| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228 | #ifndef _SCTL_KERNEL_FUNCTIONS_HPP_#define _SCTL_KERNEL_FUNCTIONS_HPP_namespace SCTL_NAMESPACE {struct Laplace3D_FxU {  template <class Real> static constexpr Real ScaleFactor() {    return 1 / (4 * const_pi<Real>());  }  template <class Real> static void Eval(Real (&u)[1][1], const Real (&r)[3], const Real (&n)[3], void* ctx_ptr) {    Real r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];    Real rinv = (r2>1e-16 ? 1/sqrt<Real>(r2) : 0);    u[0][0] = rinv;  }};struct Laplace3D_DxU {  template <class Real> static constexpr Real ScaleFactor() {    return 1 / (4 * const_pi<Real>());  }  template <class Real> static void Eval(Real (&u)[1][1], const Real (&r)[3], const Real (&n)[3], void* ctx_ptr) {    Real r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];    Real rinv = (r2>1e-16 ? 1/sqrt<Real>(r2) : 0);    Real rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2];    Real rinv3 = rinv * rinv * rinv;    u[0][0] = rdotn * rinv3;  }};struct Laplace3D_FxdU{  template <class Real> static constexpr Real ScaleFactor() {    return 1 / (4 * const_pi<Real>());  }  template <class Real> static void Eval(Real (&u)[1][3], const Real (&r)[3], const Real (&n)[3], void* ctx_ptr) {    Real r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];    Real rinv = (r2>1e-16 ? 1/sqrt<Real>(r2) : 0);    Real rinv3 = rinv * rinv * rinv;    u[0][0] = -r[0] * rinv3;    u[0][1] = -r[1] * rinv3;    u[0][2] = -r[2] * rinv3;  }};template <class uKernel> class GenericKernel {    template <class Real, Integer D, Integer K0, Integer K1> static constexpr Integer get_DIM  (void (*uKer)(Real (&u)[K0][K1], const Real (&r)[D], const Real (&n)[D], void* ctx_ptr)) { return D; }    template <class Real, Integer D, Integer K0, Integer K1> static constexpr Integer get_KDIM0(void (*uKer)(Real (&u)[K0][K1], const Real (&r)[D], const Real (&n)[D], void* ctx_ptr)) { return K0; }    template <class Real, Integer D, Integer K0, Integer K1> static constexpr Integer get_KDIM1(void (*uKer)(Real (&u)[K0][K1], const Real (&r)[D], const Real (&n)[D], void* ctx_ptr)) { return K1; }    static constexpr Integer DIM   = get_DIM  (uKernel::template Eval<double>);    static constexpr Integer KDIM0 = get_KDIM0(uKernel::template Eval<double>);    static constexpr Integer KDIM1 = get_KDIM1(uKernel::template Eval<double>);  public:    static constexpr Integer CoordDim() {      return DIM;    }    static constexpr Integer SrcDim() {      return KDIM0;    }    static constexpr Integer TrgDim() {      return KDIM1;    }    template <class Real> static constexpr Real ScaleFactor() {      return uKernel::template ScaleFactor<Real>();    }    template <class Real, Integer DOF> void uKernelEval(Iterator<Real> u, ConstIterator<Real> r, ConstIterator<Real> n, ConstIterator<Real> f) const {      Real M[KDIM0][KDIM1];      uKernel::Eval(M, *(Real (*)[DIM])r, *(Real (*)[DIM])n, ctx_ptr);      for (Integer i = 0; i < DOF; i++) {        for (Integer k0 = 0; k0 < KDIM0; k0++) {          for (Integer k1 = 0; k1 < KDIM1; k1++) {            u[i*KDIM1+k1] += M[k0][k1] * f[i*KDIM0+k0];          }        }      }    }    template <class Real, Integer DOF_ = 0> void Eval(Vector<Real>& U, const Vector<Real>& Xt, const Vector<Real>& Xs, const Vector<Real>& Xn, const Vector<Real>& F) const {      Long Ns = Xs.Dim() / DIM;      Long Nt = Xt.Dim() / DIM;      Long DOF = (DOF_ ? DOF_ : F.Dim() / Ns / KDIM0);      SCTL_ASSERT(Xs.Dim() == Ns * DIM);      SCTL_ASSERT(Xt.Dim() == Nt * DIM);      SCTL_ASSERT(F.Dim() == Ns * DOF * KDIM0);      if (!DOF_) {        if (DOF == 1) Eval<Real,1>(U,Xt,Xs,Xn,F);        if (DOF == 2) Eval<Real,2>(U,Xt,Xs,Xn,F);        if (DOF == 3) Eval<Real,3>(U,Xt,Xs,Xn,F);        if (DOF == 4) Eval<Real,4>(U,Xt,Xs,Xn,F);        if (DOF == 5) Eval<Real,5>(U,Xt,Xs,Xn,F);        if (DOF == 6) Eval<Real,6>(U,Xt,Xs,Xn,F);        if (DOF <= 6) return;      }      if (U.Dim() != Nt * DOF * KDIM1) {        U.ReInit(Nt * DOF * KDIM1);        U.SetZero();      }      #pragma omp parallel for schedule(static)      for (Long t = 0; t < Nt; t++) {        Iterator<Real> u;        Vector<Real> u_buff0;        StaticArray<Real,DOF_*KDIM1> u_buff1;        if (!DOF_) { // Set u          u_buff0.ReInit(DOF*KDIM1);          u = u_buff0.begin();        } else {          u = (Iterator<Real>)u_buff1;        }        for (Integer k = 0; k < DOF*KDIM1; k++) {          u[k] = 0;        }        StaticArray<Real,DIM> r;        for (Long s = 0; s < Ns; s++) {          for (Integer k = 0; k < DIM; k++) {            r[k] = Xs[s*DIM+k] - Xt[t*DIM+k];          }          ConstIterator<Real> n = Xn.begin() + s*DIM;          if (DOF_) {            ConstIterator<Real> f = F.begin() + s*DOF_*KDIM0;            this->template uKernelEval<Real,DOF_>(u,r,n,f);          } else {            ConstIterator<Real> f = F.begin() + s*DOF*KDIM0;            for (Integer k = 0; k < DOF; k++) {              this->template uKernelEval<Real,1>(u + k*KDIM1,r,n,f + k*KDIM0);            }          }        }        for (Integer k = 0; k < DOF*KDIM1; k++) {          U[t*DOF*KDIM1 + k] += u[k];        }      }    }    template <class Real> void KernelMatrix(Matrix<Real>& M, const Vector<Real>& Xt, const Vector<Real>& Xs, const Vector<Real>& Xn) const {      Long Ns = Xs.Dim() / DIM;      Long Nt = Xt.Dim() / DIM;      SCTL_ASSERT(Xs.Dim() == Ns * DIM);      SCTL_ASSERT(Xt.Dim() == Nt * DIM);      if (M.Dim(0) != Ns * KDIM0 || M.Dim(1) != Nt * KDIM1) {        M.ReInit(Ns * KDIM0, Nt * KDIM1);      }      #pragma omp parallel for schedule(static)      for (Long t = 0; t < Nt; t++) {        StaticArray<Real,DIM> r;        StaticArray<Real,KDIM0> f;        for (Integer k = 0; k < KDIM0; k++) {          f[k] = 0;        }        for (Long s = 0; s < Ns; s++) {          for (Integer k = 0; k < DIM; k++) {            r[k] = Xs[s*DIM+k] - Xt[t*DIM+k];          }          ConstIterator<Real> n = Xn.begin() + s*DIM;          for (Integer k = 0; k < KDIM0; k++) {            f[k] = 1;            Iterator<Real> u = M[s*KDIM0+k] + t*KDIM1;            for (Integer i = 0; i < KDIM1; i++) u[i] = 0;            this->template uKernelEval<Real,1>(u,r,n,f);            f[k] = 0;          }        }      }    }  private:    void* ctx_ptr;};template <class Real, Integer DIM> class ParticleFMM {  public:    template <class Kernel> static void Eval(Vector<Real>& U, const Vector<Real>& Xt, const Vector<Real>& Xs, const Vector<Real>& Xn, const Vector<Real>& F, const Kernel& kernel, const Comm& comm) {      #ifdef SCTL_HAVE_PVFMM      SCTL_ASSERT(false);      #else      constexpr Integer KDIM0 = Kernel::SrcDim();      constexpr Integer KDIM1 = Kernel::TrgDim();      const Integer rank = comm.Rank();      const Integer np = comm.Size();      const Long Ns = Xs.Dim() / DIM;      const Long Nt = Xt.Dim() / DIM;      SCTL_ASSERT(Xt.Dim() == Nt * DIM);      const Long dof = F.Dim() / (Ns * KDIM0);      SCTL_ASSERT(Ns && F.Dim() == Ns * dof * KDIM0);      Vector<Real> Xs_, Xn_, F_;      if (U.Dim() != Nt * dof * KDIM1) {        U.ReInit(Nt * dof * KDIM1);        U.SetZero();      }      for (Long i = 0; i < np; i++) {        auto send_recv_vec = [comm,rank,np](Vector<Real>& X_, const Vector<Real>& X, Integer offset){          Integer send_partner = (rank + offset) % np;          Integer recv_partner = (rank + np - offset) % np;          Long send_cnt = X.Dim(), recv_cnt;          void* recv_req = comm.Irecv(     Ptr2Itr<Long>(&recv_cnt,1), 1, recv_partner, offset);          void* send_req = comm.Isend(Ptr2ConstItr<Long>(&send_cnt,1), 1, send_partner, offset);          comm.Wait(recv_req);          comm.Wait(send_req);          X_.ReInit(recv_cnt);          recv_req = comm.Irecv(X_.begin(), recv_cnt, recv_partner, offset);          send_req = comm.Isend(X .begin(), send_cnt, send_partner, offset);          comm.Wait(recv_req);          comm.Wait(send_req);        };        send_recv_vec(Xs_, Xs, i);        send_recv_vec(Xn_, Xn, i);        send_recv_vec(F_ , F , i);        kernel.Eval(U, Xt, Xs_, Xn_, F_);      }      #endif    }  private:};}  // end namespace#endif  //_SCTL_KERNEL_FUNCTIONS_HPP_
 |