boundary_quadrature.hpp 309 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206
  1. #ifndef _SCTL_BOUNDARY_QUADRATURE_HPP_
  2. #define _SCTL_BOUNDARY_QUADRATURE_HPP_
  3. #include SCTL_INCLUDE(tree.hpp)
  4. #include SCTL_INCLUDE(tensor.hpp)
  5. #include SCTL_INCLUDE(morton.hpp)
  6. #include SCTL_INCLUDE(matrix.hpp)
  7. #include SCTL_INCLUDE(vector.hpp)
  8. #include SCTL_INCLUDE(common.hpp)
  9. #include SCTL_INCLUDE(cheb_utils.hpp)
  10. #include SCTL_INCLUDE(kernel_functions.hpp)
  11. #include <biest.hpp>
  12. #include <mutex>
  13. #include <atomic>
  14. #include <tuple>
  15. #include <functional>
  16. #include <Eigen/Core>
  17. #include <LBFGS.h>
  18. namespace SCTL_NAMESPACE {
  19. template <class Real, Integer DIM, Integer ORDER> class Basis {
  20. public:
  21. using ValueType = Real;
  22. // class EvalOperator {
  23. // public:
  24. // };
  25. using EvalOpType = Matrix<ValueType>;
  26. static constexpr Long Dim() {
  27. return DIM;
  28. }
  29. static constexpr Long Size() {
  30. return pow<DIM,Long>(ORDER);
  31. }
  32. static const Matrix<ValueType>& Nodes() {
  33. static Matrix<ValueType> nodes_(DIM,Size());
  34. auto nodes_1d = [](Integer i) {
  35. return 0.5 - 0.5 * cos<ValueType>((2*i+1) * const_pi<ValueType>() / (2*ORDER));
  36. };
  37. { // Set nodes_
  38. static std::mutex mutex;
  39. static std::atomic<Integer> first_time(true);
  40. if (first_time.load(std::memory_order_relaxed)) {
  41. std::lock_guard<std::mutex> guard(mutex);
  42. if (first_time.load(std::memory_order_relaxed)) {
  43. Integer N = 1;
  44. for (Integer d = 0; d < DIM; d++) {
  45. for (Integer j = 0; j < ORDER; j++) {
  46. for (Integer i = 0; i < N; i++) {
  47. for (Integer k = 0; k < d; k++) {
  48. nodes_[k][j*N+i] = nodes_[k][i];
  49. }
  50. nodes_[d][j*N+i] = nodes_1d(j);
  51. }
  52. }
  53. N *= ORDER;
  54. }
  55. std::atomic_thread_fence(std::memory_order_seq_cst);
  56. first_time.store(false);
  57. }
  58. }
  59. }
  60. return nodes_;
  61. }
  62. static const Vector<ValueType>& QuadWts() {
  63. static Vector<ValueType> wts(Size());
  64. { // Set nodes_
  65. static std::mutex mutex;
  66. static std::atomic<Integer> first_time(true);
  67. if (first_time.load(std::memory_order_relaxed)) {
  68. std::lock_guard<std::mutex> guard(mutex);
  69. if (first_time.load(std::memory_order_relaxed)) {
  70. StaticArray<ValueType,ORDER> wts_1d;
  71. { // Set wts_1d
  72. Vector<ValueType> x_(ORDER);
  73. ChebBasis<ValueType>::template Nodes<1>(ORDER, x_);
  74. Vector<ValueType> V_cheb(ORDER * ORDER);
  75. { // Set V_cheb
  76. Vector<ValueType> I(ORDER*ORDER);
  77. I = 0;
  78. for (Long i = 0; i < ORDER; i++) I[i*ORDER+i] = 1;
  79. ChebBasis<ValueType>::template Approx<1>(ORDER, I, V_cheb);
  80. }
  81. Matrix<ValueType> M(ORDER, ORDER, V_cheb.begin());
  82. Vector<ValueType> w_sample(ORDER);
  83. for (Integer i = 0; i < ORDER; i++) {
  84. w_sample[i] = (i % 2 ? 0 : -(ORDER/(ValueType)(i*i-1)));
  85. }
  86. for (Integer j = 0; j < ORDER; j++) {
  87. wts_1d[j] = 0;
  88. for (Integer i = 0; i < ORDER; i++) {
  89. wts_1d[j] += M[j][i] * w_sample[i] / ORDER;
  90. }
  91. }
  92. }
  93. wts[0] = 1;
  94. Integer N = 1;
  95. for (Integer d = 0; d < DIM; d++) {
  96. for (Integer j = 1; j < ORDER; j++) {
  97. for (Integer i = 0; i < N; i++) {
  98. wts[j*N+i] = wts[i] * wts_1d[j];
  99. }
  100. }
  101. for (Integer i = 0; i < N; i++) {
  102. wts[i] *= wts_1d[0];
  103. }
  104. N *= ORDER;
  105. }
  106. std::atomic_thread_fence(std::memory_order_seq_cst);
  107. first_time.store(false);
  108. }
  109. }
  110. }
  111. return wts;
  112. }
  113. static void Grad(Vector<Basis>& dX, const Vector<Basis>& X) {
  114. static Matrix<ValueType> GradOp[DIM];
  115. static std::mutex mutex;
  116. static std::atomic<Integer> first_time(true);
  117. if (first_time.load(std::memory_order_relaxed)) {
  118. std::lock_guard<std::mutex> guard(mutex);
  119. if (first_time.load(std::memory_order_relaxed)) {
  120. { // Set GradOp
  121. auto nodes = Basis<ValueType,1,ORDER>::Nodes();
  122. SCTL_ASSERT(nodes.Dim(1) == ORDER);
  123. Matrix<ValueType> M(ORDER, ORDER);
  124. for (Integer i = 0; i < ORDER; i++) { // Set M
  125. Real x = nodes[0][i];
  126. for (Integer j = 0; j < ORDER; j++) {
  127. M[j][i] = 0;
  128. for (Integer l = 0; l < ORDER; l++) {
  129. if (l != j) {
  130. Real M_ = 1;
  131. for (Integer k = 0; k < ORDER; k++) {
  132. if (k != j && k != l) M_ *= (x - nodes[0][k]);
  133. if (k != j) M_ /= (nodes[0][j] - nodes[0][k]);
  134. }
  135. M[j][i] += M_;
  136. }
  137. }
  138. }
  139. }
  140. for (Integer d = 0; d < DIM; d++) {
  141. GradOp[d].ReInit(Size(), Size());
  142. GradOp[d] = 0;
  143. Integer stride0 = pow<Integer>(ORDER, d);
  144. Integer repeat0 = pow<Integer>(ORDER, d);
  145. Integer stride1 = pow<Integer>(ORDER, d+1);
  146. Integer repeat1 = pow<Integer>(ORDER, DIM-d-1);
  147. for (Integer k1 = 0; k1 < repeat1; k1++) {
  148. for (Integer i = 0; i < ORDER; i++) {
  149. for (Integer j = 0; j < ORDER; j++) {
  150. for (Integer k0 = 0; k0 < repeat0; k0++) {
  151. GradOp[d][k1*stride1 + i*stride0 + k0][k1*stride1 + j*stride0 + k0] = M[i][j];
  152. }
  153. }
  154. }
  155. }
  156. }
  157. }
  158. std::atomic_thread_fence(std::memory_order_seq_cst);
  159. first_time.store(false);
  160. }
  161. }
  162. if (dX.Dim() != X.Dim()*DIM) dX.ReInit(X.Dim()*DIM);
  163. for (Long i = 0; i < X.Dim(); i++) {
  164. const Matrix<ValueType> Vi(1, Size(), (Iterator<ValueType>)(ConstIterator<ValueType>)X[i].NodeValues_, false);
  165. for (Integer k = 0; k < DIM; k++) {
  166. Matrix<ValueType> Vo(1, Size(), dX[i*DIM+k].NodeValues_, false);
  167. Matrix<ValueType>::GEMM(Vo, Vi, GradOp[k]);
  168. }
  169. }
  170. }
  171. static EvalOpType SetupEval(const Matrix<ValueType>& X) {
  172. Long N = X.Dim(1);
  173. SCTL_ASSERT(X.Dim(0) == DIM);
  174. Matrix<ValueType> M(Size(), N);
  175. { // Set M
  176. auto nodes = Basis<ValueType,1,ORDER>::Nodes();
  177. Integer NN = Basis<ValueType,1,ORDER>::Size();
  178. Matrix<ValueType> M_(NN, DIM*N);
  179. for (Long i = 0; i < DIM*N; i++) {
  180. ValueType x = X[0][i];
  181. for (Integer j = 0; j < NN; j++) {
  182. ValueType y = 1;
  183. for (Integer k = 0; k < NN; k++) {
  184. y *= (j==k ? 1 : (nodes[0][k] - x) / (nodes[0][k] - nodes[0][j]));
  185. }
  186. M_[j][i] = y;
  187. }
  188. }
  189. if (DIM == 1) {
  190. SCTL_ASSERT(M.Dim(0) == M_.Dim(0));
  191. SCTL_ASSERT(M.Dim(1) == M_.Dim(1));
  192. M = M_;
  193. } else {
  194. Integer NNN = 1;
  195. M = 1;
  196. for (Integer d = 0; d < DIM; d++) {
  197. for (Integer k = 1; k < NN; k++) {
  198. for (Integer j = 0; j < NNN; j++) {
  199. for (Long i = 0; i < N; i++) {
  200. M[k*NNN+j][i] = M[j][i] * M_[k][d*N+i];
  201. }
  202. }
  203. }
  204. { // k = 0
  205. for (Integer j = 0; j < NNN; j++) {
  206. for (Long i = 0; i < N; i++) {
  207. M[j][i] *= M_[0][d*N+i];
  208. }
  209. }
  210. }
  211. NNN *= NN;
  212. }
  213. }
  214. }
  215. return M;
  216. }
  217. static void Eval(Matrix<ValueType>& Y, const Vector<Basis>& X, const EvalOpType& M) {
  218. Long N0 = X.Dim();
  219. Long N1 = M.Dim(1);
  220. SCTL_ASSERT(M.Dim(0) == Size());
  221. if (Y.Dim(0) != N0 || Y.Dim(1) != N1) Y.ReInit(N0, N1);
  222. for (Long i = 0; i < N0; i++) {
  223. const Matrix<ValueType> X_(1,Size(),(Iterator<ValueType>)(ConstIterator<ValueType>)X[i].NodeValues_,false);
  224. Matrix<ValueType> Y_(1,N1,Y[i],false);
  225. Matrix<ValueType>::GEMM(Y_,X_,M);
  226. }
  227. }
  228. Basis operator+(Basis X) const {
  229. for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] + X[i];
  230. return X;
  231. }
  232. Basis operator-(Basis X) const {
  233. for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] - X[i];
  234. return X;
  235. }
  236. Basis operator*(Basis X) const {
  237. for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] * X[i];
  238. return X;
  239. }
  240. Basis operator*(Real a) const {
  241. Basis X = (*this);
  242. for (Long i = 0; i < Size(); i++) X[i] *= a;
  243. return X;
  244. }
  245. Basis operator+(Real a) const {
  246. Basis X = (*this);
  247. for (Long i = 0; i < Size(); i++) X[i] += a;
  248. return X;
  249. }
  250. Basis& operator+=(const Basis& X) {
  251. for (Long i = 0; i < Size(); i++) (*this)[i] += X[i];
  252. return *this;
  253. }
  254. Basis& operator-=(const Basis& X) {
  255. for (Long i = 0; i < Size(); i++) (*this)[i] -= X[i];
  256. return *this;
  257. }
  258. Basis& operator*=(const Basis& X) {
  259. for (Long i = 0; i < Size(); i++) (*this)[i] *= X[i];
  260. return *this;
  261. }
  262. Basis& operator*=(Real a) {
  263. for (Long i = 0; i < Size(); i++) (*this)[i] *= a;
  264. return *this;
  265. }
  266. Basis& operator+=(Real a) {
  267. for (Long i = 0; i < Size(); i++) (*this)[i] += a;
  268. return *this;
  269. }
  270. Basis& operator=(Real a) {
  271. for (Long i = 0; i < Size(); i++) (*this)[i] = a;
  272. return *this;
  273. }
  274. const ValueType& operator[](Long i) const {
  275. SCTL_ASSERT(i < Size());
  276. return NodeValues_[i];
  277. }
  278. ValueType& operator[](Long i) {
  279. SCTL_ASSERT(i < Size());
  280. return NodeValues_[i];
  281. }
  282. private:
  283. StaticArray<ValueType,Size()> NodeValues_;
  284. };
  285. template <Integer COORD_DIM, class Basis> class ElemList {
  286. public:
  287. using CoordBasis = Basis;
  288. using CoordType = typename CoordBasis::ValueType;
  289. static constexpr Integer CoordDim() {
  290. return COORD_DIM;
  291. }
  292. static constexpr Integer ElemDim() {
  293. return CoordBasis::Dim();
  294. }
  295. ElemList(Long Nelem = 0) {
  296. ReInit(Nelem);
  297. }
  298. void ReInit(Long Nelem = 0) {
  299. Nelem_ = Nelem;
  300. X_.ReInit(Nelem_ * COORD_DIM);
  301. }
  302. void ReInit(const Vector<CoordBasis>& X) {
  303. Nelem_ = X.Dim() / COORD_DIM;
  304. SCTL_ASSERT(X.Dim() == Nelem_ * COORD_DIM);
  305. X_ = X;
  306. }
  307. Long NElem() const {
  308. return Nelem_;
  309. }
  310. CoordBasis& operator()(Long elem, Integer dim) {
  311. SCTL_ASSERT(elem >= 0 && elem < Nelem_);
  312. SCTL_ASSERT(dim >= 0 && dim < COORD_DIM);
  313. return X_[elem*COORD_DIM+dim];
  314. }
  315. const CoordBasis& operator()(Long elem, Integer dim) const {
  316. if (!(elem >= 0 && elem < Nelem_)) exit(0);
  317. SCTL_ASSERT(elem >= 0 && elem < Nelem_);
  318. SCTL_ASSERT(dim >= 0 && dim < COORD_DIM);
  319. return X_[elem*COORD_DIM+dim];
  320. }
  321. const Vector<CoordBasis>& ElemVector() const {
  322. return X_;
  323. }
  324. private:
  325. static_assert(CoordBasis::Dim() <= CoordDim(), "Basis dimension can not be greater than COORD_DIM.");
  326. Vector<CoordBasis> X_;
  327. Long Nelem_;
  328. //mutable Vector<CoordBasis> dX_;
  329. };
  330. template <class Real> class Quadrature {
  331. static Real machine_epsilon() {
  332. Real eps=1;
  333. while(eps*(Real)0.5+(Real)1.0>1.0) eps*=0.5;
  334. return eps;
  335. }
  336. template <Integer DIM> static void DuffyQuad(Matrix<Real>& nodes, Vector<Real>& weights, const Vector<Real>& coord, Integer order, Real adapt = -1.0) {
  337. SCTL_ASSERT(coord.Dim() == DIM);
  338. static Real eps = machine_epsilon()*16;
  339. Matrix<Real> qx;
  340. Vector<Real> qw;
  341. { // Set qx, qw
  342. Vector<Real> qx0, qw0;
  343. ChebBasis<Real>::quad_rule(order, qx0, qw0);
  344. Integer N = pow<DIM,Integer>(order);
  345. qx.ReInit(DIM,N);
  346. qw.ReInit(N);
  347. qw[0] = 1;
  348. Integer N_ = 1;
  349. for (Integer d = 0; d < DIM; d++) {
  350. for (Integer j = 0; j < order; j++) {
  351. for (Integer i = 0; i < N_; i++) {
  352. for (Integer k = 0; k < d; k++) {
  353. qx[k][j*N_+i] = qx[k][i];
  354. }
  355. qx[d][j*N_+i] = qx0[j];
  356. qw[j*N_+i] = qw[i];
  357. }
  358. }
  359. for (Integer j = 0; j < order; j++) {
  360. for (Integer i = 0; i < N_; i++) {
  361. qw[j*N_+i] *= qw0[j];
  362. }
  363. }
  364. N_ *= order;
  365. }
  366. }
  367. Vector<Real> X;
  368. { // Set X
  369. StaticArray<Real,2*DIM+2> X_;
  370. X_[0] = 0;
  371. X_[1] = adapt;
  372. for (Integer i = 0; i < DIM; i++) {
  373. X_[2*i+2] = fabs<Real>(coord[i]);
  374. X_[2*i+3] = fabs<Real>(coord[i]-1);
  375. }
  376. std::sort((Iterator<Real>)X_, (Iterator<Real>)X_+2*DIM+2);
  377. X.PushBack(std::max<Real>(0, X_[2*DIM]-1));
  378. for (Integer i = 0; i < 2*DIM+2; i++) {
  379. if (X[X.Dim()-1] < X_[i]) {
  380. if (X.Dim())
  381. X.PushBack(X_[i]);
  382. }
  383. }
  384. /////////////////////////////////////////////////////////////////////////////////////////////////
  385. Vector<Real> r(1);
  386. r[0] = X[0];
  387. for (Integer i = 1; i < X.Dim(); i++) {
  388. while (r[r.Dim() - 1] > 0.0 && (order*0.5) * r[r.Dim() - 1] < X[i]) r.PushBack((order*0.5) * r[r.Dim() - 1]); // TODO
  389. r.PushBack(X[i]);
  390. }
  391. X = r;
  392. /////////////////////////////////////////////////////////////////////////////////////////////////
  393. }
  394. Vector<Real> nds, wts;
  395. for (Integer k = 0; k < X.Dim()-1; k++) {
  396. for (Integer dd = 0; dd < 2*DIM; dd++) {
  397. Integer d0 = (dd>>1);
  398. StaticArray<Real,2*DIM> range0, range1;
  399. { // Set range0, range1
  400. Integer d1 = (dd%2?1:-1);
  401. for (Integer d = 0; d < DIM; d++) {
  402. range0[d*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d] - X[k] ));
  403. range0[d*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d] + X[k] ));
  404. range1[d*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d] - X[k+1]));
  405. range1[d*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d] + X[k+1]));
  406. }
  407. range0[d0*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+0]));
  408. range0[d0*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+0]));
  409. range1[d0*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+1]));
  410. range1[d0*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+1]));
  411. }
  412. { // if volume(range0, range1) == 0 then continue
  413. Real v0 = 1, v1 = 1;
  414. for (Integer d = 0; d < DIM; d++) {
  415. if (d == d0) {
  416. v0 *= fabs<Real>(range0[d*2+0]-range1[d*2+0]);
  417. v1 *= fabs<Real>(range0[d*2+0]-range1[d*2+0]);
  418. } else {
  419. v0 *= range0[d*2+1]-range0[d*2+0];
  420. v1 *= range1[d*2+1]-range1[d*2+0];
  421. }
  422. }
  423. if (v0 < eps && v1 < eps) continue;
  424. }
  425. for (Integer i = 0; i < qx.Dim(1); i++) { // Set nds, wts
  426. Real w = qw[i];
  427. Real z = qx[d0][i];
  428. for (Integer d = 0; d < DIM; d++) {
  429. Real y = qx[d][i];
  430. nds.PushBack((range0[d*2+0]*(1-y) + range0[d*2+1]*y)*(1-z) + (range1[d*2+0]*(1-y) + range1[d*2+1]*y)*z);
  431. if (d == d0) {
  432. w *= abs(range1[d*2+0] - range0[d*2+0]);
  433. } else {
  434. w *= (range0[d*2+1] - range0[d*2+0])*(1-z) + (range1[d*2+1] - range1[d*2+0])*z;
  435. }
  436. }
  437. wts.PushBack(w);
  438. }
  439. }
  440. }
  441. nodes = Matrix<Real>(nds.Dim()/DIM,DIM,nds.begin()).Transpose();
  442. weights = wts;
  443. }
  444. template <Integer DIM> static void TensorProductGaussQuad(Matrix<Real>& nodes, Vector<Real>& weights, Integer order) {
  445. Vector<Real> coord(DIM);
  446. coord = 0;
  447. coord[0] = -10;
  448. DuffyQuad<DIM>(nodes, weights, coord, order);
  449. }
  450. template <class DensityBasis, class ElemList, class Kernel> static void SetupSingular(Matrix<Real>& M_singular, const Matrix<Real>& trg_nds, const ElemList& elem_lst, const Kernel& kernel, Integer order_singular = 10, Integer order_direct = 10, Real Rqbx = 0) {
  451. using CoordBasis = typename ElemList::CoordBasis;
  452. using CoordEvalOpType = typename CoordBasis::EvalOpType;
  453. using DensityEvalOpType = typename DensityBasis::EvalOpType;
  454. constexpr Integer CoordDim = ElemList::CoordDim();
  455. constexpr Integer ElemDim = ElemList::ElemDim();
  456. constexpr Integer KDIM0 = Kernel::SrcDim();
  457. constexpr Integer KDIM1 = Kernel::TrgDim();
  458. const Long Nelem = elem_lst.NElem();
  459. const Integer Ntrg = trg_nds.Dim(1);
  460. SCTL_ASSERT(trg_nds.Dim(0) == ElemDim);
  461. const Vector<CoordBasis>& X = elem_lst.ElemVector();
  462. Vector<CoordBasis> dX;
  463. CoordBasis::Grad(dX, X);
  464. Vector<Real> Xt, Xnt;
  465. { // Set Xt, Xnt
  466. auto Meval = CoordBasis::SetupEval(trg_nds);
  467. eval_basis(Xt, X, CoordDim, trg_nds.Dim(1), Meval);
  468. Xnt = Xt;
  469. Vector<Real> dX_;
  470. eval_basis(dX_, dX, 2*CoordDim, trg_nds.Dim(1), Meval);
  471. for (Long i = 0; i < Ntrg; i++) {
  472. for (Long j = 0; j < Nelem; j++) {
  473. auto Xn = Xnt.begin() + (j*Ntrg+i)*CoordDim;
  474. auto dX0 = dX_.begin() + (j*Ntrg+i)*2*CoordDim;
  475. StaticArray<Real,CoordDim> normal;
  476. normal[0] = dX0[2]*dX0[5] - dX0[4]*dX0[3];
  477. normal[1] = dX0[4]*dX0[1] - dX0[0]*dX0[5];
  478. normal[2] = dX0[0]*dX0[3] - dX0[2]*dX0[1];
  479. Real Xa = sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  480. Real invXa = 1/Xa;
  481. normal[0] *= invXa;
  482. normal[1] *= invXa;
  483. normal[2] *= invXa;
  484. Real sqrt_Xa = sqrt<Real>(Xa);
  485. Xn[0] = normal[0]*sqrt_Xa*Rqbx;
  486. Xn[1] = normal[1]*sqrt_Xa*Rqbx;
  487. Xn[2] = normal[2]*sqrt_Xa*Rqbx;
  488. }
  489. }
  490. }
  491. SCTL_ASSERT(Xt.Dim() == Nelem * Ntrg * CoordDim);
  492. auto& M = M_singular;
  493. M.ReInit(Nelem * KDIM0 * DensityBasis::Size(), KDIM1 * Ntrg);
  494. #pragma omp parallel for schedule(static)
  495. for (Long i = 0; i < Ntrg; i++) { // Set M (singular)
  496. Matrix<Real> quad_nds;
  497. Vector<Real> quad_wts;
  498. { // Set quad_nds, quad_wts
  499. StaticArray<Real,ElemDim> trg_node_;
  500. for (Integer k = 0; k < ElemDim; k++) {
  501. trg_node_[k] = trg_nds[k][i];
  502. }
  503. Vector<Real> trg_node(ElemDim, trg_node_, false);
  504. DuffyQuad<ElemDim>(quad_nds, quad_wts, trg_node, order_singular, fabs(Rqbx));
  505. }
  506. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  507. Integer Nnds = quad_wts.Dim();
  508. Vector<Real> X_, dX_, Xa_, Xn_;
  509. { // Set X_, dX_
  510. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  511. eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
  512. }
  513. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  514. Long N = Nelem*Nnds;
  515. Xa_.ReInit(N);
  516. Xn_.ReInit(N*CoordDim);
  517. for (Long j = 0; j < N; j++) {
  518. StaticArray<Real,CoordDim> normal;
  519. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  520. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  521. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  522. Xa_[j] = sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  523. Real invXa = 1/Xa_[j];
  524. Xn_[j*3+0] = normal[0] * invXa;
  525. Xn_[j*3+1] = normal[1] * invXa;
  526. Xn_[j*3+2] = normal[2] * invXa;
  527. }
  528. }
  529. DensityEvalOpType DensityEvalOp;
  530. if (std::is_same<CoordBasis,DensityBasis>::value) {
  531. DensityEvalOp = CoordEvalOp;
  532. } else {
  533. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  534. }
  535. for (Long j = 0; j < Nelem; j++) {
  536. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  537. if (Rqbx == 0) { // Set kernel matrix M__
  538. const Vector<Real> X0_(CoordDim, Xt.begin() + (j * Ntrg + i) * CoordDim, false);
  539. const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
  540. const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
  541. kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
  542. } else {
  543. Vector<Real> X0_(CoordDim);
  544. constexpr Integer qbx_order = 6;
  545. StaticArray<Matrix<Real>,qbx_order> M___;
  546. for (Integer k = 0; k < qbx_order; k++) { // Set kernel matrix M___
  547. for (Integer kk = 0; kk < CoordDim; kk++) X0_[kk] = Xt[(j * Ntrg + i) * CoordDim + kk] + (k+1) * Xnt[(j * Ntrg + i) * CoordDim + kk];
  548. const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
  549. const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
  550. kernel.template KernelMatrix<Real>(M___[k], X0_, X__, Xn__);
  551. }
  552. for (Long k = 0; k < Nnds * KDIM0 * KDIM1; k++) {
  553. M__[0][k] = 0;
  554. M__[0][k] += 6*M___[0][0][k];
  555. M__[0][k] += -15*M___[1][0][k];
  556. M__[0][k] += 20*M___[2][0][k];
  557. M__[0][k] += -15*M___[3][0][k];
  558. M__[0][k] += 6*M___[4][0][k];
  559. M__[0][k] += -1*M___[5][0][k];
  560. }
  561. }
  562. for (Long k0 = 0; k0 < KDIM0; k0++) {
  563. for (Long k1 = 0; k1 < KDIM1; k1++) {
  564. for (Long l = 0; l < DensityBasis::Size(); l++) {
  565. Real M_lk = 0;
  566. for (Long n = 0; n < Nnds; n++) {
  567. Real quad_wt = Xa_[j * Nnds + n] * quad_wts[n];
  568. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  569. }
  570. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1 * Ntrg + i] = M_lk;
  571. }
  572. }
  573. }
  574. }
  575. }
  576. { // Set M (subtract direct)
  577. Matrix<Real> quad_nds;
  578. Vector<Real> quad_wts;
  579. TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
  580. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  581. Integer Nnds = quad_wts.Dim();
  582. Vector<Real> X_, dX_, Xa_, Xn_;
  583. { // Set X_, dX_
  584. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  585. eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
  586. }
  587. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  588. Long N = Nelem*Nnds;
  589. Xa_.ReInit(N);
  590. Xn_.ReInit(N*CoordDim);
  591. for (Long j = 0; j < N; j++) {
  592. StaticArray<Real,CoordDim> normal;
  593. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  594. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  595. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  596. Xa_[j] = sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  597. Real invXa = 1/Xa_[j];
  598. Xn_[j*3+0] = normal[0] * invXa;
  599. Xn_[j*3+1] = normal[1] * invXa;
  600. Xn_[j*3+2] = normal[2] * invXa;
  601. }
  602. }
  603. DensityEvalOpType DensityEvalOp;
  604. if (std::is_same<CoordBasis,DensityBasis>::value) {
  605. DensityEvalOp = CoordEvalOp;
  606. } else {
  607. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  608. }
  609. #pragma omp parallel for schedule(static)
  610. for (Long i = 0; i < Ntrg; i++) { // Subtract direct contribution
  611. for (Long j = 0; j < Nelem; j++) {
  612. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  613. { // Set kernel matrix M__
  614. const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + (j * Ntrg + i) * CoordDim, false);
  615. const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
  616. const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
  617. kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
  618. }
  619. for (Long k0 = 0; k0 < KDIM0; k0++) {
  620. for (Long k1 = 0; k1 < KDIM1; k1++) {
  621. for (Long l = 0; l < DensityBasis::Size(); l++) {
  622. Real M_lk = 0;
  623. for (Long n = 0; n < Nnds; n++) {
  624. Real quad_wt = Xa_[j * Nnds + n] * quad_wts[n];
  625. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  626. }
  627. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1 * Ntrg + i] -= M_lk;
  628. }
  629. }
  630. }
  631. }
  632. }
  633. }
  634. }
  635. template <class DensityBasis> static void EvalSingular(Matrix<Real>& U, const Vector<DensityBasis>& density, const Matrix<Real>& M, Integer KDIM0_, Integer KDIM1_) {
  636. if (M.Dim(0) == 0 || M.Dim(1) == 0) {
  637. U.ReInit(0,0);
  638. return;
  639. }
  640. const Long Ntrg = M.Dim(1) / KDIM1_;
  641. SCTL_ASSERT(M.Dim(1) == KDIM1_ * Ntrg);
  642. const Long Nelem = M.Dim(0) / (KDIM0_ * DensityBasis::Size());
  643. SCTL_ASSERT(M.Dim(0) == Nelem * KDIM0_ * DensityBasis::Size());
  644. const Integer dof = density.Dim() / (Nelem * KDIM0_);
  645. SCTL_ASSERT(density.Dim() == Nelem * dof * KDIM0_);
  646. if (U.Dim(0) != Nelem * dof * KDIM1_ || U.Dim(1) != Ntrg) {
  647. U.ReInit(Nelem * dof * KDIM1_, Ntrg);
  648. U = 0;
  649. }
  650. for (Long j = 0; j < Nelem; j++) {
  651. const Matrix<Real> M_(KDIM0_ * DensityBasis::Size(), KDIM1_ * Ntrg, (Iterator<Real>)M[j * KDIM0_ * DensityBasis::Size()], false);
  652. Matrix<Real> U_(dof, KDIM1_ * Ntrg, U[j*dof*KDIM1_], false);
  653. Matrix<Real> F_(dof, KDIM0_ * DensityBasis::Size());
  654. for (Long i = 0; i < dof; i++) {
  655. for (Long k = 0; k < KDIM0_; k++) {
  656. for (Long l = 0; l < DensityBasis::Size(); l++) {
  657. F_[i][k * DensityBasis::Size() + l] = density[(j * dof + i) * KDIM0_ + k][l];
  658. }
  659. }
  660. }
  661. Matrix<Real>::GEMM(U_, F_, M_);
  662. }
  663. }
  664. template <Integer DIM> struct PointData {
  665. bool operator<(const PointData& p) const {
  666. return mid < p.mid;
  667. }
  668. Long rank;
  669. Long surf_rank;
  670. Morton<DIM> mid;
  671. StaticArray<Real,DIM> coord;
  672. Real radius2;
  673. };
  674. template <class T1, class T2> struct Pair {
  675. Pair() {}
  676. Pair(T1 x, T2 y) : first(x), second(y) {}
  677. bool operator<(const Pair& p) const {
  678. return (first < p.first) || (((first == p.first) && (second < p.second)));
  679. }
  680. T1 first;
  681. T2 second;
  682. };
  683. template <class ElemList> static void BuildNbrList(Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt, const Vector<Long>& trg_surf, const ElemList& elem_lst, Real distance_factor, Real period_length, const Comm& comm) {
  684. using CoordBasis = typename ElemList::CoordBasis;
  685. constexpr Integer CoordDim = ElemList::CoordDim();
  686. constexpr Integer ElemDim = ElemList::ElemDim();
  687. using PtData = PointData<CoordDim>;
  688. const Integer rank = comm.Rank();
  689. Real R0 = 0;
  690. StaticArray<Real,CoordDim> X0;
  691. { // Find bounding box
  692. Long N = Xt.Dim() / CoordDim;
  693. SCTL_ASSERT(Xt.Dim() == N * CoordDim);
  694. SCTL_ASSERT(N);
  695. StaticArray<Real,CoordDim*2> Xloc;
  696. StaticArray<Real,CoordDim*2> Xglb;
  697. for (Integer k = 0; k < CoordDim; k++) {
  698. Xloc[0*CoordDim+k] = Xt[k];
  699. Xloc[1*CoordDim+k] = Xt[k];
  700. }
  701. for (Long i = 0; i < N; i++) {
  702. for (Integer k = 0; k < CoordDim; k++) {
  703. Xloc[0*CoordDim+k] = std::min<Real>(Xloc[0*CoordDim+k], Xt[i*CoordDim+k]);
  704. Xloc[1*CoordDim+k] = std::max<Real>(Xloc[1*CoordDim+k], Xt[i*CoordDim+k]);
  705. }
  706. }
  707. comm.Allreduce((ConstIterator<Real>)Xloc+0*CoordDim, (Iterator<Real>)Xglb+0*CoordDim, CoordDim, Comm::CommOp::MIN);
  708. comm.Allreduce((ConstIterator<Real>)Xloc+1*CoordDim, (Iterator<Real>)Xglb+1*CoordDim, CoordDim, Comm::CommOp::MAX);
  709. for (Integer k = 0; k < CoordDim; k++) {
  710. R0 = std::max(R0, Xglb[1*CoordDim+k]-Xglb[0*CoordDim+k]);
  711. }
  712. R0 = R0 * 2.0;
  713. for (Integer k = 0; k < CoordDim; k++) {
  714. X0[k] = Xglb[k] - R0*0.25;
  715. }
  716. }
  717. if (period_length > 0) {
  718. R0 = period_length;
  719. }
  720. Vector<PtData> PtSrc, PtTrg;
  721. Integer order_upsample = (Integer)(const_pi<Real>() / distance_factor + 0.5);
  722. { // Set PtSrc
  723. const Vector<CoordBasis>& X_elem_lst = elem_lst.ElemVector();
  724. Vector<CoordBasis> dX_elem_lst;
  725. CoordBasis::Grad(dX_elem_lst, X_elem_lst);
  726. Matrix<Real> nds;
  727. Vector<Real> wts;
  728. TensorProductGaussQuad<ElemDim>(nds, wts, order_upsample);
  729. const Long Nnds = nds.Dim(1);
  730. Vector<Real> X, dX;
  731. const auto CoordEvalOp = CoordBasis::SetupEval(nds);
  732. eval_basis(X, X_elem_lst, CoordDim, Nnds, CoordEvalOp);
  733. eval_basis(dX, dX_elem_lst, CoordDim * ElemDim, Nnds, CoordEvalOp);
  734. const Long N = X.Dim() / CoordDim;
  735. const Long Nelem = elem_lst.NElem();
  736. SCTL_ASSERT(X.Dim() == N * CoordDim);
  737. SCTL_ASSERT(N == Nelem * Nnds);
  738. Long rank_offset, surf_rank_offset;
  739. { // Set rank_offset, surf_rank_offset
  740. comm.Scan(Ptr2ConstItr<Long>(&N,1), Ptr2Itr<Long>(&rank_offset,1), 1, Comm::CommOp::SUM);
  741. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&surf_rank_offset,1), 1, Comm::CommOp::SUM);
  742. surf_rank_offset -= Nelem;
  743. rank_offset -= N;
  744. }
  745. PtSrc.ReInit(N);
  746. const Real R0inv = 1.0 / R0;
  747. for (Long i = 0; i < N; i++) { // Set coord
  748. for (Integer k = 0; k < CoordDim; k++) {
  749. PtSrc[i].coord[k] = (X[i*CoordDim+k] - X0[k]) * R0inv;
  750. }
  751. }
  752. if (period_length > 0) { // Wrap-around coord
  753. for (Long i = 0; i < N; i++) {
  754. auto& x = PtSrc[i].coord;
  755. for (Integer k = 0; k < CoordDim; k++) {
  756. x[k] -= (Long)(x[k]);
  757. }
  758. }
  759. }
  760. for (Long i = 0; i < N; i++) { // Set radius2, mid, rank
  761. Integer depth = 0;
  762. { // Set radius2, depth
  763. Real radius2 = 0;
  764. for (Integer k0 = 0; k0 < ElemDim; k0++) {
  765. Real R2 = 0;
  766. for (Integer k1 = 0; k1 < CoordDim; k1++) {
  767. Real dX_ = dX[(i*CoordDim+k1)*ElemDim+k0];
  768. R2 += dX_*dX_;
  769. }
  770. radius2 = std::max(radius2, R2);
  771. }
  772. radius2 *= R0inv*R0inv * distance_factor*distance_factor;
  773. PtSrc[i].radius2 = radius2;
  774. Long Rinv = (Long)(1.0/radius2);
  775. while (Rinv > 0) {
  776. Rinv = (Rinv>>2);
  777. depth++;
  778. }
  779. }
  780. PtSrc[i].mid = Morton<CoordDim>((Iterator<Real>)PtSrc[i].coord, std::min(Morton<CoordDim>::MaxDepth(),depth));
  781. PtSrc[i].rank = rank_offset + i;
  782. }
  783. for (Long i = 0 ; i < Nelem; i++) { // Set surf_rank
  784. for (Long j = 0; j < Nnds; j++) {
  785. PtSrc[i*Nnds+j].surf_rank = surf_rank_offset + i;
  786. }
  787. }
  788. Vector<PtData> PtSrcSorted;
  789. comm.HyperQuickSort(PtSrc, PtSrcSorted);
  790. PtSrc.Swap(PtSrcSorted);
  791. }
  792. { // Set PtTrg
  793. const Long N = Xt.Dim() / CoordDim;
  794. SCTL_ASSERT(Xt.Dim() == N * CoordDim);
  795. Long rank_offset;
  796. { // Set rank_offset
  797. comm.Scan(Ptr2ConstItr<Long>(&N,1), Ptr2Itr<Long>(&rank_offset,1), 1, Comm::CommOp::SUM);
  798. rank_offset -= N;
  799. }
  800. PtTrg.ReInit(N);
  801. const Real R0inv = 1.0 / R0;
  802. for (Long i = 0; i < N; i++) { // Set coord
  803. for (Integer k = 0; k < CoordDim; k++) {
  804. PtTrg[i].coord[k] = (Xt[i*CoordDim+k] - X0[k]) * R0inv;
  805. }
  806. }
  807. if (period_length > 0) { // Wrap-around coord
  808. for (Long i = 0; i < N; i++) {
  809. auto& x = PtTrg[i].coord;
  810. for (Integer k = 0; k < CoordDim; k++) {
  811. x[k] -= (Long)(x[k]);
  812. }
  813. }
  814. }
  815. for (Long i = 0; i < N; i++) { // Set radius2, mid, rank
  816. PtTrg[i].radius2 = 0;
  817. PtTrg[i].mid = Morton<CoordDim>((Iterator<Real>)PtTrg[i].coord);
  818. PtTrg[i].rank = rank_offset + i;
  819. }
  820. if (trg_surf.Dim()) { // Set surf_rank
  821. SCTL_ASSERT(trg_surf.Dim() == N);
  822. for (Long i = 0; i < N; i++) {
  823. PtTrg[i].surf_rank = trg_surf[i];
  824. }
  825. } else {
  826. for (Long i = 0; i < N; i++) {
  827. PtTrg[i].surf_rank = -1;
  828. }
  829. }
  830. Vector<PtData> PtTrgSorted;
  831. comm.HyperQuickSort(PtTrg, PtTrgSorted);
  832. PtTrg.Swap(PtTrgSorted);
  833. }
  834. Tree<CoordDim> tree(comm);
  835. { // Init tree
  836. Vector<Real> Xall(PtSrc.Dim()+PtTrg.Dim());
  837. { // Set Xall
  838. Xall.ReInit((PtSrc.Dim()+PtTrg.Dim())*CoordDim);
  839. Long Nsrc = PtSrc.Dim();
  840. Long Ntrg = PtTrg.Dim();
  841. for (Long i = 0; i < Nsrc; i++) {
  842. for (Integer k = 0; k < CoordDim; k++) {
  843. Xall[i*CoordDim+k] = PtSrc[i].coord[k];
  844. }
  845. }
  846. for (Long i = 0; i < Ntrg; i++) {
  847. for (Integer k = 0; k < CoordDim; k++) {
  848. Xall[(Nsrc+i)*CoordDim+k] = PtTrg[i].coord[k];
  849. }
  850. }
  851. }
  852. tree.UpdateRefinement(Xall, 1000, true, period_length>0);
  853. }
  854. { // Repartition PtSrc, PtTrg
  855. PtData splitter;
  856. splitter.mid = tree.GetPartitionMID()[rank];
  857. comm.PartitionS(PtSrc, splitter);
  858. comm.PartitionS(PtTrg, splitter);
  859. }
  860. { // Add tree data PtSrc
  861. const auto& node_mid = tree.GetNodeMID();
  862. const Long N = node_mid.Dim();
  863. SCTL_ASSERT(N);
  864. Vector<Long> dsp(N), cnt(N);
  865. for (Long i = 0; i < N; i++) {
  866. PtData m0;
  867. m0.mid = node_mid[i];
  868. dsp[i] = std::lower_bound(PtSrc.begin(), PtSrc.end(), m0) - PtSrc.begin();
  869. }
  870. for (Long i = 0; i < N-1; i++) {
  871. cnt[i] = dsp[i+1] - dsp[i];
  872. }
  873. cnt[N-1] = PtSrc.Dim() - dsp[N-1];
  874. tree.AddData("PtSrc", PtSrc, cnt);
  875. }
  876. tree.template Broadcast<PtData>("PtSrc");
  877. { // Build pair_lst
  878. Vector<Long> cnt;
  879. Vector<PtData> PtSrc;
  880. tree.GetData(PtSrc, cnt, "PtSrc");
  881. const auto& node_mid = tree.GetNodeMID();
  882. const auto& node_attr = tree.GetNodeAttr();
  883. Vector<Morton<CoordDim>> nbr_mid_tmp;
  884. for (Long i = 0; i < node_mid.Dim(); i++) {
  885. if (node_attr[i].Leaf && !node_attr[i].Ghost) {
  886. Vector<Morton<CoordDim>> child_mid;
  887. node_mid[i].Children(child_mid);
  888. for (const auto& trg_mid : child_mid) {
  889. Integer d0 = trg_mid.Depth();
  890. Vector<PtData> Src, Trg;
  891. { // Set Trg
  892. PtData m0, m1;
  893. m0.mid = trg_mid;
  894. m1.mid = trg_mid.Next();
  895. Long a = std::lower_bound(PtTrg.begin(), PtTrg.end(), m0) - PtTrg.begin();
  896. Long b = std::lower_bound(PtTrg.begin(), PtTrg.end(), m1) - PtTrg.begin();
  897. Trg.ReInit(b-a, PtTrg.begin()+a, false);
  898. if (!Trg.Dim()) continue;
  899. }
  900. Vector<std::set<Long>> near_elem(Trg.Dim());
  901. for (Integer d = 0; d <= d0; d++) {
  902. trg_mid.NbrList(nbr_mid_tmp, d, period_length>0);
  903. for (const auto& src_mid : nbr_mid_tmp) { // Set Src
  904. PtData m0, m1;
  905. m0.mid = src_mid;
  906. m1.mid = (d==d0 ? src_mid.Next() : src_mid.Ancestor(d+1));
  907. Long a = std::lower_bound(PtSrc.begin(), PtSrc.end(), m0) - PtSrc.begin();
  908. Long b = std::lower_bound(PtSrc.begin(), PtSrc.end(), m1) - PtSrc.begin();
  909. Src.ReInit(b-a, PtSrc.begin()+a, false);
  910. if (!Src.Dim()) continue;
  911. for (Long t = 0; t < Trg.Dim(); t++) { // set near_elem[t] <-- {s : dist(s,t) < radius(s)}
  912. for (Long s = 0; s < Src.Dim(); s++) {
  913. if (Trg[t].surf_rank != Src[s].surf_rank) {
  914. Real R2 = 0;
  915. for (Integer k = 0; k < CoordDim; k++) {
  916. Real dx = (Src[s].coord[k] - Trg[t].coord[k]);
  917. R2 += dx * dx;
  918. }
  919. if (R2 < Src[s].radius2) {
  920. near_elem[t].insert(Src[s].surf_rank);
  921. }
  922. }
  923. }
  924. }
  925. }
  926. }
  927. for (Long t = 0; t < Trg.Dim(); t++) { // Set pair_lst
  928. for (Long elem_idx : near_elem[t]) {
  929. pair_lst.PushBack(Pair<Long,Long>(elem_idx,Trg[t].rank));
  930. }
  931. }
  932. }
  933. }
  934. }
  935. }
  936. { // Sort and repartition pair_lst
  937. Vector<Pair<Long,Long>> pair_lst_sorted;
  938. comm.HyperQuickSort(pair_lst, pair_lst_sorted);
  939. Long surf_rank_offset;
  940. const Long Nelem = elem_lst.NElem();
  941. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&surf_rank_offset,1), 1, Comm::CommOp::SUM);
  942. surf_rank_offset -= Nelem;
  943. comm.PartitionS(pair_lst_sorted, Pair<Long,Long>(surf_rank_offset,0));
  944. pair_lst.Swap(pair_lst_sorted);
  945. }
  946. }
  947. template <class ElemList> static void BuildNbrListDeprecated(Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt, const ElemList& elem_lst, const Matrix<Real>& surf_nds, Real distance_factor) {
  948. using CoordBasis = typename ElemList::CoordBasis;
  949. constexpr Integer CoordDim = ElemList::CoordDim();
  950. constexpr Integer ElemDim = ElemList::ElemDim();
  951. const Long Nelem = elem_lst.NElem();
  952. const Long Ntrg = Xt.Dim() / CoordDim;
  953. SCTL_ASSERT(Xt.Dim() == Ntrg * CoordDim);
  954. Long Nnds, Nsurf_nds;
  955. Vector<Real> X_surf, X, dX;
  956. Integer order_upsample = (Integer)(const_pi<Real>() / distance_factor + 0.5);
  957. { // Set X, dX
  958. const Vector<CoordBasis>& X_elem_lst = elem_lst.ElemVector();
  959. Vector<CoordBasis> dX_elem_lst;
  960. CoordBasis::Grad(dX_elem_lst, X_elem_lst);
  961. Matrix<Real> nds_upsample;
  962. Vector<Real> wts_upsample;
  963. TensorProductGaussQuad<ElemDim>(nds_upsample, wts_upsample, order_upsample);
  964. Nnds = nds_upsample.Dim(1);
  965. const auto CoordEvalOp = CoordBasis::SetupEval(nds_upsample);
  966. eval_basis(X, X_elem_lst, CoordDim, nds_upsample.Dim(1), CoordEvalOp);
  967. eval_basis(dX, dX_elem_lst, CoordDim * ElemDim, nds_upsample.Dim(1), CoordEvalOp);
  968. Nsurf_nds = surf_nds.Dim(1);
  969. const auto CoordEvalOp_surf = CoordBasis::SetupEval(surf_nds);
  970. eval_basis(X_surf, X_elem_lst, CoordDim, Nsurf_nds, CoordEvalOp_surf);
  971. }
  972. Real d2 = distance_factor * distance_factor;
  973. for (Long i = 0; i < Nelem; i++) {
  974. std::set<Long> near_pts;
  975. std::set<Long> self_pts;
  976. for (Long j = 0; j < Nnds; j++) {
  977. Real R2_max = 0;
  978. StaticArray<Real, CoordDim> X0;
  979. for (Integer k = 0; k < CoordDim; k++) {
  980. X0[k] = X[(i*Nnds+j)*CoordDim+k];
  981. }
  982. for (Integer k0 = 0; k0 < ElemDim; k0++) {
  983. Real R2 = 0;
  984. for (Integer k1 = 0; k1 < CoordDim; k1++) {
  985. Real dX_ = dX[((i*Nnds+j)*CoordDim+k1)*ElemDim+k0];
  986. R2 += dX_*dX_;
  987. }
  988. R2_max = std::max(R2_max, R2*d2);
  989. }
  990. for (Long k = 0; k < Ntrg; k++) {
  991. Real R2 = 0;
  992. for (Integer l = 0; l < CoordDim; l++) {
  993. Real dX = Xt[k*CoordDim+l]- X0[l];
  994. R2 += dX * dX;
  995. }
  996. if (R2 < R2_max) near_pts.insert(k);
  997. }
  998. }
  999. for (Long j = 0; j < Nsurf_nds; j++) {
  1000. StaticArray<Real, CoordDim> X0;
  1001. for (Integer k = 0; k < CoordDim; k++) {
  1002. X0[k] = X_surf[(i*Nsurf_nds+j)*CoordDim+k];
  1003. }
  1004. for (Long k = 0; k < Ntrg; k++) {
  1005. Real R2 = 0;
  1006. for (Integer l = 0; l < CoordDim; l++) {
  1007. Real dX = Xt[k*CoordDim+l]- X0[l];
  1008. R2 += dX * dX;
  1009. }
  1010. if (R2 == 0) self_pts.insert(k);
  1011. }
  1012. }
  1013. for (Long trg_idx : self_pts) {
  1014. near_pts.erase(trg_idx);
  1015. }
  1016. for (Long trg_idx : near_pts) {
  1017. pair_lst.PushBack(Pair<Long,Long>(i,trg_idx));
  1018. }
  1019. }
  1020. }
  1021. template <class DensityBasis, class ElemList, class Kernel> static void SetupNearSingular(Matrix<Real>& M_near_singular, Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt_, const Vector<Long>& trg_surf, const ElemList& elem_lst, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) {
  1022. static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
  1023. static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
  1024. static_assert(DensityBasis::Dim() == ElemList::ElemDim());
  1025. using CoordBasis = typename ElemList::CoordBasis;
  1026. using CoordEvalOpType = typename CoordBasis::EvalOpType;
  1027. using DensityEvalOpType = typename DensityBasis::EvalOpType;
  1028. constexpr Integer CoordDim = ElemList::CoordDim();
  1029. constexpr Integer ElemDim = ElemList::ElemDim();
  1030. constexpr Integer KDIM0 = Kernel::SrcDim();
  1031. constexpr Integer KDIM1 = Kernel::TrgDim();
  1032. const Long Nelem = elem_lst.NElem();
  1033. BuildNbrList(pair_lst, Xt_, trg_surf, elem_lst, 5.0/order_direct, period_length, comm);
  1034. const Long Ninterac = pair_lst.Dim();
  1035. Vector<Real> Xt;
  1036. { // Set Xt
  1037. Integer rank = comm.Rank();
  1038. Integer np = comm.Size();
  1039. Vector<Long> splitter_ranks;
  1040. { // Set splitter_ranks
  1041. Vector<Long> cnt(np);
  1042. const Long N = Xt_.Dim() / CoordDim;
  1043. comm.Allgather(Ptr2ConstItr<Long>(&N,1), 1, cnt.begin(), 1);
  1044. scan(splitter_ranks, cnt);
  1045. }
  1046. Vector<Long> scatter_index, recv_index, recv_cnt(np), recv_dsp(np);
  1047. { // Set scatter_index, recv_index, recv_cnt, recv_dsp
  1048. { // Set scatter_index, recv_index
  1049. Vector<Pair<Long,Long>> scatter_pair(pair_lst.Dim());
  1050. for (Long i = 0; i < pair_lst.Dim(); i++) {
  1051. scatter_pair[i] = Pair<Long,Long>(pair_lst[i].second,i);
  1052. }
  1053. omp_par::merge_sort(scatter_pair.begin(), scatter_pair.end());
  1054. recv_index.ReInit(scatter_pair.Dim());
  1055. scatter_index.ReInit(scatter_pair.Dim());
  1056. for (Long i = 0; i < scatter_index.Dim(); i++) {
  1057. recv_index[i] = scatter_pair[i].first;
  1058. scatter_index[i] = scatter_pair[i].second;
  1059. }
  1060. }
  1061. for (Integer i = 0; i < np; i++) {
  1062. recv_dsp[i] = std::lower_bound(recv_index.begin(), recv_index.end(), splitter_ranks[i]) - recv_index.begin();
  1063. }
  1064. for (Integer i = 0; i < np-1; i++) {
  1065. recv_cnt[i] = recv_dsp[i+1] - recv_dsp[i];
  1066. }
  1067. recv_cnt[np-1] = recv_index.Dim() - recv_dsp[np-1];
  1068. }
  1069. Vector<Long> send_index, send_cnt(np), send_dsp(np);
  1070. { // Set send_index, send_cnt, send_dsp
  1071. comm.Alltoall(recv_cnt.begin(), 1, send_cnt.begin(), 1);
  1072. scan(send_dsp, send_cnt);
  1073. send_index.ReInit(send_cnt[np-1] + send_dsp[np-1]);
  1074. comm.Alltoallv(recv_index.begin(), recv_cnt.begin(), recv_dsp.begin(), send_index.begin(), send_cnt.begin(), send_dsp.begin());
  1075. }
  1076. Vector<Real> Xt_send(send_index.Dim() * CoordDim);
  1077. for (Long i = 0; i < send_index.Dim(); i++) { // Set Xt_send
  1078. Long idx = send_index[i] - splitter_ranks[rank];
  1079. for (Integer k = 0; k < CoordDim; k++) {
  1080. Xt_send[i*CoordDim+k] = Xt_[idx*CoordDim+k];
  1081. }
  1082. }
  1083. Vector<Real> Xt_recv(recv_index.Dim() * CoordDim);
  1084. { // Set Xt_recv
  1085. for (Long i = 0; i < np; i++) {
  1086. send_cnt[i] *= CoordDim;
  1087. send_dsp[i] *= CoordDim;
  1088. recv_cnt[i] *= CoordDim;
  1089. recv_dsp[i] *= CoordDim;
  1090. }
  1091. comm.Alltoallv(Xt_send.begin(), send_cnt.begin(), send_dsp.begin(), Xt_recv.begin(), recv_cnt.begin(), recv_dsp.begin());
  1092. }
  1093. Xt.ReInit(scatter_index.Dim() * CoordDim);
  1094. for (Long i = 0; i < scatter_index.Dim(); i++) { // Set Xt
  1095. Long idx = scatter_index[i];
  1096. for (Integer k = 0; k < CoordDim; k++) {
  1097. Xt[idx*CoordDim+k] = Xt_recv[i*CoordDim+k];
  1098. }
  1099. }
  1100. }
  1101. const Vector<CoordBasis>& X = elem_lst.ElemVector();
  1102. Vector<CoordBasis> dX;
  1103. CoordBasis::Grad(dX, X);
  1104. Long elem_rank_offset;
  1105. { // Set elem_rank_offset
  1106. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&elem_rank_offset,1), 1, Comm::CommOp::SUM);
  1107. elem_rank_offset -= Nelem;
  1108. }
  1109. auto& M = M_near_singular;
  1110. M.ReInit(Ninterac * KDIM0 * DensityBasis::Size(), KDIM1);
  1111. #pragma omp parallel for schedule(static)
  1112. for (Long j = 0; j < Ninterac; j++) { // Set M (near-singular)
  1113. const Long src_idx = pair_lst[j].first - elem_rank_offset;
  1114. Real adapt = -1.0;
  1115. Tensor<Real,true,ElemDim,1> u0;
  1116. { // Set u0 (project target point to the surface patch in parameter space)
  1117. ConstIterator<Real> Xt_ = Xt.begin() + j * CoordDim;
  1118. const auto& nodes = CoordBasis::Nodes();
  1119. Long min_idx = -1;
  1120. Real min_R2 = 1e10;
  1121. for (Long i = 0; i < CoordBasis::Size(); i++) {
  1122. Real R2 = 0;
  1123. for (Integer k = 0; k < CoordDim; k++) {
  1124. Real dX = X[src_idx * CoordDim + k][i] - Xt_[k];
  1125. R2 += dX * dX;
  1126. }
  1127. if (R2 < min_R2) {
  1128. min_R2 = R2;
  1129. min_idx = i;
  1130. }
  1131. }
  1132. SCTL_ASSERT(min_idx >= 0);
  1133. for (Integer k = 0; k < ElemDim; k++) {
  1134. u0(k,0) = nodes[k][min_idx];
  1135. }
  1136. for (Integer i = 0; i < 2; i++) { // iterate
  1137. Matrix<Real> X_, dX_;
  1138. for (Integer k = 0; k < ElemDim; k++) {
  1139. u0(k,0) = std::min<Real>(1.0, u0(k,0));
  1140. u0(k,0) = std::max<Real>(0.0, u0(k,0));
  1141. }
  1142. const auto eval_op = CoordBasis::SetupEval(Matrix<Real>(ElemDim,1,u0.begin(),false));
  1143. CoordBasis::Eval(X_, Vector<CoordBasis>(CoordDim,(Iterator<CoordBasis>)X.begin()+src_idx*CoordDim,false),eval_op);
  1144. CoordBasis::Eval(dX_, Vector<CoordBasis>(CoordDim*ElemDim,dX.begin()+src_idx*CoordDim*ElemDim,false),eval_op);
  1145. const Tensor<Real,false,CoordDim,1> x0((Iterator<Real>)Xt_);
  1146. const Tensor<Real,false,CoordDim,1> x(X_.begin());
  1147. const Tensor<Real,false,CoordDim,ElemDim> x_u(dX_.begin());
  1148. auto inv = [](const Tensor<Real,true,2,2>& M) {
  1149. Tensor<Real,true,2,2> Minv;
  1150. Real det_inv = 1.0 / (M(0,0)*M(1,1) - M(1,0)*M(0,1));
  1151. Minv(0,0) = M(1,1) * det_inv;
  1152. Minv(0,1) =-M(0,1) * det_inv;
  1153. Minv(1,0) =-M(1,0) * det_inv;
  1154. Minv(1,1) = M(0,0) * det_inv;
  1155. return Minv;
  1156. };
  1157. auto du = inv(x_u.RotateRight()*x_u) * x_u.RotateRight()*(x0-x);
  1158. u0 = u0 + du;
  1159. auto x_u_squared = x_u.RotateRight() * x_u;
  1160. adapt = sqrt<Real>( ((x0-x).RotateRight()*(x0-x))(0,0) / std::max<Real>(x_u_squared(0,0),x_u_squared(1,1)) );
  1161. }
  1162. }
  1163. Matrix<Real> quad_nds;
  1164. Vector<Real> quad_wts;
  1165. DuffyQuad<ElemDim>(quad_nds, quad_wts, Vector<Real>(ElemDim,u0.begin(),false), order_singular, adapt);
  1166. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  1167. Integer Nnds = quad_wts.Dim();
  1168. Vector<Real> X_, dX_, Xa_, Xn_;
  1169. { // Set X_, dX_
  1170. const Vector<CoordBasis> X__(CoordDim, (Iterator<CoordBasis>)X.begin() + src_idx * CoordDim, false);
  1171. const Vector<CoordBasis> dX__(CoordDim * ElemDim, (Iterator<CoordBasis>)dX.begin() + src_idx * CoordDim * ElemDim, false);
  1172. eval_basis(X_, X__, CoordDim, Nnds, CoordEvalOp);
  1173. eval_basis(dX_, dX__, CoordDim * ElemDim, Nnds, CoordEvalOp);
  1174. }
  1175. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  1176. Xa_.ReInit(Nnds);
  1177. Xn_.ReInit(Nnds*CoordDim);
  1178. for (Long j = 0; j < Nnds; j++) {
  1179. StaticArray<Real,CoordDim> normal;
  1180. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  1181. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  1182. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  1183. Xa_[j] = sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  1184. Real invXa = 1/Xa_[j];
  1185. Xn_[j*3+0] = normal[0] * invXa;
  1186. Xn_[j*3+1] = normal[1] * invXa;
  1187. Xn_[j*3+2] = normal[2] * invXa;
  1188. }
  1189. }
  1190. DensityEvalOpType DensityEvalOp;
  1191. if (std::is_same<CoordBasis,DensityBasis>::value) {
  1192. DensityEvalOp = CoordEvalOp;
  1193. } else {
  1194. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  1195. }
  1196. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  1197. { // Set kernel matrix M__
  1198. const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + j * CoordDim, false);
  1199. kernel.template KernelMatrix<Real>(M__, X0_, X_, Xn_);
  1200. }
  1201. for (Long k0 = 0; k0 < KDIM0; k0++) {
  1202. for (Long k1 = 0; k1 < KDIM1; k1++) {
  1203. for (Long l = 0; l < DensityBasis::Size(); l++) {
  1204. Real M_lk = 0;
  1205. for (Long n = 0; n < Nnds; n++) {
  1206. Real quad_wt = Xa_[n] * quad_wts[n];
  1207. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  1208. }
  1209. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1] = M_lk;
  1210. }
  1211. }
  1212. }
  1213. }
  1214. { // Set M (subtract direct)
  1215. Matrix<Real> quad_nds;
  1216. Vector<Real> quad_wts;
  1217. TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
  1218. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  1219. Integer Nnds = quad_wts.Dim();
  1220. Vector<Real> X_, dX_, Xa_, Xn_;
  1221. { // Set X_, dX_
  1222. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  1223. eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
  1224. }
  1225. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  1226. Long N = Nelem*Nnds;
  1227. Xa_.ReInit(N);
  1228. Xn_.ReInit(N*CoordDim);
  1229. for (Long j = 0; j < N; j++) {
  1230. StaticArray<Real,CoordDim> normal;
  1231. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  1232. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  1233. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  1234. Xa_[j] = sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  1235. Real invXa = 1/Xa_[j];
  1236. Xn_[j*3+0] = normal[0] * invXa;
  1237. Xn_[j*3+1] = normal[1] * invXa;
  1238. Xn_[j*3+2] = normal[2] * invXa;
  1239. }
  1240. }
  1241. DensityEvalOpType DensityEvalOp;
  1242. if (std::is_same<CoordBasis,DensityBasis>::value) {
  1243. DensityEvalOp = CoordEvalOp;
  1244. } else {
  1245. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  1246. }
  1247. #pragma omp parallel for schedule(static)
  1248. for (Long j = 0; j < Ninterac; j++) { // Subtract direct contribution
  1249. const Long src_idx = pair_lst[j].first - elem_rank_offset;
  1250. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  1251. { // Set kernel matrix M__
  1252. const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + j * CoordDim, false);
  1253. Vector<Real> X__(Nnds * CoordDim, X_.begin() + src_idx * Nnds * CoordDim, false);
  1254. Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + src_idx * Nnds * CoordDim, false);
  1255. kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
  1256. }
  1257. for (Long k0 = 0; k0 < KDIM0; k0++) {
  1258. for (Long k1 = 0; k1 < KDIM1; k1++) {
  1259. for (Long l = 0; l < DensityBasis::Size(); l++) {
  1260. Real M_lk = 0;
  1261. for (Long n = 0; n < Nnds; n++) {
  1262. Real quad_wt = Xa_[src_idx * Nnds + n] * quad_wts[n];
  1263. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  1264. }
  1265. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1] -= M_lk;
  1266. }
  1267. }
  1268. }
  1269. }
  1270. }
  1271. }
  1272. template <class DensityBasis> static void EvalNearSingular(Vector<Real>& U, const Vector<DensityBasis>& density, const Matrix<Real>& M, const Vector<Pair<Long,Long>>& pair_lst, Long Nelem_, Long Ntrg_, Integer KDIM0_, Integer KDIM1_, const Comm& comm) {
  1273. const Long Ninterac = pair_lst.Dim();
  1274. const Integer dof = density.Dim() / Nelem_ / KDIM0_;
  1275. SCTL_ASSERT(density.Dim() == Nelem_ * dof * KDIM0_);
  1276. Long elem_rank_offset;
  1277. { // Set elem_rank_offset
  1278. comm.Scan(Ptr2ConstItr<Long>(&Nelem_,1), Ptr2Itr<Long>(&elem_rank_offset,1), 1, Comm::CommOp::SUM);
  1279. elem_rank_offset -= Nelem_;
  1280. }
  1281. Vector<Real> U_loc(Ninterac*dof*KDIM1_);
  1282. for (Long j = 0; j < Ninterac; j++) {
  1283. const Long src_idx = pair_lst[j].first - elem_rank_offset;
  1284. const Matrix<Real> M_(KDIM0_ * DensityBasis::Size(), KDIM1_, (Iterator<Real>)M[j * KDIM0_ * DensityBasis::Size()], false);
  1285. Matrix<Real> U_(dof, KDIM1_, U_loc.begin() + j*dof*KDIM1_, false);
  1286. Matrix<Real> F_(dof, KDIM0_ * DensityBasis::Size());
  1287. for (Long i = 0; i < dof; i++) {
  1288. for (Long k = 0; k < KDIM0_; k++) {
  1289. for (Long l = 0; l < DensityBasis::Size(); l++) {
  1290. F_[i][k * DensityBasis::Size() + l] = density[(src_idx * dof + i) * KDIM0_ + k][l];
  1291. }
  1292. }
  1293. }
  1294. Matrix<Real>::GEMM(U_, F_, M_);
  1295. }
  1296. if (U.Dim() != Ntrg_ * dof * KDIM1_) {
  1297. U.ReInit(Ntrg_ * dof * KDIM1_);
  1298. U = 0;
  1299. }
  1300. { // Set U
  1301. Integer rank = comm.Rank();
  1302. Integer np = comm.Size();
  1303. Vector<Long> splitter_ranks;
  1304. { // Set splitter_ranks
  1305. Vector<Long> cnt(np);
  1306. comm.Allgather(Ptr2ConstItr<Long>(&Ntrg_,1), 1, cnt.begin(), 1);
  1307. scan(splitter_ranks, cnt);
  1308. }
  1309. Vector<Long> scatter_index, send_index, send_cnt(np), send_dsp(np);
  1310. { // Set scatter_index, send_index, send_cnt, send_dsp
  1311. { // Set scatter_index, send_index
  1312. Vector<Pair<Long,Long>> scatter_pair(pair_lst.Dim());
  1313. for (Long i = 0; i < pair_lst.Dim(); i++) {
  1314. scatter_pair[i] = Pair<Long,Long>(pair_lst[i].second,i);
  1315. }
  1316. omp_par::merge_sort(scatter_pair.begin(), scatter_pair.end());
  1317. send_index.ReInit(scatter_pair.Dim());
  1318. scatter_index.ReInit(scatter_pair.Dim());
  1319. for (Long i = 0; i < scatter_index.Dim(); i++) {
  1320. send_index[i] = scatter_pair[i].first;
  1321. scatter_index[i] = scatter_pair[i].second;
  1322. }
  1323. }
  1324. for (Integer i = 0; i < np; i++) {
  1325. send_dsp[i] = std::lower_bound(send_index.begin(), send_index.end(), splitter_ranks[i]) - send_index.begin();
  1326. }
  1327. for (Integer i = 0; i < np-1; i++) {
  1328. send_cnt[i] = send_dsp[i+1] - send_dsp[i];
  1329. }
  1330. send_cnt[np-1] = send_index.Dim() - send_dsp[np-1];
  1331. }
  1332. Vector<Long> recv_index, recv_cnt(np), recv_dsp(np);
  1333. { // Set recv_index, recv_cnt, recv_dsp
  1334. comm.Alltoall(send_cnt.begin(), 1, recv_cnt.begin(), 1);
  1335. scan(recv_dsp, recv_cnt);
  1336. recv_index.ReInit(recv_cnt[np-1] + recv_dsp[np-1]);
  1337. comm.Alltoallv(send_index.begin(), send_cnt.begin(), send_dsp.begin(), recv_index.begin(), recv_cnt.begin(), recv_dsp.begin());
  1338. }
  1339. Vector<Real> U_send(scatter_index.Dim() * dof * KDIM1_);
  1340. for (Long i = 0; i < scatter_index.Dim(); i++) {
  1341. Long idx = scatter_index[i]*dof*KDIM1_;
  1342. for (Long k = 0; k < dof * KDIM1_; k++) {
  1343. U_send[i*dof*KDIM1_ + k] = U_loc[idx + k];
  1344. }
  1345. }
  1346. Vector<Real> U_recv(recv_index.Dim() * dof * KDIM1_);
  1347. { // Set U_recv
  1348. for (Long i = 0; i < np; i++) {
  1349. send_cnt[i] *= dof * KDIM1_;
  1350. send_dsp[i] *= dof * KDIM1_;
  1351. recv_cnt[i] *= dof * KDIM1_;
  1352. recv_dsp[i] *= dof * KDIM1_;
  1353. }
  1354. comm.Alltoallv(U_send.begin(), send_cnt.begin(), send_dsp.begin(), U_recv.begin(), recv_cnt.begin(), recv_dsp.begin());
  1355. }
  1356. for (Long i = 0; i < recv_index.Dim(); i++) { // Set U
  1357. Long idx = (recv_index[i] - splitter_ranks[rank]) * dof * KDIM1_;
  1358. for (Integer k = 0; k < dof * KDIM1_; k++) {
  1359. U[idx + k] += U_recv[i*dof*KDIM1_ + k];
  1360. }
  1361. }
  1362. }
  1363. }
  1364. template <class ElemList, class DensityBasis, class Kernel> static void Direct(Vector<Real>& U, const Vector<Real>& Xt, const ElemList& elem_lst, const Vector<DensityBasis>& density, const Kernel& kernel, Integer order_direct, const Comm& comm) {
  1365. using CoordBasis = typename ElemList::CoordBasis;
  1366. using CoordEvalOpType = typename CoordBasis::EvalOpType;
  1367. using DensityEvalOpType = typename DensityBasis::EvalOpType;
  1368. constexpr Integer CoordDim = ElemList::CoordDim();
  1369. constexpr Integer ElemDim = ElemList::ElemDim();
  1370. constexpr Integer KDIM0 = Kernel::SrcDim();
  1371. constexpr Integer KDIM1 = Kernel::TrgDim();
  1372. const Long Nelem = elem_lst.NElem();
  1373. const Integer dof = density.Dim() / Nelem / KDIM0;
  1374. SCTL_ASSERT(density.Dim() == Nelem * dof * KDIM0);
  1375. Matrix<Real> quad_nds;
  1376. Vector<Real> quad_wts;
  1377. TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
  1378. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  1379. Integer Nnds = quad_wts.Dim();
  1380. const Vector<CoordBasis>& X = elem_lst.ElemVector();
  1381. Vector<CoordBasis> dX;
  1382. CoordBasis::Grad(dX, X);
  1383. Vector<Real> X_, dX_, Xa_, Xn_;
  1384. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  1385. eval_basis(dX_, dX, CoordDim*ElemDim, Nnds, CoordEvalOp);
  1386. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  1387. Long N = Nelem*Nnds;
  1388. Xa_.ReInit(N);
  1389. Xn_.ReInit(N*CoordDim);
  1390. for (Long j = 0; j < N; j++) {
  1391. StaticArray<Real,CoordDim> normal;
  1392. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  1393. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  1394. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  1395. Xa_[j] = sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  1396. Real invXa = 1/Xa_[j];
  1397. Xn_[j*3+0] = normal[0] * invXa;
  1398. Xn_[j*3+1] = normal[1] * invXa;
  1399. Xn_[j*3+2] = normal[2] * invXa;
  1400. }
  1401. }
  1402. Vector<Real> Fa_;
  1403. { // Set Fa_
  1404. Vector<Real> F_;
  1405. if (std::is_same<CoordBasis,DensityBasis>::value) {
  1406. eval_basis(F_, density, dof * KDIM0, Nnds, CoordEvalOp);
  1407. } else {
  1408. const DensityEvalOpType EvalOp = DensityBasis::SetupEval(quad_nds);
  1409. eval_basis(F_, density, dof * KDIM0, Nnds, EvalOp);
  1410. }
  1411. Fa_.ReInit(F_.Dim());
  1412. const Integer DensityDOF = dof * KDIM0;
  1413. SCTL_ASSERT(F_.Dim() == Nelem * Nnds * DensityDOF);
  1414. for (Long j = 0; j < Nelem; j++) {
  1415. for (Integer k = 0; k < Nnds; k++) {
  1416. Long idx = j * Nnds + k;
  1417. Real quad_wt = Xa_[idx] * quad_wts[k];
  1418. for (Integer l = 0; l < DensityDOF; l++) {
  1419. Fa_[idx * DensityDOF + l] = F_[idx * DensityDOF + l] * quad_wt;
  1420. }
  1421. }
  1422. }
  1423. }
  1424. { // Evaluate potential
  1425. const Long Ntrg = Xt.Dim() / CoordDim;
  1426. SCTL_ASSERT(Xt.Dim() == Ntrg * CoordDim);
  1427. if (U.Dim() != Ntrg * dof * KDIM1) {
  1428. U.ReInit(Ntrg * dof * KDIM1);
  1429. U = 0;
  1430. }
  1431. ParticleFMM<Real,CoordDim>::Eval(U, Xt, X_, Xn_, Fa_, kernel, comm);
  1432. }
  1433. }
  1434. public:
  1435. template <class DensityBasis, class ElemList, class Kernel> void Setup(const ElemList& elem_lst, const Vector<Real>& Xt, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) {
  1436. Xt_.ReInit(0);
  1437. M_singular.ReInit(0,0);
  1438. M_near_singular.ReInit(0,0);
  1439. pair_lst.ReInit(0);
  1440. order_direct_ = order_direct;
  1441. period_length_ = period_length;
  1442. comm_ = comm;
  1443. Profile::Tic("Setup", &comm_);
  1444. static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
  1445. static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
  1446. static_assert(DensityBasis::Dim() == ElemList::ElemDim());
  1447. Xt_ = Xt;
  1448. M_singular.ReInit(0,0);
  1449. Profile::Tic("SetupNearSingular", &comm_);
  1450. SetupNearSingular<DensityBasis>(M_near_singular, pair_lst, Xt_, Vector<Long>(), elem_lst, kernel, order_singular, order_direct_, period_length_, comm_);
  1451. Profile::Toc();
  1452. Profile::Toc();
  1453. }
  1454. template <class DensityBasis, class PotentialBasis, class ElemList, class Kernel> void Setup(const ElemList& elem_lst, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm, Real Rqbx = 0) {
  1455. Xt_.ReInit(0);
  1456. M_singular.ReInit(0,0);
  1457. M_near_singular.ReInit(0,0);
  1458. pair_lst.ReInit(0);
  1459. order_direct_ = order_direct;
  1460. period_length_ = period_length;
  1461. comm_ = comm;
  1462. Profile::Tic("Setup", &comm_);
  1463. static_assert(std::is_same<Real,typename PotentialBasis::ValueType>::value);
  1464. static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
  1465. static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
  1466. static_assert(PotentialBasis::Dim() == ElemList::ElemDim());
  1467. static_assert(DensityBasis::Dim() == ElemList::ElemDim());
  1468. Vector<Long> trg_surf;
  1469. { // Set Xt_
  1470. using CoordBasis = typename ElemList::CoordBasis;
  1471. Matrix<Real> trg_nds = PotentialBasis::Nodes();
  1472. auto Meval = CoordBasis::SetupEval(trg_nds);
  1473. eval_basis(Xt_, elem_lst.ElemVector(), ElemList::CoordDim(), trg_nds.Dim(1), Meval);
  1474. { // Set trg_surf
  1475. const Long Nelem = elem_lst.NElem();
  1476. const Long Nnds = trg_nds.Dim(1);
  1477. Long elem_offset;
  1478. { // Set elem_offset
  1479. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&elem_offset,1), 1, Comm::CommOp::SUM);
  1480. elem_offset -= Nelem;
  1481. }
  1482. trg_surf.ReInit(elem_lst.NElem() * trg_nds.Dim(1));
  1483. for (Long i = 0; i < Nelem; i++) {
  1484. for (Long j = 0; j < Nnds; j++) {
  1485. trg_surf[i*Nnds+j] = elem_offset + i;
  1486. }
  1487. }
  1488. }
  1489. }
  1490. Profile::Tic("SetupSingular", &comm_);
  1491. SetupSingular<DensityBasis>(M_singular, PotentialBasis::Nodes(), elem_lst, kernel, order_singular, order_direct_, Rqbx);
  1492. Profile::Toc();
  1493. Profile::Tic("SetupNearSingular", &comm_);
  1494. SetupNearSingular<DensityBasis>(M_near_singular, pair_lst, Xt_, trg_surf, elem_lst, kernel, order_singular, order_direct_, period_length_, comm_);
  1495. Profile::Toc();
  1496. Profile::Toc();
  1497. }
  1498. template <class DensityBasis, class PotentialBasis, class ElemList, class Kernel> void Eval(Vector<PotentialBasis>& U, const ElemList& elements, const Vector<DensityBasis>& F, const Kernel& kernel) const {
  1499. Profile::Tic("Eval", &comm_);
  1500. Matrix<Real> U_singular;
  1501. Vector<Real> U_direct, U_near_sing;
  1502. Profile::Tic("EvalDirect", &comm_);
  1503. Direct(U_direct, Xt_, elements, F, kernel, order_direct_, comm_);
  1504. Profile::Toc();
  1505. Profile::Tic("EvalSingular", &comm_);
  1506. EvalSingular(U_singular, F, M_singular, kernel.SrcDim(), kernel.TrgDim());
  1507. Profile::Toc();
  1508. Profile::Tic("EvalNearSingular", &comm_);
  1509. EvalNearSingular(U_near_sing, F, M_near_singular, pair_lst, elements.NElem(), Xt_.Dim() / ElemList::CoordDim(), kernel.SrcDim(), kernel.TrgDim(), comm_);
  1510. SCTL_ASSERT(U_near_sing.Dim() == U_direct.Dim());
  1511. Profile::Toc();
  1512. const Long dof = U_direct.Dim() / (elements.NElem() * PotentialBasis::Size() * kernel.TrgDim());
  1513. SCTL_ASSERT(U_direct .Dim() == elements.NElem() * PotentialBasis::Size() * dof * kernel.TrgDim());
  1514. SCTL_ASSERT(U_near_sing.Dim() == elements.NElem() * PotentialBasis::Size() * dof * kernel.TrgDim());
  1515. if (U.Dim() != elements.NElem() * dof * kernel.TrgDim()) {
  1516. U.ReInit(elements.NElem() * dof * kernel.TrgDim());
  1517. }
  1518. for (int i = 0; i < elements.NElem(); i++) {
  1519. for (int j = 0; j < PotentialBasis::Size(); j++) {
  1520. for (int k = 0; k < dof*kernel.TrgDim(); k++) {
  1521. Real& U_ = U[i*dof*kernel.TrgDim()+k][j];
  1522. U_ = 0;
  1523. U_ += U_direct [(i*PotentialBasis::Size()+j)*dof*kernel.TrgDim()+k];
  1524. U_ += U_near_sing[(i*PotentialBasis::Size()+j)*dof*kernel.TrgDim()+k];
  1525. U_ *= kernel.template ScaleFactor<Real>();
  1526. }
  1527. }
  1528. }
  1529. if (U_singular.Dim(1)) {
  1530. SCTL_ASSERT(U_singular.Dim(0) == elements.NElem() * dof * kernel.TrgDim());
  1531. SCTL_ASSERT(U_singular.Dim(1) == PotentialBasis::Size());
  1532. for (int i = 0; i < elements.NElem(); i++) {
  1533. for (int j = 0; j < PotentialBasis::Size(); j++) {
  1534. for (int k = 0; k < dof*kernel.TrgDim(); k++) {
  1535. U[i*dof*kernel.TrgDim()+k][j] += U_singular[i*dof*kernel.TrgDim()+k][j] * kernel.template ScaleFactor<Real>();
  1536. }
  1537. }
  1538. }
  1539. }
  1540. Profile::Toc();
  1541. }
  1542. template <class DensityBasis, class ElemList, class Kernel> void Eval(Vector<Real>& U, const ElemList& elements, const Vector<DensityBasis>& F, const Kernel& kernel) const {
  1543. Profile::Tic("Eval", &comm_);
  1544. Matrix<Real> U_singular;
  1545. Vector<Real> U_direct, U_near_sing;
  1546. Profile::Tic("EvalDirect", &comm_);
  1547. Direct(U_direct, Xt_, elements, F, kernel, order_direct_, comm_);
  1548. Profile::Toc();
  1549. Profile::Tic("EvalSingular", &comm_);
  1550. EvalSingular(U_singular, F, M_singular, kernel.SrcDim(), kernel.TrgDim());
  1551. Profile::Toc();
  1552. Profile::Tic("EvalNearSingular", &comm_);
  1553. EvalNearSingular(U_near_sing, F, M_near_singular, pair_lst, elements.NElem(), Xt_.Dim() / ElemList::CoordDim(), kernel.SrcDim(), kernel.TrgDim(), comm_);
  1554. SCTL_ASSERT(U_near_sing.Dim() == U_direct.Dim());
  1555. Profile::Toc();
  1556. Long Nt = Xt_.Dim() / ElemList::CoordDim();
  1557. const Long dof = U_direct.Dim() / (Nt * kernel.TrgDim());
  1558. SCTL_ASSERT(U_direct.Dim() == Nt * dof * kernel.TrgDim());
  1559. if (U.Dim() != U_direct.Dim()) {
  1560. U.ReInit(U_direct.Dim());
  1561. }
  1562. for (int i = 0; i < U.Dim(); i++) {
  1563. U[i] = (U_direct[i] + U_near_sing[i]) * kernel.template ScaleFactor<Real>();
  1564. }
  1565. if (U_singular.Dim(1)) {
  1566. SCTL_ASSERT(U_singular.Dim(0) == elements.NElem() * dof * kernel.TrgDim());
  1567. const Long Nnodes = U_singular.Dim(1);
  1568. for (int i = 0; i < elements.NElem(); i++) {
  1569. for (int j = 0; j < Nnodes; j++) {
  1570. for (int k = 0; k < dof*kernel.TrgDim(); k++) {
  1571. Real& U_ = U[(i*Nnodes+j)*dof*kernel.TrgDim()+k];
  1572. U_ += U_singular[i*dof*kernel.TrgDim()+k][j] * kernel.template ScaleFactor<Real>();
  1573. }
  1574. }
  1575. }
  1576. }
  1577. Profile::Toc();
  1578. }
  1579. template <Integer ORDER = 10> static void test(Integer order_singular = 20, Integer order_direct = 30, const Comm& comm = Comm::World()) {
  1580. constexpr Integer COORD_DIM = 3;
  1581. constexpr Integer ELEM_DIM = COORD_DIM-1;
  1582. using ElemList = ElemList<COORD_DIM, Basis<Real, ELEM_DIM, ORDER>>;
  1583. using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
  1584. using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
  1585. int np = comm.Size();
  1586. int rank = comm.Rank();
  1587. auto build_torus = [rank,np](ElemList& elements, long Nt, long Np, Real Rmajor, Real Rminor){
  1588. auto torus = [](Real theta, Real phi, Real Rmajor, Real Rminor) {
  1589. Real s = Rminor;
  1590. Integer Nperiod = 5;
  1591. #if 0
  1592. Real Aspect_ratio = 10.27932548522949;
  1593. Real coeffmat[21][21] = { 0.00000478813217, 0.00000000000000, 0.00000351611652, 0.00000135354389, 0.00000061357832, 0.00000220091101, 0.00000423862912, -0.00003000058678, 0.00000064187111, -0.00024228452821, 0.00003116775770, 0.00000176210710, 0.00000289141326, -0.00000150300525, 0.00000772853855, 0.00000098855242, 0.00000316606793, 0.00000002168364, 0.00000212047939, 0.00000299016097, 0.00000443224508,
  1594. 0.00000028202930, 0.00000000000000, -0.00000249222421, -0.00000203136278, 0.00000131104809, 0.00000011987446, -0.00000370760154, 0.00004553918916, -0.00007711342914, -0.00004685295062, 0.00011049838213, -0.00000197486270, 0.00000395827146, 0.00000615046474, 0.00000755337123, 0.00000700606006, 0.00000922725030, -0.00000043310337, 0.00000107416383, 0.00000449787694, 0.00000305137178,
  1595. 0.00001226376662, 0.00000000000000, 0.00000270820692, 0.00000208059305, 0.00000521478523, 0.00001779037302, 0.00000846544117, 0.00001120913385, -0.00065816845745, -0.00085107452469, -0.00013171190221, -0.00005540943675, -0.00001835885450, 0.00000101879823, 0.00000209222071, 0.00000091532502, -0.00000521515358, -0.00000209227142, -0.00000678545939, -0.00000034963549, -0.00000015111488,
  1596. 0.00001560274177, 0.00000000000000, 0.00000350691471, -0.00001160475040, -0.00001763036562, 0.00003487367940, -0.00002787247831, -0.00000910982726, 0.00008818832430, -0.00524408789352, 0.00009378376126, 0.00004184526188, 0.00002849263365, -0.00002757280527, 0.00003388467667, 0.00000706207265, 0.00000625263419, -0.00003315929280, -0.00001181772132, 0.00000311426015, 0.00001875682574,
  1597. -0.00000398287420, 0.00000000000000, -0.00001524541040, 0.00001724056165, 0.00002245173346, 0.00002806861812, -0.00000388776925, 0.00008143573359, -0.00005900909309, 0.00110496615525, 0.00134626252111, 0.00005128383054, -0.00001372421866, 0.00003612563887, 0.00002236580076, -0.00002728391883, 0.00001981237256, 0.00000655450458, 0.00000985319002, 0.00001347597299, 0.00000645987802,
  1598. 0.00003304968050, 0.00000000000000, -0.00000530822217, 0.00001324870937, -0.00003610889689, -0.00005478735329, -0.00005818806312, -0.00037112057908, -0.00017812002625, -0.00093204283621, 0.00115969858598, -0.00033559172880, -0.00010441876657, -0.00001617923044, -0.00000555065844, 0.00007343527250, -0.00004408047607, 0.00000403802142, 0.00001843931204, 0.00001694047933, 0.00001213414362,
  1599. -0.00000751115658, 0.00000000000000, 0.00005457974839, -0.00000334614515, 0.00005845565465, 0.00015000770509, 0.00021849104087, 0.00002724147635, 0.00167233624961, 0.00011666602222, 0.00276563479565, -0.00085952825611, -0.00030217235326, -0.00008841593808, 0.00000997664119, -0.00015285826521, 0.00002517224675, 0.00003009161810, 0.00001883217556, 0.00002146127554, 0.00001822445302,
  1600. -0.00004128706860, 0.00000000000000, -0.00003496417776, 0.00001088761655, -0.00000298955979, -0.00005359326315, -0.00019021633489, -0.00017992728681, -0.00347794801928, 0.00064632791327, 0.00449698418379, -0.00017710507382, 0.00006126180233, 0.00018059254216, 0.00002354096432, 0.00008189838991, -0.00010060678323, -0.00017183290038, 0.00019413756672, 0.00021334811754, 0.00011263617489,
  1601. 0.00000853522670, -0.00000000000000, -0.00006544789358, 0.00005424076880, -0.00000679056529, -0.00001249735487, -0.00053082982777, 0.00035396864405, -0.00115020677913, 0.05894451215863, 0.06573092192411, 0.01498018857092, 0.00278125284240, 0.00145188067108, 0.00033717858605, 0.00000800427370, -0.00009335305367, 0.00024286781263, -0.00023916347709, 0.00031213948387, 0.00018134393031,
  1602. -0.00002521496390, -0.00000000000000, -0.00054337945767, 0.00012690725271, 0.00053313979879, 0.00064233405283, -0.00047686311882, 0.00176536326762, 0.00074157933705, -0.02684566564858, 1.00000000000000, 0.07176169008017, 0.00837037432939, -0.00000381640211, 0.00088998704450, -0.00049218931235, -0.00024546548957, -0.00036608282244, 0.00049480766756, 0.00031158892671, 0.00006898906577,
  1603. 0.00021280418150, 0.00028127161204, -0.00070030166535, 0.00022237010126, -0.00028713891516, -0.00013800295710, 0.00005912094275, 0.00172126013786, -0.00618684850633, 0.03608432412148, Aspect_ratio , 0.49896776676178, 0.00091372377938, -0.00085712829605, -0.00124801427592, -0.00007427225501, -0.00005245858847, 0.00002841771493, 0.00020249813679, -0.00014303345233, 0.00001406490901,
  1604. 0.00023699452868, 0.00008661757602, 0.00025744654704, -0.00022715188970, -0.00076146807987, 0.00055185536621, -0.00012325309217, -0.00072356045712, -0.00160693109501, 0.00246682553552, -0.14175094664097, -0.36207047104836, -0.04089594259858, 0.00060774467420, 0.00088646943914, 0.00004865296432, -0.00041878610500, -0.00023025234987, -0.00009676301852, -0.00000000000000, 0.00008409228758,
  1605. 0.00011432896281, -0.00000707848403, 0.00004698805787, -0.00043642931269, 0.00081384339137, -0.00065635429928, -0.00011831733718, 0.00017413357273, 0.00224463525228, 0.00478497287259, 0.03294761106372, 0.01078986655921, 0.10731782764196, 0.00075034319889, -0.00009241879889, 0.00055023463210, 0.00006596000458, 0.00005045382932, 0.00014874986664, 0.00000000000000, -0.00015369028552,
  1606. 0.00001037383754, 0.00009250180301, 0.00026204055757, 0.00007424291834, -0.00047751804232, 0.00029184055165, 0.00050921301590, -0.00004825839278, -0.00029933769838, 0.00279659987427, 0.00210463814437, -0.00618590926751, -0.02400829829276, -0.02316811867058, -0.00086368201301, -0.00032258985448, -0.00018304496189, 0.00008438774967, -0.00008305341908, 0.00000000000000, 0.00013047417451,
  1607. -0.00001376930322, -0.00001723831701, -0.00011543079017, -0.00022646733851, 0.00013467084500, -0.00004661652201, -0.00008419520600, 0.00035772417323, -0.00011815709877, 0.00028718306567, 0.00092207465786, -0.00317224999890, 0.00061770365573, 0.01017294172198, 0.00294739892706, 0.00014669894881, 0.00015702951350, 0.00003432080121, -0.00008555022214, -0.00000000000000, 0.00000454909878,
  1608. -0.00000196001542, -0.00003198397462, -0.00004425687075, -0.00004129848094, -0.00003789070615, -0.00027583551127, 0.00025874207495, -0.00002334945384, -0.00007259396807, -0.00008295358566, 0.00011360697681, -0.00101968157105, 0.00046784928418, -0.00208410434425, -0.00313158822246, -0.00046005158219, -0.00010552268213, -0.00005850767775, 0.00003971093611, 0.00000000000000, -0.00005275657168,
  1609. -0.00001065901233, -0.00001934838656, -0.00001220186732, -0.00002060524639, -0.00000225423423, -0.00001894621164, -0.00001533334580, -0.00001791087379, 0.00008156246622, -0.00008441298269, 0.00021060956351, -0.00030303673702, 0.00075949780876, -0.00010539998038, 0.00109045265708, 0.00068949378328, 0.00009268362192, 0.00003471063246, 0.00001204656473, -0.00000000000000, 0.00001500743110,
  1610. 0.00000105878155, -0.00000910870767, -0.00000172467264, -0.00000722095228, 0.00000699280463, -0.00002061720625, -0.00000889817693, -0.00001993474507, 0.00000370749740, -0.00000090311920, 0.00002677819793, 0.00043428712524, 0.00210293265991, 0.00018200518389, -0.00009621794743, -0.00035250501242, -0.00012996385340, -0.00002185157609, -0.00001116586463, -0.00000000000000, -0.00000451994811,
  1611. 0.00000424055270, -0.00000463139304, 0.00000301006116, -0.00000123974939, 0.00000632465435, -0.00002090823000, 0.00001773388794, 0.00000121050368, 0.00001886057362, -0.00001043497195, -0.00002269273500, -0.00021979617304, -0.00001043962493, -0.00116343051195, -0.00004193381756, 0.00007944958634, 0.00007301353617, 0.00002082651736, -0.00000119863023, -0.00000000000000, -0.00001440504820,
  1612. -0.00000391270805, -0.00000490489265, -0.00000504441778, -0.00000904507579, -0.00000111389932, 0.00000597532107, 0.00000047090245, -0.00001553130096, -0.00001524566323, -0.00000522222899, -0.00007707672921, -0.00004165665086, 0.00015764687851, 0.00035649110214, 0.00038701237645, 0.00002386798405, -0.00001946414341, -0.00000913835174, -0.00000489907188, 0.00000000000000, 0.00000172327657,
  1613. -0.00000015388650, -0.00000603232729, -0.00000397650865, 0.00000280493782, 0.00000463132073, -0.00000788678426, -0.00000471605335, -0.00000283715985, -0.00000422824724, 0.00000366817630, -0.00001159603562, -0.00001625759251, 0.00049116823357, 0.00005048640014, -0.00020234247495, -0.00006341376866, -0.00000807822744, 0.00000070463199, 0.00000014041755, 0.00000000000000, -0.00000718306910};
  1614. #else
  1615. Real Aspect_ratio = 5;
  1616. Real coeffmat[21][21] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  1617. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  1618. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  1619. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  1620. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  1621. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  1622. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  1623. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  1624. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  1625. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, s, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  1626. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Aspect_ratio, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  1627. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2*s, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  1628. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  1629. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  1630. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  1631. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  1632. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  1633. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  1634. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  1635. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  1636. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0};
  1637. #endif
  1638. Real Z = 0;
  1639. Real R = 0;
  1640. for (long i = -10; i <= 10; i++) {
  1641. for (long j = -10; j <= 10; j++) {
  1642. R += coeffmat[i+10][j+10] * cos(-i*phi + Nperiod*j*theta)*Rmajor;
  1643. Z += coeffmat[i+10][j+10] * sin(-i*phi + Nperiod*j*theta)*Rmajor;
  1644. }
  1645. }
  1646. Real X = R * cos(theta);
  1647. Real Y = R * sin(theta);
  1648. return std::make_tuple(X,Y,Z);
  1649. };
  1650. //auto torus = [](Real theta, Real phi, Real Rmajor, Real Rminor) {
  1651. // Real R = Rmajor + Rminor * cos<Real>(phi);
  1652. // Real X = R * cos<Real>(theta);
  1653. // Real Y = R * sin<Real>(theta);
  1654. // Real Z = Rminor * sin<Real>(phi);
  1655. // return std::make_tuple(X,Y,Z);
  1656. //};
  1657. auto nodes = ElemList::CoordBasis::Nodes();
  1658. long start = Nt*Np*(rank+0)/np;
  1659. long end = Nt*Np*(rank+1)/np;
  1660. elements.ReInit(end - start);
  1661. for (long ii = start; ii < end; ii++) {
  1662. long i = ii / Np;
  1663. long j = ii % Np;
  1664. for (int k = 0; k < ElemList::CoordBasis::Size(); k++) {
  1665. Real X, Y, Z;
  1666. Real theta = 2 * const_pi<Real>() * (i + nodes[0][k]) / Nt;
  1667. Real phi = 2 * const_pi<Real>() * (j + nodes[1][k]) / Np;
  1668. std::tie(X,Y,Z) = torus(theta, phi, Rmajor, Rminor);
  1669. elements(ii-start,0)[k] = X;
  1670. elements(ii-start,1)[k] = Y;
  1671. elements(ii-start,2)[k] = Z;
  1672. }
  1673. }
  1674. };
  1675. ElemList elements_src, elements_trg;
  1676. build_torus(elements_src, 60, 12, 2, 1.0);
  1677. build_torus(elements_trg, 61, 13, 2, 0.99);
  1678. Vector<Real> Xt;
  1679. Vector<PotentialBasis> U_onsurf, U_offsurf;
  1680. Vector<DensityBasis> density_sl, density_dl;
  1681. { // Set Xt, elements_src, elements_trg, density_sl, density_dl, U
  1682. Real X0[COORD_DIM] = {3,2,1};
  1683. std::function<void(Real*,Real*,Real*)> potential = [X0](Real* U, Real* X, Real* Xn) {
  1684. Real dX[COORD_DIM] = {X[0]-X0[0],X[1]-X0[1],X[2]-X0[2]};
  1685. Real Rinv = 1/sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dX[2]);
  1686. U[0] = Rinv;
  1687. };
  1688. std::function<void(Real*,Real*,Real*)> potential_normal_derivative = [X0](Real* U, Real* X, Real* Xn) {
  1689. Real dX[COORD_DIM] = {X[0]-X0[0],X[1]-X0[1],X[2]-X0[2]};
  1690. Real Rinv = 1/sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dX[2]);
  1691. Real RdotN = dX[0]*Xn[0]+dX[1]*Xn[1]+dX[2]*Xn[2];
  1692. U[0] = -RdotN * Rinv*Rinv*Rinv;
  1693. };
  1694. DiscretizeSurfaceFn<COORD_DIM,1>(density_sl, elements_src, potential_normal_derivative);
  1695. DiscretizeSurfaceFn<COORD_DIM,1>(density_dl, elements_src, potential);
  1696. DiscretizeSurfaceFn<COORD_DIM,1>(U_onsurf , elements_src, potential);
  1697. DiscretizeSurfaceFn<COORD_DIM,1>(U_offsurf , elements_trg, potential);
  1698. for (long i = 0; i < elements_trg.NElem(); i++) { // Set Xt
  1699. for (long j = 0; j < PotentialBasis::Size(); j++) {
  1700. for (int k = 0; k < COORD_DIM; k++) {
  1701. Xt.PushBack(elements_trg(i,k)[j]);
  1702. }
  1703. }
  1704. }
  1705. }
  1706. GenericKernel<Laplace3D_DxU> Laplace_DxU;
  1707. GenericKernel<Laplace3D_FxU> Laplace_FxU;
  1708. Profile::Enable(true);
  1709. if (1) { // Greeen's identity test (Laplace, on-surface)
  1710. Profile::Tic("OnSurface", &comm);
  1711. Quadrature<Real> quadrature_DxU, quadrature_FxU;
  1712. quadrature_FxU.Setup<DensityBasis, PotentialBasis>(elements_src, Laplace_FxU, order_singular, order_direct, -1.0, comm);
  1713. quadrature_DxU.Setup<DensityBasis, PotentialBasis>(elements_src, Laplace_DxU, order_singular, order_direct, -1.0, comm);
  1714. Vector<PotentialBasis> U_sl, U_dl;
  1715. quadrature_FxU.Eval(U_sl, elements_src, density_sl, Laplace_FxU);
  1716. quadrature_DxU.Eval(U_dl, elements_src, density_dl, Laplace_DxU);
  1717. Profile::Toc();
  1718. Real max_err = 0;
  1719. Vector<PotentialBasis> err(U_onsurf.Dim());
  1720. for (long i = 0; i < U_sl.Dim(); i++) {
  1721. for (long j = 0; j < PotentialBasis::Size(); j++) {
  1722. err[i][j] = 0.5*U_onsurf[i][j] - (U_sl[i][j] + U_dl[i][j]);
  1723. max_err = std::max<Real>(max_err, fabs(err[i][j]));
  1724. }
  1725. }
  1726. { // Print error
  1727. Real glb_err;
  1728. comm.Allreduce(Ptr2ConstItr<Real>(&max_err,1), Ptr2Itr<Real>(&glb_err,1), 1, Comm::CommOp::MAX);
  1729. if (!comm.Rank()) std::cout<<"Error = "<<glb_err<<'\n';
  1730. }
  1731. { // Write VTK output
  1732. VTUData vtu;
  1733. vtu.AddElems(elements_src, err, ORDER);
  1734. vtu.WriteVTK("err", comm);
  1735. }
  1736. { // Write VTK output
  1737. VTUData vtu;
  1738. vtu.AddElems(elements_src, U_onsurf, ORDER);
  1739. vtu.WriteVTK("U", comm);
  1740. }
  1741. }
  1742. if (1) { // Greeen's identity test (Laplace, off-surface)
  1743. Profile::Tic("OffSurface", &comm);
  1744. Quadrature<Real> quadrature_DxU, quadrature_FxU;
  1745. quadrature_FxU.Setup<DensityBasis>(elements_src, Xt, Laplace_FxU, order_singular, order_direct, -1.0, comm);
  1746. quadrature_DxU.Setup<DensityBasis>(elements_src, Xt, Laplace_DxU, order_singular, order_direct, -1.0, comm);
  1747. Vector<Real> U_sl, U_dl;
  1748. quadrature_FxU.Eval(U_sl, elements_src, density_sl, Laplace_FxU);
  1749. quadrature_DxU.Eval(U_dl, elements_src, density_dl, Laplace_DxU);
  1750. Profile::Toc();
  1751. Real max_err = 0;
  1752. Vector<PotentialBasis> err(elements_trg.NElem());
  1753. for (long i = 0; i < elements_trg.NElem(); i++) {
  1754. for (long j = 0; j < PotentialBasis::Size(); j++) {
  1755. err[i][j] = U_offsurf[i][j] - (U_sl[i*PotentialBasis::Size()+j] + U_dl[i*PotentialBasis::Size()+j]);
  1756. max_err = std::max<Real>(max_err, fabs(err[i][j]));
  1757. }
  1758. }
  1759. { // Print error
  1760. Real glb_err;
  1761. comm.Allreduce(Ptr2ConstItr<Real>(&max_err,1), Ptr2Itr<Real>(&glb_err,1), 1, Comm::CommOp::MAX);
  1762. if (!comm.Rank()) std::cout<<"Error = "<<glb_err<<'\n';
  1763. }
  1764. { // Write VTK output
  1765. VTUData vtu;
  1766. vtu.AddElems(elements_trg, err, ORDER);
  1767. vtu.WriteVTK("err", comm);
  1768. }
  1769. { // Write VTK output
  1770. VTUData vtu;
  1771. vtu.AddElems(elements_trg, U_offsurf, ORDER);
  1772. vtu.WriteVTK("U", comm);
  1773. }
  1774. }
  1775. Profile::print(&comm);
  1776. }
  1777. static void test1() {
  1778. const Comm& comm = Comm::World();
  1779. constexpr Integer ORDER = 15;
  1780. Integer order_singular = 20;
  1781. Integer order_direct = 20;
  1782. constexpr Integer COORD_DIM = 3;
  1783. constexpr Integer ELEM_DIM = COORD_DIM-1;
  1784. using ElemList = ElemList<COORD_DIM, Basis<Real, ELEM_DIM, ORDER>>;
  1785. using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
  1786. using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
  1787. int np = comm.Size();
  1788. int rank = comm.Rank();
  1789. auto build_sphere = [rank,np](ElemList& elements, Real X, Real Y, Real Z, Real R){
  1790. auto nodes = ElemList::CoordBasis::Nodes();
  1791. long start = 2*COORD_DIM*(rank+0)/np;
  1792. long end = 2*COORD_DIM*(rank+1)/np;
  1793. elements.ReInit(end - start);
  1794. for (long ii = start; ii < end; ii++) {
  1795. long i = ii / 2;
  1796. long j = ii % 2;
  1797. for (int k = 0; k < ElemList::CoordBasis::Size(); k++) {
  1798. Real coord[COORD_DIM];
  1799. coord[(i+0)%COORD_DIM] = (j ? -1.0 : 1.0);
  1800. coord[(i+1)%COORD_DIM] = 2.0 * nodes[j?1:0][k] - 1.0;
  1801. coord[(i+2)%COORD_DIM] = 2.0 * nodes[j?0:1][k] - 1.0;
  1802. Real R0 = sqrt<Real>(coord[0]*coord[0] + coord[1]*coord[1] + coord[2]*coord[2]);
  1803. elements(ii-start,0)[k] = X + R * coord[0] / R0;
  1804. elements(ii-start,1)[k] = Y + R * coord[1] / R0;
  1805. elements(ii-start,2)[k] = Z + R * coord[2] / R0;
  1806. }
  1807. }
  1808. };
  1809. ElemList elements;
  1810. build_sphere(elements, 0.0, 0.0, 0.0, 1.00);
  1811. Vector<DensityBasis> density_sl;
  1812. { // Set density_sl
  1813. std::function<void(Real*,Real*,Real*)> sigma = [](Real* U, Real* X, Real* Xn) {
  1814. Real R = sqrt(X[0]*X[0]+X[1]*X[1]+X[2]*X[2]);
  1815. Real sinp = sqrt(X[1]*X[1] + X[2]*X[2]) / R;
  1816. Real cosp = -X[0] / R;
  1817. U[0] = -1.5;
  1818. U[1] = 0;
  1819. U[2] = 0;
  1820. };
  1821. DiscretizeSurfaceFn<COORD_DIM,3>(density_sl, elements, sigma);
  1822. }
  1823. GenericKernel<Stokes3D_DxU> Stokes_DxU;
  1824. GenericKernel<Stokes3D_FxU> Stokes_FxU;
  1825. Profile::Enable(true);
  1826. if (1) {
  1827. Vector<PotentialBasis> U;
  1828. Quadrature<Real> quadrature_FxU;
  1829. quadrature_FxU.Setup<DensityBasis, PotentialBasis>(elements, Stokes_FxU, order_singular, order_direct, -1.0, comm);
  1830. quadrature_FxU.Eval(U, elements, density_sl, Stokes_FxU);
  1831. { // Write VTK output
  1832. VTUData vtu;
  1833. vtu.AddElems(elements, U, ORDER);
  1834. vtu.WriteVTK("U", comm);
  1835. }
  1836. { // Write VTK output
  1837. VTUData vtu;
  1838. vtu.AddElems(elements, density_sl, ORDER);
  1839. vtu.WriteVTK("sigma", comm);
  1840. }
  1841. }
  1842. Profile::print(&comm);
  1843. }
  1844. private:
  1845. static void scan(Vector<Long>& dsp, const Vector<Long>& cnt) {
  1846. dsp.ReInit(cnt.Dim());
  1847. if (cnt.Dim()) dsp[0] = 0;
  1848. omp_par::scan(cnt.begin(), dsp.begin(), cnt.Dim());
  1849. }
  1850. template <class Basis> static void eval_basis(Vector<Real>& value, const Vector<Basis> X, Integer dof, Integer Nnds, const typename Basis::EvalOpType& EvalOp) {
  1851. Long Nelem = X.Dim() / dof;
  1852. SCTL_ASSERT(X.Dim() == Nelem * dof);
  1853. value.ReInit(Nelem*Nnds*dof);
  1854. Matrix<Real> X_(Nelem*dof, Nnds, value.begin(),false);
  1855. Basis::Eval(X_, X, EvalOp);
  1856. for (Long j = 0; j < Nelem; j++) { // Rearrange data
  1857. Matrix<Real> X(Nnds, dof, X_[j*dof], false);
  1858. X = Matrix<Real>(dof, Nnds, X_[j*dof], false).Transpose();
  1859. }
  1860. }
  1861. template <int CoordDim, int FnDim, class FnBasis, class ElemList> static void DiscretizeSurfaceFn(Vector<FnBasis>& U, const ElemList& elements, std::function<void(Real*,Real*,Real*)> fn) {
  1862. using CoordBasis = typename ElemList::CoordBasis;
  1863. const long Nelem = elements.NElem();
  1864. U.ReInit(Nelem * FnDim);
  1865. Matrix<Real> X, X_grad;
  1866. { // Set X, X_grad
  1867. Vector<CoordBasis> coord = elements.ElemVector();
  1868. Vector<CoordBasis> coord_grad;
  1869. CoordBasis::Grad(coord_grad, coord);
  1870. const auto Meval = CoordBasis::SetupEval(FnBasis::Nodes());
  1871. CoordBasis::Eval(X, coord, Meval);
  1872. CoordBasis::Eval(X_grad, coord_grad, Meval);
  1873. }
  1874. for (long i = 0; i < Nelem; i++) {
  1875. for (long j = 0; j < FnBasis::Size(); j++) {
  1876. Real X_[CoordDim], Xn[CoordDim], U_[FnDim];
  1877. for (long k = 0; k < CoordDim; k++) {
  1878. X_[k] = X[i*CoordDim+k][j];
  1879. }
  1880. { // Set Xn
  1881. Real Xu[CoordDim], Xv[CoordDim];
  1882. for (long k = 0; k < CoordDim; k++) {
  1883. Xu[k] = X_grad[(i*CoordDim+k)*2+0][j];
  1884. Xv[k] = X_grad[(i*CoordDim+k)*2+1][j];
  1885. }
  1886. Real dA = 0;
  1887. for (long k = 0; k < CoordDim; k++) {
  1888. Xn[k] = Xu[(k+1)%CoordDim] * Xv[(k+2)%CoordDim];
  1889. Xn[k] -= Xv[(k+1)%CoordDim] * Xu[(k+2)%CoordDim];
  1890. dA += Xn[k] * Xn[k];
  1891. }
  1892. dA = sqrt(dA);
  1893. for (long k = 0; k < CoordDim; k++) {
  1894. Xn[k] /= dA;
  1895. }
  1896. }
  1897. fn(U_, X_, Xn);
  1898. for (long k = 0; k < FnDim; k++) {
  1899. U[i*FnDim+k][j] = U_[k];
  1900. }
  1901. }
  1902. }
  1903. }
  1904. Vector<Real> Xt_;
  1905. Matrix<Real> M_singular;
  1906. Matrix<Real> M_near_singular;
  1907. Vector<Pair<Long,Long>> pair_lst;
  1908. Integer order_direct_;
  1909. Real period_length_;
  1910. Comm comm_;
  1911. };
  1912. template <class Real, Integer ORDER=10> class Stellarator {
  1913. private:
  1914. static constexpr Integer order_singular = 20;
  1915. static constexpr Integer order_direct = 25;
  1916. static constexpr Integer COORD_DIM = 3;
  1917. static constexpr Integer ELEM_DIM = COORD_DIM-1;
  1918. using ElemBasis = Basis<Real, ELEM_DIM, ORDER>;
  1919. using ElemLst = ElemList<COORD_DIM, ElemBasis>;
  1920. struct Laplace3D_dUxF {
  1921. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1922. return 1 / (4 * const_pi<ValueType>());
  1923. }
  1924. template <class ValueType> static void Eval(ValueType (&u)[3][1], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1925. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1926. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1927. ValueType rinv3 = rinv * rinv * rinv;
  1928. u[0][0] = -r[0] * rinv3;
  1929. u[1][0] = -r[1] * rinv3;
  1930. u[2][0] = -r[2] * rinv3;
  1931. }
  1932. };
  1933. struct BiotSavart3D {
  1934. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1935. return 1 / (4 * const_pi<ValueType>());
  1936. }
  1937. template <class ValueType> static void Eval(ValueType (&u)[3][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1938. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1939. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1940. ValueType rinv3 = rinv * rinv * rinv;
  1941. u[0][0] = (0) * rinv3; u[1][0] = r[2] * rinv3; u[2][0] = -r[1] * rinv3;
  1942. u[0][1] = -r[2] * rinv3; u[1][1] = (0) * rinv3; u[2][1] = r[0] * rinv3;
  1943. u[0][2] = r[1] * rinv3; u[1][2] = -r[0] * rinv3; u[2][2] = (0) * rinv3;
  1944. }
  1945. };
  1946. struct BiotSavartGrad3D {
  1947. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1948. return 1 / (4 * const_pi<ValueType>());
  1949. }
  1950. template <class ValueType> static void Eval(ValueType (&u)[3][9], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1951. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1952. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1953. ValueType rinv2 = rinv * rinv;
  1954. ValueType rinv3 = rinv2 * rinv;
  1955. ValueType rinv5 = rinv2 * rinv3;
  1956. u[0][0] = 0; u[1][0] = - 3 * r[2] * r[0] * rinv5; u[2][0] = 3 * r[1] * r[0] * rinv5;
  1957. u[0][1] = 0; u[1][1] = - 3 * r[2] * r[1] * rinv5; u[2][1] = -(1) * rinv3 + 3 * r[1] * r[1] * rinv5;
  1958. u[0][2] = 0; u[1][2] = (1) * rinv3 - 3 * r[2] * r[2] * rinv5; u[2][2] = 3 * r[1] * r[2] * rinv5;
  1959. u[0][3] = 3 * r[2] * r[0] * rinv5; u[1][3] = 0; u[2][3] = (1) * rinv3 - 3 * r[0] * r[0] * rinv5;
  1960. u[0][4] = 3 * r[2] * r[1] * rinv5; u[1][4] = 0; u[2][4] = - 3 * r[0] * r[1] * rinv5;
  1961. u[0][5] = -(1) * rinv3 + 3 * r[2] * r[2] * rinv5; u[1][5] = 0; u[2][5] = - 3 * r[0] * r[2] * rinv5;
  1962. u[0][6] = - 3 * r[1] * r[0] * rinv5; u[1][6] = -(1) * rinv3 + 3 * r[0] * r[0] * rinv5; u[2][6] = 0;
  1963. u[0][7] = (1) * rinv3 - 3 * r[1] * r[1] * rinv5; u[1][7] = 3 * r[0] * r[1] * rinv5; u[2][7] = 0;
  1964. u[0][8] = - 3 * r[1] * r[2] * rinv5; u[1][8] = 3 * r[0] * r[2] * rinv5; u[2][8] = 0;
  1965. }
  1966. };
  1967. struct Laplace3D_dUxD {
  1968. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1969. return 1 / (4 * const_pi<ValueType>());
  1970. }
  1971. template <class ValueType> static void Eval(ValueType (&u)[3][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1972. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1973. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1974. ValueType rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2];
  1975. ValueType rinv2 = rinv * rinv;
  1976. ValueType rinv3 = rinv * rinv2;
  1977. ValueType rinv5 = rinv3 * rinv2;
  1978. u[0][0] = -1 * rinv3 + 3 * r[0] * r[0] * rinv5;
  1979. u[0][1] = -0 * rinv3 + 3 * r[0] * r[1] * rinv5;
  1980. u[0][2] = -0 * rinv3 + 3 * r[0] * r[2] * rinv5;
  1981. u[1][0] = -0 * rinv3 + 3 * r[1] * r[0] * rinv5;
  1982. u[1][1] = -1 * rinv3 + 3 * r[1] * r[1] * rinv5;
  1983. u[1][2] = -0 * rinv3 + 3 * r[1] * r[2] * rinv5;
  1984. u[2][0] = -0 * rinv3 + 3 * r[2] * r[0] * rinv5;
  1985. u[2][1] = -0 * rinv3 + 3 * r[2] * r[1] * rinv5;
  1986. u[2][2] = -1 * rinv3 + 3 * r[2] * r[2] * rinv5;
  1987. }
  1988. };
  1989. struct Laplace3D_DxdU {
  1990. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1991. return 1 / (4 * const_pi<ValueType>());
  1992. }
  1993. template <class ValueType> static void Eval(ValueType (&u)[1][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1994. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1995. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1996. ValueType rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2];
  1997. ValueType rinv2 = rinv * rinv;
  1998. ValueType rinv3 = rinv * rinv2;
  1999. ValueType rinv5 = rinv3 * rinv2;
  2000. u[0][0] = -n[0] * rinv3 + 3*rdotn * r[0] * rinv5;
  2001. u[0][1] = -n[1] * rinv3 + 3*rdotn * r[1] * rinv5;
  2002. u[0][2] = -n[2] * rinv3 + 3*rdotn * r[2] * rinv5;
  2003. }
  2004. };
  2005. struct Laplace3D_Fxd2U {
  2006. template <class ValueType> static constexpr ValueType ScaleFactor() {
  2007. return 1 / (4 * const_pi<ValueType>());
  2008. }
  2009. template <class ValueType> static void Eval(ValueType (&u)[1][9], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  2010. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  2011. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  2012. ValueType rinv2 = rinv * rinv;
  2013. ValueType rinv3 = rinv * rinv2;
  2014. ValueType rinv5 = rinv3 * rinv2;
  2015. u[0][0+3*0] = -1 * rinv3 + 3 * r[0] * r[0] * rinv5;
  2016. u[0][1+3*0] = -0 * rinv3 + 3 * r[0] * r[1] * rinv5;
  2017. u[0][2+3*0] = -0 * rinv3 + 3 * r[0] * r[2] * rinv5;
  2018. u[0][0+3*1] = -0 * rinv3 + 3 * r[1] * r[0] * rinv5;
  2019. u[0][1+3*1] = -1 * rinv3 + 3 * r[1] * r[1] * rinv5;
  2020. u[0][2+3*1] = -0 * rinv3 + 3 * r[1] * r[2] * rinv5;
  2021. u[0][0+3*2] = -0 * rinv3 + 3 * r[2] * r[0] * rinv5;
  2022. u[0][1+3*2] = -0 * rinv3 + 3 * r[2] * r[1] * rinv5;
  2023. u[0][2+3*2] = -1 * rinv3 + 3 * r[2] * r[2] * rinv5;
  2024. }
  2025. };
  2026. static Real max_norm(const Vector<Real>& x) {
  2027. Real err = 0;
  2028. for (const auto& a : x) err = std::max(err, fabs<Real>(a));
  2029. return err;
  2030. }
  2031. public:
  2032. static Vector<ElemBasis> compute_dot_prod(const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  2033. const Long Nelem = A.Dim() / COORD_DIM;
  2034. const Long Nnodes = ElemBasis::Size();
  2035. SCTL_ASSERT(A.Dim() == Nelem * COORD_DIM);
  2036. SCTL_ASSERT(B.Dim() == Nelem * COORD_DIM);
  2037. Vector<ElemBasis> AdotB(Nelem);
  2038. for (Long i = 0; i < Nelem; i++) {
  2039. for (Long j = 0; j < Nnodes; j++) {
  2040. Real a_dot_b = 0;
  2041. a_dot_b += A[i*COORD_DIM+0][j]*B[i*COORD_DIM+0][j];
  2042. a_dot_b += A[i*COORD_DIM+1][j]*B[i*COORD_DIM+1][j];
  2043. a_dot_b += A[i*COORD_DIM+2][j]*B[i*COORD_DIM+2][j];
  2044. AdotB[i][j] = a_dot_b;
  2045. }
  2046. }
  2047. return AdotB;
  2048. }
  2049. static Real compute_inner_prod(const Vector<ElemBasis>& area_elem, const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  2050. const auto& quad_wts = ElemBasis::QuadWts();
  2051. const Long Nnodes = ElemBasis::Size();
  2052. const Long Nelem = area_elem.Dim();
  2053. const Long dof = B.Dim() / Nelem;
  2054. Real sum = 0;
  2055. for (Long i = 0; i < Nelem; i++) {
  2056. for (Long j = 0; j < Nnodes; j++) {
  2057. Real AdotB = 0;
  2058. for (Long k = 0; k < dof; k++) {
  2059. AdotB += A[i*dof+k][j] * B[i*dof+k][j];
  2060. }
  2061. sum += AdotB * area_elem[i][j] * quad_wts[j];
  2062. }
  2063. }
  2064. return sum;
  2065. }
  2066. static void compute_harmonic_vector_potentials(Vector<ElemBasis>& Jt, Vector<ElemBasis>& Jp, const Stellarator<Real,ORDER>& S) {
  2067. Comm comm = Comm::World();
  2068. Real gmres_tol = 1e-10;
  2069. Long max_iter = 100;
  2070. auto cheb2grid = [] (const Vector<ElemBasis>& X, Long Mt, Long Mp, Long Nt, Long Np) {
  2071. const Long dof = X.Dim() / (Mt * Mp);
  2072. SCTL_ASSERT(X.Dim() == Mt * Mp *dof);
  2073. Vector<Real> Xf(dof*Nt*Np); Xf = 0;
  2074. const Long Nnodes = ElemBasis::Size();
  2075. const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
  2076. for (Long t = 0; t < Nt; t++) {
  2077. for (Long p = 0; p < Np; p++) {
  2078. Real theta = t / (Real)Nt;
  2079. Real phi = p / (Real)Np;
  2080. Long i = (Long)(theta * Mt);
  2081. Long j = (Long)(phi * Mp);
  2082. Real x = theta * Mt - i;
  2083. Real y = phi * Mp - j;
  2084. Long elem_idx = i * Mp + j;
  2085. Vector<Real> Interp0(ORDER);
  2086. Vector<Real> Interp1(ORDER);
  2087. { // Set Interp0, Interp1
  2088. auto node = [&Mnodes] (Long i) {
  2089. return Mnodes[0][i];
  2090. };
  2091. for (Long i = 0; i < ORDER; i++) {
  2092. Real wt_x = 1, wt_y = 1;
  2093. for (Long j = 0; j < ORDER; j++) {
  2094. if (j != i) {
  2095. wt_x *= (x - node(j)) / (node(i) - node(j));
  2096. wt_y *= (y - node(j)) / (node(i) - node(j));
  2097. }
  2098. Interp0[i] = wt_x;
  2099. Interp1[i] = wt_y;
  2100. }
  2101. }
  2102. }
  2103. for (Long ii = 0; ii < ORDER; ii++) {
  2104. for (Long jj = 0; jj < ORDER; jj++) {
  2105. Long node_idx = jj * ORDER + ii;
  2106. for (Long k = 0; k < dof; k++) {
  2107. Xf[(k*Nt+t)*Np+p] += X[elem_idx*dof+k][node_idx] * Interp0[ii] * Interp1[jj];
  2108. }
  2109. }
  2110. }
  2111. }
  2112. }
  2113. return Xf;
  2114. };
  2115. auto grid2cheb = [] (const Vector<Real>& Xf, Long Nt, Long Np, Long Mt, Long Mp) {
  2116. Long dof = Xf.Dim() / (Nt*Np);
  2117. SCTL_ASSERT(Xf.Dim() == dof*Nt*Np);
  2118. Vector<ElemBasis> X(Mt*Mp*dof);
  2119. constexpr Integer INTERP_ORDER = 12;
  2120. for (Long tt = 0; tt < Mt; tt++) {
  2121. for (Long pp = 0; pp < Mp; pp++) {
  2122. for (Long t = 0; t < ORDER; t++) {
  2123. for (Long p = 0; p < ORDER; p++) {
  2124. Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
  2125. Real theta = (tt + Mnodes[0][t]) / Mt;
  2126. Real phi = (pp + Mnodes[0][p]) / Mp;
  2127. Long i = (Long)(theta * Nt);
  2128. Long j = (Long)(phi * Np);
  2129. Real x = theta * Nt - i;
  2130. Real y = phi * Np - j;
  2131. Vector<Real> Interp0(INTERP_ORDER);
  2132. Vector<Real> Interp1(INTERP_ORDER);
  2133. { // Set Interp0, Interp1
  2134. auto node = [] (Long i) {
  2135. return (Real)i - (INTERP_ORDER-1)/2;
  2136. };
  2137. for (Long i = 0; i < INTERP_ORDER; i++) {
  2138. Real wt_x = 1, wt_y = 1;
  2139. for (Long j = 0; j < INTERP_ORDER; j++) {
  2140. if (j != i) {
  2141. wt_x *= (x - node(j)) / (node(i) - node(j));
  2142. wt_y *= (y - node(j)) / (node(i) - node(j));
  2143. }
  2144. Interp0[i] = wt_x;
  2145. Interp1[i] = wt_y;
  2146. }
  2147. }
  2148. }
  2149. for (Long k = 0; k < dof; k++) {
  2150. Real X0 = 0;
  2151. for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  2152. for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  2153. Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  2154. Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  2155. X0 += Interp0[ii] * Interp1[jj] * Xf[(k*Nt+idx_i)*Np+idx_j];
  2156. }
  2157. }
  2158. Long elem_idx = tt * Mp + pp;
  2159. Long node_idx = p * ORDER + t;
  2160. X[elem_idx*dof+k][node_idx] = X0;
  2161. }
  2162. }
  2163. }
  2164. }
  2165. }
  2166. return X;
  2167. };
  2168. Long Nelem = S.NElem();
  2169. if (Jp.Dim() != Nelem * COORD_DIM) Jp.ReInit(Nelem * COORD_DIM);
  2170. if (Jt.Dim() != Nelem * COORD_DIM) Jt.ReInit(Nelem * COORD_DIM);
  2171. for (Long k = 0; k < S.Nsurf(); k++) {
  2172. Long Nt = S.NTor(k)*ORDER*2, Np = S.NPol(k)*ORDER*2;
  2173. const auto& X_ = S.GetElemList().ElemVector();
  2174. Vector<ElemBasis> X(S.NTor(k)*S.NPol(k)*COORD_DIM, (Iterator<ElemBasis>)X_.begin()+S.ElemDsp(k)*COORD_DIM, false);
  2175. biest::Surface<Real> SS(Nt, Np);
  2176. biest::SurfaceOp<Real> surf_op(comm, Nt, Np);
  2177. SS.Coord() = cheb2grid(X, S.NTor(k), S.NPol(k), Nt, Np);
  2178. Vector<Real> dX, d2X;
  2179. surf_op.Grad2D(dX, SS.Coord());
  2180. surf_op.Grad2D(d2X, dX);
  2181. Vector<Real> Jt_(COORD_DIM * Nt * Np);
  2182. Vector<Real> Jp_(COORD_DIM * Nt * Np);
  2183. { // Set Jt_, Jp_
  2184. Vector<Real> DivV, InvLapDivV, GradInvLapDivV;
  2185. for (Long i = 0; i < Nt*Np; i++) { // Set V
  2186. for (Long k =0; k < COORD_DIM; k++) {
  2187. Jt_[k * Nt*Np + i] = dX[(k*2+0) * Nt*Np + i];
  2188. Jp_[k * Nt*Np + i] = dX[(k*2+1) * Nt*Np + i];
  2189. }
  2190. }
  2191. surf_op.SurfDiv(DivV, dX, Jt_);
  2192. surf_op.GradInvSurfLap(GradInvLapDivV, dX, d2X, DivV, gmres_tol * max_norm(Jt_) / max_norm(DivV), max_iter, 1.5);
  2193. Jt_ = Jt_ - GradInvLapDivV;
  2194. surf_op.SurfDiv(DivV, dX, Jp_);
  2195. surf_op.GradInvSurfLap(GradInvLapDivV, dX, d2X, DivV, gmres_tol * max_norm(Jp_) / max_norm(DivV), max_iter, 1.5);
  2196. Jp_ = Jp_ - GradInvLapDivV;
  2197. }
  2198. Vector<ElemBasis> Jt__(S.NTor(k)*S.NPol(k)*COORD_DIM, (Iterator<ElemBasis>)Jt.begin()+S.ElemDsp(k)*COORD_DIM, false);
  2199. Vector<ElemBasis> Jp__(S.NTor(k)*S.NPol(k)*COORD_DIM, (Iterator<ElemBasis>)Jp.begin()+S.ElemDsp(k)*COORD_DIM, false);
  2200. Jt__ = grid2cheb(Jt_, Nt, Np, S.NTor(k), S.NPol(k));
  2201. Jp__ = grid2cheb(Jp_, Nt, Np, S.NTor(k), S.NPol(k));
  2202. }
  2203. }
  2204. static void compute_norm_area_elem(const Stellarator<Real,ORDER>& S, Vector<ElemBasis>& normal, Vector<ElemBasis>& area_elem){ // Set normal, area_elem
  2205. const Vector<ElemBasis>& X = S.GetElemList().ElemVector();
  2206. const Long Nelem = X.Dim() / COORD_DIM;
  2207. const Long Nnodes = ElemBasis::Size();
  2208. Vector<ElemBasis> dX;
  2209. ElemBasis::Grad(dX, X);
  2210. area_elem.ReInit(Nelem);
  2211. normal.ReInit(Nelem * COORD_DIM);
  2212. for (Long i = 0; i < Nelem; i++) {
  2213. for (Long j = 0; j < Nnodes; j++) {
  2214. Tensor<Real,true,COORD_DIM> x, n;
  2215. Tensor<Real,true,COORD_DIM,2> dx;
  2216. x(0) = X[i*COORD_DIM+0][j];
  2217. x(1) = X[i*COORD_DIM+1][j];
  2218. x(2) = X[i*COORD_DIM+2][j];
  2219. dx(0,0) = dX[i*COORD_DIM*2+0][j];
  2220. dx(0,1) = dX[i*COORD_DIM*2+1][j];
  2221. dx(1,0) = dX[i*COORD_DIM*2+2][j];
  2222. dx(1,1) = dX[i*COORD_DIM*2+3][j];
  2223. dx(2,0) = dX[i*COORD_DIM*2+4][j];
  2224. dx(2,1) = dX[i*COORD_DIM*2+5][j];
  2225. n(0) = dx(1,0) * dx(2,1) - dx(2,0) * dx(1,1);
  2226. n(1) = dx(2,0) * dx(0,1) - dx(0,0) * dx(2,1);
  2227. n(2) = dx(0,0) * dx(1,1) - dx(1,0) * dx(0,1);
  2228. Real area_elem_ = sqrt<Real>(n(0)*n(0) + n(1)*n(1) + n(2)*n(2));
  2229. Real ooae = 1 / area_elem_;
  2230. n(0) *= ooae;
  2231. n(1) *= ooae;
  2232. n(2) *= ooae;
  2233. normal[i*COORD_DIM+0][j] = n(0);
  2234. normal[i*COORD_DIM+1][j] = n(1);
  2235. normal[i*COORD_DIM+2][j] = n(2);
  2236. area_elem[i][j] = area_elem_;
  2237. }
  2238. }
  2239. }
  2240. static Vector<ElemBasis> compute_B(const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  2241. const Long Nelem = S.NElem();
  2242. Vector<ElemBasis> B(S.NElem() * COORD_DIM);
  2243. if (sigma.Dim()) {
  2244. const Long Nnodes = ElemBasis::Size();
  2245. Vector<ElemBasis> normal, area_elem;
  2246. compute_norm_area_elem(S, normal, area_elem);
  2247. if (S.Nsurf() == 2) {
  2248. Long Nelem0 = S.NTor(0)*S.NPol(0);
  2249. for (Long i = 0; i < Nelem0*COORD_DIM; i++) {
  2250. for (Long j = 0; j < Nnodes; j++) {
  2251. normal[i][j] *= -1.0;
  2252. }
  2253. }
  2254. }
  2255. EvalQuadrature(B, S.quadrature_FxdU, S, sigma, S.Laplace_FxdU);
  2256. for (Long i = 0; i < Nelem; i++) {
  2257. for (Long j = 0; j < Nnodes; j++) {
  2258. for (Long k = 0; k < COORD_DIM; k++) {
  2259. B[i*COORD_DIM+k][j] -= 0.5*sigma[i][j]*normal[i*COORD_DIM+k][j];
  2260. }
  2261. }
  2262. }
  2263. } else {
  2264. B = 0;
  2265. }
  2266. if (S.Nsurf() >= 1) B += S.Bt0*alpha;
  2267. if (S.Nsurf() >= 2) B += S.Bp0*beta;
  2268. return B;
  2269. }
  2270. static Vector<ElemBasis> compute_dB(const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  2271. const Long Nelem = S.NElem();
  2272. Vector<ElemBasis> dB(S.NElem() * COORD_DIM * COORD_DIM);
  2273. if (sigma.Dim()) {
  2274. EvalQuadrature(dB, S.quadrature_Fxd2U, S, sigma, S.Laplace_Fxd2U);
  2275. } else {
  2276. dB = 0;
  2277. }
  2278. if (S.Nsurf() >= 1) dB += S.dBt0*alpha;
  2279. if (S.Nsurf() >= 2) dB += S.dBp0*beta;
  2280. return dB;
  2281. }
  2282. static void compute_flux(Real& flux_tor, Real& flux_pol, const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& B, const Vector<ElemBasis>& normal) {
  2283. const Long Nelem = S.NElem();
  2284. const Long Nnodes = ElemBasis::Size();
  2285. SCTL_ASSERT(B.Dim() == Nelem*COORD_DIM);
  2286. SCTL_ASSERT(normal.Dim() == Nelem*COORD_DIM);
  2287. Vector<ElemBasis> J(Nelem * COORD_DIM);
  2288. for (Long i = 0; i < Nelem; i++) { // Set J
  2289. for (Long j = 0; j < Nnodes; j++) {
  2290. Tensor<Real,true,COORD_DIM> b, n;
  2291. b(0) = B[i*COORD_DIM+0][j];
  2292. b(1) = B[i*COORD_DIM+1][j];
  2293. b(2) = B[i*COORD_DIM+2][j];
  2294. n(0) = normal[i*COORD_DIM+0][j];
  2295. n(1) = normal[i*COORD_DIM+1][j];
  2296. n(2) = normal[i*COORD_DIM+2][j];
  2297. J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
  2298. J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
  2299. J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
  2300. }
  2301. }
  2302. Vector<ElemBasis> A;
  2303. EvalQuadrature(A, S.quadrature_FxU, S, J, S.Laplace_FxU);
  2304. Vector<Real> circ_pol(S.Nsurf()), circ_tor(S.Nsurf());
  2305. { // compute circ
  2306. Vector<ElemBasis> dX;
  2307. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2308. const auto& quad_wts = ElemBasis::QuadWts();
  2309. for (Long k = 0; k < S.Nsurf(); k++) {
  2310. circ_pol[k] = 0;
  2311. circ_tor[k] = 0;
  2312. Long Ndsp = S.ElemDsp(k);
  2313. for (Long i = 0; i < S.NTor(k)*S.NPol(k); i++) {
  2314. for (Long j = 0; j < Nnodes; j++) {
  2315. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+1][j] * quad_wts[j] / S.NTor(k);
  2316. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+3][j] * quad_wts[j] / S.NTor(k);
  2317. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+5][j] * quad_wts[j] / S.NTor(k);
  2318. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+0][j] * quad_wts[j] / S.NPol(k);
  2319. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+2][j] * quad_wts[j] / S.NPol(k);
  2320. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+4][j] * quad_wts[j] / S.NPol(k);
  2321. }
  2322. }
  2323. }
  2324. }
  2325. if (S.Nsurf() == 1) {
  2326. flux_tor = circ_pol[0];
  2327. flux_pol = 0;
  2328. } else if (S.Nsurf() == 2) {
  2329. flux_tor = circ_pol[1] - circ_pol[0];
  2330. flux_pol = circ_tor[0] - circ_tor[1];
  2331. } else {
  2332. SCTL_ASSERT(false);
  2333. }
  2334. }
  2335. static Vector<Real> compute_A(const Stellarator<Real,ORDER>& S, const Vector<Real>& x) {
  2336. const Long Nelem = S.NElem();
  2337. const Long Nnodes = ElemBasis::Size();
  2338. SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
  2339. Vector<ElemBasis> normal, area_elem;
  2340. compute_norm_area_elem(S, normal, area_elem);
  2341. if (S.Nsurf() == 2) {
  2342. Long Nelem0 = S.NTor(0)*S.NPol(0);
  2343. for (Long i = 0; i < Nelem0*COORD_DIM; i++) {
  2344. for (Long j = 0; j < Nnodes; j++) {
  2345. normal[i][j] *= -1.0;
  2346. }
  2347. }
  2348. }
  2349. Vector<ElemBasis> sigma(Nelem);
  2350. for (Long i = 0; i < Nelem; i++) {
  2351. for (Long j = 0; j < Nnodes; j++) {
  2352. sigma[i][j] = x[i*Nnodes+j];
  2353. }
  2354. }
  2355. Real alpha = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
  2356. Real beta = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
  2357. Vector<ElemBasis> B = compute_B(S, sigma, alpha, beta);
  2358. Vector<ElemBasis> BdotN = compute_dot_prod(B, normal);
  2359. Real flux_tor, flux_pol;
  2360. compute_flux(flux_tor, flux_pol, S, B, normal);
  2361. Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
  2362. for (Long i = 0; i < Nelem; i++) {
  2363. for (Long j = 0; j < Nnodes; j++) {
  2364. Ax[i*Nnodes+j] = BdotN[i][j];
  2365. }
  2366. }
  2367. if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = flux_tor;
  2368. if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = flux_pol;
  2369. return Ax;
  2370. }
  2371. static void compute_invA(Vector<ElemBasis>& sigma, Real& alpha, Real& beta, const Stellarator<Real,ORDER>& S, Vector<ElemBasis>& Bdotn, Real flux_tor, Real flux_pol, const Comm& comm) {
  2372. typename ParallelSolver<Real>::ParallelOp BIOp = [&S](Vector<Real>* Ax, const Vector<Real>& x) {
  2373. (*Ax) = compute_A(S, x);
  2374. };
  2375. const Long Nelem = S.NElem();
  2376. const Long Nnodes = ElemBasis::Size();
  2377. Vector<Real> rhs_(Nelem * Nnodes + S.Nsurf());
  2378. for (Long i = 0; i < Nelem; i++) {
  2379. for (Long j = 0; j < Nnodes; j++) {
  2380. rhs_[i*Nnodes+j] = Bdotn[i][j];
  2381. }
  2382. }
  2383. if (S.Nsurf() >= 1) rhs_[Nelem * Nnodes + 0] = flux_tor;
  2384. if (S.Nsurf() >= 2) rhs_[Nelem * Nnodes + 1] = flux_pol;
  2385. Vector<Real> x_(Nelem * Nnodes + S.Nsurf());
  2386. x_ = 0;
  2387. ParallelSolver<Real> linear_solver(comm, true);
  2388. linear_solver(&x_, BIOp, rhs_, 1e-10, 100);
  2389. sigma.ReInit(Nelem);
  2390. for (Long i = 0; i < Nelem; i++) {
  2391. for (Long j = 0; j < Nnodes; j++) {
  2392. sigma[i][j] = x_[i*Nnodes+j];
  2393. }
  2394. }
  2395. alpha = (S.Nsurf() >= 1 ? x_[Nelem * Nnodes + 0] : 0);
  2396. beta = (S.Nsurf() >= 2 ? x_[Nelem * Nnodes + 1] : 0);
  2397. };
  2398. static void compute_invA(Vector<ElemBasis>& sigma, Real& alpha, Real& beta, const Stellarator<Real,ORDER>& S, Real flux_tor, Real flux_pol, const Comm& comm) {
  2399. Vector<ElemBasis> Bdotn(S.NElem());
  2400. Bdotn = 0;
  2401. compute_invA(sigma, alpha, beta, S, Bdotn, flux_tor, flux_pol, comm);
  2402. }
  2403. static Vector<Real> compute_Aadj(const Stellarator<Real,ORDER>& S, const Vector<Real>& x) {
  2404. const Long Nelem = S.NElem();
  2405. const Long Nnodes = ElemBasis::Size();
  2406. SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
  2407. Vector<ElemBasis> normal, area_elem;
  2408. compute_norm_area_elem(S, normal, area_elem);
  2409. if (S.Nsurf() == 2) {
  2410. Long Nelem0 = S.NTor(0)*S.NPol(0);
  2411. for (Long i = 0; i < Nelem0*COORD_DIM; i++) {
  2412. for (Long j = 0; j < Nnodes; j++) {
  2413. normal[i][j] *= -1.0;
  2414. }
  2415. }
  2416. }
  2417. Vector<ElemBasis> x0(Nelem);
  2418. for (Long i = 0; i < Nelem; i++) {
  2419. for (Long j = 0; j < Nnodes; j++) {
  2420. x0[i][j] = x[i*Nnodes+j];
  2421. }
  2422. }
  2423. Real x1 = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
  2424. Real x2 = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
  2425. Vector<ElemBasis> Ax0;
  2426. Real Ax1, Ax2;
  2427. { // Set Ax0, Ax1, Ax2
  2428. Vector<ElemBasis> x0_n(Nelem*COORD_DIM);
  2429. for (Long i = 0; i < Nelem; i++) {
  2430. for (Long j = 0; j < Nnodes; j++) {
  2431. x0_n[i*COORD_DIM+0][j] = x0[i][j] * normal[i*COORD_DIM+0][j];
  2432. x0_n[i*COORD_DIM+1][j] = x0[i][j] * normal[i*COORD_DIM+1][j];
  2433. x0_n[i*COORD_DIM+2][j] = x0[i][j] * normal[i*COORD_DIM+2][j];
  2434. }
  2435. }
  2436. EvalQuadrature(Ax0, S.quadrature_dUxF, S, x0_n, S.Laplace_dUxF);
  2437. Ax0 = x0*(-0.5) - Ax0;
  2438. Ax1 = (S.Nsurf() >= 1 ? compute_inner_prod(area_elem, compute_dot_prod(S.Bt0, normal), x0) : 0);
  2439. Ax2 = (S.Nsurf() >= 2 ? compute_inner_prod(area_elem, compute_dot_prod(S.Bp0, normal), x0) : 0);
  2440. }
  2441. // TODO: precompute A21adj, A22adj
  2442. auto compute_A21adj = [&S,&normal,&area_elem] (bool toroidal_flux) {
  2443. const Long Nelem = S.NElem();
  2444. const Long Nnodes = ElemBasis::Size();
  2445. Vector<ElemBasis> density(Nelem * COORD_DIM);
  2446. { // Set density
  2447. Real scal[2];
  2448. if (S.Nsurf() == 1) {
  2449. SCTL_ASSERT(toroidal_flux == true);
  2450. scal[0] = 1.0 / S.NTor(0);
  2451. scal[1] = 0;
  2452. } else if (S.Nsurf() == 2) {
  2453. if (toroidal_flux == true) {
  2454. scal[0] = -1.0 / S.NTor(0);
  2455. scal[1] = 1.0 / S.NTor(1);
  2456. } else {
  2457. scal[0] = 1.0 / S.NPol(0);
  2458. scal[1] = -1.0 / S.NPol(1);
  2459. }
  2460. } else {
  2461. SCTL_ASSERT(false);
  2462. }
  2463. Vector<ElemBasis> dX;
  2464. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2465. for (Long k = 0; k < S.Nsurf(); k++) {
  2466. for (Long i_ = 0; i_ < S.NTor(k)*S.NPol(k); i_++) {
  2467. Long i = S.ElemDsp(k) + i_;
  2468. for (Long j = 0; j < Nnodes; j++) {
  2469. Real s = scal[k] / area_elem[i][j];
  2470. density[i*COORD_DIM+0][j] = dX[i*COORD_DIM*2+0+(toroidal_flux?1:0)][j] * s;
  2471. density[i*COORD_DIM+1][j] = dX[i*COORD_DIM*2+2+(toroidal_flux?1:0)][j] * s;
  2472. density[i*COORD_DIM+2][j] = dX[i*COORD_DIM*2+4+(toroidal_flux?1:0)][j] * s;
  2473. }
  2474. }
  2475. }
  2476. }
  2477. Vector<ElemBasis> Gdensity, nxGdensity(Nelem * COORD_DIM), A21adj;
  2478. EvalQuadrature(Gdensity, S.quadrature_FxU, S, density, S.Laplace_FxU);
  2479. for (Long i = 0; i < Nelem; i++) { // Set nxGdensity
  2480. for (Long j = 0; j < Nnodes; j++) {
  2481. Tensor<Real,true,COORD_DIM> Gdensity_, n;
  2482. Gdensity_(0) = Gdensity[i*COORD_DIM+0][j];
  2483. Gdensity_(1) = Gdensity[i*COORD_DIM+1][j];
  2484. Gdensity_(2) = Gdensity[i*COORD_DIM+2][j];
  2485. n(0) = normal[i*COORD_DIM+0][j];
  2486. n(1) = normal[i*COORD_DIM+1][j];
  2487. n(2) = normal[i*COORD_DIM+2][j];
  2488. nxGdensity[i*COORD_DIM+0][j] = n(1) * Gdensity_(2) - n(2) * Gdensity_(1);
  2489. nxGdensity[i*COORD_DIM+1][j] = n(2) * Gdensity_(0) - n(0) * Gdensity_(2);
  2490. nxGdensity[i*COORD_DIM+2][j] = n(0) * Gdensity_(1) - n(1) * Gdensity_(0);
  2491. }
  2492. }
  2493. EvalQuadrature(A21adj, S.quadrature_dUxF, S, nxGdensity, S.Laplace_dUxF);
  2494. return A21adj;
  2495. };
  2496. if (S.Nsurf() >= 1) Ax0 += compute_A21adj( true) * x1;
  2497. if (S.Nsurf() >= 2) Ax0 += compute_A21adj(false) * x2;
  2498. if (S.Nsurf() == 1) { // Add flux part of Ax1, Ax2
  2499. Real flux_tor, flux_pol;
  2500. compute_flux(flux_tor, flux_pol, S, S.Bt0, normal);
  2501. Ax1 += flux_tor * x1;
  2502. Ax2 += 0;
  2503. } else if (S.Nsurf() == 2) {
  2504. Real flux_tor, flux_pol;
  2505. compute_flux(flux_tor, flux_pol, S, S.Bt0, normal);
  2506. Ax1 += flux_tor * x1 + flux_pol * x2;
  2507. compute_flux(flux_tor, flux_pol, S, S.Bp0, normal);
  2508. Ax2 += flux_tor * x1 + flux_pol * x2;
  2509. } else {
  2510. SCTL_ASSERT(false);
  2511. }
  2512. Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
  2513. for (Long i = 0; i < Nelem; i++) {
  2514. for (Long j = 0; j < Nnodes; j++) {
  2515. Ax[i*Nnodes+j] = Ax0[i][j];
  2516. }
  2517. }
  2518. if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = Ax1;
  2519. if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = Ax2;
  2520. return Ax;
  2521. }
  2522. static Vector<Real> compute_invAadj(const Stellarator<Real,ORDER>& S, const Vector<Real>& b, const Comm& comm) {
  2523. typename ParallelSolver<Real>::ParallelOp BIOp = [&S](Vector<Real>* Ax, const Vector<Real>& x) {
  2524. (*Ax) = compute_Aadj(S,x);
  2525. };
  2526. const Long Nelem = S.NElem();
  2527. const Long Nnodes = ElemBasis::Size();
  2528. Vector<Real> x(b.Dim());
  2529. x = 0;
  2530. ParallelSolver<Real> linear_solver(comm, true);
  2531. linear_solver(&x, BIOp, b, 1e-8, 100);
  2532. return x;
  2533. }
  2534. static Vector<ElemBasis> compute_pressure_jump(const Vector<Stellarator<Real,ORDER>>& Svec, const Vector<Real>& pressure) {
  2535. const Long Nnodes = ElemBasis::Size();
  2536. const Long Nsurf = Svec.Dim();
  2537. SCTL_ASSERT(pressure.Dim() == Nsurf);
  2538. Vector<Vector<ElemBasis>> total_pressure(Nsurf);
  2539. for (Long i = 0; i < Nsurf; i++) { // Set total_pressure
  2540. const Long Nelem = Svec[i].NElem();
  2541. const auto& B = Svec[i].B;
  2542. total_pressure[i].ReInit(Nelem);
  2543. for (Long j = 0; j < Nelem; j++) {
  2544. for (Long k = 0; k < Nnodes; k++) {
  2545. Real B2 = 0;
  2546. B2 += B[j*COORD_DIM+0][k] * B[j*COORD_DIM+0][k];
  2547. B2 += B[j*COORD_DIM+1][k] * B[j*COORD_DIM+1][k];
  2548. B2 += B[j*COORD_DIM+2][k] * B[j*COORD_DIM+2][k];
  2549. total_pressure[i][j][k] = 0.5 * B2 + pressure[i];
  2550. }
  2551. }
  2552. }
  2553. Vector<Long> elem_cnt, elem_dsp;
  2554. for (Long i = 0; i < Nsurf; i++) {
  2555. if (i == 0) {
  2556. elem_cnt.PushBack(Svec[i].NTor(0) * Svec[i].NPol(0));
  2557. elem_dsp.PushBack(0);
  2558. } else {
  2559. elem_cnt.PushBack(Svec[i].NTor(1) * Svec[i].NPol(1));
  2560. elem_dsp.PushBack(elem_dsp[i-1] + elem_cnt[i-1]);
  2561. }
  2562. }
  2563. Vector<ElemBasis> pressure_jump(elem_dsp[Nsurf-1] + elem_cnt[Nsurf-1]);
  2564. pressure_jump = 0;
  2565. for (Long i = 0; i < Nsurf-1; i++) { // Set pressure_jump
  2566. Long Nelem, offset;
  2567. if (i == 0) {
  2568. offset = 0;
  2569. Nelem = Svec[i].NTor(0) * Svec[i].NPol(0);
  2570. } else {
  2571. offset = Svec[i].NTor(0) * Svec[i].NPol(0);
  2572. Nelem = Svec[i].NTor(1) * Svec[i].NPol(1);
  2573. }
  2574. for (Long j = 0; j < Nelem; j++) {
  2575. for (Long k = 0; k < Nnodes; k++) {
  2576. Real T0 = total_pressure[i][offset+j][k];
  2577. Real T1 = (i+1<Nsurf ? total_pressure[i+1][j][k] : 0);
  2578. pressure_jump[elem_dsp[i]+j][k] = T1 - T0;
  2579. }
  2580. }
  2581. }
  2582. return pressure_jump;
  2583. }
  2584. static void compute_gvec(const Vector<Stellarator<Real,ORDER>>& Svec, const Vector<Real>& pressure) {
  2585. Vector<ElemBasis> pressure_jump = compute_pressure_jump(Svec, pressure);
  2586. const Long Nnodes = ElemBasis::Size();
  2587. const Long Nsurf = Svec.Dim();
  2588. Long elem_offset = 0;
  2589. for (Long i = 0; i < Nsurf; i++) { // Allocate
  2590. Svec[i].gvec.ReInit(Svec[i].NElem());
  2591. Svec[i].gvec = 0;
  2592. }
  2593. for (Long i = 0; i < Nsurf-1; i++) { // Set gvec
  2594. Long Nelem, offset;
  2595. if (i == 0) {
  2596. offset = 0;
  2597. Nelem = Svec[i].NTor(0) * Svec[i].NPol(0);
  2598. } else {
  2599. offset = Svec[i].NTor(0) * Svec[i].NPol(0);
  2600. Nelem = Svec[i].NTor(1) * Svec[i].NPol(1);
  2601. }
  2602. for (Long j = 0; j < Nelem; j++) {
  2603. for (Long k = 0; k < Nnodes; k++) {
  2604. Real jump = pressure_jump[elem_offset+j][k];
  2605. Svec[i].gvec[offset+j][k] = 0.5 * jump * jump;
  2606. if (i+1<Nsurf) Svec[i+1].gvec[j][k] = 0.5 * jump * jump;
  2607. }
  2608. }
  2609. elem_offset += Nelem;
  2610. }
  2611. }
  2612. static void compute_dgdB(const Vector<Stellarator<Real,ORDER>>& Svec, const Vector<Real>& pressure) {
  2613. Vector<ElemBasis> pressure_jump = compute_pressure_jump(Svec, pressure);
  2614. const Long Nnodes = ElemBasis::Size();
  2615. const Long Nsurf = Svec.Dim();
  2616. Long elem_offset = 0;
  2617. for (Long i = 0; i < Nsurf; i++) { // Allocate
  2618. Svec[i].dgdB.ReInit(Svec[i].NElem() * COORD_DIM);
  2619. Svec[i].dgdB = 0;
  2620. }
  2621. for (Long i = 0; i < Nsurf-1; i++) { // Set dgdB
  2622. Long Nelem, offset;
  2623. if (i == 0) {
  2624. offset = 0;
  2625. Nelem = Svec[i].NTor(0) * Svec[i].NPol(0);
  2626. } else {
  2627. offset = Svec[i].NTor(0) * Svec[i].NPol(0);
  2628. Nelem = Svec[i].NTor(1) * Svec[i].NPol(1);
  2629. }
  2630. for (Long j = 0; j < Nelem; j++) {
  2631. for (Long k = 0; k < Nnodes; k++) {
  2632. Real jump = pressure_jump[elem_offset+j][k];
  2633. Svec[i].dgdB[(offset+j)*COORD_DIM+0][k] = -jump * Svec[i].B[(offset+j)*COORD_DIM+0][k];
  2634. Svec[i].dgdB[(offset+j)*COORD_DIM+1][k] = -jump * Svec[i].B[(offset+j)*COORD_DIM+1][k];
  2635. Svec[i].dgdB[(offset+j)*COORD_DIM+2][k] = -jump * Svec[i].B[(offset+j)*COORD_DIM+2][k];
  2636. if (i+1<Nsurf) {
  2637. Svec[i+1].dgdB[j*COORD_DIM+0][k] = jump * Svec[i+1].B[j*COORD_DIM+0][k];
  2638. Svec[i+1].dgdB[j*COORD_DIM+1][k] = jump * Svec[i+1].B[j*COORD_DIM+1][k];
  2639. Svec[i+1].dgdB[j*COORD_DIM+2][k] = jump * Svec[i+1].B[j*COORD_DIM+2][k];
  2640. }
  2641. }
  2642. }
  2643. elem_offset += Nelem;
  2644. }
  2645. }
  2646. static Real compute_g(const Vector<Stellarator<Real,ORDER>>& Svec, const Vector<Real>& pressure) {
  2647. Real g = 0;
  2648. compute_gvec(Svec, pressure);
  2649. for (Long i = 0; i < Svec.Dim(); i++) { // Set gvec
  2650. Vector<ElemBasis> normal, area_elem, wt(Svec[i].NElem());
  2651. compute_norm_area_elem(Svec[i], normal, area_elem);
  2652. wt = 0.5;
  2653. if (i == Svec.Dim()-1) {
  2654. Long Nsurf = Svec[i].Nsurf();
  2655. Long Nelem = Svec[i].NTor(Nsurf-1) * Svec[i].NPol(Nsurf-1);
  2656. Long offset = Svec[i].ElemDsp(Nsurf-1);
  2657. for (Long j = 0; j < Nelem; j++) {
  2658. wt[offset + j] = 1.0;
  2659. }
  2660. }
  2661. g += compute_inner_prod(area_elem, Svec[i].gvec, wt);
  2662. }
  2663. return g;
  2664. }
  2665. Stellarator(const Vector<Long>& NtNp = Vector<Long>()) {
  2666. NtNp_ = NtNp;
  2667. Long Nsurf = NtNp_.Dim() / 2;
  2668. SCTL_ASSERT(Nsurf*2 == NtNp_.Dim());
  2669. Long Nelem = 0;
  2670. elem_dsp.ReInit(Nsurf+1);
  2671. elem_dsp[0] = 0;
  2672. for (Long i = 0; i < Nsurf; i++) {
  2673. Nelem += NtNp_[i*2+0]*NtNp_[i*2+1];
  2674. elem_dsp[i+1] = Nelem;
  2675. }
  2676. elements.ReInit(Nelem);
  2677. for (Long i = 0; i < Nsurf; i++) {
  2678. InitSurf(i, this->Nsurf());
  2679. }
  2680. }
  2681. Long ElemIdx(Long s, Long t, Long p) {
  2682. SCTL_ASSERT(0 <= s && s < Nsurf());
  2683. SCTL_ASSERT(0 <= t && t < NtNp_[s*2+0]);
  2684. SCTL_ASSERT(0 <= p && p < NtNp_[s*2+1]);
  2685. return elem_dsp[s] + t*NtNp_[s*2+1] + p;
  2686. }
  2687. ElemBasis& Elem(Long elem, Integer dim) {
  2688. return elements(elem,dim);
  2689. }
  2690. const ElemBasis& Elem(Long elem, Integer dim) const {
  2691. return elements(elem,dim);
  2692. }
  2693. const ElemLst& GetElemList() const {
  2694. return elements;
  2695. }
  2696. Long Nsurf() const {
  2697. return elem_dsp.Dim()-1;
  2698. }
  2699. Long ElemDsp(Long s) const {
  2700. return elem_dsp[s];
  2701. }
  2702. Long NTor(Long s) const {
  2703. return NtNp_[s*2+0];
  2704. }
  2705. Long NPol(Long s) const {
  2706. return NtNp_[s*2+1];
  2707. }
  2708. Long NElem() const {
  2709. return elements.NElem();
  2710. }
  2711. static Vector<ElemBasis> compute_gradient(const Stellarator<Real,ORDER>& S_, const Vector<Real>& pressure, const Vector<Real>& flux_tor_, const Vector<Real>& flux_pol_, Real* g_ptr = nullptr) {
  2712. Comm comm = Comm::World();
  2713. Vector<Stellarator<Real,ORDER>> Svec(S_.Nsurf());
  2714. for (Long i = 0; i < S_.Nsurf(); i++) { // Set Svec[i] (quadratures, B)
  2715. const Long elem_dsp = (i==0 ? 0 : S_.ElemDsp(i-1));
  2716. const Long Nnodes = ElemBasis::Size();
  2717. Stellarator<Real,ORDER>& S = Svec[i];
  2718. if (i == 0) { // Init S
  2719. Vector<Long> NtNp;
  2720. NtNp.PushBack(S_.NTor(i));
  2721. NtNp.PushBack(S_.NPol(i));
  2722. S = Stellarator<Real,ORDER>(NtNp);
  2723. } else {
  2724. Vector<Long> NtNp;
  2725. NtNp.PushBack(S_.NTor(i-1));
  2726. NtNp.PushBack(S_.NPol(i-1));
  2727. NtNp.PushBack(S_.NTor(i));
  2728. NtNp.PushBack(S_.NPol(i));
  2729. S = Stellarator<Real,ORDER>(NtNp);
  2730. }
  2731. for (Long j = 0; j < S.NElem(); j++) { // Set S coordinates
  2732. for (Long k = 0; k < Nnodes; k++) {
  2733. S.Elem(j,0)[k] = S_.Elem(elem_dsp+j,0)[k];
  2734. S.Elem(j,1)[k] = S_.Elem(elem_dsp+j,1)[k];
  2735. S.Elem(j,2)[k] = S_.Elem(elem_dsp+j,2)[k];
  2736. }
  2737. }
  2738. SetupQuadrature(S.quadrature_dBS , S, S.BiotSavartGrad, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  2739. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  2740. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  2741. SetupQuadrature(S.quadrature_FxdU , S, S.Laplace_FxdU , order_singular, order_direct, -1.0, comm);
  2742. SetupQuadrature(S.quadrature_dUxF , S, S.Laplace_dUxF , order_singular, order_direct, -1.0, comm);
  2743. SetupQuadrature(S.quadrature_dUxD , S, S.Laplace_dUxD , order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  2744. SetupQuadrature(S.quadrature_Fxd2U, S, S.Laplace_Fxd2U , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  2745. { // Set Bt0, Bp0, dBt0, dBp0
  2746. Vector<ElemBasis> Jt, Jp;
  2747. compute_harmonic_vector_potentials(Jt, Jp, S);
  2748. EvalQuadrature(S.Bt0 , S.quadrature_BS , S, Jp, S.BiotSavart);
  2749. EvalQuadrature(S.Bp0 , S.quadrature_BS , S, Jt, S.BiotSavart);
  2750. EvalQuadrature(S.dBt0, S.quadrature_dBS, S, Jp, S.BiotSavartGrad);
  2751. EvalQuadrature(S.dBp0, S.quadrature_dBS, S, Jt, S.BiotSavartGrad);
  2752. }
  2753. compute_invA(S.sigma, S.alpha, S.beta, S, flux_tor_[i], flux_pol_[i], comm);
  2754. S.B = compute_B(S, S.sigma, S.alpha, S.beta);
  2755. if (0) { // Write VTU
  2756. VTUData vtu;
  2757. vtu.AddElems(S.GetElemList(), S.sigma, ORDER);
  2758. vtu.WriteVTK("sigma"+std::to_string(i), comm);
  2759. }
  2760. if (0) { // Write VTU
  2761. VTUData vtu;
  2762. vtu.AddElems(S.GetElemList(), S.B, ORDER);
  2763. vtu.WriteVTK("B"+std::to_string(i), comm);
  2764. }
  2765. }
  2766. compute_gvec(Svec, pressure);
  2767. compute_dgdB(Svec, pressure);
  2768. if (g_ptr != nullptr) g_ptr[0] = compute_g(Svec, pressure);
  2769. auto compute_gradient = [&comm] (const Stellarator<Real,ORDER>& S) {
  2770. const Long Nnodes = ElemBasis::Size();
  2771. const Long Nelem = S.NElem();
  2772. const auto& sigma = S.sigma;
  2773. const auto& alpha = S.alpha;
  2774. const auto& beta = S.beta;
  2775. const auto& B = S.B;
  2776. Vector<ElemBasis> normal, area_elem;
  2777. compute_norm_area_elem(S, normal, area_elem);
  2778. if (S.Nsurf() == 2) {
  2779. Long Nelem0 = S.NTor(0)*S.NPol(0);
  2780. for (Long i = 0; i < Nelem0*COORD_DIM; i++) {
  2781. for (Long j = 0; j < Nnodes; j++) {
  2782. normal[i][j] *= -1.0;
  2783. }
  2784. }
  2785. }
  2786. auto compute_H = [] (const ElemList<COORD_DIM,ElemBasis>& elem_lst, const Vector<ElemBasis>& normal) {
  2787. const Long Nnodes = ElemBasis::Size();
  2788. const Long Nelem = elem_lst.NElem();
  2789. const Vector<ElemBasis> X = elem_lst.ElemVector();
  2790. Vector<ElemBasis> dX, d2X, H(Nelem);
  2791. ElemBasis::Grad(dX, X);
  2792. ElemBasis::Grad(d2X, dX);
  2793. for (Long i = 0; i < Nelem; i++) {
  2794. for (Long j = 0; j < Nnodes; j++) {
  2795. Tensor<Real,true,2,2> I, invI, II;
  2796. for (Long k0 = 0; k0 < 2; k0++) {
  2797. for (Long k1 = 0; k1 < 2; k1++) {
  2798. I(k0,k1) = 0;
  2799. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  2800. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  2801. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  2802. II(k0,k1) = 0;
  2803. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  2804. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  2805. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  2806. }
  2807. }
  2808. { // Set invI
  2809. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  2810. invI(0,0) = I(1,1) / detI;
  2811. invI(0,1) = -I(0,1) / detI;
  2812. invI(1,0) = -I(1,0) / detI;
  2813. invI(1,1) = I(0,0) / detI;
  2814. }
  2815. { // Set H
  2816. H[i][j] = 0;
  2817. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  2818. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  2819. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  2820. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  2821. }
  2822. }
  2823. }
  2824. return H;
  2825. };
  2826. Vector<ElemBasis> H = compute_H(S.GetElemList(), normal);
  2827. auto compute_dg_dnu = [&S,&normal,&area_elem,&H]() { // dg_dnu = (B*B) 2H - (2 B) \cdot (n \cdnot nabla) \nabla G[sigma] + (2 B) \alpha dB0_dnu \hat{\theta} + sigma (\nabla D)^T [2 B] + (2H) sigma (\nabla G)^T [2 B]
  2828. const Long Nelem = S.NElem();
  2829. const Long Nnodes = ElemBasis::Size();
  2830. const Vector<ElemBasis>& gvec = S.gvec;
  2831. const Vector<ElemBasis>& v = S.dgdB;
  2832. const auto& sigma = S.sigma;
  2833. const auto& alpha = S.alpha;
  2834. const auto& beta = S.beta;
  2835. const auto& B = S.B;
  2836. Vector<ElemBasis> dg_dnu0(Nelem), dg_dnu1(Nelem), dg_dnu2(Nelem), dg_dnu3(Nelem), dg_dnu4(Nelem);
  2837. dg_dnu0 = 0;
  2838. dg_dnu1 = 0;
  2839. dg_dnu2 = 0;
  2840. dg_dnu3 = 0;
  2841. dg_dnu4 = 0;
  2842. // dg_dnu0 = (B*B) 2H
  2843. for (Long i = 0; i < Nelem; i++) {
  2844. for (Long j = 0; j < Nnodes; j++) {
  2845. dg_dnu0[i][j] = gvec[i][j] * (2.0*H[i][j]) * 0.5;
  2846. // multiplicative factor 0.5 is there so that this term is not
  2847. // counted twice from shape derivative of regions on either side
  2848. // of the domain.
  2849. }
  2850. }
  2851. // dg_dnu1 = (2 B) \cdot (n \cdnot \nabla) B
  2852. Vector<ElemBasis> dB = compute_dB(S, sigma, alpha, beta);
  2853. for (Long i = 0; i < Nelem; i++) {
  2854. for (Long j = 0; j < Nnodes; j++) {
  2855. dg_dnu1[i][j] = 0;
  2856. dg_dnu1[i][j] -= dB[i*9+0][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
  2857. dg_dnu1[i][j] -= dB[i*9+1][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
  2858. dg_dnu1[i][j] -= dB[i*9+2][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
  2859. dg_dnu1[i][j] -= dB[i*9+3][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
  2860. dg_dnu1[i][j] -= dB[i*9+4][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
  2861. dg_dnu1[i][j] -= dB[i*9+5][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
  2862. dg_dnu1[i][j] -= dB[i*9+6][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
  2863. dg_dnu1[i][j] -= dB[i*9+7][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
  2864. dg_dnu1[i][j] -= dB[i*9+8][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
  2865. }
  2866. }
  2867. // dg_dnu3 = (sigma (\nabla D)^T [2 B]
  2868. Vector<ElemBasis> nablaDtv;
  2869. EvalQuadrature(nablaDtv, S.quadrature_dUxD, S, v, S.Laplace_dUxD);
  2870. for (Long i = 0; i < Nelem; i++) {
  2871. for (Long j = 0; j < Nnodes; j++) {
  2872. dg_dnu3[i][j] = 0;
  2873. dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  2874. dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  2875. dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  2876. }
  2877. }
  2878. // dg_dnu4 = (2H) sigma (\nabla G)^T [2 B]
  2879. EvalQuadrature(dg_dnu4, S.quadrature_dUxF, S, v, S.Laplace_dUxF);
  2880. for (Long i = 0; i < Nelem; i++) {
  2881. for (Long j = 0; j < Nnodes; j++) {
  2882. dg_dnu4[i][j] += 0.5 * v[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  2883. dg_dnu4[i][j] += 0.5 * v[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  2884. dg_dnu4[i][j] += 0.5 * v[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  2885. dg_dnu4[i][j] *= 2*H[i][j] * sigma[i][j];
  2886. }
  2887. }
  2888. return dg_dnu0 + dg_dnu1 + dg_dnu3 - dg_dnu4;
  2889. };
  2890. Vector<ElemBasis> dg_dnu = compute_dg_dnu();
  2891. auto compute_dg_dsigma = [&S,&normal,&area_elem] () {
  2892. const Long Nnodes = ElemBasis::Size();
  2893. const Long Nelem = S.NElem();
  2894. const auto& B = S.B;
  2895. const Vector<ElemBasis>& dgdB = S.dgdB;
  2896. auto compute_dg_dsigma = [&S,&B,&dgdB,&normal]() { // dg_dsigma = \int 2 B \cdot (\nabla G + n/2)
  2897. Vector<ElemBasis> B_dot_gradG;
  2898. EvalQuadrature(B_dot_gradG, S.quadrature_dUxF, S, dgdB, S.Laplace_dUxF);
  2899. return B_dot_gradG * (-1.0) + compute_dot_prod(dgdB,normal) * 0.5;
  2900. };
  2901. auto compute_dg_dalpha = [&S,&B,&dgdB,&area_elem] () {
  2902. auto dB_dalpha = compute_B(S, Vector<ElemBasis>(),1,0);
  2903. return compute_inner_prod(area_elem, dgdB,dB_dalpha);
  2904. };
  2905. auto compute_dg_dbeta = [&S,&B,&dgdB,&area_elem] () {
  2906. auto dB_dalpha = compute_B(S, Vector<ElemBasis>(),0,1);
  2907. return compute_inner_prod(area_elem, dgdB,dB_dalpha);
  2908. };
  2909. Vector<Real> dg_dsigma(Nelem*Nnodes+S.Nsurf());
  2910. Vector<ElemBasis> dg_dsigma_ = compute_dg_dsigma();
  2911. for (Long i = 0; i < Nelem; i++) {
  2912. for (Long j = 0; j < Nnodes; j++) {
  2913. dg_dsigma[i*Nnodes+j] = dg_dsigma_[i][j];
  2914. }
  2915. }
  2916. if (S.Nsurf() >= 1) dg_dsigma[Nelem*Nnodes+0] = compute_dg_dalpha();
  2917. if (S.Nsurf() >= 2) dg_dsigma[Nelem*Nnodes+1] = compute_dg_dbeta ();
  2918. return dg_dsigma;
  2919. };
  2920. Vector<Real> dg_dsigma = compute_dg_dsigma();
  2921. Vector<Real> dg_dsigma_invA = compute_invAadj(S, dg_dsigma, comm);
  2922. ///////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2923. ///////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2924. auto compute_grad_adj = [&S,&area_elem] (const Vector<ElemBasis>& V) {
  2925. const Long Nelem = S.NElem();
  2926. const Long Nnodes = ElemBasis::Size();
  2927. Vector<ElemBasis> du_dX(Nelem*COORD_DIM*2);
  2928. { // Set du_dX
  2929. Vector<ElemBasis> dX;
  2930. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2931. auto inv2x2 = [](Tensor<Real, true, 2, 2> M) {
  2932. Tensor<Real, true, 2, 2> Mout;
  2933. Real oodet = 1 / (M(0,0) * M(1,1) - M(0,1) * M(1,0));
  2934. Mout(0,0) = M(1,1) * oodet;
  2935. Mout(0,1) = -M(0,1) * oodet;
  2936. Mout(1,0) = -M(1,0) * oodet;
  2937. Mout(1,1) = M(0,0) * oodet;
  2938. return Mout;
  2939. };
  2940. for (Long i = 0; i < Nelem; i++) {
  2941. for (Long j = 0; j < Nnodes; j++) {
  2942. Tensor<Real, true, 3, 2> dX_du;
  2943. dX_du(0,0) = dX[(i*COORD_DIM+0)*2+0][j];
  2944. dX_du(1,0) = dX[(i*COORD_DIM+1)*2+0][j];
  2945. dX_du(2,0) = dX[(i*COORD_DIM+2)*2+0][j];
  2946. dX_du(0,1) = dX[(i*COORD_DIM+0)*2+1][j];
  2947. dX_du(1,1) = dX[(i*COORD_DIM+1)*2+1][j];
  2948. dX_du(2,1) = dX[(i*COORD_DIM+2)*2+1][j];
  2949. Tensor<Real, true, 2, 2> G; // = dX_du.Transpose() * dX_du;
  2950. G(0,0) = dX_du(0,0) * dX_du(0,0) + dX_du(1,0) * dX_du(1,0) + dX_du(2,0) * dX_du(2,0);
  2951. G(0,1) = dX_du(0,0) * dX_du(0,1) + dX_du(1,0) * dX_du(1,1) + dX_du(2,0) * dX_du(2,1);
  2952. G(1,0) = dX_du(0,1) * dX_du(0,0) + dX_du(1,1) * dX_du(1,0) + dX_du(2,1) * dX_du(2,0);
  2953. G(1,1) = dX_du(0,1) * dX_du(0,1) + dX_du(1,1) * dX_du(1,1) + dX_du(2,1) * dX_du(2,1);
  2954. Tensor<Real, true, 2, 2> Ginv = inv2x2(G);
  2955. du_dX[(i*COORD_DIM+0)*2+0][j] = Ginv(0,0) * dX_du(0,0) + Ginv(0,1) * dX_du(0,1);
  2956. du_dX[(i*COORD_DIM+1)*2+0][j] = Ginv(0,0) * dX_du(1,0) + Ginv(0,1) * dX_du(1,1);
  2957. du_dX[(i*COORD_DIM+2)*2+0][j] = Ginv(0,0) * dX_du(2,0) + Ginv(0,1) * dX_du(2,1);
  2958. du_dX[(i*COORD_DIM+0)*2+1][j] = Ginv(1,0) * dX_du(0,0) + Ginv(1,1) * dX_du(0,1);
  2959. du_dX[(i*COORD_DIM+1)*2+1][j] = Ginv(1,0) * dX_du(1,0) + Ginv(1,1) * dX_du(1,1);
  2960. du_dX[(i*COORD_DIM+2)*2+1][j] = Ginv(1,0) * dX_du(2,0) + Ginv(1,1) * dX_du(2,1);
  2961. }
  2962. }
  2963. }
  2964. Vector<ElemBasis> dudX_V(Nelem*2);
  2965. for (Long i = 0; i < Nelem; i++) {
  2966. for (Long j = 0; j < Nnodes; j++) {
  2967. dudX_V[i*2+0][j] = 0;
  2968. dudX_V[i*2+1][j] = 0;
  2969. dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+0)*2+0][j] * V[i*COORD_DIM+0][j] * area_elem[i][j];
  2970. dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+1)*2+0][j] * V[i*COORD_DIM+1][j] * area_elem[i][j];
  2971. dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+2)*2+0][j] * V[i*COORD_DIM+2][j] * area_elem[i][j];
  2972. dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+0)*2+1][j] * V[i*COORD_DIM+0][j] * area_elem[i][j];
  2973. dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+1)*2+1][j] * V[i*COORD_DIM+1][j] * area_elem[i][j];
  2974. dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+2)*2+1][j] * V[i*COORD_DIM+2][j] * area_elem[i][j];
  2975. }
  2976. }
  2977. Vector<ElemBasis> grad_dudX_V;
  2978. ElemBasis::Grad(grad_dudX_V, dudX_V);
  2979. Vector<ElemBasis> grad_adj_V(Nelem);
  2980. for (Long i = 0; i < Nelem; i++) {
  2981. for (Long j = 0; j < Nnodes; j++) {
  2982. grad_adj_V[i][j] = -(grad_dudX_V[(i*2+0)*2+0][j] + grad_dudX_V[(i*2+1)*2+1][j]) / area_elem[i][j];
  2983. }
  2984. }
  2985. return grad_adj_V;
  2986. };
  2987. auto compute_u_dAdnu_v_0 = [&S,&normal,&H,&compute_grad_adj] (const Vector<Real>& u_, const Vector<ElemBasis>& v, Real alpha, Real beta) {
  2988. const Long Nnodes = ElemBasis::Size();
  2989. const Long Nelem = S.NElem();
  2990. Vector<ElemBasis> dAdnu0(Nelem), dAdnu1(Nelem), dAdnu2(Nelem), dAdnu3(Nelem);
  2991. Vector<ElemBasis> u(Nelem), u_n(Nelem*COORD_DIM);
  2992. for (Long i = 0; i < Nelem; i++) {
  2993. for (Long j = 0; j < Nnodes; j++) {
  2994. u[i][j] = u_[i*Nnodes+j];
  2995. u_n[i*COORD_DIM+0][j] = u[i][j] * normal[i*COORD_DIM+0][j];
  2996. u_n[i*COORD_DIM+1][j] = u[i][j] * normal[i*COORD_DIM+1][j];
  2997. u_n[i*COORD_DIM+2][j] = u[i][j] * normal[i*COORD_DIM+2][j];
  2998. }
  2999. }
  3000. // dAdnu0 = u B \cdot grad_nu
  3001. Vector<ElemBasis> B = compute_B(S, v, alpha, beta);
  3002. Vector<ElemBasis> u_B(Nelem*COORD_DIM);
  3003. for (Long i = 0; i < Nelem; i++) {
  3004. for (Long j = 0; j < Nnodes; j++) {
  3005. u_B[i*COORD_DIM+0][j] = u[i][j] * B[i*COORD_DIM+0][j];
  3006. u_B[i*COORD_DIM+1][j] = u[i][j] * B[i*COORD_DIM+1][j];
  3007. u_B[i*COORD_DIM+2][j] = u[i][j] * B[i*COORD_DIM+2][j];
  3008. }
  3009. }
  3010. dAdnu0 = compute_grad_adj(u_B)*(-1.0);
  3011. // dAdnu1 = (u n) \cdot (n \cdnot \nabla) B
  3012. Vector<ElemBasis> dB = compute_dB(S, v, alpha, beta);
  3013. for (Long i = 0; i < Nelem; i++) {
  3014. for (Long j = 0; j < Nnodes; j++) {
  3015. dAdnu1[i][j] = 0;
  3016. dAdnu1[i][j] -= dB[i*9+0][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+0][j];
  3017. dAdnu1[i][j] -= dB[i*9+1][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+1][j];
  3018. dAdnu1[i][j] -= dB[i*9+2][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+2][j];
  3019. dAdnu1[i][j] -= dB[i*9+3][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+0][j];
  3020. dAdnu1[i][j] -= dB[i*9+4][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+1][j];
  3021. dAdnu1[i][j] -= dB[i*9+5][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+2][j];
  3022. dAdnu1[i][j] -= dB[i*9+6][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+0][j];
  3023. dAdnu1[i][j] -= dB[i*9+7][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+1][j];
  3024. dAdnu1[i][j] -= dB[i*9+8][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+2][j];
  3025. }
  3026. }
  3027. // dAdnu2 = (2H) v (I/2 + \nabla G)^T [u n]
  3028. EvalQuadrature(dAdnu2, S.quadrature_dUxF, S, u_n, S.Laplace_dUxF);
  3029. for (Long i = 0; i < Nelem; i++) {
  3030. for (Long j = 0; j < Nnodes; j++) {
  3031. dAdnu2[i][j] += 0.5 * u_n[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  3032. dAdnu2[i][j] += 0.5 * u_n[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  3033. dAdnu2[i][j] += 0.5 * u_n[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  3034. dAdnu2[i][j] *= -2*H[i][j] * v[i][j];
  3035. }
  3036. }
  3037. // dAdnu3 = (v n \cdot \nabla D[u]
  3038. Vector<ElemBasis> nablaDt_u_n;
  3039. EvalQuadrature(nablaDt_u_n, S.quadrature_dUxD, S, u_n, S.Laplace_dUxD);
  3040. for (Long i = 0; i < Nelem; i++) {
  3041. for (Long j = 0; j < Nnodes; j++) {
  3042. dAdnu3[i][j] = 0;
  3043. dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  3044. dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  3045. dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  3046. }
  3047. }
  3048. return dAdnu0 + dAdnu1 + dAdnu2 + dAdnu3;
  3049. };
  3050. auto compute_u_dAdnu_v_1 = [&S,&area_elem,&normal,&H,&compute_grad_adj] (const Vector<ElemBasis>& sigma, Real alpha, Real beta, bool toroidal_flux) {
  3051. const Long Nnodes = ElemBasis::Size();
  3052. const Long Nelem = S.NElem();
  3053. Vector<ElemBasis> B = compute_B(S, sigma, alpha, beta);
  3054. Vector<ElemBasis> gradB = compute_dB(S, sigma, alpha, beta);
  3055. auto compute_v = [&S,&area_elem,&toroidal_flux] (const Vector<ElemBasis>& X) {
  3056. const Long Nelem = S.NElem();
  3057. const Long Nnodes = ElemBasis::Size();
  3058. Real scal[2];
  3059. if (S.Nsurf() == 1) {
  3060. SCTL_ASSERT(toroidal_flux == true);
  3061. scal[0] = 1.0 / S.NTor(0);
  3062. scal[1] = 0;
  3063. } else if (S.Nsurf() == 2) {
  3064. if (toroidal_flux == true) {
  3065. scal[0] = -1.0 / S.NTor(0);
  3066. scal[1] = 1.0 / S.NTor(1);
  3067. } else {
  3068. scal[0] = 1.0 / S.NPol(0);
  3069. scal[1] = -1.0 / S.NPol(1);
  3070. }
  3071. } else {
  3072. SCTL_ASSERT(false);
  3073. }
  3074. Vector<ElemBasis> v(Nelem * COORD_DIM);
  3075. Vector<ElemBasis> dX;
  3076. ElemBasis::Grad(dX, X);
  3077. for (Long k = 0; k < S.Nsurf(); k++) {
  3078. for (Long i_ = 0; i_ < S.NTor(k)*S.NPol(k); i_++) {
  3079. Long i = S.ElemDsp(k) + i_;
  3080. for (Long j = 0; j < Nnodes; j++) {
  3081. Real s = scal[k] / area_elem[i][j];
  3082. v[i*COORD_DIM+0][j] = dX[i*COORD_DIM*2+0+(toroidal_flux?1:0)][j] * s;
  3083. v[i*COORD_DIM+1][j] = dX[i*COORD_DIM*2+2+(toroidal_flux?1:0)][j] * s;
  3084. v[i*COORD_DIM+2][j] = dX[i*COORD_DIM*2+4+(toroidal_flux?1:0)][j] * s;
  3085. }
  3086. }
  3087. }
  3088. return v;
  3089. };
  3090. auto compute_AxB = [&S] (const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  3091. const Long Nelem = S.NElem();
  3092. const Long Nnodes = ElemBasis::Size();
  3093. Vector<ElemBasis> J(Nelem * COORD_DIM);
  3094. for (Long i = 0; i < Nelem; i++) { // Set J
  3095. for (Long j = 0; j < Nnodes; j++) {
  3096. Tensor<Real,true,COORD_DIM> a, b;
  3097. a(0) = A[i*COORD_DIM+0][j];
  3098. a(1) = A[i*COORD_DIM+1][j];
  3099. a(2) = A[i*COORD_DIM+2][j];
  3100. b(0) = B[i*COORD_DIM+0][j];
  3101. b(1) = B[i*COORD_DIM+1][j];
  3102. b(2) = B[i*COORD_DIM+2][j];
  3103. J[i*COORD_DIM+0][j] = a(1) * b(2) - a(2) * b(1);
  3104. J[i*COORD_DIM+1][j] = a(2) * b(0) - a(0) * b(2);
  3105. J[i*COORD_DIM+2][j] = a(0) * b(1) - a(1) * b(0);
  3106. }
  3107. }
  3108. return J;
  3109. };
  3110. auto compute_dphi_dnu0 = [&S,&normal,&compute_AxB,&compute_v,&B,compute_grad_adj] () {
  3111. const Long Nelem = S.NElem();
  3112. const Long Nnodes = ElemBasis::Size();
  3113. Vector<ElemBasis> Gv;
  3114. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3115. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  3116. Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
  3117. return compute_grad_adj(BxGv)*(-1.0);
  3118. };
  3119. auto compute_dphi_dnu1 = [&S,&normal,&H,&compute_AxB,&compute_v,&B] () {
  3120. const Long Nelem = S.NElem();
  3121. const Long Nnodes = ElemBasis::Size();
  3122. Vector<ElemBasis> Gv;
  3123. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3124. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  3125. Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
  3126. Vector<ElemBasis> n_dot_BxGv = compute_dot_prod(normal,BxGv);
  3127. Vector<ElemBasis> dphi_dnu(Nelem);
  3128. for (Long i = 0; i < Nelem; i++) {
  3129. for (Long j = 0; j < Nnodes; j++) {
  3130. dphi_dnu[i][j] = n_dot_BxGv[i][j] * 2*H[i][j];
  3131. }
  3132. }
  3133. return dphi_dnu;
  3134. };
  3135. auto compute_dphi_dnu2 = [&S,&normal,&H,&compute_AxB,&compute_v,&B] () {
  3136. const Long Nelem = S.NElem();
  3137. const Long Nnodes = ElemBasis::Size();
  3138. Vector<ElemBasis> GnxB;
  3139. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3140. EvalQuadrature(GnxB, S.quadrature_FxU, S, nxB, S.Laplace_FxU);
  3141. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3142. Vector<ElemBasis> v_dot_GnxB = compute_dot_prod(v,GnxB);
  3143. Vector<ElemBasis> dphi_dnu(Nelem);
  3144. for (Long i = 0; i < Nelem; i++) {
  3145. for (Long j = 0; j < Nnodes; j++) {
  3146. dphi_dnu[i][j] = v_dot_GnxB[i][j] * 2*H[i][j];
  3147. }
  3148. }
  3149. return dphi_dnu;
  3150. };
  3151. auto compute_dphi_dnu3 = [&S,&normal,&area_elem,&H,&compute_AxB,&compute_v,&B] () {
  3152. const Long Nelem = S.NElem();
  3153. const Long Nnodes = ElemBasis::Size();
  3154. Vector<ElemBasis> GnxB;
  3155. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3156. EvalQuadrature(GnxB, S.quadrature_FxU, S, nxB, S.Laplace_FxU);
  3157. Vector<ElemBasis> dGnxB = compute_v(GnxB);
  3158. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3159. Vector<ElemBasis> dv_dnu1(Nelem), dv_dnu2(Nelem);
  3160. { // Set dv_dnu1, dv_dnu2
  3161. for (Long i = 0; i < Nelem; i++) {
  3162. for (Long j = 0; j < Nnodes; j++) {
  3163. dv_dnu1[i][j] = 0;
  3164. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+0][j] * v[i*COORD_DIM+0][j] * 2 * H[i][j];
  3165. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+1][j] * v[i*COORD_DIM+1][j] * 2 * H[i][j];
  3166. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+2][j] * v[i*COORD_DIM+2][j] * 2 * H[i][j];
  3167. dv_dnu2[i][j] = 0;
  3168. dv_dnu2[i][j] += -dGnxB[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  3169. dv_dnu2[i][j] += -dGnxB[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  3170. dv_dnu2[i][j] += -dGnxB[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  3171. }
  3172. }
  3173. }
  3174. return dv_dnu1 + dv_dnu2;
  3175. };
  3176. auto compute_dphi_dnu4 = [&S,&normal,&compute_AxB,&compute_v,&B] () {
  3177. const Long Nelem = S.NElem();
  3178. const Long Nnodes = ElemBasis::Size();
  3179. Vector<ElemBasis> dGnxB;
  3180. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3181. EvalQuadrature(dGnxB, S.quadrature_FxdU, S, nxB, S.Laplace_FxdU);
  3182. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3183. Vector<ElemBasis> dphi_dnu(Nelem);
  3184. for (Long i = 0; i < Nelem; i++) {
  3185. for (Long j = 0; j < Nnodes; j++) {
  3186. Real dphi_dnu_ = 0;
  3187. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
  3188. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
  3189. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
  3190. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
  3191. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
  3192. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
  3193. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
  3194. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
  3195. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
  3196. dphi_dnu[i][j] = dphi_dnu_;
  3197. }
  3198. }
  3199. return dphi_dnu;
  3200. };
  3201. auto compute_dphi_dnu5 = [&S,&normal,&compute_AxB,&compute_v,&B] () {
  3202. const Long Nelem = S.NElem();
  3203. const Long Nnodes = ElemBasis::Size();
  3204. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3205. Vector<ElemBasis> dGv;
  3206. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3207. EvalQuadrature(dGv, S.quadrature_FxdU, S, v, S.Laplace_FxdU);
  3208. Vector<ElemBasis> dphi_dnu(Nelem);
  3209. for (Long i = 0; i < Nelem; i++) {
  3210. for (Long j = 0; j < Nnodes; j++) {
  3211. Real dphi_dnu_ = 0;
  3212. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+0][j] * nxB[i*COORD_DIM+0][j];
  3213. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+1][j] * nxB[i*COORD_DIM+0][j];
  3214. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+2][j] * nxB[i*COORD_DIM+0][j];
  3215. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+0][j] * nxB[i*COORD_DIM+1][j];
  3216. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+1][j] * nxB[i*COORD_DIM+1][j];
  3217. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+2][j] * nxB[i*COORD_DIM+1][j];
  3218. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+0][j] * nxB[i*COORD_DIM+2][j];
  3219. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+1][j] * nxB[i*COORD_DIM+2][j];
  3220. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+2][j] * nxB[i*COORD_DIM+2][j];
  3221. dphi_dnu[i][j] = dphi_dnu_;
  3222. }
  3223. }
  3224. return dphi_dnu;
  3225. };
  3226. auto compute_dphi_dnu6 = [&S,&normal,&compute_AxB,&compute_v,&gradB] () {
  3227. const Long Nelem = S.NElem();
  3228. const Long Nnodes = ElemBasis::Size();
  3229. Vector<ElemBasis> Gv;
  3230. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3231. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  3232. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3233. Vector<ElemBasis> dphi_dnu(Nelem);
  3234. for (Long i = 0; i < Nelem; i++) {
  3235. for (Long j = 0; j < Nnodes; j++) {
  3236. Real dphi_dnu_ = 0;
  3237. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  3238. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+1][j] * normal[i*COORD_DIM+0][j];
  3239. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+2][j] * normal[i*COORD_DIM+0][j];
  3240. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+0][j] * normal[i*COORD_DIM+1][j];
  3241. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  3242. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+2][j] * normal[i*COORD_DIM+1][j];
  3243. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+0][j] * normal[i*COORD_DIM+2][j];
  3244. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+1][j] * normal[i*COORD_DIM+2][j];
  3245. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  3246. dphi_dnu[i][j] = dphi_dnu_;
  3247. }
  3248. }
  3249. return dphi_dnu;
  3250. };
  3251. auto compute_dphi_dnu7 = [&S,&normal,&H,&compute_AxB,&compute_v,&sigma] () {
  3252. const Long Nelem = S.NElem();
  3253. const Long Nnodes = ElemBasis::Size();
  3254. Vector<ElemBasis> Gv;
  3255. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3256. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  3257. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3258. Vector<ElemBasis> dphi_dnu(Nelem);
  3259. EvalQuadrature(dphi_dnu, S.quadrature_dUxF, S, nxGv, S.Laplace_dUxF);
  3260. for (Long i = 0; i < Nelem; i++) {
  3261. for (Long j = 0; j < Nnodes; j++) {
  3262. dphi_dnu[i][j] *= -2*H[i][j] * sigma[i][j];
  3263. }
  3264. }
  3265. return dphi_dnu;
  3266. };
  3267. auto compute_dphi_dnu8 = [&S,&normal,&H,&compute_AxB,&compute_v,&sigma] () {
  3268. const Long Nelem = S.NElem();
  3269. const Long Nnodes = ElemBasis::Size();
  3270. Vector<ElemBasis> Gv;
  3271. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3272. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  3273. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3274. Vector<ElemBasis> dphi_dnu(Nelem);
  3275. Vector<ElemBasis> nablaDt_nxGv;
  3276. EvalQuadrature(nablaDt_nxGv, S.quadrature_dUxD, S, nxGv, S.Laplace_dUxD);
  3277. for (Long i = 0; i < Nelem; i++) {
  3278. for (Long j = 0; j < Nnodes; j++) {
  3279. dphi_dnu[i][j] = 0;
  3280. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  3281. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  3282. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  3283. }
  3284. }
  3285. return dphi_dnu;
  3286. };
  3287. auto dphi_dnu0 = compute_dphi_dnu0();
  3288. auto dphi_dnu1 = compute_dphi_dnu1();
  3289. auto dphi_dnu2 = compute_dphi_dnu2();
  3290. auto dphi_dnu3 = compute_dphi_dnu3();
  3291. auto dphi_dnu4 = compute_dphi_dnu4();
  3292. auto dphi_dnu5 = compute_dphi_dnu5();
  3293. auto dphi_dnu6 = compute_dphi_dnu6();
  3294. auto dphi_dnu7 = compute_dphi_dnu7();
  3295. auto dphi_dnu8 = compute_dphi_dnu8();
  3296. return (dphi_dnu0+dphi_dnu1+dphi_dnu2+dphi_dnu3+dphi_dnu4+dphi_dnu5+dphi_dnu6+dphi_dnu7+dphi_dnu8);
  3297. };
  3298. { // Set dg_dnu -= dg_dsigma invA dA_dnu sigma
  3299. dg_dnu -= compute_u_dAdnu_v_0(dg_dsigma_invA, sigma, alpha, beta);
  3300. if (S.Nsurf() >= 1) dg_dnu -= compute_u_dAdnu_v_1(sigma, alpha, beta, true) * dg_dsigma_invA[Nelem*Nnodes+0];
  3301. if (S.Nsurf() >= 2) dg_dnu -= compute_u_dAdnu_v_1(sigma, alpha, beta, false) * dg_dsigma_invA[Nelem*Nnodes+1];
  3302. }
  3303. return dg_dnu;
  3304. };
  3305. Vector<ElemBasis> dgdnu;
  3306. { // Set dgdnu
  3307. dgdnu.ReInit(S_.NElem());
  3308. dgdnu = 0;
  3309. for (Long i = 0; i < S_.Nsurf(); i++) {
  3310. const Long elem_dsp = (i==0 ? 0 : S_.ElemDsp(i-1));
  3311. const Long Nnodes = ElemBasis::Size();
  3312. auto dgdnu_ = compute_gradient(Svec[i]);
  3313. if (0) { // Write VTU
  3314. VTUData vtu;
  3315. vtu.AddElems(Svec[i].GetElemList(), dgdnu_, ORDER);
  3316. vtu.WriteVTK("dgdnu-"+std::to_string(i), comm);
  3317. }
  3318. for (Long j = 0; j < (i==0?0:Svec[i].NTor(0)*Svec[i].NPol(0)); j++) {
  3319. for (Long k = 0; k < Nnodes; k++) {
  3320. dgdnu[elem_dsp+j][k] -= dgdnu_[j][k];
  3321. }
  3322. }
  3323. for (Long j = (i==0?0:Svec[i].NTor(0)*Svec[i].NPol(0)); j < dgdnu_.Dim(); j++) {
  3324. for (Long k = 0; k < Nnodes; k++) {
  3325. dgdnu[elem_dsp+j][k] += dgdnu_[j][k];
  3326. }
  3327. }
  3328. }
  3329. }
  3330. return dgdnu;
  3331. }
  3332. static Vector<ElemBasis> compute_pressure_jump(const Stellarator<Real,ORDER>& S_, const Vector<Real>& pressure, const Vector<Real>& flux_tor_, const Vector<Real>& flux_pol_, Real* g_ptr = nullptr) {
  3333. Comm comm = Comm::World();
  3334. Vector<Stellarator<Real,ORDER>> Svec(S_.Nsurf());
  3335. for (Long i = 0; i < S_.Nsurf(); i++) { // Set Svec[i] (quadratures, B)
  3336. const Long elem_dsp = (i==0 ? 0 : S_.ElemDsp(i-1));
  3337. const Long Nnodes = ElemBasis::Size();
  3338. Stellarator<Real,ORDER>& S = Svec[i];
  3339. if (i == 0) { // Init S
  3340. Vector<Long> NtNp;
  3341. NtNp.PushBack(S_.NTor(i));
  3342. NtNp.PushBack(S_.NPol(i));
  3343. S = Stellarator<Real,ORDER>(NtNp);
  3344. } else {
  3345. Vector<Long> NtNp;
  3346. NtNp.PushBack(S_.NTor(i-1));
  3347. NtNp.PushBack(S_.NPol(i-1));
  3348. NtNp.PushBack(S_.NTor(i));
  3349. NtNp.PushBack(S_.NPol(i));
  3350. S = Stellarator<Real,ORDER>(NtNp);
  3351. }
  3352. for (Long j = 0; j < S.NElem(); j++) { // Set S coordinates
  3353. for (Long k = 0; k < Nnodes; k++) {
  3354. S.Elem(j,0)[k] = S_.Elem(elem_dsp+j,0)[k];
  3355. S.Elem(j,1)[k] = S_.Elem(elem_dsp+j,1)[k];
  3356. S.Elem(j,2)[k] = S_.Elem(elem_dsp+j,2)[k];
  3357. }
  3358. }
  3359. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm);//, -0.01 * pow<-2,Real>(ORDER));
  3360. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  3361. SetupQuadrature(S.quadrature_FxdU , S, S.Laplace_FxdU , order_singular, order_direct, -1.0, comm);
  3362. { // Set Bt0, Bp0, dBt0, dBp0
  3363. Vector<ElemBasis> Jt, Jp;
  3364. compute_harmonic_vector_potentials(Jt, Jp, S);
  3365. EvalQuadrature(S.Bt0 , S.quadrature_BS , S, Jp, S.BiotSavart);
  3366. EvalQuadrature(S.Bp0 , S.quadrature_BS , S, Jt, S.BiotSavart);
  3367. Vector<ElemBasis> normal, area_elem;
  3368. compute_norm_area_elem(S, normal, area_elem);
  3369. if (S.Nsurf() == 2) {
  3370. Long Nelem0 = S.NTor(0)*S.NPol(0);
  3371. for (Long i = 0; i < Nelem0*COORD_DIM; i++) {
  3372. for (Long j = 0; j < Nnodes; j++) {
  3373. normal[i][j] *= -1.0;
  3374. }
  3375. }
  3376. }
  3377. const Long Nelem = S.NElem();
  3378. const Long Nnodes = ElemBasis::Size();
  3379. for (Long j = 0; j < Nelem; j++) {
  3380. for (Long k = 0; k < Nnodes; k++) {
  3381. Real Jxn[COORD_DIM];
  3382. Jxn[0] = Jp[j*COORD_DIM+1][k] * normal[j*COORD_DIM+2][k] - Jp[j*COORD_DIM+2][k] * normal[j*COORD_DIM+1][k];
  3383. Jxn[1] = Jp[j*COORD_DIM+2][k] * normal[j*COORD_DIM+0][k] - Jp[j*COORD_DIM+0][k] * normal[j*COORD_DIM+2][k];
  3384. Jxn[2] = Jp[j*COORD_DIM+0][k] * normal[j*COORD_DIM+1][k] - Jp[j*COORD_DIM+1][k] * normal[j*COORD_DIM+0][k];
  3385. S.Bt0[j*COORD_DIM+0][k] += 0.5 * Jxn[0];
  3386. S.Bt0[j*COORD_DIM+1][k] += 0.5 * Jxn[1];
  3387. S.Bt0[j*COORD_DIM+2][k] += 0.5 * Jxn[2];
  3388. Jxn[0] = Jt[j*COORD_DIM+1][k] * normal[j*COORD_DIM+2][k] - Jt[j*COORD_DIM+2][k] * normal[j*COORD_DIM+1][k];
  3389. Jxn[1] = Jt[j*COORD_DIM+2][k] * normal[j*COORD_DIM+0][k] - Jt[j*COORD_DIM+0][k] * normal[j*COORD_DIM+2][k];
  3390. Jxn[2] = Jt[j*COORD_DIM+0][k] * normal[j*COORD_DIM+1][k] - Jt[j*COORD_DIM+1][k] * normal[j*COORD_DIM+0][k];
  3391. S.Bp0[j*COORD_DIM+0][k] += 0.5 * Jxn[0];
  3392. S.Bp0[j*COORD_DIM+1][k] += 0.5 * Jxn[1];
  3393. S.Bp0[j*COORD_DIM+2][k] += 0.5 * Jxn[2];
  3394. }
  3395. }
  3396. }
  3397. compute_invA(S.sigma, S.alpha, S.beta, S, flux_tor_[i], flux_pol_[i], comm);
  3398. S.B = compute_B(S, S.sigma, S.alpha, S.beta);
  3399. }
  3400. if (g_ptr != nullptr) g_ptr[0] = compute_g(Svec, pressure);
  3401. return compute_pressure_jump(Svec, pressure);
  3402. }
  3403. static void test() {
  3404. Comm comm = Comm::World();
  3405. Profile::Enable(true);
  3406. Long Nsurf = 2;
  3407. Stellarator<Real,ORDER> S;
  3408. Vector<Real> flux_tor(Nsurf), flux_pol(Nsurf), pressure(Nsurf);
  3409. { // Init S, flux_tor, flux_pol, pressure
  3410. Vector<Long> NtNp;
  3411. for (Long i = 0; i < Nsurf; i++) {
  3412. NtNp.PushBack(30);
  3413. NtNp.PushBack(4);
  3414. }
  3415. S = Stellarator<Real,ORDER>(NtNp);
  3416. flux_tor = 1;
  3417. flux_pol = 1;
  3418. pressure = 0;
  3419. //flux_tor[0] = 1; //0.791881512;
  3420. //flux_tor[1] = 1;
  3421. //flux_pol[0] = 0;
  3422. //flux_pol[1] = 0;
  3423. //pressure[0] = 0;
  3424. //pressure[1] = 0;
  3425. }
  3426. { // find equilibrium flux surfaces
  3427. {
  3428. //auto filter = [](const Stellarator<Real,ORDER>& S, Vector<ElemBasis>& f) {
  3429. // auto cheb2grid = [] (const Vector<ElemBasis>& X, Long Mt, Long Mp, Long Nt, Long Np) {
  3430. // const Long dof = X.Dim() / (Mt * Mp);
  3431. // SCTL_ASSERT(X.Dim() == Mt * Mp *dof);
  3432. // Vector<Real> Xf(dof*Nt*Np); Xf = 0;
  3433. // const Long Nnodes = ElemBasis::Size();
  3434. // const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
  3435. // for (Long t = 0; t < Nt; t++) {
  3436. // for (Long p = 0; p < Np; p++) {
  3437. // Real theta = t / (Real)Nt;
  3438. // Real phi = p / (Real)Np;
  3439. // Long i = (Long)(theta * Mt);
  3440. // Long j = (Long)(phi * Mp);
  3441. // Real x = theta * Mt - i;
  3442. // Real y = phi * Mp - j;
  3443. // Long elem_idx = i * Mp + j;
  3444. // Vector<Real> Interp0(ORDER);
  3445. // Vector<Real> Interp1(ORDER);
  3446. // { // Set Interp0, Interp1
  3447. // auto node = [&Mnodes] (Long i) {
  3448. // return Mnodes[0][i];
  3449. // };
  3450. // for (Long i = 0; i < ORDER; i++) {
  3451. // Real wt_x = 1, wt_y = 1;
  3452. // for (Long j = 0; j < ORDER; j++) {
  3453. // if (j != i) {
  3454. // wt_x *= (x - node(j)) / (node(i) - node(j));
  3455. // wt_y *= (y - node(j)) / (node(i) - node(j));
  3456. // }
  3457. // Interp0[i] = wt_x;
  3458. // Interp1[i] = wt_y;
  3459. // }
  3460. // }
  3461. // }
  3462. // for (Long ii = 0; ii < ORDER; ii++) {
  3463. // for (Long jj = 0; jj < ORDER; jj++) {
  3464. // Long node_idx = jj * ORDER + ii;
  3465. // for (Long k = 0; k < dof; k++) {
  3466. // Xf[(k*Nt+t)*Np+p] += X[elem_idx*dof+k][node_idx] * Interp0[ii] * Interp1[jj];
  3467. // }
  3468. // }
  3469. // }
  3470. // }
  3471. // }
  3472. // return Xf;
  3473. // };
  3474. // auto grid2cheb = [] (const Vector<Real>& Xf, Long Nt, Long Np, Long Mt, Long Mp) {
  3475. // Long dof = Xf.Dim() / (Nt*Np);
  3476. // SCTL_ASSERT(Xf.Dim() == dof*Nt*Np);
  3477. // Vector<ElemBasis> X(Mt*Mp*dof);
  3478. // constexpr Integer INTERP_ORDER = 12;
  3479. // for (Long tt = 0; tt < Mt; tt++) {
  3480. // for (Long pp = 0; pp < Mp; pp++) {
  3481. // for (Long t = 0; t < ORDER; t++) {
  3482. // for (Long p = 0; p < ORDER; p++) {
  3483. // Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
  3484. // Real theta = (tt + Mnodes[0][t]) / Mt;
  3485. // Real phi = (pp + Mnodes[0][p]) / Mp;
  3486. // Long i = (Long)(theta * Nt);
  3487. // Long j = (Long)(phi * Np);
  3488. // Real x = theta * Nt - i;
  3489. // Real y = phi * Np - j;
  3490. // Vector<Real> Interp0(INTERP_ORDER);
  3491. // Vector<Real> Interp1(INTERP_ORDER);
  3492. // { // Set Interp0, Interp1
  3493. // auto node = [] (Long i) {
  3494. // return (Real)i - (INTERP_ORDER-1)/2;
  3495. // };
  3496. // for (Long i = 0; i < INTERP_ORDER; i++) {
  3497. // Real wt_x = 1, wt_y = 1;
  3498. // for (Long j = 0; j < INTERP_ORDER; j++) {
  3499. // if (j != i) {
  3500. // wt_x *= (x - node(j)) / (node(i) - node(j));
  3501. // wt_y *= (y - node(j)) / (node(i) - node(j));
  3502. // }
  3503. // Interp0[i] = wt_x;
  3504. // Interp1[i] = wt_y;
  3505. // }
  3506. // }
  3507. // }
  3508. // for (Long k = 0; k < dof; k++) {
  3509. // Real X0 = 0;
  3510. // for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  3511. // for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  3512. // Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  3513. // Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  3514. // X0 += Interp0[ii] * Interp1[jj] * Xf[(k*Nt+idx_i)*Np+idx_j];
  3515. // }
  3516. // }
  3517. // Long elem_idx = tt * Mp + pp;
  3518. // Long node_idx = p * ORDER + t;
  3519. // X[elem_idx*dof+k][node_idx] = X0;
  3520. // }
  3521. // }
  3522. // }
  3523. // }
  3524. // }
  3525. // return X;
  3526. // };
  3527. // Long dof = f.Dim() / S.NElem();
  3528. // SCTL_ASSERT(f.Dim() == S.NElem() * dof);
  3529. // for (Long i = 0; i < S.Nsurf(); i++) {
  3530. // const Long Mt = S.NTor(i);
  3531. // const Long Mp = S.NPol(i);
  3532. // const Long Nelem = Mt * Mp;
  3533. // const Long offset = S.ElemDsp(i);
  3534. // const Long Nt = Mt * ORDER / 5;
  3535. // const Long Np = Mp * ORDER / 5;
  3536. // Vector<ElemBasis> f_(Nelem*dof, f.begin() + offset*dof, false);
  3537. // Vector<Real> f_fourier = cheb2grid(f_, Mt, Mp, Nt, Np);
  3538. // f_ = grid2cheb(f_fourier, Nt, Np, Mt, Mp);
  3539. // }
  3540. //};
  3541. }
  3542. auto filter = [](const Stellarator<Real,ORDER>& S, const Comm& comm, Vector<ElemBasis>& f, Real sigma) {
  3543. auto cheb2grid = [] (const Vector<ElemBasis>& X, Long Mt, Long Mp, Long Nt, Long Np) {
  3544. const Long dof = X.Dim() / (Mt * Mp);
  3545. SCTL_ASSERT(X.Dim() == Mt * Mp *dof);
  3546. Vector<Real> Xf(dof*Nt*Np); Xf = 0;
  3547. const Long Nnodes = ElemBasis::Size();
  3548. const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
  3549. for (Long t = 0; t < Nt; t++) {
  3550. for (Long p = 0; p < Np; p++) {
  3551. Real theta = t / (Real)Nt;
  3552. Real phi = p / (Real)Np;
  3553. Long i = (Long)(theta * Mt);
  3554. Long j = (Long)(phi * Mp);
  3555. Real x = theta * Mt - i;
  3556. Real y = phi * Mp - j;
  3557. Long elem_idx = i * Mp + j;
  3558. Vector<Real> Interp0(ORDER);
  3559. Vector<Real> Interp1(ORDER);
  3560. { // Set Interp0, Interp1
  3561. auto node = [&Mnodes] (Long i) {
  3562. return Mnodes[0][i];
  3563. };
  3564. for (Long i = 0; i < ORDER; i++) {
  3565. Real wt_x = 1, wt_y = 1;
  3566. for (Long j = 0; j < ORDER; j++) {
  3567. if (j != i) {
  3568. wt_x *= (x - node(j)) / (node(i) - node(j));
  3569. wt_y *= (y - node(j)) / (node(i) - node(j));
  3570. }
  3571. Interp0[i] = wt_x;
  3572. Interp1[i] = wt_y;
  3573. }
  3574. }
  3575. }
  3576. for (Long ii = 0; ii < ORDER; ii++) {
  3577. for (Long jj = 0; jj < ORDER; jj++) {
  3578. Long node_idx = jj * ORDER + ii;
  3579. for (Long k = 0; k < dof; k++) {
  3580. Xf[(k*Nt+t)*Np+p] += X[elem_idx*dof+k][node_idx] * Interp0[ii] * Interp1[jj];
  3581. }
  3582. }
  3583. }
  3584. }
  3585. }
  3586. return Xf;
  3587. };
  3588. auto grid2cheb = [] (const Vector<Real>& Xf, Long Nt, Long Np, Long Mt, Long Mp) {
  3589. Long dof = Xf.Dim() / (Nt*Np);
  3590. SCTL_ASSERT(Xf.Dim() == dof*Nt*Np);
  3591. Vector<ElemBasis> X(Mt*Mp*dof);
  3592. constexpr Integer INTERP_ORDER = 12;
  3593. for (Long tt = 0; tt < Mt; tt++) {
  3594. for (Long pp = 0; pp < Mp; pp++) {
  3595. for (Long t = 0; t < ORDER; t++) {
  3596. for (Long p = 0; p < ORDER; p++) {
  3597. Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
  3598. Real theta = (tt + Mnodes[0][t]) / Mt;
  3599. Real phi = (pp + Mnodes[0][p]) / Mp;
  3600. Long i = (Long)(theta * Nt);
  3601. Long j = (Long)(phi * Np);
  3602. Real x = theta * Nt - i;
  3603. Real y = phi * Np - j;
  3604. Vector<Real> Interp0(INTERP_ORDER);
  3605. Vector<Real> Interp1(INTERP_ORDER);
  3606. { // Set Interp0, Interp1
  3607. auto node = [] (Long i) {
  3608. return (Real)i - (INTERP_ORDER-1)/2;
  3609. };
  3610. for (Long i = 0; i < INTERP_ORDER; i++) {
  3611. Real wt_x = 1, wt_y = 1;
  3612. for (Long j = 0; j < INTERP_ORDER; j++) {
  3613. if (j != i) {
  3614. wt_x *= (x - node(j)) / (node(i) - node(j));
  3615. wt_y *= (y - node(j)) / (node(i) - node(j));
  3616. }
  3617. Interp0[i] = wt_x;
  3618. Interp1[i] = wt_y;
  3619. }
  3620. }
  3621. }
  3622. for (Long k = 0; k < dof; k++) {
  3623. Real X0 = 0;
  3624. for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  3625. for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  3626. Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  3627. Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  3628. X0 += Interp0[ii] * Interp1[jj] * Xf[(k*Nt+idx_i)*Np+idx_j];
  3629. }
  3630. }
  3631. Long elem_idx = tt * Mp + pp;
  3632. Long node_idx = p * ORDER + t;
  3633. X[elem_idx*dof+k][node_idx] = X0;
  3634. }
  3635. }
  3636. }
  3637. }
  3638. }
  3639. return X;
  3640. };
  3641. auto fourier_filter = [](Vector<Real>& X, long Nt_, long Np_, Real sigma, const Comm& comm) {
  3642. long dof = X.Dim() / (Nt_ * Np_);
  3643. SCTL_ASSERT(X.Dim() == dof * Nt_ * Np_);
  3644. FFT<Real> fft_r2c, fft_c2r;
  3645. StaticArray<Long, 2> fft_dim = {Nt_, Np_};
  3646. fft_r2c.Setup(FFT_Type::R2C, 1, Vector<Long>(2, fft_dim, false), omp_get_max_threads());
  3647. fft_c2r.Setup(FFT_Type::C2R, 1, Vector<Long>(2, fft_dim, false), omp_get_max_threads());
  3648. long Nt = Nt_;
  3649. long Np = fft_r2c.Dim(1) / (Nt * 2);
  3650. SCTL_ASSERT(fft_r2c.Dim(1) == Nt * Np * 2);
  3651. //auto filter_fn = [](Real x2, Real sigma) {return exp(-x2/(2*sigma*sigma));};
  3652. auto filter_fn = [](Real x2, Real sigma) {return (x2<sigma*sigma?1.0:0.0);};
  3653. Vector<Real> normal, gradX;
  3654. biest::SurfaceOp<Real> op(comm, Nt_, Np_);
  3655. Vector<Real> coeff(fft_r2c.Dim(1));
  3656. for (long k = 0; k < dof; k++) {
  3657. Vector<Real> X_(Nt_*Np_, X.begin() + k*Nt_*Np_, false);
  3658. fft_r2c.Execute(X_, coeff);
  3659. for (long t = 0; t < Nt; t++) {
  3660. for (long p = 0; p < Np; p++) {
  3661. Real tt = (t - (t > Nt / 2 ? Nt : 0)) / (Real)(Nt / 2);
  3662. Real pp = p / (Real)Np;
  3663. Real f = filter_fn(tt*tt+pp*pp, sigma);
  3664. coeff[(t * Np + p) * 2 + 0] *= f;
  3665. coeff[(t * Np + p) * 2 + 1] *= f;
  3666. }
  3667. }
  3668. fft_c2r.Execute(coeff, X_);
  3669. }
  3670. };
  3671. Long dof = f.Dim() / S.NElem();
  3672. SCTL_ASSERT(f.Dim() == S.NElem() * dof);
  3673. for (Long i = 0; i < S.Nsurf(); i++) {
  3674. const Long Mt = S.NTor(i);
  3675. const Long Mp = S.NPol(i);
  3676. const Long Nelem = Mt * Mp;
  3677. const Long offset = S.ElemDsp(i);
  3678. const Long Nt = Mt * ORDER * 4;
  3679. const Long Np = Mp * ORDER * 4;
  3680. Vector<ElemBasis> f_(Nelem*dof, f.begin() + offset*dof, false);
  3681. Vector<Real> f_fourier = cheb2grid(f_, Mt, Mp, Nt, Np);
  3682. fourier_filter(f_fourier, Nt, Np, 0.25 * sigma, comm);
  3683. f_ = grid2cheb(f_fourier, Nt, Np, Mt, Mp);
  3684. }
  3685. };
  3686. Long iter = 0;
  3687. Real dt = 0.1;
  3688. while (1) { // time-step
  3689. Vector<ElemBasis> dgdnu = compute_gradient(S, pressure, flux_tor, flux_pol)*(-1);
  3690. //Vector<ElemBasis> dgdnu = compute_pressure_jump(S, pressure, flux_tor, flux_pol)*(-1);
  3691. Vector<ElemBasis> dXdt(dgdnu.Dim()*COORD_DIM);
  3692. { // Set dXdt
  3693. dXdt = 0;
  3694. const Long Nnodes = ElemBasis::Size();
  3695. Vector<ElemBasis> normal, area_elem;
  3696. compute_norm_area_elem(S, normal, area_elem);
  3697. for (Long i = 0; i < S.ElemDsp(S.Nsurf()-1); i++) {
  3698. for (Long j = 0; j < Nnodes; j++) {
  3699. dXdt[i*COORD_DIM+0][j] = normal[i*COORD_DIM+0][j] * dgdnu[i][j];
  3700. dXdt[i*COORD_DIM+1][j] = normal[i*COORD_DIM+1][j] * dgdnu[i][j];
  3701. dXdt[i*COORD_DIM+2][j] = normal[i*COORD_DIM+2][j] * dgdnu[i][j];
  3702. }
  3703. }
  3704. filter(S, comm, dXdt, 0.1);
  3705. }
  3706. { // Update dt
  3707. const Long Nelem = S.NElem();
  3708. Stellarator<Real,ORDER> S0 = S, S1 = S, S2 = S;
  3709. for (Long i = 0; i < S.NElem(); i++) {
  3710. S0.Elem(i, 0) += dXdt[i*COORD_DIM+0] * 0.0 * dt;
  3711. S0.Elem(i, 1) += dXdt[i*COORD_DIM+1] * 0.0 * dt;
  3712. S0.Elem(i, 2) += dXdt[i*COORD_DIM+2] * 0.0 * dt;
  3713. S1.Elem(i, 0) += dXdt[i*COORD_DIM+0] * 0.5 * dt;
  3714. S1.Elem(i, 1) += dXdt[i*COORD_DIM+1] * 0.5 * dt;
  3715. S1.Elem(i, 2) += dXdt[i*COORD_DIM+2] * 0.5 * dt;
  3716. S2.Elem(i, 0) += dXdt[i*COORD_DIM+0] * 1.0 * dt;
  3717. S2.Elem(i, 1) += dXdt[i*COORD_DIM+1] * 1.0 * dt;
  3718. S2.Elem(i, 2) += dXdt[i*COORD_DIM+2] * 1.0 * dt;
  3719. }
  3720. Real g0, g1, g2;
  3721. compute_pressure_jump(S0, pressure, flux_tor, flux_pol, &g0);
  3722. compute_pressure_jump(S1, pressure, flux_tor, flux_pol, &g1);
  3723. compute_pressure_jump(S2, pressure, flux_tor, flux_pol, &g2);
  3724. { // Calculate optimal step size dt
  3725. Real a = 2*g0 - 4*g1 + 2*g2;
  3726. Real b =-3*g0 + 4*g1 - g2;
  3727. Real c = g0;
  3728. Real s = -b/(2*a);
  3729. dt *= s;
  3730. Real g_ = a*s*s + b*s + c;
  3731. std::cout<<"g = "<<g_<<' ';
  3732. std::cout<<g0<<' ';
  3733. std::cout<<g1<<' ';
  3734. std::cout<<g2<<' ';
  3735. std::cout<<dt<<'\n';
  3736. }
  3737. }
  3738. { // Write VTU
  3739. VTUData vtu;
  3740. vtu.AddElems(S.GetElemList(), dgdnu*dt, ORDER);
  3741. vtu.WriteVTK("dgdnu"+std::to_string(iter), comm);
  3742. }
  3743. { // Write VTU
  3744. VTUData vtu;
  3745. vtu.AddElems(S.GetElemList(), dXdt*dt, ORDER);
  3746. vtu.WriteVTK("dXdt"+std::to_string(iter), comm);
  3747. }
  3748. { // Write VTU
  3749. Vector<ElemBasis> pressure_jump = compute_pressure_jump(S, pressure, flux_tor, flux_pol);
  3750. VTUData vtu;
  3751. vtu.AddElems(S.GetElemList(), pressure_jump, ORDER);
  3752. vtu.WriteVTK("pressure_jump"+std::to_string(iter), comm);
  3753. }
  3754. { // Update S <-- filter(S + dXdt * dt)
  3755. const Long Nelem = S.NElem();
  3756. Vector<ElemBasis> X(Nelem*COORD_DIM);
  3757. for (Long i = 0; i < S.NElem(); i++) {
  3758. X[i*COORD_DIM+0] = S.Elem(i, 0) + dXdt[i*COORD_DIM+0] * dt;
  3759. X[i*COORD_DIM+1] = S.Elem(i, 1) + dXdt[i*COORD_DIM+1] * dt;
  3760. X[i*COORD_DIM+2] = S.Elem(i, 2) + dXdt[i*COORD_DIM+2] * dt;
  3761. }
  3762. filter(S, comm, X, 0.3);
  3763. for (Long i = 0; i < S.NElem(); i++) {
  3764. S.Elem(i, 0) = X[i*COORD_DIM+0];
  3765. S.Elem(i, 1) = X[i*COORD_DIM+1];
  3766. S.Elem(i, 2) = X[i*COORD_DIM+2];
  3767. }
  3768. }
  3769. iter++;
  3770. }
  3771. return;
  3772. }
  3773. { // Verify using finite difference approximation
  3774. Vector<ElemBasis> dgdnu = compute_gradient(S, pressure, flux_tor, flux_pol);
  3775. { // Write VTU
  3776. VTUData vtu;
  3777. vtu.AddElems(S.GetElemList(), dgdnu, ORDER);
  3778. vtu.WriteVTK("dgdnu", comm);
  3779. }
  3780. Real eps = 1e-4;
  3781. const Long Nnodes = ElemBasis::Size();
  3782. Vector<ElemBasis> normal, area_elem;
  3783. compute_norm_area_elem(S, normal, area_elem);
  3784. Vector<ElemBasis> nu = area_elem;
  3785. for (Long i = S.ElemDsp(S.Nsurf()-1); i < S.NElem(); i++) nu[i] = 0;
  3786. Stellarator<Real,ORDER> S0 = S, S1 = S;
  3787. for (Long i = 0; i < S.NElem(); i++) {
  3788. for (Long j = 0; j < Nnodes; j++) {
  3789. S0.Elem(i, 0)[j] -= 0.5 * eps * normal[i*COORD_DIM+0][j] * nu[i][j];
  3790. S0.Elem(i, 1)[j] -= 0.5 * eps * normal[i*COORD_DIM+1][j] * nu[i][j];
  3791. S0.Elem(i, 2)[j] -= 0.5 * eps * normal[i*COORD_DIM+2][j] * nu[i][j];
  3792. S1.Elem(i, 0)[j] += 0.5 * eps * normal[i*COORD_DIM+0][j] * nu[i][j];
  3793. S1.Elem(i, 1)[j] += 0.5 * eps * normal[i*COORD_DIM+1][j] * nu[i][j];
  3794. S1.Elem(i, 2)[j] += 0.5 * eps * normal[i*COORD_DIM+2][j] * nu[i][j];
  3795. }
  3796. }
  3797. Real g0, g1;
  3798. compute_pressure_jump(S0, pressure, flux_tor, flux_pol, &g0);
  3799. compute_pressure_jump(S1, pressure, flux_tor, flux_pol, &g1);
  3800. std::cout<<"g0 = "<<g0<<"; g1 = "<<g1<<"; dgdnu_ = "<<(g1-g0)/eps<<'\n';
  3801. std::cout<<"dgdnu = "<<compute_inner_prod(area_elem, dgdnu, nu)<<'\n';
  3802. }
  3803. }
  3804. static void test_() {
  3805. Comm comm = Comm::World();
  3806. Profile::Enable(true);
  3807. Real flux_tor = 1.0, flux_pol = 1.0;
  3808. Stellarator<Real,ORDER> S;
  3809. { // Init S
  3810. Vector<Long> NtNp;
  3811. NtNp.PushBack(20);
  3812. NtNp.PushBack(4);
  3813. //NtNp.PushBack(20);
  3814. //NtNp.PushBack(4);
  3815. S = Stellarator<Real,ORDER>(NtNp);
  3816. }
  3817. if (S.Nsurf() == 1) flux_pol = 0.0;
  3818. Vector<ElemBasis> pressure;
  3819. { // Set pressure
  3820. Vector<ElemBasis> normal, area_elem;
  3821. compute_norm_area_elem(S, normal, area_elem);
  3822. pressure = area_elem*0;
  3823. }
  3824. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  3825. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3826. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  3827. SetupQuadrature(S.quadrature_FxdU, S, S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  3828. SetupQuadrature(S.quadrature_dUxF, S, S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
  3829. Vector<ElemBasis> Bt0, Bp0;
  3830. { // Set Bt0, Bp0
  3831. Vector<ElemBasis> Jt, Jp;
  3832. compute_harmonic_vector_potentials(Jt, Jp, S);
  3833. EvalQuadrature(Bt0, S.quadrature_BS, S, Jp, S.BiotSavart);
  3834. EvalQuadrature(Bp0, S.quadrature_BS, S, Jt, S.BiotSavart);
  3835. }
  3836. auto compute_B = [&S,&Bt0,&Bp0] (const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  3837. const Long Nelem = S.NElem();
  3838. Vector<ElemBasis> B(S.NElem() * COORD_DIM);
  3839. if (sigma.Dim()) {
  3840. const Long Nnodes = ElemBasis::Size();
  3841. Vector<ElemBasis> normal, area_elem;
  3842. compute_norm_area_elem(S, normal, area_elem);
  3843. EvalQuadrature(B, S.quadrature_FxdU, S, sigma, S.Laplace_FxdU);
  3844. for (Long i = 0; i < Nelem; i++) {
  3845. for (Long j = 0; j < Nnodes; j++) {
  3846. for (Long k = 0; k < COORD_DIM; k++) {
  3847. B[i*COORD_DIM+k][j] -= 0.5*sigma[i][j]*normal[i*COORD_DIM+k][j];
  3848. }
  3849. }
  3850. }
  3851. } else {
  3852. B = 0;
  3853. }
  3854. if (S.Nsurf() >= 1) B += Bt0*alpha;
  3855. if (S.Nsurf() >= 2) B += Bp0*beta;
  3856. return B;
  3857. };
  3858. auto compute_flux = [&S] (Real& flux_tor, Real& flux_pol, const Vector<ElemBasis>& B, const Vector<ElemBasis>& normal) {
  3859. const Long Nelem = S.NElem();
  3860. const Long Nnodes = ElemBasis::Size();
  3861. SCTL_ASSERT(B.Dim() == Nelem*COORD_DIM);
  3862. SCTL_ASSERT(normal.Dim() == Nelem*COORD_DIM);
  3863. Vector<ElemBasis> J(Nelem * COORD_DIM);
  3864. for (Long i = 0; i < Nelem; i++) { // Set J
  3865. for (Long j = 0; j < Nnodes; j++) {
  3866. Tensor<Real,true,COORD_DIM> b, n;
  3867. b(0) = B[i*COORD_DIM+0][j];
  3868. b(1) = B[i*COORD_DIM+1][j];
  3869. b(2) = B[i*COORD_DIM+2][j];
  3870. n(0) = normal[i*COORD_DIM+0][j];
  3871. n(1) = normal[i*COORD_DIM+1][j];
  3872. n(2) = normal[i*COORD_DIM+2][j];
  3873. J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
  3874. J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
  3875. J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
  3876. }
  3877. }
  3878. Vector<ElemBasis> A;
  3879. EvalQuadrature(A, S.quadrature_FxU, S, J, S.Laplace_FxU);
  3880. Vector<Real> circ_pol(S.Nsurf()), circ_tor(S.Nsurf());
  3881. { // compute circ
  3882. Vector<ElemBasis> dX;
  3883. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  3884. const auto& quad_wts = ElemBasis::QuadWts();
  3885. for (Long k = 0; k < S.Nsurf(); k++) {
  3886. circ_pol[k] = 0;
  3887. circ_tor[k] = 0;
  3888. Long Ndsp = S.ElemDsp(k);
  3889. for (Long i = 0; i < S.NTor(k)*S.NPol(k); i++) {
  3890. for (Long j = 0; j < Nnodes; j++) {
  3891. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+1][j] * quad_wts[j] / S.NTor(k);
  3892. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+3][j] * quad_wts[j] / S.NTor(k);
  3893. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+5][j] * quad_wts[j] / S.NTor(k);
  3894. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+0][j] * quad_wts[j] / S.NPol(k);
  3895. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+2][j] * quad_wts[j] / S.NPol(k);
  3896. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+4][j] * quad_wts[j] / S.NPol(k);
  3897. }
  3898. }
  3899. }
  3900. }
  3901. if (S.Nsurf() == 1) {
  3902. flux_tor = circ_pol[0];
  3903. flux_pol = 0;
  3904. } else if (S.Nsurf() == 2) {
  3905. flux_tor = circ_pol[1] - circ_pol[0];
  3906. flux_pol = circ_tor[0] - circ_tor[1];
  3907. } else {
  3908. SCTL_ASSERT(false);
  3909. }
  3910. };
  3911. auto compute_A = [&S,compute_B,&compute_flux] (const Vector<Real>& x) {
  3912. const Long Nelem = S.NElem();
  3913. const Long Nnodes = ElemBasis::Size();
  3914. SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
  3915. Vector<ElemBasis> normal, area_elem;
  3916. compute_norm_area_elem(S, normal, area_elem);
  3917. Vector<ElemBasis> sigma(Nelem);
  3918. for (Long i = 0; i < Nelem; i++) {
  3919. for (Long j = 0; j < Nnodes; j++) {
  3920. sigma[i][j] = x[i*Nnodes+j];
  3921. }
  3922. }
  3923. Real alpha = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
  3924. Real beta = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
  3925. Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
  3926. Vector<ElemBasis> BdotN = compute_dot_prod(B, normal);
  3927. Real flux_tor, flux_pol;
  3928. compute_flux(flux_tor, flux_pol, B, normal);
  3929. Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
  3930. for (Long i = 0; i < Nelem; i++) {
  3931. for (Long j = 0; j < Nnodes; j++) {
  3932. Ax[i*Nnodes+j] = BdotN[i][j];
  3933. }
  3934. }
  3935. if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = flux_tor;
  3936. if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = flux_pol;
  3937. return Ax;
  3938. };
  3939. auto compute_invA = [&S,&comm,&compute_A] (Vector<ElemBasis>& sigma, Real& alpha, Real& beta, Real flux_tor, Real flux_pol) {
  3940. typename ParallelSolver<Real>::ParallelOp BIOp = [&compute_A](Vector<Real>* Ax, const Vector<Real>& x) {
  3941. (*Ax) = compute_A(x);
  3942. };
  3943. const Long Nelem = S.NElem();
  3944. const Long Nnodes = ElemBasis::Size();
  3945. Vector<Real> rhs_(Nelem * Nnodes + S.Nsurf());
  3946. rhs_ = 0;
  3947. if (S.Nsurf() >= 1) rhs_[Nelem * Nnodes + 0] = flux_tor;
  3948. if (S.Nsurf() >= 2) rhs_[Nelem * Nnodes + 1] = flux_pol;
  3949. Vector<Real> x_(Nelem * Nnodes + S.Nsurf());
  3950. x_ = 0;
  3951. ParallelSolver<Real> linear_solver(comm, true);
  3952. linear_solver(&x_, BIOp, rhs_, 1e-8, 100);
  3953. sigma.ReInit(Nelem);
  3954. for (Long i = 0; i < Nelem; i++) {
  3955. for (Long j = 0; j < Nnodes; j++) {
  3956. sigma[i][j] = x_[i*Nnodes+j];
  3957. }
  3958. }
  3959. alpha = (S.Nsurf() >= 1 ? x_[Nelem * Nnodes + 0] : 0);
  3960. beta = (S.Nsurf() >= 2 ? x_[Nelem * Nnodes + 1] : 0);
  3961. };
  3962. Vector<ElemBasis> dg_dnu = compute_gradient(S, pressure, flux_tor, flux_pol);
  3963. { // Write VTU
  3964. VTUData vtu;
  3965. vtu.AddElems(S.GetElemList(), dg_dnu, ORDER);
  3966. vtu.WriteVTK("dg_dnu", comm);
  3967. }
  3968. if (1) { // test grad_g
  3969. auto compute_g = [&S,&Bt0,&Bp0,&compute_B,&compute_invA,&comm] (const Vector<ElemBasis>& nu, Real eps, Real flux_tor, Real flux_pol, const Vector<ElemBasis>& pressure) {
  3970. const Long Nelem = S.NElem();
  3971. const Long Nnodes = ElemBasis::Size();
  3972. Vector<ElemBasis> normal, area_elem;
  3973. compute_norm_area_elem(S, normal, area_elem);
  3974. Vector<ElemBasis> X_orig(Nelem*COORD_DIM);
  3975. for (Long i = 0; i < Nelem; i++) {
  3976. for (Long j = 0; j < Nnodes; j++) {
  3977. X_orig[i*COORD_DIM+0][j] = S.Elem(i,0)[j];
  3978. X_orig[i*COORD_DIM+1][j] = S.Elem(i,1)[j];
  3979. X_orig[i*COORD_DIM+2][j] = S.Elem(i,2)[j];
  3980. S.Elem(i,0)[j] += eps*nu[i][j] * normal[i*COORD_DIM+0][j];
  3981. S.Elem(i,1)[j] += eps*nu[i][j] * normal[i*COORD_DIM+1][j];
  3982. S.Elem(i,2)[j] += eps*nu[i][j] * normal[i*COORD_DIM+2][j];
  3983. }
  3984. }
  3985. /////////////////////////////////////////////////////////////////////////////////////////////////////////////
  3986. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3987. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  3988. SetupQuadrature(S.quadrature_FxdU, S, S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  3989. Vector<ElemBasis> Jt, Jp;
  3990. compute_harmonic_vector_potentials(Jt, Jp, S);
  3991. EvalQuadrature(Bt0, S.quadrature_BS, S, Jp, S.BiotSavart);
  3992. EvalQuadrature(Bp0, S.quadrature_BS, S, Jt, S.BiotSavart);
  3993. Real alpha, beta;
  3994. Vector<ElemBasis> sigma;
  3995. compute_invA(sigma, alpha, beta, flux_tor, flux_pol);
  3996. Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
  3997. compute_norm_area_elem(S, normal, area_elem);
  3998. Real g = compute_inner_prod(area_elem, compute_gvec(S,B,pressure), area_elem*0+1);
  3999. /////////////////////////////////////////////////////////////////////////////////////////////////////////////
  4000. for (Long i = 0; i < Nelem; i++) {
  4001. for (Long j = 0; j < Nnodes; j++) {
  4002. S.Elem(i,0)[j] = X_orig[i*COORD_DIM+0][j];
  4003. S.Elem(i,1)[j] = X_orig[i*COORD_DIM+1][j];
  4004. S.Elem(i,2)[j] = X_orig[i*COORD_DIM+2][j];
  4005. }
  4006. }
  4007. return g;
  4008. };
  4009. Vector<ElemBasis> normal, area_elem;
  4010. compute_norm_area_elem(S, normal, area_elem);
  4011. const Long Nelem = S.NElem();
  4012. {
  4013. Vector<ElemBasis> nu(Nelem);
  4014. nu = area_elem;
  4015. Real eps = 1e-4;
  4016. Real g0 = compute_g(nu,-eps, flux_tor, flux_pol, pressure);
  4017. Real g1 = compute_g(nu,eps, flux_tor, flux_pol, pressure);
  4018. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  4019. std::cout<<"dg_dnu = "<<compute_inner_prod(area_elem,nu, dg_dnu)<<'\n';
  4020. }
  4021. {
  4022. Vector<ElemBasis> nu(Nelem);
  4023. nu = 1;
  4024. Real eps = 1e-4;
  4025. Real g0 = compute_g(nu,-eps, flux_tor, flux_pol, pressure);
  4026. Real g1 = compute_g(nu,eps, flux_tor, flux_pol, pressure);
  4027. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  4028. std::cout<<"dg_dnu = "<<compute_inner_prod(area_elem,nu, dg_dnu)<<'\n';
  4029. }
  4030. {
  4031. Vector<ElemBasis> nu(Nelem);
  4032. nu = dg_dnu;
  4033. Real eps = 1e-4;
  4034. Real g0 = compute_g(nu,-eps, flux_tor, flux_pol, pressure);
  4035. Real g1 = compute_g(nu,eps, flux_tor, flux_pol, pressure);
  4036. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  4037. std::cout<<"dg_dnu = "<<compute_inner_prod(area_elem,nu, dg_dnu)<<'\n';
  4038. }
  4039. }
  4040. }
  4041. static void test_askham() {
  4042. auto Setup = [] (Stellarator<Real,ORDER>& S, const Comm& comm) { // Set quadratures, Bt0, Bp0, ...
  4043. SetupQuadrature(S.quadrature_dBS , S, S.BiotSavartGrad, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  4044. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  4045. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  4046. SetupQuadrature(S.quadrature_FxdU , S, S.Laplace_FxdU , order_singular, order_direct, -1.0, comm);
  4047. SetupQuadrature(S.quadrature_dUxF , S, S.Laplace_dUxF , order_singular, order_direct, -1.0, comm);
  4048. SetupQuadrature(S.quadrature_dUxD , S, S.Laplace_dUxD , order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  4049. SetupQuadrature(S.quadrature_Fxd2U, S, S.Laplace_Fxd2U , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  4050. { // Set Bt0, Bp0, dBt0, dBp0
  4051. Vector<ElemBasis> Jt, Jp;
  4052. compute_harmonic_vector_potentials(Jt, Jp, S);
  4053. EvalQuadrature(S.Bt0 , S.quadrature_BS , S, Jp, S.BiotSavart);
  4054. EvalQuadrature(S.Bp0 , S.quadrature_BS , S, Jt, S.BiotSavart);
  4055. EvalQuadrature(S.dBt0, S.quadrature_dBS, S, Jp, S.BiotSavartGrad);
  4056. EvalQuadrature(S.dBp0, S.quadrature_dBS, S, Jt, S.BiotSavartGrad);
  4057. }
  4058. };
  4059. auto compute_grad = [] (const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& V) {
  4060. const Long Nelem = S.GetElemList().NElem();
  4061. const Long Nnodes = ElemBasis::Size();
  4062. const Long dof = V.Dim() / Nelem;
  4063. SCTL_ASSERT(Nelem * dof == V.Dim());
  4064. Vector<ElemBasis> du_dX(Nelem*COORD_DIM*2);
  4065. { // Set du_dX
  4066. Vector<ElemBasis> dX;
  4067. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  4068. auto inv2x2 = [](Tensor<Real, true, 2, 2> M) {
  4069. Tensor<Real, true, 2, 2> Mout;
  4070. Real oodet = 1 / (M(0,0) * M(1,1) - M(0,1) * M(1,0));
  4071. Mout(0,0) = M(1,1) * oodet;
  4072. Mout(0,1) = -M(0,1) * oodet;
  4073. Mout(1,0) = -M(1,0) * oodet;
  4074. Mout(1,1) = M(0,0) * oodet;
  4075. return Mout;
  4076. };
  4077. for (Long i = 0; i < Nelem; i++) {
  4078. for (Long j = 0; j < Nnodes; j++) {
  4079. Tensor<Real, true, 3, 2> dX_du;
  4080. dX_du(0,0) = dX[(i*COORD_DIM+0)*2+0][j];
  4081. dX_du(1,0) = dX[(i*COORD_DIM+1)*2+0][j];
  4082. dX_du(2,0) = dX[(i*COORD_DIM+2)*2+0][j];
  4083. dX_du(0,1) = dX[(i*COORD_DIM+0)*2+1][j];
  4084. dX_du(1,1) = dX[(i*COORD_DIM+1)*2+1][j];
  4085. dX_du(2,1) = dX[(i*COORD_DIM+2)*2+1][j];
  4086. Tensor<Real, true, 2, 2> G; // = dX_du.Transpose() * dX_du;
  4087. G(0,0) = dX_du(0,0) * dX_du(0,0) + dX_du(1,0) * dX_du(1,0) + dX_du(2,0) * dX_du(2,0);
  4088. G(0,1) = dX_du(0,0) * dX_du(0,1) + dX_du(1,0) * dX_du(1,1) + dX_du(2,0) * dX_du(2,1);
  4089. G(1,0) = dX_du(0,1) * dX_du(0,0) + dX_du(1,1) * dX_du(1,0) + dX_du(2,1) * dX_du(2,0);
  4090. G(1,1) = dX_du(0,1) * dX_du(0,1) + dX_du(1,1) * dX_du(1,1) + dX_du(2,1) * dX_du(2,1);
  4091. Tensor<Real, true, 2, 2> Ginv = inv2x2(G);
  4092. du_dX[(i*COORD_DIM+0)*2+0][j] = Ginv(0,0) * dX_du(0,0) + Ginv(0,1) * dX_du(0,1);
  4093. du_dX[(i*COORD_DIM+1)*2+0][j] = Ginv(0,0) * dX_du(1,0) + Ginv(0,1) * dX_du(1,1);
  4094. du_dX[(i*COORD_DIM+2)*2+0][j] = Ginv(0,0) * dX_du(2,0) + Ginv(0,1) * dX_du(2,1);
  4095. du_dX[(i*COORD_DIM+0)*2+1][j] = Ginv(1,0) * dX_du(0,0) + Ginv(1,1) * dX_du(0,1);
  4096. du_dX[(i*COORD_DIM+1)*2+1][j] = Ginv(1,0) * dX_du(1,0) + Ginv(1,1) * dX_du(1,1);
  4097. du_dX[(i*COORD_DIM+2)*2+1][j] = Ginv(1,0) * dX_du(2,0) + Ginv(1,1) * dX_du(2,1);
  4098. }
  4099. }
  4100. }
  4101. Vector<ElemBasis> dV;
  4102. ElemBasis::Grad(dV, V);
  4103. Vector<ElemBasis> gradV(Nelem*dof*COORD_DIM);
  4104. for (Long i = 0; i < Nelem; i++) {
  4105. for (Long j = 0; j < Nnodes; j++) {
  4106. for (Long k = 0; k < dof; k++) {
  4107. gradV[(i*dof+k)*COORD_DIM+0][j] = dV[(i*dof+k)*2+0][j] * du_dX[(i*COORD_DIM+0)*2+0][j] + dV[(i*dof+k)*2+1][j] * du_dX[(i*COORD_DIM+0)*2+1][j];
  4108. gradV[(i*dof+k)*COORD_DIM+1][j] = dV[(i*dof+k)*2+0][j] * du_dX[(i*COORD_DIM+1)*2+0][j] + dV[(i*dof+k)*2+1][j] * du_dX[(i*COORD_DIM+1)*2+1][j];
  4109. gradV[(i*dof+k)*COORD_DIM+2][j] = dV[(i*dof+k)*2+0][j] * du_dX[(i*COORD_DIM+2)*2+0][j] + dV[(i*dof+k)*2+1][j] * du_dX[(i*COORD_DIM+2)*2+1][j];
  4110. }
  4111. }
  4112. }
  4113. return gradV;
  4114. };
  4115. auto compute_surfdiv = [&compute_grad] (const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& V) {
  4116. const Long Nelem = S.GetElemList().NElem();
  4117. const Long Nnodes = ElemBasis::Size();
  4118. SCTL_ASSERT(V.Dim() == Nelem* COORD_DIM);
  4119. Vector<ElemBasis> gradV = compute_grad(S, V);
  4120. Vector<ElemBasis> divV(Nelem);
  4121. for (Long i = 0; i < Nelem; i++) {
  4122. for (Long j = 0; j < Nnodes; j++) {
  4123. divV[i][j] = gradV[(i*COORD_DIM+0)*COORD_DIM+0][j] + gradV[(i*COORD_DIM+1)*COORD_DIM+1][j] + gradV[(i*COORD_DIM+2)*COORD_DIM+2][j];
  4124. }
  4125. }
  4126. return divV;
  4127. };
  4128. auto compute_g = [](const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& B) {
  4129. const Long Nelem = S.NElem();
  4130. const Long Nnodes = ElemBasis::Size();
  4131. Vector<ElemBasis> normal, area_elem;
  4132. compute_norm_area_elem(S, normal, area_elem);
  4133. Vector<ElemBasis> B2(Nelem);
  4134. for (Long i = 0; i < Nelem; i++) {
  4135. for (Long j = 0; j < Nnodes; j++) {
  4136. B2[i][j] = 0;
  4137. B2[i][j] += B[i*COORD_DIM+0][j] * B[i*COORD_DIM+0][j];
  4138. B2[i][j] += B[i*COORD_DIM+1][j] * B[i*COORD_DIM+1][j];
  4139. B2[i][j] += B[i*COORD_DIM+2][j] * B[i*COORD_DIM+2][j];
  4140. }
  4141. }
  4142. return compute_inner_prod(area_elem,B2, B2) * 0.25;
  4143. };
  4144. auto compute_H = [] (const ElemList<COORD_DIM,ElemBasis>& elem_lst, const Vector<ElemBasis>& normal) {
  4145. const Long Nnodes = ElemBasis::Size();
  4146. const Long Nelem = elem_lst.NElem();
  4147. const Vector<ElemBasis> X = elem_lst.ElemVector();
  4148. Vector<ElemBasis> dX, d2X, H(Nelem);
  4149. ElemBasis::Grad(dX, X);
  4150. ElemBasis::Grad(d2X, dX);
  4151. for (Long i = 0; i < Nelem; i++) {
  4152. for (Long j = 0; j < Nnodes; j++) {
  4153. Tensor<Real,true,2,2> I, invI, II;
  4154. for (Long k0 = 0; k0 < 2; k0++) {
  4155. for (Long k1 = 0; k1 < 2; k1++) {
  4156. I(k0,k1) = 0;
  4157. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  4158. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  4159. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  4160. II(k0,k1) = 0;
  4161. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  4162. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  4163. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  4164. }
  4165. }
  4166. { // Set invI
  4167. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  4168. invI(0,0) = I(1,1) / detI;
  4169. invI(0,1) = -I(0,1) / detI;
  4170. invI(1,0) = -I(1,0) / detI;
  4171. invI(1,1) = I(0,0) / detI;
  4172. }
  4173. { // Set H
  4174. H[i][j] = 0;
  4175. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  4176. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  4177. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  4178. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  4179. }
  4180. }
  4181. }
  4182. return H;
  4183. };
  4184. auto compute_A_ = [](const Stellarator<Real,ORDER>& S, const Vector<Real>& x) {
  4185. const Long Nelem = S.NElem();
  4186. const Long Nnodes = ElemBasis::Size();
  4187. SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
  4188. Vector<ElemBasis> normal, area_elem;
  4189. compute_norm_area_elem(S, normal, area_elem);
  4190. if (S.Nsurf() == 2) {
  4191. Long Nelem0 = S.NTor(0)*S.NPol(0);
  4192. for (Long i = 0; i < Nelem0*COORD_DIM; i++) {
  4193. for (Long j = 0; j < Nnodes; j++) {
  4194. normal[i][j] *= -1.0;
  4195. }
  4196. }
  4197. }
  4198. Vector<ElemBasis> sigma(Nelem);
  4199. for (Long i = 0; i < Nelem; i++) {
  4200. for (Long j = 0; j < Nnodes; j++) {
  4201. sigma[i][j] = x[i*Nnodes+j];
  4202. }
  4203. }
  4204. Real alpha = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
  4205. Real beta = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
  4206. Vector<ElemBasis> B = compute_B(S, sigma, alpha, beta);
  4207. Vector<ElemBasis> BdotN = compute_dot_prod(B, normal);
  4208. Real flux_tor = 0, flux_pol = 0;
  4209. //compute_flux(flux_tor, flux_pol, S, B, normal);
  4210. { // compute flux_tor
  4211. SCTL_ASSERT(S.Nsurf() == 1);
  4212. const Long Nelem = S.NElem();
  4213. const Long Nnodes = ElemBasis::Size();
  4214. SCTL_ASSERT(B.Dim() == Nelem*COORD_DIM);
  4215. SCTL_ASSERT(normal.Dim() == Nelem*COORD_DIM);
  4216. Vector<ElemBasis> J(Nelem * COORD_DIM);
  4217. for (Long i = 0; i < Nelem; i++) { // Set J
  4218. for (Long j = 0; j < Nnodes; j++) {
  4219. Tensor<Real,true,COORD_DIM> b, n;
  4220. b(0) = B[i*COORD_DIM+0][j];
  4221. b(1) = B[i*COORD_DIM+1][j];
  4222. b(2) = B[i*COORD_DIM+2][j];
  4223. n(0) = normal[i*COORD_DIM+0][j];
  4224. n(1) = normal[i*COORD_DIM+1][j];
  4225. n(2) = normal[i*COORD_DIM+2][j];
  4226. J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
  4227. J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
  4228. J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
  4229. }
  4230. }
  4231. Vector<ElemBasis> A;
  4232. EvalQuadrature(A, S.quadrature_FxU, S, J, S.Laplace_FxU);
  4233. Vector<Real> circ_pol(S.Nsurf()), circ_tor(S.Nsurf());
  4234. { // compute circ
  4235. const Vector<ElemBasis>& X = S.GetElemList().ElemVector();
  4236. const auto& quad_wts = ElemBasis::QuadWts();
  4237. for (Long k = 0; k < S.Nsurf(); k++) {
  4238. circ_pol[k] = 0;
  4239. circ_tor[k] = 0;
  4240. Long Ndsp = S.ElemDsp(k);
  4241. for (Long i = 0; i < S.NTor(k)*S.NPol(k); i++) {
  4242. for (Long j = 0; j < Nnodes; j++) {
  4243. Tensor<Real,true,COORD_DIM> x, n, axis, phi_over_R, nxphi_over_R;
  4244. { // Set nxphi_over_R
  4245. x(0) = S.Elem(Ndsp+i,0)[j];
  4246. x(1) = S.Elem(Ndsp+i,1)[j];
  4247. x(2) = S.Elem(Ndsp+i,2)[j];
  4248. n(0) = normal[(Ndsp+i)*COORD_DIM+0][j];
  4249. n(1) = normal[(Ndsp+i)*COORD_DIM+1][j];
  4250. n(2) = normal[(Ndsp+i)*COORD_DIM+2][j];
  4251. axis(0) = 0;
  4252. axis(1) = 0;
  4253. axis(2) = 1;
  4254. phi_over_R(0) = axis(1) * x(2) - axis(2) * x(1);
  4255. phi_over_R(1) = axis(2) * x(0) - axis(0) * x(2);
  4256. phi_over_R(2) = axis(0) * x(1) - axis(1) * x(0);
  4257. Real scale = 1 / (phi_over_R(0)*phi_over_R(0) + phi_over_R(1)*phi_over_R(1) + phi_over_R(2)*phi_over_R(2));
  4258. phi_over_R(0) *= scale;
  4259. phi_over_R(1) *= scale;
  4260. phi_over_R(2) *= scale;
  4261. nxphi_over_R(0) = n(1) * phi_over_R(2) - n(2) * phi_over_R(1);
  4262. nxphi_over_R(1) = n(2) * phi_over_R(0) - n(0) * phi_over_R(2);
  4263. nxphi_over_R(2) = n(0) * phi_over_R(1) - n(1) * phi_over_R(0);
  4264. }
  4265. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+0][j] * nxphi_over_R(0) * quad_wts[j] * area_elem[i][j] / (2 * const_pi<Real>());
  4266. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+1][j] * nxphi_over_R(1) * quad_wts[j] * area_elem[i][j] / (2 * const_pi<Real>());
  4267. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+2][j] * nxphi_over_R(2) * quad_wts[j] * area_elem[i][j] / (2 * const_pi<Real>());
  4268. //circ_tor[k] += ;
  4269. //circ_tor[k] += ;
  4270. //circ_tor[k] += ;
  4271. }
  4272. }
  4273. }
  4274. }
  4275. if (S.Nsurf() == 1) {
  4276. flux_tor = circ_pol[0];
  4277. flux_pol = 0;
  4278. } else if (S.Nsurf() == 2) {
  4279. flux_tor = circ_pol[1] - circ_pol[0];
  4280. flux_pol = circ_tor[0] - circ_tor[1];
  4281. } else {
  4282. SCTL_ASSERT(false);
  4283. }
  4284. }
  4285. { // update flux_tor
  4286. Vector<ElemBasis> G_BdotN(Nelem), phi_dot_N_over_R(Nelem);
  4287. EvalQuadrature(G_BdotN, S.quadrature_FxU, S, BdotN, S.Laplace_FxU);
  4288. for (Long i = 0; i < Nelem; i++) {
  4289. for (Long j = 0; j < Nnodes; j++) {
  4290. Tensor<Real,true,COORD_DIM> x, axis, phi_over_R;
  4291. x(0) = S.Elem(i,0)[j];
  4292. x(1) = S.Elem(i,1)[j];
  4293. x(2) = S.Elem(i,2)[j];
  4294. axis(0) = 0;
  4295. axis(1) = 0;
  4296. axis(2) = 1;
  4297. phi_over_R(0) = axis(1) * x(2) - axis(2) * x(1);
  4298. phi_over_R(1) = axis(2) * x(0) - axis(0) * x(2);
  4299. phi_over_R(2) = axis(0) * x(1) - axis(1) * x(0);
  4300. Real scale = 1 / (phi_over_R(0)*phi_over_R(0) + phi_over_R(1)*phi_over_R(1) + phi_over_R(2)*phi_over_R(2));
  4301. phi_over_R(0) *= scale;
  4302. phi_over_R(1) *= scale;
  4303. phi_over_R(2) *= scale;
  4304. phi_dot_N_over_R[i][j] = 0;
  4305. phi_dot_N_over_R[i][j] += normal[i*COORD_DIM+0][j] * phi_over_R(0);
  4306. phi_dot_N_over_R[i][j] += normal[i*COORD_DIM+1][j] * phi_over_R(1);
  4307. phi_dot_N_over_R[i][j] += normal[i*COORD_DIM+2][j] * phi_over_R(2);
  4308. }
  4309. }
  4310. flux_tor += compute_inner_prod(area_elem, phi_dot_N_over_R, G_BdotN)/(2*const_pi<Real>());
  4311. }
  4312. Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
  4313. for (Long i = 0; i < Nelem; i++) {
  4314. for (Long j = 0; j < Nnodes; j++) {
  4315. Ax[i*Nnodes+j] = BdotN[i][j];
  4316. }
  4317. }
  4318. if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = flux_tor;
  4319. if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = flux_pol;
  4320. return Ax;
  4321. };
  4322. auto compute_invA_ = [&compute_A_](Vector<ElemBasis>& sigma, Real& alpha, Real& beta, const Stellarator<Real,ORDER>& S, Vector<ElemBasis>& Bdotn, Real flux_tor, Real flux_pol, const Comm& comm) {
  4323. typename ParallelSolver<Real>::ParallelOp BIOp = [&S,&compute_A_](Vector<Real>* Ax, const Vector<Real>& x) {
  4324. (*Ax) = compute_A_(S, x);
  4325. };
  4326. const Long Nelem = S.NElem();
  4327. const Long Nnodes = ElemBasis::Size();
  4328. Vector<Real> rhs_(Nelem * Nnodes + S.Nsurf());
  4329. for (Long i = 0; i < Nelem; i++) {
  4330. for (Long j = 0; j < Nnodes; j++) {
  4331. rhs_[i*Nnodes+j] = Bdotn[i][j];
  4332. }
  4333. }
  4334. if (S.Nsurf() >= 1) rhs_[Nelem * Nnodes + 0] = flux_tor;
  4335. if (S.Nsurf() >= 2) rhs_[Nelem * Nnodes + 1] = flux_pol;
  4336. Vector<Real> x_(Nelem * Nnodes + S.Nsurf());
  4337. x_ = 0;
  4338. ParallelSolver<Real> linear_solver(comm, true);
  4339. linear_solver(&x_, BIOp, rhs_, 1e-6, 100);
  4340. sigma.ReInit(Nelem);
  4341. for (Long i = 0; i < Nelem; i++) {
  4342. for (Long j = 0; j < Nnodes; j++) {
  4343. sigma[i][j] = x_[i*Nnodes+j];
  4344. }
  4345. }
  4346. alpha = (S.Nsurf() >= 1 ? x_[Nelem * Nnodes + 0] : 0);
  4347. beta = (S.Nsurf() >= 2 ? x_[Nelem * Nnodes + 1] : 0);
  4348. };
  4349. Comm comm = Comm::World();
  4350. Profile::Enable(true);
  4351. Long Nsurf = 1;
  4352. Stellarator<Real,ORDER> S;
  4353. Vector<Real> flux_tor(Nsurf), flux_pol(Nsurf);
  4354. { // Init S, flux_tor, flux_pol, pressure
  4355. Vector<Long> NtNp;
  4356. NtNp.PushBack(30);
  4357. NtNp.PushBack(4);
  4358. S = Stellarator<Real,ORDER>(NtNp);
  4359. flux_tor = 1;
  4360. flux_pol = 1;
  4361. }
  4362. Setup(S, comm);
  4363. const Long Nelem = S.NElem();
  4364. const Long Nnodes = ElemBasis::Size();
  4365. Vector<ElemBasis> normal, area_elem;
  4366. compute_norm_area_elem(S, normal, area_elem);
  4367. Vector<ElemBasis> nu(Nelem);
  4368. { // Set nu
  4369. //nu = area_elem;
  4370. //nu = 1;
  4371. //for (Long i = 0; i < Nelem; i++) {
  4372. // for (Long j = 0; j < Nnodes; j++) {
  4373. // Tensor<Real,true,COORD_DIM> x;
  4374. // x(0) = S.Elem(i,0)[j];
  4375. // x(1) = S.Elem(i,1)[j];
  4376. // x(2) = S.Elem(i,2)[j];
  4377. // nu[i][j] = x(2);
  4378. // }
  4379. //}
  4380. for (Long i = 0; i < Nelem; i++) {
  4381. for (Long j = 0; j < Nnodes; j++) {
  4382. Tensor<Real,true,COORD_DIM> x;
  4383. x(0) = S.Elem(i,0)[j]-8;
  4384. x(1) = S.Elem(i,1)[j]+6;
  4385. x(2) = S.Elem(i,2)[j]-3;
  4386. nu[i][j] = 1/sqrt(x(0)*x(0)+x(1)*x(1)+x(2)*x(2));
  4387. }
  4388. }
  4389. nu = nu * (1.0/sqrt(compute_inner_prod(area_elem, nu, nu)));
  4390. }
  4391. { // Write VTU
  4392. VTUData vtu;
  4393. vtu.AddElems(S.GetElemList(), nu, ORDER);
  4394. vtu.WriteVTK("nu", comm);
  4395. }
  4396. Vector<ElemBasis> B, nu_dBdn, nu_n_dot_dBdn;
  4397. { // Set B, nu_dBdn, nu_n_dot_dBdn
  4398. Real alpha, beta;
  4399. Vector<ElemBasis> sigma;
  4400. compute_invA(sigma, alpha, beta, S, flux_tor[0], flux_pol[0], comm);
  4401. B = compute_B(S, sigma, alpha, beta);
  4402. Vector<ElemBasis> dB = compute_dB(S, sigma, alpha, beta);
  4403. nu_dBdn.ReInit(Nelem * COORD_DIM);
  4404. nu_n_dot_dBdn.ReInit(Nelem);
  4405. for (Long i = 0; i < Nelem; i++) {
  4406. for (Long j = 0; j < Nnodes; j++) {
  4407. Real nu_dBdn_[COORD_DIM] = {0,0,0};
  4408. nu_dBdn_[0] -= dB[(i*COORD_DIM+0)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j] * nu[i][j];
  4409. nu_dBdn_[0] -= dB[(i*COORD_DIM+0)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j] * nu[i][j];
  4410. nu_dBdn_[0] -= dB[(i*COORD_DIM+0)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j] * nu[i][j];
  4411. nu_dBdn_[1] -= dB[(i*COORD_DIM+1)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j] * nu[i][j];
  4412. nu_dBdn_[1] -= dB[(i*COORD_DIM+1)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j] * nu[i][j];
  4413. nu_dBdn_[1] -= dB[(i*COORD_DIM+1)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j] * nu[i][j];
  4414. nu_dBdn_[2] -= dB[(i*COORD_DIM+2)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j] * nu[i][j];
  4415. nu_dBdn_[2] -= dB[(i*COORD_DIM+2)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j] * nu[i][j];
  4416. nu_dBdn_[2] -= dB[(i*COORD_DIM+2)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j] * nu[i][j];
  4417. nu_dBdn[i*COORD_DIM+0][j] = nu_dBdn_[0];
  4418. nu_dBdn[i*COORD_DIM+1][j] = nu_dBdn_[1];
  4419. nu_dBdn[i*COORD_DIM+2][j] = nu_dBdn_[2];
  4420. Real nu_n_dot_dBdn_ = 0;
  4421. nu_n_dot_dBdn_ += nu_dBdn_[0] * normal[i*COORD_DIM+0][j];
  4422. nu_n_dot_dBdn_ += nu_dBdn_[1] * normal[i*COORD_DIM+1][j];
  4423. nu_n_dot_dBdn_ += nu_dBdn_[2] * normal[i*COORD_DIM+2][j];
  4424. nu_n_dot_dBdn[i][j] = nu_n_dot_dBdn_;
  4425. }
  4426. }
  4427. }
  4428. { // Write VTU
  4429. VTUData vtu;
  4430. vtu.AddElems(S.GetElemList(), B, ORDER);
  4431. vtu.WriteVTK("B", comm);
  4432. }
  4433. Real dgdnu;
  4434. Vector<ElemBasis> dBdnu, n_dot_dBdnu;
  4435. { // Set dBdnu, n_dot_dBdnu, dgdnu (finite-difference approximation)
  4436. Real eps = 1e-3;
  4437. Stellarator<Real,ORDER> S0 = S, S1 = S;
  4438. for (Long i = 0; i < Nelem; i++) {
  4439. for (Long j = 0; j < Nnodes; j++) {
  4440. S0.Elem(i, 0)[j] -= 0.5 * eps * normal[i*COORD_DIM+0][j] * nu[i][j];
  4441. S0.Elem(i, 1)[j] -= 0.5 * eps * normal[i*COORD_DIM+1][j] * nu[i][j];
  4442. S0.Elem(i, 2)[j] -= 0.5 * eps * normal[i*COORD_DIM+2][j] * nu[i][j];
  4443. S1.Elem(i, 0)[j] += 0.5 * eps * normal[i*COORD_DIM+0][j] * nu[i][j];
  4444. S1.Elem(i, 1)[j] += 0.5 * eps * normal[i*COORD_DIM+1][j] * nu[i][j];
  4445. S1.Elem(i, 2)[j] += 0.5 * eps * normal[i*COORD_DIM+2][j] * nu[i][j];
  4446. }
  4447. }
  4448. Setup(S0, comm);
  4449. Setup(S1, comm);
  4450. Real alpha0, alpha1, beta0, beta1;
  4451. Vector<ElemBasis> sigma0, sigma1;
  4452. compute_invA(sigma0, alpha0, beta0, S0, flux_tor[0], flux_pol[0], comm);
  4453. compute_invA(sigma1, alpha1, beta1, S1, flux_tor[0], flux_pol[0], comm);
  4454. Vector<ElemBasis> B0 = compute_B(S0, sigma0, alpha0, beta0);
  4455. Vector<ElemBasis> B1 = compute_B(S1, sigma1, alpha1, beta1);
  4456. dBdnu = (B1 - B0) * (1/eps);
  4457. dgdnu = (compute_g(S1,B1) - compute_g(S0,B0)) * (1/eps);
  4458. n_dot_dBdnu.ReInit(Nelem);
  4459. for (Long i = 0; i < Nelem; i++) {
  4460. for (Long j = 0; j < Nnodes; j++) {
  4461. Real n_dot_dBdnu_ = 0;
  4462. n_dot_dBdnu_ += normal[i*COORD_DIM+0][j] * dBdnu[i*COORD_DIM+0][j];
  4463. n_dot_dBdnu_ += normal[i*COORD_DIM+1][j] * dBdnu[i*COORD_DIM+1][j];
  4464. n_dot_dBdnu_ += normal[i*COORD_DIM+2][j] * dBdnu[i*COORD_DIM+2][j];
  4465. n_dot_dBdnu[i][j] = n_dot_dBdnu_;
  4466. }
  4467. }
  4468. }
  4469. Vector<ElemBasis> B_dot_gradnu, nu_surfdivB, surfdivBnu;
  4470. { // Set B_dot_gradnu
  4471. Vector<ElemBasis> gradnu = compute_grad(S, nu);
  4472. B_dot_gradnu.ReInit(Nelem);
  4473. for (Long i = 0; i < Nelem; i++) {
  4474. for (Long j = 0; j < Nnodes; j++) {
  4475. Real B_dot_gradnu_ = 0;
  4476. B_dot_gradnu_ += B[i*COORD_DIM+0][j] * gradnu[i*COORD_DIM+0][j];
  4477. B_dot_gradnu_ += B[i*COORD_DIM+1][j] * gradnu[i*COORD_DIM+1][j];
  4478. B_dot_gradnu_ += B[i*COORD_DIM+2][j] * gradnu[i*COORD_DIM+2][j];
  4479. B_dot_gradnu[i][j] = B_dot_gradnu_;
  4480. }
  4481. }
  4482. }
  4483. { // Set nu_surfdivB
  4484. Vector<ElemBasis> surfdivB = compute_surfdiv(S, B);
  4485. nu_surfdivB.ReInit(Nelem);
  4486. for (Long i = 0; i < Nelem; i++) {
  4487. for (Long j = 0; j < Nnodes; j++) {
  4488. nu_surfdivB[i][j] = nu[i][j] * surfdivB[i][j];
  4489. }
  4490. }
  4491. }
  4492. { // Set surfdivBnu
  4493. Vector<ElemBasis> Bnu(Nelem*COORD_DIM);
  4494. for (Long i = 0; i < Nelem; i++) {
  4495. for (Long j = 0; j < Nnodes; j++) {
  4496. Bnu[i*COORD_DIM+0][j] = B[i*COORD_DIM+0][j] * nu[i][j];
  4497. Bnu[i*COORD_DIM+1][j] = B[i*COORD_DIM+1][j] * nu[i][j];
  4498. Bnu[i*COORD_DIM+2][j] = B[i*COORD_DIM+2][j] * nu[i][j];
  4499. }
  4500. }
  4501. surfdivBnu = compute_surfdiv(S, Bnu);
  4502. }
  4503. // nu_surfdivB == -nu_n_dot_dBdn
  4504. // B_dot_gradnu == n_dot_dBdnu
  4505. // surfdivBnu == B_dot_gradnu - nu_n_dot_dBdn
  4506. Vector<ElemBasis> dBdnu_;
  4507. { // Compute dBdnu_
  4508. Real alpha, beta;
  4509. Real flux_tor = 0, flux_pol = 0;
  4510. { // Set flux_tor, flux_pol
  4511. Vector<ElemBasis> B_dot_phi_over_R(Nelem);
  4512. for (Long i = 0; i < Nelem; i++) {
  4513. for (Long j = 0; j < Nnodes; j++) {
  4514. Tensor<Real,true,COORD_DIM> x, n, axis, phi_over_R;
  4515. { // Set phi_over_R
  4516. x(0) = S.Elem(i,0)[j];
  4517. x(1) = S.Elem(i,1)[j];
  4518. x(2) = S.Elem(i,2)[j];
  4519. n(0) = normal[i*COORD_DIM+0][j];
  4520. n(1) = normal[i*COORD_DIM+1][j];
  4521. n(2) = normal[i*COORD_DIM+2][j];
  4522. axis(0) = 0;
  4523. axis(1) = 0;
  4524. axis(2) = 1;
  4525. phi_over_R(0) = axis(1) * x(2) - axis(2) * x(1);
  4526. phi_over_R(1) = axis(2) * x(0) - axis(0) * x(2);
  4527. phi_over_R(2) = axis(0) * x(1) - axis(1) * x(0);
  4528. Real scale = 1 / (phi_over_R(0)*phi_over_R(0) + phi_over_R(1)*phi_over_R(1) + phi_over_R(2)*phi_over_R(2));
  4529. phi_over_R(0) *= scale;
  4530. phi_over_R(1) *= scale;
  4531. phi_over_R(2) *= scale;
  4532. }
  4533. B_dot_phi_over_R[i][j] = 0;
  4534. B_dot_phi_over_R[i][j] += B[i*COORD_DIM+0][j] * phi_over_R(0);
  4535. B_dot_phi_over_R[i][j] += B[i*COORD_DIM+1][j] * phi_over_R(1);
  4536. B_dot_phi_over_R[i][j] += B[i*COORD_DIM+2][j] * phi_over_R(2);
  4537. }
  4538. }
  4539. flux_tor = -compute_inner_prod(area_elem, B_dot_phi_over_R, nu) / (2 * const_pi<Real>());
  4540. }
  4541. Vector<ElemBasis> sigma, Bdotn = B_dot_gradnu - nu_n_dot_dBdn;
  4542. compute_invA_(sigma, alpha, beta, S, Bdotn, flux_tor, flux_pol, comm);
  4543. dBdnu_ = compute_B(S, sigma, alpha, beta) + nu_dBdn;
  4544. }
  4545. { // Write VTU
  4546. VTUData vtu;
  4547. vtu.AddElems(S.GetElemList(), dBdnu, ORDER);
  4548. vtu.WriteVTK("dBdnu", comm);
  4549. }
  4550. { // Write VTU
  4551. VTUData vtu;
  4552. vtu.AddElems(S.GetElemList(), dBdnu_, ORDER);
  4553. vtu.WriteVTK("dBdnu_", comm);
  4554. }
  4555. { // Write VTU
  4556. VTUData vtu;
  4557. vtu.AddElems(S.GetElemList(), dBdnu_ - dBdnu, ORDER);
  4558. vtu.WriteVTK("err", comm);
  4559. }
  4560. Real dgdnu0, dgdnu1, dgdnu2;
  4561. { // Set dgdnu0 = \int_{Gamma} (B^2 - p) B . B'
  4562. Vector<ElemBasis> dB = dBdnu - nu_dBdn;
  4563. Vector<ElemBasis> B2_p(Nelem), B_dot_dB(Nelem);
  4564. for (Long i = 0; i < Nelem; i++) {
  4565. for (Long j = 0; j < Nnodes; j++) {
  4566. B2_p[i][j] = 0;
  4567. B2_p[i][j] += B[i*COORD_DIM+0][j]*B[i*COORD_DIM+0][j];
  4568. B2_p[i][j] += B[i*COORD_DIM+1][j]*B[i*COORD_DIM+1][j];
  4569. B2_p[i][j] += B[i*COORD_DIM+2][j]*B[i*COORD_DIM+2][j];
  4570. B_dot_dB[i][j] = 0;
  4571. B_dot_dB[i][j] += B[i*COORD_DIM+0][j] * dB[i*COORD_DIM+0][j];
  4572. B_dot_dB[i][j] += B[i*COORD_DIM+1][j] * dB[i*COORD_DIM+1][j];
  4573. B_dot_dB[i][j] += B[i*COORD_DIM+2][j] * dB[i*COORD_DIM+2][j];
  4574. }
  4575. }
  4576. dgdnu0 = compute_inner_prod(area_elem, B2_p, B_dot_dB);
  4577. }
  4578. { // Set dgdnu1 = \int_{Gamma} (B^2-p) B . nu_dBdn
  4579. Vector<ElemBasis> dB = nu_dBdn;
  4580. Vector<ElemBasis> B2_p(Nelem), B_dot_dB(Nelem);
  4581. for (Long i = 0; i < Nelem; i++) {
  4582. for (Long j = 0; j < Nnodes; j++) {
  4583. B2_p[i][j] = 0;
  4584. B2_p[i][j] += B[i*COORD_DIM+0][j]*B[i*COORD_DIM+0][j];
  4585. B2_p[i][j] += B[i*COORD_DIM+1][j]*B[i*COORD_DIM+1][j];
  4586. B2_p[i][j] += B[i*COORD_DIM+2][j]*B[i*COORD_DIM+2][j];
  4587. B_dot_dB[i][j] = 0;
  4588. B_dot_dB[i][j] += B[i*COORD_DIM+0][j] * dB[i*COORD_DIM+0][j];
  4589. B_dot_dB[i][j] += B[i*COORD_DIM+1][j] * dB[i*COORD_DIM+1][j];
  4590. B_dot_dB[i][j] += B[i*COORD_DIM+2][j] * dB[i*COORD_DIM+2][j];
  4591. }
  4592. }
  4593. dgdnu1 = compute_inner_prod(area_elem, B2_p, B_dot_dB);
  4594. }
  4595. { // Set dgdnu2 = \int_{Gamma} 2H(B^2-p)^2 \nu
  4596. Vector<ElemBasis> H = compute_H(S.GetElemList(), normal);
  4597. Vector<ElemBasis> H_B2_p_2(Nelem);
  4598. for (Long i = 0; i < Nelem; i++) {
  4599. for (Long j = 0; j < Nnodes; j++) {
  4600. Real B2_p = 0;
  4601. B2_p += B[i*COORD_DIM+0][j]*B[i*COORD_DIM+0][j];
  4602. B2_p += B[i*COORD_DIM+1][j]*B[i*COORD_DIM+1][j];
  4603. B2_p += B[i*COORD_DIM+2][j]*B[i*COORD_DIM+2][j];
  4604. H_B2_p_2[i][j] = H[i][j] * B2_p*B2_p;
  4605. }
  4606. }
  4607. dgdnu2 = 0.5 * compute_inner_prod(area_elem,H_B2_p_2, nu);
  4608. }
  4609. std::cout<<dgdnu0<<' '<<dgdnu1<<' '<<dgdnu2<<' '<<dgdnu0+dgdnu1+dgdnu2<<'\n';
  4610. std::cout<<dgdnu<<'\n';
  4611. #if 0
  4612. Comm comm = Comm::World();
  4613. Profile::Enable(true);
  4614. Real flux_tor = 1.0, flux_pol = 1.0;
  4615. Stellarator<Real,ORDER> S;
  4616. { // Init S
  4617. Vector<Long> NtNp;
  4618. NtNp.PushBack(20);
  4619. NtNp.PushBack(4);
  4620. S = Stellarator<Real,ORDER>(NtNp);
  4621. }
  4622. Vector<ElemBasis> pressure(S.NElem());
  4623. pressure = 0;
  4624. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  4625. if (S.Nsurf() == 1) flux_pol = 0.0;
  4626. SetupQuadrature(S.quadrature_dBS , S, S.BiotSavartGrad, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  4627. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  4628. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  4629. SetupQuadrature(S.quadrature_FxdU, S, S.Laplace_FxdU , order_singular, order_direct, -1.0, comm);
  4630. SetupQuadrature(S.quadrature_dUxF, S, S.Laplace_dUxF , order_singular, order_direct, -1.0, comm);
  4631. Vector<ElemBasis> Bt0, Bp0;
  4632. Vector<ElemBasis> dBt0, dBp0;
  4633. { // Set Bt0, Bp0
  4634. Vector<ElemBasis> Jt, Jp;
  4635. compute_harmonic_vector_potentials(Jt, Jp, S);
  4636. EvalQuadrature(Bt0, S.quadrature_BS, S, Jp, S.BiotSavart);
  4637. EvalQuadrature(Bp0, S.quadrature_BS, S, Jt, S.BiotSavart);
  4638. EvalQuadrature(dBt0, S.quadrature_dBS, S, Jp, S.BiotSavartGrad);
  4639. EvalQuadrature(dBp0, S.quadrature_dBS, S, Jt, S.BiotSavartGrad);
  4640. }
  4641. auto compute_B = [&S,&Bt0,&Bp0] (const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  4642. const Long Nelem = S.NElem();
  4643. Vector<ElemBasis> B(S.NElem() * COORD_DIM);
  4644. if (sigma.Dim()) {
  4645. const Long Nnodes = ElemBasis::Size();
  4646. Vector<ElemBasis> normal, area_elem;
  4647. compute_norm_area_elem(S, normal, area_elem);
  4648. EvalQuadrature(B, S.quadrature_FxdU, S, sigma, S.Laplace_FxdU);
  4649. for (Long i = 0; i < Nelem; i++) {
  4650. for (Long j = 0; j < Nnodes; j++) {
  4651. for (Long k = 0; k < COORD_DIM; k++) {
  4652. B[i*COORD_DIM+k][j] -= 0.5*sigma[i][j]*normal[i*COORD_DIM+k][j];
  4653. }
  4654. }
  4655. }
  4656. } else {
  4657. B = 0;
  4658. }
  4659. if (S.Nsurf() >= 1) B += Bt0*alpha;
  4660. if (S.Nsurf() >= 2) B += Bp0*beta;
  4661. return B;
  4662. };
  4663. auto compute_dB = [&S,&dBt0,&dBp0] (const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  4664. const Long Nelem = S.NElem();
  4665. Vector<ElemBasis> dB(S.NElem() * COORD_DIM * COORD_DIM);
  4666. if (sigma.Dim()) {
  4667. EvalQuadrature(dB, S.quadrature_Fxd2U, S, sigma, S.Laplace_Fxd2U);
  4668. } else {
  4669. dB = 0;
  4670. }
  4671. if (S.Nsurf() >= 1) dB += dBt0*alpha;
  4672. if (S.Nsurf() >= 2) dB += dBp0*beta;
  4673. return dB;
  4674. };
  4675. auto compute_flux = [&S] (Real& flux_tor, Real& flux_pol, const Vector<ElemBasis>& B, const Vector<ElemBasis>& normal) {
  4676. const Long Nelem = S.NElem();
  4677. const Long Nnodes = ElemBasis::Size();
  4678. SCTL_ASSERT(B.Dim() == Nelem*COORD_DIM);
  4679. SCTL_ASSERT(normal.Dim() == Nelem*COORD_DIM);
  4680. Vector<ElemBasis> J(Nelem * COORD_DIM);
  4681. for (Long i = 0; i < Nelem; i++) { // Set J
  4682. for (Long j = 0; j < Nnodes; j++) {
  4683. Tensor<Real,true,COORD_DIM> b, n;
  4684. b(0) = B[i*COORD_DIM+0][j];
  4685. b(1) = B[i*COORD_DIM+1][j];
  4686. b(2) = B[i*COORD_DIM+2][j];
  4687. n(0) = normal[i*COORD_DIM+0][j];
  4688. n(1) = normal[i*COORD_DIM+1][j];
  4689. n(2) = normal[i*COORD_DIM+2][j];
  4690. J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
  4691. J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
  4692. J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
  4693. }
  4694. }
  4695. Vector<ElemBasis> A;
  4696. EvalQuadrature(A, S.quadrature_FxU, S, J, S.Laplace_FxU);
  4697. Vector<Real> circ_pol(S.Nsurf()), circ_tor(S.Nsurf());
  4698. { // compute circ
  4699. Vector<ElemBasis> dX;
  4700. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  4701. const auto& quad_wts = ElemBasis::QuadWts();
  4702. for (Long k = 0; k < S.Nsurf(); k++) {
  4703. circ_pol[k] = 0;
  4704. circ_tor[k] = 0;
  4705. Long Ndsp = S.ElemDsp(k);
  4706. for (Long i = 0; i < S.NTor(k)*S.NPol(k); i++) {
  4707. for (Long j = 0; j < Nnodes; j++) {
  4708. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+1][j] * quad_wts[j] / S.NTor(k);
  4709. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+3][j] * quad_wts[j] / S.NTor(k);
  4710. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+5][j] * quad_wts[j] / S.NTor(k);
  4711. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+0][j] * quad_wts[j] / S.NPol(k);
  4712. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+2][j] * quad_wts[j] / S.NPol(k);
  4713. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+4][j] * quad_wts[j] / S.NPol(k);
  4714. }
  4715. }
  4716. }
  4717. }
  4718. if (S.Nsurf() == 1) {
  4719. flux_tor = circ_pol[0];
  4720. flux_pol = 0;
  4721. } else if (S.Nsurf() == 2) {
  4722. flux_tor = circ_pol[1] - circ_pol[0];
  4723. flux_pol = circ_tor[0] - circ_tor[1];
  4724. } else {
  4725. SCTL_ASSERT(false);
  4726. }
  4727. };
  4728. auto compute_A = [&S,compute_B,&compute_flux] (const Vector<Real>& x) {
  4729. const Long Nelem = S.NElem();
  4730. const Long Nnodes = ElemBasis::Size();
  4731. SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
  4732. Vector<ElemBasis> normal, area_elem;
  4733. compute_norm_area_elem(S, normal, area_elem);
  4734. Vector<ElemBasis> sigma(Nelem);
  4735. for (Long i = 0; i < Nelem; i++) {
  4736. for (Long j = 0; j < Nnodes; j++) {
  4737. sigma[i][j] = x[i*Nnodes+j];
  4738. }
  4739. }
  4740. Real alpha = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
  4741. Real beta = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
  4742. Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
  4743. Vector<ElemBasis> BdotN = compute_dot_prod(B, normal);
  4744. Real flux_tor, flux_pol;
  4745. compute_flux(flux_tor, flux_pol, B, normal);
  4746. Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
  4747. for (Long i = 0; i < Nelem; i++) {
  4748. for (Long j = 0; j < Nnodes; j++) {
  4749. Ax[i*Nnodes+j] = BdotN[i][j];
  4750. }
  4751. }
  4752. if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = flux_tor;
  4753. if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = flux_pol;
  4754. return Ax;
  4755. };
  4756. auto compute_invA = [&S,&comm,&compute_A] (Vector<ElemBasis>& sigma, Real& alpha, Real& beta, Real flux_tor, Real flux_pol) {
  4757. typename ParallelSolver<Real>::ParallelOp BIOp = [&compute_A](Vector<Real>* Ax, const Vector<Real>& x) {
  4758. (*Ax) = compute_A(x);
  4759. };
  4760. const Long Nelem = S.NElem();
  4761. const Long Nnodes = ElemBasis::Size();
  4762. Vector<Real> rhs_(Nelem * Nnodes + S.Nsurf());
  4763. rhs_ = 0;
  4764. if (S.Nsurf() >= 1) rhs_[Nelem * Nnodes + 0] = flux_tor;
  4765. if (S.Nsurf() >= 2) rhs_[Nelem * Nnodes + 1] = flux_pol;
  4766. Vector<Real> x_(Nelem * Nnodes + S.Nsurf());
  4767. x_ = 0;
  4768. ParallelSolver<Real> linear_solver(comm, true);
  4769. linear_solver(&x_, BIOp, rhs_, 1e-8, 100);
  4770. sigma.ReInit(Nelem);
  4771. for (Long i = 0; i < Nelem; i++) {
  4772. for (Long j = 0; j < Nnodes; j++) {
  4773. sigma[i][j] = x_[i*Nnodes+j];
  4774. }
  4775. }
  4776. alpha = (S.Nsurf() >= 1 ? x_[Nelem * Nnodes + 0] : 0);
  4777. beta = (S.Nsurf() >= 2 ? x_[Nelem * Nnodes + 1] : 0);
  4778. };
  4779. auto compute_H = [] (const ElemList<COORD_DIM,ElemBasis>& elem_lst, const Vector<ElemBasis>& normal) {
  4780. const Long Nnodes = ElemBasis::Size();
  4781. const Long Nelem = elem_lst.NElem();
  4782. const Vector<ElemBasis> X = elem_lst.ElemVector();
  4783. Vector<ElemBasis> dX, d2X, H(Nelem);
  4784. ElemBasis::Grad(dX, X);
  4785. ElemBasis::Grad(d2X, dX);
  4786. for (Long i = 0; i < Nelem; i++) {
  4787. for (Long j = 0; j < Nnodes; j++) {
  4788. Tensor<Real,true,2,2> I, invI, II;
  4789. for (Long k0 = 0; k0 < 2; k0++) {
  4790. for (Long k1 = 0; k1 < 2; k1++) {
  4791. I(k0,k1) = 0;
  4792. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  4793. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  4794. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  4795. II(k0,k1) = 0;
  4796. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  4797. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  4798. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  4799. }
  4800. }
  4801. { // Set invI
  4802. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  4803. invI(0,0) = I(1,1) / detI;
  4804. invI(0,1) = -I(0,1) / detI;
  4805. invI(1,0) = -I(1,0) / detI;
  4806. invI(1,1) = I(0,0) / detI;
  4807. }
  4808. { // Set H
  4809. H[i][j] = 0;
  4810. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  4811. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  4812. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  4813. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  4814. }
  4815. }
  4816. }
  4817. return H;
  4818. };
  4819. auto compute_grad = [&S,&compute_B,&compute_dB,&compute_invA,&compute_H](Vector<ElemBasis>& pressure, Real flux_tor, Real flux_pol) {
  4820. const Long Nelem = S.NElem();
  4821. const Long Nnodes = ElemBasis::Size();
  4822. Real alpha, beta;
  4823. Vector<ElemBasis> sigma;
  4824. compute_invA(sigma, alpha, beta, flux_tor, flux_pol);
  4825. Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
  4826. Vector<ElemBasis> dB = compute_dB(sigma, alpha, beta);
  4827. Vector<ElemBasis> normal, area_elem;
  4828. compute_norm_area_elem(S, normal, area_elem);
  4829. Vector<ElemBasis> gvec = compute_gvec(S, B, pressure);
  4830. Vector<ElemBasis> dgdB = compute_dgdB(S, B, pressure);
  4831. Vector<ElemBasis> H = compute_H(S.GetElemList(), normal);
  4832. Vector<ElemBasis> dgdnu(Nelem);
  4833. dgdnu = 0;
  4834. for (Long i = 0; i < Nelem; i++) {
  4835. for (Long j = 0; j < Nnodes; j++) {
  4836. Real dgdB_dot_dBdn = 0;
  4837. Real dBdn[COORD_DIM] = {0,0,0};
  4838. for (Long k = 0; k < COORD_DIM; k++) {
  4839. dBdn[0] += dB[(i*COORD_DIM+0)*COORD_DIM+k][j] * normal[i*COORD_DIM+k][j];
  4840. dBdn[1] += dB[(i*COORD_DIM+1)*COORD_DIM+k][j] * normal[i*COORD_DIM+k][j];
  4841. dBdn[2] += dB[(i*COORD_DIM+2)*COORD_DIM+k][j] * normal[i*COORD_DIM+k][j];
  4842. }
  4843. for (Long k = 0; k < COORD_DIM; k++) {
  4844. dgdB_dot_dBdn += dgdB[i*COORD_DIM+k][j] * dBdn[k];
  4845. }
  4846. dgdnu[i][j] = dgdB_dot_dBdn + 2*H[i][j]*gvec[i][j];
  4847. }
  4848. }
  4849. return dgdnu;
  4850. };
  4851. auto dg_dnu0 = compute_gradient(S, pressure, flux_tor, flux_pol);
  4852. auto dg_dnu1 = compute_grad ( pressure, flux_tor, flux_pol);
  4853. { // Write VTU
  4854. VTUData vtu;
  4855. vtu.AddElems(S.GetElemList(), dg_dnu0, ORDER);
  4856. vtu.WriteVTK("dg_dnu0", comm);
  4857. }
  4858. { // Write VTU
  4859. VTUData vtu;
  4860. vtu.AddElems(S.GetElemList(), dg_dnu1, ORDER);
  4861. vtu.WriteVTK("dg_dnu1", comm);
  4862. }
  4863. #endif
  4864. }
  4865. private:
  4866. static void tmp() {
  4867. //if (0) { // Save data
  4868. // Matrix<Real> M(S.NtNp_[0]*ORDER, S.NtNp_[1]*ORDER);
  4869. // for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
  4870. // for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
  4871. // for (Long t = 0; t < ORDER; t++) {
  4872. // for (Long p = 0; p < ORDER; p++) {
  4873. // Long elem_idx = tt * S.NtNp_[1] + pp;
  4874. // Long node_idx = p * ORDER + t;
  4875. // M[tt*ORDER+t][pp*ORDER+p] = dg_dnu[elem_idx][node_idx];
  4876. // }
  4877. // }
  4878. // }
  4879. // }
  4880. // M.Write("dg_dnu.mat");
  4881. //}
  4882. //if (0) { // filter dg_dnu and write VTU
  4883. // const Long Nelem = S.NElem();
  4884. // const Long Nnodes = ElemBasis::Size();
  4885. // const Integer INTERP_ORDER = 12;
  4886. // Long Nt = S.NtNp_[0]*ORDER/5, Np = S.NtNp_[1]*ORDER/5;
  4887. // Matrix<Real> M(Nt, Np); M = 0;
  4888. // const auto& quad_wts = ElemBasis::QuadWts();
  4889. // const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
  4890. // for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
  4891. // for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
  4892. // for (Long t = 0; t < ORDER; t++) {
  4893. // for (Long p = 0; p < ORDER; p++) {
  4894. // Real theta = (tt + Mnodes[0][t]) / S.NtNp_[0];
  4895. // Real phi = (pp + Mnodes[0][p]) / S.NtNp_[1];
  4896. // Long i = (Long)(theta * Nt);
  4897. // Long j = (Long)(phi * Np);
  4898. // Real x = theta * Nt - i;
  4899. // Real y = phi * Np - j;
  4900. // Long elem_idx = tt * S.NtNp_[1] + pp;
  4901. // Long node_idx = p * ORDER + t;
  4902. // Vector<Real> Interp0(INTERP_ORDER);
  4903. // Vector<Real> Interp1(INTERP_ORDER);
  4904. // { // Set Interp0, Interp1
  4905. // auto node = [] (Long i) {
  4906. // return (Real)i - (INTERP_ORDER-1)/2;
  4907. // };
  4908. // for (Long i = 0; i < INTERP_ORDER; i++) {
  4909. // Real wt_x = 1, wt_y = 1;
  4910. // for (Long j = 0; j < INTERP_ORDER; j++) {
  4911. // if (j != i) {
  4912. // wt_x *= (x - node(j)) / (node(i) - node(j));
  4913. // wt_y *= (y - node(j)) / (node(i) - node(j));
  4914. // }
  4915. // Interp0[i] = wt_x;
  4916. // Interp1[i] = wt_y;
  4917. // }
  4918. // }
  4919. // }
  4920. // for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  4921. // for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  4922. // Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  4923. // Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  4924. // M[idx_i][idx_j] += dg_dnu[elem_idx][node_idx] * quad_wts[node_idx] * Interp0[ii] * Interp1[jj] / (S.NtNp_[0] * S.NtNp_[1]) * (Nt * Np);
  4925. // }
  4926. // }
  4927. // }
  4928. // }
  4929. // }
  4930. // }
  4931. // Vector<ElemBasis> f(Nelem);
  4932. // for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
  4933. // for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
  4934. // for (Long t = 0; t < ORDER; t++) {
  4935. // for (Long p = 0; p < ORDER; p++) {
  4936. // Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
  4937. // Real theta = (tt + Mnodes[0][t]) / S.NtNp_[0];
  4938. // Real phi = (pp + Mnodes[0][p]) / S.NtNp_[1];
  4939. // Long i = (Long)(theta * Nt);
  4940. // Long j = (Long)(phi * Np);
  4941. // Real x = theta * Nt - i;
  4942. // Real y = phi * Np - j;
  4943. // Vector<Real> Interp0(INTERP_ORDER);
  4944. // Vector<Real> Interp1(INTERP_ORDER);
  4945. // { // Set Interp0, Interp1
  4946. // auto node = [] (Long i) {
  4947. // return (Real)i - (INTERP_ORDER-1)/2;
  4948. // };
  4949. // for (Long i = 0; i < INTERP_ORDER; i++) {
  4950. // Real wt_x = 1, wt_y = 1;
  4951. // for (Long j = 0; j < INTERP_ORDER; j++) {
  4952. // if (j != i) {
  4953. // wt_x *= (x - node(j)) / (node(i) - node(j));
  4954. // wt_y *= (y - node(j)) / (node(i) - node(j));
  4955. // }
  4956. // Interp0[i] = wt_x;
  4957. // Interp1[i] = wt_y;
  4958. // }
  4959. // }
  4960. // }
  4961. // Real f0 = 0;
  4962. // for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  4963. // for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  4964. // Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  4965. // Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  4966. // f0 += Interp0[ii] * Interp1[jj] * M[idx_i][idx_j];
  4967. // }
  4968. // }
  4969. // Long elem_idx = tt * S.NtNp_[1] + pp;
  4970. // Long node_idx = p * ORDER + t;
  4971. // f[elem_idx][node_idx] = f0;
  4972. // }
  4973. // }
  4974. // }
  4975. // }
  4976. // { // Write VTU
  4977. // VTUData vtu;
  4978. // vtu.AddElems(S.GetElemList(), f, ORDER);
  4979. // vtu.WriteVTK("dg_dnu_filtered", comm);
  4980. // }
  4981. // dg_dnu = f;
  4982. //}
  4983. }
  4984. static void FlipNormal(Vector<ElemBasis>& v) {
  4985. for (Long i = 0; i < v.Dim(); i++) {
  4986. const auto elem = v[i];
  4987. for (Long j0 = 0; j0 < ORDER; j0++) {
  4988. for (Long j1 = 0; j1 < ORDER; j1++) {
  4989. v[i][j0*ORDER+j1] = elem[j0*ORDER+(ORDER-j1-1)];
  4990. }
  4991. }
  4992. }
  4993. }
  4994. template <class Kernel> static void SetupQuadrature(Quadrature<Real>& quadrature, const Stellarator<Real,ORDER>& S, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm, Real Rqbx = 0) {
  4995. if (S.Nsurf() == 2) {
  4996. Long Nelem0 = S.NTor(0)*S.NPol(0);
  4997. ElemList<COORD_DIM, ElemBasis> elem_lst = S.GetElemList();
  4998. { // Update elem_lst
  4999. Vector<ElemBasis> X = elem_lst.ElemVector();
  5000. Vector<ElemBasis> X0(Nelem0*COORD_DIM, X.begin(), false);
  5001. FlipNormal(X0);
  5002. elem_lst.ReInit(X);
  5003. }
  5004. quadrature.template Setup<ElemBasis, ElemBasis>(elem_lst, kernel, order_singular, order_direct, period_length, comm, Rqbx);
  5005. } else {
  5006. quadrature.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), kernel, order_singular, order_direct, period_length, comm, Rqbx);
  5007. }
  5008. }
  5009. template <class Kernel> static void EvalQuadrature(Vector<ElemBasis>& potential, const Quadrature<Real>& quadrature, const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& density, const Kernel& kernel) {
  5010. if (S.Nsurf() == 2) {
  5011. Long Nelem0 = S.NTor(0)*S.NPol(0);
  5012. Vector<ElemBasis> potential_, density_ = density;
  5013. ElemList<COORD_DIM, ElemBasis> elem_lst = S.GetElemList();
  5014. { // Update elem_lst
  5015. Vector<ElemBasis> X = elem_lst.ElemVector();
  5016. Vector<ElemBasis> X0(Nelem0*COORD_DIM, X.begin(), false);
  5017. FlipNormal(X0);
  5018. elem_lst.ReInit(X);
  5019. }
  5020. { // Update density_
  5021. Long dof = density_.Dim() / S.NElem();
  5022. Vector<ElemBasis> density0(Nelem0*dof, density_.begin(), false);
  5023. FlipNormal(density0);
  5024. }
  5025. quadrature.Eval(potential_, elem_lst, density_, kernel);
  5026. { // Update potential_
  5027. Long dof = potential_.Dim() / S.NElem();
  5028. Vector<ElemBasis> potential0(Nelem0*dof, potential_.begin(), false);
  5029. FlipNormal(potential0);
  5030. }
  5031. potential = potential_;
  5032. } else {
  5033. quadrature.Eval(potential, S.GetElemList(), density, kernel);
  5034. }
  5035. }
  5036. void InitSurf(Long l, Long Nsurf) {
  5037. const auto& nodes = ElemBasis::Nodes();
  5038. const Long Nt = NTor(l);
  5039. const Long Np = NPol(l);
  5040. for (Long i = 0; i < Nt; i++) {
  5041. for (Long j = 0; j < Np; j++) {
  5042. for (Long k = 0; k < ElemBasis::Size(); k++) {
  5043. Real theta = (i + nodes[0][k]) * 2*const_pi<Real>()/Nt;
  5044. Real phi = (j + nodes[1][k]) * 2*const_pi<Real>()/Np;
  5045. Real X,Y,Z;
  5046. SurfGeom(X,Y,Z,theta,phi, (2.0+l)/(1.0+Nsurf));
  5047. Elem(ElemIdx(l,i,j),0)[k] = X;
  5048. Elem(ElemIdx(l,i,j),1)[k] = Y;
  5049. Elem(ElemIdx(l,i,j),2)[k] = Z;
  5050. }
  5051. }
  5052. }
  5053. }
  5054. static void SurfGeom(Real& X, Real& Y, Real& Z, Real theta, Real phi, Real s) {
  5055. Integer Nperiod = 5;
  5056. #if 0
  5057. Real Aspect_ratio = 10.27932548522949;
  5058. Real coeffmat[21][21] = { 0.00000478813217, 0.00000000000000, 0.00000351611652, 0.00000135354389, 0.00000061357832, 0.00000220091101, 0.00000423862912, -0.00003000058678, 0.00000064187111, -0.00024228452821, 0.00003116775770, 0.00000176210710, 0.00000289141326, -0.00000150300525, 0.00000772853855, 0.00000098855242, 0.00000316606793, 0.00000002168364, 0.00000212047939, 0.00000299016097, 0.00000443224508,
  5059. 0.00000028202930, 0.00000000000000, -0.00000249222421, -0.00000203136278, 0.00000131104809, 0.00000011987446, -0.00000370760154, 0.00004553918916, -0.00007711342914, -0.00004685295062, 0.00011049838213, -0.00000197486270, 0.00000395827146, 0.00000615046474, 0.00000755337123, 0.00000700606006, 0.00000922725030, -0.00000043310337, 0.00000107416383, 0.00000449787694, 0.00000305137178,
  5060. 0.00001226376662, 0.00000000000000, 0.00000270820692, 0.00000208059305, 0.00000521478523, 0.00001779037302, 0.00000846544117, 0.00001120913385, -0.00065816845745, -0.00085107452469, -0.00013171190221, -0.00005540943675, -0.00001835885450, 0.00000101879823, 0.00000209222071, 0.00000091532502, -0.00000521515358, -0.00000209227142, -0.00000678545939, -0.00000034963549, -0.00000015111488,
  5061. 0.00001560274177, 0.00000000000000, 0.00000350691471, -0.00001160475040, -0.00001763036562, 0.00003487367940, -0.00002787247831, -0.00000910982726, 0.00008818832430, -0.00524408789352, 0.00009378376126, 0.00004184526188, 0.00002849263365, -0.00002757280527, 0.00003388467667, 0.00000706207265, 0.00000625263419, -0.00003315929280, -0.00001181772132, 0.00000311426015, 0.00001875682574,
  5062. -0.00000398287420, 0.00000000000000, -0.00001524541040, 0.00001724056165, 0.00002245173346, 0.00002806861812, -0.00000388776925, 0.00008143573359, -0.00005900909309, 0.00110496615525, 0.00134626252111, 0.00005128383054, -0.00001372421866, 0.00003612563887, 0.00002236580076, -0.00002728391883, 0.00001981237256, 0.00000655450458, 0.00000985319002, 0.00001347597299, 0.00000645987802,
  5063. 0.00003304968050, 0.00000000000000, -0.00000530822217, 0.00001324870937, -0.00003610889689, -0.00005478735329, -0.00005818806312, -0.00037112057908, -0.00017812002625, -0.00093204283621, 0.00115969858598, -0.00033559172880, -0.00010441876657, -0.00001617923044, -0.00000555065844, 0.00007343527250, -0.00004408047607, 0.00000403802142, 0.00001843931204, 0.00001694047933, 0.00001213414362,
  5064. -0.00000751115658, 0.00000000000000, 0.00005457974839, -0.00000334614515, 0.00005845565465, 0.00015000770509, 0.00021849104087, 0.00002724147635, 0.00167233624961, 0.00011666602222, 0.00276563479565, -0.00085952825611, -0.00030217235326, -0.00008841593808, 0.00000997664119, -0.00015285826521, 0.00002517224675, 0.00003009161810, 0.00001883217556, 0.00002146127554, 0.00001822445302,
  5065. -0.00004128706860, 0.00000000000000, -0.00003496417776, 0.00001088761655, -0.00000298955979, -0.00005359326315, -0.00019021633489, -0.00017992728681, -0.00347794801928, 0.00064632791327, 0.00449698418379, -0.00017710507382, 0.00006126180233, 0.00018059254216, 0.00002354096432, 0.00008189838991, -0.00010060678323, -0.00017183290038, 0.00019413756672, 0.00021334811754, 0.00011263617489,
  5066. 0.00000853522670, -0.00000000000000, -0.00006544789358, 0.00005424076880, -0.00000679056529, -0.00001249735487, -0.00053082982777, 0.00035396864405, -0.00115020677913, 0.05894451215863, 0.06573092192411, 0.01498018857092, 0.00278125284240, 0.00145188067108, 0.00033717858605, 0.00000800427370, -0.00009335305367, 0.00024286781263, -0.00023916347709, 0.00031213948387, 0.00018134393031,
  5067. -0.00002521496390, -0.00000000000000, -0.00054337945767, 0.00012690725271, 0.00053313979879, 0.00064233405283, -0.00047686311882, 0.00176536326762, 0.00074157933705, -0.02684566564858, 1.00000000000000, 0.07176169008017, 0.00837037432939, -0.00000381640211, 0.00088998704450, -0.00049218931235, -0.00024546548957, -0.00036608282244, 0.00049480766756, 0.00031158892671, 0.00006898906577,
  5068. 0.00021280418150, 0.00028127161204, -0.00070030166535, 0.00022237010126, -0.00028713891516, -0.00013800295710, 0.00005912094275, 0.00172126013786, -0.00618684850633, 0.03608432412148, Aspect_ratio , 0.49896776676178, 0.00091372377938, -0.00085712829605, -0.00124801427592, -0.00007427225501, -0.00005245858847, 0.00002841771493, 0.00020249813679, -0.00014303345233, 0.00001406490901,
  5069. 0.00023699452868, 0.00008661757602, 0.00025744654704, -0.00022715188970, -0.00076146807987, 0.00055185536621, -0.00012325309217, -0.00072356045712, -0.00160693109501, 0.00246682553552, -0.14175094664097, -0.36207047104836, -0.04089594259858, 0.00060774467420, 0.00088646943914, 0.00004865296432, -0.00041878610500, -0.00023025234987, -0.00009676301852, -0.00000000000000, 0.00008409228758,
  5070. 0.00011432896281, -0.00000707848403, 0.00004698805787, -0.00043642931269, 0.00081384339137, -0.00065635429928, -0.00011831733718, 0.00017413357273, 0.00224463525228, 0.00478497287259, 0.03294761106372, 0.01078986655921, 0.10731782764196, 0.00075034319889, -0.00009241879889, 0.00055023463210, 0.00006596000458, 0.00005045382932, 0.00014874986664, 0.00000000000000, -0.00015369028552,
  5071. 0.00001037383754, 0.00009250180301, 0.00026204055757, 0.00007424291834, -0.00047751804232, 0.00029184055165, 0.00050921301590, -0.00004825839278, -0.00029933769838, 0.00279659987427, 0.00210463814437, -0.00618590926751, -0.02400829829276, -0.02316811867058, -0.00086368201301, -0.00032258985448, -0.00018304496189, 0.00008438774967, -0.00008305341908, 0.00000000000000, 0.00013047417451,
  5072. -0.00001376930322, -0.00001723831701, -0.00011543079017, -0.00022646733851, 0.00013467084500, -0.00004661652201, -0.00008419520600, 0.00035772417323, -0.00011815709877, 0.00028718306567, 0.00092207465786, -0.00317224999890, 0.00061770365573, 0.01017294172198, 0.00294739892706, 0.00014669894881, 0.00015702951350, 0.00003432080121, -0.00008555022214, -0.00000000000000, 0.00000454909878,
  5073. -0.00000196001542, -0.00003198397462, -0.00004425687075, -0.00004129848094, -0.00003789070615, -0.00027583551127, 0.00025874207495, -0.00002334945384, -0.00007259396807, -0.00008295358566, 0.00011360697681, -0.00101968157105, 0.00046784928418, -0.00208410434425, -0.00313158822246, -0.00046005158219, -0.00010552268213, -0.00005850767775, 0.00003971093611, 0.00000000000000, -0.00005275657168,
  5074. -0.00001065901233, -0.00001934838656, -0.00001220186732, -0.00002060524639, -0.00000225423423, -0.00001894621164, -0.00001533334580, -0.00001791087379, 0.00008156246622, -0.00008441298269, 0.00021060956351, -0.00030303673702, 0.00075949780876, -0.00010539998038, 0.00109045265708, 0.00068949378328, 0.00009268362192, 0.00003471063246, 0.00001204656473, -0.00000000000000, 0.00001500743110,
  5075. 0.00000105878155, -0.00000910870767, -0.00000172467264, -0.00000722095228, 0.00000699280463, -0.00002061720625, -0.00000889817693, -0.00001993474507, 0.00000370749740, -0.00000090311920, 0.00002677819793, 0.00043428712524, 0.00210293265991, 0.00018200518389, -0.00009621794743, -0.00035250501242, -0.00012996385340, -0.00002185157609, -0.00001116586463, -0.00000000000000, -0.00000451994811,
  5076. 0.00000424055270, -0.00000463139304, 0.00000301006116, -0.00000123974939, 0.00000632465435, -0.00002090823000, 0.00001773388794, 0.00000121050368, 0.00001886057362, -0.00001043497195, -0.00002269273500, -0.00021979617304, -0.00001043962493, -0.00116343051195, -0.00004193381756, 0.00007944958634, 0.00007301353617, 0.00002082651736, -0.00000119863023, -0.00000000000000, -0.00001440504820,
  5077. -0.00000391270805, -0.00000490489265, -0.00000504441778, -0.00000904507579, -0.00000111389932, 0.00000597532107, 0.00000047090245, -0.00001553130096, -0.00001524566323, -0.00000522222899, -0.00007707672921, -0.00004165665086, 0.00015764687851, 0.00035649110214, 0.00038701237645, 0.00002386798405, -0.00001946414341, -0.00000913835174, -0.00000489907188, 0.00000000000000, 0.00000172327657,
  5078. -0.00000015388650, -0.00000603232729, -0.00000397650865, 0.00000280493782, 0.00000463132073, -0.00000788678426, -0.00000471605335, -0.00000283715985, -0.00000422824724, 0.00000366817630, -0.00001159603562, -0.00001625759251, 0.00049116823357, 0.00005048640014, -0.00020234247495, -0.00006341376866, -0.00000807822744, 0.00000070463199, 0.00000014041755, 0.00000000000000, -0.00000718306910};
  5079. #else
  5080. Real Aspect_ratio = 5;
  5081. Real coeffmat[21][21] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5082. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5083. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5084. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5085. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5086. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5087. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5088. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5089. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5090. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, s, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5091. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Aspect_ratio, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5092. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2*s, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5093. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5094. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5095. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5096. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5097. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5098. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5099. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5100. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5101. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0};
  5102. #endif
  5103. Z = 0;
  5104. Real R = 0;
  5105. for (long i = -10; i <= 10; i++) {
  5106. for (long j = -10; j <= 10; j++) {
  5107. R += coeffmat[i+10][j+10] * cos(-i*phi + Nperiod*j*theta);
  5108. Z += coeffmat[i+10][j+10] * sin(-i*phi + Nperiod*j*theta);
  5109. }
  5110. }
  5111. X = R * cos(theta);
  5112. Y = R * sin(theta);
  5113. }
  5114. GenericKernel<BiotSavart3D> BiotSavart ;
  5115. GenericKernel<BiotSavartGrad3D> BiotSavartGrad;
  5116. GenericKernel<Laplace3D_FxU > Laplace_FxU ;
  5117. GenericKernel<Laplace3D_FxdU> Laplace_FxdU;
  5118. GenericKernel<Laplace3D_dUxF> Laplace_dUxF;
  5119. GenericKernel<Laplace3D_dUxD> Laplace_dUxD;
  5120. GenericKernel<Laplace3D_Fxd2U> Laplace_Fxd2U;
  5121. mutable Quadrature<Real> quadrature_BS ;
  5122. mutable Quadrature<Real> quadrature_dBS ;
  5123. mutable Quadrature<Real> quadrature_FxU ;
  5124. mutable Quadrature<Real> quadrature_FxdU;
  5125. mutable Quadrature<Real> quadrature_dUxF;
  5126. mutable Quadrature<Real> quadrature_dUxD;
  5127. mutable Quadrature<Real> quadrature_Fxd2U;
  5128. mutable Vector<ElemBasis> Bt0, Bp0, dBt0, dBp0;
  5129. mutable Vector<ElemBasis> sigma, B, gvec, dgdB;
  5130. mutable Real alpha, beta;
  5131. ElemLst elements;
  5132. Vector<Long> NtNp_;
  5133. Vector<Long> elem_dsp;
  5134. };
  5135. template <class Real, Integer ORDER=10> class MHDEquilib {
  5136. static constexpr Integer fourier_dim0 = 50*10*4;
  5137. static constexpr Integer fourier_dim1 = 10*10*4;
  5138. //static constexpr Integer fourier_upsample = 4;
  5139. static constexpr Integer COORD_DIM = 3;
  5140. static constexpr Integer ELEM_DIM = COORD_DIM-1;
  5141. using ElemBasis = Basis<Real, ELEM_DIM, ORDER>;
  5142. static Vector<Real> cheb2grid(const Vector<ElemBasis>& X, Long Mt, Long Mp, Long Nt, Long Np) {
  5143. const Long dof = X.Dim() / (Mt * Mp);
  5144. SCTL_ASSERT(X.Dim() == Mt * Mp *dof);
  5145. Vector<Real> Xf(dof*Nt*Np); Xf = 0;
  5146. const Long Nnodes = ElemBasis::Size();
  5147. const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
  5148. for (Long t = 0; t < Nt; t++) {
  5149. for (Long p = 0; p < Np; p++) {
  5150. Real theta = t / (Real)Nt;
  5151. Real phi = p / (Real)Np;
  5152. Long i = (Long)(theta * Mt);
  5153. Long j = (Long)(phi * Mp);
  5154. Real x = theta * Mt - i;
  5155. Real y = phi * Mp - j;
  5156. Long elem_idx = i * Mp + j;
  5157. Vector<Real> Interp0(ORDER);
  5158. Vector<Real> Interp1(ORDER);
  5159. { // Set Interp0, Interp1
  5160. auto node = [&Mnodes] (Long i) {
  5161. return Mnodes[0][i];
  5162. };
  5163. for (Long i = 0; i < ORDER; i++) {
  5164. Real wt_x = 1, wt_y = 1;
  5165. for (Long j = 0; j < ORDER; j++) {
  5166. if (j != i) {
  5167. wt_x *= (x - node(j)) / (node(i) - node(j));
  5168. wt_y *= (y - node(j)) / (node(i) - node(j));
  5169. }
  5170. Interp0[i] = wt_x;
  5171. Interp1[i] = wt_y;
  5172. }
  5173. }
  5174. }
  5175. for (Long ii = 0; ii < ORDER; ii++) {
  5176. for (Long jj = 0; jj < ORDER; jj++) {
  5177. Long node_idx = jj * ORDER + ii;
  5178. for (Long k = 0; k < dof; k++) {
  5179. Xf[(k*Nt+t)*Np+p] += X[elem_idx*dof+k][node_idx] * Interp0[ii] * Interp1[jj];
  5180. }
  5181. }
  5182. }
  5183. }
  5184. }
  5185. return Xf;
  5186. }
  5187. static Vector<ElemBasis> grid2cheb(const Vector<Real>& Xf, Long Nt, Long Np, Long Mt, Long Mp) {
  5188. Long dof = Xf.Dim() / (Nt*Np);
  5189. SCTL_ASSERT(Xf.Dim() == dof*Nt*Np);
  5190. Vector<ElemBasis> X(Mt*Mp*dof);
  5191. constexpr Integer INTERP_ORDER = 12;
  5192. for (Long tt = 0; tt < Mt; tt++) {
  5193. for (Long pp = 0; pp < Mp; pp++) {
  5194. for (Long t = 0; t < ORDER; t++) {
  5195. for (Long p = 0; p < ORDER; p++) {
  5196. Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
  5197. Real theta = (tt + Mnodes[0][t]) / Mt;
  5198. Real phi = (pp + Mnodes[0][p]) / Mp;
  5199. Long i = (Long)(theta * Nt);
  5200. Long j = (Long)(phi * Np);
  5201. Real x = theta * Nt - i;
  5202. Real y = phi * Np - j;
  5203. Vector<Real> Interp0(INTERP_ORDER);
  5204. Vector<Real> Interp1(INTERP_ORDER);
  5205. { // Set Interp0, Interp1
  5206. auto node = [] (Long i) {
  5207. return (Real)i - (INTERP_ORDER-1)/2;
  5208. };
  5209. for (Long i = 0; i < INTERP_ORDER; i++) {
  5210. Real wt_x = 1, wt_y = 1;
  5211. for (Long j = 0; j < INTERP_ORDER; j++) {
  5212. if (j != i) {
  5213. wt_x *= (x - node(j)) / (node(i) - node(j));
  5214. wt_y *= (y - node(j)) / (node(i) - node(j));
  5215. }
  5216. Interp0[i] = wt_x;
  5217. Interp1[i] = wt_y;
  5218. }
  5219. }
  5220. }
  5221. for (Long k = 0; k < dof; k++) {
  5222. Real X0 = 0;
  5223. for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  5224. for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  5225. Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  5226. Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  5227. X0 += Interp0[ii] * Interp1[jj] * Xf[(k*Nt+idx_i)*Np+idx_j];
  5228. }
  5229. }
  5230. Long elem_idx = tt * Mp + pp;
  5231. Long node_idx = p * ORDER + t;
  5232. X[elem_idx*dof+k][node_idx] = X0;
  5233. }
  5234. }
  5235. }
  5236. }
  5237. }
  5238. return X;
  5239. }
  5240. static void fourier_filter(Vector<Real>& X, long Nt_, long Np_, Real sigma) {
  5241. long dof = X.Dim() / (Nt_ * Np_);
  5242. SCTL_ASSERT(X.Dim() == dof * Nt_ * Np_);
  5243. FFT<Real> fft_r2c, fft_c2r;
  5244. StaticArray<Long, 2> fft_dim = {Nt_, Np_};
  5245. fft_r2c.Setup(FFT_Type::R2C, 1, Vector<Long>(2, fft_dim, false), omp_get_max_threads());
  5246. fft_c2r.Setup(FFT_Type::C2R, 1, Vector<Long>(2, fft_dim, false), omp_get_max_threads());
  5247. long Nt = Nt_;
  5248. long Np = fft_r2c.Dim(1) / (Nt * 2);
  5249. SCTL_ASSERT(fft_r2c.Dim(1) == Nt * Np * 2);
  5250. //auto filter_fn = [](Real x2, Real sigma) {return exp(-x2/(2*sigma*sigma));};
  5251. auto filter_fn = [](Real x2, Real sigma) {return (x2<sigma*sigma?1.0:0.0);};
  5252. Vector<Real> coeff(fft_r2c.Dim(1));
  5253. for (long k = 0; k < dof; k++) {
  5254. Vector<Real> X_(Nt_*Np_, X.begin() + k*Nt_*Np_, false);
  5255. fft_r2c.Execute(X_, coeff);
  5256. for (long t = 0; t < Nt; t++) {
  5257. for (long p = 0; p < Np; p++) {
  5258. Real tt = (t - (t > Nt / 2 ? Nt : 0)) * (2*Np/(Real)Nt);
  5259. Real pp = p;
  5260. Real f = filter_fn(tt*tt+pp*pp, sigma);
  5261. coeff[(t * Np + p) * 2 + 0] *= f;
  5262. coeff[(t * Np + p) * 2 + 1] *= f;
  5263. }
  5264. }
  5265. fft_c2r.Execute(coeff, X_);
  5266. }
  5267. };
  5268. static void fourier_print_spectrum(const Vector<Real>& X, long Nt_, long Np_) {
  5269. // long dof = X.Dim() / (Nt_ * Np_);
  5270. // SCTL_ASSERT(X.Dim() == dof * Nt_ * Np_);
  5271. // FFT<Real> fft_r2c, fft_c2r;
  5272. // StaticArray<Long, 2> fft_dim = {Nt_, Np_};
  5273. // fft_r2c.Setup(FFT_Type::R2C, 1, Vector<Long>(2, fft_dim, false), omp_get_max_threads());
  5274. // long Nt = Nt_;
  5275. // long Np = fft_r2c.Dim(1) / (Nt * 2);
  5276. // SCTL_ASSERT(fft_r2c.Dim(1) == Nt * Np * 2);
  5277. // Vector<Real> coeff(fft_r2c.Dim(1));
  5278. // Vector<Real> spectrum(200); spectrum = 0;
  5279. // for (long k = 0; k < dof; k++) {
  5280. // const Vector<Real> X_(Nt_*Np_, (Iterator<Real>)X.begin() + k*Nt_*Np_, false);
  5281. // fft_r2c.Execute(X_, coeff);
  5282. // for (long t = 0; t < Nt; t++) {
  5283. // for (long p = 0; p < Np; p++) {
  5284. // Real tt = (t - (t > Nt / 2 ? Nt : 0)) / (Real)(Nt / 2);
  5285. // Real pp = p / (Real)Np;
  5286. // Long freq = (Long)(sqrt<Real>(tt*tt+pp*pp)*spectrum.Dim());
  5287. // if (freq<spectrum.Dim()) spectrum[freq] += coeff[(t*Np+p)*2+0]*coeff[(t*Np+p)*2+0];
  5288. // if (freq<spectrum.Dim()) spectrum[freq] += coeff[(t*Np+p)*2+1]*coeff[(t*Np+p)*2+1];
  5289. // }
  5290. // }
  5291. // }
  5292. // for (Long i = 0; i < spectrum.Dim(); i++) {
  5293. // spectrum[i] = log<Real>(sqrt<Real>(spectrum[i]))/log<Real>(10.0);
  5294. // }
  5295. // std::cout<<"spectrum = "<<spectrum<<'\n';
  5296. };
  5297. static void fourier_print_spectrum(std::string var_name, const sctl::Vector<Real>& B0, sctl::Long Nt0, sctl::Long Np0) {
  5298. auto Resample = [](const sctl::Vector<Real>& B, long Nt, long Np, long Nt0, long Np0) {
  5299. sctl::Vector<Real> B0;
  5300. biest::SurfaceOp<Real>::Upsample(B,Nt,Np, B0,Nt0,Np0);
  5301. return B0;
  5302. };
  5303. auto max_rel_err = [](const sctl::Vector<Real> A, const sctl::Vector<Real> B) {
  5304. SCTL_ASSERT(A.Dim() == B.Dim());
  5305. Real max_err = 0;
  5306. Real max_val = 1e-20;
  5307. for (sctl::Long i = 0; i < A.Dim(); i++) {
  5308. max_err = std::max<Real>(max_err, fabs(A[i]-B[i]));
  5309. max_val = std::max<Real>(max_val, fabs(A[i]));
  5310. }
  5311. return max_err/max_val;
  5312. };
  5313. auto max_err = [](const sctl::Vector<Real> A, const sctl::Vector<Real> B) {
  5314. SCTL_ASSERT(A.Dim() == B.Dim());
  5315. Real max_err = 0;
  5316. for (sctl::Long i = 0; i < A.Dim(); i++) {
  5317. max_err = std::max<Real>(max_err, fabs(A[i]-B[i]));
  5318. }
  5319. return max_err;
  5320. };
  5321. std::cout<<var_name<<"=[";
  5322. for (sctl::Long i = 1; i < 140; i++) {
  5323. sctl::Long Nt1 = 6*i, Np1 = i;
  5324. auto B1 = Resample(Resample(B0, Nt0,Np0, Nt1,Np1), Nt1,Np1, Nt0,Np0);
  5325. std::cout<<log(max_err(B0, B1))/log(10)<<' ';
  5326. }
  5327. std::cout<<"];\n";
  5328. //if (0) {
  5329. // auto B1 = Resample(B0, Nt0,Np0, 70*30,14*30);
  5330. // B1.Write(var_name.c_str());
  5331. //} else {
  5332. // auto B1 = Resample(B0, Nt0,Np0, 70*30,14*30);
  5333. // sctl::Vector<Real> B2; B2.Read(var_name.c_str());
  5334. // Real max_err = 0, max_val = 0;
  5335. // for (sctl::Long i = 0; i < B1.Dim(); i++) {
  5336. // max_err = std::max<Real>(max_err, fabs(B1[i]-B2[i]));
  5337. // max_val = std::max<Real>(max_val, fabs(B2[i]));
  5338. // }
  5339. // std::cout<<"Error "<<var_name<<" = "<<max_err/max_val<<'\n';
  5340. //}
  5341. };
  5342. static void fourier_print_spectrum(std::string var_name, const Vector<Real>& X_, Stellarator<Real,ORDER> S_) {
  5343. Long dof = X_.Dim()/(S_.Nsurf()*fourier_dim0*fourier_dim1);
  5344. SCTL_ASSERT(dof * (S_.Nsurf()*fourier_dim0*fourier_dim1) == X_.Dim());
  5345. for (Long i = 0; i < S_.Nsurf(); i++) {
  5346. const Long Mt = S_.NTor(i);
  5347. const Long Mp = S_.NPol(i);
  5348. const Long offset = S_.ElemDsp(i);
  5349. const Long Nt = fourier_dim0;
  5350. const Long Np = fourier_dim1;
  5351. const Vector<Real> X(dof*Nt*Np, (Iterator<Real>)X_.begin() + dof * i * (fourier_dim0*fourier_dim1), false);
  5352. fourier_print_spectrum(var_name+std::to_string(i),X,Nt,Np);
  5353. }
  5354. std::cout<<"\n";
  5355. }
  5356. static void filter_deprecated(const Stellarator<Real,ORDER>& S, const Comm& comm, Vector<ElemBasis>& f, Real sigma) {
  5357. Long dof = f.Dim() / S.NElem();
  5358. SCTL_ASSERT(f.Dim() == S.NElem() * dof);
  5359. for (Long i = 0; i < S.Nsurf()-1; i++) {
  5360. const Long Mt = S.NTor(i);
  5361. const Long Mp = S.NPol(i);
  5362. const Long Nelem = Mt * Mp;
  5363. const Long offset = S.ElemDsp(i);
  5364. const Long Nt = Mt * ORDER * 4;
  5365. const Long Np = Mp * ORDER * 4;
  5366. Vector<ElemBasis> f_(Nelem*dof, f.begin() + offset*dof, false);
  5367. Vector<Real> f_fourier = cheb2grid(f_, Mt, Mp, Nt, Np);
  5368. fourier_filter(f_fourier, Nt, Np, 0.25 * sigma);
  5369. f_ = grid2cheb(f_fourier, Nt, Np, Mt, Mp);
  5370. }
  5371. };
  5372. static Vector<Real> cheb2grid(const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& f) {
  5373. const Long Nnodes = ElemBasis::Size();
  5374. const Long Nelem = S.NElem();
  5375. const Long dof = f.Dim() / Nelem;
  5376. SCTL_ASSERT(Nelem * dof == f.Dim());
  5377. Vector<Real> f_fourier(dof * S.Nsurf() * (fourier_dim0*fourier_dim1));
  5378. for (Long i = 0; i < S.Nsurf(); i++) {
  5379. const Long Mt = S.NTor(i);
  5380. const Long Mp = S.NPol(i);
  5381. const Long offset = S.ElemDsp(i);
  5382. const Long Nt = fourier_dim0;
  5383. const Long Np = fourier_dim1;
  5384. const Vector<ElemBasis> f_(Mt*Mp*dof, (Iterator<ElemBasis>)f.begin() + offset*dof, false);
  5385. Vector<Real> f_fourier_(dof*Nt*Np, f_fourier.begin() + dof*i * (fourier_dim0*fourier_dim1), false);
  5386. f_fourier_ = cheb2grid(f_, Mt, Mp, Nt, Np);
  5387. SCTL_ASSERT(f_fourier_.Dim() == dof*Nt*Np);
  5388. }
  5389. return f_fourier;
  5390. }
  5391. static Vector<ElemBasis> grid2cheb(const Stellarator<Real,ORDER>& S, const Vector<Real>& f_fourier) {
  5392. const Long Nnodes = ElemBasis::Size();
  5393. const Long Nelem = S.NElem();
  5394. const Long dof = f_fourier.Dim() / (S.Nsurf() * (fourier_dim0*fourier_dim1));
  5395. SCTL_ASSERT(dof * (S.Nsurf() * (fourier_dim0*fourier_dim1)) == f_fourier.Dim());
  5396. Vector<ElemBasis> f(Nelem * dof);
  5397. for (Long i = 0; i < S.Nsurf(); i++) {
  5398. const Long Mt = S.NTor(i);
  5399. const Long Mp = S.NPol(i);
  5400. const Long offset = S.ElemDsp(i);
  5401. const Long Nt = fourier_dim0;
  5402. const Long Np = fourier_dim1;
  5403. Vector<ElemBasis> f_(Mt*Mp*dof, f.begin() + offset*dof, false);
  5404. const Vector<Real> f_fourier_(dof*Nt*Np, (Iterator<Real>)f_fourier.begin() + dof*i * (fourier_dim0*fourier_dim1), false);
  5405. f_ = grid2cheb(f_fourier_, Nt, Np, Mt, Mp);
  5406. SCTL_ASSERT(f_.Dim() == Mt*Mp*dof);
  5407. }
  5408. return f;
  5409. }
  5410. template <class Real, class GradOp> static Long GradientDescent3(GradOp& grad_fn, Eigen::VectorXd& x, Real& fx, Long max_iter, Real tol) {
  5411. Real dt = 0.1;
  5412. Real step_tol = 1e-1;
  5413. for (Long iter = 0; iter < max_iter; iter++) {
  5414. auto time_step = [](Eigen::VectorXd* x, const Real dt, const Eigen::VectorXd& x0_, GradOp& F, Real* error = nullptr) {
  5415. Long N = x0_.size();
  5416. Eigen::VectorXd F0(N), F1(N), F2(N), F3(N);
  5417. F(x0_, F0);
  5418. F(x0_ - F0 * (0.50*dt), F1);
  5419. F(x0_ - F1 * (0.75*dt), F2);
  5420. F(x0_ - F0 * (2.0/9.0*dt) - F1 * (1.0/3.0*dt) - F2 * (4.0/9.0*dt), F3);
  5421. x[0] = x0_ - F0 * (7.0/24.0*dt) - F1 * (1.0/4.0*dt) - F2 * (1.0/3.0*dt) - F3 * (1.0/8.0*dt);
  5422. Real err = 0;
  5423. const Eigen::VectorXd err_vec = x[0] - (x0_ - F0 * (2.0/9.0*dt) - F1 * (1.0/3.0*dt) - F2 * (4.0/9.0*dt));
  5424. for (Long i = 0; i < err_vec.size(); i++) err = std::max(err, fabs(err_vec[i]));
  5425. if (error != nullptr) error[0] = err / dt;
  5426. };
  5427. Real error;
  5428. Eigen::VectorXd x_(x.size());
  5429. time_step(&x_, dt, x, grad_fn, &error);
  5430. if (error > 2.0 * step_tol) {
  5431. dt *= 0.5;
  5432. } else {
  5433. x = x_;
  5434. }
  5435. if (error < 0.5 * step_tol) dt *= 1.4;
  5436. std::cout<<"Error = "<<error<<" dt = "<<dt<<'\n';
  5437. }
  5438. return max_iter;
  5439. }
  5440. template <class Real, class GradOp> static Long GradientDescent2(GradOp& grad_fn, Eigen::VectorXd& x, Real& fx, Long max_iter, Real tol) {
  5441. Real dt = 0.1;
  5442. Real step_tol = 1e-1;
  5443. for (Long iter = 0; iter < max_iter; iter++) {
  5444. auto time_step = [](Eigen::VectorXd* x, const Real dt, const Eigen::VectorXd& x0_, GradOp& F, Real* error = nullptr) {
  5445. Long N = x0_.size();
  5446. Eigen::VectorXd F0(N), F1(N), F2(N), F3(N);
  5447. F(x0_, F0);
  5448. F(x0_ - F0 * dt, F1);
  5449. F(x0_ - F0 * (0.5 * dt) - F1 * (0.5 * dt), F2);
  5450. F(x0_ - F0 * (0.5 * dt) - F2 * (0.5 * dt), F3);
  5451. x[0] = x0_ - F0 * (0.5 * dt) - F3 * (0.5 * dt);
  5452. Real err0 = 0, err1 = 0;
  5453. const Eigen::VectorXd err_vec0 = (F1 - F3) * dt;
  5454. const Eigen::VectorXd err_vec1 = (F2 - F3) * dt;
  5455. for (Long i = 0; i < err_vec0.size(); i++) err0 = std::max(err0, fabs(err_vec0[i]));
  5456. for (Long i = 0; i < err_vec1.size(); i++) err1 = std::max(err1, fabs(err_vec1[i]));
  5457. if (error != nullptr) {
  5458. error[0] = err1 / dt;
  5459. if (err1 > err0) error[0] = 1;
  5460. }
  5461. };
  5462. Real error;
  5463. Eigen::VectorXd x_(x.size());
  5464. time_step(&x_, dt, x, grad_fn, &error);
  5465. if (error > 2.0 * step_tol) {
  5466. dt *= 0.5;
  5467. } else {
  5468. x = x_;
  5469. }
  5470. if (error < 0.5 * step_tol) dt *= 1.4;
  5471. std::cout<<"Error = "<<error<<" dt = "<<dt<<'\n';
  5472. }
  5473. return max_iter;
  5474. }
  5475. template <class Real, class GradOp> static Long GradientDescent2_(GradOp& grad_fn, Eigen::VectorXd& x, Real& fx, Long max_iter, Real tol) {
  5476. Real dt_ = 0, fx_ = 0;
  5477. Eigen::VectorXd x_ = x;
  5478. Real dt = 0.296951;
  5479. for (Long iter = 0; iter < max_iter; iter++) {
  5480. Eigen::VectorXd grad0(x.size()), grad1(x.size()), grad2(x.size());
  5481. fx_ = fx;
  5482. fx = grad_fn(x, grad0);
  5483. if (fx < tol) return iter;
  5484. if (iter && fx > fx_) {
  5485. x = x_;
  5486. fx = fx_;
  5487. dt = 0.5 * dt_;
  5488. continue;
  5489. } else {
  5490. x_ = x;
  5491. dt_ = dt;
  5492. }
  5493. { // Update dt
  5494. Real fx1, fx2;
  5495. fx1 = grad_fn(x - grad0 * dt * 0.50, grad1);
  5496. fx1 = grad_fn(x - grad0 * dt * 0.25 - grad1 * dt * 0.25, grad1);
  5497. fx2 = grad_fn(x - grad1 * dt, grad2);
  5498. fx2 = grad_fn(x - grad0 * dt * (1.0/6.0) - grad1 * dt * (2.0/3.0) - grad2 * dt * (1.0/6.0), grad2);
  5499. Real s;
  5500. { // Calculate optimal step size dt
  5501. Real a = 2*fx - 4*fx1 + 2*fx2;
  5502. Real b =-3*fx + 4*fx1 - fx2;
  5503. Real c = fx;
  5504. s = -b/(2*a);
  5505. Real fx_ = a*s*s + b*s + c;
  5506. std::cout<<"g = "<<fx_<<' ';
  5507. std::cout<<fx<<' ';
  5508. std::cout<<fx1<<' ';
  5509. std::cout<<fx2<<' ';
  5510. std::cout<<dt<<'\n';
  5511. }
  5512. x = x - grad0 * dt * (2*s*s*s/3 - 3*s*s/2 + s) - grad1 * dt * (-4*s*s*s/3 + 2*s*s) - grad2 * dt * (2*s*s*s/3 - s*s/2);
  5513. dt *= s;
  5514. }
  5515. }
  5516. return max_iter;
  5517. }
  5518. template <class Real, class GradOp> static Long GradientDescent(GradOp& grad_fn, Eigen::VectorXd& x, Real& fx, Long max_iter, Real tol) {
  5519. Real dt = 0.192081;
  5520. for (Long iter = 0; iter < max_iter; iter++) {
  5521. Eigen::VectorXd grad(x.size());
  5522. fx = grad_fn(x, grad);
  5523. { // Update dt
  5524. Eigen::VectorXd grad_(x.size());
  5525. Eigen::VectorXd x1 = x - grad * dt * 0.5;
  5526. Eigen::VectorXd x2 = x - grad * dt * 1.0;
  5527. Real fx1 = grad_fn(x1, grad_);
  5528. Real fx2 = grad_fn(x2, grad_);
  5529. { // Calculate optimal step size dt
  5530. Real a = 2*fx - 4*fx1 + 2*fx2;
  5531. Real b =-3*fx + 4*fx1 - fx2;
  5532. Real c = fx;
  5533. Real s = -b/(2*a);
  5534. dt *= s;
  5535. Real fx_ = a*s*s + b*s + c;
  5536. std::cout<<"g = "<<fx_<<' ';
  5537. std::cout<<fx<<' ';
  5538. std::cout<<fx1<<' ';
  5539. std::cout<<fx2<<' ';
  5540. std::cout<<dt<<'\n';
  5541. }
  5542. }
  5543. x = x - grad * dt;
  5544. if (fx < tol) return iter;
  5545. }
  5546. return max_iter;
  5547. }
  5548. template <class ValueType> static ValueType QuadraticInterp(Real t, const ValueType& v0, const ValueType& v1, const ValueType& v2, Real t0, Real t1, Real t2) {
  5549. ValueType v = v0 * (((t-t1)*(t-t2))/((t0-t1)*(t0-t2)));
  5550. v += v1 * (((t-t0)*(t-t2))/((t1-t0)*(t1-t2)));
  5551. v += v2 * (((t-t0)*(t-t1))/((t2-t0)*(t2-t1)));
  5552. return v;
  5553. }
  5554. template <class Real, class GradOp> static Long GradientDescentNew(GradOp& grad_fn, Eigen::VectorXd& x0, Real& fx, Long max_iter, Real tol) {
  5555. auto compute_inner_prod = [](const Eigen::VectorXd& A, const Eigen::VectorXd& B) {
  5556. Real sum = 0;
  5557. Long N = A.size();
  5558. SCTL_ASSERT(B.size() == N);
  5559. for (Long i = 0; i < N; i++) sum += A[i] * B[i];
  5560. return sum;
  5561. };
  5562. auto compute_dt_scale = [&compute_inner_prod](const Eigen::VectorXd& x, const Eigen::VectorXd& y){
  5563. Real dot_prod = compute_inner_prod(x, y) / sqrt<Real>(compute_inner_prod(x,x)*compute_inner_prod(y,y));
  5564. return 0.05 / sqrt<Real>(1-dot_prod*dot_prod);
  5565. };
  5566. Eigen::VectorXd grad, x = x0;
  5567. Real g = grad_fn(x, grad);
  5568. Real t = 0, dt = -0.1;
  5569. for (Long j = 0; j < max_iter; j++) {
  5570. Eigen::VectorXd grad0, grad1, grad2;
  5571. Real g0 = grad_fn(x + grad*(dt*0.5) + grad *(dt*0.5), grad0);
  5572. Real g1 = grad_fn(x + grad*(dt*0.5) + grad0*(dt*0.5), grad1);
  5573. Real g2 = grad_fn(x + grad*(dt*0.5) + grad1*(dt*0.5), grad2);
  5574. Eigen::VectorXd grad4, grad3;
  5575. Real c = compute_inner_prod(grad2-grad1,grad2-grad1) / compute_inner_prod(grad1-grad0,grad2-grad1);
  5576. grad3 = (grad2 - grad1*c) * (1/(1-c));
  5577. Real g3 = grad_fn(x + grad*(dt*0.5) + grad3*(dt*0.5), grad4);
  5578. std::cout<<sqrt<Real>(compute_inner_prod(grad -grad4,grad -grad4)/compute_inner_prod(grad4,grad4))<<' ';
  5579. std::cout<<sqrt<Real>(compute_inner_prod(grad -grad3,grad -grad3)/compute_inner_prod(grad4,grad4))<<' ';
  5580. std::cout<<sqrt<Real>(compute_inner_prod(grad -grad2,grad -grad2)/compute_inner_prod(grad4,grad4))<<' ';
  5581. std::cout<<sqrt<Real>(compute_inner_prod(grad -grad1,grad -grad1)/compute_inner_prod(grad4,grad4))<<' ';
  5582. std::cout<<sqrt<Real>(compute_inner_prod(grad -grad0,grad -grad0)/compute_inner_prod(grad4,grad4))<<'\n';
  5583. std::cout<<sqrt<Real>(compute_inner_prod(grad0-grad4,grad0-grad4)/compute_inner_prod(grad4,grad4))<<' ';
  5584. std::cout<<sqrt<Real>(compute_inner_prod(grad0-grad3,grad0-grad3)/compute_inner_prod(grad4,grad4))<<' ';
  5585. std::cout<<sqrt<Real>(compute_inner_prod(grad0-grad2,grad0-grad2)/compute_inner_prod(grad4,grad4))<<' ';
  5586. std::cout<<sqrt<Real>(compute_inner_prod(grad0-grad1,grad0-grad1)/compute_inner_prod(grad4,grad4))<<'\n';
  5587. std::cout<<sqrt<Real>(compute_inner_prod(grad1-grad4,grad1-grad4)/compute_inner_prod(grad4,grad4))<<' ';
  5588. std::cout<<sqrt<Real>(compute_inner_prod(grad1-grad3,grad1-grad3)/compute_inner_prod(grad4,grad4))<<' ';
  5589. std::cout<<sqrt<Real>(compute_inner_prod(grad1-grad2,grad1-grad2)/compute_inner_prod(grad4,grad4))<<'\n';
  5590. std::cout<<sqrt<Real>(compute_inner_prod(grad2-grad4,grad2-grad4)/compute_inner_prod(grad4,grad4))<<' ';
  5591. std::cout<<sqrt<Real>(compute_inner_prod(grad2-grad3,grad2-grad3)/compute_inner_prod(grad4,grad4))<<'\n';
  5592. std::cout<<sqrt<Real>(compute_inner_prod(grad3-grad4,grad3-grad4)/compute_inner_prod(grad4,grad4))<<'\n';
  5593. Real s0 = sqrt<Real>(compute_inner_prod(grad -grad4,grad -grad4)/compute_inner_prod(grad4,grad4));
  5594. Real s1 = sqrt<Real>(compute_inner_prod(grad0-grad1,grad0-grad1)/compute_inner_prod(grad4,grad4));
  5595. Real s2 = sqrt<Real>(compute_inner_prod(grad1-grad2,grad1-grad2)/compute_inner_prod(grad4,grad4));
  5596. Real s3 = sqrt<Real>(compute_inner_prod(grad3-grad4,grad3-grad4)/compute_inner_prod(grad4,grad4));
  5597. Real dt_scale = (0.1/s0); // 0.5*(s1/s2);
  5598. if (s3 > s2) dt_scale = std::min(0.5, dt_scale);
  5599. std::cout<<s0<<' '<<s1<<' '<<s2<<' '<<s3<<" dt_scale = "<<dt_scale<<'\n'; ////////////////////
  5600. if (dt_scale>0.5) {
  5601. t += dt;
  5602. g = g3;
  5603. x = x + grad *(dt*0.5) + grad3*(dt*0.5);
  5604. grad = grad4;
  5605. std::cout<<"iter = "<<j<<" t = "<<t<<" g = "<<g<<" dt = "<<dt<<'\n';
  5606. } else {
  5607. j--;
  5608. }
  5609. dt *= dt_scale;
  5610. }
  5611. return 0;
  5612. }
  5613. template <class Real, class GradOp> static Long GradientDescentNew__(GradOp& grad_fn, Eigen::VectorXd& x, Real& fx, Long max_iter, Real tol) {
  5614. auto compute_inner_prod = [](const Eigen::VectorXd& A, const Eigen::VectorXd& B) {
  5615. Real sum = 0;
  5616. Long N = A.size();
  5617. SCTL_ASSERT(B.size() == N);
  5618. for (Long i = 0; i < N; i++) sum += A[i] * B[i];
  5619. return sum;
  5620. };
  5621. auto compute_dt_scale = [&compute_inner_prod](const Eigen::VectorXd& x, const Eigen::VectorXd& y){
  5622. Real dot_prod = compute_inner_prod(x, y) / sqrt<Real>(compute_inner_prod(x,x)*compute_inner_prod(y,y));
  5623. return 0.05 / sqrt<Real>(1-dot_prod*dot_prod);
  5624. };
  5625. Eigen::VectorXd x0, grad0, grad_op0;
  5626. Eigen::VectorXd x1, grad1, grad_op1;
  5627. Eigen::VectorXd x2, grad2, grad_op2;
  5628. x0 = x;
  5629. Real t = 0, dt = -0.1;
  5630. for (Long j = 0; j < max_iter; j++) {
  5631. Real g0 = grad_fn(x0, grad0);
  5632. Real g1 = grad_fn(x0 + grad0*(dt*0.1), grad1);
  5633. Real g2 = grad_fn(x0 + grad0*(dt*0.1) + grad1*(dt*0.1), grad2);
  5634. // Fit v = v0 + v1 exp(-alpha * dt)
  5635. auto v1 = (grad1-grad0) * (1/(dt*0.1));
  5636. Real alpha = (sqrt<Real>(compute_inner_prod(grad1-grad0,grad1-grad0))/sqrt<Real>(compute_inner_prod(grad2-grad1,grad2-grad1))-1) / (0.1*dt);
  5637. auto v0 = grad0 - v1;
  5638. x0 = x0 + v0*dt - v1 * ((exp<Real>(-alpha*dt)-1.0)/alpha);
  5639. t += dt;
  5640. std::cout<<"iter = "<<j<<" t = "<<t<<" g = "<<g0<<" dt = "<<dt<<'\n';
  5641. }
  5642. return 0;
  5643. }
  5644. template <class Real, class GradOp> static Long GradientDescentNew_(GradOp& grad_fn, Eigen::VectorXd& x0, Real& fx, Long max_iter, Real tol) {
  5645. constexpr Long order = 3;
  5646. Eigen::VectorXd x[order], grad[order], grad_op[order];
  5647. Real g[order], t[order];
  5648. auto compute_inner_prod = [](const Eigen::VectorXd& A, const Eigen::VectorXd& B) {
  5649. Real sum = 0;
  5650. Long N = A.size();
  5651. SCTL_ASSERT(B.size() == N);
  5652. for (Long i = 0; i < N; i++) sum += A[i] * B[i];
  5653. return sum;
  5654. };
  5655. auto compute_dt_scale = [&compute_inner_prod](const Eigen::VectorXd& x, const Eigen::VectorXd& y){
  5656. Real dot_prod = compute_inner_prod(x, y) / sqrt<Real>(compute_inner_prod(x,x)*compute_inner_prod(y,y));
  5657. return 0.05 / sqrt<Real>(1-dot_prod*dot_prod);
  5658. };
  5659. t[1] = 0;
  5660. x[1] = x0;
  5661. g[1] = grad_fn(x[1], grad[1], &grad_op[1]);
  5662. Real dt = -0.1;
  5663. for (Long j = 1; j < order-1; j++) {
  5664. //t[0] = t[1] + dt;
  5665. //x[0] = x[1] + grad[1] * dt;
  5666. //g[0] = grad_fn(x[0], grad[0], &grad_op[0]);
  5667. //Real dot_prod = compute_inner_prod(grad[0], grad[1]) / sqrt<Real>(compute_inner_prod(grad[0], grad[0])*compute_inner_prod(grad[1], grad[1]));
  5668. //Real dt_scale = 0.1 / sqrt<Real>(1-dot_prod*dot_prod);
  5669. //dt *= dt_scale;
  5670. //if (dt_scale < 0.5 || g[0] >= g[1]) {
  5671. // j--;
  5672. // continue;
  5673. //}
  5674. //std::cout<<"iter = "<<j<<" t = "<<t[0]<<" g = "<<g[0]<<" dt = "<<dt<<'\n';
  5675. //for (Long i = order-1; i >= 1; i--) {
  5676. // x[i] = x[i-1];
  5677. // grad[i] = grad[i-1];
  5678. // grad_op[i] = grad_op[i-1];
  5679. // g[i] = g[i-1];
  5680. // t[i] = t[i-1];
  5681. //}
  5682. }
  5683. for (Long j = 0; j < max_iter; j++) {
  5684. Eigen::VectorXd x_, grad_, grad_op_;
  5685. Real g_ = grad_fn(x[1] + grad[1]*(dt*0.5), grad_, &grad_op_);
  5686. Real dt_scale = compute_dt_scale(grad_, grad[1]);
  5687. dt *= dt_scale;
  5688. if (dt_scale < 0.5 || g[0] >= g[1]) {
  5689. std::cout<<"dt = "<<dt<<'\n';
  5690. j--;
  5691. continue;
  5692. }
  5693. t[0] = t[1] + dt;
  5694. x[0] = x[1] + grad_*dt;
  5695. g[0] = grad_fn(x[0], grad[0], &grad_op[0]);
  5696. dt_scale = compute_dt_scale(grad[0], grad_);
  5697. dt *= dt_scale;
  5698. if (dt_scale < 0.5 || g[0] >= g[1]) {
  5699. std::cout<<"dt = "<<dt<<'\n';
  5700. j--;
  5701. continue;
  5702. }
  5703. std::cout<<"iter = "<<j<<" t = "<<t[0]<<" g = "<<g[0]<<" dt = "<<dt<<'\n';
  5704. for (Long i = order-1; i >= 1; i--) {
  5705. x[i] = x[i-1];
  5706. grad[i] = grad[i-1];
  5707. grad_op[i] = grad_op[i-1];
  5708. g[i] = g[i-1];
  5709. t[i] = t[i-1];
  5710. }
  5711. }
  5712. for (Long j = 0; j < max_iter; j++) {
  5713. Eigen::VectorXd x_, grad_, grad_op_;
  5714. Real g_ = grad_fn(x[1] + grad[1]*(dt*0.5), grad_, &grad_op_);
  5715. if (compute_dt_scale(grad_, grad[1])<0.5 || g_ > g[1]) {
  5716. dt = dt * compute_dt_scale(grad_, grad[1]);
  5717. std::cout<<"dt = "<<dt<<'\n';
  5718. j--;
  5719. continue;
  5720. }
  5721. t[0] = t[1] + dt;
  5722. x[0] = x[1] + grad_*dt;
  5723. g[0] = grad_fn(x[0], grad[0], &grad_op[0]);
  5724. Real dt_scale = compute_dt_scale(grad[0], grad[1]); /// todo use grad_ instead of grad[1]
  5725. dt *= dt_scale;
  5726. if (dt_scale < 0.5 || g[0] >= g[1]) {
  5727. std::cout<<"dt = "<<dt<<'\n';
  5728. j--;
  5729. continue;
  5730. }
  5731. std::cout<<"iter = "<<j<<" t = "<<t[0]<<" g = "<<g[0]<<" dt = "<<dt<<'\n';
  5732. for (Long i = order-1; i >= 1; i--) {
  5733. x[i] = x[i-1];
  5734. grad[i] = grad[i-1];
  5735. grad_op[i] = grad_op[i-1];
  5736. g[i] = g[i-1];
  5737. t[i] = t[i-1];
  5738. }
  5739. }
  5740. //for (Long iter = 0; iter < max_iter; iter++) {
  5741. // t[0] = t[1] + dt;
  5742. // x[0] = x[1] + grad[1] * dt;
  5743. // g[0] = grad_fn(x[0], grad[0], &grad_op[0]);
  5744. // Real dot_prod = compute_inner_prod(grad[0], grad[1]) / sqrt<Real>(compute_inner_prod(grad[0], grad[0])*compute_inner_prod(grad[1], grad[1]));
  5745. // if (dot_prod < 0.95 || g[0] < g[1]) {
  5746. // dt = dt * 1.5;
  5747. // }
  5748. // if (dot_prod < 0.85 || g[0] >= g[1]) {
  5749. // dt = dt * 0.5;
  5750. // continue;
  5751. // }
  5752. // for (Long i = order-2; i >= 0; i--) {
  5753. // x[i+1] = x[i];
  5754. // grad[i+1] = grad[i];
  5755. // grad_op[i+1] = grad_op[i];
  5756. // g[i+1] = g[i];
  5757. // t[i+1] = t[i];
  5758. // }
  5759. //}
  5760. //for (Long iter = 0; iter < max_iter; iter++) {
  5761. // fx = grad_fn(x, grad, &grad_op);
  5762. // { // Update dt
  5763. // Eigen::VectorXd grad_(x.size());
  5764. // Eigen::VectorXd x1 = x - grad * dt * 0.5;
  5765. // Eigen::VectorXd x2 = x - grad * dt * 1.0;
  5766. // Real fx1 = grad_fn(x1, grad_);
  5767. // Real fx2 = grad_fn(x2, grad_);
  5768. // { // Calculate optimal step size dt
  5769. // Real a = 2*fx - 4*fx1 + 2*fx2;
  5770. // Real b =-3*fx + 4*fx1 - fx2;
  5771. // Real c = fx;
  5772. // Real s = -b/(2*a);
  5773. // dt *= s;
  5774. // Real fx_ = a*s*s + b*s + c;
  5775. // std::cout<<"g = "<<fx_<<' ';
  5776. // std::cout<<fx<<' ';
  5777. // std::cout<<fx1<<' ';
  5778. // std::cout<<fx2<<' ';
  5779. // std::cout<<dt<<'\n';
  5780. // }
  5781. // }
  5782. // x = x - grad * dt;
  5783. // if (fx < tol) return iter;
  5784. //}
  5785. //return max_iter;
  5786. return 0;
  5787. }
  5788. public:
  5789. MHDEquilib(const Stellarator<Real,ORDER>& S, const Vector<Real>& pressure, const Vector<Real>& flux_tor, const Vector<Real>& flux_pol) {
  5790. S_ = S;
  5791. pressure_ = pressure;
  5792. flux_tor_ = flux_tor;
  5793. flux_pol_ = flux_pol;
  5794. iter = 0;
  5795. }
  5796. Real operator()(const Eigen::VectorXd& x, Eigen::VectorXd& grad_direction, Eigen::VectorXd* grad_op_ptr = nullptr) {
  5797. auto compute_H = [] (const ElemList<COORD_DIM,ElemBasis>& elem_lst, const Vector<ElemBasis>& normal) {
  5798. const Long Nnodes = ElemBasis::Size();
  5799. const Long Nelem = elem_lst.NElem();
  5800. const Vector<ElemBasis> X = elem_lst.ElemVector();
  5801. Vector<ElemBasis> dX, d2X, H(Nelem);
  5802. ElemBasis::Grad(dX, X);
  5803. ElemBasis::Grad(d2X, dX);
  5804. for (Long i = 0; i < Nelem; i++) {
  5805. for (Long j = 0; j < Nnodes; j++) {
  5806. Tensor<Real,true,2,2> I, invI, II;
  5807. for (Long k0 = 0; k0 < 2; k0++) {
  5808. for (Long k1 = 0; k1 < 2; k1++) {
  5809. I(k0,k1) = 0;
  5810. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  5811. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  5812. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  5813. II(k0,k1) = 0;
  5814. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  5815. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  5816. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  5817. }
  5818. }
  5819. { // Set invI
  5820. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  5821. invI(0,0) = I(1,1) / detI;
  5822. invI(0,1) = -I(0,1) / detI;
  5823. invI(1,0) = -I(1,0) / detI;
  5824. invI(1,1) = I(0,0) / detI;
  5825. }
  5826. { // Set H
  5827. H[i][j] = 0;
  5828. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  5829. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  5830. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  5831. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  5832. }
  5833. }
  5834. }
  5835. return H;
  5836. };
  5837. const Comm comm = Comm::World();
  5838. const Long Nelem = S_.NElem();
  5839. const Long Nnodes = ElemBasis::Size();
  5840. Vector<Real> X_fourier(x.size());
  5841. for (Long i = 0; i < x.size(); i++) { // Set X_fourier
  5842. X_fourier[i] = x(i);
  5843. }
  5844. { // Write to file
  5845. X_fourier.Write(("X"+std::to_string(iter)).c_str());
  5846. }
  5847. Vector<ElemBasis> X = grid2cheb(S_, X_fourier);
  5848. for (Long i = 0; i < Nelem; i++) { // Set S_
  5849. for (Long j = 0; j < Nnodes; j++) {
  5850. S_.Elem(i,0)[j] = X[i*COORD_DIM+0][j];
  5851. S_.Elem(i,1)[j] = X[i*COORD_DIM+1][j];
  5852. S_.Elem(i,2)[j] = X[i*COORD_DIM+2][j];
  5853. }
  5854. }
  5855. Vector<ElemBasis> normal, area_elem;
  5856. Stellarator<Real,ORDER>::compute_norm_area_elem(S_, normal, area_elem);
  5857. Real g;
  5858. //Vector<ElemBasis> dgdnu = Stellarator<Real,ORDER>::compute_gradient(S_, pressure_, flux_tor_, flux_pol_, &g);
  5859. Vector<ElemBasis> dgdnu = Stellarator<Real,ORDER>::compute_pressure_jump(S_, pressure_, flux_tor_, flux_pol_, &g);
  5860. Vector<Real> grad_direction_, grad_op_, grad_direction_orig_;
  5861. { // Set grad_direction_ and filter
  5862. Vector<ElemBasis> H = compute_H(S_.GetElemList(), normal);
  5863. Vector<Real> H_fourier = cheb2grid(S_, H);
  5864. grad_op_.ReInit(x.size());
  5865. grad_direction_.ReInit(x.size());
  5866. grad_direction_orig_.ReInit(x.size());
  5867. Vector<Real> dgdnu_fourier = cheb2grid(S_, dgdnu);
  5868. for (Long i = 0; i < S_.Nsurf(); i++) { // Init grad_direction_, make it divergence-free, filter
  5869. const Long Nt = fourier_dim0;
  5870. const Long Np = fourier_dim1;
  5871. const Vector<Real> dgdnu( Nt*Np, (Iterator<Real>)dgdnu_fourier.begin() + i * (fourier_dim0*fourier_dim1), false);
  5872. const Vector<Real> H( Nt*Np, (Iterator<Real>)H_fourier.begin() + i * (fourier_dim0*fourier_dim1), false);
  5873. const Vector<Real> X(COORD_DIM*Nt*Np, (Iterator<Real>)X_fourier.begin() + COORD_DIM*i * (fourier_dim0*fourier_dim1), false);
  5874. Vector<Real> grad_direction(COORD_DIM*Nt*Np, (Iterator<Real>)grad_direction_.begin() + COORD_DIM*i * (fourier_dim0*fourier_dim1), false);
  5875. Vector<Real> grad_op(COORD_DIM*Nt*Np, (Iterator<Real>)grad_op_.begin() + COORD_DIM*i * (fourier_dim0*fourier_dim1), false);
  5876. Vector<Real> dX, d2X, normal, area_elem;
  5877. biest::SurfaceOp<Real> Sop(comm, Nt, Np);
  5878. Sop.Grad2D(dX, X);
  5879. Sop.Grad2D(d2X, dX);
  5880. Sop.SurfNormalAreaElem(&normal, &area_elem, dX, nullptr);
  5881. for (Long j = 0; j < Nt*Np; j++) { // Set grad_op
  5882. grad_op[0*Nt*Np+j] = normal[0*Nt*Np+j] * dgdnu[j] * area_elem[j];
  5883. grad_op[1*Nt*Np+j] = normal[1*Nt*Np+j] * dgdnu[j] * area_elem[j];
  5884. grad_op[2*Nt*Np+j] = normal[2*Nt*Np+j] * dgdnu[j] * area_elem[j];
  5885. }
  5886. if (i < S_.Nsurf() - 1) { // Set grad_direction
  5887. Vector<Real> F(Nt*Np), GradInvLapF;
  5888. for (Long j = 0; j < Nt*Np; j++) { // Set F <-- 2H * dgdnu
  5889. F[j] = 2*H[j] * dgdnu[j];
  5890. }
  5891. Sop.GradInvSurfLap(GradInvLapF, dX, d2X, F, 1e-8, 100, 1.0);
  5892. for (Long j = 0; j < Nt*Np; j++) { // grad_direction <-- normal * dgdnu - GradInvLapF
  5893. grad_direction[0*Nt*Np+j] = normal[0*Nt*Np+j] * dgdnu[j] - GradInvLapF[0*Nt*Np+j];
  5894. grad_direction[1*Nt*Np+j] = normal[1*Nt*Np+j] * dgdnu[j] - GradInvLapF[1*Nt*Np+j];
  5895. grad_direction[2*Nt*Np+j] = normal[2*Nt*Np+j] * dgdnu[j] - GradInvLapF[2*Nt*Np+j];
  5896. }
  5897. { ////////////////////
  5898. Vector<Real> grad_direction_orig(COORD_DIM*Nt*Np, (Iterator<Real>)grad_direction_orig_.begin() + COORD_DIM*i * (fourier_dim0*fourier_dim1), false);
  5899. //grad_direction_orig = grad_direction;
  5900. for (Long j = 0; j < Nt*Np; j++) { // grad_direction <-- normal * dgdnu - GradInvLapF
  5901. grad_direction_orig[0*Nt*Np+j] = normal[0*Nt*Np+j] * dgdnu[j] - GradInvLapF[0*Nt*Np+j]*0;
  5902. grad_direction_orig[1*Nt*Np+j] = normal[1*Nt*Np+j] * dgdnu[j] - GradInvLapF[1*Nt*Np+j]*0;
  5903. grad_direction_orig[2*Nt*Np+j] = normal[2*Nt*Np+j] * dgdnu[j] - GradInvLapF[2*Nt*Np+j]*0;
  5904. }
  5905. }
  5906. fourier_filter(grad_direction, Nt, Np, S_.NPol(i)*1.2);
  5907. for (Long k = 0; k < 50; k++) { // reparameterize
  5908. Real max_resid = 0;
  5909. Vector<Real> correction(COORD_DIM*Nt*Np);
  5910. for (Long j = 0; j < Nt*Np; j++) { // Set correction
  5911. Real resid = dgdnu[j];
  5912. resid -= normal[0*Nt*Np+j] * grad_direction[0*Nt*Np+j];
  5913. resid -= normal[1*Nt*Np+j] * grad_direction[1*Nt*Np+j];
  5914. resid -= normal[2*Nt*Np+j] * grad_direction[2*Nt*Np+j];
  5915. max_resid = std::max(max_resid, fabs(resid));
  5916. correction[0*Nt*Np+j] = normal[0*Nt*Np+j] * resid;
  5917. correction[1*Nt*Np+j] = normal[1*Nt*Np+j] * resid;
  5918. correction[2*Nt*Np+j] = normal[2*Nt*Np+j] * resid;
  5919. }
  5920. std::cout<<max_resid<<' '; //////////////////////////////////
  5921. fourier_filter(correction, Nt, Np, S_.NPol(i)*1.2);
  5922. Real alpha = 0;
  5923. { // Set alpha <-- (dgdnu - x.n, c.n) / (c.n, c.n)
  5924. Real dgdnu_xncn = 0, cncn = 0, max_c = 0;
  5925. for (Long i = 0; i < Nt*Np; i++) {
  5926. max_c = std::max<Real>(max_c, correction[0*Nt*Np+i]);
  5927. max_c = std::max<Real>(max_c, correction[1*Nt*Np+i]);
  5928. max_c = std::max<Real>(max_c, correction[2*Nt*Np+i]);
  5929. Real resid = dgdnu[i];
  5930. resid -= normal[0*Nt*Np+i] * grad_direction[0*Nt*Np+i];
  5931. resid -= normal[1*Nt*Np+i] * grad_direction[1*Nt*Np+i];
  5932. resid -= normal[2*Nt*Np+i] * grad_direction[2*Nt*Np+i];
  5933. Real cn = 0;
  5934. cn += correction[0*Nt*Np+i] * normal[0*Nt*Np+i];
  5935. cn += correction[1*Nt*Np+i] * normal[1*Nt*Np+i];
  5936. cn += correction[2*Nt*Np+i] * normal[2*Nt*Np+i];
  5937. dgdnu_xncn += resid*cn;
  5938. cncn += cn*cn;
  5939. }
  5940. alpha = dgdnu_xncn / cncn;
  5941. std::cout<<alpha*max_c<<'\n';
  5942. }
  5943. grad_direction += correction * alpha;
  5944. }
  5945. //fourier_print_spectrum("dgdnu", dgdnu, Nt, Np);
  5946. //fourier_print_spectrum("grad_dir", grad_direction, Nt, Np);
  5947. } else {
  5948. grad_direction = 0;
  5949. }
  5950. }
  5951. }
  5952. /////////////////////////////////////////////////////////////////////////
  5953. fourier_print_spectrum("X", X_fourier, S_);
  5954. fourier_print_spectrum("normal", cheb2grid(S_,normal), S_);
  5955. fourier_print_spectrum("dgdnu", cheb2grid(S_, dgdnu), S_);
  5956. fourier_print_spectrum("grad_dir", grad_direction_, S_);
  5957. fourier_print_spectrum("grad_dir_orig", grad_direction_orig_, S_);
  5958. /////////////////////////////////////////////////////////////////////////
  5959. { // Set grad_direction <-- grad_direction_
  5960. if (grad_direction.size() != grad_direction_.Dim()) {
  5961. grad_direction = Eigen::VectorXd(grad_direction_.Dim());
  5962. }
  5963. for (Long i = 0; i < grad_direction.size(); i++) {
  5964. grad_direction(i) = grad_direction_[i];
  5965. }
  5966. }
  5967. if (grad_op_ptr) { // Set grad_op_ptr
  5968. grad_op_ptr[0] = Eigen::VectorXd(grad_op_.Dim());
  5969. for (Long i = 0; i < grad_op_ptr->size(); i++) {
  5970. grad_op_ptr[0](i) = grad_op_[i];
  5971. }
  5972. }
  5973. if (1) { // Write VTU
  5974. VTUData vtu;
  5975. vtu.AddElems(S_.GetElemList(), dgdnu, ORDER);
  5976. vtu.WriteVTK("dgdnu"+std::to_string(iter), comm);
  5977. }
  5978. if (1) { // Write VTU
  5979. VTUData vtu;
  5980. Vector<ElemBasis> grad_direction = grid2cheb(S_, grad_direction_);
  5981. Vector<ElemBasis> dgdnu_ = Stellarator<Real,ORDER>::compute_dot_prod(normal, grad_direction);
  5982. vtu.AddElems(S_.GetElemList(), dgdnu_, ORDER);
  5983. vtu.WriteVTK("dgdnu-"+std::to_string(iter), comm);
  5984. }
  5985. if (1) { // Write VTU
  5986. VTUData vtu;
  5987. Vector<ElemBasis> grad_direction = grid2cheb(S_, grad_direction_);
  5988. vtu.AddElems(S_.GetElemList(), grad_direction, ORDER);
  5989. vtu.WriteVTK("grad_direction"+std::to_string(iter), comm);
  5990. }
  5991. std::cout<<"iter = "<<iter<<" g = "<<g<<'\n';
  5992. iter++;
  5993. return g;
  5994. }
  5995. static void ComputeEquilibrium(MHDEquilib& mhd_equilib) {
  5996. Comm comm = Comm::World();
  5997. const Long Nelem = mhd_equilib.S_.NElem();
  5998. const Long Nnodes = ElemBasis::Size();
  5999. // Initial guess
  6000. Eigen::VectorXd x;
  6001. { // Set x
  6002. Vector<ElemBasis> X(Nelem * COORD_DIM);
  6003. for (Long i = 0; i < Nelem; i++) { // Set x
  6004. X[i*COORD_DIM+0] = mhd_equilib.S_.Elem(i,0);
  6005. X[i*COORD_DIM+1] = mhd_equilib.S_.Elem(i,1);
  6006. X[i*COORD_DIM+2] = mhd_equilib.S_.Elem(i,2);
  6007. }
  6008. Vector<Real> X_fourier = cheb2grid(mhd_equilib.S_, X);
  6009. //X_fourier.Read(("X"+std::to_string(mhd_equilib.iter)+"_").c_str()); // Read from file
  6010. x.resize(X_fourier.Dim());
  6011. for (Long i = 0; i < X_fourier.Dim(); i++) {
  6012. x(i) = X_fourier[i];
  6013. }
  6014. }
  6015. Real fx;
  6016. if (0) {
  6017. LBFGSpp::LBFGSParam<Real> param;
  6018. param.max_iterations = 200;
  6019. param.epsilon = 1e-16;
  6020. param.m = 20;
  6021. LBFGSpp::LBFGSSolver<Real> solver(param);
  6022. Integer niter = solver.minimize(mhd_equilib, x, fx);
  6023. } else {
  6024. //Integer niter = GradientDescentNew(mhd_equilib, x, fx, 200, 1e-12);
  6025. Integer niter = GradientDescent(mhd_equilib, x, fx, 200, 1e-12);
  6026. }
  6027. { // Set x
  6028. // TODO
  6029. }
  6030. }
  6031. static void test() {
  6032. Comm comm = Comm::World();
  6033. Profile::Enable(true);
  6034. Long Nsurf = 2;
  6035. Stellarator<Real,ORDER> S;
  6036. Vector<Real> flux_tor(Nsurf), flux_pol(Nsurf), pressure(Nsurf);
  6037. { // Init S, flux_tor, flux_pol, pressure
  6038. Vector<Long> NtNp;
  6039. for (Long i = 0; i < Nsurf; i++) {
  6040. NtNp.PushBack(35);
  6041. NtNp.PushBack(7);
  6042. //NtNp.PushBack(30);
  6043. //NtNp.PushBack(4);
  6044. }
  6045. S = Stellarator<Real,ORDER>(NtNp);
  6046. flux_tor = 1;
  6047. flux_pol = 1;
  6048. pressure = 0;
  6049. //flux_tor[0] = 1; //0.791881512;
  6050. //flux_tor[1] = 1;
  6051. //flux_pol[0] = 0;
  6052. //flux_pol[1] = 0;
  6053. //pressure[0] = 0;
  6054. //pressure[1] = 0;
  6055. }
  6056. MHDEquilib mhd_equilib(S, pressure, flux_tor, flux_pol);
  6057. ComputeEquilibrium(mhd_equilib);
  6058. }
  6059. static void test_() {
  6060. Comm comm = Comm::World();
  6061. Profile::Enable(true);
  6062. Long Nsurf = 2;
  6063. Stellarator<Real,ORDER> S;
  6064. Vector<Real> flux_tor(Nsurf), flux_pol(Nsurf), pressure(Nsurf);
  6065. { // Init S, flux_tor, flux_pol, pressure
  6066. Vector<Long> NtNp;
  6067. for (Long i = 0; i < Nsurf; i++) {
  6068. NtNp.PushBack(50);
  6069. NtNp.PushBack(10);
  6070. //NtNp.PushBack(30);
  6071. //NtNp.PushBack(4);
  6072. }
  6073. S = Stellarator<Real,ORDER>(NtNp);
  6074. flux_tor = 1;
  6075. flux_pol = 1;
  6076. pressure = 0;
  6077. //flux_tor[0] = 1; //0.791881512;
  6078. //flux_tor[1] = 1;
  6079. //flux_pol[0] = 0;
  6080. //flux_pol[1] = 0;
  6081. //pressure[0] = 0;
  6082. //pressure[1] = 0;
  6083. }
  6084. MHDEquilib mhd_equilib(S, pressure, flux_tor, flux_pol);
  6085. const Long Nelem = mhd_equilib.S_.NElem();
  6086. const Long Nnodes = ElemBasis::Size();
  6087. Eigen::VectorXd x, grad_direction;
  6088. { // Read x
  6089. Vector<ElemBasis> X(Nelem * COORD_DIM);
  6090. for (Long i = 0; i < Nelem; i++) {
  6091. X[i*COORD_DIM+0] = S.Elem(i,0);
  6092. X[i*COORD_DIM+1] = S.Elem(i,1);
  6093. X[i*COORD_DIM+2] = S.Elem(i,2);
  6094. }
  6095. Vector<Real> X_fourier = cheb2grid(S, X);
  6096. //X_fourier.Read("X_tmp");
  6097. x.resize(X_fourier.Dim());
  6098. for (Long i = 0; i < X_fourier.Dim(); i++) {
  6099. x(i) = X_fourier[i];
  6100. }
  6101. }
  6102. Real g = mhd_equilib(x, grad_direction);
  6103. { // Write grad_direction
  6104. Vector<Real> dXdt(grad_direction.size());
  6105. for (Long i = 0; i < dXdt.Dim(); i++) {
  6106. dXdt[i] = grad_direction(i);
  6107. }
  6108. dXdt.Write("dXdt_tmp");
  6109. }
  6110. }
  6111. private:
  6112. Stellarator<Real,ORDER> S_;
  6113. Vector<Real> pressure_;
  6114. Vector<Real> flux_tor_;
  6115. Vector<Real> flux_pol_;
  6116. Long iter;
  6117. };
  6118. template <class Real, Integer ORDER=5> class Spheres {
  6119. static constexpr Integer COORD_DIM = 3;
  6120. static constexpr Integer ELEM_DIM = COORD_DIM-1;
  6121. using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
  6122. using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
  6123. using CoordBasis = Basis<Real, ELEM_DIM, ORDER>;
  6124. using ElemLst = ElemList<COORD_DIM, CoordBasis>;
  6125. public:
  6126. Spheres(Long N = 0) {
  6127. Vector<Real> X(N*COORD_DIM);
  6128. Vector<Real> R(N);
  6129. X=0;
  6130. R=1;
  6131. for (Long i = 0; i < N; i++) X[i*COORD_DIM] = (i==0?-1.015:1.015); ///////////
  6132. InitSpheres(X,R);
  6133. }
  6134. const ElemLst& GetElem() const {
  6135. return elements;
  6136. }
  6137. static void test() {
  6138. constexpr Integer order_singular = 35;
  6139. constexpr Integer order_direct = 35;
  6140. Comm comm = Comm::World();
  6141. Profile::Enable(true);
  6142. Long Ns = 2;
  6143. Spheres S(Ns);
  6144. S.quadrature_FxT.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_FxT, order_singular, order_direct, -1.0, comm);
  6145. S.quadrature_FxU.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_FxU, order_singular, order_direct, -1.0, comm);
  6146. S.quadrature_DxU.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_DxU, order_singular, order_direct, -1.0, comm);
  6147. const auto SetMotion = [&S](Vector<DensityBasis>& density, const Vector<Real>& force_avg, const Vector<Real>& torque_avg) {
  6148. Long Nelem = S.GetElem().NElem();
  6149. Long Nsurf = S.elem_cnt.Dim();
  6150. const auto& X = S.GetElem().ElemVector();
  6151. Vector<Real> area, Xc;
  6152. Vector<DensityBasis> one(Nelem);
  6153. for (Long i = 0; i < Nelem; i++) {
  6154. for (Long j = 0; j < DensityBasis::Size(); j++) {
  6155. one[i][j] = 1;
  6156. }
  6157. }
  6158. S.SurfInteg(area, one);
  6159. S.SurfInteg(Xc, S.GetElem().ElemVector());
  6160. for (Long i = 0; i < Nsurf; i++) {
  6161. for (Long k = 0; k < COORD_DIM; k++) {
  6162. Xc[i*COORD_DIM+k] /= area[i];
  6163. }
  6164. }
  6165. if (density.Dim() != Nelem*COORD_DIM) density.ReInit(Nelem*COORD_DIM);
  6166. Long elem_itr = 0;
  6167. for (Long i = 0; i < Nsurf; i++) {
  6168. for (Long j = 0; j < S.elem_cnt[i]; j++) {
  6169. for (Long k = 0; k < DensityBasis::Size(); k++) {
  6170. StaticArray<Real,COORD_DIM> dX;
  6171. dX[0] = (X[elem_itr*COORD_DIM+0][k] - Xc[i*COORD_DIM+0]);
  6172. dX[1] = (X[elem_itr*COORD_DIM+1][k] - Xc[i*COORD_DIM+1]);
  6173. dX[2] = (X[elem_itr*COORD_DIM+2][k] - Xc[i*COORD_DIM+2]);
  6174. density[elem_itr*COORD_DIM+0][k] = force_avg[i*COORD_DIM+0]*(1/area[i]) + (torque_avg[i*COORD_DIM+1] * dX[2] - torque_avg[i*COORD_DIM+2] * dX[1]) / (2*area[i]/3);
  6175. density[elem_itr*COORD_DIM+1][k] = force_avg[i*COORD_DIM+1]*(1/area[i]) + (torque_avg[i*COORD_DIM+2] * dX[0] - torque_avg[i*COORD_DIM+0] * dX[2]) / (2*area[i]/3);
  6176. density[elem_itr*COORD_DIM+2][k] = force_avg[i*COORD_DIM+2]*(1/area[i]) + (torque_avg[i*COORD_DIM+0] * dX[1] - torque_avg[i*COORD_DIM+1] * dX[0]) / (2*area[i]/3);
  6177. }
  6178. elem_itr++;
  6179. }
  6180. }
  6181. };
  6182. const auto GetMotion = [&S](Vector<Real>& force_avg, Vector<Real>& torque_avg, const Vector<DensityBasis>& density) {
  6183. Long Nelem = S.GetElem().NElem();
  6184. Long Nsurf = S.elem_cnt.Dim();
  6185. const auto& X = S.GetElem().ElemVector();
  6186. S.SurfInteg(force_avg, density);
  6187. Vector<Real> area, Xc;
  6188. Vector<DensityBasis> one(Nelem);
  6189. for (Long i = 0; i < Nelem; i++) {
  6190. for (Long j = 0; j < DensityBasis::Size(); j++) {
  6191. one[i][j] = 1;
  6192. }
  6193. }
  6194. S.SurfInteg(area, one);
  6195. S.SurfInteg(Xc, S.GetElem().ElemVector());
  6196. for (Long i = 0; i < Nsurf; i++) {
  6197. for (Long k = 0; k < COORD_DIM; k++) {
  6198. Xc[i*COORD_DIM+k] /= area[i];
  6199. }
  6200. }
  6201. { // Set torque_avg
  6202. Long elem_itr = 0;
  6203. Vector<DensityBasis> torque(Nelem*COORD_DIM);
  6204. for (Long i = 0; i < Nsurf; i++) {
  6205. for (Long j = 0; j < S.elem_cnt[i]; j++) {
  6206. for (Long k = 0; k < DensityBasis::Size(); k++) {
  6207. StaticArray<Real,COORD_DIM> dX;
  6208. dX[0] = (X[elem_itr*COORD_DIM+0][k] - Xc[i*COORD_DIM+0]);
  6209. dX[1] = (X[elem_itr*COORD_DIM+1][k] - Xc[i*COORD_DIM+1]);
  6210. dX[2] = (X[elem_itr*COORD_DIM+2][k] - Xc[i*COORD_DIM+2]);
  6211. torque[elem_itr*COORD_DIM+0][k] = dX[1] * density[elem_itr*COORD_DIM+2][k] - dX[2] * density[elem_itr*COORD_DIM+1][k];
  6212. torque[elem_itr*COORD_DIM+1][k] = dX[2] * density[elem_itr*COORD_DIM+0][k] - dX[0] * density[elem_itr*COORD_DIM+2][k];
  6213. torque[elem_itr*COORD_DIM+2][k] = dX[0] * density[elem_itr*COORD_DIM+1][k] - dX[1] * density[elem_itr*COORD_DIM+0][k];
  6214. }
  6215. elem_itr++;
  6216. }
  6217. }
  6218. S.SurfInteg(torque_avg, torque);
  6219. }
  6220. };
  6221. const auto BIOpL = [&GetMotion,&SetMotion](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  6222. Vector<Real> force_avg, torque_avg;
  6223. GetMotion(force_avg, torque_avg, density);
  6224. SetMotion(potential, force_avg, torque_avg);
  6225. };
  6226. const auto BIOpK = [&S](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  6227. Vector<DensityBasis> traction;
  6228. S.quadrature_FxT.Eval(traction, S.GetElem(), density, S.Stokes_FxT);
  6229. Vector<CoordBasis> dX;
  6230. const auto X = S.GetElem().ElemVector();
  6231. CoordBasis::Grad(dX, X);
  6232. Long Nelem = S.GetElem().NElem();
  6233. Long Nnodes = CoordBasis::Size();
  6234. potential.ReInit(Nelem * COORD_DIM);
  6235. for (Long i = 0; i < Nelem; i++) {
  6236. for (Long j = 0; j < Nnodes; j++) {
  6237. StaticArray<Real,COORD_DIM> Xn;
  6238. Xn[0] = dX[i*COORD_DIM*2+2][j]*dX[i*COORD_DIM*2+5][j] - dX[i*COORD_DIM*2+4][j]*dX[i*COORD_DIM*2+3][j];
  6239. Xn[1] = dX[i*COORD_DIM*2+4][j]*dX[i*COORD_DIM*2+1][j] - dX[i*COORD_DIM*2+0][j]*dX[i*COORD_DIM*2+5][j];
  6240. Xn[2] = dX[i*COORD_DIM*2+0][j]*dX[i*COORD_DIM*2+3][j] - dX[i*COORD_DIM*2+2][j]*dX[i*COORD_DIM*2+1][j];
  6241. Real AreaElem = sqrt<Real>(Xn[0]*Xn[0] + Xn[1]*Xn[1] + Xn[2]*Xn[2]);
  6242. Real OOAreaElem = 1 / AreaElem;
  6243. Xn[0] *= OOAreaElem;
  6244. Xn[1] *= OOAreaElem;
  6245. Xn[2] *= OOAreaElem;
  6246. potential[i*COORD_DIM+0][j] = traction[i*COORD_DIM*COORD_DIM+0][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+1][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+2][j]*Xn[2];
  6247. potential[i*COORD_DIM+1][j] = traction[i*COORD_DIM*COORD_DIM+3][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+4][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+5][j]*Xn[2];
  6248. potential[i*COORD_DIM+2][j] = traction[i*COORD_DIM*COORD_DIM+6][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+7][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+8][j]*Xn[2];
  6249. }
  6250. }
  6251. };
  6252. const auto BIOp_half_K_L = [&S,&BIOpK,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  6253. Vector<DensityBasis> potential_K;
  6254. Vector<DensityBasis> potential_L;
  6255. BIOpK(potential_K, density);
  6256. BIOpL(potential_L, density);
  6257. if (potential.Dim() != potential_K.Dim()) {
  6258. potential.ReInit(potential_K.Dim());
  6259. }
  6260. for (Long i = 0; i < potential_K.Dim(); i++) {
  6261. for (Long k = 0; k < DensityBasis::Size(); k++) {
  6262. potential[i][k] = -0.5*density[i][k] + potential_K[i][k] + potential_L[i][k];
  6263. }
  6264. }
  6265. };
  6266. const auto BIOp_half_K = [&S,&BIOpK,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  6267. Vector<DensityBasis> potential_K;
  6268. BIOpK(potential_K, density);
  6269. if (potential.Dim() != potential_K.Dim()) {
  6270. potential.ReInit(potential_K.Dim());
  6271. }
  6272. for (Long i = 0; i < potential_K.Dim(); i++) {
  6273. for (Long k = 0; k < DensityBasis::Size(); k++) {
  6274. potential[i][k] = -0.5*density[i][k] + potential_K[i][k];
  6275. }
  6276. }
  6277. };
  6278. const auto BIOp_half_S_D = [&S,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  6279. Vector<DensityBasis> U;
  6280. S.quadrature_DxU.Eval(U, S.GetElem(), density, S.Stokes_DxU);
  6281. Vector<PotentialBasis> U1;
  6282. Vector<DensityBasis> sigma1;
  6283. BIOpL(sigma1,density);
  6284. S.quadrature_FxU.Eval(U1, S.GetElem(), sigma1, S.Stokes_FxU);
  6285. Long Nelem = S.GetElem().NElem();
  6286. Long Nnodes = CoordBasis::Size();
  6287. potential.ReInit(Nelem * COORD_DIM);
  6288. for (Long i = 0; i < Nelem; i++) {
  6289. for (Long j = 0; j < Nnodes; j++) {
  6290. potential[i*COORD_DIM+0][j] = 0.5*density[i*COORD_DIM+0][j] + U[i*COORD_DIM+0][j] + U1[i*COORD_DIM+0][j];
  6291. potential[i*COORD_DIM+1][j] = 0.5*density[i*COORD_DIM+1][j] + U[i*COORD_DIM+1][j] + U1[i*COORD_DIM+1][j];
  6292. potential[i*COORD_DIM+2][j] = 0.5*density[i*COORD_DIM+2][j] + U[i*COORD_DIM+2][j] + U1[i*COORD_DIM+2][j];
  6293. }
  6294. }
  6295. };
  6296. Vector<PotentialBasis> U;
  6297. { // Rachh
  6298. Vector<DensityBasis> sigma0;
  6299. { // Set sigma0
  6300. srand48(comm.Rank());
  6301. Vector<Real> force(Ns*COORD_DIM), torque(Ns*COORD_DIM);
  6302. //for (auto& x : force) x = drand48();
  6303. //for (auto& x : torque) x = drand48();
  6304. force = 0;
  6305. torque = 0;
  6306. force[0] = 1;
  6307. //force[4] = 1;
  6308. SetMotion(sigma0, force, torque);
  6309. }
  6310. Vector<DensityBasis> rhs;
  6311. BIOp_half_K(rhs, sigma0);
  6312. Vector<DensityBasis> sigma;
  6313. { // Set sigma
  6314. Long Nnode = DensityBasis::Size();
  6315. Long Nelem = S.GetElem().NElem();
  6316. typename ParallelSolver<Real>::ParallelOp A = [&S,&BIOp_half_K_L](Vector<Real>* Ax, const Vector<Real>& x) {
  6317. Long Nnode = DensityBasis::Size();
  6318. Long Nelem = S.GetElem().NElem();
  6319. Ax->ReInit(Nelem*COORD_DIM*Nnode);
  6320. Vector<DensityBasis> x_(Nelem*COORD_DIM), Ax_(Nelem*COORD_DIM);
  6321. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set x_
  6322. for (Long k = 0; k < Nnode; k++) {
  6323. x_[i][k] = x[i*Nnode+k];
  6324. }
  6325. }
  6326. BIOp_half_K_L(Ax_, x_);
  6327. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set Ax
  6328. for (Long k = 0; k < Nnode; k++) {
  6329. (*Ax)[i*Nnode+k] = Ax_[i][k];
  6330. }
  6331. }
  6332. };
  6333. Vector<Real> sigma_(Nelem*COORD_DIM*Nnode), rhs_(Nelem*COORD_DIM*Nnode);
  6334. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set rhs_
  6335. for (Long k = 0; k < Nnode; k++) {
  6336. rhs_[i*Nnode+k] = rhs[i][k];
  6337. }
  6338. }
  6339. sigma_ = 0;
  6340. ParallelSolver<Real> linear_solver(comm, true);
  6341. linear_solver(&sigma_, A, rhs_, 1e-6, 50);
  6342. sigma.ReInit(Nelem * COORD_DIM);
  6343. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set sigma
  6344. for (Long k = 0; k < Nnode; k++) {
  6345. sigma[i][k] = sigma_[i*Nnode+k] - sigma0[i][k];
  6346. }
  6347. }
  6348. }
  6349. S.quadrature_FxU.Eval(U, S.GetElem(), sigma, S.Stokes_FxU);
  6350. { // Write VTU
  6351. VTUData vtu_sigma;
  6352. vtu_sigma.AddElems(S.elements, sigma, ORDER);
  6353. vtu_sigma.WriteVTK("sphere-sigma0", comm);
  6354. VTUData vtu_U;
  6355. vtu_U.AddElems(S.elements, U, ORDER);
  6356. vtu_U.WriteVTK("sphere-U0", comm);
  6357. }
  6358. }
  6359. { // Tornberg
  6360. Vector<DensityBasis> rhs;
  6361. BIOpL(rhs, U);
  6362. Vector<DensityBasis> sigma;
  6363. { // Set sigma
  6364. Long Nnode = DensityBasis::Size();
  6365. Long Nelem = S.GetElem().NElem();
  6366. typename ParallelSolver<Real>::ParallelOp A = [&S,&BIOp_half_S_D](Vector<Real>* Ax, const Vector<Real>& x) {
  6367. Long Nnode = DensityBasis::Size();
  6368. Long Nelem = S.GetElem().NElem();
  6369. Ax->ReInit(Nelem*COORD_DIM*Nnode);
  6370. Vector<DensityBasis> x_(Nelem*COORD_DIM), Ax_(Nelem*COORD_DIM);
  6371. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set x_
  6372. for (Long k = 0; k < Nnode; k++) {
  6373. x_[i][k] = x[i*Nnode+k];
  6374. }
  6375. }
  6376. BIOp_half_S_D(Ax_, x_);
  6377. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set Ax
  6378. for (Long k = 0; k < Nnode; k++) {
  6379. (*Ax)[i*Nnode+k] = Ax_[i][k];
  6380. }
  6381. }
  6382. };
  6383. Vector<Real> sigma_(Nelem*COORD_DIM*Nnode), rhs_(Nelem*COORD_DIM*Nnode);
  6384. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set rhs_
  6385. for (Long k = 0; k < Nnode; k++) {
  6386. rhs_[i*Nnode+k] = rhs[i][k];
  6387. }
  6388. }
  6389. sigma_ = 0;
  6390. ParallelSolver<Real> linear_solver(comm, true);
  6391. linear_solver(&sigma_, A, rhs_, 1e-6, 50);
  6392. sigma.ReInit(Nelem * COORD_DIM);
  6393. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set sigma
  6394. for (Long k = 0; k < Nnode; k++) {
  6395. sigma[i][k] = sigma_[i*Nnode+k];
  6396. }
  6397. }
  6398. }
  6399. Vector<PotentialBasis> U1;
  6400. BIOp_half_S_D(U1, sigma);
  6401. { // Write VTU
  6402. VTUData vtu_sigma;
  6403. vtu_sigma.AddElems(S.elements, sigma, ORDER);
  6404. vtu_sigma.WriteVTK("sphere-sigma1", comm);
  6405. VTUData vtu_U;
  6406. vtu_U.AddElems(S.elements, U1, ORDER);
  6407. vtu_U.WriteVTK("sphere-U1", comm);
  6408. }
  6409. }
  6410. Profile::print(&comm);
  6411. }
  6412. private:
  6413. template <class FnBasis> void SurfInteg(Vector<Real>& I, const Vector<FnBasis>& f) {
  6414. static_assert(std::is_same<FnBasis,CoordBasis>::value, "FnBasis is different from CoordBasis");
  6415. const Long Nelem = elements.NElem();
  6416. const Long dof = f.Dim() / Nelem;
  6417. SCTL_ASSERT(f.Dim() == Nelem * dof);
  6418. auto nodes = FnBasis::Nodes();
  6419. auto quad_wts = FnBasis::QuadWts();
  6420. const Long Nnodes = FnBasis::Size();
  6421. auto EvalOp = CoordBasis::SetupEval(nodes);
  6422. Vector<CoordBasis> dX;
  6423. const auto& X = elements.ElemVector();
  6424. SCTL_ASSERT(X.Dim() == Nelem * COORD_DIM);
  6425. CoordBasis::Grad(dX, X);
  6426. Matrix<Real> I_(Nelem, dof);
  6427. for (Long i = 0; i < Nelem; i++) {
  6428. for (Long k = 0; k < dof; k++) {
  6429. I_[i][k] = 0;
  6430. }
  6431. for (Long j = 0; j < Nnodes; j++) {
  6432. Real dA = 0;
  6433. StaticArray<Real,COORD_DIM> Xn;
  6434. Xn[0] = dX[i*COORD_DIM*2+2][j] * dX[i*COORD_DIM*2+5][j] - dX[i*COORD_DIM*2+3][j] * dX[i*COORD_DIM*2+4][j];
  6435. Xn[1] = dX[i*COORD_DIM*2+4][j] * dX[i*COORD_DIM*2+1][j] - dX[i*COORD_DIM*2+5][j] * dX[i*COORD_DIM*2+0][j];
  6436. Xn[2] = dX[i*COORD_DIM*2+0][j] * dX[i*COORD_DIM*2+3][j] - dX[i*COORD_DIM*2+1][j] * dX[i*COORD_DIM*2+2][j];
  6437. dA += sqrt<Real>(Xn[0]*Xn[0] + Xn[1]*Xn[1] + Xn[2]*Xn[2]) * quad_wts[j];
  6438. for (Long k = 0; k < dof; k++) {
  6439. I_[i][k] += dA * f[i*dof+k][j];
  6440. }
  6441. }
  6442. }
  6443. Long Ns = elem_cnt.Dim();
  6444. if (I.Dim() != Ns * dof) I.ReInit(Ns * dof);
  6445. I = 0;
  6446. Long elem_itr = 0;
  6447. for (Long i = 0; i < Ns; i++) {
  6448. for (Long j = 0; j < elem_cnt[i]; j++) {
  6449. for (Long k = 0; k < dof; k++) {
  6450. I[i*dof+k] += I_[elem_itr][k];
  6451. }
  6452. elem_itr++;
  6453. }
  6454. }
  6455. }
  6456. void InitSpheres(const Vector<Real> X, const Vector<Real>& R){
  6457. SCTL_ASSERT(X.Dim() == R.Dim() * COORD_DIM);
  6458. Long N = R.Dim();
  6459. elements.ReInit(2*COORD_DIM*N);
  6460. auto nodes = ElemLst::CoordBasis::Nodes();
  6461. for (Long l = 0; l < N; l++) {
  6462. for (Integer i = 0; i < COORD_DIM; i++) {
  6463. for (Integer j = 0; j < 2; j++) {
  6464. for (int k = 0; k < ElemLst::CoordBasis::Size(); k++) {
  6465. Real coord[COORD_DIM];
  6466. coord[(i+0)%COORD_DIM] = (j ? -1.0 : 1.0);
  6467. coord[(i+1)%COORD_DIM] = 2.0 * nodes[j?1:0][k] - 1.0;
  6468. coord[(i+2)%COORD_DIM] = 2.0 * nodes[j?0:1][k] - 1.0;
  6469. Real R0 = sqrt<Real>(coord[0]*coord[0] + coord[1]*coord[1] + coord[2]*coord[2]);
  6470. elements((l*COORD_DIM+i)*2+j,0)[k] = X[l*COORD_DIM+0] + R[l] * coord[0] / R0;
  6471. elements((l*COORD_DIM+i)*2+j,1)[k] = X[l*COORD_DIM+1] + R[l] * coord[1] / R0;
  6472. elements((l*COORD_DIM+i)*2+j,2)[k] = X[l*COORD_DIM+2] + R[l] * coord[2] / R0;
  6473. }
  6474. }
  6475. }
  6476. }
  6477. elem_cnt.ReInit(N);
  6478. elem_cnt = 6;
  6479. }
  6480. GenericKernel<Stokes3D_DxU> Stokes_DxU;
  6481. GenericKernel<Stokes3D_FxU> Stokes_FxU;
  6482. GenericKernel<Stokes3D_FxT> Stokes_FxT;
  6483. Quadrature<Real> quadrature_DxU;
  6484. Quadrature<Real> quadrature_FxU;
  6485. Quadrature<Real> quadrature_FxT;
  6486. ElemLst elements;
  6487. Vector<Long> elem_cnt;
  6488. };
  6489. } // end namespace
  6490. #endif //_SCTL_BOUNDARY_QUADRATURE_HPP_