sph_harm.hpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333
  1. #ifndef _SCTL_SPH_HARM_HPP_
  2. #define _SCTL_SPH_HARM_HPP_
  3. #define SCTL_SHMAXDEG 1024
  4. #include SCTL_INCLUDE(matrix.hpp)
  5. #include SCTL_INCLUDE(fft_wrapper.hpp)
  6. #include SCTL_INCLUDE(common.hpp)
  7. namespace SCTL_NAMESPACE {
  8. enum class SHCArrange {
  9. // (p+1) x (p+1) complex elements in row-major order.
  10. // A : { A(0,0), A(0,1), ... A(0,p), A(1,0), ... A(p,p) }
  11. // where, A(n,m) = { Ar(n,m), Ai(n,m) } (real and imaginary parts)
  12. ALL,
  13. // (p+1)(p+2)/2 complex elements in row-major order (lower triangular part)
  14. // A : { A(0,0), A(1,0), A(1,1), A(2,0), A(2,1), A(2,2), ... A(p,p) }
  15. // where, A(n,m) = { Ar(n,m), Ai(n,m) } (real and imaginary parts)
  16. ROW_MAJOR,
  17. // (p+1)(p+1) real elements in col-major order (non-zero lower triangular part)
  18. // A : { Ar(0,0), Ar(1,0), ... Ar(p,0), Ar(1,1), ... Ar(p,1), Ai(1,1), ... Ai(p,1), ..., Ar(p,p), Ai(p,p)
  19. // where, A(n,m) = { Ar(n,m), Ai(n,m) } (real and imaginary parts)
  20. COL_MAJOR_NONZERO
  21. };
  22. template <class Real> class SphericalHarmonics{
  23. static constexpr Integer COORD_DIM = 3;
  24. public:
  25. // Scalar Spherical Harmonics
  26. /**
  27. * \brief Compute spherical harmonic coefficients from grid values.
  28. * \param[in] X Grid values {X(t0,p0), X(t0,p1), ... , X(t1,p0), X(t1,p1), ... }, where, {cos(t0), cos(t1), ... } are the Gauss-Legendre nodes of order (Nt-1) in the interval [-1,1] and {p0, p1, ... } are equispaced in [0, 2*pi].
  29. * \param[in] Nt Number of grid points \theta \in (1,pi).
  30. * \param[in] Np Number of grid points \phi \in (1,2*pi).
  31. * \param[in] p Order of spherical harmonic expansion.
  32. * \param[in] arrange Arrangement of the coefficients.
  33. * \param[out] S Spherical harmonic coefficients.
  34. */
  35. static void Grid2SHC(const Vector<Real>& X, Long Nt, Long Np, Long p, Vector<Real>& S, SHCArrange arrange);
  36. /**
  37. * \brief Evaluate grid values from spherical harmonic coefficients.
  38. * \param[in] S Spherical harmonic coefficients.
  39. * \param[in] arrange Arrangement of the coefficients.
  40. * \param[in] p Order of spherical harmonic expansion.
  41. * \param[in] Nt Number of grid points \theta \in (1,pi).
  42. * \param[in] Np Number of grid points \phi \in (1,2*pi).
  43. * \param[out] X Grid values {X(t0,p0), X(t0,p1), ... , X(t1,p0), X(t1,p1), ... }, where, {cos(t0), cos(t1), ... } are the Gauss-Legendre nodes of order (Nt-1) in the interval [-1,1] and {p0, p1, ... } are equispaced in [0, 2*pi].
  44. * \param[out] X_theta \theta derivative of X evaluated at grid points.
  45. * \param[out] X_phi \phi derivative of X evaluated at grid points.
  46. */
  47. static void SHC2Grid(const Vector<Real>& S, SHCArrange arrange, Long p, Long Nt, Long Np, Vector<Real>* X, Vector<Real>* X_theta=nullptr, Vector<Real>* X_phi=nullptr);
  48. /**
  49. * \brief Evaluate point values from spherical harmonic coefficients.
  50. * \param[in] S Spherical harmonic coefficients.
  51. * \param[in] arrange Arrangement of the coefficients.
  52. * \param[in] p Order of spherical harmonic expansion.
  53. * \param[in] cos_theta_phi Evaluation coordinates given as {cos(t0),p0, cos(t1),p1, ... }.
  54. * \param[out] X Evaluated values {X0, X1, ... }.
  55. */
  56. static void SHCEval(const Vector<Real>& S, SHCArrange arrange, Long p, const Vector<Real>& cos_theta_phi, Vector<Real>& X);
  57. static void SHC2Pole(const Vector<Real>& S, SHCArrange arrange, Long p, Vector<Real>& P);
  58. static void WriteVTK(const char* fname, const Vector<Real>* S, const Vector<Real>* f_val, SHCArrange arrange, Long p_in, Long p_out, Real period=0, const Comm& comm = Comm::World());
  59. // Vector Spherical Harmonics
  60. /**
  61. * \brief Compute vector spherical harmonic coefficients from grid values.
  62. * \param[in] X Grid values {X(t0,p0), X(t0,p1), ... , X(t1,p0), ... , Y(t0,p0), ... , Z(t0,p0), ... }, where, {cos(t0), cos(t1), ... } are the Gauss-Legendre nodes of order (Nt-1) in the interval [-1,1] and {p0, p1, ... } are equispaced in [0, 2*pi].
  63. * \param[in] Nt Number of grid points \theta \in (1,pi).
  64. * \param[in] Np Number of grid points \phi \in (1,2*pi).
  65. * \param[in] p Order of spherical harmonic expansion.
  66. * \param[in] arrange Arrangement of the coefficients.
  67. * \param[out] S Vector spherical harmonic coefficients.
  68. */
  69. static void Grid2VecSHC(const Vector<Real>& X, Long Nt, Long Np, Long p, Vector<Real>& S, SHCArrange arrange);
  70. /**
  71. * \brief Evaluate grid values from vector spherical harmonic coefficients.
  72. * \param[in] S Vector spherical harmonic coefficients.
  73. * \param[in] arrange Arrangement of the coefficients.
  74. * \param[in] p Order of spherical harmonic expansion.
  75. * \param[in] Nt Number of grid points \theta \in (1,pi).
  76. * \param[in] Np Number of grid points \phi \in (1,2*pi).
  77. * \param[out] X Grid values {X(t0,p0), X(t0,p1), ... , X(t1,p0), X(t1,p1), ... , Y(t0,p0), ... , Z(t0,p0), ... }, where, {cos(t0), cos(t1), ... } are the Gauss-Legendre nodes of order (Nt-1) in the interval [-1,1] and {p0, p1, ... } are equispaced in [0, 2*pi].
  78. */
  79. static void VecSHC2Grid(const Vector<Real>& S, SHCArrange arrange, Long p, Long Nt, Long Np, Vector<Real>& X);
  80. /**
  81. * \brief Evaluate point values from vector spherical harmonic coefficients.
  82. * \param[in] S Vector spherical harmonic coefficients.
  83. * \param[in] arrange Arrangement of the coefficients.
  84. * \param[in] p Order of spherical harmonic expansion.
  85. * \param[in] cos_theta_phi Evaluation coordinates given as {cos(t0),p0, cos(t1),p1, ... }.
  86. * \param[out] X Evaluated values {X0,Y0,Z0, X1,Y1,Z1, ... }.
  87. */
  88. static void VecSHCEval(const Vector<Real>& S, SHCArrange arrange, Long p, const Vector<Real>& cos_theta_phi, Vector<Real>& X);
  89. /**
  90. * \brief Evaluate Stokes single-layer operator at point values from the vector spherical harmonic coefficients for the density.
  91. * \param[in] S Vector spherical harmonic coefficients.
  92. * \param[in] arrange Arrangement of the coefficients.
  93. * \param[in] p Order of spherical harmonic expansion.
  94. * \param[in] Evaluation coordinates given as {x0,y0,z0, x1,y1,z1, ... }.
  95. * \param[out] U Evaluated values {Ux0,Uy0,Uz0, Ux1,Uy1,Uz1, ... }.
  96. */
  97. static void StokesEvalSL(const Vector<Real>& S, SHCArrange arrange, Long p, const Vector<Real>& coord, Vector<Real>& U);
  98. /**
  99. * \brief Evaluate Stokes double-layer operator at point values from the vector spherical harmonic coefficients for the density.
  100. * \param[in] S Vector spherical harmonic coefficients.
  101. * \param[in] arrange Arrangement of the coefficients.
  102. * \param[in] p Order of spherical harmonic expansion.
  103. * \param[in] Evaluation coordinates given as {x0,y0,z0, x1,y1,z1, ... }.
  104. * \param[out] U Evaluated values {Ux0,Uy0,Uz0, Ux1,Uy1,Uz1, ... }.
  105. */
  106. static void StokesEvalDL(const Vector<Real>& S, SHCArrange arrange, Long p, const Vector<Real>& coord, Vector<Real>& U);
  107. static void test_stokes() {
  108. int p = 4;
  109. int dof = 3;
  110. int Nt = p+1, Np = 2*p+1;
  111. auto print_coeff = [&](Vector<Real> S) {
  112. Long idx=0;
  113. for (Long k=0;k<dof;k++) {
  114. for (Long n=0;n<=p;n++) {
  115. std::cout<<Vector<Real>(2*n+2, S.begin()+idx);
  116. idx+=2*n+2;
  117. }
  118. }
  119. std::cout<<'\n';
  120. };
  121. Vector<Real> f(dof * Nt * Np);
  122. { // Set f
  123. for (Long i = 0; i < Nt; i++) {
  124. for (Long j = 0; j < Np; j++) {
  125. f[(0 * Nt + i) * Np + j] = 3;
  126. f[(1 * Nt + i) * Np + j] = 2;
  127. f[(2 * Nt + i) * Np + j] = 1;
  128. }
  129. }
  130. }
  131. Vector<Real> f_coeff;
  132. Grid2VecSHC(f, Nt, Np, p, f_coeff, sctl::SHCArrange::ROW_MAJOR);
  133. print_coeff(f_coeff);
  134. for (Long i = 0; i < 20; i++) { // Evaluate
  135. Vector<Real> Df;
  136. Vector<Real> x(3);
  137. x[0] = drand48();
  138. x[1] = drand48();
  139. x[2] = drand48();
  140. Real R = sqrt<Real>(x[0]*x[0]+x[1]*x[1]+x[2]*x[2]);
  141. x[0]/=R*(i+0.5)/10;
  142. x[1]/=R*(i+0.5)/10;
  143. x[2]/=R*(i+0.5)/10;
  144. StokesEvalDL(f_coeff, sctl::SHCArrange::ROW_MAJOR, p, x, Df);
  145. std::cout<<Df+1e-10;
  146. }
  147. Clear();
  148. }
  149. static void test() {
  150. int p = 3;
  151. int dof = 1;
  152. int Nt = p+1, Np = 2*p+1;
  153. auto print_coeff = [&](Vector<Real> S) {
  154. Long idx=0;
  155. for (Long k=0;k<dof;k++) {
  156. for (Long n=0;n<=p;n++) {
  157. std::cout<<Vector<Real>(2*n+2, S.begin()+idx);
  158. idx+=2*n+2;
  159. }
  160. }
  161. std::cout<<'\n';
  162. };
  163. Vector<Real> r_theta_phi, theta_phi;
  164. { // Set r_theta_phi, theta_phi
  165. Vector<Real> leg_nodes = LegendreNodes(Nt-1);
  166. for (Long i=0;i<Nt;i++) {
  167. for (Long j=0;j<Np;j++) {
  168. r_theta_phi.PushBack(1);
  169. r_theta_phi.PushBack(leg_nodes[i]);
  170. r_theta_phi.PushBack(j * 2 * const_pi<Real>() / Np);
  171. theta_phi.PushBack(leg_nodes[i]);
  172. theta_phi.PushBack(j * 2 * const_pi<Real>() / Np);
  173. }
  174. }
  175. }
  176. int Ncoeff = (p + 1) * (p + 1);
  177. Vector<Real> Xcoeff(dof * Ncoeff), Xgrid;
  178. for (int i=0;i<Xcoeff.Dim();i++) Xcoeff[i]=i+1;
  179. SHC2Grid(Xcoeff, sctl::SHCArrange::COL_MAJOR_NONZERO, p, Nt, Np, &Xgrid);
  180. std::cout<<Matrix<Real>(Nt*dof, Np, Xgrid.begin())<<'\n';
  181. {
  182. Vector<Real> val;
  183. SHCEval(Xcoeff, sctl::SHCArrange::COL_MAJOR_NONZERO, p, theta_phi, val);
  184. Matrix<Real>(dof, val.Dim()/dof, val.begin(), false) = Matrix<Real>(val.Dim()/dof, dof, val.begin()).Transpose();
  185. std::cout<<Matrix<Real>(val.Dim()/Np, Np, val.begin()) - Matrix<Real>(Nt*dof, Np, Xgrid.begin())+1e-10<<'\n';
  186. }
  187. Grid2SHC(Xgrid, Nt, Np, p, Xcoeff, sctl::SHCArrange::ROW_MAJOR);
  188. print_coeff(Xcoeff);
  189. //SphericalHarmonics<Real>::WriteVTK("test", nullptr, &Xcoeff, sctl::SHCArrange::ROW_MAJOR, p, 32);
  190. Clear();
  191. }
  192. /**
  193. * \brief Clear all precomputed data. This must be done before the program exits to avoid memory leaks.
  194. */
  195. static void Clear() { MatrixStore().Resize(0); }
  196. private:
  197. // Probably don't work anymore, need to be updated :(
  198. static void SHC2GridTranspose(const Vector<Real>& X, Long p0, Long p1, Vector<Real>& S);
  199. static void RotateAll(const Vector<Real>& S, Long p0, Long dof, Vector<Real>& S_);
  200. static void RotateTranspose(const Vector<Real>& S_, Long p0, Long dof, Vector<Real>& S);
  201. static void StokesSingularInteg(const Vector<Real>& S, Long p0, Long p1, Vector<Real>* SLMatrix=nullptr, Vector<Real>* DLMatrix=nullptr);
  202. static void Grid2SHC_(const Vector<Real>& X, Long Nt, Long Np, Long p, Vector<Real>& B1);
  203. static void SHCArrange0(const Vector<Real>& B1, Long p, Vector<Real>& S, SHCArrange arrange);
  204. static void SHC2Grid_(const Vector<Real>& S, Long p, Long Nt, Long Np, Vector<Real>* X, Vector<Real>* X_theta=nullptr, Vector<Real>* X_phi=nullptr);
  205. static void SHCArrange1(const Vector<Real>& S_in, SHCArrange arrange_out, Long p, Vector<Real>& S_out);
  206. /**
  207. * \brief Computes all the Associated Legendre Polynomials (normalized) up to the specified degree.
  208. * \param[in] degree The degree up to which the Legendre polynomials have to be computed.
  209. * \param[in] X The input values for which the polynomials have to be computed.
  210. * \param[in] N The number of input points.
  211. * \param[out] poly_val The output array of size (degree+1)*(degree+2)*N/2 containing the computed polynomial values.
  212. * The output values are in the order:
  213. * P(n,m)[i] => {P(0,0)[0], P(0,0)[1], ..., P(0,0)[N-1], P(1,0)[0], ..., P(1,0)[N-1],
  214. * P(2,0)[0], ..., P(degree,0)[N-1], P(1,1)[0], ...,P(2,1)[0], ..., P(degree,degree)[N-1]}
  215. */
  216. static void LegPoly(Vector<Real>& poly_val, const Vector<Real>& X, Long degree);
  217. static void LegPolyDeriv(Vector<Real>& poly_val, const Vector<Real>& X, Long degree);
  218. static const Vector<Real>& LegendreNodes(Long p1);
  219. static const Vector<Real>& LegendreWeights(Long p1);
  220. static const Vector<Real>& SingularWeights(Long p1);
  221. static const Matrix<Real>& MatFourier(Long p0, Long p1);
  222. static const Matrix<Real>& MatFourierInv(Long p0, Long p1);
  223. static const Matrix<Real>& MatFourierGrad(Long p0, Long p1);
  224. static const FFT<Real>& OpFourier(Long Np);
  225. static const FFT<Real>& OpFourierInv(Long Np);
  226. static const std::vector<Matrix<Real>>& MatLegendre(Long p0, Long p1);
  227. static const std::vector<Matrix<Real>>& MatLegendreInv(Long p0, Long p1);
  228. static const std::vector<Matrix<Real>>& MatLegendreGrad(Long p0, Long p1);
  229. // Evaluate all Spherical Harmonic basis functions up to order p at (theta, phi) coordinates.
  230. static void SHBasisEval(Long p, const Vector<Real>& cos_theta_phi, Matrix<Real>& M);
  231. static void VecSHBasisEval(Long p, const Vector<Real>& cos_theta_phi, Matrix<Real>& M);
  232. static const std::vector<Matrix<Real>>& MatRotate(Long p0);
  233. template <bool SLayer, bool DLayer> static void StokesSingularInteg_(const Vector<Real>& X0, Long p0, Long p1, Vector<Real>& SL, Vector<Real>& DL);
  234. struct MatrixStorage{
  235. MatrixStorage(){
  236. const Long size = SCTL_SHMAXDEG;
  237. Resize(size);
  238. }
  239. void Resize(Long size){
  240. Qx_ .resize(size);
  241. Qw_ .resize(size);
  242. Sw_ .resize(size);
  243. Mf_ .resize(size*size);
  244. Mdf_.resize(size*size);
  245. Ml_ .resize(size*size);
  246. Mdl_.resize(size*size);
  247. Mr_ .resize(size);
  248. Mfinv_ .resize(size*size);
  249. Mlinv_ .resize(size*size);
  250. Mfft_.resize(size);
  251. Mfftinv_.resize(size);
  252. }
  253. std::vector<Vector<Real>> Qx_;
  254. std::vector<Vector<Real>> Qw_;
  255. std::vector<Vector<Real>> Sw_;
  256. std::vector<Matrix<Real>> Mf_ ;
  257. std::vector<Matrix<Real>> Mdf_;
  258. std::vector<std::vector<Matrix<Real>>> Ml_ ;
  259. std::vector<std::vector<Matrix<Real>>> Mdl_;
  260. std::vector<std::vector<Matrix<Real>>> Mr_;
  261. std::vector<Matrix<Real>> Mfinv_ ;
  262. std::vector<std::vector<Matrix<Real>>> Mlinv_ ;
  263. std::vector<FFT<Real>> Mfft_;
  264. std::vector<FFT<Real>> Mfftinv_;
  265. };
  266. static MatrixStorage& MatrixStore(){
  267. static MatrixStorage storage;
  268. return storage;
  269. }
  270. };
  271. template class SphericalHarmonics<double>;
  272. } // end namespace
  273. #include SCTL_INCLUDE(sph_harm.txx)
  274. #endif // _SCTL_SPH_HARM_HPP_