1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615 |
- #include SCTL_INCLUDE(legendre_rule.hpp)
- // TODO: Replace work vectors with dynamic-arrays
- namespace SCTL_NAMESPACE {
- template <class Real> void SphericalHarmonics<Real>::Grid2SHC(const Vector<Real>& X, Long Nt, Long Np, Long p1, Vector<Real>& S, SHCArrange arrange){
- const auto& Mf = OpFourierInv(Np);
- assert(Mf.Dim(0) == Np);
- const std::vector<Matrix<Real>>& Ml = SphericalHarmonics<Real>::MatLegendreInv(Nt-1,p1);
- assert((Long)Ml.size() == p1+1);
- Long N = X.Dim() / (Np*Nt);
- assert(X.Dim() == N*Np*Nt);
- Vector<Real> B0((2*p1+1) * N*Nt);
- #pragma omp parallel
- { // B0 <-- Transpose(FFT(X))
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N*Nt/omp_p;
- Long b=(tid+1)*N*Nt/omp_p;
- Vector<Real> buff(Mf.Dim(1));
- Long fft_coeff_len = std::min(buff.Dim(), 2*p1+2);
- Matrix<Real> B0_(2*p1+1, N*Nt, B0.begin(), false);
- const Matrix<Real> MX(N * Nt, Np, (Iterator<Real>)X.begin(), false);
- for (Long i = a; i < b; i++) {
- { // buff <-- FFT(Xi)
- const Vector<Real> Xi(Np, (Iterator<Real>)X.begin() + Np * i, false);
- Mf.Execute(Xi, buff);
- }
- { // B0 <-- Transpose(buff)
- B0_[0][i] = buff[0]; // skipping buff[1] == 0
- for (Long j = 2; j < fft_coeff_len; j++) B0_[j-1][i] = buff[j];
- for (Long j = fft_coeff_len; j < 2*p1+2; j++) B0_[j-1][i] = 0;
- }
- }
- }
- Vector<Real> B1(N*(p1+1)*(p1+1));
- #pragma omp parallel
- { // Evaluate Legendre polynomial
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long offset0=0;
- Long offset1=0;
- for (Long i = 0; i < p1+1; i++) {
- Long N_ = (i==0 ? N : 2*N);
- Matrix<Real> Min (N_, Nt , B0.begin()+offset0, false);
- Matrix<Real> Mout(N_, p1+1-i, B1.begin()+offset1, false);
- { // Mout = Min * Ml[i] // split between threads
- Long a=(tid+0)*N_/omp_p;
- Long b=(tid+1)*N_/omp_p;
- if (a < b) {
- Matrix<Real> Min_ (b-a, Min .Dim(1), Min [a], false);
- Matrix<Real> Mout_(b-a, Mout.Dim(1), Mout[a], false);
- Matrix<Real>::GEMM(Mout_,Min_,Ml[i]);
- }
- }
- offset0+=Min .Dim(0)*Min .Dim(1);
- offset1+=Mout.Dim(0)*Mout.Dim(1);
- }
- assert(offset0 == B0.Dim());
- assert(offset1 == B1.Dim());
- }
- B1 *= 1 / sqrt<Real>(4 * const_pi<Real>() * Np); // Scaling to match Zydrunas Fortran code.
- if (arrange == SHCArrange::ALL) { // S <-- Rearrange(B1)
- Long M = 2*(p1+1)*(p1+1);
- if(S.Dim() != N * M) S.ReInit(N * M);
- #pragma omp parallel
- { // S <-- Rearrange(B1)
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for (Long i = a; i < b; i++) {
- Long offset = 0;
- for (Long j = 0; j < p1+1; j++) {
- Long len = p1+1 - j;
- if (1) { // Set Real(S_n^m) for m=j and n=j..p
- ConstIterator<Real> B_ = B1.begin() + i*len + N*offset;
- Iterator<Real> S_ = S .begin() + i*M + j*(p1+1)*2 + j*2 + 0;
- for (Long k = 0; k < len; k++) S_[k * (p1+1)*2] = B_[k];
- offset += len;
- }
- if (j) { // Set Imag(S_n^m) for m=j and n=j..p
- ConstIterator<Real> B_ = B1.begin() + i*len + N*offset;
- Iterator<Real> S_ = S .begin() + i*M + j*(p1+1)*2 + j*2 + 1;
- for (Long k = 0; k < len; k++) S_[k * (p1+1)*2] = B_[k];
- offset += len;
- } else {
- Iterator<Real> S_ = S .begin() + i*M + j*(p1+1)*2 + j*2 + 1;
- for (Long k = 0; k < len; k++) S_[k * (p1+1)*2] = 0;
- }
- }
- }
- }
- }
- if (arrange == SHCArrange::ROW_MAJOR) { // S <-- Rearrange(B1)
- Long M = (p1+1)*(p1+2);
- if(S.Dim() != N * M) S.ReInit(N * M);
- #pragma omp parallel
- { // S <-- Rearrange(B1)
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for (Long i = a; i < b; i++) {
- Long offset = 0;
- for (Long j = 0; j < p1+1; j++) {
- Long len = p1+1 - j;
- if (1) { // Set Real(S_n^m) for m=j and n=j..p
- ConstIterator<Real> B_ = B1.begin() + i*len + N*offset;
- Iterator<Real> S_ = S .begin() + i*M + 0;
- for (Long k=0;k<len;k++) S_[(j+k)*(j+k+1) + 2*j] = B_[k];
- offset += len;
- }
- if (j) { // Set Imag(S_n^m) for m=j and n=j..p
- ConstIterator<Real> B_ = B1.begin() + i*len + N*offset;
- Iterator<Real> S_ = S .begin() + i*M + 1;
- for (Long k=0;k<len;k++) S_[(j+k)*(j+k+1) + 2*j] = B_[k];
- offset += len;
- } else {
- Iterator<Real> S_ = S .begin() + i*M + 1;
- for (Long k=0;k<len;k++) S_[(j+k)*(j+k+1) + 2*j] = 0;
- }
- }
- }
- }
- }
- if (arrange == SHCArrange::COL_MAJOR_NONZERO) { // S <-- Rearrange(B1)
- Long M = (p1+1)*(p1+1);
- if(S.Dim() != N * M) S.ReInit(N * M);
- #pragma omp parallel
- { // S <-- Rearrange(B1)
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for (Long i = a; i < b; i++) {
- Long offset = 0;
- for (Long j = 0; j < p1+1; j++) {
- Long len = p1+1 - j;
- if (1) { // Set Real(S_n^m) for m=j and n=j..p
- ConstIterator<Real> B_ = B1.begin() + i*len + N*offset;
- Iterator<Real> S_ = S .begin() + i*M + offset;
- for (Long k = 0; k < len; k++) S_[k] = B_[k];
- offset += len;
- }
- if (j) { // Set Imag(S_n^m) for m=j and n=j..p
- ConstIterator<Real> B_ = B1.begin() + i*len + N*offset;
- Iterator<Real> S_ = S .begin() + i*M + offset;
- for (Long k = 0; k < len; k++) S_[k] = B_[k];
- offset += len;
- }
- }
- }
- }
- }
- }
- template <class Real> void SphericalHarmonics<Real>::SHC2Grid(const Vector<Real>& S, SHCArrange arrange, Long p0, Long Nt, Long Np, Vector<Real>* X, Vector<Real>* X_phi, Vector<Real>* X_theta){
- const auto& Mf = OpFourier(Np);
- assert(Mf.Dim(1) == Np);
- const std::vector<Matrix<Real>>& Ml =SphericalHarmonics<Real>::MatLegendre (p0,Nt-1);
- const std::vector<Matrix<Real>>& Mdl=SphericalHarmonics<Real>::MatLegendreGrad(p0,Nt-1);
- assert((Long)Ml .size() == p0+1);
- assert((Long)Mdl.size() == p0+1);
- Long M, N;
- { // Set M, N
- if (arrange == SHCArrange::ALL) M = 2*(p0+1)*(p0+1);
- if (arrange == SHCArrange::ROW_MAJOR) M = (p0+1)*(p0+2);
- if (arrange == SHCArrange::COL_MAJOR_NONZERO) M = (p0+1)*(p0+1);
- N = S.Dim() / M;
- assert(S.Dim() == N * M);
- }
- Vector<Real> B0(N*(p0+1)*(p0+1));
- if (arrange == SHCArrange::ALL) { // B0 <-- Rearrange(S)
- #pragma omp parallel
- { // B0 <-- Rearrange(S)
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for (Long i = a; i < b; i++) {
- Long offset = 0;
- for (Long j = 0; j < p0+1; j++) {
- Long len = p0+1 - j;
- if (1) { // Get Real(S_n^m) for m=j and n=j..p
- Iterator<Real> B_ = B0.begin() + i*len + N*offset;
- ConstIterator<Real> S_ = S .begin() + i*M + j*(p0+1)*2 + j*2 + 0;
- for (Long k = 0; k < len; k++) B_[k] = S_[k * (p0+1)*2];
- offset += len;
- }
- if (j) { // Get Imag(S_n^m) for m=j and n=j..p
- Iterator<Real> B_ = B0.begin() + i*len + N*offset;
- ConstIterator<Real> S_ = S .begin() + i*M + j*(p0+1)*2 + j*2 + 1;
- for (Long k = 0; k < len; k++) B_[k] = S_[k * (p0+1)*2];
- offset += len;
- }
- }
- }
- }
- }
- if (arrange == SHCArrange::ROW_MAJOR) { // B0 <-- Rearrange(S)
- #pragma omp parallel
- { // B0 <-- Rearrange(S)
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for (Long i = a; i < b; i++) {
- Long offset = 0;
- for (Long j = 0; j < p0+1; j++) {
- Long len = p0+1 - j;
- if (1) { // Get Real(S_n^m) for m=j and n=j..p
- Iterator<Real> B_ = B0.begin() + i*len + N*offset;
- ConstIterator<Real> S_ = S .begin() + i*M + 0;
- for (Long k=0;k<len;k++) B_[k] = S_[(j+k)*(j+k+1) + 2*j];
- offset += len;
- }
- if (j) { // Get Imag(S_n^m) for m=j and n=j..p
- Iterator<Real> B_ = B0.begin() + i*len + N*offset;
- ConstIterator<Real> S_ = S .begin() + i*M + 1;
- for (Long k=0;k<len;k++) B_[k] = S_[(j+k)*(j+k+1) + 2*j];
- offset += len;
- }
- }
- }
- }
- }
- if (arrange == SHCArrange::COL_MAJOR_NONZERO) { // B0 <-- Rearrange(S)
- #pragma omp parallel
- { // B0 <-- Rearrange(S)
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for (Long i = a; i < b; i++) {
- Long offset = 0;
- for (Long j = 0; j < p0+1; j++) {
- Long len = p0+1 - j;
- if (1) { // Get Real(S_n^m) for m=j and n=j..p
- Iterator<Real> B_ = B0.begin() + i*len + N*offset;
- ConstIterator<Real> S_ = S .begin() + i*M + offset;
- for (Long k = 0; k < len; k++) B_[k] = S_[k];
- offset += len;
- }
- if (j) { // Get Imag(S_n^m) for m=j and n=j..p
- Iterator<Real> B_ = B0.begin() + i*len + N*offset;
- ConstIterator<Real> S_ = S .begin() + i*M + offset;
- for (Long k = 0; k < len; k++) B_[k] = S_[k];
- offset += len;
- }
- }
- }
- }
- }
- B0 *= sqrt<Real>(4 * const_pi<Real>() * Np); // Scaling to match Zydrunas Fortran code.
- if(X && X ->Dim()!=N*Np*Nt) X ->ReInit(N*Np*Nt);
- if(X_theta && X_theta->Dim()!=N*Np*Nt) X_theta->ReInit(N*Np*Nt);
- if(X_phi && X_phi ->Dim()!=N*Np*Nt) X_phi ->ReInit(N*Np*Nt);
- Vector<Real> B1(N*(2*p0+1)*Nt);
- if(X || X_phi){
- #pragma omp parallel
- { // Evaluate Legendre polynomial
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long offset0=0;
- Long offset1=0;
- for(Long i=0;i<p0+1;i++){
- Long N_ = (i==0 ? N : 2*N);
- Matrix<Real> Min (N_, p0+1-i, B0.begin()+offset0, false);
- Matrix<Real> Mout(N_, Nt , B1.begin()+offset1, false);
- { // Mout = Min * Ml[i] // split between threads
- Long a=(tid+0)*N_/omp_p;
- Long b=(tid+1)*N_/omp_p;
- if(a<b){
- Matrix<Real> Min_ (b-a, Min .Dim(1), Min [a], false);
- Matrix<Real> Mout_(b-a, Mout.Dim(1), Mout[a], false);
- Matrix<Real>::GEMM(Mout_,Min_,Ml[i]);
- }
- }
- offset0+=Min .Dim(0)*Min .Dim(1);
- offset1+=Mout.Dim(0)*Mout.Dim(1);
- }
- }
- #pragma omp parallel
- { // Transpose and evaluate Fourier
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N*Nt/omp_p;
- Long b=(tid+1)*N*Nt/omp_p;
- Vector<Real> buff(Mf.Dim(0)); buff = 0;
- Long fft_coeff_len = std::min(buff.Dim(), 2*p0+2);
- Matrix<Real> B1_(2*p0+1, N*Nt, B1.begin(), false);
- for (Long i = a; i < b; i++) {
- { // buff <-- Transpose(B1)
- buff[0] = B1_[0][i];
- buff[1] = 0;
- for (Long j = 2; j < fft_coeff_len; j++) buff[j] = B1_[j-1][i];
- for (Long j = fft_coeff_len; j < buff.Dim(); j++) buff[j] = 0;
- }
- { // X <-- FFT(buff)
- Vector<Real> Xi(Np, X->begin() + Np * i, false);
- Mf.Execute(buff, Xi);
- }
- if(X_phi){ // Evaluate Fourier gradient
- { // buff <-- Transpose(B1)
- buff[0] = 0;
- buff[1] = 0;
- for (Long j = 2; j < fft_coeff_len; j++) buff[j] = B1_[j-1][i];
- for (Long j = fft_coeff_len; j < buff.Dim(); j++) buff[j] = 0;
- for (Long j = 1; j < buff.Dim()/2; j++) {
- Real x = buff[2*j+0];
- Real y = buff[2*j+1];
- buff[2*j+0] = -j*y;
- buff[2*j+1] = j*x;
- }
- }
- { // X_phi <-- FFT(buff)
- Vector<Real> Xi(Np, X_phi->begin() + Np * i, false);
- Mf.Execute(buff, Xi);
- }
- }
- }
- }
- }
- if(X_theta){
- #pragma omp parallel
- { // Evaluate Legendre gradient
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long offset0=0;
- Long offset1=0;
- for(Long i=0;i<p0+1;i++){
- Long N_ = (i==0 ? N : 2*N);
- Matrix<Real> Min (N_, p0+1-i, B0.begin()+offset0, false);
- Matrix<Real> Mout(N_, Nt , B1.begin()+offset1, false);
- { // Mout = Min * Mdl[i] // split between threads
- Long a=(tid+0)*N_/omp_p;
- Long b=(tid+1)*N_/omp_p;
- if(a<b){
- Matrix<Real> Min_ (b-a, Min .Dim(1), Min [a], false);
- Matrix<Real> Mout_(b-a, Mout.Dim(1), Mout[a], false);
- Matrix<Real>::GEMM(Mout_,Min_,Mdl[i]);
- }
- }
- offset0+=Min .Dim(0)*Min .Dim(1);
- offset1+=Mout.Dim(0)*Mout.Dim(1);
- }
- }
- #pragma omp parallel
- { // Transpose and evaluate Fourier
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N*Nt/omp_p;
- Long b=(tid+1)*N*Nt/omp_p;
- Vector<Real> buff(Mf.Dim(0)); buff = 0;
- Long fft_coeff_len = std::min(buff.Dim(), 2*p0+2);
- Matrix<Real> B1_(2*p0+1, N*Nt, B1.begin(), false);
- for (Long i = a; i < b; i++) {
- { // buff <-- Transpose(B1)
- buff[0] = B1_[0][i];
- buff[1] = 0;
- for (Long j = 2; j < fft_coeff_len; j++) buff[j] = B1_[j-1][i];
- for (Long j = fft_coeff_len; j < buff.Dim(); j++) buff[j] = 0;
- }
- { // Xi <-- FFT(buff)
- Vector<Real> Xi(Np, X_theta->begin() + Np * i, false);
- Mf.Execute(buff, Xi);
- }
- }
- }
- }
- }
- template <class Real> void SphericalHarmonics<Real>::SHC2Pole(const Vector<Real>& S, SHCArrange arrange, Long p0, Vector<Real>& P){
- Vector<Real> QP[2];
- { // Set QP // TODO: store these weights
- Vector<Real> x(1), alp;
- const Real SQRT2PI = sqrt<Real>(4 * const_pi<Real>());
- for (Long i = 0; i < 2; i++) {
- x = (i ? -1 : 1);
- LegPoly(alp, x, p0);
- QP[i].ReInit(p0 + 1, alp.begin());
- QP[i] *= SQRT2PI;
- }
- }
- Long M, N;
- { // Set M, N
- if (arrange == SHCArrange::ALL) M = 2*(p0+1)*(p0+1);
- if (arrange == SHCArrange::ROW_MAJOR) M = (p0+1)*(p0+2);
- if (arrange == SHCArrange::COL_MAJOR_NONZERO) M = (p0+1)*(p0+1);
- N = S.Dim() / M;
- assert(S.Dim() == N * M);
- }
- if(P.Dim() != N * 2) P.ReInit(N * 2);
- if (arrange == SHCArrange::ALL) {
- #pragma omp parallel
- { // Compute pole
- Integer tid = omp_get_thread_num();
- Integer omp_p = omp_get_num_threads();
- Long a = (tid + 0) * N / omp_p;
- Long b = (tid + 1) * N / omp_p;
- for (Long i = a; i < b; i++) {
- Real P_[2] = {0, 0};
- for (Long j = 0; j < p0 + 1; j++) {
- P_[0] += S[i*M + j*(p0+1)*2] * QP[0][j];
- P_[1] += S[i*M + j*(p0+1)*2] * QP[1][j];
- }
- P[2*i+0] = P_[0];
- P[2*i+1] = P_[1];
- }
- }
- }
- if (arrange == SHCArrange::ROW_MAJOR) {
- #pragma omp parallel
- { // Compute pole
- Integer tid = omp_get_thread_num();
- Integer omp_p = omp_get_num_threads();
- Long a = (tid + 0) * N / omp_p;
- Long b = (tid + 1) * N / omp_p;
- for (Long i = a; i < b; i++) {
- Long idx = 0;
- Real P_[2] = {0, 0};
- for (Long j = 0; j < p0 + 1; j++) {
- P_[0] += S[i*M+idx] * QP[0][j];
- P_[1] += S[i*M+idx] * QP[1][j];
- idx += 2*(j+1);
- }
- P[2*i+0] = P_[0];
- P[2*i+1] = P_[1];
- }
- }
- }
- if (arrange == SHCArrange::COL_MAJOR_NONZERO) {
- #pragma omp parallel
- { // Compute pole
- Integer tid = omp_get_thread_num();
- Integer omp_p = omp_get_num_threads();
- Long a = (tid + 0) * N / omp_p;
- Long b = (tid + 1) * N / omp_p;
- for (Long i = a; i < b; i++) {
- Real P_[2] = {0, 0};
- for (Long j = 0; j < p0 + 1; j++) {
- P_[0] += S[i*M+j] * QP[0][j];
- P_[1] += S[i*M+j] * QP[1][j];
- }
- P[2*i+0] = P_[0];
- P[2*i+1] = P_[1];
- }
- }
- }
- }
- template <class Real> void SphericalHarmonics<Real>::WriteVTK(const char* fname, const Vector<Real>* S, const Vector<Real>* v_ptr, SHCArrange arrange, Long p0, Long p1, Real period, const Comm& comm){
- typedef double VTKReal;
- Vector<Real> SS;
- if (S == nullptr) {
- Integer p = 2;
- Integer Ncoeff = (p + 1) * (p + 1);
- Vector<Real> SSS(COORD_DIM * Ncoeff), SSS_grid;
- SSS.SetZero();
- SSS[1+0*p+0*Ncoeff] = sqrt<Real>(2.0)/sqrt<Real>(3.0);
- SSS[1+1*p+1*Ncoeff] = 1/sqrt<Real>(3.0);
- SSS[1+2*p+2*Ncoeff] = 1/sqrt<Real>(3.0);
- SphericalHarmonics<Real>::SHC2Grid(SSS, SHCArrange::COL_MAJOR_NONZERO, p, p+1, 2*p+2, &SSS_grid);
- SphericalHarmonics<Real>::Grid2SHC(SSS_grid, p+1, 2*p+2, p0, SS, arrange);
- S = &SS;
- }
- Vector<Real> X, Xp, V, Vp;
- { // Upsample X
- const Vector<Real>& X0=*S;
- SphericalHarmonics<Real>::SHC2Grid(X0, arrange, p0, p1+1, 2*p1, &X);
- SphericalHarmonics<Real>::SHC2Pole(X0, arrange, p0, Xp);
- }
- if(v_ptr){ // Upsample V
- const Vector<Real>& X0=*v_ptr;
- SphericalHarmonics<Real>::SHC2Grid(X0, arrange, p0, p1+1, 2*p1, &V);
- SphericalHarmonics<Real>::SHC2Pole(X0, arrange, p0, Vp);
- }
- std::vector<VTKReal> point_coord;
- std::vector<VTKReal> point_value;
- std::vector<int32_t> poly_connect;
- std::vector<int32_t> poly_offset;
- { // Set point_coord, point_value, poly_connect
- Long N_ves = X.Dim()/(2*p1*(p1+1)*COORD_DIM); // Number of vesicles
- assert(Xp.Dim() == N_ves*2*COORD_DIM);
- for(Long k=0;k<N_ves;k++){ // Set point_coord
- Real C[COORD_DIM]={0,0,0};
- if(period>0){
- for(Integer l=0;l<COORD_DIM;l++) C[l]=0;
- for(Long i=0;i<p1+1;i++){
- for(Long j=0;j<2*p1;j++){
- for(Integer l=0;l<COORD_DIM;l++){
- C[l]+=X[j+2*p1*(i+(p1+1)*(l+k*COORD_DIM))];
- }
- }
- }
- for(Integer l=0;l<COORD_DIM;l++) C[l]+=Xp[0+2*(l+k*COORD_DIM)];
- for(Integer l=0;l<COORD_DIM;l++) C[l]+=Xp[1+2*(l+k*COORD_DIM)];
- for(Integer l=0;l<COORD_DIM;l++) C[l]/=2*p1*(p1+1)+2;
- for(Integer l=0;l<COORD_DIM;l++) C[l]=(round(C[l]/period))*period;
- }
- for(Long i=0;i<p1+1;i++){
- for(Long j=0;j<2*p1;j++){
- for(Integer l=0;l<COORD_DIM;l++){
- point_coord.push_back(X[j+2*p1*(i+(p1+1)*(l+k*COORD_DIM))]-C[l]);
- }
- }
- }
- for(Integer l=0;l<COORD_DIM;l++) point_coord.push_back(Xp[0+2*(l+k*COORD_DIM)]-C[l]);
- for(Integer l=0;l<COORD_DIM;l++) point_coord.push_back(Xp[1+2*(l+k*COORD_DIM)]-C[l]);
- }
- if(v_ptr) {
- Long data__dof = V.Dim() / (2*p1*(p1+1));
- for(Long k=0;k<N_ves;k++){ // Set point_value
- for(Long i=0;i<p1+1;i++){
- for(Long j=0;j<2*p1;j++){
- for(Long l=0;l<data__dof;l++){
- point_value.push_back(V[j+2*p1*(i+(p1+1)*(l+k*data__dof))]);
- }
- }
- }
- for(Long l=0;l<data__dof;l++) point_value.push_back(Vp[0+2*(l+k*data__dof)]);
- for(Long l=0;l<data__dof;l++) point_value.push_back(Vp[1+2*(l+k*data__dof)]);
- }
- }
- for(Long k=0;k<N_ves;k++){
- for(Long j=0;j<2*p1;j++){
- Long i0= 0;
- Long i1=p1;
- Long j0=((j+0) );
- Long j1=((j+1)%(2*p1));
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*(p1+1)+0);
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i0+j0);
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i0+j1);
- poly_offset.push_back(poly_connect.size());
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*(p1+1)+1);
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i1+j0);
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i1+j1);
- poly_offset.push_back(poly_connect.size());
- }
- for(Long i=0;i<p1;i++){
- for(Long j=0;j<2*p1;j++){
- Long i0=((i+0) );
- Long i1=((i+1) );
- Long j0=((j+0) );
- Long j1=((j+1)%(2*p1));
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i0+j0);
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i1+j0);
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i1+j1);
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i0+j1);
- poly_offset.push_back(poly_connect.size());
- }
- }
- }
- }
- Integer np = comm.Size();
- Integer myrank = comm.Rank();
- std::vector<VTKReal>& coord=point_coord;
- std::vector<VTKReal>& value=point_value;
- std::vector<int32_t>& connect=poly_connect;
- std::vector<int32_t>& offset=poly_offset;
- Long pt_cnt=coord.size()/COORD_DIM;
- Long poly_cnt=poly_offset.size();
- // Open file for writing.
- std::stringstream vtufname;
- vtufname<<fname<<"_"<<std::setfill('0')<<std::setw(6)<<myrank<<".vtp";
- std::ofstream vtufile;
- vtufile.open(vtufname.str().c_str());
- if(vtufile.fail()) return;
- bool isLittleEndian;
- { // Set isLittleEndian
- uint16_t number = 0x1;
- uint8_t *numPtr = (uint8_t*)&number;
- isLittleEndian=(numPtr[0] == 1);
- }
- // Proceed to write to file.
- Long data_size=0;
- vtufile<<"<?xml version=\"1.0\"?>\n";
- if(isLittleEndian) vtufile<<"<VTKFile type=\"PolyData\" version=\"0.1\" byte_order=\"LittleEndian\">\n";
- else vtufile<<"<VTKFile type=\"PolyData\" version=\"0.1\" byte_order=\"BigEndian\">\n";
- //===========================================================================
- vtufile<<" <PolyData>\n";
- vtufile<<" <Piece NumberOfPoints=\""<<pt_cnt<<"\" NumberOfVerts=\"0\" NumberOfLines=\"0\" NumberOfStrips=\"0\" NumberOfPolys=\""<<poly_cnt<<"\">\n";
- //---------------------------------------------------------------------------
- vtufile<<" <Points>\n";
- vtufile<<" <DataArray type=\"Float"<<sizeof(VTKReal)*8<<"\" NumberOfComponents=\""<<COORD_DIM<<"\" Name=\"Position\" format=\"appended\" offset=\""<<data_size<<"\" />\n";
- data_size+=sizeof(uint32_t)+coord.size()*sizeof(VTKReal);
- vtufile<<" </Points>\n";
- //---------------------------------------------------------------------------
- if(value.size()){ // value
- vtufile<<" <PointData>\n";
- vtufile<<" <DataArray type=\"Float"<<sizeof(VTKReal)*8<<"\" NumberOfComponents=\""<<value.size()/pt_cnt<<"\" Name=\""<<"value"<<"\" format=\"appended\" offset=\""<<data_size<<"\" />\n";
- data_size+=sizeof(uint32_t)+value.size()*sizeof(VTKReal);
- vtufile<<" </PointData>\n";
- }
- //---------------------------------------------------------------------------
- vtufile<<" <Polys>\n";
- vtufile<<" <DataArray type=\"Int32\" Name=\"connectivity\" format=\"appended\" offset=\""<<data_size<<"\" />\n";
- data_size+=sizeof(uint32_t)+connect.size()*sizeof(int32_t);
- vtufile<<" <DataArray type=\"Int32\" Name=\"offsets\" format=\"appended\" offset=\""<<data_size<<"\" />\n";
- data_size+=sizeof(uint32_t)+offset.size() *sizeof(int32_t);
- vtufile<<" </Polys>\n";
- //---------------------------------------------------------------------------
- vtufile<<" </Piece>\n";
- vtufile<<" </PolyData>\n";
- //===========================================================================
- vtufile<<" <AppendedData encoding=\"raw\">\n";
- vtufile<<" _";
- int32_t block_size;
- block_size=coord.size()*sizeof(VTKReal); vtufile.write((char*)&block_size, sizeof(int32_t)); vtufile.write((char*)&coord [0], coord.size()*sizeof(VTKReal));
- if(value.size()){ // value
- block_size=value.size()*sizeof(VTKReal); vtufile.write((char*)&block_size, sizeof(int32_t)); vtufile.write((char*)&value [0], value.size()*sizeof(VTKReal));
- }
- block_size=connect.size()*sizeof(int32_t); vtufile.write((char*)&block_size, sizeof(int32_t)); vtufile.write((char*)&connect[0], connect.size()*sizeof(int32_t));
- block_size=offset .size()*sizeof(int32_t); vtufile.write((char*)&block_size, sizeof(int32_t)); vtufile.write((char*)&offset [0], offset .size()*sizeof(int32_t));
- vtufile<<"\n";
- vtufile<<" </AppendedData>\n";
- //===========================================================================
- vtufile<<"</VTKFile>\n";
- vtufile.close();
- if(myrank) return;
- std::stringstream pvtufname;
- pvtufname<<fname<<".pvtp";
- std::ofstream pvtufile;
- pvtufile.open(pvtufname.str().c_str());
- if(pvtufile.fail()) return;
- pvtufile<<"<?xml version=\"1.0\"?>\n";
- pvtufile<<"<VTKFile type=\"PPolyData\">\n";
- pvtufile<<" <PPolyData GhostLevel=\"0\">\n";
- pvtufile<<" <PPoints>\n";
- pvtufile<<" <PDataArray type=\"Float"<<sizeof(VTKReal)*8<<"\" NumberOfComponents=\""<<COORD_DIM<<"\" Name=\"Position\"/>\n";
- pvtufile<<" </PPoints>\n";
- if(value.size()){ // value
- pvtufile<<" <PPointData>\n";
- pvtufile<<" <PDataArray type=\"Float"<<sizeof(VTKReal)*8<<"\" NumberOfComponents=\""<<value.size()/pt_cnt<<"\" Name=\""<<"value"<<"\"/>\n";
- pvtufile<<" </PPointData>\n";
- }
- {
- // Extract filename from path.
- std::stringstream vtupath;
- vtupath<<'/'<<fname;
- std::string pathname = vtupath.str();
- auto found = pathname.find_last_of("/\\");
- std::string fname_ = pathname.substr(found+1);
- for(Integer i=0;i<np;i++) pvtufile<<" <Piece Source=\""<<fname_<<"_"<<std::setfill('0')<<std::setw(6)<<i<<".vtp\"/>\n";
- }
- pvtufile<<" </PPolyData>\n";
- pvtufile<<"</VTKFile>\n";
- pvtufile.close();
- }
- template <class Real> void SphericalHarmonics<Real>::LegPolyDeriv(Vector<Real>& poly_val, const Vector<Real>& X, Long degree){
- Long N = X.Dim();
- Long Npoly = (degree + 1) * (degree + 2) / 2;
- if (poly_val.Dim() != N * Npoly) {
- poly_val.ReInit(N * Npoly);
- }
- Vector<Real> leg_poly(Npoly * N);
- LegPoly(leg_poly, X, degree);
- for(Long m=0;m<=degree;m++){
- for(Long n=0;n<=degree;n++) if(m<=n){
- const Real* Pn =&leg_poly[0];
- const Real* Pn_=&leg_poly[0];
- if((m+0)<=(n+0)) Pn =&leg_poly[N*(((degree*2-abs(m+0)+1)*abs(m+0))/2+(n+0))];
- if((m+1)<=(n+0)) Pn_=&leg_poly[N*(((degree*2-abs(m+1)+1)*abs(m+1))/2+(n+0))];
- Real* Hn =&poly_val[N*(((degree*2-abs(m+0)+1)*abs(m+0))/2+(n+0))];
- Real c1=(abs(m+0)<=(n+0)?1.0:0)*m;
- Real c2=(abs(m+1)<=(n+0)?1.0:0)*sqrt(n+m+1)*sqrt(n>m?n-m:1);
- for(Long i=0;i<N;i++){
- Hn[i]=-(c1*X[i]*Pn[i]+c2*sqrt(1-X[i]*X[i])*Pn_[i])/sqrt(1-X[i]*X[i]);
- }
- }
- }
- }
- template <class Real> void SphericalHarmonics<Real>::LegPoly(Vector<Real>& poly_val, const Vector<Real>& X, Long degree){
- Long N = X.Dim();
- Long Npoly = (degree + 1) * (degree + 2) / 2;
- if (poly_val.Dim() != Npoly * N) {
- poly_val.ReInit(Npoly * N);
- }
- Real fact=1.0/(Real)sqrt(4*M_PI);
- std::vector<Real> u(N);
- for(Long n=0;n<N;n++){
- u[n]=sqrt(1-X[n]*X[n]);
- if(X[n]*X[n]>1.0) u[n]=0;
- poly_val[n]=fact;
- }
- Long idx = 0;
- Long idx_nxt = 0;
- for(Long i=1;i<=degree;i++){
- idx_nxt += N*(degree-i+2);
- Real c=(i==1?sqrt(3.0/2.0):1);
- if(i>1)c*=sqrt((Real)(2*i+1)/(2*i));
- for(Long n=0;n<N;n++){
- poly_val[idx_nxt+n]=-poly_val[idx+n]*u[n]*c;
- }
- idx = idx_nxt;
- }
- idx = 0;
- for(Long m=0;m<degree;m++){
- for(Long n=0;n<N;n++){
- Real pmm=0;
- Real pmmp1=poly_val[idx+n];
- Real pll;
- for(Long ll=m+1;ll<=degree;ll++){
- Real a=sqrt(((Real)(2*ll-1)*(2*ll+1))/((ll-m)*(ll+m)));
- Real b=sqrt(((Real)(2*ll+1)*(ll+m-1)*(ll-m-1))/((ll-m)*(ll+m)*(2*ll-3)));
- pll=X[n]*a*pmmp1-b*pmm;
- pmm=pmmp1;
- pmmp1=pll;
- poly_val[idx+N*(ll-m)+n]=pll;
- }
- }
- idx+=N*(degree-m+1);
- }
- }
- template <class Real> const Vector<Real>& SphericalHarmonics<Real>::LegendreNodes(Long p){
- assert(p<SCTL_SHMAXDEG);
- Vector<Real>& Qx=MatrixStore().Qx_[p];
- if(!Qx.Dim()){
- Vector<double> qx1(p+1);
- Vector<double> qw1(p+1);
- cgqf(p+1, 1, 0.0, 0.0, -1.0, 1.0, &qx1[0], &qw1[0]);
- assert(typeid(Real) == typeid(double) || typeid(Real) == typeid(float)); // TODO: works only for float and double
- if (Qx.Dim() != p+1) Qx.ReInit(p+1);
- for (Long i = 0; i < p + 1; i++) Qx[i] = -qx1[i];
- }
- return Qx;
- }
- template <class Real> const Vector<Real>& SphericalHarmonics<Real>::LegendreWeights(Long p){
- assert(p<SCTL_SHMAXDEG);
- Vector<Real>& Qw=MatrixStore().Qw_[p];
- if(!Qw.Dim()){
- Vector<double> qx1(p+1);
- Vector<double> qw1(p+1);
- cgqf(p+1, 1, 0.0, 0.0, -1.0, 1.0, &qx1[0], &qw1[0]);
- assert(typeid(Real) == typeid(double) || typeid(Real) == typeid(float)); // TODO: works only for float and double
- if (Qw.Dim() != p+1) Qw.ReInit(p+1);
- for (Long i = 0; i < p + 1; i++) Qw[i] = qw1[i];
- }
- return Qw;
- }
- template <class Real> const Vector<Real>& SphericalHarmonics<Real>::SingularWeights(Long p1){
- assert(p1<SCTL_SHMAXDEG);
- Vector<Real>& Sw=MatrixStore().Sw_[p1];
- if(!Sw.Dim()){
- const Vector<Real>& qx1 = LegendreNodes(p1);
- const Vector<Real>& qw1 = LegendreWeights(p1);
- std::vector<Real> Yf(p1+1,0);
- { // Set Yf
- Vector<Real> x0(1); x0=1.0;
- Vector<Real> alp0((p1+1)*(p1+2)/2);
- LegPoly(alp0, x0, p1);
- Vector<Real> alp((p1+1) * (p1+1)*(p1+2)/2);
- LegPoly(alp, qx1, p1);
- for(Long j=0;j<p1+1;j++){
- for(Long i=0;i<p1+1;i++){
- Yf[i]+=4*M_PI/(2*j+1) * alp0[j] * alp[j*(p1+1)+i];
- }
- }
- }
- Sw.ReInit(p1+1);
- for(Long i=0;i<p1+1;i++){
- Sw[i]=(qw1[i]*M_PI/p1)*Yf[i]/cos(acos(qx1[i])/2);
- }
- }
- return Sw;
- }
- template <class Real> const Matrix<Real>& SphericalHarmonics<Real>::MatFourier(Long p0, Long p1){
- assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
- Matrix<Real>& Mf =MatrixStore().Mf_ [p0*SCTL_SHMAXDEG+p1];
- if(!Mf.Dim(0)){
- const Real SQRT2PI=sqrt(2*M_PI);
- { // Set Mf
- Matrix<Real> M(2*p0,2*p1);
- for(Long j=0;j<2*p1;j++){
- M[0][j]=SQRT2PI*1.0;
- for(Long k=1;k<p0;k++){
- M[2*k-1][j]=SQRT2PI*cos(j*k*M_PI/p1);
- M[2*k-0][j]=SQRT2PI*sin(j*k*M_PI/p1);
- }
- M[2*p0-1][j]=SQRT2PI*cos(j*p0*M_PI/p1);
- }
- Mf=M;
- }
- }
- return Mf;
- }
- template <class Real> const Matrix<Real>& SphericalHarmonics<Real>::MatFourierInv(Long p0, Long p1){
- assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
- Matrix<Real>& Mf =MatrixStore().Mfinv_ [p0*SCTL_SHMAXDEG+p1];
- if(!Mf.Dim(0)){
- const Real INVSQRT2PI=1.0/sqrt(2*M_PI)/p0;
- { // Set Mf
- Matrix<Real> M(2*p0,2*p1);
- M.SetZero();
- if(p1>p0) p1=p0;
- for(Long j=0;j<2*p0;j++){
- M[j][0]=INVSQRT2PI*0.5;
- for(Long k=1;k<p1;k++){
- M[j][2*k-1]=INVSQRT2PI*cos(j*k*M_PI/p0);
- M[j][2*k-0]=INVSQRT2PI*sin(j*k*M_PI/p0);
- }
- M[j][2*p1-1]=INVSQRT2PI*cos(j*p1*M_PI/p0);
- }
- if(p1==p0) for(Long j=0;j<2*p0;j++) M[j][2*p1-1]*=0.5;
- Mf=M;
- }
- }
- return Mf;
- }
- template <class Real> const FFT<Real>& SphericalHarmonics<Real>::OpFourier(Long Np){
- assert(Np<SCTL_SHMAXDEG);
- auto& Mf =MatrixStore().Mfftinv_ [Np];
- if(!Mf.Dim(0)){
- #pragma omp critical (SCTL_FFT_PLAN0)
- if(!Mf.Dim(0)){
- StaticArray<Long,1> fft_dim = {Np};
- Mf.Setup(FFT_Type::C2R, 1, Vector<Long>(1,fft_dim,false));
- }
- }
- return Mf;
- }
- template <class Real> const FFT<Real>& SphericalHarmonics<Real>::OpFourierInv(Long Np){
- assert(Np<SCTL_SHMAXDEG);
- auto& Mf =MatrixStore().Mfft_ [Np];
- if(!Mf.Dim(0)){
- #pragma omp critical (SCTL_FFT_PLAN1)
- if(!Mf.Dim(0)){
- StaticArray<Long,1> fft_dim = {Np};
- Mf.Setup(FFT_Type::R2C, 1, Vector<Long>(1,fft_dim,false));
- }
- }
- return Mf;
- }
- template <class Real> const Matrix<Real>& SphericalHarmonics<Real>::MatFourierGrad(Long p0, Long p1){
- assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
- Matrix<Real>& Mdf=MatrixStore().Mdf_[p0*SCTL_SHMAXDEG+p1];
- if(!Mdf.Dim(0)){
- const Real SQRT2PI=sqrt(2*M_PI);
- { // Set Mdf_
- Matrix<Real> M(2*p0,2*p1);
- for(Long j=0;j<2*p1;j++){
- M[0][j]=SQRT2PI*0.0;
- for(Long k=1;k<p0;k++){
- M[2*k-1][j]=-SQRT2PI*k*sin(j*k*M_PI/p1);
- M[2*k-0][j]= SQRT2PI*k*cos(j*k*M_PI/p1);
- }
- M[2*p0-1][j]=-SQRT2PI*p0*sin(j*p0*M_PI/p1);
- }
- Mdf=M;
- }
- }
- return Mdf;
- }
- template <class Real> const std::vector<Matrix<Real>>& SphericalHarmonics<Real>::MatLegendre(Long p0, Long p1){
- assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
- std::vector<Matrix<Real>>& Ml =MatrixStore().Ml_ [p0*SCTL_SHMAXDEG+p1];
- if(!Ml.size()){
- const Vector<Real>& qx1 = LegendreNodes(p1);
- Vector<Real> alp(qx1.Dim()*(p0+1)*(p0+2)/2);
- LegPoly(alp, qx1, p0);
- Ml.resize(p0+1);
- auto ptr = alp.begin();
- for(Long i=0;i<=p0;i++){
- Ml[i].ReInit(p0+1-i, qx1.Dim(), ptr);
- ptr+=Ml[i].Dim(0)*Ml[i].Dim(1);
- }
- }
- return Ml;
- }
- template <class Real> const std::vector<Matrix<Real>>& SphericalHarmonics<Real>::MatLegendreInv(Long p0, Long p1){
- assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
- std::vector<Matrix<Real>>& Ml =MatrixStore().Mlinv_ [p0*SCTL_SHMAXDEG+p1];
- if(!Ml.size()){
- const Vector<Real>& qx1 = LegendreNodes(p0);
- const Vector<Real>& qw1 = LegendreWeights(p0);
- Vector<Real> alp(qx1.Dim()*(p1+1)*(p1+2)/2);
- LegPoly(alp, qx1, p1);
- Ml.resize(p1+1);
- auto ptr = alp.begin();
- for(Long i=0;i<=p1;i++){
- Ml[i].ReInit(qx1.Dim(), p1+1-i);
- Matrix<Real> M(p1+1-i, qx1.Dim(), ptr, false);
- for(Long j=0;j<p1+1-i;j++){ // Transpose and weights
- for(Long k=0;k<qx1.Dim();k++){
- Ml[i][k][j]=M[j][k]*qw1[k]*2*M_PI;
- }
- }
- ptr+=Ml[i].Dim(0)*Ml[i].Dim(1);
- }
- }
- return Ml;
- }
- template <class Real> const std::vector<Matrix<Real>>& SphericalHarmonics<Real>::MatLegendreGrad(Long p0, Long p1){
- assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
- std::vector<Matrix<Real>>& Mdl=MatrixStore().Mdl_[p0*SCTL_SHMAXDEG+p1];
- if(!Mdl.size()){
- const Vector<Real>& qx1 = LegendreNodes(p1);
- Vector<Real> alp(qx1.Dim()*(p0+1)*(p0+2)/2);
- LegPolyDeriv(alp, qx1, p0);
- Mdl.resize(p0+1);
- auto ptr = alp.begin();
- for(Long i=0;i<=p0;i++){
- Mdl[i].ReInit(p0+1-i, qx1.Dim(), ptr);
- ptr+=Mdl[i].Dim(0)*Mdl[i].Dim(1);
- }
- }
- return Mdl;
- }
- template <class Real> const std::vector<Matrix<Real>>& SphericalHarmonics<Real>::MatRotate(Long p0){
- std::vector<std::vector<Long>> coeff_perm(p0+1);
- { // Set coeff_perm
- for(Long n=0;n<=p0;n++) coeff_perm[n].resize(std::min(2*n+1,2*p0));
- Long itr=0;
- for(Long i=0;i<2*p0;i++){
- Long m=(i+1)/2;
- for(Long n=m;n<=p0;n++){
- coeff_perm[n][i]=itr;
- itr++;
- }
- }
- }
- assert(p0<SCTL_SHMAXDEG);
- std::vector<Matrix<Real>>& Mr=MatrixStore().Mr_[p0];
- if(!Mr.size()){
- const Real SQRT2PI=sqrt(2*M_PI);
- Long Ncoef=p0*(p0+2);
- Long Ngrid=2*p0*(p0+1);
- Long Naleg=(p0+1)*(p0+2)/2;
- Matrix<Real> Mcoord0(3,Ngrid);
- const Vector<Real>& x=LegendreNodes(p0);
- for(Long i=0;i<p0+1;i++){ // Set Mcoord0
- for(Long j=0;j<2*p0;j++){
- Mcoord0[0][i*2*p0+j]=x[i];
- Mcoord0[1][i*2*p0+j]=sqrt(1-x[i]*x[i])*sin(M_PI*j/p0);
- Mcoord0[2][i*2*p0+j]=sqrt(1-x[i]*x[i])*cos(M_PI*j/p0);
- }
- }
- for(Long l=0;l<p0+1;l++){ // For each rotation angle
- Matrix<Real> Mcoord1;
- { // Rotate coordinates
- Matrix<Real> M(COORD_DIM, COORD_DIM);
- Real cos_=-x[l];
- Real sin_=-sqrt(1.0-x[l]*x[l]);
- M[0][0]= cos_; M[0][1]=0; M[0][2]=-sin_;
- M[1][0]= 0; M[1][1]=1; M[1][2]= 0;
- M[2][0]= sin_; M[2][1]=0; M[2][2]= cos_;
- Mcoord1=M*Mcoord0;
- }
- Matrix<Real> Mleg(Naleg, Ngrid);
- { // Set Mleg
- const Vector<Real> Vcoord1(Mcoord1.Dim(0)*Mcoord1.Dim(1), Mcoord1.begin(), false);
- Vector<Real> Vleg(Mleg.Dim(0)*Mleg.Dim(1), Mleg.begin(), false);
- LegPoly(Vleg, Vcoord1, p0);
- }
- Vector<Real> theta(Ngrid);
- for(Long i=0;i<theta.Dim();i++){ // Set theta
- theta[i]=atan2(Mcoord1[1][i],Mcoord1[2][i]);
- }
- Matrix<Real> Mcoef2grid(Ncoef, Ngrid);
- { // Build Mcoef2grid
- Long offset0=0;
- Long offset1=0;
- for(Long i=0;i<p0+1;i++){
- Long len=p0+1-i;
- { // P * cos
- for(Long j=0;j<len;j++){
- for(Long k=0;k<Ngrid;k++){
- Mcoef2grid[offset1+j][k]=SQRT2PI*Mleg[offset0+j][k]*cos(i*theta[k]);
- }
- }
- offset1+=len;
- }
- if(i!=0 && i!=p0){ // P * sin
- for(Long j=0;j<len;j++){
- for(Long k=0;k<Ngrid;k++){
- Mcoef2grid[offset1+j][k]=SQRT2PI*Mleg[offset0+j][k]*sin(i*theta[k]);
- }
- }
- offset1+=len;
- }
- offset0+=len;
- }
- assert(offset0==Naleg);
- assert(offset1==Ncoef);
- }
- Vector<Real> Vcoef2coef(Ncoef*Ncoef);
- Vector<Real> Vcoef2grid(Ncoef*Ngrid, Mcoef2grid[0], false);
- Grid2SHC(Vcoef2grid, p0+1, 2*p0, p0, Vcoef2coef, SHCArrange::COL_MAJOR_NONZERO);
- Matrix<Real> Mcoef2coef(Ncoef, Ncoef, Vcoef2coef.begin(), false);
- for(Long n=0;n<=p0;n++){ // Create matrices for fast rotation
- Matrix<Real> M(coeff_perm[n].size(),coeff_perm[n].size());
- for(Long i=0;i<(Long)coeff_perm[n].size();i++){
- for(Long j=0;j<(Long)coeff_perm[n].size();j++){
- M[i][j]=Mcoef2coef[coeff_perm[n][i]][coeff_perm[n][j]];
- }
- }
- Mr.push_back(M);
- }
- }
- }
- return Mr;
- }
- template <class Real> void SphericalHarmonics<Real>::SHC2GridTranspose(const Vector<Real>& X, Long p0, Long p1, Vector<Real>& S){
- Matrix<Real> Mf =SphericalHarmonics<Real>::MatFourier(p1,p0).Transpose();
- std::vector<Matrix<Real>> Ml =SphericalHarmonics<Real>::MatLegendre(p1,p0);
- for(Long i=0;i<(Long)Ml.size();i++) Ml[i]=Ml[i].Transpose();
- assert(p1==(Long)Ml.size()-1);
- assert(p0==Mf.Dim(0)/2);
- assert(p1==Mf.Dim(1)/2);
- Long N=X.Dim()/(2*p0*(p0+1));
- assert(N*2*p0*(p0+1)==X.Dim());
- if(S.Dim()!=N*(p1*(p1+2))) S.ReInit(N*(p1*(p1+2)));
- Vector<Real> B0, B1;
- B0.ReInit(N* p1*(p1+2));
- B1.ReInit(N*2*p1*(p0+1));
- #pragma omp parallel
- { // Evaluate Fourier and transpose
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N*(p0+1)/omp_p;
- Long b=(tid+1)*N*(p0+1)/omp_p;
- const Long block_size=16;
- Matrix<Real> B2(block_size,2*p1);
- for(Long i0=a;i0<b;i0+=block_size){
- Long i1=std::min(b,i0+block_size);
- const Matrix<Real> Min (i1-i0,2*p0, (Iterator<Real>)X.begin()+i0*2*p0, false);
- Matrix<Real> Mout(i1-i0,2*p1, B2.begin(), false);
- Matrix<Real>::GEMM(Mout, Min, Mf);
- for(Long i=i0;i<i1;i++){
- for(Long j=0;j<2*p1;j++){
- B1[j*N*(p0+1)+i]=B2[i-i0][j];
- }
- }
- }
- }
- #pragma omp parallel
- { // Evaluate Legendre polynomial
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long offset0=0;
- Long offset1=0;
- for(Long i=0;i<p1+1;i++){
- Long N0=2*N;
- if(i==0 || i==p1) N0=N;
- Matrix<Real> Min (N0, p0+1 , B1.begin()+offset0, false);
- Matrix<Real> Mout(N0, p1+1-i, B0.begin()+offset1, false);
- { // Mout = Min * Ml[i] // split between threads
- Long a=(tid+0)*N0/omp_p;
- Long b=(tid+1)*N0/omp_p;
- if(a<b){
- Matrix<Real> Min_ (b-a, Min .Dim(1), Min [a], false);
- Matrix<Real> Mout_(b-a, Mout.Dim(1), Mout[a], false);
- Matrix<Real>::GEMM(Mout_,Min_,Ml[i]);
- }
- }
- offset0+=Min .Dim(0)*Min .Dim(1);
- offset1+=Mout.Dim(0)*Mout.Dim(1);
- }
- }
- #pragma omp parallel
- { // S <-- Rearrange(B0)
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for(Long i=a;i<b;i++){
- Long offset=0;
- for(Long j=0;j<2*p1;j++){
- Long len=p1+1-(j+1)/2;
- Real* B_=&B0[i*len+N*offset];
- Real* S_=&S[i*p1*(p1+2)+offset];
- for(Long k=0;k<len;k++) S_[k]=B_[k];
- offset+=len;
- }
- }
- }
- }
- template <class Real> void SphericalHarmonics<Real>::RotateAll(const Vector<Real>& S, Long p0, Long dof, Vector<Real>& S_){
- const std::vector<Matrix<Real>>& Mr=MatRotate(p0);
- std::vector<std::vector<Long>> coeff_perm(p0+1);
- { // Set coeff_perm
- for(Long n=0;n<=p0;n++) coeff_perm[n].resize(std::min(2*n+1,2*p0));
- Long itr=0;
- for(Long i=0;i<2*p0;i++){
- Long m=(i+1)/2;
- for(Long n=m;n<=p0;n++){
- coeff_perm[n][i]=itr;
- itr++;
- }
- }
- }
- Long Ncoef=p0*(p0+2);
- Long N=S.Dim()/Ncoef/dof;
- assert(N*Ncoef*dof==S.Dim());
- if(S_.Dim()!=N*dof*Ncoef*p0*(p0+1)) S_.ReInit(N*dof*Ncoef*p0*(p0+1));
- const Matrix<Real> S0(N*dof, Ncoef, (Iterator<Real>)S.begin(), false);
- Matrix<Real> S1(N*dof*p0*(p0+1), Ncoef, S_.begin(), false);
- #pragma omp parallel
- { // Construct all p0*(p0+1) rotations
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Matrix<Real> B0(dof*p0,Ncoef); // memory buffer
- std::vector<Matrix<Real>> Bi(p0+1), Bo(p0+1); // memory buffers
- for(Long i=0;i<=p0;i++){ // initialize Bi, Bo
- Bi[i].ReInit(dof*p0,coeff_perm[i].size());
- Bo[i].ReInit(dof*p0,coeff_perm[i].size());
- }
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for(Long i=a;i<b;i++){
- for(Long d=0;d<dof;d++){
- for(Long j=0;j<p0;j++){
- Long offset=0;
- for(Long k=0;k<p0+1;k++){
- Real r[2]={cos(k*j*M_PI/p0),-sin(k*j*M_PI/p0)}; // exp(i*k*theta)
- Long len=p0+1-k;
- if(k!=0 && k!=p0){
- for(Long l=0;l<len;l++){
- Real x[2];
- x[0]=S0[i*dof+d][offset+len*0+l];
- x[1]=S0[i*dof+d][offset+len*1+l];
- B0[j*dof+d][offset+len*0+l]=x[0]*r[0]-x[1]*r[1];
- B0[j*dof+d][offset+len*1+l]=x[0]*r[1]+x[1]*r[0];
- }
- offset+=2*len;
- }else{
- for(Long l=0;l<len;l++){
- B0[j*dof+d][offset+l]=S0[i*dof+d][offset+l];
- }
- offset+=len;
- }
- }
- assert(offset==Ncoef);
- }
- }
- { // Fast rotation
- for(Long k=0;k<dof*p0;k++){ // forward permutation
- for(Long l=0;l<=p0;l++){
- for(Long j=0;j<(Long)coeff_perm[l].size();j++){
- Bi[l][k][j]=B0[k][coeff_perm[l][j]];
- }
- }
- }
- for(Long t=0;t<=p0;t++){
- for(Long l=0;l<=p0;l++){ // mat-vec
- Matrix<Real>::GEMM(Bo[l],Bi[l],Mr[t*(p0+1)+l]);
- }
- Matrix<Real> Mout(dof*p0,Ncoef, S1[(i*(p0+1)+t)*dof*p0], false);
- for(Long k=0;k<dof*p0;k++){ // reverse permutation
- for(Long l=0;l<=p0;l++){
- for(Long j=0;j<(Long)coeff_perm[l].size();j++){
- Mout[k][coeff_perm[l][j]]=Bo[l][k][j];
- }
- }
- }
- }
- }
- }
- }
- }
- template <class Real> void SphericalHarmonics<Real>::RotateTranspose(const Vector<Real>& S_, Long p0, Long dof, Vector<Real>& S){
- std::vector<Matrix<Real>> Mr=MatRotate(p0);
- for(Long i=0;i<(Long)Mr.size();i++) Mr[i]=Mr[i].Transpose();
- std::vector<std::vector<Long>> coeff_perm(p0+1);
- { // Set coeff_perm
- for(Long n=0;n<=p0;n++) coeff_perm[n].resize(std::min(2*n+1,2*p0));
- Long itr=0;
- for(Long i=0;i<2*p0;i++){
- Long m=(i+1)/2;
- for(Long n=m;n<=p0;n++){
- coeff_perm[n][i]=itr;
- itr++;
- }
- }
- }
- Long Ncoef=p0*(p0+2);
- Long N=S_.Dim()/Ncoef/dof/(p0*(p0+1));
- assert(N*Ncoef*dof*(p0*(p0+1))==S_.Dim());
- if(S.Dim()!=N*dof*Ncoef*p0*(p0+1)) S.ReInit(N*dof*Ncoef*p0*(p0+1));
- Matrix<Real> S0(N*dof*p0*(p0+1), Ncoef, S.begin(), false);
- const Matrix<Real> S1(N*dof*p0*(p0+1), Ncoef, (Iterator<Real>)S_.begin(), false);
- #pragma omp parallel
- { // Transpose all p0*(p0+1) rotations
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Matrix<Real> B0(dof*p0,Ncoef); // memory buffer
- std::vector<Matrix<Real>> Bi(p0+1), Bo(p0+1); // memory buffers
- for(Long i=0;i<=p0;i++){ // initialize Bi, Bo
- Bi[i].ReInit(dof*p0,coeff_perm[i].size());
- Bo[i].ReInit(dof*p0,coeff_perm[i].size());
- }
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for(Long i=a;i<b;i++){
- for(Long t=0;t<p0+1;t++){
- Long idx0=(i*(p0+1)+t)*p0*dof;
- { // Fast rotation
- const Matrix<Real> Min(p0*dof, Ncoef, (Iterator<Real>)S1[idx0], false);
- for(Long k=0;k<dof*p0;k++){ // forward permutation
- for(Long l=0;l<=p0;l++){
- for(Long j=0;j<(Long)coeff_perm[l].size();j++){
- Bi[l][k][j]=Min[k][coeff_perm[l][j]];
- }
- }
- }
- for(Long l=0;l<=p0;l++){ // mat-vec
- Matrix<Real>::GEMM(Bo[l],Bi[l],Mr[t*(p0+1)+l]);
- }
- for(Long k=0;k<dof*p0;k++){ // reverse permutation
- for(Long l=0;l<=p0;l++){
- for(Long j=0;j<(Long)coeff_perm[l].size();j++){
- B0[k][coeff_perm[l][j]]=Bo[l][k][j];
- }
- }
- }
- }
- for(Long j=0;j<p0;j++){
- for(Long d=0;d<dof;d++){
- Long idx1=idx0+j*dof+d;
- Long offset=0;
- for(Long k=0;k<p0+1;k++){
- Real r[2]={cos(k*j*M_PI/p0),sin(k*j*M_PI/p0)}; // exp(i*k*theta)
- Long len=p0+1-k;
- if(k!=0 && k!=p0){
- for(Long l=0;l<len;l++){
- Real x[2];
- x[0]=B0[j*dof+d][offset+len*0+l];
- x[1]=B0[j*dof+d][offset+len*1+l];
- S0[idx1][offset+len*0+l]=x[0]*r[0]-x[1]*r[1];
- S0[idx1][offset+len*1+l]=x[0]*r[1]+x[1]*r[0];
- }
- offset+=2*len;
- }else{
- for(Long l=0;l<len;l++){
- S0[idx1][offset+l]=B0[j*dof+d][offset+l];
- }
- offset+=len;
- }
- }
- assert(offset==Ncoef);
- }
- }
- }
- }
- }
- }
- template <class Real> void SphericalHarmonics<Real>::StokesSingularInteg(const Vector<Real>& S, Long p0, Long p1, Vector<Real>* SLMatrix, Vector<Real>* DLMatrix){
- Long Ngrid=2*p0*(p0+1);
- Long Ncoef= p0*(p0+2);
- Long Nves=S.Dim()/(Ngrid*COORD_DIM);
- if(SLMatrix) SLMatrix->ReInit(Nves*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM));
- if(DLMatrix) DLMatrix->ReInit(Nves*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM));
- Long BLOCK_SIZE=(Long)6e9/((3*2*p1*(p1+1))*(3*2*p0*(p0+1))*2*8); // Limit memory usage to 6GB
- BLOCK_SIZE=std::min<Long>(BLOCK_SIZE,omp_get_max_threads());
- BLOCK_SIZE=std::max<Long>(BLOCK_SIZE,1);
- for(Long a=0;a<Nves;a+=BLOCK_SIZE){
- Long b=std::min(a+BLOCK_SIZE, Nves);
- Vector<Real> _SLMatrix, _DLMatrix;
- if(SLMatrix) _SLMatrix.ReInit((b-a)*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM), SLMatrix->begin()+a*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM), false);
- if(DLMatrix) _DLMatrix.ReInit((b-a)*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM), DLMatrix->begin()+a*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM), false);
- const Vector<Real> _S ((b-a)*(Ngrid*COORD_DIM) , (Iterator<Real>)S.begin()+a*(Ngrid*COORD_DIM), false);
- if(SLMatrix && DLMatrix) StokesSingularInteg_< true, true>(_S, p0, p1, _SLMatrix, _DLMatrix);
- else if(SLMatrix) StokesSingularInteg_< true, false>(_S, p0, p1, _SLMatrix, _DLMatrix);
- else if(DLMatrix) StokesSingularInteg_<false, true>(_S, p0, p1, _SLMatrix, _DLMatrix);
- }
- }
- template <class Real> template <bool SLayer, bool DLayer> void SphericalHarmonics<Real>::StokesSingularInteg_(const Vector<Real>& X0, Long p0, Long p1, Vector<Real>& SL, Vector<Real>& DL){
- Profile::Tic("Rotate");
- Vector<Real> S0, S;
- SphericalHarmonics<Real>::Grid2SHC(X0, p0+1, 2*p0, p0, S0, SHCArrange::COL_MAJOR_NONZERO);
- SphericalHarmonics<Real>::RotateAll(S0, p0, COORD_DIM, S);
- Profile::Toc();
- Profile::Tic("Upsample");
- Vector<Real> X, X_theta, X_phi, trg;
- SphericalHarmonics<Real>::SHC2Grid(S, SHCArrange::COL_MAJOR_NONZERO, p0, p1+1, 2*p1, &X, &X_phi, &X_theta);
- SphericalHarmonics<Real>::SHC2Pole(S, SHCArrange::COL_MAJOR_NONZERO, p0, trg);
- Profile::Toc();
- Profile::Tic("Stokes");
- Vector<Real> SL0, DL0;
- { // Stokes kernel
- //Long M0=2*p0*(p0+1);
- Long M1=2*p1*(p1+1);
- Long N=trg.Dim()/(2*COORD_DIM);
- assert(X.Dim()==M1*COORD_DIM*N);
- if(SLayer && SL0.Dim()!=N*2*6*M1) SL0.ReInit(2*N*6*M1);
- if(DLayer && DL0.Dim()!=N*2*6*M1) DL0.ReInit(2*N*6*M1);
- const Vector<Real>& qw=SphericalHarmonics<Real>::SingularWeights(p1);
- const Real scal_const_dl = 3.0/(4.0*M_PI);
- const Real scal_const_sl = 1.0/(8.0*M_PI);
- static Real eps=-1;
- if(eps<0){
- eps=1;
- while(eps*(Real)0.5+(Real)1.0>1.0) eps*=0.5;
- }
- #pragma omp parallel
- {
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for(Long i=a;i<b;i++){
- for(Long t=0;t<2;t++){
- Real tx, ty, tz;
- { // Read target coordinates
- tx=trg[i*2*COORD_DIM+0*2+t];
- ty=trg[i*2*COORD_DIM+1*2+t];
- tz=trg[i*2*COORD_DIM+2*2+t];
- }
- for(Long j0=0;j0<p1+1;j0++){
- for(Long j1=0;j1<2*p1;j1++){
- Long s=2*p1*j0+j1;
- Real dx, dy, dz;
- { // Compute dx, dy, dz
- dx=tx-X[(i*COORD_DIM+0)*M1+s];
- dy=ty-X[(i*COORD_DIM+1)*M1+s];
- dz=tz-X[(i*COORD_DIM+2)*M1+s];
- }
- Real nx, ny, nz;
- { // Compute source normal
- Real x_theta=X_phi[(i*COORD_DIM+0)*M1+s];
- Real y_theta=X_phi[(i*COORD_DIM+1)*M1+s];
- Real z_theta=X_phi[(i*COORD_DIM+2)*M1+s];
- Real x_phi=X_theta[(i*COORD_DIM+0)*M1+s];
- Real y_phi=X_theta[(i*COORD_DIM+1)*M1+s];
- Real z_phi=X_theta[(i*COORD_DIM+2)*M1+s];
- nx=(y_theta*z_phi-z_theta*y_phi);
- ny=(z_theta*x_phi-x_theta*z_phi);
- nz=(x_theta*y_phi-y_theta*x_phi);
- }
- Real area_elem=1.0;
- if(SLayer){ // Compute area_elem
- area_elem=sqrt(nx*nx+ny*ny+nz*nz);
- }
- Real rinv, rinv2;
- { // Compute rinv, rinv2
- Real r2=dx*dx+dy*dy+dz*dz;
- rinv=1.0/sqrt(r2);
- if(r2<=eps) rinv=0;
- rinv2=rinv*rinv;
- }
- if(DLayer){
- Real rinv5=rinv2*rinv2*rinv;
- Real r_dot_n_rinv5=scal_const_dl*qw[j0*t+(p1-j0)*(1-t)] * (nx*dx+ny*dy+nz*dz)*rinv5;
- DL0[((i*2+t)*6+0)*M1+s]=dx*dx*r_dot_n_rinv5;
- DL0[((i*2+t)*6+1)*M1+s]=dx*dy*r_dot_n_rinv5;
- DL0[((i*2+t)*6+2)*M1+s]=dx*dz*r_dot_n_rinv5;
- DL0[((i*2+t)*6+3)*M1+s]=dy*dy*r_dot_n_rinv5;
- DL0[((i*2+t)*6+4)*M1+s]=dy*dz*r_dot_n_rinv5;
- DL0[((i*2+t)*6+5)*M1+s]=dz*dz*r_dot_n_rinv5;
- }
- if(SLayer){
- Real area_rinv =scal_const_sl*qw[j0*t+(p1-j0)*(1-t)] * area_elem*rinv;
- Real area_rinv2=area_rinv*rinv2;
- SL0[((i*2+t)*6+0)*M1+s]=area_rinv+dx*dx*area_rinv2;
- SL0[((i*2+t)*6+1)*M1+s]= dx*dy*area_rinv2;
- SL0[((i*2+t)*6+2)*M1+s]= dx*dz*area_rinv2;
- SL0[((i*2+t)*6+3)*M1+s]=area_rinv+dy*dy*area_rinv2;
- SL0[((i*2+t)*6+4)*M1+s]= dy*dz*area_rinv2;
- SL0[((i*2+t)*6+5)*M1+s]=area_rinv+dz*dz*area_rinv2;
- }
- }
- }
- }
- }
- }
- Profile::Add_FLOP(20*(2*p1)*(p1+1)*2*N);
- if(SLayer) Profile::Add_FLOP((19+6)*(2*p1)*(p1+1)*2*N);
- if(DLayer) Profile::Add_FLOP( 22 *(2*p1)*(p1+1)*2*N);
- }
- Profile::Toc();
- Profile::Tic("UpsampleTranspose");
- Vector<Real> SL1, DL1;
- SphericalHarmonics<Real>::SHC2GridTranspose(SL0, p1, p0, SL1);
- SphericalHarmonics<Real>::SHC2GridTranspose(DL0, p1, p0, DL1);
- Profile::Toc();
- Profile::Tic("RotateTranspose");
- Vector<Real> SL2, DL2;
- SphericalHarmonics<Real>::RotateTranspose(SL1, p0, 2*6, SL2);
- SphericalHarmonics<Real>::RotateTranspose(DL1, p0, 2*6, DL2);
- Profile::Toc();
- Profile::Tic("Rearrange");
- Vector<Real> SL3, DL3;
- { // Transpose
- Long Ncoef=p0*(p0+2);
- Long Ngrid=2*p0*(p0+1);
- { // Transpose SL2
- Long N=SL2.Dim()/(6*Ncoef*Ngrid);
- SL3.ReInit(N*COORD_DIM*Ncoef*COORD_DIM*Ngrid);
- #pragma omp parallel
- {
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Matrix<Real> B(COORD_DIM*Ncoef,Ngrid*COORD_DIM);
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for(Long i=a;i<b;i++){
- Matrix<Real> M0(Ngrid*6, Ncoef, SL2.begin()+i*Ngrid*6*Ncoef, false);
- for(Long k=0;k<Ncoef;k++){ // Transpose
- for(Long j=0;j<Ngrid;j++){ // TODO: needs blocking
- B[k+Ncoef*0][j*COORD_DIM+0]=M0[j*6+0][k];
- B[k+Ncoef*1][j*COORD_DIM+0]=M0[j*6+1][k];
- B[k+Ncoef*2][j*COORD_DIM+0]=M0[j*6+2][k];
- B[k+Ncoef*0][j*COORD_DIM+1]=M0[j*6+1][k];
- B[k+Ncoef*1][j*COORD_DIM+1]=M0[j*6+3][k];
- B[k+Ncoef*2][j*COORD_DIM+1]=M0[j*6+4][k];
- B[k+Ncoef*0][j*COORD_DIM+2]=M0[j*6+2][k];
- B[k+Ncoef*1][j*COORD_DIM+2]=M0[j*6+4][k];
- B[k+Ncoef*2][j*COORD_DIM+2]=M0[j*6+5][k];
- }
- }
- Matrix<Real> M1(Ncoef*COORD_DIM, COORD_DIM*Ngrid, SL3.begin()+i*COORD_DIM*Ncoef*COORD_DIM*Ngrid, false);
- for(Long k=0;k<B.Dim(0);k++){ // Rearrange
- for(Long j0=0;j0<COORD_DIM;j0++){
- for(Long j1=0;j1<p0+1;j1++){
- for(Long j2=0;j2<p0;j2++) M1[k][((j0*(p0+1)+ j1)*2+0)*p0+j2]=B[k][((j1*p0+j2)*2+0)*COORD_DIM+j0];
- for(Long j2=0;j2<p0;j2++) M1[k][((j0*(p0+1)+p0-j1)*2+1)*p0+j2]=B[k][((j1*p0+j2)*2+1)*COORD_DIM+j0];
- }
- }
- }
- }
- }
- }
- { // Transpose DL2
- Long N=DL2.Dim()/(6*Ncoef*Ngrid);
- DL3.ReInit(N*COORD_DIM*Ncoef*COORD_DIM*Ngrid);
- #pragma omp parallel
- {
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Matrix<Real> B(COORD_DIM*Ncoef,Ngrid*COORD_DIM);
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for(Long i=a;i<b;i++){
- Matrix<Real> M0(Ngrid*6, Ncoef, DL2.begin()+i*Ngrid*6*Ncoef, false);
- for(Long k=0;k<Ncoef;k++){ // Transpose
- for(Long j=0;j<Ngrid;j++){ // TODO: needs blocking
- B[k+Ncoef*0][j*COORD_DIM+0]=M0[j*6+0][k];
- B[k+Ncoef*1][j*COORD_DIM+0]=M0[j*6+1][k];
- B[k+Ncoef*2][j*COORD_DIM+0]=M0[j*6+2][k];
- B[k+Ncoef*0][j*COORD_DIM+1]=M0[j*6+1][k];
- B[k+Ncoef*1][j*COORD_DIM+1]=M0[j*6+3][k];
- B[k+Ncoef*2][j*COORD_DIM+1]=M0[j*6+4][k];
- B[k+Ncoef*0][j*COORD_DIM+2]=M0[j*6+2][k];
- B[k+Ncoef*1][j*COORD_DIM+2]=M0[j*6+4][k];
- B[k+Ncoef*2][j*COORD_DIM+2]=M0[j*6+5][k];
- }
- }
- Matrix<Real> M1(Ncoef*COORD_DIM, COORD_DIM*Ngrid, DL3.begin()+i*COORD_DIM*Ncoef*COORD_DIM*Ngrid, false);
- for(Long k=0;k<B.Dim(0);k++){ // Rearrange
- for(Long j0=0;j0<COORD_DIM;j0++){
- for(Long j1=0;j1<p0+1;j1++){
- for(Long j2=0;j2<p0;j2++) M1[k][((j0*(p0+1)+ j1)*2+0)*p0+j2]=B[k][((j1*p0+j2)*2+0)*COORD_DIM+j0];
- for(Long j2=0;j2<p0;j2++) M1[k][((j0*(p0+1)+p0-j1)*2+1)*p0+j2]=B[k][((j1*p0+j2)*2+1)*COORD_DIM+j0];
- }
- }
- }
- }
- }
- }
- }
- Profile::Toc();
- Profile::Tic("Grid2SHC");
- SphericalHarmonics<Real>::Grid2SHC(SL3, p0+1, 2*p0, p0, SL, SHCArrange::COL_MAJOR_NONZERO);
- SphericalHarmonics<Real>::Grid2SHC(DL3, p0+1, 2*p0, p0, DL, SHCArrange::COL_MAJOR_NONZERO);
- Profile::Toc();
- }
- } // end namespace
|