12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924 |
- #include SCTL_INCLUDE(legendre_rule.hpp)
- // TODO: Replace work vectors with dynamic-arrays
- namespace SCTL_NAMESPACE {
- template <class Real> void SphericalHarmonics<Real>::Grid2SHC(const Vector<Real>& X, Long Nt, Long Np, Long p1, Vector<Real>& S, SHCArrange arrange){
- Long N = X.Dim() / (Np*Nt);
- assert(X.Dim() == N*Np*Nt);
- Vector<Real> B1(N*(p1+1)*(p1+1));
- Grid2SHC_(X, Nt, Np, p1, B1);
- SHCArrange0(B1, p1, S, arrange);
- }
- template <class Real> void SphericalHarmonics<Real>::SHC2Grid(const Vector<Real>& S, SHCArrange arrange, Long p0, Long Nt, Long Np, Vector<Real>* X, Vector<Real>* X_theta, Vector<Real>* X_phi){
- Vector<Real> B0;
- SHCArrange1(S, arrange, p0, B0);
- SHC2Grid_(B0, p0, Nt, Np, X, X_phi, X_theta);
- }
- template <class Real> void SphericalHarmonics<Real>::SHCEval(const Vector<Real>& S, SHCArrange arrange, Long p0, const Vector<Real>& theta_phi, Vector<Real>& X) {
- Long M = (p0+1) * (p0+1);
- Long dof;
- Matrix<Real> B1;
- { // Set B1, dof
- Vector<Real> B0;
- SHCArrange1(S, arrange, p0, B0);
- dof = B0.Dim() / M;
- assert(B0.Dim() == dof * M);
- B1.ReInit(dof, M);
- Vector<Real> B1_(B1.Dim(0) * B1.Dim(1), B1.begin(), false);
- SHCArrange0(B0, p0, B1_, SHCArrange::COL_MAJOR_NONZERO);
- }
- assert(B1.Dim(0) == dof);
- assert(B1.Dim(1) == M);
- Matrix<Real> SHBasis;
- SHBasisEval(p0, theta_phi, SHBasis);
- assert(SHBasis.Dim(1) == M);
- Long N = SHBasis.Dim(0);
- { // Set X
- if (X.Dim() != N*dof) X.ReInit(N * dof);
- for (Long k0 = 0; k0 < N; k0++) {
- for (Long k1 = 0; k1 < dof; k1++) {
- Real X_ = 0;
- for (Long i = 0; i < M; i++) X_ += B1[k1][i] * SHBasis[k0][i];
- X[k0 * dof + k1] = X_;
- }
- }
- }
- }
- template <class Real> void SphericalHarmonics<Real>::SHC2Pole(const Vector<Real>& S, SHCArrange arrange, Long p0, Vector<Real>& P){
- Vector<Real> QP[2];
- { // Set QP // TODO: store these weights
- Vector<Real> x(1), alp;
- const Real SQRT2PI = sqrt<Real>(4 * const_pi<Real>());
- for (Long i = 0; i < 2; i++) {
- x = (i ? const_pi<Real>() : 0);
- LegPoly_(alp, x, p0);
- QP[i].ReInit(p0 + 1, alp.begin());
- QP[i] *= SQRT2PI;
- }
- }
- Long M, N;
- { // Set M, N
- M = 0;
- if (arrange == SHCArrange::ALL) M = 2*(p0+1)*(p0+1);
- if (arrange == SHCArrange::ROW_MAJOR) M = (p0+1)*(p0+2);
- if (arrange == SHCArrange::COL_MAJOR_NONZERO) M = (p0+1)*(p0+1);
- if (M == 0) return;
- N = S.Dim() / M;
- assert(S.Dim() == N * M);
- }
- if(P.Dim() != N * 2) P.ReInit(N * 2);
- if (arrange == SHCArrange::ALL) {
- #pragma omp parallel
- { // Compute pole
- Integer tid = omp_get_thread_num();
- Integer omp_p = omp_get_num_threads();
- Long a = (tid + 0) * N / omp_p;
- Long b = (tid + 1) * N / omp_p;
- for (Long i = a; i < b; i++) {
- Real P_[2] = {0, 0};
- for (Long j = 0; j < p0 + 1; j++) {
- P_[0] += S[i*M + j*(p0+1)*2] * QP[0][j];
- P_[1] += S[i*M + j*(p0+1)*2] * QP[1][j];
- }
- P[2*i+0] = P_[0];
- P[2*i+1] = P_[1];
- }
- }
- }
- if (arrange == SHCArrange::ROW_MAJOR) {
- #pragma omp parallel
- { // Compute pole
- Integer tid = omp_get_thread_num();
- Integer omp_p = omp_get_num_threads();
- Long a = (tid + 0) * N / omp_p;
- Long b = (tid + 1) * N / omp_p;
- for (Long i = a; i < b; i++) {
- Long idx = 0;
- Real P_[2] = {0, 0};
- for (Long j = 0; j < p0 + 1; j++) {
- P_[0] += S[i*M+idx] * QP[0][j];
- P_[1] += S[i*M+idx] * QP[1][j];
- idx += 2*(j+1);
- }
- P[2*i+0] = P_[0];
- P[2*i+1] = P_[1];
- }
- }
- }
- if (arrange == SHCArrange::COL_MAJOR_NONZERO) {
- #pragma omp parallel
- { // Compute pole
- Integer tid = omp_get_thread_num();
- Integer omp_p = omp_get_num_threads();
- Long a = (tid + 0) * N / omp_p;
- Long b = (tid + 1) * N / omp_p;
- for (Long i = a; i < b; i++) {
- Real P_[2] = {0, 0};
- for (Long j = 0; j < p0 + 1; j++) {
- P_[0] += S[i*M+j] * QP[0][j];
- P_[1] += S[i*M+j] * QP[1][j];
- }
- P[2*i+0] = P_[0];
- P[2*i+1] = P_[1];
- }
- }
- }
- }
- template <class Real> void SphericalHarmonics<Real>::WriteVTK(const char* fname, const Vector<Real>* S, const Vector<Real>* v_ptr, SHCArrange arrange, Long p0, Long p1, Real period, const Comm& comm){
- typedef double VTKReal;
- Vector<Real> SS;
- if (S == nullptr) {
- Integer p = 2;
- Integer Ncoeff = (p + 1) * (p + 1);
- Vector<Real> SSS(COORD_DIM * Ncoeff), SSS_grid;
- SSS.SetZero();
- SSS[1+0*p+0*Ncoeff] = sqrt<Real>(2.0)/sqrt<Real>(3.0);
- SSS[1+1*p+1*Ncoeff] = 1/sqrt<Real>(3.0);
- SSS[1+2*p+2*Ncoeff] = 1/sqrt<Real>(3.0);
- SphericalHarmonics<Real>::SHC2Grid(SSS, SHCArrange::COL_MAJOR_NONZERO, p, p+1, 2*p+2, &SSS_grid);
- SphericalHarmonics<Real>::Grid2SHC(SSS_grid, p+1, 2*p+2, p0, SS, arrange);
- S = &SS;
- }
- Vector<Real> X, Xp, V, Vp;
- { // Upsample X
- const Vector<Real>& X0=*S;
- SphericalHarmonics<Real>::SHC2Grid(X0, arrange, p0, p1+1, 2*p1, &X);
- SphericalHarmonics<Real>::SHC2Pole(X0, arrange, p0, Xp);
- }
- if(v_ptr){ // Upsample V
- const Vector<Real>& X0=*v_ptr;
- SphericalHarmonics<Real>::SHC2Grid(X0, arrange, p0, p1+1, 2*p1, &V);
- SphericalHarmonics<Real>::SHC2Pole(X0, arrange, p0, Vp);
- }
- std::vector<VTKReal> point_coord;
- std::vector<VTKReal> point_value;
- std::vector<int32_t> poly_connect;
- std::vector<int32_t> poly_offset;
- { // Set point_coord, point_value, poly_connect
- Long N_ves = X.Dim()/(2*p1*(p1+1)*COORD_DIM); // Number of vesicles
- assert(Xp.Dim() == N_ves*2*COORD_DIM);
- for(Long k=0;k<N_ves;k++){ // Set point_coord
- Real C[COORD_DIM]={0,0,0};
- if(period>0){
- for(Integer l=0;l<COORD_DIM;l++) C[l]=0;
- for(Long i=0;i<p1+1;i++){
- for(Long j=0;j<2*p1;j++){
- for(Integer l=0;l<COORD_DIM;l++){
- C[l]+=X[j+2*p1*(i+(p1+1)*(l+k*COORD_DIM))];
- }
- }
- }
- for(Integer l=0;l<COORD_DIM;l++) C[l]+=Xp[0+2*(l+k*COORD_DIM)];
- for(Integer l=0;l<COORD_DIM;l++) C[l]+=Xp[1+2*(l+k*COORD_DIM)];
- for(Integer l=0;l<COORD_DIM;l++) C[l]/=2*p1*(p1+1)+2;
- for(Integer l=0;l<COORD_DIM;l++) C[l]=(round(C[l]/period))*period;
- }
- for(Long i=0;i<p1+1;i++){
- for(Long j=0;j<2*p1;j++){
- for(Integer l=0;l<COORD_DIM;l++){
- point_coord.push_back(X[j+2*p1*(i+(p1+1)*(l+k*COORD_DIM))]-C[l]);
- }
- }
- }
- for(Integer l=0;l<COORD_DIM;l++) point_coord.push_back(Xp[0+2*(l+k*COORD_DIM)]-C[l]);
- for(Integer l=0;l<COORD_DIM;l++) point_coord.push_back(Xp[1+2*(l+k*COORD_DIM)]-C[l]);
- }
- if(v_ptr) {
- Long data__dof = V.Dim() / (2*p1*(p1+1));
- for(Long k=0;k<N_ves;k++){ // Set point_value
- for(Long i=0;i<p1+1;i++){
- for(Long j=0;j<2*p1;j++){
- for(Long l=0;l<data__dof;l++){
- point_value.push_back(V[j+2*p1*(i+(p1+1)*(l+k*data__dof))]);
- }
- }
- }
- for(Long l=0;l<data__dof;l++) point_value.push_back(Vp[0+2*(l+k*data__dof)]);
- for(Long l=0;l<data__dof;l++) point_value.push_back(Vp[1+2*(l+k*data__dof)]);
- }
- }
- for(Long k=0;k<N_ves;k++){
- for(Long j=0;j<2*p1;j++){
- Long i0= 0;
- Long i1=p1;
- Long j0=((j+0) );
- Long j1=((j+1)%(2*p1));
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*(p1+1)+0);
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i0+j0);
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i0+j1);
- poly_offset.push_back(poly_connect.size());
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*(p1+1)+1);
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i1+j0);
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i1+j1);
- poly_offset.push_back(poly_connect.size());
- }
- for(Long i=0;i<p1;i++){
- for(Long j=0;j<2*p1;j++){
- Long i0=((i+0) );
- Long i1=((i+1) );
- Long j0=((j+0) );
- Long j1=((j+1)%(2*p1));
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i0+j0);
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i1+j0);
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i1+j1);
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i0+j1);
- poly_offset.push_back(poly_connect.size());
- }
- }
- }
- }
- Integer np = comm.Size();
- Integer myrank = comm.Rank();
- std::vector<VTKReal>& coord=point_coord;
- std::vector<VTKReal>& value=point_value;
- std::vector<int32_t>& connect=poly_connect;
- std::vector<int32_t>& offset=poly_offset;
- Long pt_cnt=coord.size()/COORD_DIM;
- Long poly_cnt=poly_offset.size();
- // Open file for writing.
- std::stringstream vtufname;
- vtufname<<fname<<"_"<<std::setfill('0')<<std::setw(6)<<myrank<<".vtp";
- std::ofstream vtufile;
- vtufile.open(vtufname.str().c_str());
- if(vtufile.fail()) return;
- bool isLittleEndian;
- { // Set isLittleEndian
- uint16_t number = 0x1;
- uint8_t *numPtr = (uint8_t*)&number;
- isLittleEndian=(numPtr[0] == 1);
- }
- // Proceed to write to file.
- Long data_size=0;
- vtufile<<"<?xml version=\"1.0\"?>\n";
- if(isLittleEndian) vtufile<<"<VTKFile type=\"PolyData\" version=\"0.1\" byte_order=\"LittleEndian\">\n";
- else vtufile<<"<VTKFile type=\"PolyData\" version=\"0.1\" byte_order=\"BigEndian\">\n";
- //===========================================================================
- vtufile<<" <PolyData>\n";
- vtufile<<" <Piece NumberOfPoints=\""<<pt_cnt<<"\" NumberOfVerts=\"0\" NumberOfLines=\"0\" NumberOfStrips=\"0\" NumberOfPolys=\""<<poly_cnt<<"\">\n";
- //---------------------------------------------------------------------------
- vtufile<<" <Points>\n";
- vtufile<<" <DataArray type=\"Float"<<sizeof(VTKReal)*8<<"\" NumberOfComponents=\""<<COORD_DIM<<"\" Name=\"Position\" format=\"appended\" offset=\""<<data_size<<"\" />\n";
- data_size+=sizeof(uint32_t)+coord.size()*sizeof(VTKReal);
- vtufile<<" </Points>\n";
- //---------------------------------------------------------------------------
- if(value.size()){ // value
- vtufile<<" <PointData>\n";
- vtufile<<" <DataArray type=\"Float"<<sizeof(VTKReal)*8<<"\" NumberOfComponents=\""<<value.size()/pt_cnt<<"\" Name=\""<<"value"<<"\" format=\"appended\" offset=\""<<data_size<<"\" />\n";
- data_size+=sizeof(uint32_t)+value.size()*sizeof(VTKReal);
- vtufile<<" </PointData>\n";
- }
- //---------------------------------------------------------------------------
- vtufile<<" <Polys>\n";
- vtufile<<" <DataArray type=\"Int32\" Name=\"connectivity\" format=\"appended\" offset=\""<<data_size<<"\" />\n";
- data_size+=sizeof(uint32_t)+connect.size()*sizeof(int32_t);
- vtufile<<" <DataArray type=\"Int32\" Name=\"offsets\" format=\"appended\" offset=\""<<data_size<<"\" />\n";
- data_size+=sizeof(uint32_t)+offset.size() *sizeof(int32_t);
- vtufile<<" </Polys>\n";
- //---------------------------------------------------------------------------
- vtufile<<" </Piece>\n";
- vtufile<<" </PolyData>\n";
- //===========================================================================
- vtufile<<" <AppendedData encoding=\"raw\">\n";
- vtufile<<" _";
- int32_t block_size;
- block_size=coord.size()*sizeof(VTKReal); vtufile.write((char*)&block_size, sizeof(int32_t)); vtufile.write((char*)&coord [0], coord.size()*sizeof(VTKReal));
- if(value.size()){ // value
- block_size=value.size()*sizeof(VTKReal); vtufile.write((char*)&block_size, sizeof(int32_t)); vtufile.write((char*)&value [0], value.size()*sizeof(VTKReal));
- }
- block_size=connect.size()*sizeof(int32_t); vtufile.write((char*)&block_size, sizeof(int32_t)); vtufile.write((char*)&connect[0], connect.size()*sizeof(int32_t));
- block_size=offset .size()*sizeof(int32_t); vtufile.write((char*)&block_size, sizeof(int32_t)); vtufile.write((char*)&offset [0], offset .size()*sizeof(int32_t));
- vtufile<<"\n";
- vtufile<<" </AppendedData>\n";
- //===========================================================================
- vtufile<<"</VTKFile>\n";
- vtufile.close();
- if(myrank) return;
- std::stringstream pvtufname;
- pvtufname<<fname<<".pvtp";
- std::ofstream pvtufile;
- pvtufile.open(pvtufname.str().c_str());
- if(pvtufile.fail()) return;
- pvtufile<<"<?xml version=\"1.0\"?>\n";
- pvtufile<<"<VTKFile type=\"PPolyData\">\n";
- pvtufile<<" <PPolyData GhostLevel=\"0\">\n";
- pvtufile<<" <PPoints>\n";
- pvtufile<<" <PDataArray type=\"Float"<<sizeof(VTKReal)*8<<"\" NumberOfComponents=\""<<COORD_DIM<<"\" Name=\"Position\"/>\n";
- pvtufile<<" </PPoints>\n";
- if(value.size()){ // value
- pvtufile<<" <PPointData>\n";
- pvtufile<<" <PDataArray type=\"Float"<<sizeof(VTKReal)*8<<"\" NumberOfComponents=\""<<value.size()/pt_cnt<<"\" Name=\""<<"value"<<"\"/>\n";
- pvtufile<<" </PPointData>\n";
- }
- {
- // Extract filename from path.
- std::stringstream vtupath;
- vtupath<<'/'<<fname;
- std::string pathname = vtupath.str();
- auto found = pathname.find_last_of("/\\");
- std::string fname_ = pathname.substr(found+1);
- for(Integer i=0;i<np;i++) pvtufile<<" <Piece Source=\""<<fname_<<"_"<<std::setfill('0')<<std::setw(6)<<i<<".vtp\"/>\n";
- }
- pvtufile<<" </PPolyData>\n";
- pvtufile<<"</VTKFile>\n";
- pvtufile.close();
- }
- template <class Real> void SphericalHarmonics<Real>::Grid2VecSHC(const Vector<Real>& X, Long Nt, Long Np, Long p0, Vector<Real>& S, SHCArrange arrange) {
- Long N = X.Dim() / (Np*Nt);
- assert(X.Dim() == N*Np*Nt);
- assert(N % COORD_DIM == 0);
- Vector<Real> B0(N*Nt*Np);
- { // Set B0
- Vector<Real> sin_phi(Np), cos_phi(Np);
- for (Long i = 0; i < Np; i++) {
- sin_phi[i] = sin(2 * const_pi<Real>() * i / Np);
- cos_phi[i] = cos(2 * const_pi<Real>() * i / Np);
- }
- const auto& Y = LegendreNodes(Nt - 1);
- assert(Y.Dim() == Nt);
- Long Ngrid = Nt * Np;
- for (Long k = 0; k < N; k+=COORD_DIM) {
- for (Long i = 0; i < Nt; i++) {
- Real sin_theta = sqrt<Real>(1 - Y[i]*Y[i]);
- Real cos_theta = Y[i];
- Real csc_theta = 1 / sin_theta;
- const auto X_ = X.begin() + (k*Nt+i)*Np;
- auto B0_ = B0.begin() + (k*Nt+i)*Np;
- for (Long j = 0; j < Np; j++) {
- StaticArray<Real,3> in;
- in[0] = X_[0*Ngrid+j];
- in[1] = X_[1*Ngrid+j];
- in[2] = X_[2*Ngrid+j];
- StaticArray<Real,9> Q;
- { // Set Q
- Q[0] = sin_theta*cos_phi[j]; Q[1] = sin_theta*sin_phi[j]; Q[2] = cos_theta;
- Q[3] = cos_theta*cos_phi[j]; Q[4] = cos_theta*sin_phi[j]; Q[5] =-sin_theta;
- Q[6] = -sin_phi[j]; Q[7] = cos_phi[j]; Q[8] = 0;
- }
- B0_[0*Ngrid+j] = ( Q[0] * in[0] + Q[1] * in[1] + Q[2] * in[2] );
- B0_[1*Ngrid+j] = ( Q[3] * in[0] + Q[4] * in[1] + Q[5] * in[2] ) * csc_theta;
- B0_[2*Ngrid+j] = ( Q[6] * in[0] + Q[7] * in[1] + Q[8] * in[2] ) * csc_theta;
- }
- }
- }
- }
- Long p_ = p0 + 1;
- Long M0 = (p0+1)*(p0+1);
- Long M_ = (p_+1)*(p_+1);
- Vector<Real> B1(N*M_);
- Grid2SHC_(B0, Nt, Np, p_, B1);
- Vector<Real> B2(N*M0);
- const Complex<Real> imag(0,1);
- for (Long i=0; i<N; i+=COORD_DIM) {
- for (Long m=0; m<=p0; m++) {
- for (Long n=m; n<=p0; n++) {
- auto read_coeff = [&](const Vector<Real>& coeff, Long i, Long p, Long n, Long m) {
- Complex<Real> c;
- if (0<=m && m<=n && n<=p) {
- Long idx_real = ((2*p-m+3)*m - (m?p+1:0))*N + (p+1-m)*i - m + n;
- Long idx_imag = idx_real + (p+1-m)*N;
- c.real = coeff[idx_real];
- if (m) c.imag = coeff[idx_imag];
- }
- return c;
- };
- auto write_coeff = [&](Complex<Real> c, Vector<Real>& coeff, Long i, Long p, Long n, Long m) {
- if (0<=m && m<=n && n<=p) {
- Long idx_real = ((2*p-m+3)*m - (m?p+1:0))*N + (p+1-m)*i - m + n;
- Long idx_imag = idx_real + (p+1-m)*N;
- coeff[idx_real] = c.real;
- if (m) coeff[idx_imag] = c.imag;
- }
- };
- auto gr = [&](Long n, Long m) { return read_coeff(B1, i+0, p_, n, m); };
- auto gt = [&](Long n, Long m) { return read_coeff(B1, i+1, p_, n, m); };
- auto gp = [&](Long n, Long m) { return read_coeff(B1, i+2, p_, n, m); };
- Complex<Real> phiY, phiG, phiX;
- { // (phiG, phiX) <-- (gt, gp)
- auto A = [&](Long n, Long m) { return (0<=n && m<=n && n<=p_ ? sqrt<Real>(n*n * ((n+1)*(n+1) - m*m) / (Real)((2*n+1)*(2*n+3))) : 0); };
- auto B = [&](Long n, Long m) { return (0<=n && m<=n && n<=p_ ? sqrt<Real>((n+1)*(n+1) * (n*n - m*m) / (Real)((2*n+1)*(2*n-1))) : 0); };
- phiY = gr(n,m);
- phiG = (gt(n+1,m)*A(n,m) - gt(n-1,m)*B(n,m) - imag*m*gp(n,m)) * (1/(Real)(std::max<Long>(n,1)*(n+1)));
- phiX = (gp(n+1,m)*A(n,m) - gp(n-1,m)*B(n,m) + imag*m*gt(n,m)) * (1/(Real)(std::max<Long>(n,1)*(n+1)));
- }
- auto phiV = (phiG * (n + 0) - phiY) * (1/(Real)(2*n + 1));
- auto phiW = (phiG * (n + 1) + phiY) * (1/(Real)(2*n + 1));
- if (n==0) {
- phiW = 0;
- phiX = 0;
- }
- write_coeff(phiV, B2, i+0, p0, n, m);
- write_coeff(phiW, B2, i+1, p0, n, m);
- write_coeff(phiX, B2, i+2, p0, n, m);
- }
- }
- }
- SHCArrange0(B2, p0, S, arrange);
- }
- template <class Real> void SphericalHarmonics<Real>::VecSHC2Grid(const Vector<Real>& S, SHCArrange arrange, Long p0, Long Nt, Long Np, Vector<Real>& X) {
- Vector<Real> B0;
- SHCArrange1(S, arrange, p0, B0);
- Long p_ = p0 + 1;
- Long M0 = (p0+1)*(p0+1);
- Long M_ = (p_+1)*(p_+1);
- Long N = B0.Dim() / M0;
- assert(B0.Dim() == N*M0);
- assert(N % COORD_DIM == 0);
- Vector<Real> B1(N*M_);
- const Complex<Real> imag(0,1);
- for (Long i=0; i<N; i+=COORD_DIM) {
- for (Long m=0; m<=p_; m++) {
- for (Long n=m; n<=p_; n++) {
- auto read_coeff = [&](const Vector<Real>& coeff, Long i, Long p, Long n, Long m) {
- Complex<Real> c;
- if (0<=m && m<=n && n<=p) {
- Long idx_real = ((2*p-m+3)*m - (m?p+1:0))*N + (p+1-m)*i - m + n;
- Long idx_imag = idx_real + (p+1-m)*N;
- c.real = coeff[idx_real];
- if (m) c.imag = coeff[idx_imag];
- }
- return c;
- };
- auto write_coeff = [&](Complex<Real> c, Vector<Real>& coeff, Long i, Long p, Long n, Long m) {
- if (0<=m && m<=n && n<=p) {
- Long idx_real = ((2*p-m+3)*m - (m?p+1:0))*N + (p+1-m)*i - m + n;
- Long idx_imag = idx_real + (p+1-m)*N;
- coeff[idx_real] = c.real;
- if (m) coeff[idx_imag] = c.imag;
- }
- };
- auto phiG = [&](Long n, Long m) {
- auto phiV = read_coeff(B0, i+0, p0, n, m);
- auto phiW = read_coeff(B0, i+1, p0, n, m);
- return phiV + phiW;
- };
- auto phiY = [&](Long n, Long m) {
- auto phiV = read_coeff(B0, i+0, p0, n, m);
- auto phiW = read_coeff(B0, i+1, p0, n, m);
- return phiW * n - phiV * (n + 1);
- };
- auto phiX = [&](Long n, Long m) {
- return read_coeff(B0, i+2, p0, n, m);
- };
- Complex<Real> gr, gt, gp;
- { // (gt, gp) <-- (phiG, phiX)
- auto A = [&](Long n, Long m) { return (0<=n && m<=n && n<=p_ ? sqrt<Real>(n*n * ((n+1)*(n+1) - m*m) / (Real)((2*n+1)*(2*n+3))) : 0); };
- auto B = [&](Long n, Long m) { return (0<=n && m<=n && n<=p_ ? sqrt<Real>((n+1)*(n+1) * (n*n - m*m) / (Real)((2*n+1)*(2*n-1))) : 0); };
- gr = phiY(n,m);
- gt = phiG(n-1,m)*A(n-1,m) - phiG(n+1,m)*B(n+1,m) - imag*m*phiX(n,m);
- gp = phiX(n-1,m)*A(n-1,m) - phiX(n+1,m)*B(n+1,m) + imag*m*phiG(n,m);
- }
- write_coeff(gr, B1, i+0, p_, n, m);
- write_coeff(gt, B1, i+1, p_, n, m);
- write_coeff(gp, B1, i+2, p_, n, m);
- }
- }
- }
- { // Set X
- SHC2Grid_(B1, p_, Nt, Np, &X);
- Vector<Real> sin_phi(Np), cos_phi(Np);
- for (Long i = 0; i < Np; i++) {
- sin_phi[i] = sin(2 * const_pi<Real>() * i / Np);
- cos_phi[i] = cos(2 * const_pi<Real>() * i / Np);
- }
- const auto& Y = LegendreNodes(Nt - 1);
- assert(Y.Dim() == Nt);
- Long Ngrid = Nt * Np;
- for (Long k = 0; k < N; k+=COORD_DIM) {
- for (Long i = 0; i < Nt; i++) {
- Real sin_theta = sqrt<Real>(1 - Y[i]*Y[i]);
- Real cos_theta = Y[i];
- Real csc_theta = 1 / sin_theta;
- auto X_ = X.begin() + (k*Nt+i)*Np;
- for (Long j = 0; j < Np; j++) {
- StaticArray<Real,3> in;
- in[0] = X_[0*Ngrid+j];
- in[1] = X_[1*Ngrid+j] * csc_theta;
- in[2] = X_[2*Ngrid+j] * csc_theta;
- StaticArray<Real,9> Q;
- { // Set Q
- Q[0] = sin_theta*cos_phi[j]; Q[1] = sin_theta*sin_phi[j]; Q[2] = cos_theta;
- Q[3] = cos_theta*cos_phi[j]; Q[4] = cos_theta*sin_phi[j]; Q[5] =-sin_theta;
- Q[6] = -sin_phi[j]; Q[7] = cos_phi[j]; Q[8] = 0;
- }
- X_[0*Ngrid+j] = ( Q[0] * in[0] + Q[3] * in[1] + Q[6] * in[2] );
- X_[1*Ngrid+j] = ( Q[1] * in[0] + Q[4] * in[1] + Q[7] * in[2] );
- X_[2*Ngrid+j] = ( Q[2] * in[0] + Q[5] * in[1] + Q[8] * in[2] );
- }
- }
- }
- }
- }
- template <class Real> void SphericalHarmonics<Real>::VecSHCEval(const Vector<Real>& S, SHCArrange arrange, Long p0, const Vector<Real>& theta_phi, Vector<Real>& X) {
- Long M = (p0+1) * (p0+1);
- Long dof;
- Matrix<Real> B1;
- { // Set B1, dof
- Vector<Real> B0;
- SHCArrange1(S, arrange, p0, B0);
- dof = B0.Dim() / M / COORD_DIM;
- assert(B0.Dim() == dof * COORD_DIM * M);
- B1.ReInit(dof, COORD_DIM * M);
- Vector<Real> B1_(B1.Dim(0) * B1.Dim(1), B1.begin(), false);
- SHCArrange0(B0, p0, B1_, SHCArrange::COL_MAJOR_NONZERO);
- }
- assert(B1.Dim(1) == COORD_DIM * M);
- assert(B1.Dim(0) == dof);
- Matrix<Real> SHBasis;
- VecSHBasisEval(p0, theta_phi, SHBasis);
- assert(SHBasis.Dim(1) == COORD_DIM * M);
- Long N = SHBasis.Dim(0) / COORD_DIM;
- { // Set X <-- Q * SHBasis * B1
- if (X.Dim() != N * dof * COORD_DIM) X.ReInit(N * dof * COORD_DIM);
- for (Long k0 = 0; k0 < N; k0++) {
- StaticArray<Real,9> Q;
- { // Set Q
- Real cos_theta = cos(theta_phi[k0 * 2 + 0]);
- Real sin_theta = sin(theta_phi[k0 * 2 + 0]);
- Real cos_phi = cos(theta_phi[k0 * 2 + 1]);
- Real sin_phi = sin(theta_phi[k0 * 2 + 1]);
- Q[0] = sin_theta*cos_phi; Q[1] = sin_theta*sin_phi; Q[2] = cos_theta;
- Q[3] = cos_theta*cos_phi; Q[4] = cos_theta*sin_phi; Q[5] =-sin_theta;
- Q[6] = -sin_phi; Q[7] = cos_phi; Q[8] = 0;
- }
- for (Long k1 = 0; k1 < dof; k1++) { // Set X <-- Q * SHBasis * B1
- StaticArray<Real,COORD_DIM> in;
- for (Long j = 0; j < COORD_DIM; j++) {
- in[j] = 0;
- for (Long i = 0; i < COORD_DIM * M; i++) {
- in[j] += B1[k1][i] * SHBasis[k0 * COORD_DIM + j][i];
- }
- }
- X[(k0 * dof + k1) * COORD_DIM + 0] = Q[0] * in[0] + Q[3] * in[1] + Q[6] * in[2];
- X[(k0 * dof + k1) * COORD_DIM + 1] = Q[1] * in[0] + Q[4] * in[1] + Q[7] * in[2];
- X[(k0 * dof + k1) * COORD_DIM + 2] = Q[2] * in[0] + Q[5] * in[1] + Q[8] * in[2];
- }
- }
- }
- }
- template <class Real> void SphericalHarmonics<Real>::StokesEvalSL(const Vector<Real>& S, SHCArrange arrange, Long p0, const Vector<Real>& coord, bool interior, Vector<Real>& X) {
- Long M = (p0+1) * (p0+1);
- Long dof;
- Matrix<Real> B1;
- { // Set B1, dof
- Vector<Real> B0;
- SHCArrange1(S, arrange, p0, B0);
- dof = B0.Dim() / M / COORD_DIM;
- assert(B0.Dim() == dof * COORD_DIM * M);
- B1.ReInit(dof, COORD_DIM * M);
- Vector<Real> B1_(B1.Dim(0) * B1.Dim(1), B1.begin(), false);
- SHCArrange0(B0, p0, B1_, SHCArrange::COL_MAJOR_NONZERO);
- }
- assert(B1.Dim(1) == COORD_DIM * M);
- assert(B1.Dim(0) == dof);
- Long N, p_;
- Matrix<Real> SHBasis;
- Vector<Real> R, theta_phi;
- { // Set N, p_, R, SHBasis
- p_ = p0 + 1;
- Real M_ = (p_+1) * (p_+1);
- N = coord.Dim() / COORD_DIM;
- assert(coord.Dim() == N * COORD_DIM);
- R.ReInit(N);
- theta_phi.ReInit(2 * N);
- for (Long i = 0; i < N; i++) { // Set R, theta_phi
- ConstIterator<Real> x = coord.begin() + i * COORD_DIM;
- R[i] = sqrt<Real>(x[0]*x[0] + x[1]*x[1] + x[2]*x[2]);
- theta_phi[i * 2 + 0] = atan2(sqrt<Real>(x[0]*x[0] + x[1]*x[1]), x[2]);
- theta_phi[i * 2 + 1] = atan2(x[1], x[0]);
- }
- SHBasisEval(p_, theta_phi, SHBasis);
- assert(SHBasis.Dim(1) == M_);
- assert(SHBasis.Dim(0) == N);
- SCTL_UNUSED(M_);
- }
- Matrix<Real> StokesOp(N * COORD_DIM, COORD_DIM * M);
- for (Long i = 0; i < N; i++) { // Set StokesOp
- Real cos_theta, sin_theta, csc_theta, cos_phi, sin_phi;
- { // Set cos_theta, csc_theta, cos_phi, sin_phi
- cos_theta = cos(theta_phi[i * 2 + 0]);
- sin_theta = sin(theta_phi[i * 2 + 0]);
- csc_theta = 1 / sin_theta;
- cos_phi = cos(theta_phi[i * 2 + 1]);
- sin_phi = sin(theta_phi[i * 2 + 1]);
- }
- Complex<Real> imag(0,1), exp_phi(cos_phi, -sin_phi);
- for (Long m = 0; m <= p0; m++) {
- for (Long n = m; n <= p0; n++) {
- auto write_coeff = [&](Complex<Real> c, Long n, Long m, Long k0, Long k1) {
- if (0 <= m && m <= n && n <= p0 && 0 <= k0 && k0 < COORD_DIM && 0 <= k1 && k1 < COORD_DIM) {
- Long idx = (2 * p0 - m + 2) * m - (m ? p0+1 : 0) + n;
- StokesOp[i * COORD_DIM + k1][k0 * M + idx] = c.real;
- if (m) {
- idx += (p0+1-m);
- StokesOp[i * COORD_DIM + k1][k0 * M + idx] = c.imag;
- }
- }
- };
- Complex<Real> Vr, Vt, Vp, Wr, Wt, Wp, Xr, Xt, Xp;
- { // Set vector spherical harmonics
- auto Y = [&SHBasis,p_,i](Long n, Long m) {
- Complex<Real> c;
- if (0 <= m && m <= n && n <= p_) {
- Long idx = (2 * p_ - m + 2) * m - (m ? p_+1 : 0) + n;
- c.real = SHBasis[i][idx];
- if (m) {
- idx += (p_+1-m);
- c.imag = SHBasis[i][idx];
- }
- }
- return c;
- };
- auto Yt = [exp_phi, &Y, &R, i](Long n, Long m) {
- auto A = (0<=n && m<=n ? 0.5 * sqrt<Real>((n+m)*(n-m+1)) * (m-1==0?2.0:1.0) : 0);
- auto B = (0<=n && m<=n ? 0.5 * sqrt<Real>((n-m)*(n+m+1)) * (m+1==0?2.0:1.0) : 0);
- return (B / exp_phi * Y(n, m + 1) - A * exp_phi * Y(n, m - 1)) / R[i];
- };
- Complex<Real> Y_1 = Y(n + 0, m);
- Complex<Real> Y_1t = Yt(n + 0, m);
- Complex<Real> Ycsc_1 = Y_1 * csc_theta;
- if (fabs(sin_theta) == 0) {
- auto Y_csc0 = [exp_phi, cos_theta](Long n, Long m) {
- if (m == 1) return -sqrt<Real>((2*n+1)*n*(n+1)) * ((n%2==0) && (cos_theta<0) ? -1 : 1) * exp_phi;
- return Complex<Real>(0, 0);
- };
- Ycsc_1 = Y_csc0(n + 0, m);
- }
- auto SetVecSH = [&imag,n,m](Complex<Real>& Vr, Complex<Real>& Vt, Complex<Real>& Vp, Complex<Real>& Wr, Complex<Real>& Wt, Complex<Real>& Wp, Complex<Real>& Xr, Complex<Real>& Xt, Complex<Real>& Xp, const Complex<Real> C0, const Complex<Real> C1, const Complex<Real> C2) {
- Vr = C0 * (-n-1);
- Vt = C2;
- Vp = -imag * m * C1;
- Wr = C0 * n;
- Wt = C2;
- Wp = -imag * m * C1;
- Xr = 0;
- Xt = imag * m * C1;
- Xp = C2;
- };
- { // Set Vr, Vt, Vp, Wr, Wt, Wp, Xr, Xt, Xp
- auto C0 = Y_1;
- auto C1 = Ycsc_1;
- auto C2 = Y_1t * R[i];
- SetVecSH(Vr, Vt, Vp, Wr, Wt, Wp, Xr, Xt, Xp, C0, C1, C2);
- }
- }
- Complex<Real> SVr, SVt, SVp;
- Complex<Real> SWr, SWt, SWp;
- Complex<Real> SXr, SXt, SXp;
- if (interior) {
- Real a,b;
- a = n / (Real)((2*n+1) * (2*n+3)) * pow<Real>(R[i], n+1);
- b = -(n+1) / (Real)(4*n+2) * (pow<Real>(R[i], n-1) - pow<Real>(R[i], n+1));
- SVr = a * Vr + b * Wr;
- SVt = a * Vt + b * Wt;
- SVp = a * Vp + b * Wp;
- a = (n+1) / (Real)((2*n+1) * (2*n-1)) * pow<Real>(R[i], n-1);
- SWr = a * Wr;
- SWt = a * Wt;
- SWp = a * Wp;
- a = 1 / (Real)(2*n+1) * pow<Real>(R[i], n);
- SXr = a * Xr;
- SXt = a * Xt;
- SXp = a * Xp;
- } else {
- Real a,b;
- a = n / (Real)((2*n+1) * (2*n+3)) * pow<Real>(R[i], -n-2);
- SVr = a * Vr;
- SVt = a * Vt;
- SVp = a * Vp;
- a = (n+1) / (Real)((2*n+1) * (2*n-1)) * pow<Real>(R[i], -n);
- b = n / (Real)(4*n+2) * (pow<Real>(R[i], -n-2) - pow<Real>(R[i], -n));
- SWr = a * Wr + b * Vr;
- SWt = a * Wt + b * Vt;
- SWp = a * Wp + b * Vp;
- a = 1 / (Real)(2*n+1) * pow<Real>(R[i], -n-1);
- SXr = a * Xr;
- SXt = a * Xt;
- SXp = a * Xp;
- }
- write_coeff(SVr, n, m, 0, 0);
- write_coeff(SVt, n, m, 0, 1);
- write_coeff(SVp, n, m, 0, 2);
- write_coeff(SWr, n, m, 1, 0);
- write_coeff(SWt, n, m, 1, 1);
- write_coeff(SWp, n, m, 1, 2);
- write_coeff(SXr, n, m, 2, 0);
- write_coeff(SXt, n, m, 2, 1);
- write_coeff(SXp, n, m, 2, 2);
- }
- }
- }
- { // Set X <-- Q * StokesOp * B1
- if (X.Dim() != N * dof * COORD_DIM) X.ReInit(N * dof * COORD_DIM);
- for (Long k0 = 0; k0 < N; k0++) {
- StaticArray<Real,9> Q;
- { // Set Q
- Real cos_theta = cos(theta_phi[k0 * 2 + 0]);
- Real sin_theta = sin(theta_phi[k0 * 2 + 0]);
- Real cos_phi = cos(theta_phi[k0 * 2 + 1]);
- Real sin_phi = sin(theta_phi[k0 * 2 + 1]);
- Q[0] = sin_theta*cos_phi; Q[1] = sin_theta*sin_phi; Q[2] = cos_theta;
- Q[3] = cos_theta*cos_phi; Q[4] = cos_theta*sin_phi; Q[5] =-sin_theta;
- Q[6] = -sin_phi; Q[7] = cos_phi; Q[8] = 0;
- }
- for (Long k1 = 0; k1 < dof; k1++) { // Set X <-- Q * StokesOp * B1
- StaticArray<Real,COORD_DIM> in;
- for (Long j = 0; j < COORD_DIM; j++) {
- in[j] = 0;
- for (Long i = 0; i < COORD_DIM * M; i++) {
- in[j] += B1[k1][i] * StokesOp[k0 * COORD_DIM + j][i];
- }
- }
- X[(k0 * dof + k1) * COORD_DIM + 0] = Q[0] * in[0] + Q[3] * in[1] + Q[6] * in[2];
- X[(k0 * dof + k1) * COORD_DIM + 1] = Q[1] * in[0] + Q[4] * in[1] + Q[7] * in[2];
- X[(k0 * dof + k1) * COORD_DIM + 2] = Q[2] * in[0] + Q[5] * in[1] + Q[8] * in[2];
- }
- }
- }
- }
- template <class Real> void SphericalHarmonics<Real>::StokesEvalDL(const Vector<Real>& S, SHCArrange arrange, Long p0, const Vector<Real>& coord, bool interior, Vector<Real>& X) {
- Long M = (p0+1) * (p0+1);
- Long dof;
- Matrix<Real> B1;
- { // Set B1, dof
- Vector<Real> B0;
- SHCArrange1(S, arrange, p0, B0);
- dof = B0.Dim() / M / COORD_DIM;
- assert(B0.Dim() == dof * COORD_DIM * M);
- B1.ReInit(dof, COORD_DIM * M);
- Vector<Real> B1_(B1.Dim(0) * B1.Dim(1), B1.begin(), false);
- SHCArrange0(B0, p0, B1_, SHCArrange::COL_MAJOR_NONZERO);
- }
- assert(B1.Dim(1) == COORD_DIM * M);
- assert(B1.Dim(0) == dof);
- Long N, p_;
- Matrix<Real> SHBasis;
- Vector<Real> R, theta_phi;
- { // Set N, p_, R, SHBasis
- p_ = p0 + 1;
- Real M_ = (p_+1) * (p_+1);
- N = coord.Dim() / COORD_DIM;
- assert(coord.Dim() == N * COORD_DIM);
- R.ReInit(N);
- theta_phi.ReInit(2 * N);
- for (Long i = 0; i < N; i++) { // Set R, theta_phi
- ConstIterator<Real> x = coord.begin() + i * COORD_DIM;
- R[i] = sqrt<Real>(x[0]*x[0] + x[1]*x[1] + x[2]*x[2]);
- theta_phi[i * 2 + 0] = atan2(sqrt<Real>(x[0]*x[0] + x[1]*x[1]), x[2]);
- theta_phi[i * 2 + 1] = atan2(x[1], x[0]);
- }
- SHBasisEval(p_, theta_phi, SHBasis);
- assert(SHBasis.Dim(1) == M_);
- assert(SHBasis.Dim(0) == N);
- SCTL_UNUSED(M_);
- }
- Matrix<Real> StokesOp(N * COORD_DIM, COORD_DIM * M);
- for (Long i = 0; i < N; i++) { // Set StokesOp
- Real cos_theta, sin_theta, csc_theta, cos_phi, sin_phi;
- { // Set cos_theta, csc_theta, cos_phi, sin_phi
- cos_theta = cos(theta_phi[i * 2 + 0]);
- sin_theta = sin(theta_phi[i * 2 + 0]);
- csc_theta = 1 / sin_theta;
- cos_phi = cos(theta_phi[i * 2 + 1]);
- sin_phi = sin(theta_phi[i * 2 + 1]);
- }
- Complex<Real> imag(0,1), exp_phi(cos_phi, -sin_phi);
- for (Long m = 0; m <= p0; m++) {
- for (Long n = m; n <= p0; n++) {
- auto write_coeff = [&](Complex<Real> c, Long n, Long m, Long k0, Long k1) {
- if (0 <= m && m <= n && n <= p0 && 0 <= k0 && k0 < COORD_DIM && 0 <= k1 && k1 < COORD_DIM) {
- Long idx = (2 * p0 - m + 2) * m - (m ? p0+1 : 0) + n;
- StokesOp[i * COORD_DIM + k1][k0 * M + idx] = c.real;
- if (m) {
- idx += (p0+1-m);
- StokesOp[i * COORD_DIM + k1][k0 * M + idx] = c.imag;
- }
- }
- };
- Complex<Real> Vr, Vt, Vp, Wr, Wt, Wp, Xr, Xt, Xp;
- { // Set vector spherical harmonics
- auto Y = [&SHBasis,p_,i](Long n, Long m) {
- Complex<Real> c;
- if (0 <= m && m <= n && n <= p_) {
- Long idx = (2 * p_ - m + 2) * m - (m ? p_+1 : 0) + n;
- c.real = SHBasis[i][idx];
- if (m) {
- idx += (p_+1-m);
- c.imag = SHBasis[i][idx];
- }
- }
- return c;
- };
- auto Yt = [exp_phi, &Y, &R, i](Long n, Long m) {
- auto A = (0<=n && m<=n ? 0.5 * sqrt<Real>((n+m)*(n-m+1)) * (m-1==0?2.0:1.0) : 0);
- auto B = (0<=n && m<=n ? 0.5 * sqrt<Real>((n-m)*(n+m+1)) * (m+1==0?2.0:1.0) : 0);
- return (B / exp_phi * Y(n, m + 1) - A * exp_phi * Y(n, m - 1)) / R[i];
- };
- Complex<Real> Y_1 = Y(n + 0, m);
- Complex<Real> Y_1t = Yt(n + 0, m);
- Complex<Real> Ycsc_1 = Y_1 * csc_theta;
- if (fabs(sin_theta) == 0) {
- auto Y_csc0 = [exp_phi, cos_theta](Long n, Long m) {
- if (m == 1) return -sqrt<Real>((2*n+1)*n*(n+1)) * ((n%2==0) && (cos_theta<0) ? -1 : 1) * exp_phi;
- return Complex<Real>(0, 0);
- };
- Ycsc_1 = Y_csc0(n + 0, m);
- }
- auto SetVecSH = [&imag,n,m](Complex<Real>& Vr, Complex<Real>& Vt, Complex<Real>& Vp, Complex<Real>& Wr, Complex<Real>& Wt, Complex<Real>& Wp, Complex<Real>& Xr, Complex<Real>& Xt, Complex<Real>& Xp, const Complex<Real> C0, const Complex<Real> C1, const Complex<Real> C2) {
- Vr = C0 * (-n-1);
- Vt = C2;
- Vp = -imag * m * C1;
- Wr = C0 * n;
- Wt = C2;
- Wp = -imag * m * C1;
- Xr = 0;
- Xt = imag * m * C1;
- Xp = C2;
- };
- { // Set Vr, Vt, Vp, Wr, Wt, Wp, Xr, Xt, Xp
- auto C0 = Y_1;
- auto C1 = Ycsc_1;
- auto C2 = Y_1t * R[i];
- SetVecSH(Vr, Vt, Vp, Wr, Wt, Wp, Xr, Xt, Xp, C0, C1, C2);
- }
- }
- Complex<Real> SVr, SVt, SVp;
- Complex<Real> SWr, SWt, SWp;
- Complex<Real> SXr, SXt, SXp;
- if (interior) {
- Real a,b;
- a = -2*n*(n+2) / (Real)((2*n+1) * (2*n+3)) * pow<Real>(R[i], n+1);
- b = -(n+1)*(n+2) / (Real)(2*n+1) * (pow<Real>(R[i], n+1) - pow<Real>(R[i], n-1));
- SVr = a * Vr + b * Wr;
- SVt = a * Vt + b * Wt;
- SVp = a * Vp + b * Wp;
- a = -(2*n*n+1) / (Real)((2*n+1) * (2*n-1)) * pow<Real>(R[i], n-1);
- SWr = a * Wr;
- SWt = a * Wt;
- SWp = a * Wp;
- a = -(n+2) / (Real)(2*n+1) * pow<Real>(R[i], n);
- SXr = a * Xr;
- SXt = a * Xt;
- SXp = a * Xp;
- } else {
- Real a,b;
- a = (2*n*n+4*n+3) / (Real)((2*n+1) * (2*n+3)) * pow<Real>(R[i], -n-2);
- SVr = a * Vr;
- SVt = a * Vt;
- SVp = a * Vp;
- a = 2*(n+1)*(n-1) / (Real)((2*n+1) * (2*n-1)) * pow<Real>(R[i], -n);
- b = 2*n*(n-1) / (Real)(4*n+2) * (pow<Real>(R[i], -n-2) - pow<Real>(R[i], -n));
- SWr = a * Wr + b * Vr;
- SWt = a * Wt + b * Vt;
- SWp = a * Wp + b * Vp;
- a = (n-1) / (Real)(2*n+1) * pow<Real>(R[i], -n-1);
- SXr = a * Xr;
- SXt = a * Xt;
- SXp = a * Xp;
- }
- write_coeff(SVr, n, m, 0, 0);
- write_coeff(SVt, n, m, 0, 1);
- write_coeff(SVp, n, m, 0, 2);
- write_coeff(SWr, n, m, 1, 0);
- write_coeff(SWt, n, m, 1, 1);
- write_coeff(SWp, n, m, 1, 2);
- write_coeff(SXr, n, m, 2, 0);
- write_coeff(SXt, n, m, 2, 1);
- write_coeff(SXp, n, m, 2, 2);
- }
- }
- }
- { // Set X <-- Q * StokesOp * B1
- if (X.Dim() != N * dof * COORD_DIM) X.ReInit(N * dof * COORD_DIM);
- for (Long k0 = 0; k0 < N; k0++) {
- StaticArray<Real,9> Q;
- { // Set Q
- Real cos_theta = cos(theta_phi[k0 * 2 + 0]);
- Real sin_theta = sin(theta_phi[k0 * 2 + 0]);
- Real cos_phi = cos(theta_phi[k0 * 2 + 1]);
- Real sin_phi = sin(theta_phi[k0 * 2 + 1]);
- Q[0] = sin_theta*cos_phi; Q[1] = sin_theta*sin_phi; Q[2] = cos_theta;
- Q[3] = cos_theta*cos_phi; Q[4] = cos_theta*sin_phi; Q[5] =-sin_theta;
- Q[6] = -sin_phi; Q[7] = cos_phi; Q[8] = 0;
- }
- for (Long k1 = 0; k1 < dof; k1++) { // Set X <-- Q * StokesOp * B1
- StaticArray<Real,COORD_DIM> in;
- for (Long j = 0; j < COORD_DIM; j++) {
- in[j] = 0;
- for (Long i = 0; i < COORD_DIM * M; i++) {
- in[j] += B1[k1][i] * StokesOp[k0 * COORD_DIM + j][i];
- }
- }
- X[(k0 * dof + k1) * COORD_DIM + 0] = Q[0] * in[0] + Q[3] * in[1] + Q[6] * in[2];
- X[(k0 * dof + k1) * COORD_DIM + 1] = Q[1] * in[0] + Q[4] * in[1] + Q[7] * in[2];
- X[(k0 * dof + k1) * COORD_DIM + 2] = Q[2] * in[0] + Q[5] * in[1] + Q[8] * in[2];
- }
- }
- }
- }
- template <class Real> void SphericalHarmonics<Real>::StokesEvalKL(const Vector<Real>& S, SHCArrange arrange, Long p0, const Vector<Real>& coord, const Vector<Real>& norm, bool interior, Vector<Real>& X) {
- Long M = (p0+1) * (p0+1);
- Long dof;
- Matrix<Real> B1;
- { // Set B1, dof
- Vector<Real> B0;
- SHCArrange1(S, arrange, p0, B0);
- dof = B0.Dim() / M / COORD_DIM;
- assert(B0.Dim() == dof * COORD_DIM * M);
- B1.ReInit(dof, COORD_DIM * M);
- Vector<Real> B1_(B1.Dim(0) * B1.Dim(1), B1.begin(), false);
- SHCArrange0(B0, p0, B1_, SHCArrange::COL_MAJOR_NONZERO);
- }
- assert(B1.Dim(1) == COORD_DIM * M);
- assert(B1.Dim(0) == dof);
- Long N, p_;
- Matrix<Real> SHBasis;
- Vector<Real> R, theta_phi;
- { // Set N, p_, R, SHBasis
- p_ = p0 + 2;
- Real M_ = (p_+1) * (p_+1);
- N = coord.Dim() / COORD_DIM;
- assert(coord.Dim() == N * COORD_DIM);
- R.ReInit(N);
- theta_phi.ReInit(2 * N);
- for (Long i = 0; i < N; i++) { // Set R, theta_phi
- ConstIterator<Real> x = coord.begin() + i * COORD_DIM;
- R[i] = sqrt<Real>(x[0]*x[0] + x[1]*x[1] + x[2]*x[2]);
- theta_phi[i * 2 + 0] = atan2(sqrt<Real>(x[0]*x[0] + x[1]*x[1]) + 1e-50, x[2]);
- theta_phi[i * 2 + 1] = atan2(x[1], x[0]);
- }
- SHBasisEval(p_, theta_phi, SHBasis);
- assert(SHBasis.Dim(1) == M_);
- assert(SHBasis.Dim(0) == N);
- SCTL_UNUSED(M_);
- }
- Matrix<Real> StokesOp(N * COORD_DIM, COORD_DIM * M);
- for (Long i = 0; i < N; i++) { // Set StokesOp
- Real cos_theta, sin_theta, csc_theta, cot_theta, cos_phi, sin_phi;
- { // Set cos_theta, sin_theta, cos_phi, sin_phi
- cos_theta = cos(theta_phi[i * 2 + 0]);
- sin_theta = sin(theta_phi[i * 2 + 0]);
- csc_theta = 1 / sin_theta;
- cot_theta = cos_theta * csc_theta;
- cos_phi = cos(theta_phi[i * 2 + 1]);
- sin_phi = sin(theta_phi[i * 2 + 1]);
- }
- Complex<Real> imag(0,1), exp_phi(cos_phi, -sin_phi);
- StaticArray<Real, COORD_DIM> norm0;
- { // Set norm0 <-- Q^t * norm
- StaticArray<Real,9> Q;
- { // Set Q
- Q[0] = sin_theta*cos_phi; Q[1] = sin_theta*sin_phi; Q[2] = cos_theta;
- Q[3] = cos_theta*cos_phi; Q[4] = cos_theta*sin_phi; Q[5] =-sin_theta;
- Q[6] = -sin_phi; Q[7] = cos_phi; Q[8] = 0;
- }
- StaticArray<Real,COORD_DIM> in;
- in[0] = norm[i * COORD_DIM + 0];
- in[1] = norm[i * COORD_DIM + 1];
- in[2] = norm[i * COORD_DIM + 2];
- norm0[0] = Q[0] * in[0] + Q[1] * in[1] + Q[2] * in[2];
- norm0[1] = Q[3] * in[0] + Q[4] * in[1] + Q[5] * in[2];
- norm0[2] = Q[6] * in[0] + Q[7] * in[1] + Q[8] * in[2];
- }
- for (Long m = 0; m <= p0; m++) {
- for (Long n = m; n <= p0; n++) {
- auto write_coeff = [&](Complex<Real> c, Long n, Long m, Long k0, Long k1) {
- if (0 <= m && m <= n && n <= p0 && 0 <= k0 && k0 < COORD_DIM && 0 <= k1 && k1 < COORD_DIM) {
- Long idx = (2 * p0 - m + 2) * m - (m ? p0+1 : 0) + n;
- StokesOp[i * COORD_DIM + k1][k0 * M + idx] = c.real;
- if (m) {
- idx += (p0+1-m);
- StokesOp[i * COORD_DIM + k1][k0 * M + idx] = c.imag;
- }
- }
- };
- Complex<Real> Ynm;
- Complex<Real> Vr, Vt, Vp, Wr, Wt, Wp, Xr, Xt, Xp;
- Complex<Real> Vr_t, Vt_t, Vp_t, Wr_t, Wt_t, Wp_t, Xr_t, Xt_t, Xp_t;
- Complex<Real> Vr_p, Vt_p, Vp_p, Wr_p, Wt_p, Wp_p, Xr_p, Xt_p, Xp_p;
- { // Set vector spherical harmonics
- auto Y = [&SHBasis,p_,i](Long n, Long m) {
- Complex<Real> c;
- if (0 <= m && m <= n && n <= p_) {
- Long idx = (2 * p_ - m + 2) * m - (m ? p_+1 : 0) + n;
- c.real = SHBasis[i][idx];
- if (m) {
- idx += (p_+1-m);
- c.imag = SHBasis[i][idx];
- }
- }
- return c;
- };
- auto Yt = [exp_phi, &Y, &R, i](Long n, Long m) {
- auto A = (0<=n && m<=n ? 0.5 * sqrt<Real>((n+m)*(n-m+1)) * (m-1==0?2.0:1.0) : 0);
- auto B = (0<=n && m<=n ? 0.5 * sqrt<Real>((n-m)*(n+m+1)) * (m+1==0?2.0:1.0) : 0);
- return (B / exp_phi * Y(n, m + 1) - A * exp_phi * Y(n, m - 1)) / R[i];
- };
- auto Yp = [&Y, &imag, &R, i, csc_theta](Long n, Long m) {
- return imag * m * Y(n, m) * csc_theta / R[i];
- };
- auto Ypt = [&Yt, &imag](Long n, Long m) {
- return imag * m * Yt(n, m);
- };
- auto Ytt = [sin_theta, exp_phi, &Yt, &R, i](Long n, Long m) {
- auto A = (0<=n && m<=n ? 0.5 * sqrt<Real>((n+m)*(n-m+1)) * (m-1==0?2.0:1.0) : 0);
- auto B = (0<=n && m<=n ? 0.5 * sqrt<Real>((n-m)*(n+m+1)) * (m+1==0?2.0:1.0) : 0);
- return (n==0 ? 0 : (B / exp_phi * Yt(n, m + 1) - A * exp_phi * Yt(n, m - 1)));
- };
- Complex<Real> Y_1 = Y(n + 0, m);
- Complex<Real> Y_0t = Yt(n - 1, m);
- Complex<Real> Y_1t = Yt(n + 0, m);
- Complex<Real> Y_2t = Yt(n + 1, m);
- //Complex<Real> Y_0p = Yp(n - 1, m);
- Complex<Real> Y_1p = Yp(n + 0, m);
- //Complex<Real> Y_2p = Yp(n + 1, m);
- auto Anm = (0<=n && m<=n && n<=p_ ? sqrt<Real>(n*n * ((n+1)*(n+1) - m*m) / (Real)((2*n+1)*(2*n+3))) : 0);
- auto Bnm = (0<=n && m<=n && n<=p_ ? sqrt<Real>((n+1)*(n+1) * (n*n - m*m) / (Real)((2*n+1)*(2*n-1))) : 0);
- auto SetVecSH = [&imag,n,m](Complex<Real>& Vr, Complex<Real>& Vt, Complex<Real>& Vp, Complex<Real>& Wr, Complex<Real>& Wt, Complex<Real>& Wp, Complex<Real>& Xr, Complex<Real>& Xt, Complex<Real>& Xp, const Complex<Real> C0, const Complex<Real> C1, const Complex<Real> C2) {
- Vr = C0 * (-n-1);
- Vt = C2;
- Vp = -imag * m * C1;
- Wr = C0 * n;
- Wt = C2;
- Wp = -imag * m * C1;
- Xr = 0;
- Xt = imag * m * C1;
- Xp = C2;
- };
- { // Set Vr, Vt, Vp, Wr, Wt, Wp, Xr, Xt, Xp
- auto C0 = Y_1;
- auto C1 = Y_1 * csc_theta;
- auto C2 = Yt(n,m) * R[i];
- SetVecSH(Vr, Vt, Vp, Wr, Wt, Wp, Xr, Xt, Xp, C0, C1, C2);
- }
- { // Set Vr_t, Vt_t, Vp_t, Wr_t, Wt_t, Wp_t, Xr_t, Xt_t, Xp_t
- auto C0 = Y_1t;
- auto C1 = (Y_1t - Y_1 * cot_theta / R[i]) * csc_theta;
- if (fabs(cos_theta) == 1 && m == 1) C1 = 0; ///////////// TODO
- auto C2 = Ytt(n,m);
- if (!m) C2 = (Anm * Y_2t - Bnm * Y_0t) * csc_theta - Y_1t * cot_theta; ///////////// TODO
- SetVecSH(Vr_t, Vt_t, Vp_t, Wr_t, Wt_t, Wp_t, Xr_t, Xt_t, Xp_t, C0, C1, C2);
- Vr_t += (-Vt) / R[i];
- Vt_t += ( Vr) / R[i];
- Wr_t += (-Wt) / R[i];
- Wt_t += ( Wr) / R[i];
- Xr_t += (-Xt) / R[i];
- Xt_t += ( Xr) / R[i];
- }
- { // Set Vr_p, Vt_p, Vp_p, Wr_p, Wt_p, Wp_p, Xr_p, Xt_p, Xp_p
- auto C0 = -Y_1p;
- auto C1 = -Y_1p * csc_theta;
- auto C2 = -Ypt(n, m) * csc_theta;
- //auto C2 = -(Anm * Y_2p - Bnm * Y_0p) * csc_theta;
- SetVecSH(Vr_p, Vt_p, Vp_p, Wr_p, Wt_p, Wp_p, Xr_p, Xt_p, Xp_p, C0, C1, C2);
- Vr_p += (-sin_theta * Vp ) * csc_theta / R[i];
- Vt_p += (-cos_theta * Vp ) * csc_theta / R[i];
- Vp_p += ( sin_theta * Vr + cos_theta * Vt) * csc_theta / R[i];
- Wr_p += (-sin_theta * Wp ) * csc_theta / R[i];
- Wt_p += (-cos_theta * Wp ) * csc_theta / R[i];
- Wp_p += ( sin_theta * Wr + cos_theta * Wt) * csc_theta / R[i];
- Xr_p += (-sin_theta * Xp ) * csc_theta / R[i];
- Xt_p += (-cos_theta * Xp ) * csc_theta / R[i];
- Xp_p += ( sin_theta * Xr + cos_theta * Xt) * csc_theta / R[i];
- if (fabs(cos_theta) == 1 && m == 1) {
- Vt_p = 0;
- Vp_p = 0;
- Wt_p = 0;
- Wp_p = 0;
- Xt_p = 0;
- Xp_p = 0;
- }
- }
- Ynm = Y_1;
- }
- if (fabs(cos_theta) == 1) {
- if (m!=0) Vr = 0;
- if (m!=1) Vt = 0;
- if (m!=1) Vp = 0;
- if (m!=0) Wr = 0;
- if (m!=1) Wt = 0;
- if (m!=1) Wp = 0;
- Xr = 0;
- if (m!=1) Xt = 0;
- if (m!=1) Xp = 0;
- if (m!=1 ) Vr_t = 0;
- if (m!=0 && m!=2) Vt_t = 0;
- if (m!=2 ) Vp_t = 0;
- if (m!=1 ) Wr_t = 0;
- if (m!=0 && m!=2) Wt_t = 0;
- if (m!=2 ) Wp_t = 0;
- if (m!=1 ) Xr_t = 0;
- if (m!=2 ) Xt_t = 0;
- if (m!=0 && m!=2) Xp_t = 0;
- if (m!=1 ) Vr_p = 0;
- if (m!=2 ) Vt_p = 0;
- if (m!=0 && m!=2) Vp_p = 0;
- if (m!=1 ) Wr_p = 0;
- if (m!=2 ) Wt_p = 0;
- if (m!=0 && m!=2) Wp_p = 0;
- if (m!=1 ) Xr_p = 0;
- if (m!=0 && m!=2) Xt_p = 0;
- if (m!=2 ) Xp_p = 0;
- }
- Complex<Real> PV, PW, PX;
- Complex<Real> SV[COORD_DIM][COORD_DIM];
- Complex<Real> SW[COORD_DIM][COORD_DIM];
- Complex<Real> SX[COORD_DIM][COORD_DIM];
- if (interior) {
- PV = (n+1) * pow<Real>(R[i],n) * Ynm;
- PW = 0;
- PX = 0;
- Real a, b;
- Real a_r, b_r;
- a = n / (Real)((2*n+1) * (2*n+3)) * pow<Real>(R[i], n+1);
- b = -(n+1) / (Real)(4*n+2) * (pow<Real>(R[i], n-1) - pow<Real>(R[i], n+1));
- a_r = n / (Real)((2*n+1) * (2*n+3)) * (n+1) * pow<Real>(R[i], n);
- b_r = -(n+1) / (Real)(4*n+2) * ((n-1) * pow<Real>(R[i], n-2) - (n+1) * pow<Real>(R[i], n));
- SV[0][0] = a_r * Vr + b_r * Wr;
- SV[1][0] = a_r * Vt + b_r * Wt;
- SV[2][0] = a_r * Vp + b_r * Wp;
- SV[0][1] = a * Vr_t + b * Wr_t;
- SV[1][1] = a * Vt_t + b * Wt_t;
- SV[2][1] = a * Vp_t + b * Wp_t;
- SV[0][2] = a * Vr_p + b * Wr_p;
- SV[1][2] = a * Vt_p + b * Wt_p;
- SV[2][2] = a * Vp_p + b * Wp_p;
- a = (n+1) / (Real)((2*n+1) * (2*n-1)) * pow<Real>(R[i], n-1);
- a_r = (n+1) / (Real)((2*n+1) * (2*n-1)) * (n-1) * pow<Real>(R[i], n-2);
- SW[0][0] = a_r * Wr;
- SW[1][0] = a_r * Wt;
- SW[2][0] = a_r * Wp;
- SW[0][1] = a * Wr_t;
- SW[1][1] = a * Wt_t;
- SW[2][1] = a * Wp_t;
- SW[0][2] = a * Wr_p;
- SW[1][2] = a * Wt_p;
- SW[2][2] = a * Wp_p;
- a = 1 / (Real)(2*n+1) * pow<Real>(R[i], n);
- a_r = 1 / (Real)(2*n+1) * (n) * pow<Real>(R[i], n-1);
- SX[0][0] = a_r * Xr;
- SX[1][0] = a_r * Xt;
- SX[2][0] = a_r * Xp;
- SX[0][1] = a * Xr_t;
- SX[1][1] = a * Xt_t;
- SX[2][1] = a * Xp_t;
- SX[0][2] = a * Xr_p;
- SX[1][2] = a * Xt_p;
- SX[2][2] = a * Xp_p;
- } else {
- PV = 0;
- PW = n * pow<Real>(R[i],-n-1) * Ynm;
- PX = 0;
- Real a,b;
- Real a_r, b_r;
- a = n / (Real)((2*n+1) * (2*n+3)) * pow<Real>(R[i], -n-2);
- a_r = n / (Real)((2*n+1) * (2*n+3)) * (-n-2) * pow<Real>(R[i], -n-3);
- SV[0][0] = a_r * Vr;
- SV[1][0] = a_r * Vt;
- SV[2][0] = a_r * Vp;
- SV[0][1] = a * Vr_t;
- SV[1][1] = a * Vt_t;
- SV[2][1] = a * Vp_t;
- SV[0][2] = a * Vr_p;
- SV[1][2] = a * Vt_p;
- SV[2][2] = a * Vp_p;
- a = (n+1) / (Real)((2*n+1) * (2*n-1)) * pow<Real>(R[i], -n);
- b = n / (Real)(4*n+2) * (pow<Real>(R[i], -n-2) - pow<Real>(R[i], -n));
- a_r = (n+1) / (Real)((2*n+1) * (2*n-1)) * (-n) * pow<Real>(R[i], -n-1);
- b_r = n / (Real)(4*n+2) * ((-n-2)*pow<Real>(R[i], -n-3) - (-n)*pow<Real>(R[i], -n-1));
- SW[0][0] = a_r * Wr + b_r * Vr;
- SW[1][0] = a_r * Wt + b_r * Vt;
- SW[2][0] = a_r * Wp + b_r * Vp;
- SW[0][1] = a * Wr_t + b * Vr_t;
- SW[1][1] = a * Wt_t + b * Vt_t;
- SW[2][1] = a * Wp_t + b * Vp_t;
- SW[0][2] = a * Wr_p + b * Vr_p;
- SW[1][2] = a * Wt_p + b * Vt_p;
- SW[2][2] = a * Wp_p + b * Vp_p;
- a = 1 / (Real)(2*n+1) * pow<Real>(R[i], -n-1);
- a_r = 1 / (Real)(2*n+1) * (-n-1) * pow<Real>(R[i], -n-2);
- SX[0][0] = a_r * Xr;
- SX[1][0] = a_r * Xt;
- SX[2][0] = a_r * Xp;
- SX[0][1] = a * Xr_t;
- SX[1][1] = a * Xt_t;
- SX[2][1] = a * Xp_t;
- SX[0][2] = a * Xr_p;
- SX[1][2] = a * Xt_p;
- SX[2][2] = a * Xp_p;
- }
- Complex<Real> KV[COORD_DIM][COORD_DIM], KW[COORD_DIM][COORD_DIM], KX[COORD_DIM][COORD_DIM];
- KV[0][0] = SV[0][0] + SV[0][0] - PV; KV[0][1] = SV[0][1] + SV[1][0] ; KV[0][2] = SV[0][2] + SV[2][0] ;
- KV[1][0] = SV[1][0] + SV[0][1] ; KV[1][1] = SV[1][1] + SV[1][1] - PV; KV[1][2] = SV[1][2] + SV[2][1] ;
- KV[2][0] = SV[2][0] + SV[0][2] ; KV[2][1] = SV[2][1] + SV[1][2] ; KV[2][2] = SV[2][2] + SV[2][2] - PV;
- KW[0][0] = SW[0][0] + SW[0][0] - PW; KW[0][1] = SW[0][1] + SW[1][0] ; KW[0][2] = SW[0][2] + SW[2][0] ;
- KW[1][0] = SW[1][0] + SW[0][1] ; KW[1][1] = SW[1][1] + SW[1][1] - PW; KW[1][2] = SW[1][2] + SW[2][1] ;
- KW[2][0] = SW[2][0] + SW[0][2] ; KW[2][1] = SW[2][1] + SW[1][2] ; KW[2][2] = SW[2][2] + SW[2][2] - PW;
- KX[0][0] = SX[0][0] + SX[0][0] - PX; KX[0][1] = SX[0][1] + SX[1][0] ; KX[0][2] = SX[0][2] + SX[2][0] ;
- KX[1][0] = SX[1][0] + SX[0][1] ; KX[1][1] = SX[1][1] + SX[1][1] - PX; KX[1][2] = SX[1][2] + SX[2][1] ;
- KX[2][0] = SX[2][0] + SX[0][2] ; KX[2][1] = SX[2][1] + SX[1][2] ; KX[2][2] = SX[2][2] + SX[2][2] - PX;
- write_coeff(KV[0][0]*norm0[0] + KV[0][1]*norm0[1] + KV[0][2]*norm0[2], n, m, 0, 0);
- write_coeff(KV[1][0]*norm0[0] + KV[1][1]*norm0[1] + KV[1][2]*norm0[2], n, m, 0, 1);
- write_coeff(KV[2][0]*norm0[0] + KV[2][1]*norm0[1] + KV[2][2]*norm0[2], n, m, 0, 2);
- write_coeff(KW[0][0]*norm0[0] + KW[0][1]*norm0[1] + KW[0][2]*norm0[2], n, m, 1, 0);
- write_coeff(KW[1][0]*norm0[0] + KW[1][1]*norm0[1] + KW[1][2]*norm0[2], n, m, 1, 1);
- write_coeff(KW[2][0]*norm0[0] + KW[2][1]*norm0[1] + KW[2][2]*norm0[2], n, m, 1, 2);
- write_coeff(KX[0][0]*norm0[0] + KX[0][1]*norm0[1] + KX[0][2]*norm0[2], n, m, 2, 0);
- write_coeff(KX[1][0]*norm0[0] + KX[1][1]*norm0[1] + KX[1][2]*norm0[2], n, m, 2, 1);
- write_coeff(KX[2][0]*norm0[0] + KX[2][1]*norm0[1] + KX[2][2]*norm0[2], n, m, 2, 2);
- }
- }
- }
- { // Set X <-- Q * StokesOp * B1
- if (X.Dim() != N * dof * COORD_DIM) X.ReInit(N * dof * COORD_DIM);
- for (Long k0 = 0; k0 < N; k0++) {
- StaticArray<Real,9> Q;
- { // Set Q
- Real cos_theta = cos(theta_phi[k0 * 2 + 0]);
- Real sin_theta = sin(theta_phi[k0 * 2 + 0]);
- Real cos_phi = cos(theta_phi[k0 * 2 + 1]);
- Real sin_phi = sin(theta_phi[k0 * 2 + 1]);
- Q[0] = sin_theta*cos_phi; Q[1] = sin_theta*sin_phi; Q[2] = cos_theta;
- Q[3] = cos_theta*cos_phi; Q[4] = cos_theta*sin_phi; Q[5] =-sin_theta;
- Q[6] = -sin_phi; Q[7] = cos_phi; Q[8] = 0;
- }
- for (Long k1 = 0; k1 < dof; k1++) { // Set X <-- Q * StokesOp * B1
- StaticArray<Real,COORD_DIM> in;
- for (Long j = 0; j < COORD_DIM; j++) {
- in[j] = 0;
- for (Long i = 0; i < COORD_DIM * M; i++) {
- in[j] += B1[k1][i] * StokesOp[k0 * COORD_DIM + j][i];
- }
- }
- X[(k0 * dof + k1) * COORD_DIM + 0] = Q[0] * in[0] + Q[3] * in[1] + Q[6] * in[2];
- X[(k0 * dof + k1) * COORD_DIM + 1] = Q[1] * in[0] + Q[4] * in[1] + Q[7] * in[2];
- X[(k0 * dof + k1) * COORD_DIM + 2] = Q[2] * in[0] + Q[5] * in[1] + Q[8] * in[2];
- }
- }
- }
- }
- template <class Real> void SphericalHarmonics<Real>::Grid2SHC_(const Vector<Real>& X, Long Nt, Long Np, Long p1, Vector<Real>& B1){
- const auto& Mf = OpFourierInv(Np);
- assert(Mf.Dim(0) == Np);
- const std::vector<Matrix<Real>>& Ml = SphericalHarmonics<Real>::MatLegendreInv(Nt-1,p1);
- assert((Long)Ml.size() == p1+1);
- Long N = X.Dim() / (Np*Nt);
- assert(X.Dim() == N*Np*Nt);
- Vector<Real> B0((2*p1+1) * N*Nt);
- #pragma omp parallel
- { // B0 <-- Transpose(FFT(X))
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N*Nt/omp_p;
- Long b=(tid+1)*N*Nt/omp_p;
- Vector<Real> buff(Mf.Dim(1));
- Long fft_coeff_len = std::min(buff.Dim(), 2*p1+2);
- Matrix<Real> B0_(2*p1+1, N*Nt, B0.begin(), false);
- const Matrix<Real> MX(N * Nt, Np, (Iterator<Real>)X.begin(), false);
- for (Long i = a; i < b; i++) {
- { // buff <-- FFT(Xi)
- const Vector<Real> Xi(Np, (Iterator<Real>)X.begin() + Np * i, false);
- Mf.Execute(Xi, buff);
- }
- { // B0 <-- Transpose(buff)
- B0_[0][i] = buff[0]; // skipping buff[1] == 0
- for (Long j = 2; j < fft_coeff_len; j++) B0_[j-1][i] = buff[j];
- for (Long j = fft_coeff_len; j < 2*p1+2; j++) B0_[j-1][i] = 0;
- }
- }
- }
- if (B1.Dim() != N*(p1+1)*(p1+1)) B1.ReInit(N*(p1+1)*(p1+1));
- #pragma omp parallel
- { // Evaluate Legendre polynomial
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long offset0=0;
- Long offset1=0;
- for (Long i = 0; i < p1+1; i++) {
- Long N_ = (i==0 ? N : 2*N);
- Matrix<Real> Min (N_, Nt , B0.begin()+offset0, false);
- Matrix<Real> Mout(N_, p1+1-i, B1.begin()+offset1, false);
- { // Mout = Min * Ml[i] // split between threads
- Long a=(tid+0)*N_/omp_p;
- Long b=(tid+1)*N_/omp_p;
- if (a < b) {
- Matrix<Real> Min_ (b-a, Min .Dim(1), Min [a], false);
- Matrix<Real> Mout_(b-a, Mout.Dim(1), Mout[a], false);
- Matrix<Real>::GEMM(Mout_,Min_,Ml[i]);
- }
- }
- offset0+=Min .Dim(0)*Min .Dim(1);
- offset1+=Mout.Dim(0)*Mout.Dim(1);
- }
- assert(offset0 == B0.Dim());
- assert(offset1 == B1.Dim());
- }
- B1 *= 1 / sqrt<Real>(4 * const_pi<Real>() * Np); // Scaling to match Zydrunas Fortran code.
- }
- template <class Real> void SphericalHarmonics<Real>::SHCArrange0(const Vector<Real>& B1, Long p1, Vector<Real>& S, SHCArrange arrange){
- Long M = (p1+1)*(p1+1);
- Long N = B1.Dim() / M;
- assert(B1.Dim() == N*M);
- if (arrange == SHCArrange::ALL) { // S <-- Rearrange(B1)
- Long M = 2*(p1+1)*(p1+1);
- if(S.Dim() != N * M) S.ReInit(N * M);
- #pragma omp parallel
- { // S <-- Rearrange(B1)
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for (Long i = a; i < b; i++) {
- Long offset = 0;
- for (Long j = 0; j < p1+1; j++) {
- Long len = p1+1 - j;
- if (1) { // Set Real(S_n^m) for m=j and n=j..p
- ConstIterator<Real> B_ = B1.begin() + i*len + N*offset;
- Iterator<Real> S_ = S .begin() + i*M + j*(p1+1)*2 + j*2 + 0;
- for (Long k = 0; k < len; k++) S_[k * (p1+1)*2] = B_[k];
- offset += len;
- }
- if (j) { // Set Imag(S_n^m) for m=j and n=j..p
- ConstIterator<Real> B_ = B1.begin() + i*len + N*offset;
- Iterator<Real> S_ = S .begin() + i*M + j*(p1+1)*2 + j*2 + 1;
- for (Long k = 0; k < len; k++) S_[k * (p1+1)*2] = B_[k];
- offset += len;
- } else {
- Iterator<Real> S_ = S .begin() + i*M + j*(p1+1)*2 + j*2 + 1;
- for (Long k = 0; k < len; k++) S_[k * (p1+1)*2] = 0;
- }
- }
- }
- }
- }
- if (arrange == SHCArrange::ROW_MAJOR) { // S <-- Rearrange(B1)
- Long M = (p1+1)*(p1+2);
- if(S.Dim() != N * M) S.ReInit(N * M);
- #pragma omp parallel
- { // S <-- Rearrange(B1)
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for (Long i = a; i < b; i++) {
- Long offset = 0;
- for (Long j = 0; j < p1+1; j++) {
- Long len = p1+1 - j;
- if (1) { // Set Real(S_n^m) for m=j and n=j..p
- ConstIterator<Real> B_ = B1.begin() + i*len + N*offset;
- Iterator<Real> S_ = S .begin() + i*M + 0;
- for (Long k=0;k<len;k++) S_[(j+k)*(j+k+1) + 2*j] = B_[k];
- offset += len;
- }
- if (j) { // Set Imag(S_n^m) for m=j and n=j..p
- ConstIterator<Real> B_ = B1.begin() + i*len + N*offset;
- Iterator<Real> S_ = S .begin() + i*M + 1;
- for (Long k=0;k<len;k++) S_[(j+k)*(j+k+1) + 2*j] = B_[k];
- offset += len;
- } else {
- Iterator<Real> S_ = S .begin() + i*M + 1;
- for (Long k=0;k<len;k++) S_[(j+k)*(j+k+1) + 2*j] = 0;
- }
- }
- }
- }
- }
- if (arrange == SHCArrange::COL_MAJOR_NONZERO) { // S <-- Rearrange(B1)
- Long M = (p1+1)*(p1+1);
- if(S.Dim() != N * M) S.ReInit(N * M);
- #pragma omp parallel
- { // S <-- Rearrange(B1)
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for (Long i = a; i < b; i++) {
- Long offset = 0;
- for (Long j = 0; j < p1+1; j++) {
- Long len = p1+1 - j;
- if (1) { // Set Real(S_n^m) for m=j and n=j..p
- ConstIterator<Real> B_ = B1.begin() + i*len + N*offset;
- Iterator<Real> S_ = S .begin() + i*M + offset;
- for (Long k = 0; k < len; k++) S_[k] = B_[k];
- offset += len;
- }
- if (j) { // Set Imag(S_n^m) for m=j and n=j..p
- ConstIterator<Real> B_ = B1.begin() + i*len + N*offset;
- Iterator<Real> S_ = S .begin() + i*M + offset;
- for (Long k = 0; k < len; k++) S_[k] = B_[k];
- offset += len;
- }
- }
- }
- }
- }
- }
- template <class Real> void SphericalHarmonics<Real>::SHCArrange1(const Vector<Real>& S, SHCArrange arrange, Long p0, Vector<Real>& B0){
- Long M, N;
- { // Set M, N
- M = 0;
- if (arrange == SHCArrange::ALL) M = 2*(p0+1)*(p0+1);
- if (arrange == SHCArrange::ROW_MAJOR) M = (p0+1)*(p0+2);
- if (arrange == SHCArrange::COL_MAJOR_NONZERO) M = (p0+1)*(p0+1);
- if (M == 0) return;
- N = S.Dim() / M;
- assert(S.Dim() == N * M);
- }
- if (B0.Dim() != N*(p0+1)*(p0+1)) B0.ReInit(N*(p0+1)*(p0+1));
- if (arrange == SHCArrange::ALL) { // B0 <-- Rearrange(S)
- #pragma omp parallel
- { // B0 <-- Rearrange(S)
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for (Long i = a; i < b; i++) {
- Long offset = 0;
- for (Long j = 0; j < p0+1; j++) {
- Long len = p0+1 - j;
- if (1) { // Get Real(S_n^m) for m=j and n=j..p
- Iterator<Real> B_ = B0.begin() + i*len + N*offset;
- ConstIterator<Real> S_ = S .begin() + i*M + j*(p0+1)*2 + j*2 + 0;
- for (Long k = 0; k < len; k++) B_[k] = S_[k * (p0+1)*2];
- offset += len;
- }
- if (j) { // Get Imag(S_n^m) for m=j and n=j..p
- Iterator<Real> B_ = B0.begin() + i*len + N*offset;
- ConstIterator<Real> S_ = S .begin() + i*M + j*(p0+1)*2 + j*2 + 1;
- for (Long k = 0; k < len; k++) B_[k] = S_[k * (p0+1)*2];
- offset += len;
- }
- }
- }
- }
- }
- if (arrange == SHCArrange::ROW_MAJOR) { // B0 <-- Rearrange(S)
- #pragma omp parallel
- { // B0 <-- Rearrange(S)
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for (Long i = a; i < b; i++) {
- Long offset = 0;
- for (Long j = 0; j < p0+1; j++) {
- Long len = p0+1 - j;
- if (1) { // Get Real(S_n^m) for m=j and n=j..p
- Iterator<Real> B_ = B0.begin() + i*len + N*offset;
- ConstIterator<Real> S_ = S .begin() + i*M + 0;
- for (Long k=0;k<len;k++) B_[k] = S_[(j+k)*(j+k+1) + 2*j];
- offset += len;
- }
- if (j) { // Get Imag(S_n^m) for m=j and n=j..p
- Iterator<Real> B_ = B0.begin() + i*len + N*offset;
- ConstIterator<Real> S_ = S .begin() + i*M + 1;
- for (Long k=0;k<len;k++) B_[k] = S_[(j+k)*(j+k+1) + 2*j];
- offset += len;
- }
- }
- }
- }
- }
- if (arrange == SHCArrange::COL_MAJOR_NONZERO) { // B0 <-- Rearrange(S)
- #pragma omp parallel
- { // B0 <-- Rearrange(S)
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for (Long i = a; i < b; i++) {
- Long offset = 0;
- for (Long j = 0; j < p0+1; j++) {
- Long len = p0+1 - j;
- if (1) { // Get Real(S_n^m) for m=j and n=j..p
- Iterator<Real> B_ = B0.begin() + i*len + N*offset;
- ConstIterator<Real> S_ = S .begin() + i*M + offset;
- for (Long k = 0; k < len; k++) B_[k] = S_[k];
- offset += len;
- }
- if (j) { // Get Imag(S_n^m) for m=j and n=j..p
- Iterator<Real> B_ = B0.begin() + i*len + N*offset;
- ConstIterator<Real> S_ = S .begin() + i*M + offset;
- for (Long k = 0; k < len; k++) B_[k] = S_[k];
- offset += len;
- }
- }
- }
- }
- }
- }
- template <class Real> void SphericalHarmonics<Real>::SHC2Grid_(const Vector<Real>& B0, Long p0, Long Nt, Long Np, Vector<Real>* X, Vector<Real>* X_phi, Vector<Real>* X_theta){
- const auto& Mf = OpFourier(Np);
- assert(Mf.Dim(1) == Np);
- const std::vector<Matrix<Real>>& Ml =SphericalHarmonics<Real>::MatLegendre (p0,Nt-1);
- const std::vector<Matrix<Real>>& Mdl=SphericalHarmonics<Real>::MatLegendreGrad(p0,Nt-1);
- assert((Long)Ml .size() == p0+1);
- assert((Long)Mdl.size() == p0+1);
- Long N = B0.Dim() / ((p0+1)*(p0+1));
- assert(B0.Dim() == N*(p0+1)*(p0+1));
- if(X && X ->Dim()!=N*Np*Nt) X ->ReInit(N*Np*Nt);
- if(X_theta && X_theta->Dim()!=N*Np*Nt) X_theta->ReInit(N*Np*Nt);
- if(X_phi && X_phi ->Dim()!=N*Np*Nt) X_phi ->ReInit(N*Np*Nt);
- Vector<Real> B1(N*(2*p0+1)*Nt);
- if(X || X_phi){
- #pragma omp parallel
- { // Evaluate Legendre polynomial
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long offset0=0;
- Long offset1=0;
- for(Long i=0;i<p0+1;i++){
- Long N_ = (i==0 ? N : 2*N);
- const Matrix<Real> Min (N_, p0+1-i, (Iterator<Real>)B0.begin()+offset0, false);
- Matrix<Real> Mout(N_, Nt , B1.begin()+offset1, false);
- { // Mout = Min * Ml[i] // split between threads
- Long a=(tid+0)*N_/omp_p;
- Long b=(tid+1)*N_/omp_p;
- if(a<b){
- const Matrix<Real> Min_ (b-a, Min .Dim(1), (Iterator<Real>)Min [a], false);
- Matrix<Real> Mout_(b-a, Mout.Dim(1), Mout[a], false);
- Matrix<Real>::GEMM(Mout_,Min_,Ml[i]);
- }
- }
- offset0+=Min .Dim(0)*Min .Dim(1);
- offset1+=Mout.Dim(0)*Mout.Dim(1);
- }
- }
- B1 *= sqrt<Real>(4 * const_pi<Real>() * Np); // Scaling to match Zydrunas Fortran code.
- #pragma omp parallel
- { // Transpose and evaluate Fourier
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N*Nt/omp_p;
- Long b=(tid+1)*N*Nt/omp_p;
- Vector<Real> buff(Mf.Dim(0)); buff = 0;
- Long fft_coeff_len = std::min(buff.Dim(), 2*p0+2);
- Matrix<Real> B1_(2*p0+1, N*Nt, B1.begin(), false);
- for (Long i = a; i < b; i++) {
- { // buff <-- Transpose(B1)
- buff[0] = B1_[0][i];
- buff[1] = 0;
- for (Long j = 2; j < fft_coeff_len; j++) buff[j] = B1_[j-1][i];
- for (Long j = fft_coeff_len; j < buff.Dim(); j++) buff[j] = 0;
- }
- { // X <-- FFT(buff)
- Vector<Real> Xi(Np, X->begin() + Np * i, false);
- Mf.Execute(buff, Xi);
- }
- if(X_phi){ // Evaluate Fourier gradient
- { // buff <-- Transpose(B1)
- buff[0] = 0;
- buff[1] = 0;
- for (Long j = 2; j < fft_coeff_len; j++) buff[j] = B1_[j-1][i];
- for (Long j = fft_coeff_len; j < buff.Dim(); j++) buff[j] = 0;
- for (Long j = 1; j < buff.Dim()/2; j++) {
- Real x = buff[2*j+0];
- Real y = buff[2*j+1];
- buff[2*j+0] = -j*y;
- buff[2*j+1] = j*x;
- }
- }
- { // X_phi <-- FFT(buff)
- Vector<Real> Xi(Np, X_phi->begin() + Np * i, false);
- Mf.Execute(buff, Xi);
- }
- }
- }
- }
- }
- if(X_theta){
- #pragma omp parallel
- { // Evaluate Legendre gradient
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long offset0=0;
- Long offset1=0;
- for(Long i=0;i<p0+1;i++){
- Long N_ = (i==0 ? N : 2*N);
- const Matrix<Real> Min (N_, p0+1-i, (Iterator<Real>)B0.begin()+offset0, false);
- Matrix<Real> Mout(N_, Nt , B1.begin()+offset1, false);
- { // Mout = Min * Mdl[i] // split between threads
- Long a=(tid+0)*N_/omp_p;
- Long b=(tid+1)*N_/omp_p;
- if(a<b){
- const Matrix<Real> Min_ (b-a, Min .Dim(1), (Iterator<Real>)Min [a], false);
- Matrix<Real> Mout_(b-a, Mout.Dim(1), Mout[a], false);
- Matrix<Real>::GEMM(Mout_,Min_,Mdl[i]);
- }
- }
- offset0+=Min .Dim(0)*Min .Dim(1);
- offset1+=Mout.Dim(0)*Mout.Dim(1);
- }
- }
- B1 *= sqrt<Real>(4 * const_pi<Real>() * Np); // Scaling to match Zydrunas Fortran code.
- #pragma omp parallel
- { // Transpose and evaluate Fourier
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N*Nt/omp_p;
- Long b=(tid+1)*N*Nt/omp_p;
- Vector<Real> buff(Mf.Dim(0)); buff = 0;
- Long fft_coeff_len = std::min(buff.Dim(), 2*p0+2);
- Matrix<Real> B1_(2*p0+1, N*Nt, B1.begin(), false);
- for (Long i = a; i < b; i++) {
- { // buff <-- Transpose(B1)
- buff[0] = B1_[0][i];
- buff[1] = 0;
- for (Long j = 2; j < fft_coeff_len; j++) buff[j] = B1_[j-1][i];
- for (Long j = fft_coeff_len; j < buff.Dim(); j++) buff[j] = 0;
- }
- { // Xi <-- FFT(buff)
- Vector<Real> Xi(Np, X_theta->begin() + Np * i, false);
- Mf.Execute(buff, Xi);
- }
- }
- }
- }
- }
- template <class Real> void SphericalHarmonics<Real>::LegPoly(Vector<Real>& poly_val, const Vector<Real>& X, Long degree){
- Vector<Real> theta(X.Dim());
- for (Long i = 0; i < X.Dim(); i++) theta[i] = acos(X[i]);
- LegPoly_(poly_val, theta, degree);
- }
- template <class Real> void SphericalHarmonics<Real>::LegPoly_(Vector<Real>& poly_val, const Vector<Real>& theta, Long degree){
- Long N = theta.Dim();
- Long Npoly = (degree + 1) * (degree + 2) / 2;
- if (poly_val.Dim() != Npoly * N) poly_val.ReInit(Npoly * N);
- Real fact = 1 / sqrt<Real>(4 * const_pi<Real>());
- Vector<Real> cos_theta(N), sin_theta(N);
- for (Long n = 0; n < N; n++) {
- cos_theta[n] = cos(theta[n]);
- sin_theta[n] = sin(theta[n]);
- poly_val[n] = fact;
- }
- Long idx = 0;
- Long idx_nxt = 0;
- for (Long i = 1; i <= degree; i++) {
- idx_nxt += N*(degree-i+2);
- Real c = sqrt<Real>((2*i+1)/(Real)(2*i));
- for (Long n = 0; n < N; n++) {
- poly_val[idx_nxt+n] = -poly_val[idx+n] * sin_theta[n] * c;
- }
- idx = idx_nxt;
- }
- idx = 0;
- for (Long m = 0; m < degree; m++) {
- for (Long n = 0; n < N; n++) {
- Real pmm = 0;
- Real pmmp1 = poly_val[idx+n];
- for (Long ll = m + 1; ll <= degree; ll++) {
- Real a = sqrt<Real>(((2*ll-1)*(2*ll+1) ) / (Real)((ll-m)*(ll+m) ));
- Real b = sqrt<Real>(((2*ll+1)*(ll+m-1)*(ll-m-1)) / (Real)((ll-m)*(ll+m)*(2*ll-3)));
- Real pll = cos_theta[n]*a*pmmp1 - b*pmm;
- pmm = pmmp1;
- pmmp1 = pll;
- poly_val[idx + N*(ll-m) + n] = pll;
- }
- }
- idx += N * (degree - m + 1);
- }
- }
- template <class Real> void SphericalHarmonics<Real>::LegPolyDeriv(Vector<Real>& poly_val, const Vector<Real>& X, Long degree){
- Vector<Real> theta(X.Dim());
- for (Long i = 0; i < X.Dim(); i++) theta[i] = acos(X[i]);
- LegPolyDeriv_(poly_val, theta, degree);
- }
- template <class Real> void SphericalHarmonics<Real>::LegPolyDeriv_(Vector<Real>& poly_val, const Vector<Real>& theta, Long degree){
- Long N = theta.Dim();
- Long Npoly = (degree + 1) * (degree + 2) / 2;
- if (poly_val.Dim() != N * Npoly) poly_val.ReInit(N * Npoly);
- Vector<Real> cos_theta(N), sin_theta(N);
- for (Long i = 0; i < N; i++) {
- cos_theta[i] = cos(theta[i]);
- sin_theta[i] = sin(theta[i]);
- }
- Vector<Real> leg_poly(Npoly * N);
- LegPoly_(leg_poly, theta, degree);
- for (Long m = 0; m <= degree; m++) {
- for (Long n = m; n <= degree; n++) {
- ConstIterator<Real> Pn = leg_poly.begin() + N * ((degree * 2 - m + 1) * (m + 0) / 2 + n);
- ConstIterator<Real> Pn_ = leg_poly.begin() + N * ((degree * 2 - m + 0) * (m + 1) / 2 + n) * (m < n);
- Iterator <Real> Hn = poly_val.begin() + N * ((degree * 2 - m + 1) * (m + 0) / 2 + n);
- Real c2 = sqrt<Real>(m<n ? (n+m+1)*(n-m) : 0);
- for (Long i = 0; i < N; i++) {
- Real c1 = (sin_theta[i]>0 ? m/sin_theta[i] : 0);
- Hn[i] = c1*cos_theta[i]*Pn[i] + c2*Pn_[i];
- }
- }
- }
- }
- template <class Real> const Vector<Real>& SphericalHarmonics<Real>::LegendreNodes(Long p){
- assert(p<SCTL_SHMAXDEG);
- Vector<Real>& Qx=MatrixStore().Qx_[p];
- #pragma omp critical (SCTL_LEGNODES)
- if(!Qx.Dim()){
- Vector<double> qx1(p+1);
- Vector<double> qw1(p+1);
- cgqf(p+1, 1, 0.0, 0.0, -1.0, 1.0, &qx1[0], &qw1[0]);
- assert(typeid(Real) == typeid(double) || typeid(Real) == typeid(float)); // TODO: works only for float and double
- if (Qx.Dim() != p+1) Qx.ReInit(p+1);
- for (Long i = 0; i < p + 1; i++) Qx[i] = -qx1[i];
- }
- return Qx;
- }
- template <class Real> const Vector<Real>& SphericalHarmonics<Real>::LegendreWeights(Long p){
- assert(p<SCTL_SHMAXDEG);
- Vector<Real>& Qw=MatrixStore().Qw_[p];
- #pragma omp critical (SCTL_LEGWEIGHTS)
- if(!Qw.Dim()){
- Vector<double> qx1(p+1);
- Vector<double> qw1(p+1);
- cgqf(p+1, 1, 0.0, 0.0, -1.0, 1.0, &qx1[0], &qw1[0]);
- assert(typeid(Real) == typeid(double) || typeid(Real) == typeid(float)); // TODO: works only for float and double
- if (Qw.Dim() != p+1) Qw.ReInit(p+1);
- for (Long i = 0; i < p + 1; i++) Qw[i] = qw1[i];
- }
- return Qw;
- }
- template <class Real> const Vector<Real>& SphericalHarmonics<Real>::SingularWeights(Long p1){
- assert(p1<SCTL_SHMAXDEG);
- Vector<Real>& Sw=MatrixStore().Sw_[p1];
- #pragma omp critical (SCTL_SINWEIGHTS)
- if(!Sw.Dim()){
- const Vector<Real>& qx1 = LegendreNodes(p1);
- const Vector<Real>& qw1 = LegendreWeights(p1);
- std::vector<Real> Yf(p1+1,0);
- { // Set Yf
- Vector<Real> x0(1); x0=1.0;
- Vector<Real> alp0((p1+1)*(p1+2)/2);
- LegPoly(alp0, x0, p1);
- Vector<Real> alp((p1+1) * (p1+1)*(p1+2)/2);
- LegPoly(alp, qx1, p1);
- for(Long j=0;j<p1+1;j++){
- for(Long i=0;i<p1+1;i++){
- Yf[i]+=4*M_PI/(2*j+1) * alp0[j] * alp[j*(p1+1)+i];
- }
- }
- }
- Sw.ReInit(p1+1);
- for(Long i=0;i<p1+1;i++){
- Sw[i]=(qw1[i]*M_PI/p1)*Yf[i]/cos(acos(qx1[i])/2);
- }
- }
- return Sw;
- }
- template <class Real> const Matrix<Real>& SphericalHarmonics<Real>::MatFourier(Long p0, Long p1){
- assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
- Matrix<Real>& Mf =MatrixStore().Mf_ [p0*SCTL_SHMAXDEG+p1];
- #pragma omp critical (SCTL_MATFOURIER)
- if(!Mf.Dim(0)){
- const Real SQRT2PI=sqrt(2*M_PI);
- { // Set Mf
- Matrix<Real> M(2*p0,2*p1);
- for(Long j=0;j<2*p1;j++){
- M[0][j]=SQRT2PI*1.0;
- for(Long k=1;k<p0;k++){
- M[2*k-1][j]=SQRT2PI*cos(j*k*M_PI/p1);
- M[2*k-0][j]=SQRT2PI*sin(j*k*M_PI/p1);
- }
- M[2*p0-1][j]=SQRT2PI*cos(j*p0*M_PI/p1);
- }
- Mf=M;
- }
- }
- return Mf;
- }
- template <class Real> const Matrix<Real>& SphericalHarmonics<Real>::MatFourierInv(Long p0, Long p1){
- assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
- Matrix<Real>& Mf =MatrixStore().Mfinv_ [p0*SCTL_SHMAXDEG+p1];
- #pragma omp critical (SCTL_MATFOURIERINV)
- if(!Mf.Dim(0)){
- const Real INVSQRT2PI=1.0/sqrt(2*M_PI)/p0;
- { // Set Mf
- Matrix<Real> M(2*p0,2*p1);
- M.SetZero();
- if(p1>p0) p1=p0;
- for(Long j=0;j<2*p0;j++){
- M[j][0]=INVSQRT2PI*0.5;
- for(Long k=1;k<p1;k++){
- M[j][2*k-1]=INVSQRT2PI*cos(j*k*M_PI/p0);
- M[j][2*k-0]=INVSQRT2PI*sin(j*k*M_PI/p0);
- }
- M[j][2*p1-1]=INVSQRT2PI*cos(j*p1*M_PI/p0);
- }
- if(p1==p0) for(Long j=0;j<2*p0;j++) M[j][2*p1-1]*=0.5;
- Mf=M;
- }
- }
- return Mf;
- }
- template <class Real> const Matrix<Real>& SphericalHarmonics<Real>::MatFourierGrad(Long p0, Long p1){
- assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
- Matrix<Real>& Mdf=MatrixStore().Mdf_[p0*SCTL_SHMAXDEG+p1];
- #pragma omp critical (SCTL_MATFOURIERGRAD)
- if(!Mdf.Dim(0)){
- const Real SQRT2PI=sqrt(2*M_PI);
- { // Set Mdf_
- Matrix<Real> M(2*p0,2*p1);
- for(Long j=0;j<2*p1;j++){
- M[0][j]=SQRT2PI*0.0;
- for(Long k=1;k<p0;k++){
- M[2*k-1][j]=-SQRT2PI*k*sin(j*k*M_PI/p1);
- M[2*k-0][j]= SQRT2PI*k*cos(j*k*M_PI/p1);
- }
- M[2*p0-1][j]=-SQRT2PI*p0*sin(j*p0*M_PI/p1);
- }
- Mdf=M;
- }
- }
- return Mdf;
- }
- template <class Real> const FFT<Real>& SphericalHarmonics<Real>::OpFourier(Long Np){
- assert(Np<SCTL_SHMAXDEG);
- auto& Mf =MatrixStore().Mfftinv_ [Np];
- #pragma omp critical (SCTL_FFT_PLAN0)
- if(!Mf.Dim(0)){
- StaticArray<Long,1> fft_dim = {Np};
- Mf.Setup(FFT_Type::C2R, 1, Vector<Long>(1,fft_dim,false));
- }
- return Mf;
- }
- template <class Real> const FFT<Real>& SphericalHarmonics<Real>::OpFourierInv(Long Np){
- assert(Np<SCTL_SHMAXDEG);
- auto& Mf =MatrixStore().Mfft_ [Np];
- #pragma omp critical (SCTL_FFT_PLAN1)
- if(!Mf.Dim(0)){
- StaticArray<Long,1> fft_dim = {Np};
- Mf.Setup(FFT_Type::R2C, 1, Vector<Long>(1,fft_dim,false));
- }
- return Mf;
- }
- template <class Real> const std::vector<Matrix<Real>>& SphericalHarmonics<Real>::MatLegendre(Long p0, Long p1){
- assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
- std::vector<Matrix<Real>>& Ml =MatrixStore().Ml_ [p0*SCTL_SHMAXDEG+p1];
- #pragma omp critical (SCTL_MATLEG)
- if(!Ml.size()){
- const Vector<Real>& qx1 = LegendreNodes(p1);
- Vector<Real> alp(qx1.Dim()*(p0+1)*(p0+2)/2);
- LegPoly(alp, qx1, p0);
- Ml.resize(p0+1);
- auto ptr = alp.begin();
- for(Long i=0;i<=p0;i++){
- Ml[i].ReInit(p0+1-i, qx1.Dim(), ptr);
- ptr+=Ml[i].Dim(0)*Ml[i].Dim(1);
- }
- }
- return Ml;
- }
- template <class Real> const std::vector<Matrix<Real>>& SphericalHarmonics<Real>::MatLegendreInv(Long p0, Long p1){
- assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
- std::vector<Matrix<Real>>& Ml =MatrixStore().Mlinv_ [p0*SCTL_SHMAXDEG+p1];
- #pragma omp critical (SCTL_MATLEGINV)
- if(!Ml.size()){
- const Vector<Real>& qx1 = LegendreNodes(p0);
- const Vector<Real>& qw1 = LegendreWeights(p0);
- Vector<Real> alp(qx1.Dim()*(p1+1)*(p1+2)/2);
- LegPoly(alp, qx1, p1);
- Ml.resize(p1+1);
- auto ptr = alp.begin();
- for(Long i=0;i<=p1;i++){
- Ml[i].ReInit(qx1.Dim(), p1+1-i);
- Matrix<Real> M(p1+1-i, qx1.Dim(), ptr, false);
- for(Long j=0;j<p1+1-i;j++){ // Transpose and weights
- for(Long k=0;k<qx1.Dim();k++){
- Ml[i][k][j]=M[j][k]*qw1[k]*2*M_PI;
- }
- }
- ptr+=Ml[i].Dim(0)*Ml[i].Dim(1);
- }
- }
- return Ml;
- }
- template <class Real> const std::vector<Matrix<Real>>& SphericalHarmonics<Real>::MatLegendreGrad(Long p0, Long p1){
- assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
- std::vector<Matrix<Real>>& Mdl=MatrixStore().Mdl_[p0*SCTL_SHMAXDEG+p1];
- #pragma omp critical (SCTL_MATLEGGRAD)
- if(!Mdl.size()){
- const Vector<Real>& qx1 = LegendreNodes(p1);
- Vector<Real> alp(qx1.Dim()*(p0+1)*(p0+2)/2);
- LegPolyDeriv(alp, qx1, p0);
- Mdl.resize(p0+1);
- auto ptr = alp.begin();
- for(Long i=0;i<=p0;i++){
- Mdl[i].ReInit(p0+1-i, qx1.Dim(), ptr);
- ptr+=Mdl[i].Dim(0)*Mdl[i].Dim(1);
- }
- }
- return Mdl;
- }
- template <class Real> void SphericalHarmonics<Real>::SHBasisEval(Long p0, const Vector<Real>& theta_phi, Matrix<Real>& SHBasis) {
- Long M = (p0+1) * (p0+1);
- Long N = theta_phi.Dim() / 2;
- assert(theta_phi.Dim() == N * 2);
- Vector<Complex<Real>> exp_phi(N);
- Matrix<Real> LegP((p0+1)*(p0+2)/2, N);
- { // Set exp_phi, LegP
- Vector<Real> theta(N);
- for (Long i = 0; i < N; i++) { // Set theta, exp_phi
- theta[i] = theta_phi[i*2+0];
- exp_phi[i].real = cos<Real>(theta_phi[i*2+1]);
- exp_phi[i].imag = sin<Real>(theta_phi[i*2+1]);
- }
- Vector<Real> alp(LegP.Dim(0) * LegP.Dim(1), LegP.begin(), false);
- LegPoly_(alp, theta, p0);
- }
- { // Set SHBasis
- SHBasis.ReInit(N, M);
- Real s = 4 * sqrt<Real>(const_pi<Real>());
- for (Long k0 = 0; k0 < N; k0++) {
- Complex<Real> exp_phi_ = 1;
- Complex<Real> exp_phi1 = exp_phi[k0];
- for (Long m = 0; m <= p0; m++) {
- for (Long n = m; n <= p0; n++) {
- Long poly_idx = (2 * p0 - m + 1) * m / 2 + n;
- Long basis_idx = (2 * p0 - m + 2) * m - (m ? p0+1 : 0) + n;
- SHBasis[k0][basis_idx] = LegP[poly_idx][k0] * exp_phi_.real * s;
- if (m) { // imaginary part
- basis_idx += (p0+1-m);
- SHBasis[k0][basis_idx] = -LegP[poly_idx][k0] * exp_phi_.imag * s;
- } else {
- SHBasis[k0][basis_idx] = SHBasis[k0][basis_idx] * 0.5;
- }
- }
- exp_phi_ = exp_phi_ * exp_phi1;
- }
- }
- }
- assert(SHBasis.Dim(0) == N);
- assert(SHBasis.Dim(1) == M);
- }
- template <class Real> void SphericalHarmonics<Real>::VecSHBasisEval(Long p0, const Vector<Real>& theta_phi, Matrix<Real>& SHBasis) {
- Long M = (p0+1) * (p0+1);
- Long N = theta_phi.Dim() / 2;
- assert(theta_phi.Dim() == N * 2);
- Long p_ = p0 + 1;
- Long M_ = (p_+1) * (p_+1);
- Matrix<Real> Ynm(N, M_);
- SHBasisEval(p_, theta_phi, Ynm);
- Vector<Real> cos_theta(N), csc_theta(N);
- for (Long i = 0; i < N; i++) { // Set theta
- cos_theta[i] = cos(theta_phi[i*2+0]);
- csc_theta[i] = 1.0 / sin(theta_phi[i*2+0]);
- }
- { // Set SHBasis
- SHBasis.ReInit(N * COORD_DIM, COORD_DIM * M);
- SHBasis = 0;
- const Complex<Real> imag(0,1);
- for (Long i = 0; i < N; i++) {
- auto Y = [p_, &Ynm, i](Long n, Long m) {
- Complex<Real> c;
- if (0 <= m && m <= n && n <= p_) {
- Long idx = (2 * p_ - m + 2) * m - (m ? p_+1 : 0) + n;
- c.real = Ynm[i][idx];
- if (m) {
- idx += (p_+1-m);
- c.imag = Ynm[i][idx];
- }
- }
- return c;
- };
- auto write_coeff = [p0, &SHBasis, i, M](Complex<Real> c, Long n, Long m, Long k0, Long k1) {
- if (0 <= m && m <= n && n <= p0 && 0 <= k0 && k0 < COORD_DIM && 0 <= k1 && k1 < COORD_DIM) {
- Long idx = (2 * p0 - m + 2) * m - (m ? p0+1 : 0) + n;
- SHBasis[i * COORD_DIM + k1][k0 * M + idx] = c.real;
- if (m) {
- idx += (p0+1-m);
- SHBasis[i * COORD_DIM + k1][k0 * M + idx] = c.imag;
- }
- }
- };
- auto A = [p_](Long n, Long m) { return (0<=n && m<=n && n<=p_ ? sqrt<Real>(n*n * ((n+1)*(n+1) - m*m) / (Real)((2*n+1)*(2*n+3))) : 0); };
- auto B = [p_](Long n, Long m) { return (0<=n && m<=n && n<=p_ ? sqrt<Real>((n+1)*(n+1) * (n*n - m*m) / (Real)((2*n+1)*(2*n-1))) : 0); };
- if (fabs(csc_theta[i]) > 0) {
- for (Long m = 0; m <= p0; m++) {
- for (Long n = m; n <= p0; n++) {
- Complex<Real> AYBY = A(n,m) * Y(n+1,m) - B(n,m) * Y(n-1,m);
- Complex<Real> Fv2r = Y(n,m) * (-n-1);
- Complex<Real> Fw2r = Y(n,m) * n;
- Complex<Real> Fx2r = 0;
- Complex<Real> Fv2t = AYBY * csc_theta[i];
- Complex<Real> Fw2t = AYBY * csc_theta[i];
- Complex<Real> Fx2t = imag * m * Y(n,m) * csc_theta[i];
- Complex<Real> Fv2p = -imag * m * Y(n,m) * csc_theta[i];
- Complex<Real> Fw2p = -imag * m * Y(n,m) * csc_theta[i];
- Complex<Real> Fx2p = AYBY * csc_theta[i];
- write_coeff(Fv2r, n, m, 0, 0);
- write_coeff(Fw2r, n, m, 1, 0);
- write_coeff(Fx2r, n, m, 2, 0);
- write_coeff(Fv2t, n, m, 0, 1);
- write_coeff(Fw2t, n, m, 1, 1);
- write_coeff(Fx2t, n, m, 2, 1);
- write_coeff(Fv2p, n, m, 0, 2);
- write_coeff(Fw2p, n, m, 1, 2);
- write_coeff(Fx2p, n, m, 2, 2);
- }
- }
- } else {
- Complex<Real> exp_phi;
- exp_phi.real = cos<Real>(theta_phi[i*2+1]);
- exp_phi.imag = -sin<Real>(theta_phi[i*2+1]);
- for (Long m = 0; m <= p0; m++) {
- for (Long n = m; n <= p0; n++) {
- Complex<Real> Fv2r = 0;
- Complex<Real> Fw2r = 0;
- Complex<Real> Fx2r = 0;
- Complex<Real> Fv2t = 0;
- Complex<Real> Fw2t = 0;
- Complex<Real> Fx2t = 0;
- Complex<Real> Fv2p = 0;
- Complex<Real> Fw2p = 0;
- Complex<Real> Fx2p = 0;
- if (m == 0) {
- Fv2r = Y(n,m) * (-n-1);
- Fw2r = Y(n,m) * n;
- Fx2r = 0;
- }
- if (m == 1) {
- auto Ycsc = [&cos_theta, &exp_phi, i](Long n) { return -sqrt<Real>((2*n+1)*n*(n+1)) * ((n%2==0) && (cos_theta[i]<0) ? -1 : 1) * exp_phi; };
- Complex<Real> AYBY = A(n,m) * Ycsc(n+1) - B(n,m) * Ycsc(n-1);
- Fv2t = AYBY;
- Fw2t = AYBY;
- Fx2t = imag * m * Ycsc(n);
- Fv2p =-imag * m * Ycsc(n);
- Fw2p =-imag * m * Ycsc(n);
- Fx2p = AYBY;
- }
- write_coeff(Fv2r, n, m, 0, 0);
- write_coeff(Fw2r, n, m, 1, 0);
- write_coeff(Fx2r, n, m, 2, 0);
- write_coeff(Fv2t, n, m, 0, 1);
- write_coeff(Fw2t, n, m, 1, 1);
- write_coeff(Fx2t, n, m, 2, 1);
- write_coeff(Fv2p, n, m, 0, 2);
- write_coeff(Fw2p, n, m, 1, 2);
- write_coeff(Fx2p, n, m, 2, 2);
- }
- }
- }
- }
- }
- assert(SHBasis.Dim(0) == N * COORD_DIM);
- assert(SHBasis.Dim(1) == COORD_DIM * M);
- }
- template <class Real> const std::vector<Matrix<Real>>& SphericalHarmonics<Real>::MatRotate(Long p0){
- std::vector<std::vector<Long>> coeff_perm(p0+1);
- { // Set coeff_perm
- for(Long n=0;n<=p0;n++) coeff_perm[n].resize(std::min(2*n+1,2*p0));
- Long itr=0;
- for(Long i=0;i<2*p0;i++){
- Long m=(i+1)/2;
- for(Long n=m;n<=p0;n++){
- coeff_perm[n][i]=itr;
- itr++;
- }
- }
- }
- assert(p0<SCTL_SHMAXDEG);
- std::vector<Matrix<Real>>& Mr=MatrixStore().Mr_[p0];
- #pragma omp critical (SCTL_MATROTATE)
- if(!Mr.size()){
- const Real SQRT2PI=sqrt(2*M_PI);
- Long Ncoef=p0*(p0+2);
- Long Ngrid=2*p0*(p0+1);
- Long Naleg=(p0+1)*(p0+2)/2;
- Matrix<Real> Mcoord0(3,Ngrid);
- const Vector<Real>& x=LegendreNodes(p0);
- for(Long i=0;i<p0+1;i++){ // Set Mcoord0
- for(Long j=0;j<2*p0;j++){
- Mcoord0[0][i*2*p0+j]=x[i];
- Mcoord0[1][i*2*p0+j]=sqrt(1-x[i]*x[i])*sin(M_PI*j/p0);
- Mcoord0[2][i*2*p0+j]=sqrt(1-x[i]*x[i])*cos(M_PI*j/p0);
- }
- }
- for(Long l=0;l<p0+1;l++){ // For each rotation angle
- Matrix<Real> Mcoord1;
- { // Rotate coordinates
- Matrix<Real> M(COORD_DIM, COORD_DIM);
- Real cos_=-x[l];
- Real sin_=-sqrt(1.0-x[l]*x[l]);
- M[0][0]= cos_; M[0][1]=0; M[0][2]=-sin_;
- M[1][0]= 0; M[1][1]=1; M[1][2]= 0;
- M[2][0]= sin_; M[2][1]=0; M[2][2]= cos_;
- Mcoord1=M*Mcoord0;
- }
- Matrix<Real> Mleg(Naleg, Ngrid);
- { // Set Mleg
- const Vector<Real> Vcoord1(Mcoord1.Dim(0)*Mcoord1.Dim(1), Mcoord1.begin(), false);
- Vector<Real> Vleg(Mleg.Dim(0)*Mleg.Dim(1), Mleg.begin(), false);
- LegPoly(Vleg, Vcoord1, p0);
- }
- Vector<Real> theta(Ngrid);
- for(Long i=0;i<theta.Dim();i++){ // Set theta
- theta[i]=atan2(Mcoord1[1][i],Mcoord1[2][i]); // TODO: works only for float and double
- }
- Matrix<Real> Mcoef2grid(Ncoef, Ngrid);
- { // Build Mcoef2grid
- Long offset0=0;
- Long offset1=0;
- for(Long i=0;i<p0+1;i++){
- Long len=p0+1-i;
- { // P * cos
- for(Long j=0;j<len;j++){
- for(Long k=0;k<Ngrid;k++){
- Mcoef2grid[offset1+j][k]=SQRT2PI*Mleg[offset0+j][k]*cos(i*theta[k]);
- }
- }
- offset1+=len;
- }
- if(i!=0 && i!=p0){ // P * sin
- for(Long j=0;j<len;j++){
- for(Long k=0;k<Ngrid;k++){
- Mcoef2grid[offset1+j][k]=SQRT2PI*Mleg[offset0+j][k]*sin(i*theta[k]);
- }
- }
- offset1+=len;
- }
- offset0+=len;
- }
- assert(offset0==Naleg);
- assert(offset1==Ncoef);
- }
- Vector<Real> Vcoef2coef(Ncoef*Ncoef);
- Vector<Real> Vcoef2grid(Ncoef*Ngrid, Mcoef2grid[0], false);
- Grid2SHC(Vcoef2grid, p0+1, 2*p0, p0, Vcoef2coef, SHCArrange::COL_MAJOR_NONZERO);
- Matrix<Real> Mcoef2coef(Ncoef, Ncoef, Vcoef2coef.begin(), false);
- for(Long n=0;n<=p0;n++){ // Create matrices for fast rotation
- Matrix<Real> M(coeff_perm[n].size(),coeff_perm[n].size());
- for(Long i=0;i<(Long)coeff_perm[n].size();i++){
- for(Long j=0;j<(Long)coeff_perm[n].size();j++){
- M[i][j]=Mcoef2coef[coeff_perm[n][i]][coeff_perm[n][j]];
- }
- }
- Mr.push_back(M);
- }
- }
- }
- return Mr;
- }
- template <class Real> void SphericalHarmonics<Real>::SHC2GridTranspose(const Vector<Real>& X, Long p0, Long p1, Vector<Real>& S){
- Matrix<Real> Mf =SphericalHarmonics<Real>::MatFourier(p1,p0).Transpose();
- std::vector<Matrix<Real>> Ml =SphericalHarmonics<Real>::MatLegendre(p1,p0);
- for(Long i=0;i<(Long)Ml.size();i++) Ml[i]=Ml[i].Transpose();
- assert(p1==(Long)Ml.size()-1);
- assert(p0==Mf.Dim(0)/2);
- assert(p1==Mf.Dim(1)/2);
- Long N=X.Dim()/(2*p0*(p0+1));
- assert(N*2*p0*(p0+1)==X.Dim());
- if(S.Dim()!=N*(p1*(p1+2))) S.ReInit(N*(p1*(p1+2)));
- Vector<Real> B0, B1;
- B0.ReInit(N* p1*(p1+2));
- B1.ReInit(N*2*p1*(p0+1));
- #pragma omp parallel
- { // Evaluate Fourier and transpose
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N*(p0+1)/omp_p;
- Long b=(tid+1)*N*(p0+1)/omp_p;
- const Long block_size=16;
- Matrix<Real> B2(block_size,2*p1);
- for(Long i0=a;i0<b;i0+=block_size){
- Long i1=std::min(b,i0+block_size);
- const Matrix<Real> Min (i1-i0,2*p0, (Iterator<Real>)X.begin()+i0*2*p0, false);
- Matrix<Real> Mout(i1-i0,2*p1, B2.begin(), false);
- Matrix<Real>::GEMM(Mout, Min, Mf);
- for(Long i=i0;i<i1;i++){
- for(Long j=0;j<2*p1;j++){
- B1[j*N*(p0+1)+i]=B2[i-i0][j];
- }
- }
- }
- }
- #pragma omp parallel
- { // Evaluate Legendre polynomial
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long offset0=0;
- Long offset1=0;
- for(Long i=0;i<p1+1;i++){
- Long N0=2*N;
- if(i==0 || i==p1) N0=N;
- Matrix<Real> Min (N0, p0+1 , B1.begin()+offset0, false);
- Matrix<Real> Mout(N0, p1+1-i, B0.begin()+offset1, false);
- { // Mout = Min * Ml[i] // split between threads
- Long a=(tid+0)*N0/omp_p;
- Long b=(tid+1)*N0/omp_p;
- if(a<b){
- Matrix<Real> Min_ (b-a, Min .Dim(1), Min [a], false);
- Matrix<Real> Mout_(b-a, Mout.Dim(1), Mout[a], false);
- Matrix<Real>::GEMM(Mout_,Min_,Ml[i]);
- }
- }
- offset0+=Min .Dim(0)*Min .Dim(1);
- offset1+=Mout.Dim(0)*Mout.Dim(1);
- }
- }
- #pragma omp parallel
- { // S <-- Rearrange(B0)
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for(Long i=a;i<b;i++){
- Long offset=0;
- for(Long j=0;j<2*p1;j++){
- Long len=p1+1-(j+1)/2;
- Real* B_=&B0[i*len+N*offset];
- Real* S_=&S[i*p1*(p1+2)+offset];
- for(Long k=0;k<len;k++) S_[k]=B_[k];
- offset+=len;
- }
- }
- }
- }
- template <class Real> void SphericalHarmonics<Real>::RotateAll(const Vector<Real>& S, Long p0, Long dof, Vector<Real>& S_){
- const std::vector<Matrix<Real>>& Mr=MatRotate(p0);
- std::vector<std::vector<Long>> coeff_perm(p0+1);
- { // Set coeff_perm
- for(Long n=0;n<=p0;n++) coeff_perm[n].resize(std::min(2*n+1,2*p0));
- Long itr=0;
- for(Long i=0;i<2*p0;i++){
- Long m=(i+1)/2;
- for(Long n=m;n<=p0;n++){
- coeff_perm[n][i]=itr;
- itr++;
- }
- }
- }
- Long Ncoef=p0*(p0+2);
- Long N=S.Dim()/Ncoef/dof;
- assert(N*Ncoef*dof==S.Dim());
- if(S_.Dim()!=N*dof*Ncoef*p0*(p0+1)) S_.ReInit(N*dof*Ncoef*p0*(p0+1));
- const Matrix<Real> S0(N*dof, Ncoef, (Iterator<Real>)S.begin(), false);
- Matrix<Real> S1(N*dof*p0*(p0+1), Ncoef, S_.begin(), false);
- #pragma omp parallel
- { // Construct all p0*(p0+1) rotations
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Matrix<Real> B0(dof*p0,Ncoef); // memory buffer
- std::vector<Matrix<Real>> Bi(p0+1), Bo(p0+1); // memory buffers
- for(Long i=0;i<=p0;i++){ // initialize Bi, Bo
- Bi[i].ReInit(dof*p0,coeff_perm[i].size());
- Bo[i].ReInit(dof*p0,coeff_perm[i].size());
- }
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for(Long i=a;i<b;i++){
- for(Long d=0;d<dof;d++){
- for(Long j=0;j<p0;j++){
- Long offset=0;
- for(Long k=0;k<p0+1;k++){
- Real r[2]={cos(k*j*M_PI/p0),-sin(k*j*M_PI/p0)}; // exp(i*k*theta)
- Long len=p0+1-k;
- if(k!=0 && k!=p0){
- for(Long l=0;l<len;l++){
- Real x[2];
- x[0]=S0[i*dof+d][offset+len*0+l];
- x[1]=S0[i*dof+d][offset+len*1+l];
- B0[j*dof+d][offset+len*0+l]=x[0]*r[0]-x[1]*r[1];
- B0[j*dof+d][offset+len*1+l]=x[0]*r[1]+x[1]*r[0];
- }
- offset+=2*len;
- }else{
- for(Long l=0;l<len;l++){
- B0[j*dof+d][offset+l]=S0[i*dof+d][offset+l];
- }
- offset+=len;
- }
- }
- assert(offset==Ncoef);
- }
- }
- { // Fast rotation
- for(Long k=0;k<dof*p0;k++){ // forward permutation
- for(Long l=0;l<=p0;l++){
- for(Long j=0;j<(Long)coeff_perm[l].size();j++){
- Bi[l][k][j]=B0[k][coeff_perm[l][j]];
- }
- }
- }
- for(Long t=0;t<=p0;t++){
- for(Long l=0;l<=p0;l++){ // mat-vec
- Matrix<Real>::GEMM(Bo[l],Bi[l],Mr[t*(p0+1)+l]);
- }
- Matrix<Real> Mout(dof*p0,Ncoef, S1[(i*(p0+1)+t)*dof*p0], false);
- for(Long k=0;k<dof*p0;k++){ // reverse permutation
- for(Long l=0;l<=p0;l++){
- for(Long j=0;j<(Long)coeff_perm[l].size();j++){
- Mout[k][coeff_perm[l][j]]=Bo[l][k][j];
- }
- }
- }
- }
- }
- }
- }
- }
- template <class Real> void SphericalHarmonics<Real>::RotateTranspose(const Vector<Real>& S_, Long p0, Long dof, Vector<Real>& S){
- std::vector<Matrix<Real>> Mr=MatRotate(p0);
- for(Long i=0;i<(Long)Mr.size();i++) Mr[i]=Mr[i].Transpose();
- std::vector<std::vector<Long>> coeff_perm(p0+1);
- { // Set coeff_perm
- for(Long n=0;n<=p0;n++) coeff_perm[n].resize(std::min(2*n+1,2*p0));
- Long itr=0;
- for(Long i=0;i<2*p0;i++){
- Long m=(i+1)/2;
- for(Long n=m;n<=p0;n++){
- coeff_perm[n][i]=itr;
- itr++;
- }
- }
- }
- Long Ncoef=p0*(p0+2);
- Long N=S_.Dim()/Ncoef/dof/(p0*(p0+1));
- assert(N*Ncoef*dof*(p0*(p0+1))==S_.Dim());
- if(S.Dim()!=N*dof*Ncoef*p0*(p0+1)) S.ReInit(N*dof*Ncoef*p0*(p0+1));
- Matrix<Real> S0(N*dof*p0*(p0+1), Ncoef, S.begin(), false);
- const Matrix<Real> S1(N*dof*p0*(p0+1), Ncoef, (Iterator<Real>)S_.begin(), false);
- #pragma omp parallel
- { // Transpose all p0*(p0+1) rotations
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Matrix<Real> B0(dof*p0,Ncoef); // memory buffer
- std::vector<Matrix<Real>> Bi(p0+1), Bo(p0+1); // memory buffers
- for(Long i=0;i<=p0;i++){ // initialize Bi, Bo
- Bi[i].ReInit(dof*p0,coeff_perm[i].size());
- Bo[i].ReInit(dof*p0,coeff_perm[i].size());
- }
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for(Long i=a;i<b;i++){
- for(Long t=0;t<p0+1;t++){
- Long idx0=(i*(p0+1)+t)*p0*dof;
- { // Fast rotation
- const Matrix<Real> Min(p0*dof, Ncoef, (Iterator<Real>)S1[idx0], false);
- for(Long k=0;k<dof*p0;k++){ // forward permutation
- for(Long l=0;l<=p0;l++){
- for(Long j=0;j<(Long)coeff_perm[l].size();j++){
- Bi[l][k][j]=Min[k][coeff_perm[l][j]];
- }
- }
- }
- for(Long l=0;l<=p0;l++){ // mat-vec
- Matrix<Real>::GEMM(Bo[l],Bi[l],Mr[t*(p0+1)+l]);
- }
- for(Long k=0;k<dof*p0;k++){ // reverse permutation
- for(Long l=0;l<=p0;l++){
- for(Long j=0;j<(Long)coeff_perm[l].size();j++){
- B0[k][coeff_perm[l][j]]=Bo[l][k][j];
- }
- }
- }
- }
- for(Long j=0;j<p0;j++){
- for(Long d=0;d<dof;d++){
- Long idx1=idx0+j*dof+d;
- Long offset=0;
- for(Long k=0;k<p0+1;k++){
- Real r[2]={cos(k*j*M_PI/p0),sin(k*j*M_PI/p0)}; // exp(i*k*theta)
- Long len=p0+1-k;
- if(k!=0 && k!=p0){
- for(Long l=0;l<len;l++){
- Real x[2];
- x[0]=B0[j*dof+d][offset+len*0+l];
- x[1]=B0[j*dof+d][offset+len*1+l];
- S0[idx1][offset+len*0+l]=x[0]*r[0]-x[1]*r[1];
- S0[idx1][offset+len*1+l]=x[0]*r[1]+x[1]*r[0];
- }
- offset+=2*len;
- }else{
- for(Long l=0;l<len;l++){
- S0[idx1][offset+l]=B0[j*dof+d][offset+l];
- }
- offset+=len;
- }
- }
- assert(offset==Ncoef);
- }
- }
- }
- }
- }
- }
- template <class Real> void SphericalHarmonics<Real>::StokesSingularInteg(const Vector<Real>& S, Long p0, Long p1, Vector<Real>* SLMatrix, Vector<Real>* DLMatrix){
- Long Ngrid=2*p0*(p0+1);
- Long Ncoef= p0*(p0+2);
- Long Nves=S.Dim()/(Ngrid*COORD_DIM);
- if(SLMatrix) SLMatrix->ReInit(Nves*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM));
- if(DLMatrix) DLMatrix->ReInit(Nves*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM));
- Long BLOCK_SIZE=(Long)6e9/((3*2*p1*(p1+1))*(3*2*p0*(p0+1))*2*8); // Limit memory usage to 6GB
- BLOCK_SIZE=std::min<Long>(BLOCK_SIZE,omp_get_max_threads());
- BLOCK_SIZE=std::max<Long>(BLOCK_SIZE,1);
- for(Long a=0;a<Nves;a+=BLOCK_SIZE){
- Long b=std::min(a+BLOCK_SIZE, Nves);
- Vector<Real> _SLMatrix, _DLMatrix;
- if(SLMatrix) _SLMatrix.ReInit((b-a)*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM), SLMatrix->begin()+a*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM), false);
- if(DLMatrix) _DLMatrix.ReInit((b-a)*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM), DLMatrix->begin()+a*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM), false);
- const Vector<Real> _S ((b-a)*(Ngrid*COORD_DIM) , (Iterator<Real>)S.begin()+a*(Ngrid*COORD_DIM), false);
- if(SLMatrix && DLMatrix) StokesSingularInteg_< true, true>(_S, p0, p1, _SLMatrix, _DLMatrix);
- else if(SLMatrix) StokesSingularInteg_< true, false>(_S, p0, p1, _SLMatrix, _DLMatrix);
- else if(DLMatrix) StokesSingularInteg_<false, true>(_S, p0, p1, _SLMatrix, _DLMatrix);
- }
- }
- template <class Real> template <bool SLayer, bool DLayer> void SphericalHarmonics<Real>::StokesSingularInteg_(const Vector<Real>& X0, Long p0, Long p1, Vector<Real>& SL, Vector<Real>& DL){
- Profile::Tic("Rotate");
- Vector<Real> S0, S;
- SphericalHarmonics<Real>::Grid2SHC(X0, p0+1, 2*p0, p0, S0, SHCArrange::COL_MAJOR_NONZERO);
- SphericalHarmonics<Real>::RotateAll(S0, p0, COORD_DIM, S);
- Profile::Toc();
- Profile::Tic("Upsample");
- Vector<Real> X, X_theta, X_phi, trg;
- SphericalHarmonics<Real>::SHC2Grid(S, SHCArrange::COL_MAJOR_NONZERO, p0, p1+1, 2*p1, &X, &X_theta, &X_phi);
- SphericalHarmonics<Real>::SHC2Pole(S, SHCArrange::COL_MAJOR_NONZERO, p0, trg);
- Profile::Toc();
- Profile::Tic("Stokes");
- Vector<Real> SL0, DL0;
- { // Stokes kernel
- //Long M0=2*p0*(p0+1);
- Long M1=2*p1*(p1+1);
- Long N=trg.Dim()/(2*COORD_DIM);
- assert(X.Dim()==M1*COORD_DIM*N);
- if(SLayer && SL0.Dim()!=N*2*6*M1) SL0.ReInit(2*N*6*M1);
- if(DLayer && DL0.Dim()!=N*2*6*M1) DL0.ReInit(2*N*6*M1);
- const Vector<Real>& qw=SphericalHarmonics<Real>::SingularWeights(p1);
- const Real scal_const_dl = 3.0/(4.0*M_PI);
- const Real scal_const_sl = 1.0/(8.0*M_PI);
- static Real eps=-1;
- if(eps<0){
- eps=1;
- while(eps*(Real)0.5+(Real)1.0>1.0) eps*=0.5;
- }
- #pragma omp parallel
- {
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for(Long i=a;i<b;i++){
- for(Long t=0;t<2;t++){
- Real tx, ty, tz;
- { // Read target coordinates
- tx=trg[i*2*COORD_DIM+0*2+t];
- ty=trg[i*2*COORD_DIM+1*2+t];
- tz=trg[i*2*COORD_DIM+2*2+t];
- }
- for(Long j0=0;j0<p1+1;j0++){
- for(Long j1=0;j1<2*p1;j1++){
- Long s=2*p1*j0+j1;
- Real dx, dy, dz;
- { // Compute dx, dy, dz
- dx=tx-X[(i*COORD_DIM+0)*M1+s];
- dy=ty-X[(i*COORD_DIM+1)*M1+s];
- dz=tz-X[(i*COORD_DIM+2)*M1+s];
- }
- Real nx, ny, nz;
- { // Compute source normal
- Real x_theta=X_phi[(i*COORD_DIM+0)*M1+s];
- Real y_theta=X_phi[(i*COORD_DIM+1)*M1+s];
- Real z_theta=X_phi[(i*COORD_DIM+2)*M1+s];
- Real x_phi=X_theta[(i*COORD_DIM+0)*M1+s];
- Real y_phi=X_theta[(i*COORD_DIM+1)*M1+s];
- Real z_phi=X_theta[(i*COORD_DIM+2)*M1+s];
- nx=(y_theta*z_phi-z_theta*y_phi);
- ny=(z_theta*x_phi-x_theta*z_phi);
- nz=(x_theta*y_phi-y_theta*x_phi);
- }
- Real area_elem=1.0;
- if(SLayer){ // Compute area_elem
- area_elem=sqrt(nx*nx+ny*ny+nz*nz);
- }
- Real rinv, rinv2;
- { // Compute rinv, rinv2
- Real r2=dx*dx+dy*dy+dz*dz;
- rinv=1.0/sqrt(r2);
- if(r2<=eps) rinv=0;
- rinv2=rinv*rinv;
- }
- if(DLayer){
- Real rinv5=rinv2*rinv2*rinv;
- Real r_dot_n_rinv5=scal_const_dl*qw[j0*t+(p1-j0)*(1-t)] * (nx*dx+ny*dy+nz*dz)*rinv5;
- DL0[((i*2+t)*6+0)*M1+s]=dx*dx*r_dot_n_rinv5;
- DL0[((i*2+t)*6+1)*M1+s]=dx*dy*r_dot_n_rinv5;
- DL0[((i*2+t)*6+2)*M1+s]=dx*dz*r_dot_n_rinv5;
- DL0[((i*2+t)*6+3)*M1+s]=dy*dy*r_dot_n_rinv5;
- DL0[((i*2+t)*6+4)*M1+s]=dy*dz*r_dot_n_rinv5;
- DL0[((i*2+t)*6+5)*M1+s]=dz*dz*r_dot_n_rinv5;
- }
- if(SLayer){
- Real area_rinv =scal_const_sl*qw[j0*t+(p1-j0)*(1-t)] * area_elem*rinv;
- Real area_rinv2=area_rinv*rinv2;
- SL0[((i*2+t)*6+0)*M1+s]=area_rinv+dx*dx*area_rinv2;
- SL0[((i*2+t)*6+1)*M1+s]= dx*dy*area_rinv2;
- SL0[((i*2+t)*6+2)*M1+s]= dx*dz*area_rinv2;
- SL0[((i*2+t)*6+3)*M1+s]=area_rinv+dy*dy*area_rinv2;
- SL0[((i*2+t)*6+4)*M1+s]= dy*dz*area_rinv2;
- SL0[((i*2+t)*6+5)*M1+s]=area_rinv+dz*dz*area_rinv2;
- }
- }
- }
- }
- }
- }
- Profile::Add_FLOP(20*(2*p1)*(p1+1)*2*N);
- if(SLayer) Profile::Add_FLOP((19+6)*(2*p1)*(p1+1)*2*N);
- if(DLayer) Profile::Add_FLOP( 22 *(2*p1)*(p1+1)*2*N);
- }
- Profile::Toc();
- Profile::Tic("UpsampleTranspose");
- Vector<Real> SL1, DL1;
- SphericalHarmonics<Real>::SHC2GridTranspose(SL0, p1, p0, SL1);
- SphericalHarmonics<Real>::SHC2GridTranspose(DL0, p1, p0, DL1);
- Profile::Toc();
- Profile::Tic("RotateTranspose");
- Vector<Real> SL2, DL2;
- SphericalHarmonics<Real>::RotateTranspose(SL1, p0, 2*6, SL2);
- SphericalHarmonics<Real>::RotateTranspose(DL1, p0, 2*6, DL2);
- Profile::Toc();
- Profile::Tic("Rearrange");
- Vector<Real> SL3, DL3;
- { // Transpose
- Long Ncoef=p0*(p0+2);
- Long Ngrid=2*p0*(p0+1);
- { // Transpose SL2
- Long N=SL2.Dim()/(6*Ncoef*Ngrid);
- SL3.ReInit(N*COORD_DIM*Ncoef*COORD_DIM*Ngrid);
- #pragma omp parallel
- {
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Matrix<Real> B(COORD_DIM*Ncoef,Ngrid*COORD_DIM);
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for(Long i=a;i<b;i++){
- Matrix<Real> M0(Ngrid*6, Ncoef, SL2.begin()+i*Ngrid*6*Ncoef, false);
- for(Long k=0;k<Ncoef;k++){ // Transpose
- for(Long j=0;j<Ngrid;j++){ // TODO: needs blocking
- B[k+Ncoef*0][j*COORD_DIM+0]=M0[j*6+0][k];
- B[k+Ncoef*1][j*COORD_DIM+0]=M0[j*6+1][k];
- B[k+Ncoef*2][j*COORD_DIM+0]=M0[j*6+2][k];
- B[k+Ncoef*0][j*COORD_DIM+1]=M0[j*6+1][k];
- B[k+Ncoef*1][j*COORD_DIM+1]=M0[j*6+3][k];
- B[k+Ncoef*2][j*COORD_DIM+1]=M0[j*6+4][k];
- B[k+Ncoef*0][j*COORD_DIM+2]=M0[j*6+2][k];
- B[k+Ncoef*1][j*COORD_DIM+2]=M0[j*6+4][k];
- B[k+Ncoef*2][j*COORD_DIM+2]=M0[j*6+5][k];
- }
- }
- Matrix<Real> M1(Ncoef*COORD_DIM, COORD_DIM*Ngrid, SL3.begin()+i*COORD_DIM*Ncoef*COORD_DIM*Ngrid, false);
- for(Long k=0;k<B.Dim(0);k++){ // Rearrange
- for(Long j0=0;j0<COORD_DIM;j0++){
- for(Long j1=0;j1<p0+1;j1++){
- for(Long j2=0;j2<p0;j2++) M1[k][((j0*(p0+1)+ j1)*2+0)*p0+j2]=B[k][((j1*p0+j2)*2+0)*COORD_DIM+j0];
- for(Long j2=0;j2<p0;j2++) M1[k][((j0*(p0+1)+p0-j1)*2+1)*p0+j2]=B[k][((j1*p0+j2)*2+1)*COORD_DIM+j0];
- }
- }
- }
- }
- }
- }
- { // Transpose DL2
- Long N=DL2.Dim()/(6*Ncoef*Ngrid);
- DL3.ReInit(N*COORD_DIM*Ncoef*COORD_DIM*Ngrid);
- #pragma omp parallel
- {
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Matrix<Real> B(COORD_DIM*Ncoef,Ngrid*COORD_DIM);
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for(Long i=a;i<b;i++){
- Matrix<Real> M0(Ngrid*6, Ncoef, DL2.begin()+i*Ngrid*6*Ncoef, false);
- for(Long k=0;k<Ncoef;k++){ // Transpose
- for(Long j=0;j<Ngrid;j++){ // TODO: needs blocking
- B[k+Ncoef*0][j*COORD_DIM+0]=M0[j*6+0][k];
- B[k+Ncoef*1][j*COORD_DIM+0]=M0[j*6+1][k];
- B[k+Ncoef*2][j*COORD_DIM+0]=M0[j*6+2][k];
- B[k+Ncoef*0][j*COORD_DIM+1]=M0[j*6+1][k];
- B[k+Ncoef*1][j*COORD_DIM+1]=M0[j*6+3][k];
- B[k+Ncoef*2][j*COORD_DIM+1]=M0[j*6+4][k];
- B[k+Ncoef*0][j*COORD_DIM+2]=M0[j*6+2][k];
- B[k+Ncoef*1][j*COORD_DIM+2]=M0[j*6+4][k];
- B[k+Ncoef*2][j*COORD_DIM+2]=M0[j*6+5][k];
- }
- }
- Matrix<Real> M1(Ncoef*COORD_DIM, COORD_DIM*Ngrid, DL3.begin()+i*COORD_DIM*Ncoef*COORD_DIM*Ngrid, false);
- for(Long k=0;k<B.Dim(0);k++){ // Rearrange
- for(Long j0=0;j0<COORD_DIM;j0++){
- for(Long j1=0;j1<p0+1;j1++){
- for(Long j2=0;j2<p0;j2++) M1[k][((j0*(p0+1)+ j1)*2+0)*p0+j2]=B[k][((j1*p0+j2)*2+0)*COORD_DIM+j0];
- for(Long j2=0;j2<p0;j2++) M1[k][((j0*(p0+1)+p0-j1)*2+1)*p0+j2]=B[k][((j1*p0+j2)*2+1)*COORD_DIM+j0];
- }
- }
- }
- }
- }
- }
- }
- Profile::Toc();
- Profile::Tic("Grid2SHC");
- SphericalHarmonics<Real>::Grid2SHC(SL3, p0+1, 2*p0, p0, SL, SHCArrange::COL_MAJOR_NONZERO);
- SphericalHarmonics<Real>::Grid2SHC(DL3, p0+1, 2*p0, p0, DL, SHCArrange::COL_MAJOR_NONZERO);
- Profile::Toc();
- }
- } // end namespace
|