sph_harm.txx 73 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128
  1. #include SCTL_INCLUDE(legendre_rule.hpp)
  2. // TODO: Replace work vectors with dynamic-arrays
  3. namespace SCTL_NAMESPACE {
  4. template <class Real> void SphericalHarmonics<Real>::Grid2SHC(const Vector<Real>& X, Long Nt, Long Np, Long p1, Vector<Real>& S, SHCArrange arrange){
  5. Long N = X.Dim() / (Np*Nt);
  6. assert(X.Dim() == N*Np*Nt);
  7. Vector<Real> B1(N*(p1+1)*(p1+1));
  8. Grid2SHC_(X, Nt, Np, p1, B1);
  9. SHCArrange0(B1, p1, S, arrange);
  10. }
  11. template <class Real> void SphericalHarmonics<Real>::SHC2Grid(const Vector<Real>& S, SHCArrange arrange, Long p0, Long Nt, Long Np, Vector<Real>* X, Vector<Real>* X_phi, Vector<Real>* X_theta){
  12. Vector<Real> B0;
  13. SHCArrange1(S, arrange, p0, B0);
  14. SHC2Grid_(B0, p0, Nt, Np, X, X_phi, X_theta);
  15. }
  16. template <class Real> void SphericalHarmonics<Real>::SHCEval(const Vector<Real>& S, SHCArrange arrange, Long p0, const Vector<Real>& cos_theta_phi, Vector<Real>& X) {
  17. Long M = (p0+1) * (p0+1);
  18. Long dof;
  19. Matrix<Real> B1;
  20. { // Set B1, dof
  21. Vector<Real> B0;
  22. SHCArrange1(S, arrange, p0, B0);
  23. dof = B0.Dim() / M;
  24. assert(B0.Dim() == dof * M);
  25. B1.ReInit(dof, M);
  26. Vector<Real> B1_(B1.Dim(0) * B1.Dim(1), B1.begin(), false);
  27. SHCArrange0(B0, p0, B1_, SHCArrange::COL_MAJOR_NONZERO);
  28. }
  29. assert(B1.Dim(0) == dof);
  30. assert(B1.Dim(1) == M);
  31. Matrix<Real> SHBasis;
  32. SHBasisEval(p0, cos_theta_phi, SHBasis);
  33. assert(SHBasis.Dim(1) == M);
  34. Long N = SHBasis.Dim(0);
  35. { // Set X
  36. if (X.Dim() != N*dof) X.ReInit(N * dof);
  37. for (Long k0 = 0; k0 < N; k0++) {
  38. for (Long k1 = 0; k1 < dof; k1++) {
  39. Real X_ = 0;
  40. for (Long i = 0; i < M; i++) X_ += B1[k1][i] * SHBasis[k0][i];
  41. X[k0 * dof + k1] = X_;
  42. }
  43. }
  44. }
  45. }
  46. template <class Real> void SphericalHarmonics<Real>::SHC2Pole(const Vector<Real>& S, SHCArrange arrange, Long p0, Vector<Real>& P){
  47. Vector<Real> QP[2];
  48. { // Set QP // TODO: store these weights
  49. Vector<Real> x(1), alp;
  50. const Real SQRT2PI = sqrt<Real>(4 * const_pi<Real>());
  51. for (Long i = 0; i < 2; i++) {
  52. x = (i ? -1 : 1);
  53. LegPoly(alp, x, p0);
  54. QP[i].ReInit(p0 + 1, alp.begin());
  55. QP[i] *= SQRT2PI;
  56. }
  57. }
  58. Long M, N;
  59. { // Set M, N
  60. M = 0;
  61. if (arrange == SHCArrange::ALL) M = 2*(p0+1)*(p0+1);
  62. if (arrange == SHCArrange::ROW_MAJOR) M = (p0+1)*(p0+2);
  63. if (arrange == SHCArrange::COL_MAJOR_NONZERO) M = (p0+1)*(p0+1);
  64. if (M == 0) return;
  65. N = S.Dim() / M;
  66. assert(S.Dim() == N * M);
  67. }
  68. if(P.Dim() != N * 2) P.ReInit(N * 2);
  69. if (arrange == SHCArrange::ALL) {
  70. #pragma omp parallel
  71. { // Compute pole
  72. Integer tid = omp_get_thread_num();
  73. Integer omp_p = omp_get_num_threads();
  74. Long a = (tid + 0) * N / omp_p;
  75. Long b = (tid + 1) * N / omp_p;
  76. for (Long i = a; i < b; i++) {
  77. Real P_[2] = {0, 0};
  78. for (Long j = 0; j < p0 + 1; j++) {
  79. P_[0] += S[i*M + j*(p0+1)*2] * QP[0][j];
  80. P_[1] += S[i*M + j*(p0+1)*2] * QP[1][j];
  81. }
  82. P[2*i+0] = P_[0];
  83. P[2*i+1] = P_[1];
  84. }
  85. }
  86. }
  87. if (arrange == SHCArrange::ROW_MAJOR) {
  88. #pragma omp parallel
  89. { // Compute pole
  90. Integer tid = omp_get_thread_num();
  91. Integer omp_p = omp_get_num_threads();
  92. Long a = (tid + 0) * N / omp_p;
  93. Long b = (tid + 1) * N / omp_p;
  94. for (Long i = a; i < b; i++) {
  95. Long idx = 0;
  96. Real P_[2] = {0, 0};
  97. for (Long j = 0; j < p0 + 1; j++) {
  98. P_[0] += S[i*M+idx] * QP[0][j];
  99. P_[1] += S[i*M+idx] * QP[1][j];
  100. idx += 2*(j+1);
  101. }
  102. P[2*i+0] = P_[0];
  103. P[2*i+1] = P_[1];
  104. }
  105. }
  106. }
  107. if (arrange == SHCArrange::COL_MAJOR_NONZERO) {
  108. #pragma omp parallel
  109. { // Compute pole
  110. Integer tid = omp_get_thread_num();
  111. Integer omp_p = omp_get_num_threads();
  112. Long a = (tid + 0) * N / omp_p;
  113. Long b = (tid + 1) * N / omp_p;
  114. for (Long i = a; i < b; i++) {
  115. Real P_[2] = {0, 0};
  116. for (Long j = 0; j < p0 + 1; j++) {
  117. P_[0] += S[i*M+j] * QP[0][j];
  118. P_[1] += S[i*M+j] * QP[1][j];
  119. }
  120. P[2*i+0] = P_[0];
  121. P[2*i+1] = P_[1];
  122. }
  123. }
  124. }
  125. }
  126. template <class Real> void SphericalHarmonics<Real>::WriteVTK(const char* fname, const Vector<Real>* S, const Vector<Real>* v_ptr, SHCArrange arrange, Long p0, Long p1, Real period, const Comm& comm){
  127. typedef double VTKReal;
  128. Vector<Real> SS;
  129. if (S == nullptr) {
  130. Integer p = 2;
  131. Integer Ncoeff = (p + 1) * (p + 1);
  132. Vector<Real> SSS(COORD_DIM * Ncoeff), SSS_grid;
  133. SSS.SetZero();
  134. SSS[1+0*p+0*Ncoeff] = sqrt<Real>(2.0)/sqrt<Real>(3.0);
  135. SSS[1+1*p+1*Ncoeff] = 1/sqrt<Real>(3.0);
  136. SSS[1+2*p+2*Ncoeff] = 1/sqrt<Real>(3.0);
  137. SphericalHarmonics<Real>::SHC2Grid(SSS, SHCArrange::COL_MAJOR_NONZERO, p, p+1, 2*p+2, &SSS_grid);
  138. SphericalHarmonics<Real>::Grid2SHC(SSS_grid, p+1, 2*p+2, p0, SS, arrange);
  139. S = &SS;
  140. }
  141. Vector<Real> X, Xp, V, Vp;
  142. { // Upsample X
  143. const Vector<Real>& X0=*S;
  144. SphericalHarmonics<Real>::SHC2Grid(X0, arrange, p0, p1+1, 2*p1, &X);
  145. SphericalHarmonics<Real>::SHC2Pole(X0, arrange, p0, Xp);
  146. }
  147. if(v_ptr){ // Upsample V
  148. const Vector<Real>& X0=*v_ptr;
  149. SphericalHarmonics<Real>::SHC2Grid(X0, arrange, p0, p1+1, 2*p1, &V);
  150. SphericalHarmonics<Real>::SHC2Pole(X0, arrange, p0, Vp);
  151. }
  152. std::vector<VTKReal> point_coord;
  153. std::vector<VTKReal> point_value;
  154. std::vector<int32_t> poly_connect;
  155. std::vector<int32_t> poly_offset;
  156. { // Set point_coord, point_value, poly_connect
  157. Long N_ves = X.Dim()/(2*p1*(p1+1)*COORD_DIM); // Number of vesicles
  158. assert(Xp.Dim() == N_ves*2*COORD_DIM);
  159. for(Long k=0;k<N_ves;k++){ // Set point_coord
  160. Real C[COORD_DIM]={0,0,0};
  161. if(period>0){
  162. for(Integer l=0;l<COORD_DIM;l++) C[l]=0;
  163. for(Long i=0;i<p1+1;i++){
  164. for(Long j=0;j<2*p1;j++){
  165. for(Integer l=0;l<COORD_DIM;l++){
  166. C[l]+=X[j+2*p1*(i+(p1+1)*(l+k*COORD_DIM))];
  167. }
  168. }
  169. }
  170. for(Integer l=0;l<COORD_DIM;l++) C[l]+=Xp[0+2*(l+k*COORD_DIM)];
  171. for(Integer l=0;l<COORD_DIM;l++) C[l]+=Xp[1+2*(l+k*COORD_DIM)];
  172. for(Integer l=0;l<COORD_DIM;l++) C[l]/=2*p1*(p1+1)+2;
  173. for(Integer l=0;l<COORD_DIM;l++) C[l]=(round(C[l]/period))*period;
  174. }
  175. for(Long i=0;i<p1+1;i++){
  176. for(Long j=0;j<2*p1;j++){
  177. for(Integer l=0;l<COORD_DIM;l++){
  178. point_coord.push_back(X[j+2*p1*(i+(p1+1)*(l+k*COORD_DIM))]-C[l]);
  179. }
  180. }
  181. }
  182. for(Integer l=0;l<COORD_DIM;l++) point_coord.push_back(Xp[0+2*(l+k*COORD_DIM)]-C[l]);
  183. for(Integer l=0;l<COORD_DIM;l++) point_coord.push_back(Xp[1+2*(l+k*COORD_DIM)]-C[l]);
  184. }
  185. if(v_ptr) {
  186. Long data__dof = V.Dim() / (2*p1*(p1+1));
  187. for(Long k=0;k<N_ves;k++){ // Set point_value
  188. for(Long i=0;i<p1+1;i++){
  189. for(Long j=0;j<2*p1;j++){
  190. for(Long l=0;l<data__dof;l++){
  191. point_value.push_back(V[j+2*p1*(i+(p1+1)*(l+k*data__dof))]);
  192. }
  193. }
  194. }
  195. for(Long l=0;l<data__dof;l++) point_value.push_back(Vp[0+2*(l+k*data__dof)]);
  196. for(Long l=0;l<data__dof;l++) point_value.push_back(Vp[1+2*(l+k*data__dof)]);
  197. }
  198. }
  199. for(Long k=0;k<N_ves;k++){
  200. for(Long j=0;j<2*p1;j++){
  201. Long i0= 0;
  202. Long i1=p1;
  203. Long j0=((j+0) );
  204. Long j1=((j+1)%(2*p1));
  205. poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*(p1+1)+0);
  206. poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i0+j0);
  207. poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i0+j1);
  208. poly_offset.push_back(poly_connect.size());
  209. poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*(p1+1)+1);
  210. poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i1+j0);
  211. poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i1+j1);
  212. poly_offset.push_back(poly_connect.size());
  213. }
  214. for(Long i=0;i<p1;i++){
  215. for(Long j=0;j<2*p1;j++){
  216. Long i0=((i+0) );
  217. Long i1=((i+1) );
  218. Long j0=((j+0) );
  219. Long j1=((j+1)%(2*p1));
  220. poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i0+j0);
  221. poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i1+j0);
  222. poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i1+j1);
  223. poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i0+j1);
  224. poly_offset.push_back(poly_connect.size());
  225. }
  226. }
  227. }
  228. }
  229. Integer np = comm.Size();
  230. Integer myrank = comm.Rank();
  231. std::vector<VTKReal>& coord=point_coord;
  232. std::vector<VTKReal>& value=point_value;
  233. std::vector<int32_t>& connect=poly_connect;
  234. std::vector<int32_t>& offset=poly_offset;
  235. Long pt_cnt=coord.size()/COORD_DIM;
  236. Long poly_cnt=poly_offset.size();
  237. // Open file for writing.
  238. std::stringstream vtufname;
  239. vtufname<<fname<<"_"<<std::setfill('0')<<std::setw(6)<<myrank<<".vtp";
  240. std::ofstream vtufile;
  241. vtufile.open(vtufname.str().c_str());
  242. if(vtufile.fail()) return;
  243. bool isLittleEndian;
  244. { // Set isLittleEndian
  245. uint16_t number = 0x1;
  246. uint8_t *numPtr = (uint8_t*)&number;
  247. isLittleEndian=(numPtr[0] == 1);
  248. }
  249. // Proceed to write to file.
  250. Long data_size=0;
  251. vtufile<<"<?xml version=\"1.0\"?>\n";
  252. if(isLittleEndian) vtufile<<"<VTKFile type=\"PolyData\" version=\"0.1\" byte_order=\"LittleEndian\">\n";
  253. else vtufile<<"<VTKFile type=\"PolyData\" version=\"0.1\" byte_order=\"BigEndian\">\n";
  254. //===========================================================================
  255. vtufile<<" <PolyData>\n";
  256. vtufile<<" <Piece NumberOfPoints=\""<<pt_cnt<<"\" NumberOfVerts=\"0\" NumberOfLines=\"0\" NumberOfStrips=\"0\" NumberOfPolys=\""<<poly_cnt<<"\">\n";
  257. //---------------------------------------------------------------------------
  258. vtufile<<" <Points>\n";
  259. vtufile<<" <DataArray type=\"Float"<<sizeof(VTKReal)*8<<"\" NumberOfComponents=\""<<COORD_DIM<<"\" Name=\"Position\" format=\"appended\" offset=\""<<data_size<<"\" />\n";
  260. data_size+=sizeof(uint32_t)+coord.size()*sizeof(VTKReal);
  261. vtufile<<" </Points>\n";
  262. //---------------------------------------------------------------------------
  263. if(value.size()){ // value
  264. vtufile<<" <PointData>\n";
  265. vtufile<<" <DataArray type=\"Float"<<sizeof(VTKReal)*8<<"\" NumberOfComponents=\""<<value.size()/pt_cnt<<"\" Name=\""<<"value"<<"\" format=\"appended\" offset=\""<<data_size<<"\" />\n";
  266. data_size+=sizeof(uint32_t)+value.size()*sizeof(VTKReal);
  267. vtufile<<" </PointData>\n";
  268. }
  269. //---------------------------------------------------------------------------
  270. vtufile<<" <Polys>\n";
  271. vtufile<<" <DataArray type=\"Int32\" Name=\"connectivity\" format=\"appended\" offset=\""<<data_size<<"\" />\n";
  272. data_size+=sizeof(uint32_t)+connect.size()*sizeof(int32_t);
  273. vtufile<<" <DataArray type=\"Int32\" Name=\"offsets\" format=\"appended\" offset=\""<<data_size<<"\" />\n";
  274. data_size+=sizeof(uint32_t)+offset.size() *sizeof(int32_t);
  275. vtufile<<" </Polys>\n";
  276. //---------------------------------------------------------------------------
  277. vtufile<<" </Piece>\n";
  278. vtufile<<" </PolyData>\n";
  279. //===========================================================================
  280. vtufile<<" <AppendedData encoding=\"raw\">\n";
  281. vtufile<<" _";
  282. int32_t block_size;
  283. block_size=coord.size()*sizeof(VTKReal); vtufile.write((char*)&block_size, sizeof(int32_t)); vtufile.write((char*)&coord [0], coord.size()*sizeof(VTKReal));
  284. if(value.size()){ // value
  285. block_size=value.size()*sizeof(VTKReal); vtufile.write((char*)&block_size, sizeof(int32_t)); vtufile.write((char*)&value [0], value.size()*sizeof(VTKReal));
  286. }
  287. block_size=connect.size()*sizeof(int32_t); vtufile.write((char*)&block_size, sizeof(int32_t)); vtufile.write((char*)&connect[0], connect.size()*sizeof(int32_t));
  288. block_size=offset .size()*sizeof(int32_t); vtufile.write((char*)&block_size, sizeof(int32_t)); vtufile.write((char*)&offset [0], offset .size()*sizeof(int32_t));
  289. vtufile<<"\n";
  290. vtufile<<" </AppendedData>\n";
  291. //===========================================================================
  292. vtufile<<"</VTKFile>\n";
  293. vtufile.close();
  294. if(myrank) return;
  295. std::stringstream pvtufname;
  296. pvtufname<<fname<<".pvtp";
  297. std::ofstream pvtufile;
  298. pvtufile.open(pvtufname.str().c_str());
  299. if(pvtufile.fail()) return;
  300. pvtufile<<"<?xml version=\"1.0\"?>\n";
  301. pvtufile<<"<VTKFile type=\"PPolyData\">\n";
  302. pvtufile<<" <PPolyData GhostLevel=\"0\">\n";
  303. pvtufile<<" <PPoints>\n";
  304. pvtufile<<" <PDataArray type=\"Float"<<sizeof(VTKReal)*8<<"\" NumberOfComponents=\""<<COORD_DIM<<"\" Name=\"Position\"/>\n";
  305. pvtufile<<" </PPoints>\n";
  306. if(value.size()){ // value
  307. pvtufile<<" <PPointData>\n";
  308. pvtufile<<" <PDataArray type=\"Float"<<sizeof(VTKReal)*8<<"\" NumberOfComponents=\""<<value.size()/pt_cnt<<"\" Name=\""<<"value"<<"\"/>\n";
  309. pvtufile<<" </PPointData>\n";
  310. }
  311. {
  312. // Extract filename from path.
  313. std::stringstream vtupath;
  314. vtupath<<'/'<<fname;
  315. std::string pathname = vtupath.str();
  316. auto found = pathname.find_last_of("/\\");
  317. std::string fname_ = pathname.substr(found+1);
  318. for(Integer i=0;i<np;i++) pvtufile<<" <Piece Source=\""<<fname_<<"_"<<std::setfill('0')<<std::setw(6)<<i<<".vtp\"/>\n";
  319. }
  320. pvtufile<<" </PPolyData>\n";
  321. pvtufile<<"</VTKFile>\n";
  322. pvtufile.close();
  323. }
  324. template <class Real> void SphericalHarmonics<Real>::Grid2VecSHC(const Vector<Real>& X, Long Nt, Long Np, Long p0, Vector<Real>& S, SHCArrange arrange) {
  325. Long N = X.Dim() / (Np*Nt);
  326. assert(X.Dim() == N*Np*Nt);
  327. assert(N % COORD_DIM == 0);
  328. Vector<Real> B0(N*Nt*Np);
  329. { // Set B0
  330. B0 = X;
  331. const auto& Y = LegendreNodes(Nt - 1);
  332. assert(Y.Dim() == Nt);
  333. for (Long k = 0; k < N; k++) {
  334. if (k % COORD_DIM) {
  335. for (Long i = 0; i < Nt; i++) {
  336. Real s = 1/sqrt<Real>(1 - Y[i]*Y[i]);
  337. for (Long j = 0; j < Np; j++) {
  338. B0[(k*Nt+i)*Np+j] *= s;
  339. }
  340. }
  341. }
  342. }
  343. }
  344. Long p_ = p0 + 1;
  345. Long M0 = (p0+1)*(p0+1);
  346. Long M_ = (p_+1)*(p_+1);
  347. Vector<Real> B1(N*M_);
  348. Grid2SHC_(B0, Nt, Np, p_, B1);
  349. Vector<Real> B2(N*M0);
  350. const Complex<Real> imag(0,1);
  351. for (Long i=0; i<N; i+=COORD_DIM) {
  352. for (Long m=0; m<=p0; m++) {
  353. for (Long n=m; n<=p0; n++) {
  354. auto read_coeff = [&](const Vector<Real>& coeff, Long i, Long p, Long n, Long m) {
  355. Complex<Real> c;
  356. if (0<=m && m<=n && n<=p) {
  357. Long idx_real = ((2*p-m+3)*m - (m?p+1:0))*N + (p+1-m)*i - m + n;
  358. Long idx_imag = idx_real + (p+1-m)*N;
  359. c.real = coeff[idx_real];
  360. if (m) c.imag = coeff[idx_imag];
  361. }
  362. return c;
  363. };
  364. auto write_coeff = [&](Complex<Real> c, Vector<Real>& coeff, Long i, Long p, Long n, Long m) {
  365. if (0<=m && m<=n && n<=p) {
  366. Long idx_real = ((2*p-m+3)*m - (m?p+1:0))*N + (p+1-m)*i - m + n;
  367. Long idx_imag = idx_real + (p+1-m)*N;
  368. coeff[idx_real] = c.real;
  369. if (m) coeff[idx_imag] = c.imag;
  370. }
  371. };
  372. auto gr = [&](Long n, Long m) { return read_coeff(B1, i+0, p_, n, m); };
  373. auto gt = [&](Long n, Long m) { return read_coeff(B1, i+1, p_, n, m); };
  374. auto gp = [&](Long n, Long m) { return read_coeff(B1, i+2, p_, n, m); };
  375. Complex<Real> phiY, phiG, phiX;
  376. { // (phiG, phiX) <-- (gt, gp)
  377. auto A = [&](Long n, Long m) { return (0<=n && m<=n && n<=p_ ? sqrt<Real>(n*n * ((n+1)*(n+1) - m*m) / (Real)((2*n+1)*(2*n+3))) : 0); };
  378. auto B = [&](Long n, Long m) { return (0<=n && m<=n && n<=p_ ? sqrt<Real>((n+1)*(n+1) * (n*n - m*m) / (Real)((2*n+1)*(2*n-1))) : 0); };
  379. phiY = gr(n,m);
  380. phiG = (gt(n+1,m)*A(n,m) - gt(n-1,m)*B(n,m) + imag*m*gp(n,m)) * (1/(Real)(std::max<Long>(n,1)*(n+1)));
  381. phiX = (gp(n+1,m)*A(n,m) - gp(n-1,m)*B(n,m) - imag*m*gt(n,m)) * (1/(Real)(std::max<Long>(n,1)*(n+1)));
  382. }
  383. auto phiV = (phiG * (n + 0) - phiY) * (1/(Real)(2*n + 1));
  384. auto phiW = (phiG * (n + 1) + phiY) * (1/(Real)(2*n + 1));
  385. if (n==0) {
  386. phiW = 0;
  387. phiX = 0;
  388. }
  389. write_coeff(phiV, B2, i+0, p0, n, m);
  390. write_coeff(phiW, B2, i+1, p0, n, m);
  391. write_coeff(phiX, B2, i+2, p0, n, m);
  392. }
  393. }
  394. }
  395. SHCArrange0(B2, p0, S, arrange);
  396. }
  397. template <class Real> void SphericalHarmonics<Real>::VecSHC2Grid(const Vector<Real>& S, SHCArrange arrange, Long p0, Long Nt, Long Np, Vector<Real>* X) {
  398. Vector<Real> B0;
  399. SHCArrange1(S, arrange, p0, B0);
  400. Long p_ = p0 + 1;
  401. Long M0 = (p0+1)*(p0+1);
  402. Long M_ = (p_+1)*(p_+1);
  403. Long N = B0.Dim() / M0;
  404. assert(B0.Dim() == N*M0);
  405. assert(N % COORD_DIM == 0);
  406. Vector<Real> B1(N*M_);
  407. const Complex<Real> imag(0,1);
  408. for (Long i=0; i<N; i+=COORD_DIM) {
  409. for (Long m=0; m<=p_; m++) {
  410. for (Long n=m; n<=p_; n++) {
  411. auto read_coeff = [&](const Vector<Real>& coeff, Long i, Long p, Long n, Long m) {
  412. Complex<Real> c;
  413. if (0<=m && m<=n && n<=p) {
  414. Long idx_real = ((2*p-m+3)*m - (m?p+1:0))*N + (p+1-m)*i - m + n;
  415. Long idx_imag = idx_real + (p+1-m)*N;
  416. c.real = coeff[idx_real];
  417. if (m) c.imag = coeff[idx_imag];
  418. }
  419. return c;
  420. };
  421. auto write_coeff = [&](Complex<Real> c, Vector<Real>& coeff, Long i, Long p, Long n, Long m) {
  422. if (0<=m && m<=n && n<=p) {
  423. Long idx_real = ((2*p-m+3)*m - (m?p+1:0))*N + (p+1-m)*i - m + n;
  424. Long idx_imag = idx_real + (p+1-m)*N;
  425. coeff[idx_real] = c.real;
  426. if (m) coeff[idx_imag] = c.imag;
  427. }
  428. };
  429. auto phiG = [&](Long n, Long m) {
  430. auto phiV = read_coeff(B0, i+0, p0, n, m);
  431. auto phiW = read_coeff(B0, i+1, p0, n, m);
  432. return phiV + phiW;
  433. };
  434. auto phiY = [&](Long n, Long m) {
  435. auto phiV = read_coeff(B0, i+0, p0, n, m);
  436. auto phiW = read_coeff(B0, i+1, p0, n, m);
  437. return -phiV * (n + 1) + phiW * n;
  438. };
  439. auto phiX = [&](Long n, Long m) {
  440. return read_coeff(B0, i+2, p0, n, m);
  441. };
  442. Complex<Real> gr, gt, gp;
  443. { // (gt, gp) <-- (phiG, phiX)
  444. auto A = [&](Long n, Long m) { return (0<=n && m<=n && n<=p_ ? sqrt<Real>(n*n * ((n+1)*(n+1) - m*m) / (Real)((2*n+1)*(2*n+3))) : 0); };
  445. auto B = [&](Long n, Long m) { return (0<=n && m<=n && n<=p_ ? sqrt<Real>((n+1)*(n+1) * (n*n - m*m) / (Real)((2*n+1)*(2*n-1))) : 0); };
  446. gr = phiY(n,m);
  447. gt = phiG(n-1,m)*A(n-1,m) - phiG(n+1,m)*B(n+1,m) + imag*m*phiX(n,m);
  448. gp = phiX(n-1,m)*A(n-1,m) - phiX(n+1,m)*B(n+1,m) - imag*m*phiG(n,m);
  449. }
  450. write_coeff(gr, B1, i+0, p_, n, m);
  451. write_coeff(gt, B1, i+1, p_, n, m);
  452. write_coeff(gp, B1, i+2, p_, n, m);
  453. }
  454. }
  455. }
  456. if (X) { // Set X
  457. SHC2Grid_(B1, p_, Nt, Np, X);
  458. const auto& Y = LegendreNodes(Nt - 1);
  459. assert(Y.Dim() == Nt);
  460. for (Long k = 0; k < N; k++) {
  461. if (k % COORD_DIM) {
  462. for (Long i = 0; i < Nt; i++) {
  463. Real s = 1/sqrt<Real>(1 - Y[i]*Y[i]);
  464. for (Long j = 0; j < Np; j++) {
  465. (*X)[(k*Nt+i)*Np+j] *= s;
  466. }
  467. }
  468. }
  469. }
  470. }
  471. }
  472. template <class Real> void SphericalHarmonics<Real>::VecSHCEval(const Vector<Real>& S, SHCArrange arrange, Long p0, const Vector<Real>& cos_theta_phi, Vector<Real>& X) {
  473. Long M = (p0+1) * (p0+1);
  474. Long dof;
  475. Matrix<Real> B1;
  476. { // Set B1, dof
  477. Vector<Real> B0;
  478. SHCArrange1(S, arrange, p0, B0);
  479. dof = B0.Dim() / M / COORD_DIM;
  480. assert(B0.Dim() == dof * COORD_DIM * M);
  481. B1.ReInit(dof, COORD_DIM * M);
  482. Vector<Real> B1_(B1.Dim(0) * B1.Dim(1), B1.begin(), false);
  483. SHCArrange0(B0, p0, B1_, SHCArrange::COL_MAJOR_NONZERO);
  484. }
  485. assert(B1.Dim(1) == COORD_DIM * M);
  486. assert(B1.Dim(0) == dof);
  487. Matrix<Real> SHBasis;
  488. VecSHBasisEval(p0, cos_theta_phi, SHBasis);
  489. assert(SHBasis.Dim(1) == COORD_DIM * M);
  490. Long N = SHBasis.Dim(0) / COORD_DIM;
  491. { // Set X
  492. if (X.Dim() != N * dof * COORD_DIM) X.ReInit(N * dof * COORD_DIM);
  493. for (Long k0 = 0; k0 < N; k0++) {
  494. for (Long k1 = 0; k1 < dof; k1++) {
  495. for (Long j = 0; j < COORD_DIM; j++) {
  496. Real X_ = 0;
  497. for (Long i = 0; i < COORD_DIM * M; i++) X_ += B1[k1][i] * SHBasis[k0 * COORD_DIM + j][i];
  498. X[(k0 * dof + k1) * COORD_DIM + j] = X_;
  499. }
  500. }
  501. }
  502. }
  503. }
  504. template <class Real> void SphericalHarmonics<Real>::StokesEvalSL(const Vector<Real>& S, SHCArrange arrange, Long p0, const Vector<Real>& r_cos_theta_phi, Vector<Real>& X) {
  505. Long M = (p0+1) * (p0+1);
  506. Long dof;
  507. Matrix<Real> B1;
  508. { // Set B1, dof
  509. Vector<Real> B0;
  510. SHCArrange1(S, arrange, p0, B0);
  511. dof = B0.Dim() / M / COORD_DIM;
  512. assert(B0.Dim() == dof * COORD_DIM * M);
  513. B1.ReInit(dof, COORD_DIM * M);
  514. Vector<Real> B1_(B1.Dim(0) * B1.Dim(1), B1.begin(), false);
  515. SHCArrange0(B0, p0, B1_, SHCArrange::COL_MAJOR_NONZERO);
  516. }
  517. assert(B1.Dim(1) == COORD_DIM * M);
  518. assert(B1.Dim(0) == dof);
  519. Long N;
  520. Vector<Real> R;
  521. Matrix<Real> SHBasis;
  522. { // Set N, R, SHBasis
  523. N = r_cos_theta_phi.Dim() / COORD_DIM;
  524. assert(r_cos_theta_phi.Dim() == N * COORD_DIM);
  525. R.ReInit(N);
  526. Vector<Real> cos_theta_phi(2 * N);
  527. for (Long i = 0; i < N; i++) { // Set R, cos_theta_phi
  528. R[i] = r_cos_theta_phi[i * COORD_DIM + 0];
  529. cos_theta_phi[i * 2 + 0] = r_cos_theta_phi[i * COORD_DIM + 1];
  530. cos_theta_phi[i * 2 + 1] = r_cos_theta_phi[i * COORD_DIM + 2];
  531. }
  532. VecSHBasisEval(p0, cos_theta_phi, SHBasis);
  533. assert(SHBasis.Dim(1) == COORD_DIM * M);
  534. assert(SHBasis.Dim(0) == N * COORD_DIM);
  535. }
  536. Matrix<Real> StokesOp(SHBasis.Dim(0), SHBasis.Dim(1));
  537. for (Long i = 0; i < N; i++) { // Set StokesOp
  538. for (Long m = 0; m <= p0; m++) {
  539. for (Long n = m; n <= p0; n++) {
  540. auto read_coeff = [&](Long n, Long m, Long k0, Long k1) {
  541. Complex<Real> c;
  542. if (0 <= m && m <= n && n <= p0 && 0 <= k0 && k0 < COORD_DIM && 0 <= k1 && k1 < COORD_DIM) {
  543. Long idx = (2 * p0 - m + 2) * m - (m ? p0+1 : 0) + n;
  544. c.real = SHBasis[i * COORD_DIM + k1][k0 * M + idx];
  545. if (m) {
  546. idx += (p0+1-m);
  547. c.imag = SHBasis[i * COORD_DIM + k1][k0 * M + idx];
  548. }
  549. }
  550. return c;
  551. };
  552. auto write_coeff = [&](Complex<Real> c, Long n, Long m, Long k0, Long k1) {
  553. if (0 <= m && m <= n && n <= p0 && 0 <= k0 && k0 < COORD_DIM && 0 <= k1 && k1 < COORD_DIM) {
  554. Long idx = (2 * p0 - m + 2) * m - (m ? p0+1 : 0) + n;
  555. StokesOp[i * COORD_DIM + k1][k0 * M + idx] = c.real;
  556. if (m) {
  557. idx += (p0+1-m);
  558. StokesOp[i * COORD_DIM + k1][k0 * M + idx] = c.imag;
  559. }
  560. }
  561. };
  562. auto Vr = read_coeff(n, m, 0, 0);
  563. auto Vt = read_coeff(n, m, 0, 1);
  564. auto Vp = read_coeff(n, m, 0, 2);
  565. auto Wr = read_coeff(n, m, 1, 0);
  566. auto Wt = read_coeff(n, m, 1, 1);
  567. auto Wp = read_coeff(n, m, 1, 2);
  568. auto Xr = read_coeff(n, m, 2, 0);
  569. auto Xt = read_coeff(n, m, 2, 1);
  570. auto Xp = read_coeff(n, m, 2, 2);
  571. Real a,b;
  572. a = n / (Real)((2*n+1) * (2*n+3)) * pow<Real>(R[i], -n-2);
  573. Complex<Real> SVr = a * Vr;
  574. Complex<Real> SVt = a * Vt;
  575. Complex<Real> SVp = a * Vp;
  576. a = (n+1) / (Real)((2*n+1) * (2*n-1)) * pow<Real>(R[i], -n);
  577. b = n / (Real)(4*n+2) * (pow<Real>(R[i], -n-2) - pow<Real>(R[i], -n));
  578. Complex<Real> SWr = a * Wr + b * Vr;
  579. Complex<Real> SWt = a * Wt + b * Vt;
  580. Complex<Real> SWp = a * Wp + b * Vp;
  581. a = 1 / (Real)(2*n+1) * pow<Real>(R[i], -n-1);
  582. Complex<Real> SXr = a * Xr;
  583. Complex<Real> SXt = a * Xt;
  584. Complex<Real> SXp = a * Xp;
  585. write_coeff(SVr, n, m, 0, 0);
  586. write_coeff(SVt, n, m, 0, 1);
  587. write_coeff(SVp, n, m, 0, 2);
  588. write_coeff(SWr, n, m, 1, 0);
  589. write_coeff(SWt, n, m, 1, 1);
  590. write_coeff(SWp, n, m, 1, 2);
  591. write_coeff(SXr, n, m, 2, 0);
  592. write_coeff(SXt, n, m, 2, 1);
  593. write_coeff(SXp, n, m, 2, 2);
  594. }
  595. }
  596. }
  597. { // Set X
  598. if (X.Dim() != N * dof * COORD_DIM) X.ReInit(N * dof * COORD_DIM);
  599. for (Long k0 = 0; k0 < N; k0++) {
  600. for (Long k1 = 0; k1 < dof; k1++) {
  601. for (Long j = 0; j < COORD_DIM; j++) {
  602. Real X_ = 0;
  603. for (Long i = 0; i < COORD_DIM * M; i++) X_ += B1[k1][i] * StokesOp[k0 * COORD_DIM + j][i];
  604. X[(k0 * dof + k1) * COORD_DIM + j] = X_;
  605. }
  606. }
  607. }
  608. }
  609. }
  610. template <class Real> void SphericalHarmonics<Real>::Grid2SHC_(const Vector<Real>& X, Long Nt, Long Np, Long p1, Vector<Real>& B1){
  611. const auto& Mf = OpFourierInv(Np);
  612. assert(Mf.Dim(0) == Np);
  613. const std::vector<Matrix<Real>>& Ml = SphericalHarmonics<Real>::MatLegendreInv(Nt-1,p1);
  614. assert((Long)Ml.size() == p1+1);
  615. Long N = X.Dim() / (Np*Nt);
  616. assert(X.Dim() == N*Np*Nt);
  617. Vector<Real> B0((2*p1+1) * N*Nt);
  618. #pragma omp parallel
  619. { // B0 <-- Transpose(FFT(X))
  620. Integer tid=omp_get_thread_num();
  621. Integer omp_p=omp_get_num_threads();
  622. Long a=(tid+0)*N*Nt/omp_p;
  623. Long b=(tid+1)*N*Nt/omp_p;
  624. Vector<Real> buff(Mf.Dim(1));
  625. Long fft_coeff_len = std::min(buff.Dim(), 2*p1+2);
  626. Matrix<Real> B0_(2*p1+1, N*Nt, B0.begin(), false);
  627. const Matrix<Real> MX(N * Nt, Np, (Iterator<Real>)X.begin(), false);
  628. for (Long i = a; i < b; i++) {
  629. { // buff <-- FFT(Xi)
  630. const Vector<Real> Xi(Np, (Iterator<Real>)X.begin() + Np * i, false);
  631. Mf.Execute(Xi, buff);
  632. }
  633. { // B0 <-- Transpose(buff)
  634. B0_[0][i] = buff[0]; // skipping buff[1] == 0
  635. for (Long j = 2; j < fft_coeff_len; j++) B0_[j-1][i] = buff[j];
  636. for (Long j = fft_coeff_len; j < 2*p1+2; j++) B0_[j-1][i] = 0;
  637. }
  638. }
  639. }
  640. if (B1.Dim() != N*(p1+1)*(p1+1)) B1.ReInit(N*(p1+1)*(p1+1));
  641. #pragma omp parallel
  642. { // Evaluate Legendre polynomial
  643. Integer tid=omp_get_thread_num();
  644. Integer omp_p=omp_get_num_threads();
  645. Long offset0=0;
  646. Long offset1=0;
  647. for (Long i = 0; i < p1+1; i++) {
  648. Long N_ = (i==0 ? N : 2*N);
  649. Matrix<Real> Min (N_, Nt , B0.begin()+offset0, false);
  650. Matrix<Real> Mout(N_, p1+1-i, B1.begin()+offset1, false);
  651. { // Mout = Min * Ml[i] // split between threads
  652. Long a=(tid+0)*N_/omp_p;
  653. Long b=(tid+1)*N_/omp_p;
  654. if (a < b) {
  655. Matrix<Real> Min_ (b-a, Min .Dim(1), Min [a], false);
  656. Matrix<Real> Mout_(b-a, Mout.Dim(1), Mout[a], false);
  657. Matrix<Real>::GEMM(Mout_,Min_,Ml[i]);
  658. }
  659. }
  660. offset0+=Min .Dim(0)*Min .Dim(1);
  661. offset1+=Mout.Dim(0)*Mout.Dim(1);
  662. }
  663. assert(offset0 == B0.Dim());
  664. assert(offset1 == B1.Dim());
  665. }
  666. B1 *= 1 / sqrt<Real>(4 * const_pi<Real>() * Np); // Scaling to match Zydrunas Fortran code.
  667. }
  668. template <class Real> void SphericalHarmonics<Real>::SHCArrange0(const Vector<Real>& B1, Long p1, Vector<Real>& S, SHCArrange arrange){
  669. Long M = (p1+1)*(p1+1);
  670. Long N = B1.Dim() / M;
  671. assert(B1.Dim() == N*M);
  672. if (arrange == SHCArrange::ALL) { // S <-- Rearrange(B1)
  673. Long M = 2*(p1+1)*(p1+1);
  674. if(S.Dim() != N * M) S.ReInit(N * M);
  675. #pragma omp parallel
  676. { // S <-- Rearrange(B1)
  677. Integer tid=omp_get_thread_num();
  678. Integer omp_p=omp_get_num_threads();
  679. Long a=(tid+0)*N/omp_p;
  680. Long b=(tid+1)*N/omp_p;
  681. for (Long i = a; i < b; i++) {
  682. Long offset = 0;
  683. for (Long j = 0; j < p1+1; j++) {
  684. Long len = p1+1 - j;
  685. if (1) { // Set Real(S_n^m) for m=j and n=j..p
  686. ConstIterator<Real> B_ = B1.begin() + i*len + N*offset;
  687. Iterator<Real> S_ = S .begin() + i*M + j*(p1+1)*2 + j*2 + 0;
  688. for (Long k = 0; k < len; k++) S_[k * (p1+1)*2] = B_[k];
  689. offset += len;
  690. }
  691. if (j) { // Set Imag(S_n^m) for m=j and n=j..p
  692. ConstIterator<Real> B_ = B1.begin() + i*len + N*offset;
  693. Iterator<Real> S_ = S .begin() + i*M + j*(p1+1)*2 + j*2 + 1;
  694. for (Long k = 0; k < len; k++) S_[k * (p1+1)*2] = B_[k];
  695. offset += len;
  696. } else {
  697. Iterator<Real> S_ = S .begin() + i*M + j*(p1+1)*2 + j*2 + 1;
  698. for (Long k = 0; k < len; k++) S_[k * (p1+1)*2] = 0;
  699. }
  700. }
  701. }
  702. }
  703. }
  704. if (arrange == SHCArrange::ROW_MAJOR) { // S <-- Rearrange(B1)
  705. Long M = (p1+1)*(p1+2);
  706. if(S.Dim() != N * M) S.ReInit(N * M);
  707. #pragma omp parallel
  708. { // S <-- Rearrange(B1)
  709. Integer tid=omp_get_thread_num();
  710. Integer omp_p=omp_get_num_threads();
  711. Long a=(tid+0)*N/omp_p;
  712. Long b=(tid+1)*N/omp_p;
  713. for (Long i = a; i < b; i++) {
  714. Long offset = 0;
  715. for (Long j = 0; j < p1+1; j++) {
  716. Long len = p1+1 - j;
  717. if (1) { // Set Real(S_n^m) for m=j and n=j..p
  718. ConstIterator<Real> B_ = B1.begin() + i*len + N*offset;
  719. Iterator<Real> S_ = S .begin() + i*M + 0;
  720. for (Long k=0;k<len;k++) S_[(j+k)*(j+k+1) + 2*j] = B_[k];
  721. offset += len;
  722. }
  723. if (j) { // Set Imag(S_n^m) for m=j and n=j..p
  724. ConstIterator<Real> B_ = B1.begin() + i*len + N*offset;
  725. Iterator<Real> S_ = S .begin() + i*M + 1;
  726. for (Long k=0;k<len;k++) S_[(j+k)*(j+k+1) + 2*j] = B_[k];
  727. offset += len;
  728. } else {
  729. Iterator<Real> S_ = S .begin() + i*M + 1;
  730. for (Long k=0;k<len;k++) S_[(j+k)*(j+k+1) + 2*j] = 0;
  731. }
  732. }
  733. }
  734. }
  735. }
  736. if (arrange == SHCArrange::COL_MAJOR_NONZERO) { // S <-- Rearrange(B1)
  737. Long M = (p1+1)*(p1+1);
  738. if(S.Dim() != N * M) S.ReInit(N * M);
  739. #pragma omp parallel
  740. { // S <-- Rearrange(B1)
  741. Integer tid=omp_get_thread_num();
  742. Integer omp_p=omp_get_num_threads();
  743. Long a=(tid+0)*N/omp_p;
  744. Long b=(tid+1)*N/omp_p;
  745. for (Long i = a; i < b; i++) {
  746. Long offset = 0;
  747. for (Long j = 0; j < p1+1; j++) {
  748. Long len = p1+1 - j;
  749. if (1) { // Set Real(S_n^m) for m=j and n=j..p
  750. ConstIterator<Real> B_ = B1.begin() + i*len + N*offset;
  751. Iterator<Real> S_ = S .begin() + i*M + offset;
  752. for (Long k = 0; k < len; k++) S_[k] = B_[k];
  753. offset += len;
  754. }
  755. if (j) { // Set Imag(S_n^m) for m=j and n=j..p
  756. ConstIterator<Real> B_ = B1.begin() + i*len + N*offset;
  757. Iterator<Real> S_ = S .begin() + i*M + offset;
  758. for (Long k = 0; k < len; k++) S_[k] = B_[k];
  759. offset += len;
  760. }
  761. }
  762. }
  763. }
  764. }
  765. }
  766. template <class Real> void SphericalHarmonics<Real>::SHCArrange1(const Vector<Real>& S, SHCArrange arrange, Long p0, Vector<Real>& B0){
  767. Long M, N;
  768. { // Set M, N
  769. M = 0;
  770. if (arrange == SHCArrange::ALL) M = 2*(p0+1)*(p0+1);
  771. if (arrange == SHCArrange::ROW_MAJOR) M = (p0+1)*(p0+2);
  772. if (arrange == SHCArrange::COL_MAJOR_NONZERO) M = (p0+1)*(p0+1);
  773. if (M == 0) return;
  774. N = S.Dim() / M;
  775. assert(S.Dim() == N * M);
  776. }
  777. if (B0.Dim() != N*(p0+1)*(p0+1)) B0.ReInit(N*(p0+1)*(p0+1));
  778. if (arrange == SHCArrange::ALL) { // B0 <-- Rearrange(S)
  779. #pragma omp parallel
  780. { // B0 <-- Rearrange(S)
  781. Integer tid=omp_get_thread_num();
  782. Integer omp_p=omp_get_num_threads();
  783. Long a=(tid+0)*N/omp_p;
  784. Long b=(tid+1)*N/omp_p;
  785. for (Long i = a; i < b; i++) {
  786. Long offset = 0;
  787. for (Long j = 0; j < p0+1; j++) {
  788. Long len = p0+1 - j;
  789. if (1) { // Get Real(S_n^m) for m=j and n=j..p
  790. Iterator<Real> B_ = B0.begin() + i*len + N*offset;
  791. ConstIterator<Real> S_ = S .begin() + i*M + j*(p0+1)*2 + j*2 + 0;
  792. for (Long k = 0; k < len; k++) B_[k] = S_[k * (p0+1)*2];
  793. offset += len;
  794. }
  795. if (j) { // Get Imag(S_n^m) for m=j and n=j..p
  796. Iterator<Real> B_ = B0.begin() + i*len + N*offset;
  797. ConstIterator<Real> S_ = S .begin() + i*M + j*(p0+1)*2 + j*2 + 1;
  798. for (Long k = 0; k < len; k++) B_[k] = S_[k * (p0+1)*2];
  799. offset += len;
  800. }
  801. }
  802. }
  803. }
  804. }
  805. if (arrange == SHCArrange::ROW_MAJOR) { // B0 <-- Rearrange(S)
  806. #pragma omp parallel
  807. { // B0 <-- Rearrange(S)
  808. Integer tid=omp_get_thread_num();
  809. Integer omp_p=omp_get_num_threads();
  810. Long a=(tid+0)*N/omp_p;
  811. Long b=(tid+1)*N/omp_p;
  812. for (Long i = a; i < b; i++) {
  813. Long offset = 0;
  814. for (Long j = 0; j < p0+1; j++) {
  815. Long len = p0+1 - j;
  816. if (1) { // Get Real(S_n^m) for m=j and n=j..p
  817. Iterator<Real> B_ = B0.begin() + i*len + N*offset;
  818. ConstIterator<Real> S_ = S .begin() + i*M + 0;
  819. for (Long k=0;k<len;k++) B_[k] = S_[(j+k)*(j+k+1) + 2*j];
  820. offset += len;
  821. }
  822. if (j) { // Get Imag(S_n^m) for m=j and n=j..p
  823. Iterator<Real> B_ = B0.begin() + i*len + N*offset;
  824. ConstIterator<Real> S_ = S .begin() + i*M + 1;
  825. for (Long k=0;k<len;k++) B_[k] = S_[(j+k)*(j+k+1) + 2*j];
  826. offset += len;
  827. }
  828. }
  829. }
  830. }
  831. }
  832. if (arrange == SHCArrange::COL_MAJOR_NONZERO) { // B0 <-- Rearrange(S)
  833. #pragma omp parallel
  834. { // B0 <-- Rearrange(S)
  835. Integer tid=omp_get_thread_num();
  836. Integer omp_p=omp_get_num_threads();
  837. Long a=(tid+0)*N/omp_p;
  838. Long b=(tid+1)*N/omp_p;
  839. for (Long i = a; i < b; i++) {
  840. Long offset = 0;
  841. for (Long j = 0; j < p0+1; j++) {
  842. Long len = p0+1 - j;
  843. if (1) { // Get Real(S_n^m) for m=j and n=j..p
  844. Iterator<Real> B_ = B0.begin() + i*len + N*offset;
  845. ConstIterator<Real> S_ = S .begin() + i*M + offset;
  846. for (Long k = 0; k < len; k++) B_[k] = S_[k];
  847. offset += len;
  848. }
  849. if (j) { // Get Imag(S_n^m) for m=j and n=j..p
  850. Iterator<Real> B_ = B0.begin() + i*len + N*offset;
  851. ConstIterator<Real> S_ = S .begin() + i*M + offset;
  852. for (Long k = 0; k < len; k++) B_[k] = S_[k];
  853. offset += len;
  854. }
  855. }
  856. }
  857. }
  858. }
  859. }
  860. template <class Real> void SphericalHarmonics<Real>::SHC2Grid_(const Vector<Real>& B0, Long p0, Long Nt, Long Np, Vector<Real>* X, Vector<Real>* X_phi, Vector<Real>* X_theta){
  861. const auto& Mf = OpFourier(Np);
  862. assert(Mf.Dim(1) == Np);
  863. const std::vector<Matrix<Real>>& Ml =SphericalHarmonics<Real>::MatLegendre (p0,Nt-1);
  864. const std::vector<Matrix<Real>>& Mdl=SphericalHarmonics<Real>::MatLegendreGrad(p0,Nt-1);
  865. assert((Long)Ml .size() == p0+1);
  866. assert((Long)Mdl.size() == p0+1);
  867. Long N = B0.Dim() / ((p0+1)*(p0+1));
  868. assert(B0.Dim() == N*(p0+1)*(p0+1));
  869. if(X && X ->Dim()!=N*Np*Nt) X ->ReInit(N*Np*Nt);
  870. if(X_theta && X_theta->Dim()!=N*Np*Nt) X_theta->ReInit(N*Np*Nt);
  871. if(X_phi && X_phi ->Dim()!=N*Np*Nt) X_phi ->ReInit(N*Np*Nt);
  872. Vector<Real> B1(N*(2*p0+1)*Nt);
  873. if(X || X_phi){
  874. #pragma omp parallel
  875. { // Evaluate Legendre polynomial
  876. Integer tid=omp_get_thread_num();
  877. Integer omp_p=omp_get_num_threads();
  878. Long offset0=0;
  879. Long offset1=0;
  880. for(Long i=0;i<p0+1;i++){
  881. Long N_ = (i==0 ? N : 2*N);
  882. const Matrix<Real> Min (N_, p0+1-i, (Iterator<Real>)B0.begin()+offset0, false);
  883. Matrix<Real> Mout(N_, Nt , B1.begin()+offset1, false);
  884. { // Mout = Min * Ml[i] // split between threads
  885. Long a=(tid+0)*N_/omp_p;
  886. Long b=(tid+1)*N_/omp_p;
  887. if(a<b){
  888. const Matrix<Real> Min_ (b-a, Min .Dim(1), (Iterator<Real>)Min [a], false);
  889. Matrix<Real> Mout_(b-a, Mout.Dim(1), Mout[a], false);
  890. Matrix<Real>::GEMM(Mout_,Min_,Ml[i]);
  891. }
  892. }
  893. offset0+=Min .Dim(0)*Min .Dim(1);
  894. offset1+=Mout.Dim(0)*Mout.Dim(1);
  895. }
  896. }
  897. B1 *= sqrt<Real>(4 * const_pi<Real>() * Np); // Scaling to match Zydrunas Fortran code.
  898. #pragma omp parallel
  899. { // Transpose and evaluate Fourier
  900. Integer tid=omp_get_thread_num();
  901. Integer omp_p=omp_get_num_threads();
  902. Long a=(tid+0)*N*Nt/omp_p;
  903. Long b=(tid+1)*N*Nt/omp_p;
  904. Vector<Real> buff(Mf.Dim(0)); buff = 0;
  905. Long fft_coeff_len = std::min(buff.Dim(), 2*p0+2);
  906. Matrix<Real> B1_(2*p0+1, N*Nt, B1.begin(), false);
  907. for (Long i = a; i < b; i++) {
  908. { // buff <-- Transpose(B1)
  909. buff[0] = B1_[0][i];
  910. buff[1] = 0;
  911. for (Long j = 2; j < fft_coeff_len; j++) buff[j] = B1_[j-1][i];
  912. for (Long j = fft_coeff_len; j < buff.Dim(); j++) buff[j] = 0;
  913. }
  914. { // X <-- FFT(buff)
  915. Vector<Real> Xi(Np, X->begin() + Np * i, false);
  916. Mf.Execute(buff, Xi);
  917. }
  918. if(X_phi){ // Evaluate Fourier gradient
  919. { // buff <-- Transpose(B1)
  920. buff[0] = 0;
  921. buff[1] = 0;
  922. for (Long j = 2; j < fft_coeff_len; j++) buff[j] = B1_[j-1][i];
  923. for (Long j = fft_coeff_len; j < buff.Dim(); j++) buff[j] = 0;
  924. for (Long j = 1; j < buff.Dim()/2; j++) {
  925. Real x = buff[2*j+0];
  926. Real y = buff[2*j+1];
  927. buff[2*j+0] = -j*y;
  928. buff[2*j+1] = j*x;
  929. }
  930. }
  931. { // X_phi <-- FFT(buff)
  932. Vector<Real> Xi(Np, X_phi->begin() + Np * i, false);
  933. Mf.Execute(buff, Xi);
  934. }
  935. }
  936. }
  937. }
  938. }
  939. if(X_theta){
  940. #pragma omp parallel
  941. { // Evaluate Legendre gradient
  942. Integer tid=omp_get_thread_num();
  943. Integer omp_p=omp_get_num_threads();
  944. Long offset0=0;
  945. Long offset1=0;
  946. for(Long i=0;i<p0+1;i++){
  947. Long N_ = (i==0 ? N : 2*N);
  948. const Matrix<Real> Min (N_, p0+1-i, (Iterator<Real>)B0.begin()+offset0, false);
  949. Matrix<Real> Mout(N_, Nt , B1.begin()+offset1, false);
  950. { // Mout = Min * Mdl[i] // split between threads
  951. Long a=(tid+0)*N_/omp_p;
  952. Long b=(tid+1)*N_/omp_p;
  953. if(a<b){
  954. const Matrix<Real> Min_ (b-a, Min .Dim(1), (Iterator<Real>)Min [a], false);
  955. Matrix<Real> Mout_(b-a, Mout.Dim(1), Mout[a], false);
  956. Matrix<Real>::GEMM(Mout_,Min_,Mdl[i]);
  957. }
  958. }
  959. offset0+=Min .Dim(0)*Min .Dim(1);
  960. offset1+=Mout.Dim(0)*Mout.Dim(1);
  961. }
  962. }
  963. B1 *= sqrt<Real>(4 * const_pi<Real>() * Np); // Scaling to match Zydrunas Fortran code.
  964. #pragma omp parallel
  965. { // Transpose and evaluate Fourier
  966. Integer tid=omp_get_thread_num();
  967. Integer omp_p=omp_get_num_threads();
  968. Long a=(tid+0)*N*Nt/omp_p;
  969. Long b=(tid+1)*N*Nt/omp_p;
  970. Vector<Real> buff(Mf.Dim(0)); buff = 0;
  971. Long fft_coeff_len = std::min(buff.Dim(), 2*p0+2);
  972. Matrix<Real> B1_(2*p0+1, N*Nt, B1.begin(), false);
  973. for (Long i = a; i < b; i++) {
  974. { // buff <-- Transpose(B1)
  975. buff[0] = B1_[0][i];
  976. buff[1] = 0;
  977. for (Long j = 2; j < fft_coeff_len; j++) buff[j] = B1_[j-1][i];
  978. for (Long j = fft_coeff_len; j < buff.Dim(); j++) buff[j] = 0;
  979. }
  980. { // Xi <-- FFT(buff)
  981. Vector<Real> Xi(Np, X_theta->begin() + Np * i, false);
  982. Mf.Execute(buff, Xi);
  983. }
  984. }
  985. }
  986. }
  987. }
  988. template <class Real> void SphericalHarmonics<Real>::LegPoly(Vector<Real>& poly_val, const Vector<Real>& X, Long degree){
  989. Long N = X.Dim();
  990. Long Npoly = (degree + 1) * (degree + 2) / 2;
  991. if (poly_val.Dim() != Npoly * N) poly_val.ReInit(Npoly * N);
  992. Real fact = 1 / sqrt<Real>(4 * const_pi<Real>());
  993. Vector<Real> u(N);
  994. for (Long n = 0; n < N; n++) {
  995. u[n] = (X[n]*X[n]<1 ? sqrt<Real>(1-X[n]*X[n]) : 0);
  996. poly_val[n] = fact;
  997. }
  998. Long idx = 0;
  999. Long idx_nxt = 0;
  1000. for (Long i = 1; i <= degree; i++) {
  1001. idx_nxt += N*(degree-i+2);
  1002. Real c = sqrt<Real>((2*i+1)/(Real)(2*i));
  1003. for (Long n = 0; n < N; n++) {
  1004. poly_val[idx_nxt+n] = -poly_val[idx+n] * u[n] * c;
  1005. }
  1006. idx = idx_nxt;
  1007. }
  1008. idx = 0;
  1009. for (Long m = 0; m < degree; m++) {
  1010. for (Long n = 0; n < N; n++) {
  1011. Real pmm = 0;
  1012. Real pmmp1 = poly_val[idx+n];
  1013. for (Long ll = m + 1; ll <= degree; ll++) {
  1014. Real a = sqrt<Real>(((2*ll-1)*(2*ll+1) ) / (Real)((ll-m)*(ll+m) ));
  1015. Real b = sqrt<Real>(((2*ll+1)*(ll+m-1)*(ll-m-1)) / (Real)((ll-m)*(ll+m)*(2*ll-3)));
  1016. Real pll = X[n]*a*pmmp1 - b*pmm;
  1017. pmm = pmmp1;
  1018. pmmp1 = pll;
  1019. poly_val[idx + N*(ll-m) + n] = pll;
  1020. }
  1021. }
  1022. idx += N * (degree - m + 1);
  1023. }
  1024. }
  1025. template <class Real> void SphericalHarmonics<Real>::LegPolyDeriv(Vector<Real>& poly_val, const Vector<Real>& X, Long degree){
  1026. Long N = X.Dim();
  1027. Long Npoly = (degree + 1) * (degree + 2) / 2;
  1028. if (poly_val.Dim() != N * Npoly) poly_val.ReInit(N * Npoly);
  1029. Vector<Real> leg_poly(Npoly * N);
  1030. LegPoly(leg_poly, X, degree);
  1031. for (Long m = 0; m <= degree; m++) {
  1032. for (Long n = m; n <= degree; n++) {
  1033. ConstIterator<Real> Pn = leg_poly.begin() + N * ((degree * 2 - m + 1) * (m + 0) / 2 + n);
  1034. ConstIterator<Real> Pn_ = leg_poly.begin() + N * ((degree * 2 - m + 0) * (m + 1) / 2 + n) * (m < n);
  1035. Iterator <Real> Hn = poly_val.begin() + N * ((degree * 2 - m + 1) * (m + 0) / 2 + n);
  1036. Real c2 = sqrt<Real>(m<n ? (n+m+1)*(n-m) : 0);
  1037. for (Long i = 0; i < N; i++) {
  1038. Real c1 = (X[i]*X[i]<1 ? m/sqrt<Real>(1-X[i]*X[i]) : 0);
  1039. Hn[i] = -c1*X[i]*Pn[i] - c2*Pn_[i];
  1040. }
  1041. }
  1042. }
  1043. }
  1044. template <class Real> const Vector<Real>& SphericalHarmonics<Real>::LegendreNodes(Long p){
  1045. assert(p<SCTL_SHMAXDEG);
  1046. Vector<Real>& Qx=MatrixStore().Qx_[p];
  1047. if(!Qx.Dim()){
  1048. Vector<double> qx1(p+1);
  1049. Vector<double> qw1(p+1);
  1050. cgqf(p+1, 1, 0.0, 0.0, -1.0, 1.0, &qx1[0], &qw1[0]);
  1051. assert(typeid(Real) == typeid(double) || typeid(Real) == typeid(float)); // TODO: works only for float and double
  1052. if (Qx.Dim() != p+1) Qx.ReInit(p+1);
  1053. for (Long i = 0; i < p + 1; i++) Qx[i] = -qx1[i];
  1054. }
  1055. return Qx;
  1056. }
  1057. template <class Real> const Vector<Real>& SphericalHarmonics<Real>::LegendreWeights(Long p){
  1058. assert(p<SCTL_SHMAXDEG);
  1059. Vector<Real>& Qw=MatrixStore().Qw_[p];
  1060. if(!Qw.Dim()){
  1061. Vector<double> qx1(p+1);
  1062. Vector<double> qw1(p+1);
  1063. cgqf(p+1, 1, 0.0, 0.0, -1.0, 1.0, &qx1[0], &qw1[0]);
  1064. assert(typeid(Real) == typeid(double) || typeid(Real) == typeid(float)); // TODO: works only for float and double
  1065. if (Qw.Dim() != p+1) Qw.ReInit(p+1);
  1066. for (Long i = 0; i < p + 1; i++) Qw[i] = qw1[i];
  1067. }
  1068. return Qw;
  1069. }
  1070. template <class Real> const Vector<Real>& SphericalHarmonics<Real>::SingularWeights(Long p1){
  1071. assert(p1<SCTL_SHMAXDEG);
  1072. Vector<Real>& Sw=MatrixStore().Sw_[p1];
  1073. if(!Sw.Dim()){
  1074. const Vector<Real>& qx1 = LegendreNodes(p1);
  1075. const Vector<Real>& qw1 = LegendreWeights(p1);
  1076. std::vector<Real> Yf(p1+1,0);
  1077. { // Set Yf
  1078. Vector<Real> x0(1); x0=1.0;
  1079. Vector<Real> alp0((p1+1)*(p1+2)/2);
  1080. LegPoly(alp0, x0, p1);
  1081. Vector<Real> alp((p1+1) * (p1+1)*(p1+2)/2);
  1082. LegPoly(alp, qx1, p1);
  1083. for(Long j=0;j<p1+1;j++){
  1084. for(Long i=0;i<p1+1;i++){
  1085. Yf[i]+=4*M_PI/(2*j+1) * alp0[j] * alp[j*(p1+1)+i];
  1086. }
  1087. }
  1088. }
  1089. Sw.ReInit(p1+1);
  1090. for(Long i=0;i<p1+1;i++){
  1091. Sw[i]=(qw1[i]*M_PI/p1)*Yf[i]/cos(acos(qx1[i])/2);
  1092. }
  1093. }
  1094. return Sw;
  1095. }
  1096. template <class Real> const Matrix<Real>& SphericalHarmonics<Real>::MatFourier(Long p0, Long p1){
  1097. assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
  1098. Matrix<Real>& Mf =MatrixStore().Mf_ [p0*SCTL_SHMAXDEG+p1];
  1099. if(!Mf.Dim(0)){
  1100. const Real SQRT2PI=sqrt(2*M_PI);
  1101. { // Set Mf
  1102. Matrix<Real> M(2*p0,2*p1);
  1103. for(Long j=0;j<2*p1;j++){
  1104. M[0][j]=SQRT2PI*1.0;
  1105. for(Long k=1;k<p0;k++){
  1106. M[2*k-1][j]=SQRT2PI*cos(j*k*M_PI/p1);
  1107. M[2*k-0][j]=SQRT2PI*sin(j*k*M_PI/p1);
  1108. }
  1109. M[2*p0-1][j]=SQRT2PI*cos(j*p0*M_PI/p1);
  1110. }
  1111. Mf=M;
  1112. }
  1113. }
  1114. return Mf;
  1115. }
  1116. template <class Real> const Matrix<Real>& SphericalHarmonics<Real>::MatFourierInv(Long p0, Long p1){
  1117. assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
  1118. Matrix<Real>& Mf =MatrixStore().Mfinv_ [p0*SCTL_SHMAXDEG+p1];
  1119. if(!Mf.Dim(0)){
  1120. const Real INVSQRT2PI=1.0/sqrt(2*M_PI)/p0;
  1121. { // Set Mf
  1122. Matrix<Real> M(2*p0,2*p1);
  1123. M.SetZero();
  1124. if(p1>p0) p1=p0;
  1125. for(Long j=0;j<2*p0;j++){
  1126. M[j][0]=INVSQRT2PI*0.5;
  1127. for(Long k=1;k<p1;k++){
  1128. M[j][2*k-1]=INVSQRT2PI*cos(j*k*M_PI/p0);
  1129. M[j][2*k-0]=INVSQRT2PI*sin(j*k*M_PI/p0);
  1130. }
  1131. M[j][2*p1-1]=INVSQRT2PI*cos(j*p1*M_PI/p0);
  1132. }
  1133. if(p1==p0) for(Long j=0;j<2*p0;j++) M[j][2*p1-1]*=0.5;
  1134. Mf=M;
  1135. }
  1136. }
  1137. return Mf;
  1138. }
  1139. template <class Real> const Matrix<Real>& SphericalHarmonics<Real>::MatFourierGrad(Long p0, Long p1){
  1140. assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
  1141. Matrix<Real>& Mdf=MatrixStore().Mdf_[p0*SCTL_SHMAXDEG+p1];
  1142. if(!Mdf.Dim(0)){
  1143. const Real SQRT2PI=sqrt(2*M_PI);
  1144. { // Set Mdf_
  1145. Matrix<Real> M(2*p0,2*p1);
  1146. for(Long j=0;j<2*p1;j++){
  1147. M[0][j]=SQRT2PI*0.0;
  1148. for(Long k=1;k<p0;k++){
  1149. M[2*k-1][j]=-SQRT2PI*k*sin(j*k*M_PI/p1);
  1150. M[2*k-0][j]= SQRT2PI*k*cos(j*k*M_PI/p1);
  1151. }
  1152. M[2*p0-1][j]=-SQRT2PI*p0*sin(j*p0*M_PI/p1);
  1153. }
  1154. Mdf=M;
  1155. }
  1156. }
  1157. return Mdf;
  1158. }
  1159. template <class Real> const FFT<Real>& SphericalHarmonics<Real>::OpFourier(Long Np){
  1160. assert(Np<SCTL_SHMAXDEG);
  1161. auto& Mf =MatrixStore().Mfftinv_ [Np];
  1162. #pragma omp critical (SCTL_FFT_PLAN0)
  1163. if(!Mf.Dim(0)){
  1164. StaticArray<Long,1> fft_dim = {Np};
  1165. Mf.Setup(FFT_Type::C2R, 1, Vector<Long>(1,fft_dim,false));
  1166. }
  1167. return Mf;
  1168. }
  1169. template <class Real> const FFT<Real>& SphericalHarmonics<Real>::OpFourierInv(Long Np){
  1170. assert(Np<SCTL_SHMAXDEG);
  1171. auto& Mf =MatrixStore().Mfft_ [Np];
  1172. #pragma omp critical (SCTL_FFT_PLAN1)
  1173. if(!Mf.Dim(0)){
  1174. StaticArray<Long,1> fft_dim = {Np};
  1175. Mf.Setup(FFT_Type::R2C, 1, Vector<Long>(1,fft_dim,false));
  1176. }
  1177. return Mf;
  1178. }
  1179. template <class Real> const std::vector<Matrix<Real>>& SphericalHarmonics<Real>::MatLegendre(Long p0, Long p1){
  1180. assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
  1181. std::vector<Matrix<Real>>& Ml =MatrixStore().Ml_ [p0*SCTL_SHMAXDEG+p1];
  1182. if(!Ml.size()){
  1183. const Vector<Real>& qx1 = LegendreNodes(p1);
  1184. Vector<Real> alp(qx1.Dim()*(p0+1)*(p0+2)/2);
  1185. LegPoly(alp, qx1, p0);
  1186. Ml.resize(p0+1);
  1187. auto ptr = alp.begin();
  1188. for(Long i=0;i<=p0;i++){
  1189. Ml[i].ReInit(p0+1-i, qx1.Dim(), ptr);
  1190. ptr+=Ml[i].Dim(0)*Ml[i].Dim(1);
  1191. }
  1192. }
  1193. return Ml;
  1194. }
  1195. template <class Real> const std::vector<Matrix<Real>>& SphericalHarmonics<Real>::MatLegendreInv(Long p0, Long p1){
  1196. assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
  1197. std::vector<Matrix<Real>>& Ml =MatrixStore().Mlinv_ [p0*SCTL_SHMAXDEG+p1];
  1198. if(!Ml.size()){
  1199. const Vector<Real>& qx1 = LegendreNodes(p0);
  1200. const Vector<Real>& qw1 = LegendreWeights(p0);
  1201. Vector<Real> alp(qx1.Dim()*(p1+1)*(p1+2)/2);
  1202. LegPoly(alp, qx1, p1);
  1203. Ml.resize(p1+1);
  1204. auto ptr = alp.begin();
  1205. for(Long i=0;i<=p1;i++){
  1206. Ml[i].ReInit(qx1.Dim(), p1+1-i);
  1207. Matrix<Real> M(p1+1-i, qx1.Dim(), ptr, false);
  1208. for(Long j=0;j<p1+1-i;j++){ // Transpose and weights
  1209. for(Long k=0;k<qx1.Dim();k++){
  1210. Ml[i][k][j]=M[j][k]*qw1[k]*2*M_PI;
  1211. }
  1212. }
  1213. ptr+=Ml[i].Dim(0)*Ml[i].Dim(1);
  1214. }
  1215. }
  1216. return Ml;
  1217. }
  1218. template <class Real> const std::vector<Matrix<Real>>& SphericalHarmonics<Real>::MatLegendreGrad(Long p0, Long p1){
  1219. assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
  1220. std::vector<Matrix<Real>>& Mdl=MatrixStore().Mdl_[p0*SCTL_SHMAXDEG+p1];
  1221. if(!Mdl.size()){
  1222. const Vector<Real>& qx1 = LegendreNodes(p1);
  1223. Vector<Real> alp(qx1.Dim()*(p0+1)*(p0+2)/2);
  1224. LegPolyDeriv(alp, qx1, p0);
  1225. Mdl.resize(p0+1);
  1226. auto ptr = alp.begin();
  1227. for(Long i=0;i<=p0;i++){
  1228. Mdl[i].ReInit(p0+1-i, qx1.Dim(), ptr);
  1229. ptr+=Mdl[i].Dim(0)*Mdl[i].Dim(1);
  1230. }
  1231. }
  1232. return Mdl;
  1233. }
  1234. template <class Real> void SphericalHarmonics<Real>::SHBasisEval(Long p0, const Vector<Real>& cos_theta_phi, Matrix<Real>& SHBasis) {
  1235. Long M = (p0+1) * (p0+1);
  1236. Long N = cos_theta_phi.Dim() / 2;
  1237. assert(cos_theta_phi.Dim() == N * 2);
  1238. Vector<Complex<Real>> exp_phi(N);
  1239. Matrix<Real> LegP((p0+1)*(p0+2)/2, N);
  1240. { // Set exp_phi, LegP
  1241. Vector<Real> cos_theta(N);
  1242. for (Long i = 0; i < N; i++) { // Set cos_theta, exp_phi
  1243. cos_theta[i] = cos_theta_phi[i*2+0];
  1244. exp_phi[i].real = cos(cos_theta_phi[i*2+1]);
  1245. exp_phi[i].imag = sin(cos_theta_phi[i*2+1]);
  1246. }
  1247. Vector<Real> alp(LegP.Dim(0) * LegP.Dim(1), LegP.begin(), false);
  1248. LegPoly(alp, cos_theta, p0);
  1249. }
  1250. { // Set SHBasis
  1251. SHBasis.ReInit(N, M);
  1252. Real s = 4 * sqrt<Real>(const_pi<Real>());
  1253. for (Long k0 = 0; k0 < N; k0++) {
  1254. Complex<Real> exp_phi_ = 1;
  1255. Complex<Real> exp_phi1 = exp_phi[k0];
  1256. for (Long m = 0; m <= p0; m++) {
  1257. for (Long n = m; n <= p0; n++) {
  1258. Long poly_idx = (2 * p0 - m + 1) * m / 2 + n;
  1259. Long basis_idx = (2 * p0 - m + 2) * m - (m ? p0+1 : 0) + n;
  1260. SHBasis[k0][basis_idx] = LegP[poly_idx][k0] * exp_phi_.real * s;
  1261. if (m) { // imaginary part
  1262. basis_idx += (p0+1-m);
  1263. SHBasis[k0][basis_idx] = -LegP[poly_idx][k0] * exp_phi_.imag * s;
  1264. } else {
  1265. SHBasis[k0][basis_idx] = SHBasis[k0][basis_idx] * 0.5;
  1266. }
  1267. }
  1268. exp_phi_ = exp_phi_ * exp_phi1;
  1269. }
  1270. }
  1271. }
  1272. assert(SHBasis.Dim(0) == N);
  1273. assert(SHBasis.Dim(1) == M);
  1274. }
  1275. template <class Real> void SphericalHarmonics<Real>::VecSHBasisEval(Long p0, const Vector<Real>& cos_theta_phi, Matrix<Real>& SHBasis) {
  1276. Long M = (p0+1) * (p0+1);
  1277. Long N = cos_theta_phi.Dim() / 2;
  1278. assert(cos_theta_phi.Dim() == N * 2);
  1279. Long p_ = p0 + 1;
  1280. Long M_ = (p_+1) * (p_+1);
  1281. Matrix<Real> Ynm(N, M_);
  1282. SHBasisEval(p_, cos_theta_phi, Ynm);
  1283. Vector<Real> cos_theta(N);
  1284. for (Long i = 0; i < N; i++) { // Set cos_theta
  1285. cos_theta[i] = cos_theta_phi[i*2+0];
  1286. }
  1287. { // Set SHBasis
  1288. SHBasis.ReInit(N * COORD_DIM, COORD_DIM * M);
  1289. SHBasis = 0;
  1290. const Complex<Real> imag(0,1);
  1291. for (Long i = 0; i < N; i++) {
  1292. Real s = 1 / sqrt<Real>(1 - cos_theta[i] * cos_theta[i]);
  1293. for (Long m = 0; m <= p0; m++) {
  1294. for (Long n = m; n <= p0; n++) {
  1295. auto Y = [&](Long n, Long m) {
  1296. Complex<Real> c;
  1297. if (0 <= m && m <= n && n <= p_) {
  1298. Long idx = (2 * p_ - m + 2) * m - (m ? p_+1 : 0) + n;
  1299. c.real = Ynm[i][idx];
  1300. if (m) {
  1301. idx += (p_+1-m);
  1302. c.imag = Ynm[i][idx];
  1303. }
  1304. }
  1305. return c;
  1306. };
  1307. auto write_coeff = [&](Complex<Real> c, Long n, Long m, Long k0, Long k1) {
  1308. if (0 <= m && m <= n && n <= p0 && 0 <= k0 && k0 < COORD_DIM && 0 <= k1 && k1 < COORD_DIM) {
  1309. Long idx = (2 * p0 - m + 2) * m - (m ? p0+1 : 0) + n;
  1310. SHBasis[i * COORD_DIM + k1][k0 * M + idx] = c.real;
  1311. if (m) {
  1312. idx += (p0+1-m);
  1313. SHBasis[i * COORD_DIM + k1][k0 * M + idx] = c.imag;
  1314. }
  1315. }
  1316. };
  1317. auto A = [&](Long n, Long m) { return (0<=n && m<=n && n<=p0 ? sqrt<Real>(n*n * ((n+1)*(n+1) - m*m) / (Real)((2*n+1)*(2*n+3))) : 0); };
  1318. auto B = [&](Long n, Long m) { return (0<=n && m<=n && n<=p0 ? sqrt<Real>((n+1)*(n+1) * (n*n - m*m) / (Real)((2*n+1)*(2*n-1))) : 0); };
  1319. Complex<Real> AYBY = A(n,m) * Y(n+1,m) - B(n,m) * Y(n-1,m);
  1320. Complex<Real> Fv2r = Y(n,m) * (-n-1);
  1321. Complex<Real> Fw2r = Y(n,m) * n;
  1322. Complex<Real> Fx2r = 0;
  1323. Complex<Real> Fv2t = AYBY * s;
  1324. Complex<Real> Fw2t = AYBY * s;
  1325. Complex<Real> Fx2t = -imag * m * Y(n,m) * s;
  1326. Complex<Real> Fv2p = imag * m * Y(n,m) * s;
  1327. Complex<Real> Fw2p = imag * m * Y(n,m) * s;
  1328. Complex<Real> Fx2p = AYBY * s;
  1329. write_coeff(Fv2r, n, m, 0, 0);
  1330. write_coeff(Fw2r, n, m, 1, 0);
  1331. write_coeff(Fx2r, n, m, 2, 0);
  1332. write_coeff(Fv2t, n, m, 0, 1);
  1333. write_coeff(Fw2t, n, m, 1, 1);
  1334. write_coeff(Fx2t, n, m, 2, 1);
  1335. write_coeff(Fv2p, n, m, 0, 2);
  1336. write_coeff(Fw2p, n, m, 1, 2);
  1337. write_coeff(Fx2p, n, m, 2, 2);
  1338. }
  1339. }
  1340. }
  1341. }
  1342. assert(SHBasis.Dim(0) == N * COORD_DIM);
  1343. assert(SHBasis.Dim(1) == COORD_DIM * M);
  1344. }
  1345. template <class Real> const std::vector<Matrix<Real>>& SphericalHarmonics<Real>::MatRotate(Long p0){
  1346. std::vector<std::vector<Long>> coeff_perm(p0+1);
  1347. { // Set coeff_perm
  1348. for(Long n=0;n<=p0;n++) coeff_perm[n].resize(std::min(2*n+1,2*p0));
  1349. Long itr=0;
  1350. for(Long i=0;i<2*p0;i++){
  1351. Long m=(i+1)/2;
  1352. for(Long n=m;n<=p0;n++){
  1353. coeff_perm[n][i]=itr;
  1354. itr++;
  1355. }
  1356. }
  1357. }
  1358. assert(p0<SCTL_SHMAXDEG);
  1359. std::vector<Matrix<Real>>& Mr=MatrixStore().Mr_[p0];
  1360. if(!Mr.size()){
  1361. const Real SQRT2PI=sqrt(2*M_PI);
  1362. Long Ncoef=p0*(p0+2);
  1363. Long Ngrid=2*p0*(p0+1);
  1364. Long Naleg=(p0+1)*(p0+2)/2;
  1365. Matrix<Real> Mcoord0(3,Ngrid);
  1366. const Vector<Real>& x=LegendreNodes(p0);
  1367. for(Long i=0;i<p0+1;i++){ // Set Mcoord0
  1368. for(Long j=0;j<2*p0;j++){
  1369. Mcoord0[0][i*2*p0+j]=x[i];
  1370. Mcoord0[1][i*2*p0+j]=sqrt(1-x[i]*x[i])*sin(M_PI*j/p0);
  1371. Mcoord0[2][i*2*p0+j]=sqrt(1-x[i]*x[i])*cos(M_PI*j/p0);
  1372. }
  1373. }
  1374. for(Long l=0;l<p0+1;l++){ // For each rotation angle
  1375. Matrix<Real> Mcoord1;
  1376. { // Rotate coordinates
  1377. Matrix<Real> M(COORD_DIM, COORD_DIM);
  1378. Real cos_=-x[l];
  1379. Real sin_=-sqrt(1.0-x[l]*x[l]);
  1380. M[0][0]= cos_; M[0][1]=0; M[0][2]=-sin_;
  1381. M[1][0]= 0; M[1][1]=1; M[1][2]= 0;
  1382. M[2][0]= sin_; M[2][1]=0; M[2][2]= cos_;
  1383. Mcoord1=M*Mcoord0;
  1384. }
  1385. Matrix<Real> Mleg(Naleg, Ngrid);
  1386. { // Set Mleg
  1387. const Vector<Real> Vcoord1(Mcoord1.Dim(0)*Mcoord1.Dim(1), Mcoord1.begin(), false);
  1388. Vector<Real> Vleg(Mleg.Dim(0)*Mleg.Dim(1), Mleg.begin(), false);
  1389. LegPoly(Vleg, Vcoord1, p0);
  1390. }
  1391. Vector<Real> theta(Ngrid);
  1392. for(Long i=0;i<theta.Dim();i++){ // Set theta
  1393. theta[i]=atan2(Mcoord1[1][i],Mcoord1[2][i]);
  1394. }
  1395. Matrix<Real> Mcoef2grid(Ncoef, Ngrid);
  1396. { // Build Mcoef2grid
  1397. Long offset0=0;
  1398. Long offset1=0;
  1399. for(Long i=0;i<p0+1;i++){
  1400. Long len=p0+1-i;
  1401. { // P * cos
  1402. for(Long j=0;j<len;j++){
  1403. for(Long k=0;k<Ngrid;k++){
  1404. Mcoef2grid[offset1+j][k]=SQRT2PI*Mleg[offset0+j][k]*cos(i*theta[k]);
  1405. }
  1406. }
  1407. offset1+=len;
  1408. }
  1409. if(i!=0 && i!=p0){ // P * sin
  1410. for(Long j=0;j<len;j++){
  1411. for(Long k=0;k<Ngrid;k++){
  1412. Mcoef2grid[offset1+j][k]=SQRT2PI*Mleg[offset0+j][k]*sin(i*theta[k]);
  1413. }
  1414. }
  1415. offset1+=len;
  1416. }
  1417. offset0+=len;
  1418. }
  1419. assert(offset0==Naleg);
  1420. assert(offset1==Ncoef);
  1421. }
  1422. Vector<Real> Vcoef2coef(Ncoef*Ncoef);
  1423. Vector<Real> Vcoef2grid(Ncoef*Ngrid, Mcoef2grid[0], false);
  1424. Grid2SHC(Vcoef2grid, p0+1, 2*p0, p0, Vcoef2coef, SHCArrange::COL_MAJOR_NONZERO);
  1425. Matrix<Real> Mcoef2coef(Ncoef, Ncoef, Vcoef2coef.begin(), false);
  1426. for(Long n=0;n<=p0;n++){ // Create matrices for fast rotation
  1427. Matrix<Real> M(coeff_perm[n].size(),coeff_perm[n].size());
  1428. for(Long i=0;i<(Long)coeff_perm[n].size();i++){
  1429. for(Long j=0;j<(Long)coeff_perm[n].size();j++){
  1430. M[i][j]=Mcoef2coef[coeff_perm[n][i]][coeff_perm[n][j]];
  1431. }
  1432. }
  1433. Mr.push_back(M);
  1434. }
  1435. }
  1436. }
  1437. return Mr;
  1438. }
  1439. template <class Real> void SphericalHarmonics<Real>::SHC2GridTranspose(const Vector<Real>& X, Long p0, Long p1, Vector<Real>& S){
  1440. Matrix<Real> Mf =SphericalHarmonics<Real>::MatFourier(p1,p0).Transpose();
  1441. std::vector<Matrix<Real>> Ml =SphericalHarmonics<Real>::MatLegendre(p1,p0);
  1442. for(Long i=0;i<(Long)Ml.size();i++) Ml[i]=Ml[i].Transpose();
  1443. assert(p1==(Long)Ml.size()-1);
  1444. assert(p0==Mf.Dim(0)/2);
  1445. assert(p1==Mf.Dim(1)/2);
  1446. Long N=X.Dim()/(2*p0*(p0+1));
  1447. assert(N*2*p0*(p0+1)==X.Dim());
  1448. if(S.Dim()!=N*(p1*(p1+2))) S.ReInit(N*(p1*(p1+2)));
  1449. Vector<Real> B0, B1;
  1450. B0.ReInit(N* p1*(p1+2));
  1451. B1.ReInit(N*2*p1*(p0+1));
  1452. #pragma omp parallel
  1453. { // Evaluate Fourier and transpose
  1454. Integer tid=omp_get_thread_num();
  1455. Integer omp_p=omp_get_num_threads();
  1456. Long a=(tid+0)*N*(p0+1)/omp_p;
  1457. Long b=(tid+1)*N*(p0+1)/omp_p;
  1458. const Long block_size=16;
  1459. Matrix<Real> B2(block_size,2*p1);
  1460. for(Long i0=a;i0<b;i0+=block_size){
  1461. Long i1=std::min(b,i0+block_size);
  1462. const Matrix<Real> Min (i1-i0,2*p0, (Iterator<Real>)X.begin()+i0*2*p0, false);
  1463. Matrix<Real> Mout(i1-i0,2*p1, B2.begin(), false);
  1464. Matrix<Real>::GEMM(Mout, Min, Mf);
  1465. for(Long i=i0;i<i1;i++){
  1466. for(Long j=0;j<2*p1;j++){
  1467. B1[j*N*(p0+1)+i]=B2[i-i0][j];
  1468. }
  1469. }
  1470. }
  1471. }
  1472. #pragma omp parallel
  1473. { // Evaluate Legendre polynomial
  1474. Integer tid=omp_get_thread_num();
  1475. Integer omp_p=omp_get_num_threads();
  1476. Long offset0=0;
  1477. Long offset1=0;
  1478. for(Long i=0;i<p1+1;i++){
  1479. Long N0=2*N;
  1480. if(i==0 || i==p1) N0=N;
  1481. Matrix<Real> Min (N0, p0+1 , B1.begin()+offset0, false);
  1482. Matrix<Real> Mout(N0, p1+1-i, B0.begin()+offset1, false);
  1483. { // Mout = Min * Ml[i] // split between threads
  1484. Long a=(tid+0)*N0/omp_p;
  1485. Long b=(tid+1)*N0/omp_p;
  1486. if(a<b){
  1487. Matrix<Real> Min_ (b-a, Min .Dim(1), Min [a], false);
  1488. Matrix<Real> Mout_(b-a, Mout.Dim(1), Mout[a], false);
  1489. Matrix<Real>::GEMM(Mout_,Min_,Ml[i]);
  1490. }
  1491. }
  1492. offset0+=Min .Dim(0)*Min .Dim(1);
  1493. offset1+=Mout.Dim(0)*Mout.Dim(1);
  1494. }
  1495. }
  1496. #pragma omp parallel
  1497. { // S <-- Rearrange(B0)
  1498. Integer tid=omp_get_thread_num();
  1499. Integer omp_p=omp_get_num_threads();
  1500. Long a=(tid+0)*N/omp_p;
  1501. Long b=(tid+1)*N/omp_p;
  1502. for(Long i=a;i<b;i++){
  1503. Long offset=0;
  1504. for(Long j=0;j<2*p1;j++){
  1505. Long len=p1+1-(j+1)/2;
  1506. Real* B_=&B0[i*len+N*offset];
  1507. Real* S_=&S[i*p1*(p1+2)+offset];
  1508. for(Long k=0;k<len;k++) S_[k]=B_[k];
  1509. offset+=len;
  1510. }
  1511. }
  1512. }
  1513. }
  1514. template <class Real> void SphericalHarmonics<Real>::RotateAll(const Vector<Real>& S, Long p0, Long dof, Vector<Real>& S_){
  1515. const std::vector<Matrix<Real>>& Mr=MatRotate(p0);
  1516. std::vector<std::vector<Long>> coeff_perm(p0+1);
  1517. { // Set coeff_perm
  1518. for(Long n=0;n<=p0;n++) coeff_perm[n].resize(std::min(2*n+1,2*p0));
  1519. Long itr=0;
  1520. for(Long i=0;i<2*p0;i++){
  1521. Long m=(i+1)/2;
  1522. for(Long n=m;n<=p0;n++){
  1523. coeff_perm[n][i]=itr;
  1524. itr++;
  1525. }
  1526. }
  1527. }
  1528. Long Ncoef=p0*(p0+2);
  1529. Long N=S.Dim()/Ncoef/dof;
  1530. assert(N*Ncoef*dof==S.Dim());
  1531. if(S_.Dim()!=N*dof*Ncoef*p0*(p0+1)) S_.ReInit(N*dof*Ncoef*p0*(p0+1));
  1532. const Matrix<Real> S0(N*dof, Ncoef, (Iterator<Real>)S.begin(), false);
  1533. Matrix<Real> S1(N*dof*p0*(p0+1), Ncoef, S_.begin(), false);
  1534. #pragma omp parallel
  1535. { // Construct all p0*(p0+1) rotations
  1536. Integer tid=omp_get_thread_num();
  1537. Integer omp_p=omp_get_num_threads();
  1538. Matrix<Real> B0(dof*p0,Ncoef); // memory buffer
  1539. std::vector<Matrix<Real>> Bi(p0+1), Bo(p0+1); // memory buffers
  1540. for(Long i=0;i<=p0;i++){ // initialize Bi, Bo
  1541. Bi[i].ReInit(dof*p0,coeff_perm[i].size());
  1542. Bo[i].ReInit(dof*p0,coeff_perm[i].size());
  1543. }
  1544. Long a=(tid+0)*N/omp_p;
  1545. Long b=(tid+1)*N/omp_p;
  1546. for(Long i=a;i<b;i++){
  1547. for(Long d=0;d<dof;d++){
  1548. for(Long j=0;j<p0;j++){
  1549. Long offset=0;
  1550. for(Long k=0;k<p0+1;k++){
  1551. Real r[2]={cos(k*j*M_PI/p0),-sin(k*j*M_PI/p0)}; // exp(i*k*theta)
  1552. Long len=p0+1-k;
  1553. if(k!=0 && k!=p0){
  1554. for(Long l=0;l<len;l++){
  1555. Real x[2];
  1556. x[0]=S0[i*dof+d][offset+len*0+l];
  1557. x[1]=S0[i*dof+d][offset+len*1+l];
  1558. B0[j*dof+d][offset+len*0+l]=x[0]*r[0]-x[1]*r[1];
  1559. B0[j*dof+d][offset+len*1+l]=x[0]*r[1]+x[1]*r[0];
  1560. }
  1561. offset+=2*len;
  1562. }else{
  1563. for(Long l=0;l<len;l++){
  1564. B0[j*dof+d][offset+l]=S0[i*dof+d][offset+l];
  1565. }
  1566. offset+=len;
  1567. }
  1568. }
  1569. assert(offset==Ncoef);
  1570. }
  1571. }
  1572. { // Fast rotation
  1573. for(Long k=0;k<dof*p0;k++){ // forward permutation
  1574. for(Long l=0;l<=p0;l++){
  1575. for(Long j=0;j<(Long)coeff_perm[l].size();j++){
  1576. Bi[l][k][j]=B0[k][coeff_perm[l][j]];
  1577. }
  1578. }
  1579. }
  1580. for(Long t=0;t<=p0;t++){
  1581. for(Long l=0;l<=p0;l++){ // mat-vec
  1582. Matrix<Real>::GEMM(Bo[l],Bi[l],Mr[t*(p0+1)+l]);
  1583. }
  1584. Matrix<Real> Mout(dof*p0,Ncoef, S1[(i*(p0+1)+t)*dof*p0], false);
  1585. for(Long k=0;k<dof*p0;k++){ // reverse permutation
  1586. for(Long l=0;l<=p0;l++){
  1587. for(Long j=0;j<(Long)coeff_perm[l].size();j++){
  1588. Mout[k][coeff_perm[l][j]]=Bo[l][k][j];
  1589. }
  1590. }
  1591. }
  1592. }
  1593. }
  1594. }
  1595. }
  1596. }
  1597. template <class Real> void SphericalHarmonics<Real>::RotateTranspose(const Vector<Real>& S_, Long p0, Long dof, Vector<Real>& S){
  1598. std::vector<Matrix<Real>> Mr=MatRotate(p0);
  1599. for(Long i=0;i<(Long)Mr.size();i++) Mr[i]=Mr[i].Transpose();
  1600. std::vector<std::vector<Long>> coeff_perm(p0+1);
  1601. { // Set coeff_perm
  1602. for(Long n=0;n<=p0;n++) coeff_perm[n].resize(std::min(2*n+1,2*p0));
  1603. Long itr=0;
  1604. for(Long i=0;i<2*p0;i++){
  1605. Long m=(i+1)/2;
  1606. for(Long n=m;n<=p0;n++){
  1607. coeff_perm[n][i]=itr;
  1608. itr++;
  1609. }
  1610. }
  1611. }
  1612. Long Ncoef=p0*(p0+2);
  1613. Long N=S_.Dim()/Ncoef/dof/(p0*(p0+1));
  1614. assert(N*Ncoef*dof*(p0*(p0+1))==S_.Dim());
  1615. if(S.Dim()!=N*dof*Ncoef*p0*(p0+1)) S.ReInit(N*dof*Ncoef*p0*(p0+1));
  1616. Matrix<Real> S0(N*dof*p0*(p0+1), Ncoef, S.begin(), false);
  1617. const Matrix<Real> S1(N*dof*p0*(p0+1), Ncoef, (Iterator<Real>)S_.begin(), false);
  1618. #pragma omp parallel
  1619. { // Transpose all p0*(p0+1) rotations
  1620. Integer tid=omp_get_thread_num();
  1621. Integer omp_p=omp_get_num_threads();
  1622. Matrix<Real> B0(dof*p0,Ncoef); // memory buffer
  1623. std::vector<Matrix<Real>> Bi(p0+1), Bo(p0+1); // memory buffers
  1624. for(Long i=0;i<=p0;i++){ // initialize Bi, Bo
  1625. Bi[i].ReInit(dof*p0,coeff_perm[i].size());
  1626. Bo[i].ReInit(dof*p0,coeff_perm[i].size());
  1627. }
  1628. Long a=(tid+0)*N/omp_p;
  1629. Long b=(tid+1)*N/omp_p;
  1630. for(Long i=a;i<b;i++){
  1631. for(Long t=0;t<p0+1;t++){
  1632. Long idx0=(i*(p0+1)+t)*p0*dof;
  1633. { // Fast rotation
  1634. const Matrix<Real> Min(p0*dof, Ncoef, (Iterator<Real>)S1[idx0], false);
  1635. for(Long k=0;k<dof*p0;k++){ // forward permutation
  1636. for(Long l=0;l<=p0;l++){
  1637. for(Long j=0;j<(Long)coeff_perm[l].size();j++){
  1638. Bi[l][k][j]=Min[k][coeff_perm[l][j]];
  1639. }
  1640. }
  1641. }
  1642. for(Long l=0;l<=p0;l++){ // mat-vec
  1643. Matrix<Real>::GEMM(Bo[l],Bi[l],Mr[t*(p0+1)+l]);
  1644. }
  1645. for(Long k=0;k<dof*p0;k++){ // reverse permutation
  1646. for(Long l=0;l<=p0;l++){
  1647. for(Long j=0;j<(Long)coeff_perm[l].size();j++){
  1648. B0[k][coeff_perm[l][j]]=Bo[l][k][j];
  1649. }
  1650. }
  1651. }
  1652. }
  1653. for(Long j=0;j<p0;j++){
  1654. for(Long d=0;d<dof;d++){
  1655. Long idx1=idx0+j*dof+d;
  1656. Long offset=0;
  1657. for(Long k=0;k<p0+1;k++){
  1658. Real r[2]={cos(k*j*M_PI/p0),sin(k*j*M_PI/p0)}; // exp(i*k*theta)
  1659. Long len=p0+1-k;
  1660. if(k!=0 && k!=p0){
  1661. for(Long l=0;l<len;l++){
  1662. Real x[2];
  1663. x[0]=B0[j*dof+d][offset+len*0+l];
  1664. x[1]=B0[j*dof+d][offset+len*1+l];
  1665. S0[idx1][offset+len*0+l]=x[0]*r[0]-x[1]*r[1];
  1666. S0[idx1][offset+len*1+l]=x[0]*r[1]+x[1]*r[0];
  1667. }
  1668. offset+=2*len;
  1669. }else{
  1670. for(Long l=0;l<len;l++){
  1671. S0[idx1][offset+l]=B0[j*dof+d][offset+l];
  1672. }
  1673. offset+=len;
  1674. }
  1675. }
  1676. assert(offset==Ncoef);
  1677. }
  1678. }
  1679. }
  1680. }
  1681. }
  1682. }
  1683. template <class Real> void SphericalHarmonics<Real>::StokesSingularInteg(const Vector<Real>& S, Long p0, Long p1, Vector<Real>* SLMatrix, Vector<Real>* DLMatrix){
  1684. Long Ngrid=2*p0*(p0+1);
  1685. Long Ncoef= p0*(p0+2);
  1686. Long Nves=S.Dim()/(Ngrid*COORD_DIM);
  1687. if(SLMatrix) SLMatrix->ReInit(Nves*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM));
  1688. if(DLMatrix) DLMatrix->ReInit(Nves*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM));
  1689. Long BLOCK_SIZE=(Long)6e9/((3*2*p1*(p1+1))*(3*2*p0*(p0+1))*2*8); // Limit memory usage to 6GB
  1690. BLOCK_SIZE=std::min<Long>(BLOCK_SIZE,omp_get_max_threads());
  1691. BLOCK_SIZE=std::max<Long>(BLOCK_SIZE,1);
  1692. for(Long a=0;a<Nves;a+=BLOCK_SIZE){
  1693. Long b=std::min(a+BLOCK_SIZE, Nves);
  1694. Vector<Real> _SLMatrix, _DLMatrix;
  1695. if(SLMatrix) _SLMatrix.ReInit((b-a)*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM), SLMatrix->begin()+a*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM), false);
  1696. if(DLMatrix) _DLMatrix.ReInit((b-a)*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM), DLMatrix->begin()+a*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM), false);
  1697. const Vector<Real> _S ((b-a)*(Ngrid*COORD_DIM) , (Iterator<Real>)S.begin()+a*(Ngrid*COORD_DIM), false);
  1698. if(SLMatrix && DLMatrix) StokesSingularInteg_< true, true>(_S, p0, p1, _SLMatrix, _DLMatrix);
  1699. else if(SLMatrix) StokesSingularInteg_< true, false>(_S, p0, p1, _SLMatrix, _DLMatrix);
  1700. else if(DLMatrix) StokesSingularInteg_<false, true>(_S, p0, p1, _SLMatrix, _DLMatrix);
  1701. }
  1702. }
  1703. template <class Real> template <bool SLayer, bool DLayer> void SphericalHarmonics<Real>::StokesSingularInteg_(const Vector<Real>& X0, Long p0, Long p1, Vector<Real>& SL, Vector<Real>& DL){
  1704. Profile::Tic("Rotate");
  1705. Vector<Real> S0, S;
  1706. SphericalHarmonics<Real>::Grid2SHC(X0, p0+1, 2*p0, p0, S0, SHCArrange::COL_MAJOR_NONZERO);
  1707. SphericalHarmonics<Real>::RotateAll(S0, p0, COORD_DIM, S);
  1708. Profile::Toc();
  1709. Profile::Tic("Upsample");
  1710. Vector<Real> X, X_theta, X_phi, trg;
  1711. SphericalHarmonics<Real>::SHC2Grid(S, SHCArrange::COL_MAJOR_NONZERO, p0, p1+1, 2*p1, &X, &X_phi, &X_theta);
  1712. SphericalHarmonics<Real>::SHC2Pole(S, SHCArrange::COL_MAJOR_NONZERO, p0, trg);
  1713. Profile::Toc();
  1714. Profile::Tic("Stokes");
  1715. Vector<Real> SL0, DL0;
  1716. { // Stokes kernel
  1717. //Long M0=2*p0*(p0+1);
  1718. Long M1=2*p1*(p1+1);
  1719. Long N=trg.Dim()/(2*COORD_DIM);
  1720. assert(X.Dim()==M1*COORD_DIM*N);
  1721. if(SLayer && SL0.Dim()!=N*2*6*M1) SL0.ReInit(2*N*6*M1);
  1722. if(DLayer && DL0.Dim()!=N*2*6*M1) DL0.ReInit(2*N*6*M1);
  1723. const Vector<Real>& qw=SphericalHarmonics<Real>::SingularWeights(p1);
  1724. const Real scal_const_dl = 3.0/(4.0*M_PI);
  1725. const Real scal_const_sl = 1.0/(8.0*M_PI);
  1726. static Real eps=-1;
  1727. if(eps<0){
  1728. eps=1;
  1729. while(eps*(Real)0.5+(Real)1.0>1.0) eps*=0.5;
  1730. }
  1731. #pragma omp parallel
  1732. {
  1733. Integer tid=omp_get_thread_num();
  1734. Integer omp_p=omp_get_num_threads();
  1735. Long a=(tid+0)*N/omp_p;
  1736. Long b=(tid+1)*N/omp_p;
  1737. for(Long i=a;i<b;i++){
  1738. for(Long t=0;t<2;t++){
  1739. Real tx, ty, tz;
  1740. { // Read target coordinates
  1741. tx=trg[i*2*COORD_DIM+0*2+t];
  1742. ty=trg[i*2*COORD_DIM+1*2+t];
  1743. tz=trg[i*2*COORD_DIM+2*2+t];
  1744. }
  1745. for(Long j0=0;j0<p1+1;j0++){
  1746. for(Long j1=0;j1<2*p1;j1++){
  1747. Long s=2*p1*j0+j1;
  1748. Real dx, dy, dz;
  1749. { // Compute dx, dy, dz
  1750. dx=tx-X[(i*COORD_DIM+0)*M1+s];
  1751. dy=ty-X[(i*COORD_DIM+1)*M1+s];
  1752. dz=tz-X[(i*COORD_DIM+2)*M1+s];
  1753. }
  1754. Real nx, ny, nz;
  1755. { // Compute source normal
  1756. Real x_theta=X_phi[(i*COORD_DIM+0)*M1+s];
  1757. Real y_theta=X_phi[(i*COORD_DIM+1)*M1+s];
  1758. Real z_theta=X_phi[(i*COORD_DIM+2)*M1+s];
  1759. Real x_phi=X_theta[(i*COORD_DIM+0)*M1+s];
  1760. Real y_phi=X_theta[(i*COORD_DIM+1)*M1+s];
  1761. Real z_phi=X_theta[(i*COORD_DIM+2)*M1+s];
  1762. nx=(y_theta*z_phi-z_theta*y_phi);
  1763. ny=(z_theta*x_phi-x_theta*z_phi);
  1764. nz=(x_theta*y_phi-y_theta*x_phi);
  1765. }
  1766. Real area_elem=1.0;
  1767. if(SLayer){ // Compute area_elem
  1768. area_elem=sqrt(nx*nx+ny*ny+nz*nz);
  1769. }
  1770. Real rinv, rinv2;
  1771. { // Compute rinv, rinv2
  1772. Real r2=dx*dx+dy*dy+dz*dz;
  1773. rinv=1.0/sqrt(r2);
  1774. if(r2<=eps) rinv=0;
  1775. rinv2=rinv*rinv;
  1776. }
  1777. if(DLayer){
  1778. Real rinv5=rinv2*rinv2*rinv;
  1779. Real r_dot_n_rinv5=scal_const_dl*qw[j0*t+(p1-j0)*(1-t)] * (nx*dx+ny*dy+nz*dz)*rinv5;
  1780. DL0[((i*2+t)*6+0)*M1+s]=dx*dx*r_dot_n_rinv5;
  1781. DL0[((i*2+t)*6+1)*M1+s]=dx*dy*r_dot_n_rinv5;
  1782. DL0[((i*2+t)*6+2)*M1+s]=dx*dz*r_dot_n_rinv5;
  1783. DL0[((i*2+t)*6+3)*M1+s]=dy*dy*r_dot_n_rinv5;
  1784. DL0[((i*2+t)*6+4)*M1+s]=dy*dz*r_dot_n_rinv5;
  1785. DL0[((i*2+t)*6+5)*M1+s]=dz*dz*r_dot_n_rinv5;
  1786. }
  1787. if(SLayer){
  1788. Real area_rinv =scal_const_sl*qw[j0*t+(p1-j0)*(1-t)] * area_elem*rinv;
  1789. Real area_rinv2=area_rinv*rinv2;
  1790. SL0[((i*2+t)*6+0)*M1+s]=area_rinv+dx*dx*area_rinv2;
  1791. SL0[((i*2+t)*6+1)*M1+s]= dx*dy*area_rinv2;
  1792. SL0[((i*2+t)*6+2)*M1+s]= dx*dz*area_rinv2;
  1793. SL0[((i*2+t)*6+3)*M1+s]=area_rinv+dy*dy*area_rinv2;
  1794. SL0[((i*2+t)*6+4)*M1+s]= dy*dz*area_rinv2;
  1795. SL0[((i*2+t)*6+5)*M1+s]=area_rinv+dz*dz*area_rinv2;
  1796. }
  1797. }
  1798. }
  1799. }
  1800. }
  1801. }
  1802. Profile::Add_FLOP(20*(2*p1)*(p1+1)*2*N);
  1803. if(SLayer) Profile::Add_FLOP((19+6)*(2*p1)*(p1+1)*2*N);
  1804. if(DLayer) Profile::Add_FLOP( 22 *(2*p1)*(p1+1)*2*N);
  1805. }
  1806. Profile::Toc();
  1807. Profile::Tic("UpsampleTranspose");
  1808. Vector<Real> SL1, DL1;
  1809. SphericalHarmonics<Real>::SHC2GridTranspose(SL0, p1, p0, SL1);
  1810. SphericalHarmonics<Real>::SHC2GridTranspose(DL0, p1, p0, DL1);
  1811. Profile::Toc();
  1812. Profile::Tic("RotateTranspose");
  1813. Vector<Real> SL2, DL2;
  1814. SphericalHarmonics<Real>::RotateTranspose(SL1, p0, 2*6, SL2);
  1815. SphericalHarmonics<Real>::RotateTranspose(DL1, p0, 2*6, DL2);
  1816. Profile::Toc();
  1817. Profile::Tic("Rearrange");
  1818. Vector<Real> SL3, DL3;
  1819. { // Transpose
  1820. Long Ncoef=p0*(p0+2);
  1821. Long Ngrid=2*p0*(p0+1);
  1822. { // Transpose SL2
  1823. Long N=SL2.Dim()/(6*Ncoef*Ngrid);
  1824. SL3.ReInit(N*COORD_DIM*Ncoef*COORD_DIM*Ngrid);
  1825. #pragma omp parallel
  1826. {
  1827. Integer tid=omp_get_thread_num();
  1828. Integer omp_p=omp_get_num_threads();
  1829. Matrix<Real> B(COORD_DIM*Ncoef,Ngrid*COORD_DIM);
  1830. Long a=(tid+0)*N/omp_p;
  1831. Long b=(tid+1)*N/omp_p;
  1832. for(Long i=a;i<b;i++){
  1833. Matrix<Real> M0(Ngrid*6, Ncoef, SL2.begin()+i*Ngrid*6*Ncoef, false);
  1834. for(Long k=0;k<Ncoef;k++){ // Transpose
  1835. for(Long j=0;j<Ngrid;j++){ // TODO: needs blocking
  1836. B[k+Ncoef*0][j*COORD_DIM+0]=M0[j*6+0][k];
  1837. B[k+Ncoef*1][j*COORD_DIM+0]=M0[j*6+1][k];
  1838. B[k+Ncoef*2][j*COORD_DIM+0]=M0[j*6+2][k];
  1839. B[k+Ncoef*0][j*COORD_DIM+1]=M0[j*6+1][k];
  1840. B[k+Ncoef*1][j*COORD_DIM+1]=M0[j*6+3][k];
  1841. B[k+Ncoef*2][j*COORD_DIM+1]=M0[j*6+4][k];
  1842. B[k+Ncoef*0][j*COORD_DIM+2]=M0[j*6+2][k];
  1843. B[k+Ncoef*1][j*COORD_DIM+2]=M0[j*6+4][k];
  1844. B[k+Ncoef*2][j*COORD_DIM+2]=M0[j*6+5][k];
  1845. }
  1846. }
  1847. Matrix<Real> M1(Ncoef*COORD_DIM, COORD_DIM*Ngrid, SL3.begin()+i*COORD_DIM*Ncoef*COORD_DIM*Ngrid, false);
  1848. for(Long k=0;k<B.Dim(0);k++){ // Rearrange
  1849. for(Long j0=0;j0<COORD_DIM;j0++){
  1850. for(Long j1=0;j1<p0+1;j1++){
  1851. for(Long j2=0;j2<p0;j2++) M1[k][((j0*(p0+1)+ j1)*2+0)*p0+j2]=B[k][((j1*p0+j2)*2+0)*COORD_DIM+j0];
  1852. for(Long j2=0;j2<p0;j2++) M1[k][((j0*(p0+1)+p0-j1)*2+1)*p0+j2]=B[k][((j1*p0+j2)*2+1)*COORD_DIM+j0];
  1853. }
  1854. }
  1855. }
  1856. }
  1857. }
  1858. }
  1859. { // Transpose DL2
  1860. Long N=DL2.Dim()/(6*Ncoef*Ngrid);
  1861. DL3.ReInit(N*COORD_DIM*Ncoef*COORD_DIM*Ngrid);
  1862. #pragma omp parallel
  1863. {
  1864. Integer tid=omp_get_thread_num();
  1865. Integer omp_p=omp_get_num_threads();
  1866. Matrix<Real> B(COORD_DIM*Ncoef,Ngrid*COORD_DIM);
  1867. Long a=(tid+0)*N/omp_p;
  1868. Long b=(tid+1)*N/omp_p;
  1869. for(Long i=a;i<b;i++){
  1870. Matrix<Real> M0(Ngrid*6, Ncoef, DL2.begin()+i*Ngrid*6*Ncoef, false);
  1871. for(Long k=0;k<Ncoef;k++){ // Transpose
  1872. for(Long j=0;j<Ngrid;j++){ // TODO: needs blocking
  1873. B[k+Ncoef*0][j*COORD_DIM+0]=M0[j*6+0][k];
  1874. B[k+Ncoef*1][j*COORD_DIM+0]=M0[j*6+1][k];
  1875. B[k+Ncoef*2][j*COORD_DIM+0]=M0[j*6+2][k];
  1876. B[k+Ncoef*0][j*COORD_DIM+1]=M0[j*6+1][k];
  1877. B[k+Ncoef*1][j*COORD_DIM+1]=M0[j*6+3][k];
  1878. B[k+Ncoef*2][j*COORD_DIM+1]=M0[j*6+4][k];
  1879. B[k+Ncoef*0][j*COORD_DIM+2]=M0[j*6+2][k];
  1880. B[k+Ncoef*1][j*COORD_DIM+2]=M0[j*6+4][k];
  1881. B[k+Ncoef*2][j*COORD_DIM+2]=M0[j*6+5][k];
  1882. }
  1883. }
  1884. Matrix<Real> M1(Ncoef*COORD_DIM, COORD_DIM*Ngrid, DL3.begin()+i*COORD_DIM*Ncoef*COORD_DIM*Ngrid, false);
  1885. for(Long k=0;k<B.Dim(0);k++){ // Rearrange
  1886. for(Long j0=0;j0<COORD_DIM;j0++){
  1887. for(Long j1=0;j1<p0+1;j1++){
  1888. for(Long j2=0;j2<p0;j2++) M1[k][((j0*(p0+1)+ j1)*2+0)*p0+j2]=B[k][((j1*p0+j2)*2+0)*COORD_DIM+j0];
  1889. for(Long j2=0;j2<p0;j2++) M1[k][((j0*(p0+1)+p0-j1)*2+1)*p0+j2]=B[k][((j1*p0+j2)*2+1)*COORD_DIM+j0];
  1890. }
  1891. }
  1892. }
  1893. }
  1894. }
  1895. }
  1896. }
  1897. Profile::Toc();
  1898. Profile::Tic("Grid2SHC");
  1899. SphericalHarmonics<Real>::Grid2SHC(SL3, p0+1, 2*p0, p0, SL, SHCArrange::COL_MAJOR_NONZERO);
  1900. SphericalHarmonics<Real>::Grid2SHC(DL3, p0+1, 2*p0, p0, DL, SHCArrange::COL_MAJOR_NONZERO);
  1901. Profile::Toc();
  1902. }
  1903. } // end namespace