DIM+1][k];
  2468. B2 += B[j*COORD_DIM+2][k] * B[j*COORD_DIM+2][k];
  2469. total_pressure[i][j][k] = 0.5 * B2 + pressure[i];
  2470. }
  2471. }
  2472. }
  2473. Vector<Long> elem_cnt, elem_dsp;
  2474. for (Long i = 0; i < Nsurf; i++) {
  2475. if (i == 0) {
  2476. elem_cnt.PushBack(Svec[i].NTor(0) * Svec[i].NPol(0));
  2477. elem_dsp.PushBack(0);
  2478. } else {
  2479. elem_cnt.PushBack(Svec[i].NTor(1) * Svec[i].NPol(1));
  2480. elem_dsp.PushBack(elem_dsp[i-1] + elem_cnt[i-1]);
  2481. }
  2482. }
  2483. Vector<ElemBasis> pressure_jump(elem_dsp[Nsurf-1] + elem_cnt[Nsurf-1]);
  2484. pressure_jump = 0;
  2485. for (Long i = 0; i < Nsurf-1; i++) { // Set pressure_jump
  2486. Long Nelem, offset;
  2487. if (i == 0) {
  2488. offset = 0;
  2489. Nelem = Svec[i].NTor(0) * Svec[i].NPol(0);
  2490. } else {
  2491. offset = Svec[i].NTor(0) * Svec[i].NPol(0);
  2492. Nelem = Svec[i].NTor(1) * Svec[i].NPol(1);
  2493. }
  2494. for (Long j = 0; j < Nelem; j++) {
  2495. for (Long k = 0; k < Nnodes; k++) {
  2496. Real T0 = total_pressure[i][offset+j][k];
  2497. Real T1 = (i+1<Nsurf ? total_pressure[i+1][j][k] : 0);
  2498. pressure_jump[elem_dsp[i]+j][k] = T1 - T0;
  2499. }
  2500. }
  2501. }
  2502. return pressure_jump;
  2503. }
  2504. static void compute_gvec(const Vector<Stellarator<Real,ORDER>>& Svec, const Vector<Real>& pressure) {
  2505. Vector<ElemBasis> pressure_jump = compute_pressure_jump(Svec, pressure);
  2506. const Long Nnodes = ElemBasis::Size();
  2507. const Long Nsurf = Svec.Dim();
  2508. Long elem_offset = 0;
  2509. for (Long i = 0; i < Nsurf; i++) { // Allocate
  2510. Svec[i].gvec.ReInit(Svec[i].NElem());
  2511. Svec[i].gvec = 0;
  2512. }
  2513. for (Long i = 0; i < Nsurf-1; i++) { // Set gvec
  2514. Long Nelem, offset;
  2515. if (i == 0) {
  2516. offset = 0;
  2517. Nelem = Svec[i].NTor(0) * Svec[i].NPol(0);
  2518. } else {
  2519. offset = Svec[i].NTor(0) * Svec[i].NPol(0);
  2520. Nelem = Svec[i].NTor(1) * Svec[i].NPol(1);
  2521. }
  2522. for (Long j = 0; j < Nelem; j++) {
  2523. for (Long k = 0; k < Nnodes; k++) {
  2524. Real jump = pressure_jump[elem_offset+j][k];
  2525. Svec[i].gvec[offset+j][k] = 0.5 * jump * jump;
  2526. if (i+1<Nsurf) Svec[i+1].gvec[j][k] = 0.5 * jump * jump;
  2527. }
  2528. }
  2529. elem_offset += Nelem;
  2530. }
  2531. }
  2532. static void compute_dgdB(const Vector<Stellarator<Real,ORDER>>& Svec, const Vector<Real>& pressure) {
  2533. Vector<ElemBasis> pressure_jump = compute_pressure_jump(Svec, pressure);
  2534. const Long Nnodes = ElemBasis::Size();
  2535. const Long Nsurf = Svec.Dim();
  2536. Long elem_offset = 0;
  2537. for (Long i = 0; i < Nsurf; i++) { // Allocate
  2538. Svec[i].dgdB.ReInit(Svec[i].NElem() * COORD_DIM);
  2539. Svec[i].dgdB = 0;
  2540. }
  2541. for (Long i = 0; i < Nsurf-1; i++) { // Set dgdB
  2542. Long Nelem, offset;
  2543. if (i == 0) {
  2544. offset = 0;
  2545. Nelem = Svec[i].NTor(0) * Svec[i].NPol(0);
  2546. } else {
  2547. offset = Svec[i].NTor(0) * Svec[i].NPol(0);
  2548. Nelem = Svec[i].NTor(1) * Svec[i].NPol(1);
  2549. }
  2550. for (Long j = 0; j < Nelem; j++) {
  2551. for (Long k = 0; k < Nnodes; k++) {
  2552. Real jump = pressure_jump[elem_offset+j][k];
  2553. Svec[i].dgdB[(offset+j)*COORD_DIM+0][k] = -jump * Svec[i].B[(offset+j)*COORD_DIM+0][k];
  2554. Svec[i].dgdB[(offset+j)*COORD_DIM+1][k] = -jump * Svec[i].B[(offset+j)*COORD_DIM+1][k];
  2555. Svec[i].dgdB[(offset+j)*COORD_DIM+2][k] = -jump * Svec[i].B[(offset+j)*COORD_DIM+2][k];
  2556. if (i+1<Nsurf) {
  2557. Svec[i+1].dgdB[j*COORD_DIM+0][k] = jump * Svec[i+1].B[j*COORD_DIM+0][k];
  2558. Svec[i+1].dgdB[j*COORD_DIM+1][k] = jump * Svec[i+1].B[j*COORD_DIM+1][k];
  2559. Svec[i+1].dgdB[j*COORD_DIM+2][k] = jump * Svec[i+1].B[j*COORD_DIM+2][k];
  2560. }
  2561. }
  2562. }
  2563. elem_offset += Nelem;
  2564. }
  2565. }
  2566. static Real compute_g(const Vector<Stellarator<Real,ORDER>>& Svec, const Vector<Real>& pressure) {
  2567. Real g = 0;
  2568. compute_gvec(Svec, pressure);
  2569. for (Long i = 0; i < Svec.Dim(); i++) { // Set gvec
  2570. Vector<ElemBasis> normal, area_elem, wt(Svec[i].NElem());
  2571. compute_norm_area_elem(Svec[i], normal, area_elem);
  2572. wt = 0.5;
  2573. if (i == Svec.Dim()-1) {
  2574. Long Nsurf = Svec[i].Nsurf();
  2575. Long Nelem = Svec[i].NTor(Nsurf-1) * Svec[i].NPol(Nsurf-1);
  2576. Long offset = Svec[i].ElemDsp(Nsurf-1);
  2577. for (Long j = 0; j < Nelem; j++) {
  2578. wt[offset + j] = 1.0;
  2579. }
  2580. }
  2581. g += compute_inner_prod(area_elem, Svec[i].gvec, wt);
  2582. }
  2583. return g;
  2584. }
  2585. Stellarator(const Vector<Long>& NtNp = Vector<Long>()) {
  2586. NtNp_ = NtNp;
  2587. Long Nsurf = NtNp_.Dim() / 2;
  2588. SCTL_ASSERT(Nsurf*2 == NtNp_.Dim());
  2589. Long Nelem = 0;
  2590. elem_dsp.ReInit(Nsurf+1);
  2591. elem_dsp[0] = 0;
  2592. for (Long i = 0; i < Nsurf; i++) {
  2593. Nelem += NtNp_[i*2+0]*NtNp_[i*2+1];
  2594. elem_dsp[i+1] = Nelem;
  2595. }
  2596. elements.ReInit(Nelem);
  2597. for (Long i = 0; i < Nsurf; i++) {
  2598. InitSurf(i, this->Nsurf());
  2599. }
  2600. }
  2601. Long ElemIdx(Long s, Long t, Long p) {
  2602. SCTL_ASSERT(0 <= s && s < Nsurf());
  2603. SCTL_ASSERT(0 <= t && t < NtNp_[s*2+0]);
  2604. SCTL_ASSERT(0 <= p && p < NtNp_[s*2+1]);
  2605. return elem_dsp[s] + t*NtNp_[s*2+1] + p;
  2606. }
  2607. ElemBasis& Elem(Long elem, Integer dim) {
  2608. return elements(elem,dim);
  2609. }
  2610. const ElemBasis& Elem(Long elem, Integer dim) const {
  2611. return elements(elem,dim);
  2612. }
  2613. const ElemLst& GetElemList() const {
  2614. return elements;
  2615. }
  2616. Long Nsurf() const {
  2617. return elem_dsp.Dim()-1;
  2618. }
  2619. Long ElemDsp(Long s) const {
  2620. return elem_dsp[s];
  2621. }
  2622. Long NTor(Long s) const {
  2623. return NtNp_[s*2+0];
  2624. }
  2625. Long NPol(Long s) const {
  2626. return NtNp_[s*2+1];
  2627. }
  2628. Long NElem() const {
  2629. return elements.NElem();
  2630. }
  2631. static Vector<ElemBasis> compute_gradient(const Stellarator<Real,ORDER>& S_, const Vector<Real>& pressure, const Vector<Real>& flux_tor_, const Vector<Real>& flux_pol_, Real* g_ptr = nullptr) {
  2632. Comm comm = Comm::World();
  2633. Vector<Stellarator<Real,ORDER>> Svec(S_.Nsurf());
  2634. for (Long i = 0; i < S_.Nsurf(); i++) { // Set Svec[i] (quadratures, B)
  2635. const Long elem_dsp = (i==0 ? 0 : S_.ElemDsp(i-1));
  2636. const Long Nnodes = ElemBasis::Size();
  2637. Stellarator<Real,ORDER>& S = Svec[i];
  2638. if (i == 0) { // Init S
  2639. Vector<Long> NtNp;
  2640. NtNp.PushBack(S_.NTor(i));
  2641. NtNp.PushBack(S_.NPol(i));
  2642. S = Stellarator<Real,ORDER>(NtNp);
  2643. } else {
  2644. Vector<Long> NtNp;
  2645. NtNp.PushBack(S_.NTor(i-1));
  2646. NtNp.PushBack(S_.NPol(i-1));
  2647. NtNp.PushBack(S_.NTor(i));
  2648. NtNp.PushBack(S_.NPol(i));
  2649. S = Stellarator<Real,ORDER>(NtNp);
  2650. }
  2651. for (Long j = 0; j < S.NElem(); j++) { // Set S coordinates
  2652. for (Long k = 0; k < Nnodes; k++) {
  2653. S.Elem(j,0)[k] = S_.Elem(elem_dsp+j,0)[k];
  2654. S.Elem(j,1)[k] = S_.Elem(elem_dsp+j,1)[k];
  2655. S.Elem(j,2)[k] = S_.Elem(elem_dsp+j,2)[k];
  2656. }
  2657. }
  2658. SetupQuadrature(S.quadrature_dBS , S, S.BiotSavartGrad, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  2659. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  2660. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  2661. SetupQuadrature(S.quadrature_FxdU , S, S.Laplace_FxdU , order_singular, order_direct, -1.0, comm);
  2662. SetupQuadrature(S.quadrature_dUxF , S, S.Laplace_dUxF , order_singular, order_direct, -1.0, comm);
  2663. SetupQuadrature(S.quadrature_dUxD , S, S.Laplace_dUxD , order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  2664. SetupQuadrature(S.quadrature_Fxd2U, S, S.Laplace_Fxd2U , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  2665. { // Set Bt0, Bp0, dBt0, dBp0
  2666. Vector<ElemBasis> Jt, Jp;
  2667. compute_harmonic_vector_potentials(Jt, Jp, S);
  2668. EvalQuadrature(S.Bt0 , S.quadrature_BS , S, Jp, S.BiotSavart);
  2669. EvalQuadrature(S.Bp0 , S.quadrature_BS , S, Jt, S.BiotSavart);
  2670. EvalQuadrature(S.dBt0, S.quadrature_dBS, S, Jp, S.BiotSavartGrad);
  2671. EvalQuadrature(S.dBp0, S.quadrature_dBS, S, Jt, S.BiotSavartGrad);
  2672. }
  2673. compute_invA(S.sigma, S.alpha, S.beta, S, flux_tor_[i], flux_pol_[i], comm);
  2674. S.B = compute_B(S, S.sigma, S.alpha, S.beta);
  2675. if (0) { // Write VTU
  2676. VTUData vtu;
  2677. vtu.AddElems(S.GetElemList(), S.sigma, ORDER);
  2678. vtu.WriteVTK("sigma"+std::to_string(i), comm);
  2679. }
  2680. if (0) { // Write VTU
  2681. VTUData vtu;
  2682. vtu.AddElems(S.GetElemList(), S.B, ORDER);
  2683. vtu.WriteVTK("B"+std::to_string(i), comm);
  2684. }
  2685. }
  2686. compute_gvec(Svec, pressure);
  2687. compute_dgdB(Svec, pressure);
  2688. if (g_ptr != nullptr) g_ptr[0] = compute_g(Svec, pressure);
  2689. auto compute_gradient = [&comm] (const Stellarator<Real,ORDER>& S) {
  2690. const Long Nnodes = ElemBasis::Size();
  2691. const Long Nelem = S.NElem();
  2692. const auto& sigma = S.sigma;
  2693. const auto& alpha = S.alpha;
  2694. const auto& beta = S.beta;
  2695. const auto& B = S.B;
  2696. Vector<ElemBasis> normal, area_elem;
  2697. compute_norm_area_elem(S, normal, area_elem);
  2698. if (S.Nsurf() == 2) {
  2699. Long Nelem0 = S.NTor(0)*S.NPol(0);
  2700. for (Long i = 0; i < Nelem0*COORD_DIM; i++) {
  2701. for (Long j = 0; j < Nnodes; j++) {
  2702. normal[i][j] *= -1.0;
  2703. }
  2704. }
  2705. }
  2706. auto compute_H = [] (const ElemList<COORD_DIM,ElemBasis>& elem_lst, const Vector<ElemBasis>& normal) {
  2707. const Long Nnodes = ElemBasis::Size();
  2708. const Long Nelem = elem_lst.NElem();
  2709. const Vector<ElemBasis> X = elem_lst.ElemVector();
  2710. Vector<ElemBasis> dX, d2X, H(Nelem);
  2711. ElemBasis::Grad(dX, X);
  2712. ElemBasis::Grad(d2X, dX);
  2713. for (Long i = 0; i < Nelem; i++) {
  2714. for (Long j = 0; j < Nnodes; j++) {
  2715. Tensor<Real,true,2,2> I, invI, II;
  2716. for (Long k0 = 0; k0 < 2; k0++) {
  2717. for (Long k1 = 0; k1 < 2; k1++) {
  2718. I(k0,k1) = 0;
  2719. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  2720. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  2721. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  2722. II(k0,k1) = 0;
  2723. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  2724. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  2725. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  2726. }
  2727. }
  2728. { // Set invI
  2729. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  2730. invI(0,0) = I(1,1) / detI;
  2731. invI(0,1) = -I(0,1) / detI;
  2732. invI(1,0) = -I(1,0) / detI;
  2733. invI(1,1) = I(0,0) / detI;
  2734. }
  2735. { // Set H
  2736. H[i][j] = 0;
  2737. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  2738. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  2739. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  2740. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  2741. }
  2742. }
  2743. }
  2744. return H;
  2745. };
  2746. Vector<ElemBasis> H = compute_H(S.GetElemList(), normal);
  2747. auto compute_dg_dnu = [&S,&normal,&area_elem,&H]() { // dg_dnu = (B*B) 2H - (2 B) \cdot (n \cdnot nabla) \nabla G[sigma] + (2 B) \alpha dB0_dnu \hat{\theta} + sigma (\nabla D)^T [2 B] + (2H) sigma (\nabla G)^T [2 B]
  2748. const Long Nelem = S.NElem();
  2749. const Long Nnodes = ElemBasis::Size();
  2750. const Vector<ElemBasis>& gvec = S.gvec;
  2751. const Vector<ElemBasis>& v = S.dgdB;
  2752. const auto& sigma = S.sigma;
  2753. const auto& alpha = S.alpha;
  2754. const auto& beta = S.beta;
  2755. const auto& B = S.B;
  2756. Vector<ElemBasis> dg_dnu0(Nelem), dg_dnu1(Nelem), dg_dnu2(Nelem), dg_dnu3(Nelem), dg_dnu4(Nelem);
  2757. dg_dnu0 = 0;
  2758. dg_dnu1 = 0;
  2759. dg_dnu2 = 0;
  2760. dg_dnu3 = 0;
  2761. dg_dnu4 = 0;
  2762. // dg_dnu0 = (B*B) 2H
  2763. for (Long i = 0; i < Nelem; i++) {
  2764. for (Long j = 0; j < Nnodes; j++) {
  2765. dg_dnu0[i][j] = gvec[i][j] * (2.0*H[i][j]) * 0.5;
  2766. // multiplicative factor 0.5 is there so that this term is not
  2767. // counted twice from shape derivative of regions on either side
  2768. // of the domain.
  2769. }
  2770. }
  2771. // dg_dnu1 = (2 B) \cdot (n \cdnot \nabla) B
  2772. Vector<ElemBasis> dB = compute_dB(S, sigma, alpha, beta);
  2773. for (Long i = 0; i < Nelem; i++) {
  2774. for (Long j = 0; j < Nnodes; j++) {
  2775. dg_dnu1[i][j] = 0;
  2776. dg_dnu1[i][j] -= dB[i*9+0][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
  2777. dg_dnu1[i][j] -= dB[i*9+1][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
  2778. dg_dnu1[i][j] -= dB[i*9+2][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
  2779. dg_dnu1[i][j] -= dB[i*9+3][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
  2780. dg_dnu1[i][j] -= dB[i*9+4][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
  2781. dg_dnu1[i][j] -= dB[i*9+5][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
  2782. dg_dnu1[i][j] -= dB[i*9+6][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
  2783. dg_dnu1[i][j] -= dB[i*9+7][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
  2784. dg_dnu1[i][j] -= dB[i*9+8][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
  2785. }
  2786. }
  2787. // dg_dnu3 = (sigma (\nabla D)^T [2 B]
  2788. Vector<ElemBasis> nablaDtv;
  2789. EvalQuadrature(nablaDtv, S.quadrature_dUxD, S, v, S.Laplace_dUxD);
  2790. for (Long i = 0; i < Nelem; i++) {
  2791. for (Long j = 0; j < Nnodes; j++) {
  2792. dg_dnu3[i][j] = 0;
  2793. dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  2794. dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  2795. dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  2796. }
  2797. }
  2798. // dg_dnu4 = (2H) sigma (\nabla G)^T [2 B]
  2799. EvalQuadrature(dg_dnu4, S.quadrature_dUxF, S, v, S.Laplace_dUxF);
  2800. for (Long i = 0; i < Nelem; i++) {
  2801. for (Long j = 0; j < Nnodes; j++) {
  2802. dg_dnu4[i][j] += 0.5 * v[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  2803. dg_dnu4[i][j] += 0.5 * v[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  2804. dg_dnu4[i][j] += 0.5 * v[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  2805. dg_dnu4[i][j] *= 2*H[i][j] * sigma[i][j];
  2806. }
  2807. }
  2808. return dg_dnu0 + dg_dnu1 + dg_dnu3 - dg_dnu4;
  2809. };
  2810. Vector<ElemBasis> dg_dnu = compute_dg_dnu();
  2811. auto compute_dg_dsigma = [&S,&normal,&area_elem] () {
  2812. const Long Nnodes = ElemBasis::Size();
  2813. const Long Nelem = S.NElem();
  2814. const auto& B = S.B;
  2815. const Vector<ElemBasis>& dgdB = S.dgdB;
  2816. auto compute_dg_dsigma = [&S,&B,&dgdB,&normal]() { // dg_dsigma = \int 2 B \cdot (\nabla G + n/2)
  2817. Vector<ElemBasis> B_dot_gradG;
  2818. EvalQuadrature(B_dot_gradG, S.quadrature_dUxF, S, dgdB, S.Laplace_dUxF);
  2819. return B_dot_gradG * (-1.0) + compute_dot_prod(dgdB,normal) * 0.5;
  2820. };
  2821. auto compute_dg_dalpha = [&S,&B,&dgdB,&area_elem] () {
  2822. auto dB_dalpha = compute_B(S, Vector<ElemBasis>(),1,0);
  2823. return compute_inner_prod(area_elem, dgdB,dB_dalpha);
  2824. };
  2825. auto compute_dg_dbeta = [&S,&B,&dgdB,&area_elem] () {
  2826. auto dB_dalpha = compute_B(S, Vector<ElemBasis>(),0,1);
  2827. return compute_inner_prod(area_elem, dgdB,dB_dalpha);
  2828. };
  2829. Vector<Real> dg_dsigma(Nelem*Nnodes+S.Nsurf());
  2830. Vector<ElemBasis> dg_dsigma_ = compute_dg_dsigma();
  2831. for (Long i = 0; i < Nelem; i++) {
  2832. for (Long j = 0; j < Nnodes; j++) {
  2833. dg_dsigma[i*Nnodes+j] = dg_dsigma_[i][j];
  2834. }
  2835. }
  2836. if (S.Nsurf() >= 1) dg_dsigma[Nelem*Nnodes+0] = compute_dg_dalpha();
  2837. if (S.Nsurf() >= 2) dg_dsigma[Nelem*Nnodes+1] = compute_dg_dbeta ();
  2838. return dg_dsigma;
  2839. };
  2840. Vector<Real> dg_dsigma = compute_dg_dsigma();
  2841. Vector<Real> dg_dsigma_invA = compute_invAadj(S, dg_dsigma, comm);
  2842. ///////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2843. ///////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2844. auto compute_grad_adj = [&S,&area_elem] (const Vector<ElemBasis>& V) {
  2845. const Long Nelem = S.NElem();
  2846. const Long Nnodes = ElemBasis::Size();
  2847. Vector<ElemBasis> du_dX(Nelem*COORD_DIM*2);
  2848. { // Set du_dX
  2849. Vector<ElemBasis> dX;
  2850. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2851. auto inv2x2 = [](Tensor<Real, true, 2, 2> M) {
  2852. Tensor<Real, true, 2, 2> Mout;
  2853. Real oodet = 1 / (M(0,0) * M(1,1) - M(0,1) * M(1,0));
  2854. Mout(0,0) = M(1,1) * oodet;
  2855. Mout(0,1) = -M(0,1) * oodet;
  2856. Mout(1,0) = -M(1,0) * oodet;
  2857. Mout(1,1) = M(0,0) * oodet;
  2858. return Mout;
  2859. };
  2860. for (Long i = 0; i < Nelem; i++) {
  2861. for (Long j = 0; j < Nnodes; j++) {
  2862. Tensor<Real, true, 3, 2> dX_du;
  2863. dX_du(0,0) = dX[(i*COORD_DIM+0)*2+0][j];
  2864. dX_du(1,0) = dX[(i*COORD_DIM+1)*2+0][j];
  2865. dX_du(2,0) = dX[(i*COORD_DIM+2)*2+0][j];
  2866. dX_du(0,1) = dX[(i*COORD_DIM+0)*2+1][j];
  2867. dX_du(1,1) = dX[(i*COORD_DIM+1)*2+1][j];
  2868. dX_du(2,1) = dX[(i*COORD_DIM+2)*2+1][j];
  2869. Tensor<Real, true, 2, 2> G; // = dX_du.Transpose() * dX_du;
  2870. G(0,0) = dX_du(0,0) * dX_du(0,0) + dX_du(1,0) * dX_du(1,0) + dX_du(2,0) * dX_du(2,0);
  2871. G(0,1) = dX_du(0,0) * dX_du(0,1) + dX_du(1,0) * dX_du(1,1) + dX_du(2,0) * dX_du(2,1);
  2872. G(1,0) = dX_du(0,1) * dX_du(0,0) + dX_du(1,1) * dX_du(1,0) + dX_du(2,1) * dX_du(2,0);
  2873. G(1,1) = dX_du(0,1) * dX_du(0,1) + dX_du(1,1) * dX_du(1,1) + dX_du(2,1) * dX_du(2,1);
  2874. Tensor<Real, true, 2, 2> Ginv = inv2x2(G);
  2875. du_dX[(i*COORD_DIM+0)*2+0][j] = Ginv(0,0) * dX_du(0,0) + Ginv(0,1) * dX_du(0,1);
  2876. du_dX[(i*COORD_DIM+1)*2+0][j] = Ginv(0,0) * dX_du(1,0) + Ginv(0,1) * dX_du(1,1);
  2877. du_dX[(i*COORD_DIM+2)*2+0][j] = Ginv(0,0) * dX_du(2,0) + Ginv(0,1) * dX_du(2,1);
  2878. du_dX[(i*COORD_DIM+0)*2+1][j] = Ginv(1,0) * dX_du(0,0) + Ginv(1,1) * dX_du(0,1);
  2879. du_dX[(i*COORD_DIM+1)*2+1][j] = Ginv(1,0) * dX_du(1,0) + Ginv(1,1) * dX_du(1,1);
  2880. du_dX[(i*COORD_DIM+2)*2+1][j] = Ginv(1,0) * dX_du(2,0) + Ginv(1,1) * dX_du(2,1);
  2881. }
  2882. }
  2883. }
  2884. Vector<ElemBasis> dudX_V(Nelem*2);
  2885. for (Long i = 0; i < Nelem; i++) {
  2886. for (Long j = 0; j < Nnodes; j++) {
  2887. dudX_V[i*2+0][j] = 0;
  2888. dudX_V[i*2+1][j] = 0;
  2889. dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+0)*2+0][j] * V[i*COORD_DIM+0][j] * area_elem[i][j];
  2890. dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+1)*2+0][j] * V[i*COORD_DIM+1][j] * area_elem[i][j];
  2891. dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+2)*2+0][j] * V[i*COORD_DIM+2][j] * area_elem[i][j];
  2892. dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+0)*2+1][j] * V[i*COORD_DIM+0][j] * area_elem[i][j];
  2893. dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+1)*2+1][j] * V[i*COORD_DIM+1][j] * area_elem[i][j];
  2894. dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+2)*2+1][j] * V[i*COORD_DIM+2][j] * area_elem[i][j];
  2895. }
  2896. }
  2897. Vector<ElemBasis> grad_dudX_V;
  2898. ElemBasis::Grad(grad_dudX_V, dudX_V);
  2899. Vector<ElemBasis> grad_adj_V(Nelem);
  2900. for (Long i = 0; i < Nelem; i++) {
  2901. for (Long j = 0; j < Nnodes; j++) {
  2902. grad_adj_V[i][j] = -(grad_dudX_V[(i*2+0)*2+0][j] + grad_dudX_V[(i*2+1)*2+1][j]) / area_elem[i][j];
  2903. }
  2904. }
  2905. return grad_adj_V;
  2906. };
  2907. auto compute_u_dAdnu_v_0 = [&S,&normal,&H,&compute_grad_adj] (const Vector<Real>& u_, const Vector<ElemBasis>& v, Real alpha, Real beta) {
  2908. const Long Nnodes = ElemBasis::Size();
  2909. const Long Nelem = S.NElem();
  2910. Vector<ElemBasis> dAdnu0(Nelem), dAdnu1(Nelem), dAdnu2(Nelem), dAdnu3(Nelem);
  2911. Vector<ElemBasis> u(Nelem), u_n(Nelem*COORD_DIM);
  2912. for (Long i = 0; i < Nelem; i++) {
  2913. for (Long j = 0; j < Nnodes; j++) {
  2914. u[i][j] = u_[i*Nnodes+j];
  2915. u_n[i*COORD_DIM+0][j] = u[i][j] * normal[i*COORD_DIM+0][j];
  2916. u_n[i*COORD_DIM+1][j] = u[i][j] * normal[i*COORD_DIM+1][j];
  2917. u_n[i*COORD_DIM+2][j] = u[i][j] * normal[i*COORD_DIM+2][j];
  2918. }
  2919. }
  2920. // dAdnu0 = u B \cdot grad_nu
  2921. Vector<ElemBasis> B = compute_B(S, v, alpha, beta);
  2922. Vector<ElemBasis> u_B(Nelem*COORD_DIM);
  2923. for (Long i = 0; i < Nelem; i++) {
  2924. for (Long j = 0; j < Nnodes; j++) {
  2925. u_B[i*COORD_DIM+0][j] = u[i][j] * B[i*COORD_DIM+0][j];
  2926. u_B[i*COORD_DIM+1][j] = u[i][j] * B[i*COORD_DIM+1][j];
  2927. u_B[i*COORD_DIM+2][j] = u[i][j] * B[i*COORD_DIM+2][j];
  2928. }
  2929. }
  2930. dAdnu0 = compute_grad_adj(u_B)*(-1.0);
  2931. // dAdnu1 = (u n) \cdot (n \cdnot \nabla) B
  2932. Vector<ElemBasis> dB = compute_dB(S, v, alpha, beta);
  2933. for (Long i = 0; i < Nelem; i++) {
  2934. for (Long j = 0; j < Nnodes; j++) {
  2935. dAdnu1[i][j] = 0;
  2936. dAdnu1[i][j] -= dB[i*9+0][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+0][j];
  2937. dAdnu1[i][j] -= dB[i*9+1][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+1][j];
  2938. dAdnu1[i][j] -= dB[i*9+2][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+2][j];
  2939. dAdnu1[i][j] -= dB[i*9+3][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+0][j];
  2940. dAdnu1[i][j] -= dB[i*9+4][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+1][j];
  2941. dAdnu1[i][j] -= dB[i*9+5][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+2][j];
  2942. dAdnu1[i][j] -= dB[i*9+6][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+0][j];
  2943. dAdnu1[i][j] -= dB[i*9+7][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+1][j];
  2944. dAdnu1[i][j] -= dB[i*9+8][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+2][j];
  2945. }
  2946. }
  2947. // dAdnu2 = (2H) v (I/2 + \nabla G)^T [u n]
  2948. EvalQuadrature(dAdnu2, S.quadrature_dUxF, S, u_n, S.Laplace_dUxF);
  2949. for (Long i = 0; i < Nelem; i++) {
  2950. for (Long j = 0; j < Nnodes; j++) {
  2951. dAdnu2[i][j] += 0.5 * u_n[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  2952. dAdnu2[i][j] += 0.5 * u_n[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  2953. dAdnu2[i][j] += 0.5 * u_n[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  2954. dAdnu2[i][j] *= -2*H[i][j] * v[i][j];
  2955. }
  2956. }
  2957. // dAdnu3 = (v n \cdot \nabla D[u]
  2958. Vector<ElemBasis> nablaDt_u_n;
  2959. EvalQuadrature(nablaDt_u_n, S.quadrature_dUxD, S, u_n, S.Laplace_dUxD);
  2960. for (Long i = 0; i < Nelem; i++) {
  2961. for (Long j = 0; j < Nnodes; j++) {
  2962. dAdnu3[i][j] = 0;
  2963. dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  2964. dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  2965. dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  2966. }
  2967. }
  2968. return dAdnu0 + dAdnu1 + dAdnu2 + dAdnu3;
  2969. };
  2970. auto compute_u_dAdnu_v_1 = [&S,&area_elem,&normal,&H,&compute_grad_adj] (const Vector<ElemBasis>& sigma, Real alpha, Real beta, bool toroidal_flux) {
  2971. const Long Nnodes = ElemBasis::Size();
  2972. const Long Nelem = S.NElem();
  2973. Vector<ElemBasis> B = compute_B(S, sigma, alpha, beta);
  2974. Vector<ElemBasis> gradB = compute_dB(S, sigma, alpha, beta);
  2975. auto compute_v = [&S,&area_elem,&toroidal_flux] (const Vector<ElemBasis>& X) {
  2976. const Long Nelem = S.NElem();
  2977. const Long Nnodes = ElemBasis::Size();
  2978. Real scal[2];
  2979. if (S.Nsurf() == 1) {
  2980. SCTL_ASSERT(toroidal_flux == true);
  2981. scal[0] = 1.0 / S.NTor(0);
  2982. scal[1] = 0;
  2983. } else if (S.Nsurf() == 2) {
  2984. if (toroidal_flux == true) {
  2985. scal[0] = -1.0 / S.NTor(0);
  2986. scal[1] = 1.0 / S.NTor(1);
  2987. } else {
  2988. scal[0] = 1.0 / S.NPol(0);
  2989. scal[1] = -1.0 / S.NPol(1);
  2990. }
  2991. } else {
  2992. SCTL_ASSERT(false);
  2993. }
  2994. Vector<ElemBasis> v(Nelem * COORD_DIM);
  2995. Vector<ElemBasis> dX;
  2996. ElemBasis::Grad(dX, X);
  2997. for (Long k = 0; k < S.Nsurf(); k++) {
  2998. for (Long i_ = 0; i_ < S.NTor(k)*S.NPol(k); i_++) {
  2999. Long i = S.ElemDsp(k) + i_;
  3000. for (Long j = 0; j < Nnodes; j++) {
  3001. Real s = scal[k] / area_elem[i][j];
  3002. v[i*COORD_DIM+0][j] = dX[i*COORD_DIM*2+0+(toroidal_flux?1:0)][j] * s;
  3003. v[i*COORD_DIM+1][j] = dX[i*COORD_DIM*2+2+(toroidal_flux?1:0)][j] * s;
  3004. v[i*COORD_DIM+2][j] = dX[i*COORD_DIM*2+4+(toroidal_flux?1:0)][j] * s;
  3005. }
  3006. }
  3007. }
  3008. return v;
  3009. };
  3010. auto compute_AxB = [&S] (const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  3011. const Long Nelem = S.NElem();
  3012. const Long Nnodes = ElemBasis::Size();
  3013. Vector<ElemBasis> J(Nelem * COORD_DIM);
  3014. for (Long i = 0; i < Nelem; i++) { // Set J
  3015. for (Long j = 0; j < Nnodes; j++) {
  3016. Tensor<Real,true,COORD_DIM> a, b;
  3017. a(0) = A[i*COORD_DIM+0][j];
  3018. a(1) = A[i*COORD_DIM+1][j];
  3019. a(2) = A[i*COORD_DIM+2][j];
  3020. b(0) = B[i*COORD_DIM+0][j];
  3021. b(1) = B[i*COORD_DIM+1][j];
  3022. b(2) = B[i*COORD_DIM+2][j];
  3023. J[i*COORD_DIM+0][j] = a(1) * b(2) - a(2) * b(1);
  3024. J[i*COORD_DIM+1][j] = a(2) * b(0) - a(0) * b(2);
  3025. J[i*COORD_DIM+2][j] = a(0) * b(1) - a(1) * b(0);
  3026. }
  3027. }
  3028. return J;
  3029. };
  3030. auto compute_dphi_dnu0 = [&S,&normal,&compute_AxB,&compute_v,&B,compute_grad_adj] () {
  3031. const Long Nelem = S.NElem();
  3032. const Long Nnodes = ElemBasis::Size();
  3033. Vector<ElemBasis> Gv;
  3034. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3035. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  3036. Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
  3037. return compute_grad_adj(BxGv)*(-1.0);
  3038. };
  3039. auto compute_dphi_dnu1 = [&S,&normal,&H,&compute_AxB,&compute_v,&B] () {
  3040. const Long Nelem = S.NElem();
  3041. const Long Nnodes = ElemBasis::Size();
  3042. Vector<ElemBasis> Gv;
  3043. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3044. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  3045. Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
  3046. Vector<ElemBasis> n_dot_BxGv = compute_dot_prod(normal,BxGv);
  3047. Vector<ElemBasis> dphi_dnu(Nelem);
  3048. for (Long i = 0; i < Nelem; i++) {
  3049. for (Long j = 0; j < Nnodes; j++) {
  3050. dphi_dnu[i][j] = n_dot_BxGv[i][j] * 2*H[i][j];
  3051. }
  3052. }
  3053. return dphi_dnu;
  3054. };
  3055. auto compute_dphi_dnu2 = [&S,&normal,&H,&compute_AxB,&compute_v,&B] () {
  3056. const Long Nelem = S.NElem();
  3057. const Long Nnodes = ElemBasis::Size();
  3058. Vector<ElemBasis> GnxB;
  3059. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3060. EvalQuadrature(GnxB, S.quadrature_FxU, S, nxB, S.Laplace_FxU);
  3061. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3062. Vector<ElemBasis> v_dot_GnxB = compute_dot_prod(v,GnxB);
  3063. Vector<ElemBasis> dphi_dnu(Nelem);
  3064. for (Long i = 0; i < Nelem; i++) {
  3065. for (Long j = 0; j < Nnodes; j++) {
  3066. dphi_dnu[i][j] = v_dot_GnxB[i][j] * 2*H[i][j];
  3067. }
  3068. }
  3069. return dphi_dnu;
  3070. };
  3071. auto compute_dphi_dnu3 = [&S,&normal,&area_elem,&H,&compute_AxB,&compute_v,&B] () {
  3072. const Long Nelem = S.NElem();
  3073. const Long Nnodes = ElemBasis::Size();
  3074. Vector<ElemBasis> GnxB;
  3075. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3076. EvalQuadrature(GnxB, S.quadrature_FxU, S, nxB, S.Laplace_FxU);
  3077. Vector<ElemBasis> dGnxB = compute_v(GnxB);
  3078. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3079. Vector<ElemBasis> dv_dnu1(Nelem), dv_dnu2(Nelem);
  3080. { // Set dv_dnu1, dv_dnu2
  3081. for (Long i = 0; i < Nelem; i++) {
  3082. for (Long j = 0; j < Nnodes; j++) {
  3083. dv_dnu1[i][j] = 0;
  3084. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+0][j] * v[i*COORD_DIM+0][j] * 2 * H[i][j];
  3085. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+1][j] * v[i*COORD_DIM+1][j] * 2 * H[i][j];
  3086. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+2][j] * v[i*COORD_DIM+2][j] * 2 * H[i][j];
  3087. dv_dnu2[i][j] = 0;
  3088. dv_dnu2[i][j] += -dGnxB[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  3089. dv_dnu2[i][j] += -dGnxB[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  3090. dv_dnu2[i][j] += -dGnxB[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  3091. }
  3092. }
  3093. }
  3094. return dv_dnu1 + dv_dnu2;
  3095. };
  3096. auto compute_dphi_dnu4 = [&S,&normal,&compute_AxB,&compute_v,&B] () {
  3097. const Long Nelem = S.NElem();
  3098. const Long Nnodes = ElemBasis::Size();
  3099. Vector<ElemBasis> dGnxB;
  3100. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3101. EvalQuadrature(dGnxB, S.quadrature_FxdU, S, nxB, S.Laplace_FxdU);
  3102. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3103. Vector<ElemBasis> dphi_dnu(Nelem);
  3104. for (Long i = 0; i < Nelem; i++) {
  3105. for (Long j = 0; j < Nnodes; j++) {
  3106. Real dphi_dnu_ = 0;
  3107. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
  3108. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
  3109. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
  3110. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
  3111. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
  3112. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
  3113. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
  3114. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
  3115. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
  3116. dphi_dnu[i][j] = dphi_dnu_;
  3117. }
  3118. }
  3119. return dphi_dnu;
  3120. };
  3121. auto compute_dphi_dnu5 = [&S,&normal,&compute_AxB,&compute_v,&B] () {
  3122. const Long Nelem = S.NElem();
  3123. const Long Nnodes = ElemBasis::Size();
  3124. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3125. Vector<ElemBasis> dGv;
  3126. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3127. EvalQuadrature(dGv, S.quadrature_FxdU, S, v, S.Laplace_FxdU);
  3128. Vector<ElemBasis> dphi_dnu(Nelem);
  3129. for (Long i = 0; i < Nelem; i++) {
  3130. for (Long j = 0; j < Nnodes; j++) {
  3131. Real dphi_dnu_ = 0;
  3132. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+0][j] * nxB[i*COORD_DIM+0][j];
  3133. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+1][j] * nxB[i*COORD_DIM+0][j];
  3134. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+2][j] * nxB[i*COORD_DIM+0][j];
  3135. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+0][j] * nxB[i*COORD_DIM+1][j];
  3136. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+1][j] * nxB[i*COORD_DIM+1][j];
  3137. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+2][j] * nxB[i*COORD_DIM+1][j];
  3138. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+0][j] * nxB[i*COORD_DIM+2][j];
  3139. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+1][j] * nxB[i*COORD_DIM+2][j];
  3140. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+2][j] * nxB[i*COORD_DIM+2][j];
  3141. dphi_dnu[i][j] = dphi_dnu_;
  3142. }
  3143. }
  3144. return dphi_dnu;
  3145. };
  3146. auto compute_dphi_dnu6 = [&S,&normal,&compute_AxB,&compute_v,&gradB] () {
  3147. const Long Nelem = S.NElem();
  3148. const Long Nnodes = ElemBasis::Size();
  3149. Vector<ElemBasis> Gv;
  3150. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3151. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  3152. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3153. Vector<ElemBasis> dphi_dnu(Nelem);
  3154. for (Long i = 0; i < Nelem; i++) {
  3155. for (Long j = 0; j < Nnodes; j++) {
  3156. Real dphi_dnu_ = 0;
  3157. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  3158. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+1][j] * normal[i*COORD_DIM+0][j];
  3159. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+2][j] * normal[i*COORD_DIM+0][j];
  3160. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+0][j] * normal[i*COORD_DIM+1][j];
  3161. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  3162. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+2][j] * normal[i*COORD_DIM+1][j];
  3163. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+0][j] * normal[i*COORD_DIM+2][j];
  3164. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+1][j] * normal[i*COORD_DIM+2][j];
  3165. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  3166. dphi_dnu[i][j] = dphi_dnu_;
  3167. }
  3168. }
  3169. return dphi_dnu;
  3170. };
  3171. auto compute_dphi_dnu7 = [&S,&normal,&H,&compute_AxB,&compute_v,&sigma] () {
  3172. const Long Nelem = S.NElem();
  3173. const Long Nnodes = ElemBasis::Size();
  3174. Vector<ElemBasis> Gv;
  3175. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3176. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  3177. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3178. Vector<ElemBasis> dphi_dnu(Nelem);
  3179. EvalQuadrature(dphi_dnu, S.quadrature_dUxF, S, nxGv, S.Laplace_dUxF);
  3180. for (Long i = 0; i < Nelem; i++) {
  3181. for (Long j = 0; j < Nnodes; j++) {
  3182. dphi_dnu[i][j] *= -2*H[i][j] * sigma[i][j];
  3183. }
  3184. }
  3185. return dphi_dnu;
  3186. };
  3187. auto compute_dphi_dnu8 = [&S,&normal,&H,&compute_AxB,&compute_v,&sigma] () {
  3188. const Long Nelem = S.NElem();
  3189. const Long Nnodes = ElemBasis::Size();
  3190. Vector<ElemBasis> Gv;
  3191. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3192. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  3193. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3194. Vector<ElemBasis> dphi_dnu(Nelem);
  3195. Vector<ElemBasis> nablaDt_nxGv;
  3196. EvalQuadrature(nablaDt_nxGv, S.quadrature_dUxD, S, nxGv, S.Laplace_dUxD);
  3197. for (Long i = 0; i < Nelem; i++) {
  3198. for (Long j = 0; j < Nnodes; j++) {
  3199. dphi_dnu[i][j] = 0;
  3200. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  3201. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  3202. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  3203. }
  3204. }
  3205. return dphi_dnu;
  3206. };
  3207. auto dphi_dnu0 = compute_dphi_dnu0();
  3208. auto dphi_dnu1 = compute_dphi_dnu1();
  3209. auto dphi_dnu2 = compute_dphi_dnu2();
  3210. auto dphi_dnu3 = compute_dphi_dnu3();
  3211. auto dphi_dnu4 = compute_dphi_dnu4();
  3212. auto dphi_dnu5 = compute_dphi_dnu5();
  3213. auto dphi_dnu6 = compute_dphi_dnu6();
  3214. auto dphi_dnu7 = compute_dphi_dnu7();
  3215. auto dphi_dnu8 = compute_dphi_dnu8();
  3216. return (dphi_dnu0+dphi_dnu1+dphi_dnu2+dphi_dnu3+dphi_dnu4+dphi_dnu5+dphi_dnu6+dphi_dnu7+dphi_dnu8);
  3217. };
  3218. { // Set dg_dnu -= dg_dsigma invA dA_dnu sigma
  3219. dg_dnu -= compute_u_dAdnu_v_0(dg_dsigma_invA, sigma, alpha, beta);
  3220. if (S.Nsurf() >= 1) dg_dnu -= compute_u_dAdnu_v_1(sigma, alpha, beta, true) * dg_dsigma_invA[Nelem*Nnodes+0];
  3221. if (S.Nsurf() >= 2) dg_dnu -= compute_u_dAdnu_v_1(sigma, alpha, beta, false) * dg_dsigma_invA[Nelem*Nnodes+1];
  3222. }
  3223. return dg_dnu;
  3224. };
  3225. Vector<ElemBasis> dgdnu;
  3226. { // Set dgdnu
  3227. dgdnu.ReInit(S_.NElem());
  3228. dgdnu = 0;
  3229. for (Long i = 0; i < S_.Nsurf(); i++) {
  3230. const Long elem_dsp = (i==0 ? 0 : S_.ElemDsp(i-1));
  3231. const Long Nnodes = ElemBasis::Size();
  3232. auto dgdnu_ = compute_gradient(Svec[i]);
  3233. if (0) { // Write VTU
  3234. VTUData vtu;
  3235. vtu.AddElems(Svec[i].GetElemList(), dgdnu_, ORDER);
  3236. vtu.WriteVTK("dgdnu-"+std::to_string(i), comm);
  3237. }
  3238. for (Long j = 0; j < (i==0?0:Svec[i].NTor(0)*Svec[i].NPol(0)); j++) {
  3239. for (Long k = 0; k < Nnodes; k++) {
  3240. dgdnu[elem_dsp+j][k] -= dgdnu_[j][k];
  3241. }
  3242. }
  3243. for (Long j = (i==0?0:Svec[i].NTor(0)*Svec[i].NPol(0)); j < dgdnu_.Dim(); j++) {
  3244. for (Long k = 0; k < Nnodes; k++) {
  3245. dgdnu[elem_dsp+j][k] += dgdnu_[j][k];
  3246. }
  3247. }
  3248. }
  3249. }
  3250. return dgdnu;
  3251. }
  3252. static Vector<ElemBasis> compute_pressure_jump(const Stellarator<Real,ORDER>& S_, const Vector<Real>& pressure, const Vector<Real>& flux_tor_, const Vector<Real>& flux_pol_, Real* g_ptr = nullptr) {
  3253. Comm comm = Comm::World();
  3254. Vector<Stellarator<Real,ORDER>> Svec(S_.Nsurf());
  3255. for (Long i = 0; i < S_.Nsurf(); i++) { // Set Svec[i] (quadratures, B)
  3256. const Long elem_dsp = (i==0 ? 0 : S_.ElemDsp(i-1));
  3257. const Long Nnodes = ElemBasis::Size();
  3258. Stellarator<Real,ORDER>& S = Svec[i];
  3259. if (i == 0) { // Init S
  3260. Vector<Long> NtNp;
  3261. NtNp.PushBack(S_.NTor(i));
  3262. NtNp.PushBack(S_.NPol(i));
  3263. S = Stellarator<Real,ORDER>(NtNp);
  3264. } else {
  3265. Vector<Long> NtNp;
  3266. NtNp.PushBack(S_.NTor(i-1));
  3267. NtNp.PushBack(S_.NPol(i-1));
  3268. NtNp.PushBack(S_.NTor(i));
  3269. NtNp.PushBack(S_.NPol(i));
  3270. S = Stellarator<Real,ORDER>(NtNp);
  3271. }
  3272. for (Long j = 0; j < S.NElem(); j++) { // Set S coordinates
  3273. for (Long k = 0; k < Nnodes; k++) {
  3274. S.Elem(j,0)[k] = S_.Elem(elem_dsp+j,0)[k];
  3275. S.Elem(j,1)[k] = S_.Elem(elem_dsp+j,1)[k];
  3276. S.Elem(j,2)[k] = S_.Elem(elem_dsp+j,2)[k];
  3277. }
  3278. }
  3279. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3280. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  3281. SetupQuadrature(S.quadrature_FxdU , S, S.Laplace_FxdU , order_singular, order_direct, -1.0, comm);
  3282. { // Set Bt0, Bp0, dBt0, dBp0
  3283. Vector<ElemBasis> Jt, Jp;
  3284. compute_harmonic_vector_potentials(Jt, Jp, S);
  3285. EvalQuadrature(S.Bt0 , S.quadrature_BS , S, Jp, S.BiotSavart);
  3286. EvalQuadrature(S.Bp0 , S.quadrature_BS , S, Jt, S.BiotSavart);
  3287. }
  3288. compute_invA(S.sigma, S.alpha, S.beta, S, flux_tor_[i], flux_pol_[i], comm);
  3289. S.B = compute_B(S, S.sigma, S.alpha, S.beta);
  3290. }
  3291. if (g_ptr != nullptr) g_ptr[0] = compute_g(Svec, pressure);
  3292. return compute_pressure_jump(Svec, pressure);
  3293. }
  3294. static void test() {
  3295. Comm comm = Comm::World();
  3296. Profile::Enable(true);
  3297. Long Nsurf = 2;
  3298. Stellarator<Real,ORDER> S;
  3299. Vector<Real> flux_tor(Nsurf), flux_pol(Nsurf), pressure(Nsurf);
  3300. { // Init S, flux_tor, flux_pol, pressure
  3301. Vector<Long> NtNp;
  3302. for (Long i = 0; i < Nsurf; i++) {
  3303. NtNp.PushBack(30);
  3304. NtNp.PushBack(4);
  3305. }
  3306. S = Stellarator<Real,ORDER>(NtNp);
  3307. flux_tor = 1;
  3308. flux_pol = 1;
  3309. pressure = 0;
  3310. //flux_tor[0] = 1; //0.791881512;
  3311. //flux_tor[1] = 1;
  3312. //flux_pol[0] = 0;
  3313. //flux_pol[1] = 0;
  3314. //pressure[0] = 0;
  3315. //pressure[1] = 0;
  3316. }
  3317. { // find equilibrium flux surfaces
  3318. auto filter = [](const Stellarator<Real,ORDER>& S, Vector<ElemBasis>& f) {
  3319. auto cheb2grid = [] (const Vector<ElemBasis>& X, Long Mt, Long Mp, Long Nt, Long Np) {
  3320. const Long dof = X.Dim() / (Mt * Mp);
  3321. SCTL_ASSERT(X.Dim() == Mt * Mp *dof);
  3322. Vector<Real> Xf(dof*Nt*Np); Xf = 0;
  3323. const Long Nnodes = ElemBasis::Size();
  3324. const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
  3325. for (Long t = 0; t < Nt; t++) {
  3326. for (Long p = 0; p < Np; p++) {
  3327. Real theta = t / (Real)Nt;
  3328. Real phi = p / (Real)Np;
  3329. Long i = (Long)(theta * Mt);
  3330. Long j = (Long)(phi * Mp);
  3331. Real x = theta * Mt - i;
  3332. Real y = phi * Mp - j;
  3333. Long elem_idx = i * Mp + j;
  3334. Vector<Real> Interp0(ORDER);
  3335. Vector<Real> Interp1(ORDER);
  3336. { // Set Interp0, Interp1
  3337. auto node = [&Mnodes] (Long i) {
  3338. return Mnodes[0][i];
  3339. };
  3340. for (Long i = 0; i < ORDER; i++) {
  3341. Real wt_x = 1, wt_y = 1;
  3342. for (Long j = 0; j < ORDER; j++) {
  3343. if (j != i) {
  3344. wt_x *= (x - node(j)) / (node(i) - node(j));
  3345. wt_y *= (y - node(j)) / (node(i) - node(j));
  3346. }
  3347. Interp0[i] = wt_x;
  3348. Interp1[i] = wt_y;
  3349. }
  3350. }
  3351. }
  3352. for (Long ii = 0; ii < ORDER; ii++) {
  3353. for (Long jj = 0; jj < ORDER; jj++) {
  3354. Long node_idx = jj * ORDER + ii;
  3355. for (Long k = 0; k < dof; k++) {
  3356. Xf[(k*Nt+t)*Np+p] += X[elem_idx*dof+k][node_idx] * Interp0[ii] * Interp1[jj];
  3357. }
  3358. }
  3359. }
  3360. }
  3361. }
  3362. return Xf;
  3363. };
  3364. auto grid2cheb = [] (const Vector<Real>& Xf, Long Nt, Long Np, Long Mt, Long Mp) {
  3365. Long dof = Xf.Dim() / (Nt*Np);
  3366. SCTL_ASSERT(Xf.Dim() == dof*Nt*Np);
  3367. Vector<ElemBasis> X(Mt*Mp*dof);
  3368. constexpr Integer INTERP_ORDER = 12;
  3369. for (Long tt = 0; tt < Mt; tt++) {
  3370. for (Long pp = 0; pp < Mp; pp++) {
  3371. for (Long t = 0; t < ORDER; t++) {
  3372. for (Long p = 0; p < ORDER; p++) {
  3373. Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
  3374. Real theta = (tt + Mnodes[0][t]) / Mt;
  3375. Real phi = (pp + Mnodes[0][p]) / Mp;
  3376. Long i = (Long)(theta * Nt);
  3377. Long j = (Long)(phi * Np);
  3378. Real x = theta * Nt - i;
  3379. Real y = phi * Np - j;
  3380. Vector<Real> Interp0(INTERP_ORDER);
  3381. Vector<Real> Interp1(INTERP_ORDER);
  3382. { // Set Interp0, Interp1
  3383. auto node = [] (Long i) {
  3384. return (Real)i - (INTERP_ORDER-1)/2;
  3385. };
  3386. for (Long i = 0; i < INTERP_ORDER; i++) {
  3387. Real wt_x = 1, wt_y = 1;
  3388. for (Long j = 0; j < INTERP_ORDER; j++) {
  3389. if (j != i) {
  3390. wt_x *= (x - node(j)) / (node(i) - node(j));
  3391. wt_y *= (y - node(j)) / (node(i) - node(j));
  3392. }
  3393. Interp0[i] = wt_x;
  3394. Interp1[i] = wt_y;
  3395. }
  3396. }
  3397. }
  3398. for (Long k = 0; k < dof; k++) {
  3399. Real X0 = 0;
  3400. for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  3401. for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  3402. Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  3403. Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  3404. X0 += Interp0[ii] * Interp1[jj] * Xf[(k*Nt+idx_i)*Np+idx_j];
  3405. }
  3406. }
  3407. Long elem_idx = tt * Mp + pp;
  3408. Long node_idx = p * ORDER + t;
  3409. X[elem_idx*dof+k][node_idx] = X0;
  3410. }
  3411. }
  3412. }
  3413. }
  3414. }
  3415. return X;
  3416. };
  3417. Long dof = f.Dim() / S.NElem();
  3418. SCTL_ASSERT(f.Dim() == S.NElem() * dof);
  3419. for (Long i = 0; i < S.Nsurf(); i++) {
  3420. const Long Mt = S.NTor(i);
  3421. const Long Mp = S.NPol(i);
  3422. const Long Nelem = Mt * Mp;
  3423. const Long offset = S.ElemDsp(i);
  3424. const Long Nt = Mt * ORDER / 5;
  3425. const Long Np = Mp * ORDER / 5;
  3426. Vector<ElemBasis> f_(Nelem*dof, f.begin() + offset*dof, false);
  3427. Vector<Real> f_fourier = cheb2grid(f_, Mt, Mp, Nt, Np);
  3428. f_ = grid2cheb(f_fourier, Nt, Np, Mt, Mp);
  3429. }
  3430. };
  3431. Long iter = 0;
  3432. Real dt = 0.1;
  3433. while (1) { // time-step
  3434. Vector<ElemBasis> dgdnu = compute_gradient(S, pressure, flux_tor, flux_pol)*(-1);
  3435. //Vector<ElemBasis> dgdnu = compute_pressure_jump(S, pressure, flux_tor, flux_pol)*(-1);
  3436. Vector<ElemBasis> dXdt(dgdnu.Dim()*COORD_DIM);
  3437. { // Set dXdt
  3438. dXdt = 0;
  3439. const Long Nnodes = ElemBasis::Size();
  3440. Vector<ElemBasis> normal, area_elem;
  3441. compute_norm_area_elem(S, normal, area_elem);
  3442. for (Long i = 0; i < S.ElemDsp(S.Nsurf()-1); i++) {
  3443. for (Long j = 0; j < Nnodes; j++) {
  3444. dXdt[i*COORD_DIM+0][j] = normal[i*COORD_DIM+0][j] * dgdnu[i][j];
  3445. dXdt[i*COORD_DIM+1][j] = normal[i*COORD_DIM+1][j] * dgdnu[i][j];
  3446. dXdt[i*COORD_DIM+2][j] = normal[i*COORD_DIM+2][j] * dgdnu[i][j];
  3447. }
  3448. }
  3449. filter(S, dXdt);
  3450. }
  3451. { // Update dt
  3452. const Long Nelem = S.NElem();
  3453. Stellarator<Real,ORDER> S0 = S, S1 = S, S2 = S;
  3454. for (Long i = 0; i < S.NElem(); i++) {
  3455. S0.Elem(i, 0) += dXdt[i*COORD_DIM+0] * 0.0 * dt;
  3456. S0.Elem(i, 1) += dXdt[i*COORD_DIM+1] * 0.0 * dt;
  3457. S0.Elem(i, 2) += dXdt[i*COORD_DIM+2] * 0.0 * dt;
  3458. S1.Elem(i, 0) += dXdt[i*COORD_DIM+0] * 0.5 * dt;
  3459. S1.Elem(i, 1) += dXdt[i*COORD_DIM+1] * 0.5 * dt;
  3460. S1.Elem(i, 2) += dXdt[i*COORD_DIM+2] * 0.5 * dt;
  3461. S2.Elem(i, 0) += dXdt[i*COORD_DIM+0] * 1.0 * dt;
  3462. S2.Elem(i, 1) += dXdt[i*COORD_DIM+1] * 1.0 * dt;
  3463. S2.Elem(i, 2) += dXdt[i*COORD_DIM+2] * 1.0 * dt;
  3464. }
  3465. Real g0, g1, g2;
  3466. compute_pressure_jump(S0, pressure, flux_tor, flux_pol, &g0);
  3467. compute_pressure_jump(S1, pressure, flux_tor, flux_pol, &g1);
  3468. compute_pressure_jump(S2, pressure, flux_tor, flux_pol, &g2);
  3469. { // Calculate optimal step size dt
  3470. Real a = 2*g0 - 4*g1 + 2*g2;
  3471. Real b =-3*g0 + 4*g1 - g2;
  3472. Real c = g0;
  3473. Real s = -b/(2*a);
  3474. dt *= s;
  3475. Real g_ = a*s*s + b*s + c;
  3476. std::cout<<"g = "<<g_<<' ';
  3477. std::cout<<g0<<' ';
  3478. std::cout<<g1<<' ';
  3479. std::cout<<g2<<' ';
  3480. std::cout<<dt<<'\n';
  3481. }
  3482. }
  3483. { // Write VTU
  3484. VTUData vtu;
  3485. vtu.AddElems(S.GetElemList(), dgdnu*dt, ORDER);
  3486. vtu.WriteVTK("dgdnu"+std::to_string(iter), comm);
  3487. }
  3488. { // Write VTU
  3489. VTUData vtu;
  3490. vtu.AddElems(S.GetElemList(), dXdt*dt, ORDER);
  3491. vtu.WriteVTK("dXdt"+std::to_string(iter), comm);
  3492. }
  3493. { // Write VTU
  3494. Vector<ElemBasis> pressure_jump = compute_pressure_jump(S, pressure, flux_tor, flux_pol);
  3495. VTUData vtu;
  3496. vtu.AddElems(S.GetElemList(), pressure_jump, ORDER);
  3497. vtu.WriteVTK("pressure_jump"+std::to_string(iter), comm);
  3498. }
  3499. { // Update S <-- filter(S + dXdt * dt)
  3500. const Long Nelem = S.NElem();
  3501. Vector<ElemBasis> X(Nelem*COORD_DIM);
  3502. for (Long i = 0; i < S.NElem(); i++) {
  3503. X[i*COORD_DIM+0] = S.Elem(i, 0) + dXdt[i*COORD_DIM+0] * dt * 0.5;
  3504. X[i*COORD_DIM+1] = S.Elem(i, 1) + dXdt[i*COORD_DIM+1] * dt * 0.5;
  3505. X[i*COORD_DIM+2] = S.Elem(i, 2) + dXdt[i*COORD_DIM+2] * dt * 0.5;
  3506. }
  3507. filter(S, X);
  3508. for (Long i = 0; i < S.NElem(); i++) {
  3509. S.Elem(i, 0) = X[i*COORD_DIM+0];
  3510. S.Elem(i, 1) = X[i*COORD_DIM+1];
  3511. S.Elem(i, 2) = X[i*COORD_DIM+2];
  3512. }
  3513. }
  3514. iter++;
  3515. }
  3516. return;
  3517. }
  3518. { // Verify using finite difference approximation
  3519. Vector<ElemBasis> dgdnu = compute_gradient(S, pressure, flux_tor, flux_pol);
  3520. { // Write VTU
  3521. VTUData vtu;
  3522. vtu.AddElems(S.GetElemList(), dgdnu, ORDER);
  3523. vtu.WriteVTK("dgdnu", comm);
  3524. }
  3525. Real eps = 1e-4;
  3526. const Long Nnodes = ElemBasis::Size();
  3527. Vector<ElemBasis> normal, area_elem;
  3528. compute_norm_area_elem(S, normal, area_elem);
  3529. Vector<ElemBasis> nu = area_elem;
  3530. for (Long i = S.ElemDsp(S.Nsurf()-1); i < S.NElem(); i++) nu[i] = 0;
  3531. Stellarator<Real,ORDER> S0 = S, S1 = S;
  3532. for (Long i = 0; i < S.NElem(); i++) {
  3533. for (Long j = 0; j < Nnodes; j++) {
  3534. S0.Elem(i, 0)[j] -= 0.5 * eps * normal[i*COORD_DIM+0][j] * nu[i][j];
  3535. S0.Elem(i, 1)[j] -= 0.5 * eps * normal[i*COORD_DIM+1][j] * nu[i][j];
  3536. S0.Elem(i, 2)[j] -= 0.5 * eps * normal[i*COORD_DIM+2][j] * nu[i][j];
  3537. S1.Elem(i, 0)[j] += 0.5 * eps * normal[i*COORD_DIM+0][j] * nu[i][j];
  3538. S1.Elem(i, 1)[j] += 0.5 * eps * normal[i*COORD_DIM+1][j] * nu[i][j];
  3539. S1.Elem(i, 2)[j] += 0.5 * eps * normal[i*COORD_DIM+2][j] * nu[i][j];
  3540. }
  3541. }
  3542. Real g0, g1;
  3543. compute_pressure_jump(S0, pressure, flux_tor, flux_pol, &g0);
  3544. compute_pressure_jump(S1, pressure, flux_tor, flux_pol, &g1);
  3545. std::cout<<"g0 = "<<g0<<"; g1 = "<<g1<<"; dgdnu_ = "<<(g1-g0)/eps<<'\n';
  3546. std::cout<<"dgdnu = "<<compute_inner_prod(area_elem, dgdnu, nu)<<'\n';
  3547. }
  3548. }
  3549. static void test_() {
  3550. Comm comm = Comm::World();
  3551. Profile::Enable(true);
  3552. Real flux_tor = 1.0, flux_pol = 1.0;
  3553. Stellarator<Real,ORDER> S;
  3554. { // Init S
  3555. Vector<Long> NtNp;
  3556. NtNp.PushBack(20);
  3557. NtNp.PushBack(4);
  3558. //NtNp.PushBack(20);
  3559. //NtNp.PushBack(4);
  3560. S = Stellarator<Real,ORDER>(NtNp);
  3561. }
  3562. if (S.Nsurf() == 1) flux_pol = 0.0;
  3563. Vector<ElemBasis> pressure;
  3564. { // Set pressure
  3565. Vector<ElemBasis> normal, area_elem;
  3566. compute_norm_area_elem(S, normal, area_elem);
  3567. pressure = area_elem*0;
  3568. }
  3569. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  3570. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3571. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  3572. SetupQuadrature(S.quadrature_FxdU, S, S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  3573. SetupQuadrature(S.quadrature_dUxF, S, S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
  3574. Vector<ElemBasis> Bt0, Bp0;
  3575. { // Set Bt0, Bp0
  3576. Vector<ElemBasis> Jt, Jp;
  3577. compute_harmonic_vector_potentials(Jt, Jp, S);
  3578. EvalQuadrature(Bt0, S.quadrature_BS, S, Jp, S.BiotSavart);
  3579. EvalQuadrature(Bp0, S.quadrature_BS, S, Jt, S.BiotSavart);
  3580. }
  3581. auto compute_B = [&S,&Bt0,&Bp0] (const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  3582. const Long Nelem = S.NElem();
  3583. Vector<ElemBasis> B(S.NElem() * COORD_DIM);
  3584. if (sigma.Dim()) {
  3585. const Long Nnodes = ElemBasis::Size();
  3586. Vector<ElemBasis> normal, area_elem;
  3587. compute_norm_area_elem(S, normal, area_elem);
  3588. EvalQuadrature(B, S.quadrature_FxdU, S, sigma, S.Laplace_FxdU);
  3589. for (Long i = 0; i < Nelem; i++) {
  3590. for (Long j = 0; j < Nnodes; j++) {
  3591. for (Long k = 0; k < COORD_DIM; k++) {
  3592. B[i*COORD_DIM+k][j] -= 0.5*sigma[i][j]*normal[i*COORD_DIM+k][j];
  3593. }
  3594. }
  3595. }
  3596. } else {
  3597. B = 0;
  3598. }
  3599. if (S.Nsurf() >= 1) B += Bt0*alpha;
  3600. if (S.Nsurf() >= 2) B += Bp0*beta;
  3601. return B;
  3602. };
  3603. auto compute_flux = [&S] (Real& flux_tor, Real& flux_pol, const Vector<ElemBasis>& B, const Vector<ElemBasis>& normal) {
  3604. const Long Nelem = S.NElem();
  3605. const Long Nnodes = ElemBasis::Size();
  3606. SCTL_ASSERT(B.Dim() == Nelem*COORD_DIM);
  3607. SCTL_ASSERT(normal.Dim() == Nelem*COORD_DIM);
  3608. Vector<ElemBasis> J(Nelem * COORD_DIM);
  3609. for (Long i = 0; i < Nelem; i++) { // Set J
  3610. for (Long j = 0; j < Nnodes; j++) {
  3611. Tensor<Real,true,COORD_DIM> b, n;
  3612. b(0) = B[i*COORD_DIM+0][j];
  3613. b(1) = B[i*COORD_DIM+1][j];
  3614. b(2) = B[i*COORD_DIM+2][j];
  3615. n(0) = normal[i*COORD_DIM+0][j];
  3616. n(1) = normal[i*COORD_DIM+1][j];
  3617. n(2) = normal[i*COORD_DIM+2][j];
  3618. J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
  3619. J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
  3620. J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
  3621. }
  3622. }
  3623. Vector<ElemBasis> A;
  3624. EvalQuadrature(A, S.quadrature_FxU, S, J, S.Laplace_FxU);
  3625. Vector<Real> circ_pol(S.Nsurf()), circ_tor(S.Nsurf());
  3626. { // compute circ
  3627. Vector<ElemBasis> dX;
  3628. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  3629. const auto& quad_wts = ElemBasis::QuadWts();
  3630. for (Long k = 0; k < S.Nsurf(); k++) {
  3631. circ_pol[k] = 0;
  3632. circ_tor[k] = 0;
  3633. Long Ndsp = S.ElemDsp(k);
  3634. for (Long i = 0; i < S.NTor(k)*S.NPol(k); i++) {
  3635. for (Long j = 0; j < Nnodes; j++) {
  3636. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+1][j] * quad_wts[j] / S.NTor(k);
  3637. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+3][j] * quad_wts[j] / S.NTor(k);
  3638. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+5][j] * quad_wts[j] / S.NTor(k);
  3639. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+0][j] * quad_wts[j] / S.NPol(k);
  3640. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+2][j] * quad_wts[j] / S.NPol(k);
  3641. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+4][j] * quad_wts[j] / S.NPol(k);
  3642. }
  3643. }
  3644. }
  3645. }
  3646. if (S.Nsurf() == 1) {
  3647. flux_tor = circ_pol[0];
  3648. flux_pol = 0;
  3649. } else if (S.Nsurf() == 2) {
  3650. flux_tor = circ_pol[1] - circ_pol[0];
  3651. flux_pol = circ_tor[0] - circ_tor[1];
  3652. } else {
  3653. SCTL_ASSERT(false);
  3654. }
  3655. };
  3656. auto compute_A = [&S,compute_B,&compute_flux] (const Vector<Real>& x) {
  3657. const Long Nelem = S.NElem();
  3658. const Long Nnodes = ElemBasis::Size();
  3659. SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
  3660. Vector<ElemBasis> normal, area_elem;
  3661. compute_norm_area_elem(S, normal, area_elem);
  3662. Vector<ElemBasis> sigma(Nelem);
  3663. for (Long i = 0; i < Nelem; i++) {
  3664. for (Long j = 0; j < Nnodes; j++) {
  3665. sigma[i][j] = x[i*Nnodes+j];
  3666. }
  3667. }
  3668. Real alpha = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
  3669. Real beta = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
  3670. Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
  3671. Vector<ElemBasis> BdotN = compute_dot_prod(B, normal);
  3672. Real flux_tor, flux_pol;
  3673. compute_flux(flux_tor, flux_pol, B, normal);
  3674. Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
  3675. for (Long i = 0; i < Nelem; i++) {
  3676. for (Long j = 0; j < Nnodes; j++) {
  3677. Ax[i*Nnodes+j] = BdotN[i][j];
  3678. }
  3679. }
  3680. if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = flux_tor;
  3681. if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = flux_pol;
  3682. return Ax;
  3683. };
  3684. auto compute_invA = [&S,&comm,&compute_A] (Vector<ElemBasis>& sigma, Real& alpha, Real& beta, Real flux_tor, Real flux_pol) {
  3685. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&compute_A](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  3686. (*Ax) = compute_A(x);
  3687. };
  3688. const Long Nelem = S.NElem();
  3689. const Long Nnodes = ElemBasis::Size();
  3690. Vector<Real> rhs_(Nelem * Nnodes + S.Nsurf());
  3691. rhs_ = 0;
  3692. if (S.Nsurf() >= 1) rhs_[Nelem * Nnodes + 0] = flux_tor;
  3693. if (S.Nsurf() >= 2) rhs_[Nelem * Nnodes + 1] = flux_pol;
  3694. Vector<Real> x_(Nelem * Nnodes + S.Nsurf());
  3695. x_ = 0;
  3696. ParallelSolver<Real> linear_solver(comm, true);
  3697. linear_solver(&x_, BIOp, rhs_, 1e-8, 100);
  3698. sigma.ReInit(Nelem);
  3699. for (Long i = 0; i < Nelem; i++) {
  3700. for (Long j = 0; j < Nnodes; j++) {
  3701. sigma[i][j] = x_[i*Nnodes+j];
  3702. }
  3703. }
  3704. alpha = (S.Nsurf() >= 1 ? x_[Nelem * Nnodes + 0] : 0);
  3705. beta = (S.Nsurf() >= 2 ? x_[Nelem * Nnodes + 1] : 0);
  3706. };
  3707. Vector<ElemBasis> dg_dnu = compute_gradient(S, pressure, flux_tor, flux_pol);
  3708. { // Write VTU
  3709. VTUData vtu;
  3710. vtu.AddElems(S.GetElemList(), dg_dnu, ORDER);
  3711. vtu.WriteVTK("dg_dnu", comm);
  3712. }
  3713. if (1) { // test grad_g
  3714. auto compute_g = [&S,&Bt0,&Bp0,&compute_B,&compute_invA,&comm] (const Vector<ElemBasis>& nu, Real eps, Real flux_tor, Real flux_pol, const Vector<ElemBasis>& pressure) {
  3715. const Long Nelem = S.NElem();
  3716. const Long Nnodes = ElemBasis::Size();
  3717. Vector<ElemBasis> normal, area_elem;
  3718. compute_norm_area_elem(S, normal, area_elem);
  3719. Vector<ElemBasis> X_orig(Nelem*COORD_DIM);
  3720. for (Long i = 0; i < Nelem; i++) {
  3721. for (Long j = 0; j < Nnodes; j++) {
  3722. X_orig[i*COORD_DIM+0][j] = S.Elem(i,0)[j];
  3723. X_orig[i*COORD_DIM+1][j] = S.Elem(i,1)[j];
  3724. X_orig[i*COORD_DIM+2][j] = S.Elem(i,2)[j];
  3725. S.Elem(i,0)[j] += eps*nu[i][j] * normal[i*COORD_DIM+0][j];
  3726. S.Elem(i,1)[j] += eps*nu[i][j] * normal[i*COORD_DIM+1][j];
  3727. S.Elem(i,2)[j] += eps*nu[i][j] * normal[i*COORD_DIM+2][j];
  3728. }
  3729. }
  3730. /////////////////////////////////////////////////////////////////////////////////////////////////////////////
  3731. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3732. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  3733. SetupQuadrature(S.quadrature_FxdU, S, S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  3734. Vector<ElemBasis> Jt, Jp;
  3735. compute_harmonic_vector_potentials(Jt, Jp, S);
  3736. EvalQuadrature(Bt0, S.quadrature_BS, S, Jp, S.BiotSavart);
  3737. EvalQuadrature(Bp0, S.quadrature_BS, S, Jt, S.BiotSavart);
  3738. Real alpha, beta;
  3739. Vector<ElemBasis> sigma;
  3740. compute_invA(sigma, alpha, beta, flux_tor, flux_pol);
  3741. Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
  3742. compute_norm_area_elem(S, normal, area_elem);
  3743. Real g = compute_inner_prod(area_elem, compute_gvec(S,B,pressure), area_elem*0+1);
  3744. /////////////////////////////////////////////////////////////////////////////////////////////////////////////
  3745. for (Long i = 0; i < Nelem; i++) {
  3746. for (Long j = 0; j < Nnodes; j++) {
  3747. S.Elem(i,0)[j] = X_orig[i*COORD_DIM+0][j];
  3748. S.Elem(i,1)[j] = X_orig[i*COORD_DIM+1][j];
  3749. S.Elem(i,2)[j] = X_orig[i*COORD_DIM+2][j];
  3750. }
  3751. }
  3752. return g;
  3753. };
  3754. Vector<ElemBasis> normal, area_elem;
  3755. compute_norm_area_elem(S, normal, area_elem);
  3756. const Long Nelem = S.NElem();
  3757. {
  3758. Vector<ElemBasis> nu(Nelem);
  3759. nu = area_elem;
  3760. Real eps = 1e-4;
  3761. Real g0 = compute_g(nu,-eps, flux_tor, flux_pol, pressure);
  3762. Real g1 = compute_g(nu,eps, flux_tor, flux_pol, pressure);
  3763. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  3764. std::cout<<"dg_dnu = "<<compute_inner_prod(area_elem,nu, dg_dnu)<<'\n';
  3765. }
  3766. {
  3767. Vector<ElemBasis> nu(Nelem);
  3768. nu = 1;
  3769. Real eps = 1e-4;
  3770. Real g0 = compute_g(nu,-eps, flux_tor, flux_pol, pressure);
  3771. Real g1 = compute_g(nu,eps, flux_tor, flux_pol, pressure);
  3772. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  3773. std::cout<<"dg_dnu = "<<compute_inner_prod(area_elem,nu, dg_dnu)<<'\n';
  3774. }
  3775. {
  3776. Vector<ElemBasis> nu(Nelem);
  3777. nu = dg_dnu;
  3778. Real eps = 1e-4;
  3779. Real g0 = compute_g(nu,-eps, flux_tor, flux_pol, pressure);
  3780. Real g1 = compute_g(nu,eps, flux_tor, flux_pol, pressure);
  3781. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  3782. std::cout<<"dg_dnu = "<<compute_inner_prod(area_elem,nu, dg_dnu)<<'\n';
  3783. }
  3784. }
  3785. }
  3786. static void test_askham() {
  3787. Comm comm = Comm::World();
  3788. Profile::Enable(true);
  3789. Real flux_tor = 1.0, flux_pol = 1.0;
  3790. Stellarator<Real,ORDER> S;
  3791. { // Init S
  3792. Vector<Long> NtNp;
  3793. NtNp.PushBack(20);
  3794. NtNp.PushBack(4);
  3795. S = Stellarator<Real,ORDER>(NtNp);
  3796. }
  3797. Vector<ElemBasis> pressure(S.NElem());
  3798. pressure = 0;
  3799. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  3800. if (S.Nsurf() == 1) flux_pol = 0.0;
  3801. SetupQuadrature(S.quadrature_dBS , S, S.BiotSavartGrad, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3802. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3803. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  3804. SetupQuadrature(S.quadrature_FxdU, S, S.Laplace_FxdU , order_singular, order_direct, -1.0, comm);
  3805. SetupQuadrature(S.quadrature_dUxF, S, S.Laplace_dUxF , order_singular, order_direct, -1.0, comm);
  3806. Vector<ElemBasis> Bt0, Bp0;
  3807. Vector<ElemBasis> dBt0, dBp0;
  3808. { // Set Bt0, Bp0
  3809. Vector<ElemBasis> Jt, Jp;
  3810. compute_harmonic_vector_potentials(Jt, Jp, S);
  3811. EvalQuadrature(Bt0, S.quadrature_BS, S, Jp, S.BiotSavart);
  3812. EvalQuadrature(Bp0, S.quadrature_BS, S, Jt, S.BiotSavart);
  3813. EvalQuadrature(dBt0, S.quadrature_dBS, S, Jp, S.BiotSavartGrad);
  3814. EvalQuadrature(dBp0, S.quadrature_dBS, S, Jt, S.BiotSavartGrad);
  3815. }
  3816. auto compute_B = [&S,&Bt0,&Bp0] (const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  3817. const Long Nelem = S.NElem();
  3818. Vector<ElemBasis> B(S.NElem() * COORD_DIM);
  3819. if (sigma.Dim()) {
  3820. const Long Nnodes = ElemBasis::Size();
  3821. Vector<ElemBasis> normal, area_elem;
  3822. compute_norm_area_elem(S, normal, area_elem);
  3823. EvalQuadrature(B, S.quadrature_FxdU, S, sigma, S.Laplace_FxdU);
  3824. for (Long i = 0; i < Nelem; i++) {
  3825. for (Long j = 0; j < Nnodes; j++) {
  3826. for (Long k = 0; k < COORD_DIM; k++) {
  3827. B[i*COORD_DIM+k][j] -= 0.5*sigma[i][j]*normal[i*COORD_DIM+k][j];
  3828. }
  3829. }
  3830. }
  3831. } else {
  3832. B = 0;
  3833. }
  3834. if (S.Nsurf() >= 1) B += Bt0*alpha;
  3835. if (S.Nsurf() >= 2) B += Bp0*beta;
  3836. return B;
  3837. };
  3838. auto compute_dB = [&S,&dBt0,&dBp0] (const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  3839. const Long Nelem = S.NElem();
  3840. Vector<ElemBasis> dB(S.NElem() * COORD_DIM * COORD_DIM);
  3841. if (sigma.Dim()) {
  3842. EvalQuadrature(dB, S.quadrature_Fxd2U, S, sigma, S.Laplace_Fxd2U);
  3843. } else {
  3844. dB = 0;
  3845. }
  3846. if (S.Nsurf() >= 1) dB += dBt0*alpha;
  3847. if (S.Nsurf() >= 2) dB += dBp0*beta;
  3848. return dB;
  3849. };
  3850. auto compute_flux = [&S] (Real& flux_tor, Real& flux_pol, const Vector<ElemBasis>& B, const Vector<ElemBasis>& normal) {
  3851. const Long Nelem = S.NElem();
  3852. const Long Nnodes = ElemBasis::Size();
  3853. SCTL_ASSERT(B.Dim() == Nelem*COORD_DIM);
  3854. SCTL_ASSERT(normal.Dim() == Nelem*COORD_DIM);
  3855. Vector<ElemBasis> J(Nelem * COORD_DIM);
  3856. for (Long i = 0; i < Nelem; i++) { // Set J
  3857. for (Long j = 0; j < Nnodes; j++) {
  3858. Tensor<Real,true,COORD_DIM> b, n;
  3859. b(0) = B[i*COORD_DIM+0][j];
  3860. b(1) = B[i*COORD_DIM+1][j];
  3861. b(2) = B[i*COORD_DIM+2][j];
  3862. n(0) = normal[i*COORD_DIM+0][j];
  3863. n(1) = normal[i*COORD_DIM+1][j];
  3864. n(2) = normal[i*COORD_DIM+2][j];
  3865. J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
  3866. J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
  3867. J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
  3868. }
  3869. }
  3870. Vector<ElemBasis> A;
  3871. EvalQuadrature(A, S.quadrature_FxU, S, J, S.Laplace_FxU);
  3872. Vector<Real> circ_pol(S.Nsurf()), circ_tor(S.Nsurf());
  3873. { // compute circ
  3874. Vector<ElemBasis> dX;
  3875. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  3876. const auto& quad_wts = ElemBasis::QuadWts();
  3877. for (Long k = 0; k < S.Nsurf(); k++) {
  3878. circ_pol[k] = 0;
  3879. circ_tor[k] = 0;
  3880. Long Ndsp = S.ElemDsp(k);
  3881. for (Long i = 0; i < S.NTor(k)*S.NPol(k); i++) {
  3882. for (Long j = 0; j < Nnodes; j++) {
  3883. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+1][j] * quad_wts[j] / S.NTor(k);
  3884. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+3][j] * quad_wts[j] / S.NTor(k);
  3885. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+5][j] * quad_wts[j] / S.NTor(k);
  3886. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+0][j] * quad_wts[j] / S.NPol(k);
  3887. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+2][j] * quad_wts[j] / S.NPol(k);
  3888. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+4][j] * quad_wts[j] / S.NPol(k);
  3889. }
  3890. }
  3891. }
  3892. }
  3893. if (S.Nsurf() == 1) {
  3894. flux_tor = circ_pol[0];
  3895. flux_pol = 0;
  3896. } else if (S.Nsurf() == 2) {
  3897. flux_tor = circ_pol[1] - circ_pol[0];
  3898. flux_pol = circ_tor[0] - circ_tor[1];
  3899. } else {
  3900. SCTL_ASSERT(false);
  3901. }
  3902. };
  3903. auto compute_A = [&S,compute_B,&compute_flux] (const Vector<Real>& x) {
  3904. const Long Nelem = S.NElem();
  3905. const Long Nnodes = ElemBasis::Size();
  3906. SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
  3907. Vector<ElemBasis> normal, area_elem;
  3908. compute_norm_area_elem(S, normal, area_elem);
  3909. Vector<ElemBasis> sigma(Nelem);
  3910. for (Long i = 0; i < Nelem; i++) {
  3911. for (Long j = 0; j < Nnodes; j++) {
  3912. sigma[i][j] = x[i*Nnodes+j];
  3913. }
  3914. }
  3915. Real alpha = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
  3916. Real beta = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
  3917. Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
  3918. Vector<ElemBasis> BdotN = compute_dot_prod(B, normal);
  3919. Real flux_tor, flux_pol;
  3920. compute_flux(flux_tor, flux_pol, B, normal);
  3921. Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
  3922. for (Long i = 0; i < Nelem; i++) {
  3923. for (Long j = 0; j < Nnodes; j++) {
  3924. Ax[i*Nnodes+j] = BdotN[i][j];
  3925. }
  3926. }
  3927. if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = flux_tor;
  3928. if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = flux_pol;
  3929. return Ax;
  3930. };
  3931. auto compute_invA = [&S,&comm,&compute_A] (Vector<ElemBasis>& sigma, Real& alpha, Real& beta, Real flux_tor, Real flux_pol) {
  3932. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&compute_A](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  3933. (*Ax) = compute_A(x);
  3934. };
  3935. const Long Nelem = S.NElem();
  3936. const Long Nnodes = ElemBasis::Size();
  3937. Vector<Real> rhs_(Nelem * Nnodes + S.Nsurf());
  3938. rhs_ = 0;
  3939. if (S.Nsurf() >= 1) rhs_[Nelem * Nnodes + 0] = flux_tor;
  3940. if (S.Nsurf() >= 2) rhs_[Nelem * Nnodes + 1] = flux_pol;
  3941. Vector<Real> x_(Nelem * Nnodes + S.Nsurf());
  3942. x_ = 0;
  3943. ParallelSolver<Real> linear_solver(comm, true);
  3944. linear_solver(&x_, BIOp, rhs_, 1e-8, 100);
  3945. sigma.ReInit(Nelem);
  3946. for (Long i = 0; i < Nelem; i++) {
  3947. for (Long j = 0; j < Nnodes; j++) {
  3948. sigma[i][j] = x_[i*Nnodes+j];
  3949. }
  3950. }
  3951. alpha = (S.Nsurf() >= 1 ? x_[Nelem * Nnodes + 0] : 0);
  3952. beta = (S.Nsurf() >= 2 ? x_[Nelem * Nnodes + 1] : 0);
  3953. };
  3954. auto compute_H = [] (const ElemList<COORD_DIM,ElemBasis>& elem_lst, const Vector<ElemBasis>& normal) {
  3955. const Long Nnodes = ElemBasis::Size();
  3956. const Long Nelem = elem_lst.NElem();
  3957. const Vector<ElemBasis> X = elem_lst.ElemVector();
  3958. Vector<ElemBasis> dX, d2X, H(Nelem);
  3959. ElemBasis::Grad(dX, X);
  3960. ElemBasis::Grad(d2X, dX);
  3961. for (Long i = 0; i < Nelem; i++) {
  3962. for (Long j = 0; j < Nnodes; j++) {
  3963. Tensor<Real,true,2,2> I, invI, II;
  3964. for (Long k0 = 0; k0 < 2; k0++) {
  3965. for (Long k1 = 0; k1 < 2; k1++) {
  3966. I(k0,k1) = 0;
  3967. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3968. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3969. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3970. II(k0,k1) = 0;
  3971. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3972. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3973. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3974. }
  3975. }
  3976. { // Set invI
  3977. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3978. invI(0,0) = I(1,1) / detI;
  3979. invI(0,1) = -I(0,1) / detI;
  3980. invI(1,0) = -I(1,0) / detI;
  3981. invI(1,1) = I(0,0) / detI;
  3982. }
  3983. { // Set H
  3984. H[i][j] = 0;
  3985. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  3986. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  3987. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  3988. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  3989. }
  3990. }
  3991. }
  3992. return H;
  3993. };
  3994. auto compute_grad = [&S,&compute_B,&compute_dB,&compute_invA,&compute_H](Vector<ElemBasis>& pressure, Real flux_tor, Real flux_pol) {
  3995. const Long Nelem = S.NElem();
  3996. const Long Nnodes = ElemBasis::Size();
  3997. Real alpha, beta;
  3998. Vector<ElemBasis> sigma;
  3999. compute_invA(sigma, alpha, beta, flux_tor, flux_pol);
  4000. Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
  4001. Vector<ElemBasis> dB = compute_dB(sigma, alpha, beta);
  4002. Vector<ElemBasis> normal, area_elem;
  4003. compute_norm_area_elem(S, normal, area_elem);
  4004. Vector<ElemBasis> gvec = compute_gvec(S, B, pressure);
  4005. Vector<ElemBasis> dgdB = compute_dgdB(S, B, pressure);
  4006. Vector<ElemBasis> H = compute_H(S.GetElemList(), normal);
  4007. Vector<ElemBasis> dgdnu(Nelem);
  4008. dgdnu = 0;
  4009. for (Long i = 0; i < Nelem; i++) {
  4010. for (Long j = 0; j < Nnodes; j++) {
  4011. Real dgdB_dot_dBdn = 0;
  4012. Real dBdn[COORD_DIM] = {0,0,0};
  4013. for (Long k = 0; k < COORD_DIM; k++) {
  4014. dBdn[0] += dB[(i*COORD_DIM+0)*COORD_DIM+k][j] * normal[i*COORD_DIM+k][j];
  4015. dBdn[1] += dB[(i*COORD_DIM+1)*COORD_DIM+k][j] * normal[i*COORD_DIM+k][j];
  4016. dBdn[2] += dB[(i*COORD_DIM+2)*COORD_DIM+k][j] * normal[i*COORD_DIM+k][j];
  4017. }
  4018. for (Long k = 0; k < COORD_DIM; k++) {
  4019. dgdB_dot_dBdn += dgdB[i*COORD_DIM+k][j] * dBdn[k];
  4020. }
  4021. dgdnu[i][j] = dgdB_dot_dBdn + 2*H[i][j]*gvec[i][j];
  4022. }
  4023. }
  4024. return dgdnu;
  4025. };
  4026. auto dg_dnu0 = compute_gradient(S, pressure, flux_tor, flux_pol);
  4027. auto dg_dnu1 = compute_grad ( pressure, flux_tor, flux_pol);
  4028. { // Write VTU
  4029. VTUData vtu;
  4030. vtu.AddElems(S.GetElemList(), dg_dnu0, ORDER);
  4031. vtu.WriteVTK("dg_dnu0", comm);
  4032. }
  4033. { // Write VTU
  4034. VTUData vtu;
  4035. vtu.AddElems(S.GetElemList(), dg_dnu1, ORDER);
  4036. vtu.WriteVTK("dg_dnu1", comm);
  4037. }
  4038. }
  4039. private:
  4040. static void tmp() {
  4041. //if (0) { // Save data
  4042. // Matrix<Real> M(S.NtNp_[0]*ORDER, S.NtNp_[1]*ORDER);
  4043. // for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
  4044. // for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
  4045. // for (Long t = 0; t < ORDER; t++) {
  4046. // for (Long p = 0; p < ORDER; p++) {
  4047. // Long elem_idx = tt * S.NtNp_[1] + pp;
  4048. // Long node_idx = p * ORDER + t;
  4049. // M[tt*ORDER+t][pp*ORDER+p] = dg_dnu[elem_idx][node_idx];
  4050. // }
  4051. // }
  4052. // }
  4053. // }
  4054. // M.Write("dg_dnu.mat");
  4055. //}
  4056. //if (0) { // filter dg_dnu and write VTU
  4057. // const Long Nelem = S.NElem();
  4058. // const Long Nnodes = ElemBasis::Size();
  4059. // const Integer INTERP_ORDER = 12;
  4060. // Long Nt = S.NtNp_[0]*ORDER/5, Np = S.NtNp_[1]*ORDER/5;
  4061. // Matrix<Real> M(Nt, Np); M = 0;
  4062. // const auto& quad_wts = ElemBasis::QuadWts();
  4063. // const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
  4064. // for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
  4065. // for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
  4066. // for (Long t = 0; t < ORDER; t++) {
  4067. // for (Long p = 0; p < ORDER; p++) {
  4068. // Real theta = (tt + Mnodes[0][t]) / S.NtNp_[0];
  4069. // Real phi = (pp + Mnodes[0][p]) / S.NtNp_[1];
  4070. // Long i = (Long)(theta * Nt);
  4071. // Long j = (Long)(phi * Np);
  4072. // Real x = theta * Nt - i;
  4073. // Real y = phi * Np - j;
  4074. // Long elem_idx = tt * S.NtNp_[1] + pp;
  4075. // Long node_idx = p * ORDER + t;
  4076. // Vector<Real> Interp0(INTERP_ORDER);
  4077. // Vector<Real> Interp1(INTERP_ORDER);
  4078. // { // Set Interp0, Interp1
  4079. // auto node = [] (Long i) {
  4080. // return (Real)i - (INTERP_ORDER-1)/2;
  4081. // };
  4082. // for (Long i = 0; i < INTERP_ORDER; i++) {
  4083. // Real wt_x = 1, wt_y = 1;
  4084. // for (Long j = 0; j < INTERP_ORDER; j++) {
  4085. // if (j != i) {
  4086. // wt_x *= (x - node(j)) / (node(i) - node(j));
  4087. // wt_y *= (y - node(j)) / (node(i) - node(j));
  4088. // }
  4089. // Interp0[i] = wt_x;
  4090. // Interp1[i] = wt_y;
  4091. // }
  4092. // }
  4093. // }
  4094. // for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  4095. // for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  4096. // Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  4097. // Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  4098. // M[idx_i][idx_j] += dg_dnu[elem_idx][node_idx] * quad_wts[node_idx] * Interp0[ii] * Interp1[jj] / (S.NtNp_[0] * S.NtNp_[1]) * (Nt * Np);
  4099. // }
  4100. // }
  4101. // }
  4102. // }
  4103. // }
  4104. // }
  4105. // Vector<ElemBasis> f(Nelem);
  4106. // for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
  4107. // for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
  4108. // for (Long t = 0; t < ORDER; t++) {
  4109. // for (Long p = 0; p < ORDER; p++) {
  4110. // Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
  4111. // Real theta = (tt + Mnodes[0][t]) / S.NtNp_[0];
  4112. // Real phi = (pp + Mnodes[0][p]) / S.NtNp_[1];
  4113. // Long i = (Long)(theta * Nt);
  4114. // Long j = (Long)(phi * Np);
  4115. // Real x = theta * Nt - i;
  4116. // Real y = phi * Np - j;
  4117. // Vector<Real> Interp0(INTERP_ORDER);
  4118. // Vector<Real> Interp1(INTERP_ORDER);
  4119. // { // Set Interp0, Interp1
  4120. // auto node = [] (Long i) {
  4121. // return (Real)i - (INTERP_ORDER-1)/2;
  4122. // };
  4123. // for (Long i = 0; i < INTERP_ORDER; i++) {
  4124. // Real wt_x = 1, wt_y = 1;
  4125. // for (Long j = 0; j < INTERP_ORDER; j++) {
  4126. // if (j != i) {
  4127. // wt_x *= (x - node(j)) / (node(i) - node(j));
  4128. // wt_y *= (y - node(j)) / (node(i) - node(j));
  4129. // }
  4130. // Interp0[i] = wt_x;
  4131. // Interp1[i] = wt_y;
  4132. // }
  4133. // }
  4134. // }
  4135. // Real f0 = 0;
  4136. // for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  4137. // for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  4138. // Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  4139. // Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  4140. // f0 += Interp0[ii] * Interp1[jj] * M[idx_i][idx_j];
  4141. // }
  4142. // }
  4143. // Long elem_idx = tt * S.NtNp_[1] + pp;
  4144. // Long node_idx = p * ORDER + t;
  4145. // f[elem_idx][node_idx] = f0;
  4146. // }
  4147. // }
  4148. // }
  4149. // }
  4150. // { // Write VTU
  4151. // VTUData vtu;
  4152. // vtu.AddElems(S.GetElemList(), f, ORDER);
  4153. // vtu.WriteVTK("dg_dnu_filtered", comm);
  4154. // }
  4155. // dg_dnu = f;
  4156. //}
  4157. }
  4158. static void FlipNormal(Vector<ElemBasis>& v) {
  4159. for (Long i = 0; i < v.Dim(); i++) {
  4160. const auto elem = v[i];
  4161. for (Long j0 = 0; j0 < ORDER; j0++) {
  4162. for (Long j1 = 0; j1 < ORDER; j1++) {
  4163. v[i][j0*ORDER+j1] = elem[j0*ORDER+(ORDER-j1-1)];
  4164. }
  4165. }
  4166. }
  4167. }
  4168. template <class Kernel> static void SetupQuadrature(Quadrature<Real>& quadrature, const Stellarator<Real,ORDER>& S, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm, Real Rqbx = 0) {
  4169. if (S.Nsurf() == 2) {
  4170. Long Nelem0 = S.NTor(0)*S.NPol(0);
  4171. ElemList<COORD_DIM, ElemBasis> elem_lst = S.GetElemList();
  4172. { // Update elem_lst
  4173. Vector<ElemBasis> X = elem_lst.ElemVector();
  4174. Vector<ElemBasis> X0(Nelem0*COORD_DIM, X.begin(), false);
  4175. FlipNormal(X0);
  4176. elem_lst.ReInit(X);
  4177. }
  4178. quadrature.template Setup<ElemBasis, ElemBasis>(elem_lst, kernel, order_singular, order_direct, period_length, comm, Rqbx);
  4179. } else {
  4180. quadrature.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), kernel, order_singular, order_direct, period_length, comm, Rqbx);
  4181. }
  4182. }
  4183. template <class Kernel> static void EvalQuadrature(Vector<ElemBasis>& potential, const Quadrature<Real>& quadrature, const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& density, const Kernel& kernel) {
  4184. if (S.Nsurf() == 2) {
  4185. Long Nelem0 = S.NTor(0)*S.NPol(0);
  4186. Vector<ElemBasis> potential_, density_ = density;
  4187. ElemList<COORD_DIM, ElemBasis> elem_lst = S.GetElemList();
  4188. { // Update elem_lst
  4189. Vector<ElemBasis> X = elem_lst.ElemVector();
  4190. Vector<ElemBasis> X0(Nelem0*COORD_DIM, X.begin(), false);
  4191. FlipNormal(X0);
  4192. elem_lst.ReInit(X);
  4193. }
  4194. { // Update density_
  4195. Long dof = density_.Dim() / S.NElem();
  4196. Vector<ElemBasis> density0(Nelem0*dof, density_.begin(), false);
  4197. FlipNormal(density0);
  4198. }
  4199. quadrature.Eval(potential_, elem_lst, density_, kernel);
  4200. { // Update potential_
  4201. Long dof = potential_.Dim() / S.NElem();
  4202. Vector<ElemBasis> potential0(Nelem0*dof, potential_.begin(), false);
  4203. FlipNormal(potential0);
  4204. }
  4205. potential = potential_;
  4206. } else {
  4207. quadrature.Eval(potential, S.GetElemList(), density, kernel);
  4208. }
  4209. }
  4210. void InitSurf(Long l, Long Nsurf) {
  4211. const auto& nodes = ElemBasis::Nodes();
  4212. const Long Nt = NTor(l);
  4213. const Long Np = NPol(l);
  4214. for (Long i = 0; i < Nt; i++) {
  4215. for (Long j = 0; j < Np; j++) {
  4216. for (Long k = 0; k < ElemBasis::Size(); k++) {
  4217. Real theta = (i + nodes[0][k]) * 2*const_pi<Real>()/Nt;
  4218. Real phi = (j + nodes[1][k]) * 2*const_pi<Real>()/Np;
  4219. Real X,Y,Z;
  4220. SurfGeom(X,Y,Z,theta,phi, (2.0+l)/(1.0+Nsurf));
  4221. Elem(ElemIdx(l,i,j),0)[k] = X;
  4222. Elem(ElemIdx(l,i,j),1)[k] = Y;
  4223. Elem(ElemIdx(l,i,j),2)[k] = Z;
  4224. }
  4225. }
  4226. }
  4227. }
  4228. static void SurfGeom(Real& X, Real& Y, Real& Z, Real theta, Real phi, Real s) {
  4229. sctl::Integer Nperiod = 5;
  4230. #if 0
  4231. Real Aspect_ratio = 10.27932548522949;
  4232. Real coeffmat[21][21] = { 0.00000478813217, 0.00000000000000, 0.00000351611652, 0.00000135354389, 0.00000061357832, 0.00000220091101, 0.00000423862912, -0.00003000058678, 0.00000064187111, -0.00024228452821, 0.00003116775770, 0.00000176210710, 0.00000289141326, -0.00000150300525, 0.00000772853855, 0.00000098855242, 0.00000316606793, 0.00000002168364, 0.00000212047939, 0.00000299016097, 0.00000443224508,
  4233. 0.00000028202930, 0.00000000000000, -0.00000249222421, -0.00000203136278, 0.00000131104809, 0.00000011987446, -0.00000370760154, 0.00004553918916, -0.00007711342914, -0.00004685295062, 0.00011049838213, -0.00000197486270, 0.00000395827146, 0.00000615046474, 0.00000755337123, 0.00000700606006, 0.00000922725030, -0.00000043310337, 0.00000107416383, 0.00000449787694, 0.00000305137178,
  4234. 0.00001226376662, 0.00000000000000, 0.00000270820692, 0.00000208059305, 0.00000521478523, 0.00001779037302, 0.00000846544117, 0.00001120913385, -0.00065816845745, -0.00085107452469, -0.00013171190221, -0.00005540943675, -0.00001835885450, 0.00000101879823, 0.00000209222071, 0.00000091532502, -0.00000521515358, -0.00000209227142, -0.00000678545939, -0.00000034963549, -0.00000015111488,
  4235. 0.00001560274177, 0.00000000000000, 0.00000350691471, -0.00001160475040, -0.00001763036562, 0.00003487367940, -0.00002787247831, -0.00000910982726, 0.00008818832430, -0.00524408789352, 0.00009378376126, 0.00004184526188, 0.00002849263365, -0.00002757280527, 0.00003388467667, 0.00000706207265, 0.00000625263419, -0.00003315929280, -0.00001181772132, 0.00000311426015, 0.00001875682574,
  4236. -0.00000398287420, 0.00000000000000, -0.00001524541040, 0.00001724056165, 0.00002245173346, 0.00002806861812, -0.00000388776925, 0.00008143573359, -0.00005900909309, 0.00110496615525, 0.00134626252111, 0.00005128383054, -0.00001372421866, 0.00003612563887, 0.00002236580076, -0.00002728391883, 0.00001981237256, 0.00000655450458, 0.00000985319002, 0.00001347597299, 0.00000645987802,
  4237. 0.00003304968050, 0.00000000000000, -0.00000530822217, 0.00001324870937, -0.00003610889689, -0.00005478735329, -0.00005818806312, -0.00037112057908, -0.00017812002625, -0.00093204283621, 0.00115969858598, -0.00033559172880, -0.00010441876657, -0.00001617923044, -0.00000555065844, 0.00007343527250, -0.00004408047607, 0.00000403802142, 0.00001843931204, 0.00001694047933, 0.00001213414362,
  4238. -0.00000751115658, 0.00000000000000, 0.00005457974839, -0.00000334614515, 0.00005845565465, 0.00015000770509, 0.00021849104087, 0.00002724147635, 0.00167233624961, 0.00011666602222, 0.00276563479565, -0.00085952825611, -0.00030217235326, -0.00008841593808, 0.00000997664119, -0.00015285826521, 0.00002517224675, 0.00003009161810, 0.00001883217556, 0.00002146127554, 0.00001822445302,
  4239. -0.00004128706860, 0.00000000000000, -0.00003496417776, 0.00001088761655, -0.00000298955979, -0.00005359326315, -0.00019021633489, -0.00017992728681, -0.00347794801928, 0.00064632791327, 0.00449698418379, -0.00017710507382, 0.00006126180233, 0.00018059254216, 0.00002354096432, 0.00008189838991, -0.00010060678323, -0.00017183290038, 0.00019413756672, 0.00021334811754, 0.00011263617489,
  4240. 0.00000853522670, -0.00000000000000, -0.00006544789358, 0.00005424076880, -0.00000679056529, -0.00001249735487, -0.00053082982777, 0.00035396864405, -0.00115020677913, 0.05894451215863, 0.06573092192411, 0.01498018857092, 0.00278125284240, 0.00145188067108, 0.00033717858605, 0.00000800427370, -0.00009335305367, 0.00024286781263, -0.00023916347709, 0.00031213948387, 0.00018134393031,
  4241. -0.00002521496390, -0.00000000000000, -0.00054337945767, 0.00012690725271, 0.00053313979879, 0.00064233405283, -0.00047686311882, 0.00176536326762, 0.00074157933705, -0.02684566564858, 1.00000000000000, 0.07176169008017, 0.00837037432939, -0.00000381640211, 0.00088998704450, -0.00049218931235, -0.00024546548957, -0.00036608282244, 0.00049480766756, 0.00031158892671, 0.00006898906577,
  4242. 0.00021280418150, 0.00028127161204, -0.00070030166535, 0.00022237010126, -0.00028713891516, -0.00013800295710, 0.00005912094275, 0.00172126013786, -0.00618684850633, 0.03608432412148, Aspect_ratio , 0.49896776676178, 0.00091372377938, -0.00085712829605, -0.00124801427592, -0.00007427225501, -0.00005245858847, 0.00002841771493, 0.00020249813679, -0.00014303345233, 0.00001406490901,
  4243. 0.00023699452868, 0.00008661757602, 0.00025744654704, -0.00022715188970, -0.00076146807987, 0.00055185536621, -0.00012325309217, -0.00072356045712, -0.00160693109501, 0.00246682553552, -0.14175094664097, -0.36207047104836, -0.04089594259858, 0.00060774467420, 0.00088646943914, 0.00004865296432, -0.00041878610500, -0.00023025234987, -0.00009676301852, -0.00000000000000, 0.00008409228758,
  4244. 0.00011432896281, -0.00000707848403, 0.00004698805787, -0.00043642931269, 0.00081384339137, -0.00065635429928, -0.00011831733718, 0.00017413357273, 0.00224463525228, 0.00478497287259, 0.03294761106372, 0.01078986655921, 0.10731782764196, 0.00075034319889, -0.00009241879889, 0.00055023463210, 0.00006596000458, 0.00005045382932, 0.00014874986664, 0.00000000000000, -0.00015369028552,
  4245. 0.00001037383754, 0.00009250180301, 0.00026204055757, 0.00007424291834, -0.00047751804232, 0.00029184055165, 0.00050921301590, -0.00004825839278, -0.00029933769838, 0.00279659987427, 0.00210463814437, -0.00618590926751, -0.02400829829276, -0.02316811867058, -0.00086368201301, -0.00032258985448, -0.00018304496189, 0.00008438774967, -0.00008305341908, 0.00000000000000, 0.00013047417451,
  4246. -0.00001376930322, -0.00001723831701, -0.00011543079017, -0.00022646733851, 0.00013467084500, -0.00004661652201, -0.00008419520600, 0.00035772417323, -0.00011815709877, 0.00028718306567, 0.00092207465786, -0.00317224999890, 0.00061770365573, 0.01017294172198, 0.00294739892706, 0.00014669894881, 0.00015702951350, 0.00003432080121, -0.00008555022214, -0.00000000000000, 0.00000454909878,
  4247. -0.00000196001542, -0.00003198397462, -0.00004425687075, -0.00004129848094, -0.00003789070615, -0.00027583551127, 0.00025874207495, -0.00002334945384, -0.00007259396807, -0.00008295358566, 0.00011360697681, -0.00101968157105, 0.00046784928418, -0.00208410434425, -0.00313158822246, -0.00046005158219, -0.00010552268213, -0.00005850767775, 0.00003971093611, 0.00000000000000, -0.00005275657168,
  4248. -0.00001065901233, -0.00001934838656, -0.00001220186732, -0.00002060524639, -0.00000225423423, -0.00001894621164, -0.00001533334580, -0.00001791087379, 0.00008156246622, -0.00008441298269, 0.00021060956351, -0.00030303673702, 0.00075949780876, -0.00010539998038, 0.00109045265708, 0.00068949378328, 0.00009268362192, 0.00003471063246, 0.00001204656473, -0.00000000000000, 0.00001500743110,
  4249. 0.00000105878155, -0.00000910870767, -0.00000172467264, -0.00000722095228, 0.00000699280463, -0.00002061720625, -0.00000889817693, -0.00001993474507, 0.00000370749740, -0.00000090311920, 0.00002677819793, 0.00043428712524, 0.00210293265991, 0.00018200518389, -0.00009621794743, -0.00035250501242, -0.00012996385340, -0.00002185157609, -0.00001116586463, -0.00000000000000, -0.00000451994811,
  4250. 0.00000424055270, -0.00000463139304, 0.00000301006116, -0.00000123974939, 0.00000632465435, -0.00002090823000, 0.00001773388794, 0.00000121050368, 0.00001886057362, -0.00001043497195, -0.00002269273500, -0.00021979617304, -0.00001043962493, -0.00116343051195, -0.00004193381756, 0.00007944958634, 0.00007301353617, 0.00002082651736, -0.00000119863023, -0.00000000000000, -0.00001440504820,
  4251. -0.00000391270805, -0.00000490489265, -0.00000504441778, -0.00000904507579, -0.00000111389932, 0.00000597532107, 0.00000047090245, -0.00001553130096, -0.00001524566323, -0.00000522222899, -0.00007707672921, -0.00004165665086, 0.00015764687851, 0.00035649110214, 0.00038701237645, 0.00002386798405, -0.00001946414341, -0.00000913835174, -0.00000489907188, 0.00000000000000, 0.00000172327657,
  4252. -0.00000015388650, -0.00000603232729, -0.00000397650865, 0.00000280493782, 0.00000463132073, -0.00000788678426, -0.00000471605335, -0.00000283715985, -0.00000422824724, 0.00000366817630, -0.00001159603562, -0.00001625759251, 0.00049116823357, 0.00005048640014, -0.00020234247495, -0.00006341376866, -0.00000807822744, 0.00000070463199, 0.00000014041755, 0.00000000000000, -0.00000718306910};
  4253. #else
  4254. Real Aspect_ratio = 5;
  4255. Real coeffmat[21][21] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4256. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4257. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4258. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4259. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4260. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4261. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4262. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4263. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4264. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, s, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4265. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Aspect_ratio, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4266. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2*s, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4267. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4268. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4269. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4270. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4271. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4272. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4273. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4274. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4275. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0};
  4276. #endif
  4277. Z = 0;
  4278. Real R = 0;
  4279. for (long i = -10; i <= 10; i++) {
  4280. for (long j = -10; j <= 10; j++) {
  4281. R += coeffmat[i+10][j+10] * sctl::cos(-i*phi + Nperiod*j*theta);
  4282. Z += coeffmat[i+10][j+10] * sctl::sin(-i*phi + Nperiod*j*theta);
  4283. }
  4284. }
  4285. X = R * sctl::cos(theta);
  4286. Y = R * sctl::sin(theta);
  4287. }
  4288. GenericKernel<BiotSavart3D> BiotSavart ;
  4289. GenericKernel<BiotSavartGrad3D> BiotSavartGrad;
  4290. GenericKernel<Laplace3D_FxU > Laplace_FxU ;
  4291. GenericKernel<Laplace3D_FxdU> Laplace_FxdU;
  4292. GenericKernel<Laplace3D_dUxF> Laplace_dUxF;
  4293. GenericKernel<Laplace3D_dUxD> Laplace_dUxD;
  4294. GenericKernel<Laplace3D_Fxd2U> Laplace_Fxd2U;
  4295. mutable Quadrature<Real> quadrature_BS ;
  4296. mutable Quadrature<Real> quadrature_dBS ;
  4297. mutable Quadrature<Real> quadrature_FxU ;
  4298. mutable Quadrature<Real> quadrature_FxdU;
  4299. mutable Quadrature<Real> quadrature_dUxF;
  4300. mutable Quadrature<Real> quadrature_dUxD;
  4301. mutable Quadrature<Real> quadrature_Fxd2U;
  4302. mutable Vector<ElemBasis> Bt0, Bp0, dBt0, dBp0;
  4303. mutable Vector<ElemBasis> sigma, B, gvec, dgdB;
  4304. mutable Real alpha, beta;
  4305. ElemLst elements;
  4306. Vector<Long> NtNp_;
  4307. Vector<Long> elem_dsp;
  4308. };
  4309. template <class Real, Integer ORDER=10> class MHDEquilib {
  4310. static constexpr Integer COORD_DIM = 3;
  4311. static constexpr Integer ELEM_DIM = COORD_DIM-1;
  4312. using ElemBasis = Basis<Real, ELEM_DIM, ORDER>;
  4313. public:
  4314. MHDEquilib(const Stellarator<Real,ORDER>& S, const Vector<Real>& pressure, const Vector<Real>& flux_tor, const Vector<Real>& flux_pol) {
  4315. S_ = S;
  4316. pressure_ = pressure;
  4317. flux_tor_ = flux_tor;
  4318. flux_pol_ = flux_pol;
  4319. iter = 0;
  4320. }
  4321. Real operator()(const Eigen::VectorXd& x, Eigen::VectorXd& grad) {
  4322. const Comm comm = Comm::World();
  4323. const Long Nelem = S_.NElem();
  4324. const Long Nnodes = ElemBasis::Size();
  4325. const Long N = Nelem * COORD_DIM * Nnodes;
  4326. SCTL_ASSERT(x.rows() == N);
  4327. auto filter = [](const Stellarator<Real,ORDER>& S, const Comm& comm, Vector<ElemBasis>& f, Real sigma) {
  4328. auto cheb2grid = [] (const Vector<ElemBasis>& X, Long Mt, Long Mp, Long Nt, Long Np) {
  4329. const Long dof = X.Dim() / (Mt * Mp);
  4330. SCTL_ASSERT(X.Dim() == Mt * Mp *dof);
  4331. Vector<Real> Xf(dof*Nt*Np); Xf = 0;
  4332. const Long Nnodes = ElemBasis::Size();
  4333. const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
  4334. for (Long t = 0; t < Nt; t++) {
  4335. for (Long p = 0; p < Np; p++) {
  4336. Real theta = t / (Real)Nt;
  4337. Real phi = p / (Real)Np;
  4338. Long i = (Long)(theta * Mt);
  4339. Long j = (Long)(phi * Mp);
  4340. Real x = theta * Mt - i;
  4341. Real y = phi * Mp - j;
  4342. Long elem_idx = i * Mp + j;
  4343. Vector<Real> Interp0(ORDER);
  4344. Vector<Real> Interp1(ORDER);
  4345. { // Set Interp0, Interp1
  4346. auto node = [&Mnodes] (Long i) {
  4347. return Mnodes[0][i];
  4348. };
  4349. for (Long i = 0; i < ORDER; i++) {
  4350. Real wt_x = 1, wt_y = 1;
  4351. for (Long j = 0; j < ORDER; j++) {
  4352. if (j != i) {
  4353. wt_x *= (x - node(j)) / (node(i) - node(j));
  4354. wt_y *= (y - node(j)) / (node(i) - node(j));
  4355. }
  4356. Interp0[i] = wt_x;
  4357. Interp1[i] = wt_y;
  4358. }
  4359. }
  4360. }
  4361. for (Long ii = 0; ii < ORDER; ii++) {
  4362. for (Long jj = 0; jj < ORDER; jj++) {
  4363. Long node_idx = jj * ORDER + ii;
  4364. for (Long k = 0; k < dof; k++) {
  4365. Xf[(k*Nt+t)*Np+p] += X[elem_idx*dof+k][node_idx] * Interp0[ii] * Interp1[jj];
  4366. }
  4367. }
  4368. }
  4369. }
  4370. }
  4371. return Xf;
  4372. };
  4373. auto grid2cheb = [] (const Vector<Real>& Xf, Long Nt, Long Np, Long Mt, Long Mp) {
  4374. Long dof = Xf.Dim() / (Nt*Np);
  4375. SCTL_ASSERT(Xf.Dim() == dof*Nt*Np);
  4376. Vector<ElemBasis> X(Mt*Mp*dof);
  4377. constexpr Integer INTERP_ORDER = 12;
  4378. for (Long tt = 0; tt < Mt; tt++) {
  4379. for (Long pp = 0; pp < Mp; pp++) {
  4380. for (Long t = 0; t < ORDER; t++) {
  4381. for (Long p = 0; p < ORDER; p++) {
  4382. Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
  4383. Real theta = (tt + Mnodes[0][t]) / Mt;
  4384. Real phi = (pp + Mnodes[0][p]) / Mp;
  4385. Long i = (Long)(theta * Nt);
  4386. Long j = (Long)(phi * Np);
  4387. Real x = theta * Nt - i;
  4388. Real y = phi * Np - j;
  4389. Vector<Real> Interp0(INTERP_ORDER);
  4390. Vector<Real> Interp1(INTERP_ORDER);
  4391. { // Set Interp0, Interp1
  4392. auto node = [] (Long i) {
  4393. return (Real)i - (INTERP_ORDER-1)/2;
  4394. };
  4395. for (Long i = 0; i < INTERP_ORDER; i++) {
  4396. Real wt_x = 1, wt_y = 1;
  4397. for (Long j = 0; j < INTERP_ORDER; j++) {
  4398. if (j != i) {
  4399. wt_x *= (x - node(j)) / (node(i) - node(j));
  4400. wt_y *= (y - node(j)) / (node(i) - node(j));
  4401. }
  4402. Interp0[i] = wt_x;
  4403. Interp1[i] = wt_y;
  4404. }
  4405. }
  4406. }
  4407. for (Long k = 0; k < dof; k++) {
  4408. Real X0 = 0;
  4409. for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  4410. for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  4411. Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  4412. Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  4413. X0 += Interp0[ii] * Interp1[jj] * Xf[(k*Nt+idx_i)*Np+idx_j];
  4414. }
  4415. }
  4416. Long elem_idx = tt * Mp + pp;
  4417. Long node_idx = p * ORDER + t;
  4418. X[elem_idx*dof+k][node_idx] = X0;
  4419. }
  4420. }
  4421. }
  4422. }
  4423. }
  4424. return X;
  4425. };
  4426. auto fourier_filter = [](sctl::Vector<Real>& X, long Nt_, long Np_, Real sigma, const Comm& comm) {
  4427. long dof = X.Dim() / (Nt_ * Np_);
  4428. SCTL_ASSERT(X.Dim() == dof * Nt_ * Np_);
  4429. sctl::FFT<Real> fft_r2c, fft_c2r;
  4430. sctl::StaticArray<sctl::Long, 2> fft_dim = {Nt_, Np_};
  4431. fft_r2c.Setup(sctl::FFT_Type::R2C, 1, sctl::Vector<sctl::Long>(2, fft_dim, false), omp_get_max_threads());
  4432. fft_c2r.Setup(sctl::FFT_Type::C2R, 1, sctl::Vector<sctl::Long>(2, fft_dim, false), omp_get_max_threads());
  4433. long Nt = Nt_;
  4434. long Np = fft_r2c.Dim(1) / (Nt * 2);
  4435. SCTL_ASSERT(fft_r2c.Dim(1) == Nt * Np * 2);
  4436. //auto filter_fn = [](Real x2, Real sigma) {return exp(-x2/(2*sigma*sigma));};
  4437. auto filter_fn = [](Real x2, Real sigma) {return (x2<sigma*sigma?1.0:0.0);};
  4438. sctl::Vector<Real> normal, gradX;
  4439. biest::SurfaceOp<Real> op(comm, Nt_, Np_);
  4440. sctl::Vector<Real> coeff(fft_r2c.Dim(1));
  4441. for (long k = 0; k < dof; k++) {
  4442. sctl::Vector<Real> X_(Nt_*Np_, X.begin() + k*Nt_*Np_, false);
  4443. fft_r2c.Execute(X_, coeff);
  4444. for (long t = 0; t < Nt; t++) {
  4445. for (long p = 0; p < Np; p++) {
  4446. Real tt = (t - (t > Nt / 2 ? Nt : 0)) / (Real)(Nt / 2);
  4447. Real pp = p / (Real)Np;
  4448. Real f = filter_fn(tt*tt+pp*pp, sigma);
  4449. coeff[(t * Np + p) * 2 + 0] *= f;
  4450. coeff[(t * Np + p) * 2 + 1] *= f;
  4451. }
  4452. }
  4453. fft_c2r.Execute(coeff, X_);
  4454. }
  4455. };
  4456. Long dof = f.Dim() / S.NElem();
  4457. SCTL_ASSERT(f.Dim() == S.NElem() * dof);
  4458. for (Long i = 0; i < S.Nsurf(); i++) {
  4459. const Long Mt = S.NTor(i);
  4460. const Long Mp = S.NPol(i);
  4461. const Long Nelem = Mt * Mp;
  4462. const Long offset = S.ElemDsp(i);
  4463. const Long Nt = Mt * ORDER * 4;
  4464. const Long Np = Mp * ORDER * 4;
  4465. Vector<ElemBasis> f_(Nelem*dof, f.begin() + offset*dof, false);
  4466. Vector<Real> f_fourier = cheb2grid(f_, Mt, Mp, Nt, Np);
  4467. fourier_filter(f_fourier, Nt, Np, 0.25 * sigma, comm);
  4468. f_ = grid2cheb(f_fourier, Nt, Np, Mt, Mp);
  4469. }
  4470. };
  4471. Real g;
  4472. for (Long i = 0; i < Nelem; i++) { // Set S_
  4473. for (Long j = 0; j < Nnodes; j++) {
  4474. S_.Elem(i,0)[j] = x[(i*Nnodes+j)*COORD_DIM+0];
  4475. S_.Elem(i,1)[j] = x[(i*Nnodes+j)*COORD_DIM+1];
  4476. S_.Elem(i,2)[j] = x[(i*Nnodes+j)*COORD_DIM+2];
  4477. }
  4478. }
  4479. Vector<ElemBasis> dgdnu = Stellarator<Real,ORDER>::compute_gradient(S_, pressure_, flux_tor_, flux_pol_, &g);
  4480. Vector<ElemBasis> dXdt(Nelem*COORD_DIM);
  4481. { // Set dXdt
  4482. dXdt = 0;
  4483. const Long Nnodes = ElemBasis::Size();
  4484. Vector<ElemBasis> normal, area_elem;
  4485. Stellarator<Real,ORDER>::compute_norm_area_elem(S_, normal, area_elem);
  4486. for (Long i = 0; i < S_.ElemDsp(S_.Nsurf()-1); i++) {
  4487. for (Long j = 0; j < Nnodes; j++) {
  4488. dXdt[i*COORD_DIM+0][j] = normal[i*COORD_DIM+0][j] * dgdnu[i][j];
  4489. dXdt[i*COORD_DIM+1][j] = normal[i*COORD_DIM+1][j] * dgdnu[i][j];
  4490. dXdt[i*COORD_DIM+2][j] = normal[i*COORD_DIM+2][j] * dgdnu[i][j];
  4491. }
  4492. }
  4493. filter(S_, comm, dXdt, 0.3333);
  4494. }
  4495. for (Long i = 0; i < Nelem; i++) { // Set grad
  4496. for (Long j = 0; j < Nnodes; j++) {
  4497. grad[(i*Nnodes+j)*COORD_DIM+0] = dXdt[i*COORD_DIM+0][j];
  4498. grad[(i*Nnodes+j)*COORD_DIM+1] = dXdt[i*COORD_DIM+1][j];
  4499. grad[(i*Nnodes+j)*COORD_DIM+2] = dXdt[i*COORD_DIM+2][j];
  4500. }
  4501. }
  4502. if (1) { // Write VTU
  4503. VTUData vtu;
  4504. vtu.AddElems(S_.GetElemList(), dgdnu, ORDER);
  4505. vtu.WriteVTK("dgdnu"+std::to_string(iter), comm);
  4506. }
  4507. if (1) { // Write VTU
  4508. VTUData vtu;
  4509. vtu.AddElems(S_.GetElemList(), dXdt, ORDER);
  4510. vtu.WriteVTK("dXdt"+std::to_string(iter), comm);
  4511. }
  4512. std::cout<<"iter = "<<iter<<" g = "<<g<<'\n';
  4513. iter++;
  4514. return g;
  4515. }
  4516. static void ComputeEquilibrium(MHDEquilib& mhd_equilib) {
  4517. const Long Nelem = mhd_equilib.S_.NElem();
  4518. const Long Nnodes = ElemBasis::Size();
  4519. const Long N = Nelem * COORD_DIM * Nnodes;
  4520. LBFGSpp::LBFGSParam<Real> param;
  4521. param.epsilon = 1e-6;
  4522. param.max_iterations = 100;
  4523. // Create solver and function object
  4524. LBFGSpp::LBFGSSolver<Real> solver(param);
  4525. // Initial guess
  4526. Eigen::VectorXd x = Eigen::VectorXd::Zero(N);
  4527. for (Long i = 0; i < Nelem; i++) { // Set x
  4528. for (Long j = 0; j < Nnodes; j++) {
  4529. x((i*Nnodes+j)*COORD_DIM+0) = mhd_equilib.S_.Elem(i,0)[j];
  4530. x((i*Nnodes+j)*COORD_DIM+1) = mhd_equilib.S_.Elem(i,1)[j];
  4531. x((i*Nnodes+j)*COORD_DIM+2) = mhd_equilib.S_.Elem(i,2)[j];
  4532. }
  4533. }
  4534. Real fx;
  4535. Integer niter = solver.minimize(mhd_equilib, x, fx);
  4536. for (Long i = 0; i < Nelem; i++) { // Set x
  4537. for (Long j = 0; j < Nnodes; j++) {
  4538. mhd_equilib.S_.Elem(i,0)[j] = x((i*Nnodes+j)*COORD_DIM+0);
  4539. mhd_equilib.S_.Elem(i,1)[j] = x((i*Nnodes+j)*COORD_DIM+1);
  4540. mhd_equilib.S_.Elem(i,2)[j] = x((i*Nnodes+j)*COORD_DIM+2);
  4541. }
  4542. }
  4543. std::cout << niter << " iterations" <<'\n';
  4544. std::cout << "f(x) = " << fx <<'\n';
  4545. }
  4546. static void test() {
  4547. Comm comm = Comm::World();
  4548. Profile::Enable(true);
  4549. Long Nsurf = 2;
  4550. Stellarator<Real,ORDER> S;
  4551. Vector<Real> flux_tor(Nsurf), flux_pol(Nsurf), pressure(Nsurf);
  4552. { // Init S, flux_tor, flux_pol, pressure
  4553. Vector<Long> NtNp;
  4554. for (Long i = 0; i < Nsurf; i++) {
  4555. //NtNp.PushBack(50);
  4556. //NtNp.PushBack(8);
  4557. NtNp.PushBack(30);
  4558. NtNp.PushBack(4);
  4559. }
  4560. S = Stellarator<Real,ORDER>(NtNp);
  4561. flux_tor = 1;
  4562. flux_pol = 1;
  4563. pressure = 0;
  4564. //flux_tor[0] = 1; //0.791881512;
  4565. //flux_tor[1] = 1;
  4566. //flux_pol[0] = 0;
  4567. //flux_pol[1] = 0;
  4568. //pressure[0] = 0;
  4569. //pressure[1] = 0;
  4570. }
  4571. MHDEquilib mhd_equilib(S, pressure, flux_tor, flux_pol);
  4572. ComputeEquilibrium(mhd_equilib);
  4573. }
  4574. private:
  4575. Stellarator<Real,ORDER> S_;
  4576. Vector<Real> pressure_;
  4577. Vector<Real> flux_tor_;
  4578. Vector<Real> flux_pol_;
  4579. Long iter = 0;
  4580. };
  4581. template <class Real, Integer ORDER=5> class Spheres {
  4582. static constexpr Integer COORD_DIM = 3;
  4583. static constexpr Integer ELEM_DIM = COORD_DIM-1;
  4584. using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
  4585. using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
  4586. using CoordBasis = Basis<Real, ELEM_DIM, ORDER>;
  4587. using ElemLst = ElemList<COORD_DIM, CoordBasis>;
  4588. public:
  4589. Spheres(Long N = 0) {
  4590. Vector<Real> X(N*COORD_DIM);
  4591. Vector<Real> R(N);
  4592. X=0;
  4593. R=1;
  4594. for (Long i = 0; i < N; i++) X[i*COORD_DIM] = (i==0?-1.015:1.015); ///////////
  4595. InitSpheres(X,R);
  4596. }
  4597. const ElemLst& GetElem() const {
  4598. return elements;
  4599. }
  4600. static void test() {
  4601. constexpr Integer order_singular = 35;
  4602. constexpr Integer order_direct = 35;
  4603. Comm comm = Comm::World();
  4604. Profile::Enable(true);
  4605. Long Ns = 2;
  4606. Spheres S(Ns);
  4607. S.quadrature_FxT.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_FxT, order_singular, order_direct, -1.0, comm);
  4608. S.quadrature_FxU.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_FxU, order_singular, order_direct, -1.0, comm);
  4609. S.quadrature_DxU.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_DxU, order_singular, order_direct, -1.0, comm);
  4610. const auto SetMotion = [&S](Vector<DensityBasis>& density, const Vector<Real>& force_avg, const Vector<Real>& torque_avg) {
  4611. Long Nelem = S.GetElem().NElem();
  4612. Long Nsurf = S.elem_cnt.Dim();
  4613. const auto& X = S.GetElem().ElemVector();
  4614. Vector<Real> area, Xc;
  4615. Vector<DensityBasis> one(Nelem);
  4616. for (Long i = 0; i < Nelem; i++) {
  4617. for (Long j = 0; j < DensityBasis::Size(); j++) {
  4618. one[i][j] = 1;
  4619. }
  4620. }
  4621. S.SurfInteg(area, one);
  4622. S.SurfInteg(Xc, S.GetElem().ElemVector());
  4623. for (Long i = 0; i < Nsurf; i++) {
  4624. for (Long k = 0; k < COORD_DIM; k++) {
  4625. Xc[i*COORD_DIM+k] /= area[i];
  4626. }
  4627. }
  4628. if (density.Dim() != Nelem*COORD_DIM) density.ReInit(Nelem*COORD_DIM);
  4629. Long elem_itr = 0;
  4630. for (Long i = 0; i < Nsurf; i++) {
  4631. for (Long j = 0; j < S.elem_cnt[i]; j++) {
  4632. for (Long k = 0; k < DensityBasis::Size(); k++) {
  4633. StaticArray<Real,COORD_DIM> dX;
  4634. dX[0] = (X[elem_itr*COORD_DIM+0][k] - Xc[i*COORD_DIM+0]);
  4635. dX[1] = (X[elem_itr*COORD_DIM+1][k] - Xc[i*COORD_DIM+1]);
  4636. dX[2] = (X[elem_itr*COORD_DIM+2][k] - Xc[i*COORD_DIM+2]);
  4637. density[elem_itr*COORD_DIM+0][k] = force_avg[i*COORD_DIM+0]*(1/area[i]) + (torque_avg[i*COORD_DIM+1] * dX[2] - torque_avg[i*COORD_DIM+2] * dX[1]) / (2*area[i]/3);
  4638. density[elem_itr*COORD_DIM+1][k] = force_avg[i*COORD_DIM+1]*(1/area[i]) + (torque_avg[i*COORD_DIM+2] * dX[0] - torque_avg[i*COORD_DIM+0] * dX[2]) / (2*area[i]/3);
  4639. density[elem_itr*COORD_DIM+2][k] = force_avg[i*COORD_DIM+2]*(1/area[i]) + (torque_avg[i*COORD_DIM+0] * dX[1] - torque_avg[i*COORD_DIM+1] * dX[0]) / (2*area[i]/3);
  4640. }
  4641. elem_itr++;
  4642. }
  4643. }
  4644. };
  4645. const auto GetMotion = [&S](Vector<Real>& force_avg, Vector<Real>& torque_avg, const Vector<DensityBasis>& density) {
  4646. Long Nelem = S.GetElem().NElem();
  4647. Long Nsurf = S.elem_cnt.Dim();
  4648. const auto& X = S.GetElem().ElemVector();
  4649. S.SurfInteg(force_avg, density);
  4650. Vector<Real> area, Xc;
  4651. Vector<DensityBasis> one(Nelem);
  4652. for (Long i = 0; i < Nelem; i++) {
  4653. for (Long j = 0; j < DensityBasis::Size(); j++) {
  4654. one[i][j] = 1;
  4655. }
  4656. }
  4657. S.SurfInteg(area, one);
  4658. S.SurfInteg(Xc, S.GetElem().ElemVector());
  4659. for (Long i = 0; i < Nsurf; i++) {
  4660. for (Long k = 0; k < COORD_DIM; k++) {
  4661. Xc[i*COORD_DIM+k] /= area[i];
  4662. }
  4663. }
  4664. { // Set torque_avg
  4665. Long elem_itr = 0;
  4666. Vector<DensityBasis> torque(Nelem*COORD_DIM);
  4667. for (Long i = 0; i < Nsurf; i++) {
  4668. for (Long j = 0; j < S.elem_cnt[i]; j++) {
  4669. for (Long k = 0; k < DensityBasis::Size(); k++) {
  4670. StaticArray<Real,COORD_DIM> dX;
  4671. dX[0] = (X[elem_itr*COORD_DIM+0][k] - Xc[i*COORD_DIM+0]);
  4672. dX[1] = (X[elem_itr*COORD_DIM+1][k] - Xc[i*COORD_DIM+1]);
  4673. dX[2] = (X[elem_itr*COORD_DIM+2][k] - Xc[i*COORD_DIM+2]);
  4674. torque[elem_itr*COORD_DIM+0][k] = dX[1] * density[elem_itr*COORD_DIM+2][k] - dX[2] * density[elem_itr*COORD_DIM+1][k];
  4675. torque[elem_itr*COORD_DIM+1][k] = dX[2] * density[elem_itr*COORD_DIM+0][k] - dX[0] * density[elem_itr*COORD_DIM+2][k];
  4676. torque[elem_itr*COORD_DIM+2][k] = dX[0] * density[elem_itr*COORD_DIM+1][k] - dX[1] * density[elem_itr*COORD_DIM+0][k];
  4677. }
  4678. elem_itr++;
  4679. }
  4680. }
  4681. S.SurfInteg(torque_avg, torque);
  4682. }
  4683. };
  4684. const auto BIOpL = [&GetMotion,&SetMotion](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  4685. Vector<Real> force_avg, torque_avg;
  4686. GetMotion(force_avg, torque_avg, density);
  4687. SetMotion(potential, force_avg, torque_avg);
  4688. };
  4689. const auto BIOpK = [&S](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  4690. Vector<DensityBasis> traction;
  4691. S.quadrature_FxT.Eval(traction, S.GetElem(), density, S.Stokes_FxT);
  4692. Vector<CoordBasis> dX;
  4693. const auto X = S.GetElem().ElemVector();
  4694. CoordBasis::Grad(dX, X);
  4695. Long Nelem = S.GetElem().NElem();
  4696. Long Nnodes = CoordBasis::Size();
  4697. potential.ReInit(Nelem * COORD_DIM);
  4698. for (Long i = 0; i < Nelem; i++) {
  4699. for (Long j = 0; j < Nnodes; j++) {
  4700. StaticArray<Real,COORD_DIM> Xn;
  4701. Xn[0] = dX[i*COORD_DIM*2+2][j]*dX[i*COORD_DIM*2+5][j] - dX[i*COORD_DIM*2+4][j]*dX[i*COORD_DIM*2+3][j];
  4702. Xn[1] = dX[i*COORD_DIM*2+4][j]*dX[i*COORD_DIM*2+1][j] - dX[i*COORD_DIM*2+0][j]*dX[i*COORD_DIM*2+5][j];
  4703. Xn[2] = dX[i*COORD_DIM*2+0][j]*dX[i*COORD_DIM*2+3][j] - dX[i*COORD_DIM*2+2][j]*dX[i*COORD_DIM*2+1][j];
  4704. Real AreaElem = sqrt<Real>(Xn[0]*Xn[0] + Xn[1]*Xn[1] + Xn[2]*Xn[2]);
  4705. Real OOAreaElem = 1 / AreaElem;
  4706. Xn[0] *= OOAreaElem;
  4707. Xn[1] *= OOAreaElem;
  4708. Xn[2] *= OOAreaElem;
  4709. potential[i*COORD_DIM+0][j] = traction[i*COORD_DIM*COORD_DIM+0][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+1][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+2][j]*Xn[2];
  4710. potential[i*COORD_DIM+1][j] = traction[i*COORD_DIM*COORD_DIM+3][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+4][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+5][j]*Xn[2];
  4711. potential[i*COORD_DIM+2][j] = traction[i*COORD_DIM*COORD_DIM+6][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+7][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+8][j]*Xn[2];
  4712. }
  4713. }
  4714. };
  4715. const auto BIOp_half_K_L = [&S,&BIOpK,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  4716. Vector<DensityBasis> potential_K;
  4717. Vector<DensityBasis> potential_L;
  4718. BIOpK(potential_K, density);
  4719. BIOpL(potential_L, density);
  4720. if (potential.Dim() != potential_K.Dim()) {
  4721. potential.ReInit(potential_K.Dim());
  4722. }
  4723. for (Long i = 0; i < potential_K.Dim(); i++) {
  4724. for (Long k = 0; k < DensityBasis::Size(); k++) {
  4725. potential[i][k] = -0.5*density[i][k] + potential_K[i][k] + potential_L[i][k];
  4726. }
  4727. }
  4728. };
  4729. const auto BIOp_half_K = [&S,&BIOpK,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  4730. Vector<DensityBasis> potential_K;
  4731. BIOpK(potential_K, density);
  4732. if (potential.Dim() != potential_K.Dim()) {
  4733. potential.ReInit(potential_K.Dim());
  4734. }
  4735. for (Long i = 0; i < potential_K.Dim(); i++) {
  4736. for (Long k = 0; k < DensityBasis::Size(); k++) {
  4737. potential[i][k] = -0.5*density[i][k] + potential_K[i][k];
  4738. }
  4739. }
  4740. };
  4741. const auto BIOp_half_S_D = [&S,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  4742. Vector<DensityBasis> U;
  4743. S.quadrature_DxU.Eval(U, S.GetElem(), density, S.Stokes_DxU);
  4744. Vector<PotentialBasis> U1;
  4745. Vector<DensityBasis> sigma1;
  4746. BIOpL(sigma1,density);
  4747. S.quadrature_FxU.Eval(U1, S.GetElem(), sigma1, S.Stokes_FxU);
  4748. Long Nelem = S.GetElem().NElem();
  4749. Long Nnodes = CoordBasis::Size();
  4750. potential.ReInit(Nelem * COORD_DIM);
  4751. for (Long i = 0; i < Nelem; i++) {
  4752. for (Long j = 0; j < Nnodes; j++) {
  4753. potential[i*COORD_DIM+0][j] = 0.5*density[i*COORD_DIM+0][j] + U[i*COORD_DIM+0][j] + U1[i*COORD_DIM+0][j];
  4754. potential[i*COORD_DIM+1][j] = 0.5*density[i*COORD_DIM+1][j] + U[i*COORD_DIM+1][j] + U1[i*COORD_DIM+1][j];
  4755. potential[i*COORD_DIM+2][j] = 0.5*density[i*COORD_DIM+2][j] + U[i*COORD_DIM+2][j] + U1[i*COORD_DIM+2][j];
  4756. }
  4757. }
  4758. };
  4759. Vector<PotentialBasis> U;
  4760. { // Rachh
  4761. Vector<DensityBasis> sigma0;
  4762. { // Set sigma0
  4763. srand48(comm.Rank());
  4764. Vector<Real> force(Ns*COORD_DIM), torque(Ns*COORD_DIM);
  4765. //for (auto& x : force) x = drand48();
  4766. //for (auto& x : torque) x = drand48();
  4767. force = 0;
  4768. torque = 0;
  4769. force[0] = 1;
  4770. //force[4] = 1;
  4771. SetMotion(sigma0, force, torque);
  4772. }
  4773. Vector<DensityBasis> rhs;
  4774. BIOp_half_K(rhs, sigma0);
  4775. Vector<DensityBasis> sigma;
  4776. { // Set sigma
  4777. Long Nnode = DensityBasis::Size();
  4778. Long Nelem = S.GetElem().NElem();
  4779. typename sctl::ParallelSolver<Real>::ParallelOp A = [&S,&BIOp_half_K_L](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  4780. Long Nnode = DensityBasis::Size();
  4781. Long Nelem = S.GetElem().NElem();
  4782. Ax->ReInit(Nelem*COORD_DIM*Nnode);
  4783. Vector<DensityBasis> x_(Nelem*COORD_DIM), Ax_(Nelem*COORD_DIM);
  4784. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set x_
  4785. for (Long k = 0; k < Nnode; k++) {
  4786. x_[i][k] = x[i*Nnode+k];
  4787. }
  4788. }
  4789. BIOp_half_K_L(Ax_, x_);
  4790. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set Ax
  4791. for (Long k = 0; k < Nnode; k++) {
  4792. (*Ax)[i*Nnode+k] = Ax_[i][k];
  4793. }
  4794. }
  4795. };
  4796. Vector<Real> sigma_(Nelem*COORD_DIM*Nnode), rhs_(Nelem*COORD_DIM*Nnode);
  4797. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set rhs_
  4798. for (Long k = 0; k < Nnode; k++) {
  4799. rhs_[i*Nnode+k] = rhs[i][k];
  4800. }
  4801. }
  4802. sigma_ = 0;
  4803. ParallelSolver<Real> linear_solver(comm, true);
  4804. linear_solver(&sigma_, A, rhs_, 1e-6, 50);
  4805. sigma.ReInit(Nelem * COORD_DIM);
  4806. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set sigma
  4807. for (Long k = 0; k < Nnode; k++) {
  4808. sigma[i][k] = sigma_[i*Nnode+k] - sigma0[i][k];
  4809. }
  4810. }
  4811. }
  4812. S.quadrature_FxU.Eval(U, S.GetElem(), sigma, S.Stokes_FxU);
  4813. { // Write VTU
  4814. VTUData vtu_sigma;
  4815. vtu_sigma.AddElems(S.elements, sigma, ORDER);
  4816. vtu_sigma.WriteVTK("sphere-sigma0", comm);
  4817. VTUData vtu_U;
  4818. vtu_U.AddElems(S.elements, U, ORDER);
  4819. vtu_U.WriteVTK("sphere-U0", comm);
  4820. }
  4821. }
  4822. { // Tornberg
  4823. Vector<DensityBasis> rhs;
  4824. BIOpL(rhs, U);
  4825. Vector<DensityBasis> sigma;
  4826. { // Set sigma
  4827. Long Nnode = DensityBasis::Size();
  4828. Long Nelem = S.GetElem().NElem();
  4829. typename sctl::ParallelSolver<Real>::ParallelOp A = [&S,&BIOp_half_S_D](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  4830. Long Nnode = DensityBasis::Size();
  4831. Long Nelem = S.GetElem().NElem();
  4832. Ax->ReInit(Nelem*COORD_DIM*Nnode);
  4833. Vector<DensityBasis> x_(Nelem*COORD_DIM), Ax_(Nelem*COORD_DIM);
  4834. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set x_
  4835. for (Long k = 0; k < Nnode; k++) {
  4836. x_[i][k] = x[i*Nnode+k];
  4837. }
  4838. }
  4839. BIOp_half_S_D(Ax_, x_);
  4840. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set Ax
  4841. for (Long k = 0; k < Nnode; k++) {
  4842. (*Ax)[i*Nnode+k] = Ax_[i][k];
  4843. }
  4844. }
  4845. };
  4846. Vector<Real> sigma_(Nelem*COORD_DIM*Nnode), rhs_(Nelem*COORD_DIM*Nnode);
  4847. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set rhs_
  4848. for (Long k = 0; k < Nnode; k++) {
  4849. rhs_[i*Nnode+k] = rhs[i][k];
  4850. }
  4851. }
  4852. sigma_ = 0;
  4853. ParallelSolver<Real> linear_solver(comm, true);
  4854. linear_solver(&sigma_, A, rhs_, 1e-6, 50);
  4855. sigma.ReInit(Nelem * COORD_DIM);
  4856. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set sigma
  4857. for (Long k = 0; k < Nnode; k++) {
  4858. sigma[i][k] = sigma_[i*Nnode+k];
  4859. }
  4860. }
  4861. }
  4862. Vector<PotentialBasis> U1;
  4863. BIOp_half_S_D(U1, sigma);
  4864. { // Write VTU
  4865. VTUData vtu_sigma;
  4866. vtu_sigma.AddElems(S.elements, sigma, ORDER);
  4867. vtu_sigma.WriteVTK("sphere-sigma1", comm);
  4868. VTUData vtu_U;
  4869. vtu_U.AddElems(S.elements, U1, ORDER);
  4870. vtu_U.WriteVTK("sphere-U1", comm);
  4871. }
  4872. }
  4873. Profile::print(&comm);
  4874. }
  4875. private:
  4876. template <class FnBasis> void SurfInteg(Vector<Real>& I, const Vector<FnBasis>& f) {
  4877. static_assert(std::is_same<FnBasis,CoordBasis>::value, "FnBasis is different from CoordBasis");
  4878. const Long Nelem = elements.NElem();
  4879. const Long dof = f.Dim() / Nelem;
  4880. SCTL_ASSERT(f.Dim() == Nelem * dof);
  4881. auto nodes = FnBasis::Nodes();
  4882. auto quad_wts = FnBasis::QuadWts();
  4883. const Long Nnodes = FnBasis::Size();
  4884. auto EvalOp = CoordBasis::SetupEval(nodes);
  4885. Vector<CoordBasis> dX;
  4886. const auto& X = elements.ElemVector();
  4887. SCTL_ASSERT(X.Dim() == Nelem * COORD_DIM);
  4888. CoordBasis::Grad(dX, X);
  4889. Matrix<Real> I_(Nelem, dof);
  4890. for (Long i = 0; i < Nelem; i++) {
  4891. for (Long k = 0; k < dof; k++) {
  4892. I_[i][k] = 0;
  4893. }
  4894. for (Long j = 0; j < Nnodes; j++) {
  4895. Real dA = 0;
  4896. StaticArray<Real,COORD_DIM> Xn;
  4897. Xn[0] = dX[i*COORD_DIM*2+2][j] * dX[i*COORD_DIM*2+5][j] - dX[i*COORD_DIM*2+3][j] * dX[i*COORD_DIM*2+4][j];
  4898. Xn[1] = dX[i*COORD_DIM*2+4][j] * dX[i*COORD_DIM*2+1][j] - dX[i*COORD_DIM*2+5][j] * dX[i*COORD_DIM*2+0][j];
  4899. Xn[2] = dX[i*COORD_DIM*2+0][j] * dX[i*COORD_DIM*2+3][j] - dX[i*COORD_DIM*2+1][j] * dX[i*COORD_DIM*2+2][j];
  4900. dA += sqrt<Real>(Xn[0]*Xn[0] + Xn[1]*Xn[1] + Xn[2]*Xn[2]) * quad_wts[j];
  4901. for (Long k = 0; k < dof; k++) {
  4902. I_[i][k] += dA * f[i*dof+k][j];
  4903. }
  4904. }
  4905. }
  4906. Long Ns = elem_cnt.Dim();
  4907. if (I.Dim() != Ns * dof) I.ReInit(Ns * dof);
  4908. I = 0;
  4909. Long elem_itr = 0;
  4910. for (Long i = 0; i < Ns; i++) {
  4911. for (Long j = 0; j < elem_cnt[i]; j++) {
  4912. for (Long k = 0; k < dof; k++) {
  4913. I[i*dof+k] += I_[elem_itr][k];
  4914. }
  4915. elem_itr++;
  4916. }
  4917. }
  4918. }
  4919. void InitSpheres(const Vector<Real> X, const Vector<Real>& R){
  4920. SCTL_ASSERT(X.Dim() == R.Dim() * COORD_DIM);
  4921. Long N = R.Dim();
  4922. elements.ReInit(2*COORD_DIM*N);
  4923. auto nodes = ElemLst::CoordBasis::Nodes();
  4924. for (Long l = 0; l < N; l++) {
  4925. for (Integer i = 0; i < COORD_DIM; i++) {
  4926. for (Integer j = 0; j < 2; j++) {
  4927. for (int k = 0; k < ElemLst::CoordBasis::Size(); k++) {
  4928. Real coord[COORD_DIM];
  4929. coord[(i+0)%COORD_DIM] = (j ? -1.0 : 1.0);
  4930. coord[(i+1)%COORD_DIM] = 2.0 * nodes[j?1:0][k] - 1.0;
  4931. coord[(i+2)%COORD_DIM] = 2.0 * nodes[j?0:1][k] - 1.0;
  4932. Real R0 = sqrt<Real>(coord[0]*coord[0] + coord[1]*coord[1] + coord[2]*coord[2]);
  4933. elements((l*COORD_DIM+i)*2+j,0)[k] = X[l*COORD_DIM+0] + R[l] * coord[0] / R0;
  4934. elements((l*COORD_DIM+i)*2+j,1)[k] = X[l*COORD_DIM+1] + R[l] * coord[1] / R0;
  4935. elements((l*COORD_DIM+i)*2+j,2)[k] = X[l*COORD_DIM+2] + R[l] * coord[2] / R0;
  4936. }
  4937. }
  4938. }
  4939. }
  4940. elem_cnt.ReInit(N);
  4941. elem_cnt = 6;
  4942. }
  4943. GenericKernel<Stokes3D_DxU> Stokes_DxU;
  4944. GenericKernel<Stokes3D_FxU> Stokes_FxU;
  4945. GenericKernel<Stokes3D_FxT> Stokes_FxT;
  4946. Quadrature<Real> quadrature_DxU;
  4947. Quadrature<Real> quadrature_FxU;
  4948. Quadrature<Real> quadrature_FxT;
  4949. ElemLst elements;
  4950. Vector<Long> elem_cnt;
  4951. };
  4952. } // end namespace
  4953. #endif //_SCTL_BOUNDARY_QUADRATURE_HPP_