123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395 |
- #include SCTL_INCLUDE(legendre_rule.hpp)
- namespace SCTL_NAMESPACE {
- // Vector<Real> qx1, qw1;
- // //cgqf(p0+1, 1, 0.0, 0.0, -1.0, 1.0, &qx1[0], &qw1[0]);
- // ChebBasis<Real>::quad_rule(p0+1, qx1, qw1);
- // sctl::ASSERT(typeid(Real) == typeid(double) || typeid(Real) == typeid(float)); // TODO: these are Legendre nodes only for float and double
- // for (auto x : qx1) x = 2 * x - 1;
- // for (auto w : qw1) w = 2 * w;
- template <class Real> void SphericalHarmonics<Real>::SHC2Grid(const Vector<Real>& S, Long p0, Long p1, Vector<Real>& X, Vector<Real>* X_theta, Vector<Real>* X_phi){
- Matrix<Real>& Mf =SphericalHarmonics<Real>::MatFourier(p0,p1);
- Matrix<Real>& Mdf=SphericalHarmonics<Real>::MatFourierGrad(p0,p1);
- std::vector<Matrix<Real>>& Ml =SphericalHarmonics<Real>::MatLegendre(p0,p1);
- std::vector<Matrix<Real>>& Mdl=SphericalHarmonics<Real>::MatLegendreGrad(p0,p1);
- assert(p0==(Long)Ml.size()-1);
- assert(p0==Mf.Dim(0)/2);
- assert(p1==Mf.Dim(1)/2);
- Long N=S.Dim()/(p0*(p0+2));
- assert(N*p0*(p0+2)==S.Dim());
- if(X.Dim()!=N*2*p1*(p1+1)) X.ReInit(N*2*p1*(p1+1));
- if(X_phi && X_phi ->Dim()!=N*2*p1*(p1+1)) X_phi ->ReInit(N*2*p1*(p1+1));
- if(X_theta && X_theta->Dim()!=N*2*p1*(p1+1)) X_theta->ReInit(N*2*p1*(p1+1));
- static Vector<Real> B0, B1;
- B0.ReInit(N* p0*(p0+2));
- B1.ReInit(N*2*p0*(p1+1));
- #pragma omp parallel
- { // B0 <-- Rearrange(S)
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for(Long i=a;i<b;i++){
- Long offset=0;
- for(Long j=0;j<2*p0;j++){
- Long len=p0+1-(j+1)/2;
- Real* B_=&B0[i*len+N*offset];
- const Real* S_=&S[i*p0*(p0+2)+offset];
- for(Long k=0;k<len;k++) B_[k]=S_[k];
- offset+=len;
- }
- }
- }
- #pragma omp parallel
- { // Evaluate Legendre polynomial
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long offset0=0;
- Long offset1=0;
- for(Long i=0;i<p0+1;i++){
- Long N0=2*N;
- if(i==0 || i==p0) N0=N;
- Matrix<Real> Min (N0, p0+1-i, B0.begin()+offset0, false);
- Matrix<Real> Mout(N0, p1+1 , B1.begin()+offset1, false);
- { // Mout = Min * Ml[i] // split between threads
- Long a=(tid+0)*N0/omp_p;
- Long b=(tid+1)*N0/omp_p;
- if(a<b){
- Matrix<Real> Min_ (b-a, Min .Dim(1), Min [a], false);
- Matrix<Real> Mout_(b-a, Mout.Dim(1), Mout[a], false);
- Matrix<Real>::GEMM(Mout_,Min_,Ml[i]);
- }
- }
- offset0+=Min .Dim(0)*Min .Dim(1);
- offset1+=Mout.Dim(0)*Mout.Dim(1);
- }
- }
- #pragma omp parallel
- { // Transpose and evaluate Fourier
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N*(p1+1)/omp_p;
- Long b=(tid+1)*N*(p1+1)/omp_p;
- const Long block_size=16;
- Matrix<Real> B2(block_size,2*p0);
- for(Long i0=a;i0<b;i0+=block_size){
- Long i1=std::min(b,i0+block_size);
- for(Long i=i0;i<i1;i++){
- for(Long j=0;j<2*p0;j++){
- B2[i-i0][j]=B1[j*N*(p1+1)+i];
- }
- }
- Matrix<Real> Min (i1-i0,2*p0, B2.begin() , false);
- Matrix<Real> Mout(i1-i0,2*p1, X .begin()+i0*2*p1, false);
- Matrix<Real>::GEMM(Mout, Min, Mf);
- if(X_theta){ // Evaluate Fourier gradient
- Matrix<Real> Mout(i1-i0,2*p1, X_theta->begin()+i0*2*p1, false);
- Matrix<Real>::GEMM(Mout, Min, Mdf);
- }
- }
- }
- if(X_phi){
- #pragma omp parallel
- { // Evaluate Legendre gradient
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long offset0=0;
- Long offset1=0;
- for(Long i=0;i<p0+1;i++){
- Long N0=2*N;
- if(i==0 || i==p0) N0=N;
- Matrix<Real> Min (N0, p0+1-i, B0.begin()+offset0, false);
- Matrix<Real> Mout(N0, p1+1 , B1.begin()+offset1, false);
- { // Mout = Min * Mdl[i] // split between threads
- Long a=(tid+0)*N0/omp_p;
- Long b=(tid+1)*N0/omp_p;
- if(a<b){
- Matrix<Real> Min_ (b-a, Min .Dim(1), Min [a], false);
- Matrix<Real> Mout_(b-a, Mout.Dim(1), Mout[a], false);
- Matrix<Real>::GEMM(Mout_,Min_,Mdl[i]);
- }
- }
- offset0+=Min .Dim(0)*Min .Dim(1);
- offset1+=Mout.Dim(0)*Mout.Dim(1);
- }
- }
- #pragma omp parallel
- { // Transpose and evaluate Fourier
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N*(p1+1)/omp_p;
- Long b=(tid+1)*N*(p1+1)/omp_p;
- const Long block_size=16;
- Matrix<Real> B2(block_size,2*p0);
- for(Long i0=a;i0<b;i0+=block_size){
- Long i1=std::min(b,i0+block_size);
- for(Long i=i0;i<i1;i++){
- for(Long j=0;j<2*p0;j++){
- B2[i-i0][j]=B1[j*N*(p1+1)+i];
- }
- }
- Matrix<Real> Min (i1-i0,2*p0, B2.begin() , false);
- Matrix<Real> Mout(i1-i0,2*p1, X_phi->begin()+i0*2*p1, false);
- Matrix<Real>::GEMM(Mout, Min, Mf);
- }
- }
- }
- }
- template <class Real> void SphericalHarmonics<Real>::Grid2SHC(const Vector<Real>& X, Long p0, Long p1, Vector<Real>& S){
- Matrix<Real> Mf =SphericalHarmonics<Real>::MatFourierInv(p0,p1);
- std::vector<Matrix<Real>> Ml =SphericalHarmonics<Real>::MatLegendreInv(p0,p1);
- assert(p1==(Long)Ml.size()-1);
- assert(p0==Mf.Dim(0)/2);
- assert(p1==Mf.Dim(1)/2);
- Long N=X.Dim()/(2*p0*(p0+1));
- assert(N*2*p0*(p0+1)==X.Dim());
- if(S.Dim()!=N*(p1*(p1+2))) S.ReInit(N*(p1*(p1+2)));
- static Vector<Real> B0, B1;
- B0.ReInit(N* p1*(p1+2));
- B1.ReInit(N*2*p1*(p0+1));
- #pragma omp parallel
- { // Evaluate Fourier and transpose
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N*(p0+1)/omp_p;
- Long b=(tid+1)*N*(p0+1)/omp_p;
- const Long block_size=16;
- Matrix<Real> B2(block_size,2*p1);
- for(Long i0=a;i0<b;i0+=block_size){
- Long i1=std::min(b,i0+block_size);
- Matrix<Real> Min (i1-i0,2*p0, (Iterator<Real>)X.begin()+i0*2*p0, false);
- Matrix<Real> Mout(i1-i0,2*p1, B2.begin() , false);
- Matrix<Real>::GEMM(Mout, Min, Mf);
- for(Long i=i0;i<i1;i++){
- for(Long j=0;j<2*p1;j++){
- B1[j*N*(p0+1)+i]=B2[i-i0][j];
- }
- }
- }
- }
- #pragma omp parallel
- { // Evaluate Legendre polynomial
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long offset0=0;
- Long offset1=0;
- for(Long i=0;i<p1+1;i++){
- Long N0=2*N;
- if(i==0 || i==p1) N0=N;
- Matrix<Real> Min (N0, p0+1 , B1.begin()+offset0, false);
- Matrix<Real> Mout(N0, p1+1-i, B0.begin()+offset1, false);
- { // Mout = Min * Ml[i] // split between threads
- Long a=(tid+0)*N0/omp_p;
- Long b=(tid+1)*N0/omp_p;
- if(a<b){
- Matrix<Real> Min_ (b-a, Min .Dim(1), Min [a], false);
- Matrix<Real> Mout_(b-a, Mout.Dim(1), Mout[a], false);
- Matrix<Real>::GEMM(Mout_,Min_,Ml[i]);
- }
- }
- offset0+=Min .Dim(0)*Min .Dim(1);
- offset1+=Mout.Dim(0)*Mout.Dim(1);
- }
- }
- #pragma omp parallel
- { // S <-- Rearrange(B0)
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for(Long i=a;i<b;i++){
- Long offset=0;
- for(Long j=0;j<2*p1;j++){
- Long len=p1+1-(j+1)/2;
- Real* B_=&B0[i*len+N*offset];
- Real* S_=&S[i*p1*(p1+2)+offset];
- for(Long k=0;k<len;k++) S_[k]=B_[k];
- offset+=len;
- }
- }
- }
- }
- template <class Real> void SphericalHarmonics<Real>::SHC2GridTranspose(const Vector<Real>& X, Long p0, Long p1, Vector<Real>& S){
- Matrix<Real> Mf =SphericalHarmonics<Real>::MatFourier(p1,p0).Transpose();
- std::vector<Matrix<Real>> Ml =SphericalHarmonics<Real>::MatLegendre(p1,p0);
- for(Long i=0;i<(Long)Ml.size();i++) Ml[i]=Ml[i].Transpose();
- assert(p1==(Long)Ml.size()-1);
- assert(p0==Mf.Dim(0)/2);
- assert(p1==Mf.Dim(1)/2);
- Long N=X.Dim()/(2*p0*(p0+1));
- assert(N*2*p0*(p0+1)==X.Dim());
- if(S.Dim()!=N*(p1*(p1+2))) S.ReInit(N*(p1*(p1+2)));
- static Vector<Real> B0, B1;
- B0.ReInit(N* p1*(p1+2));
- B1.ReInit(N*2*p1*(p0+1));
- #pragma omp parallel
- { // Evaluate Fourier and transpose
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N*(p0+1)/omp_p;
- Long b=(tid+1)*N*(p0+1)/omp_p;
- const Long block_size=16;
- Matrix<Real> B2(block_size,2*p1);
- for(Long i0=a;i0<b;i0+=block_size){
- Long i1=std::min(b,i0+block_size);
- Matrix<Real> Min (i1-i0,2*p0, (Iterator<Real>)X.begin()+i0*2*p0, false);
- Matrix<Real> Mout(i1-i0,2*p1, B2.begin() , false);
- Matrix<Real>::GEMM(Mout, Min, Mf);
- for(Long i=i0;i<i1;i++){
- for(Long j=0;j<2*p1;j++){
- B1[j*N*(p0+1)+i]=B2[i-i0][j];
- }
- }
- }
- }
- #pragma omp parallel
- { // Evaluate Legendre polynomial
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long offset0=0;
- Long offset1=0;
- for(Long i=0;i<p1+1;i++){
- Long N0=2*N;
- if(i==0 || i==p1) N0=N;
- Matrix<Real> Min (N0, p0+1 , B1.begin()+offset0, false);
- Matrix<Real> Mout(N0, p1+1-i, B0.begin()+offset1, false);
- { // Mout = Min * Ml[i] // split between threads
- Long a=(tid+0)*N0/omp_p;
- Long b=(tid+1)*N0/omp_p;
- if(a<b){
- Matrix<Real> Min_ (b-a, Min .Dim(1), Min [a], false);
- Matrix<Real> Mout_(b-a, Mout.Dim(1), Mout[a], false);
- Matrix<Real>::GEMM(Mout_,Min_,Ml[i]);
- }
- }
- offset0+=Min .Dim(0)*Min .Dim(1);
- offset1+=Mout.Dim(0)*Mout.Dim(1);
- }
- }
- #pragma omp parallel
- { // S <-- Rearrange(B0)
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for(Long i=a;i<b;i++){
- Long offset=0;
- for(Long j=0;j<2*p1;j++){
- Long len=p1+1-(j+1)/2;
- Real* B_=&B0[i*len+N*offset];
- Real* S_=&S[i*p1*(p1+2)+offset];
- for(Long k=0;k<len;k++) S_[k]=B_[k];
- offset+=len;
- }
- }
- }
- }
- template <class Real> void SphericalHarmonics<Real>::SHC2Pole(const Vector<Real>& S, Long p0, Vector<Real>& P){
- Vector<Real> QP[2];
- { // Set QP
- Real x[2]={-1,1};
- Vector<Real> alp((p0+1)*(p0+2)/2);
- const Real SQRT2PI=sqrt(2*M_PI);
- for(Long i=0;i<2;i++){
- LegPoly(&alp[0], &x[i], 1, p0);
- QP[i].ReInit(p0+1, alp.begin());
- for(Long j=0;j<p0+1;j++) QP[i][j]*=SQRT2PI;
- }
- }
- Long N=S.Dim()/(p0*(p0+2));
- assert(N*p0*(p0+2)==S.Dim());
- if(P.Dim()!=N*2) P.ReInit(N*2);
- #pragma omp parallel
- { // Compute pole
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for(Long i=a;i<b;i++){
- Real P_[2]={0,0};
- for(Long j=0;j<p0+1;j++){
- P_[0]+=S[i*p0*(p0+2)+j]*QP[0][j];
- P_[1]+=S[i*p0*(p0+2)+j]*QP[1][j];
- }
- P[2*i+0]=P_[0];
- P[2*i+1]=P_[1];
- }
- }
- }
- template <class Real> void SphericalHarmonics<Real>::RotateAll(const Vector<Real>& S, Long p0, Long dof, Vector<Real>& S_){
- std::vector<Matrix<Real>>& Mr=MatRotate(p0);
- std::vector<std::vector<Long>> coeff_perm(p0+1);
- { // Set coeff_perm
- for(Long n=0;n<=p0;n++) coeff_perm[n].resize(std::min(2*n+1,2*p0));
- Long itr=0;
- for(Long i=0;i<2*p0;i++){
- Long m=(i+1)/2;
- for(Long n=m;n<=p0;n++){
- coeff_perm[n][i]=itr;
- itr++;
- }
- }
- }
- Long Ncoef=p0*(p0+2);
- Long N=S.Dim()/Ncoef/dof;
- assert(N*Ncoef*dof==S.Dim());
- if(S_.Dim()!=N*dof*Ncoef*p0*(p0+1)) S_.ReInit(N*dof*Ncoef*p0*(p0+1));
- Matrix<Real> S0(N*dof ,Ncoef, (Iterator<Real>)S.begin(), false);
- Matrix<Real> S1(N*dof*p0*(p0+1),Ncoef, S_.begin() , false);
- #pragma omp parallel
- { // Construct all p0*(p0+1) rotations
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Matrix<Real> B0(dof*p0,Ncoef); // memory buffer
- std::vector<Matrix<Real>> Bi(p0+1), Bo(p0+1); // memory buffers
- for(Long i=0;i<=p0;i++){ // initialize Bi, Bo
- Bi[i].ReInit(dof*p0,coeff_perm[i].size());
- Bo[i].ReInit(dof*p0,coeff_perm[i].size());
- }
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for(Long i=a;i<b;i++){
- for(Long d=0;d<dof;d++){
- for(Long j=0;j<p0;j++){
- Long offset=0;
- for(Long k=0;k<p0+1;k++){
- Real r[2]={cos(k*j*M_PI/p0),-sin(k*j*M_PI/p0)}; // exp(i*k*theta)
- Long len=p0+1-k;
- if(k!=0 && k!=p0){
- for(Long l=0;l<len;l++){
- Real x[2];
- x[0]=S0[i*dof+d][offset+len*0+l];
- x[1]=S0[i*dof+d][offset+len*1+l];
- B0[j*dof+d][offset+len*0+l]=x[0]*r[0]-x[1]*r[1];
- B0[j*dof+d][offset+len*1+l]=x[0]*r[1]+x[1]*r[0];
- }
- offset+=2*len;
- }else{
- for(Long l=0;l<len;l++){
- B0[j*dof+d][offset+l]=S0[i*dof+d][offset+l];
- }
- offset+=len;
- }
- }
- assert(offset==Ncoef);
- }
- }
- { // Fast rotation
- for(Long k=0;k<dof*p0;k++){ // forward permutation
- for(Long l=0;l<=p0;l++){
- for(Long j=0;j<(Long)coeff_perm[l].size();j++){
- Bi[l][k][j]=B0[k][coeff_perm[l][j]];
- }
- }
- }
- for(Long t=0;t<=p0;t++){
- for(Long l=0;l<=p0;l++){ // mat-vec
- Matrix<Real>::GEMM(Bo[l],Bi[l],Mr[t*(p0+1)+l]);
- }
- Matrix<Real> Mout(dof*p0,Ncoef, S1[(i*(p0+1)+t)*dof*p0], false);
- for(Long k=0;k<dof*p0;k++){ // reverse permutation
- for(Long l=0;l<=p0;l++){
- for(Long j=0;j<(Long)coeff_perm[l].size();j++){
- Mout[k][coeff_perm[l][j]]=Bo[l][k][j];
- }
- }
- }
- }
- }
- }
- }
- }
- template <class Real> void SphericalHarmonics<Real>::RotateTranspose(const Vector<Real>& S_, Long p0, Long dof, Vector<Real>& S){
- std::vector<Matrix<Real>> Mr=MatRotate(p0);
- for(Long i=0;i<(Long)Mr.size();i++) Mr[i]=Mr[i].Transpose();
- std::vector<std::vector<Long>> coeff_perm(p0+1);
- { // Set coeff_perm
- for(Long n=0;n<=p0;n++) coeff_perm[n].resize(std::min(2*n+1,2*p0));
- Long itr=0;
- for(Long i=0;i<2*p0;i++){
- Long m=(i+1)/2;
- for(Long n=m;n<=p0;n++){
- coeff_perm[n][i]=itr;
- itr++;
- }
- }
- }
- Long Ncoef=p0*(p0+2);
- Long N=S_.Dim()/Ncoef/dof/(p0*(p0+1));
- assert(N*Ncoef*dof*(p0*(p0+1))==S_.Dim());
- if(S.Dim()!=N*dof*Ncoef*p0*(p0+1)) S.ReInit(N*dof*Ncoef*p0*(p0+1));
- Matrix<Real> S0(N*dof*p0*(p0+1),Ncoef, S.begin() , false);
- Matrix<Real> S1(N*dof*p0*(p0+1),Ncoef, (Iterator<Real>)S_.begin(), false);
- #pragma omp parallel
- { // Transpose all p0*(p0+1) rotations
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Matrix<Real> B0(dof*p0,Ncoef); // memory buffer
- std::vector<Matrix<Real>> Bi(p0+1), Bo(p0+1); // memory buffers
- for(Long i=0;i<=p0;i++){ // initialize Bi, Bo
- Bi[i].ReInit(dof*p0,coeff_perm[i].size());
- Bo[i].ReInit(dof*p0,coeff_perm[i].size());
- }
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for(Long i=a;i<b;i++){
- for(Long t=0;t<p0+1;t++){
- Long idx0=(i*(p0+1)+t)*p0*dof;
- { // Fast rotation
- Matrix<Real> Min(p0*dof,Ncoef, S1[idx0], false);
- for(Long k=0;k<dof*p0;k++){ // forward permutation
- for(Long l=0;l<=p0;l++){
- for(Long j=0;j<(Long)coeff_perm[l].size();j++){
- Bi[l][k][j]=Min[k][coeff_perm[l][j]];
- }
- }
- }
- for(Long l=0;l<=p0;l++){ // mat-vec
- Matrix<Real>::GEMM(Bo[l],Bi[l],Mr[t*(p0+1)+l]);
- }
- for(Long k=0;k<dof*p0;k++){ // reverse permutation
- for(Long l=0;l<=p0;l++){
- for(Long j=0;j<(Long)coeff_perm[l].size();j++){
- B0[k][coeff_perm[l][j]]=Bo[l][k][j];
- }
- }
- }
- }
- for(Long j=0;j<p0;j++){
- for(Long d=0;d<dof;d++){
- Long idx1=idx0+j*dof+d;
- Long offset=0;
- for(Long k=0;k<p0+1;k++){
- Real r[2]={cos(k*j*M_PI/p0),sin(k*j*M_PI/p0)}; // exp(i*k*theta)
- Long len=p0+1-k;
- if(k!=0 && k!=p0){
- for(Long l=0;l<len;l++){
- Real x[2];
- x[0]=B0[j*dof+d][offset+len*0+l];
- x[1]=B0[j*dof+d][offset+len*1+l];
- S0[idx1][offset+len*0+l]=x[0]*r[0]-x[1]*r[1];
- S0[idx1][offset+len*1+l]=x[0]*r[1]+x[1]*r[0];
- }
- offset+=2*len;
- }else{
- for(Long l=0;l<len;l++){
- S0[idx1][offset+l]=B0[j*dof+d][offset+l];
- }
- offset+=len;
- }
- }
- assert(offset==Ncoef);
- }
- }
- }
- }
- }
- }
- template <class Real> Vector<Real>& SphericalHarmonics<Real>::LegendreNodes(Long p1){
- assert(p1<SCTL_SHMAXDEG);
- assert(MatrixStore().Qx_.size() == SCTL_SHMAXDEG);
- Vector<Real>& Qx=MatrixStore().Qx_[p1];
- if(!Qx.Dim()){
- Vector<Real> qx1(p1+1);
- Vector<Real> qw1(p1+1);
- cgqf(p1+1, 1, 0.0, 0.0, -1.0, 1.0, &qx1[0], &qw1[0]);
- Qx=qx1;
- }
- return Qx;
- }
- template <class Real> Vector<Real>& SphericalHarmonics<Real>::LegendreWeights(Long p1){
- assert(p1<SCTL_SHMAXDEG);
- assert(MatrixStore().Qw_.size() == SCTL_SHMAXDEG);
- Vector<Real>& Qw=MatrixStore().Qw_[p1];
- if(!Qw.Dim()){
- // TODO: this works only for Real = double
- Vector<Real> qx1(p1+1);
- Vector<Real> qw1(p1+1);
- cgqf(p1+1, 1, 0.0, 0.0, -1.0, 1.0, &qx1[0], &qw1[0]);
- for(Long i=0;i<qw1.Dim();i++) qw1[i]*=M_PI/p1/sqrt(1-qx1[i]*qx1[i]);
- Qw=qw1;
- }
- return Qw;
- }
- template <class Real> Vector<Real>& SphericalHarmonics<Real>::SingularWeights(Long p1){
- assert(p1<SCTL_SHMAXDEG);
- assert(MatrixStore().Sw_.size() == SCTL_SHMAXDEG);
- Vector<Real>& Sw=MatrixStore().Sw_[p1];
- if(!Sw.Dim()){
- Vector<Real> qx1(p1+1);
- Vector<Real> qw1(p1+1);
- cgqf(p1+1, 1, 0.0, 0.0, -1.0, 1.0, &qx1[0], &qw1[0]);
- std::vector<Real> Yf(p1+1,0);
- { // Set Yf
- Real x0=1.0;
- std::vector<Real> alp0((p1+1)*(p1+2)/2);
- LegPoly(&alp0[0], &x0, 1, p1);
- std::vector<Real> alp((p1+1) * (p1+1)*(p1+2)/2);
- LegPoly(&alp[0], &qx1[0], p1+1, p1);
- for(Long j=0;j<p1+1;j++){
- for(Long i=0;i<p1+1;i++){
- Yf[i]+=4*M_PI/(2*j+1) * alp0[j] * alp[j*(p1+1)+i];
- }
- }
- }
- Sw.ReInit(p1+1);
- for(Long i=0;i<p1+1;i++){
- Sw[i]=(qw1[i]*M_PI/p1)*Yf[i]/cos(acos(qx1[i])/2);
- }
- }
- return Sw;
- }
- template <class Real> Matrix<Real>& SphericalHarmonics<Real>::MatFourier(Long p0, Long p1){
- assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
- assert(MatrixStore().Mf_ .size() == SCTL_SHMAXDEG*SCTL_SHMAXDEG);
- Matrix<Real>& Mf =MatrixStore().Mf_ [p0*SCTL_SHMAXDEG+p1];
- if(!Mf.Dim(0)){
- const Real SQRT2PI=sqrt(2*M_PI);
- { // Set Mf
- Matrix<Real> M(2*p0,2*p1);
- for(Long j=0;j<2*p1;j++){
- M[0][j]=SQRT2PI*1.0;
- for(Long k=1;k<p0;k++){
- M[2*k-1][j]=SQRT2PI*cos(j*k*M_PI/p1);
- M[2*k-0][j]=SQRT2PI*sin(j*k*M_PI/p1);
- }
- M[2*p0-1][j]=SQRT2PI*cos(j*p0*M_PI/p1);
- }
- Mf=M;
- }
- }
- return Mf;
- }
- template <class Real> Matrix<Real>& SphericalHarmonics<Real>::MatFourierInv(Long p0, Long p1){
- assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
- assert(MatrixStore().Mfinv_ .size() == SCTL_SHMAXDEG*SCTL_SHMAXDEG);
- Matrix<Real>& Mf =MatrixStore().Mfinv_ [p0*SCTL_SHMAXDEG+p1];
- if(!Mf.Dim(0)){
- const Real INVSQRT2PI=1.0/sqrt(2*M_PI)/p0;
- { // Set Mf
- Matrix<Real> M(2*p0,2*p1);
- M.SetZero();
- if(p1>p0) p1=p0;
- for(Long j=0;j<2*p0;j++){
- M[j][0]=INVSQRT2PI*0.5;
- for(Long k=1;k<p1;k++){
- M[j][2*k-1]=INVSQRT2PI*cos(j*k*M_PI/p0);
- M[j][2*k-0]=INVSQRT2PI*sin(j*k*M_PI/p0);
- }
- M[j][2*p1-1]=INVSQRT2PI*cos(j*p1*M_PI/p0);
- }
- if(p1==p0) for(Long j=0;j<2*p0;j++) M[j][2*p1-1]*=0.5;
- Mf=M;
- }
- }
- return Mf;
- }
- template <class Real> Matrix<Real>& SphericalHarmonics<Real>::MatFourierGrad(Long p0, Long p1){
- assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
- assert(MatrixStore().Mdf_.size() == SCTL_SHMAXDEG*SCTL_SHMAXDEG);
- Matrix<Real>& Mdf=MatrixStore().Mdf_[p0*SCTL_SHMAXDEG+p1];
- if(!Mdf.Dim(0)){
- const Real SQRT2PI=sqrt(2*M_PI);
- { // Set Mdf_
- Matrix<Real> M(2*p0,2*p1);
- for(Long j=0;j<2*p1;j++){
- M[0][j]=SQRT2PI*0.0;
- for(Long k=1;k<p0;k++){
- M[2*k-1][j]=-SQRT2PI*k*sin(j*k*M_PI/p1);
- M[2*k-0][j]= SQRT2PI*k*cos(j*k*M_PI/p1);
- }
- M[2*p0-1][j]=-SQRT2PI*p0*sin(j*p0*M_PI/p1);
- }
- Mdf=M;
- }
- }
- return Mdf;
- }
- template <class Real> std::vector<Matrix<Real>>& SphericalHarmonics<Real>::MatLegendre(Long p0, Long p1){
- assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
- assert(MatrixStore().Ml_ .size() == SCTL_SHMAXDEG*SCTL_SHMAXDEG);
- std::vector<Matrix<Real>>& Ml =MatrixStore().Ml_ [p0*SCTL_SHMAXDEG+p1];
- if(!Ml.size()){
- Vector<Real> qx1(p1+1);
- Vector<Real> qw1(p1+1);
- cgqf(p1+1, 1, 0.0, 0.0, -1.0, 1.0, &qx1[0], &qw1[0]);
- { // Set Ml
- Vector<Real> alp(qx1.Dim()*(p0+1)*(p0+2)/2);
- LegPoly(&alp[0], &qx1[0], qx1.Dim(), p0);
- Ml.resize(p0+1);
- auto ptr = alp.begin();
- for(Long i=0;i<=p0;i++){
- Ml[i].ReInit(p0+1-i, qx1.Dim(), ptr);
- ptr+=Ml[i].Dim(0)*Ml[i].Dim(1);
- }
- }
- }
- return Ml;
- }
- template <class Real> std::vector<Matrix<Real>>& SphericalHarmonics<Real>::MatLegendreInv(Long p0, Long p1){
- assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
- assert(MatrixStore().Mlinv_ .size() == SCTL_SHMAXDEG*SCTL_SHMAXDEG);
- std::vector<Matrix<Real>>& Ml =MatrixStore().Mlinv_ [p0*SCTL_SHMAXDEG+p1];
- if(!Ml.size()){
- Vector<Real> qx1(p0+1);
- Vector<Real> qw1(p0+1);
- cgqf(p0+1, 1, 0.0, 0.0, -1.0, 1.0, &qx1[0], &qw1[0]);
- { // Set Ml
- Vector<Real> alp(qx1.Dim()*(p1+1)*(p1+2)/2);
- LegPoly(&alp[0], &qx1[0], qx1.Dim(), p1);
- Ml.resize(p1+1);
- auto ptr = alp.begin();
- for(Long i=0;i<=p1;i++){
- Ml[i].ReInit(qx1.Dim(), p1+1-i);
- Matrix<Real> M(p1+1-i, qx1.Dim(), ptr, false);
- for(Long j=0;j<p1+1-i;j++){ // Transpose and weights
- for(Long k=0;k<qx1.Dim();k++){
- Ml[i][k][j]=M[j][k]*qw1[k]*2*M_PI;
- }
- }
- ptr+=Ml[i].Dim(0)*Ml[i].Dim(1);
- }
- }
- }
- return Ml;
- }
- template <class Real> std::vector<Matrix<Real>>& SphericalHarmonics<Real>::MatLegendreGrad(Long p0, Long p1){
- assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
- assert(MatrixStore().Mdl_.size() == SCTL_SHMAXDEG*SCTL_SHMAXDEG);
- std::vector<Matrix<Real>>& Mdl=MatrixStore().Mdl_[p0*SCTL_SHMAXDEG+p1];
- if(!Mdl.size()){
- Vector<Real> qx1(p1+1);
- Vector<Real> qw1(p1+1);
- cgqf(p1+1, 1, 0.0, 0.0, -1.0, 1.0, &qx1[0], &qw1[0]);
- { // Set Mdl
- Vector<Real> alp(qx1.Dim()*(p0+1)*(p0+2)/2);
- LegPolyDeriv(&alp[0], &qx1[0], qx1.Dim(), p0);
- Mdl.resize(p0+1);
- auto ptr = alp.begin();
- for(Long i=0;i<=p0;i++){
- Mdl[i].ReInit(p0+1-i, qx1.Dim(), ptr);
- ptr+=Mdl[i].Dim(0)*Mdl[i].Dim(1);
- }
- }
- }
- return Mdl;
- }
- template <class Real> std::vector<Matrix<Real>>& SphericalHarmonics<Real>::MatRotate(Long p0){
- std::vector<std::vector<Long>> coeff_perm(p0+1);
- { // Set coeff_perm
- for(Long n=0;n<=p0;n++) coeff_perm[n].resize(std::min(2*n+1,2*p0));
- Long itr=0;
- for(Long i=0;i<2*p0;i++){
- Long m=(i+1)/2;
- for(Long n=m;n<=p0;n++){
- coeff_perm[n][i]=itr;
- itr++;
- }
- }
- }
- assert(p0<SCTL_SHMAXDEG);
- assert(MatrixStore().Mr_.size() == SCTL_SHMAXDEG);
- std::vector<Matrix<Real>>& Mr=MatrixStore().Mr_[p0];
- if(!Mr.size()){
- const Real SQRT2PI=sqrt(2*M_PI);
- Long Ncoef=p0*(p0+2);
- Long Ngrid=2*p0*(p0+1);
- Long Naleg=(p0+1)*(p0+2)/2;
- Matrix<Real> Mcoord0(3,Ngrid);
- Vector<Real>& x=LegendreNodes(p0);
- for(Long i=0;i<p0+1;i++){ // Set Mcoord0
- for(Long j=0;j<2*p0;j++){
- Mcoord0[0][i*2*p0+j]=x[i];
- Mcoord0[1][i*2*p0+j]=sqrt(1-x[i]*x[i])*sin(M_PI*j/p0);
- Mcoord0[2][i*2*p0+j]=sqrt(1-x[i]*x[i])*cos(M_PI*j/p0);
- }
- }
- for(Long l=0;l<p0+1;l++){ // For each rotation angle
- Matrix<Real> Mcoord1;
- { // Rotate coordinates
- Matrix<Real> M(COORD_DIM, COORD_DIM);
- Real cos_=-x[l];
- Real sin_=-sqrt(1.0-x[l]*x[l]);
- M[0][0]= cos_; M[0][1]=0; M[0][2]=-sin_;
- M[1][0]= 0; M[1][1]=1; M[1][2]= 0;
- M[2][0]= sin_; M[2][1]=0; M[2][2]= cos_;
- Mcoord1=M*Mcoord0;
- }
- Matrix<Real> Mleg(Naleg, Ngrid);
- { // Set Mleg
- LegPoly(&Mleg[0][0], &Mcoord1[0][0], Ngrid, p0);
- }
- Vector<Real> theta(Ngrid);
- for(Long i=0;i<theta.Dim();i++){ // Set theta
- theta[i]=atan2(Mcoord1[1][i],Mcoord1[2][i]);
- }
- Matrix<Real> Mcoef2grid(Ncoef, Ngrid);
- { // Build Mcoef2grid
- Long offset0=0;
- Long offset1=0;
- for(Long i=0;i<p0+1;i++){
- Long len=p0+1-i;
- { // P * cos
- for(Long j=0;j<len;j++){
- for(Long k=0;k<Ngrid;k++){
- Mcoef2grid[offset1+j][k]=SQRT2PI*Mleg[offset0+j][k]*cos(i*theta[k]);
- }
- }
- offset1+=len;
- }
- if(i!=0 && i!=p0){ // P * sin
- for(Long j=0;j<len;j++){
- for(Long k=0;k<Ngrid;k++){
- Mcoef2grid[offset1+j][k]=SQRT2PI*Mleg[offset0+j][k]*sin(i*theta[k]);
- }
- }
- offset1+=len;
- }
- offset0+=len;
- }
- assert(offset0==Naleg);
- assert(offset1==Ncoef);
- }
- Vector<Real> Vcoef2coef(Ncoef*Ncoef);
- Vector<Real> Vcoef2grid(Ncoef*Ngrid, Mcoef2grid[0], false);
- Grid2SHC(Vcoef2grid, p0, p0, Vcoef2coef);
- Matrix<Real> Mcoef2coef(Ncoef, Ncoef, Vcoef2coef.begin(), false);
- for(Long n=0;n<=p0;n++){ // Create matrices for fast rotation
- Matrix<Real> M(coeff_perm[n].size(),coeff_perm[n].size());
- for(Long i=0;i<(Long)coeff_perm[n].size();i++){
- for(Long j=0;j<(Long)coeff_perm[n].size();j++){
- M[i][j]=Mcoef2coef[coeff_perm[n][i]][coeff_perm[n][j]];
- }
- }
- Mr.push_back(M);
- }
- }
- }
- return Mr;
- }
- template <class Real> void SphericalHarmonics<Real>::StokesSingularInteg(const Vector<Real>& S, Long p0, Long p1, Vector<Real>* SLMatrix, Vector<Real>* DLMatrix){
- Long Ngrid=2*p0*(p0+1);
- Long Ncoef= p0*(p0+2);
- Long Nves=S.Dim()/(Ngrid*COORD_DIM);
- if(SLMatrix) SLMatrix->ReInit(Nves*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM));
- if(DLMatrix) DLMatrix->ReInit(Nves*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM));
- Long BLOCK_SIZE=(Long)6e9/((3*2*p1*(p1+1))*(3*2*p0*(p0+1))*2*8); // Limit memory usage to 6GB
- BLOCK_SIZE=std::min<Long>(BLOCK_SIZE,omp_get_max_threads());
- BLOCK_SIZE=std::max<Long>(BLOCK_SIZE,1);
- for(Long a=0;a<Nves;a+=BLOCK_SIZE){
- Long b=std::min(a+BLOCK_SIZE, Nves);
- Vector<Real> _SLMatrix, _DLMatrix, _S;
- if(SLMatrix) _SLMatrix.ReInit((b-a)*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM), SLMatrix->begin()+a*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM), false);
- if(DLMatrix) _DLMatrix.ReInit((b-a)*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM), DLMatrix->begin()+a*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM), false);
- _S .ReInit((b-a)*(Ngrid*COORD_DIM) , (Iterator<Real>)S.begin()+a*(Ngrid*COORD_DIM), false);
- if(SLMatrix && DLMatrix) StokesSingularInteg_< true, true>(_S, p0, p1, _SLMatrix, _DLMatrix);
- else if(SLMatrix) StokesSingularInteg_< true, false>(_S, p0, p1, _SLMatrix, _DLMatrix);
- else if(DLMatrix) StokesSingularInteg_<false, true>(_S, p0, p1, _SLMatrix, _DLMatrix);
- }
- }
- template <class Real> void SphericalHarmonics<Real>::LegPoly(Real* poly_val, const Real* X, Long N, Long degree){
- Real* p_val=poly_val;
- Real fact=1.0/(Real)sqrt(4*M_PI);
- std::vector<Real> u(N);
- for(Long n=0;n<N;n++){
- u[n]=sqrt(1-X[n]*X[n]);
- if(X[n]*X[n]>1.0) u[n]=0;
- p_val[n]=fact;
- }
- Real* p_val_nxt=poly_val;
- for(Long i=1;i<=degree;i++){
- p_val_nxt=&p_val_nxt[N*(degree-i+2)];
- Real c=(i==1?sqrt(3.0/2.0):1);
- if(i>1)c*=sqrt((Real)(2*i+1)/(2*i));
- for(Long n=0;n<N;n++){
- p_val_nxt[n]=-p_val[n]*u[n]*c;
- }
- p_val=p_val_nxt;
- }
- p_val=poly_val;
- for(Long m=0;m<degree;m++){
- for(Long n=0;n<N;n++){
- Real pmm=0;
- Real pmmp1=p_val[n];
- Real pll;
- for(Long ll=m+1;ll<=degree;ll++){
- Real a=sqrt(((Real)(2*ll-1)*(2*ll+1))/((ll-m)*(ll+m)));
- Real b=sqrt(((Real)(2*ll+1)*(ll+m-1)*(ll-m-1))/((ll-m)*(ll+m)*(2*ll-3)));
- pll=X[n]*a*pmmp1-b*pmm;
- pmm=pmmp1;
- pmmp1=pll;
- p_val[N*(ll-m)+n]=pll;
- }
- }
- p_val=&p_val[N*(degree-m+1)];
- }
- }
- template <class Real> void SphericalHarmonics<Real>::LegPolyDeriv(Real* poly_val, const Real* X, Long N, Long degree){
- std::vector<Real> leg_poly((degree+1)*(degree+2)*N/2);
- LegPoly(&leg_poly[0], X, N, degree);
- for(Long m=0;m<=degree;m++){
- for(Long n=0;n<=degree;n++) if(m<=n){
- const Real* Pn =&leg_poly[0];
- const Real* Pn_=&leg_poly[0];
- if((m+0)<=(n+0)) Pn =&leg_poly[N*(((degree*2-abs(m+0)+1)*abs(m+0))/2+(n+0))];
- if((m+1)<=(n+0)) Pn_=&leg_poly[N*(((degree*2-abs(m+1)+1)*abs(m+1))/2+(n+0))];
- Real* Hn =&poly_val[N*(((degree*2-abs(m+0)+1)*abs(m+0))/2+(n+0))];
- Real c1=(abs(m+0)<=(n+0)?1.0:0)*m;
- Real c2=(abs(m+1)<=(n+0)?1.0:0)*sqrt(n+m+1)*sqrt(n>m?n-m:1);
- for(Long i=0;i<N;i++){
- Hn[i]=-(c1*X[i]*Pn[i]+c2*sqrt(1-X[i]*X[i])*Pn_[i])/sqrt(1-X[i]*X[i]);
- }
- }
- }
- }
- template <class Real> template <bool SLayer, bool DLayer> void SphericalHarmonics<Real>::StokesSingularInteg_(const Vector<Real>& X0, Long p0, Long p1, Vector<Real>& SL, Vector<Real>& DL){
- Profile::Tic("Rotate");
- static Vector<Real> S0, S;
- SphericalHarmonics<Real>::Grid2SHC(X0, p0, p0, S0);
- SphericalHarmonics<Real>::RotateAll(S0, p0, COORD_DIM, S);
- Profile::Toc();
- Profile::Tic("Upsample");
- Vector<Real> X, X_phi, X_theta, trg;
- SphericalHarmonics<Real>::SHC2Grid(S, p0, p1, X, &X_theta, &X_phi);
- SphericalHarmonics<Real>::SHC2Pole(S, p0, trg);
- Profile::Toc();
- Profile::Tic("Stokes");
- Vector<Real> SL0, DL0;
- { // Stokes kernel
- //Long M0=2*p0*(p0+1);
- Long M1=2*p1*(p1+1);
- Long N=trg.Dim()/(2*COORD_DIM);
- assert(X.Dim()==M1*COORD_DIM*N);
- if(SLayer && SL0.Dim()!=N*2*6*M1) SL0.ReInit(2*N*6*M1);
- if(DLayer && DL0.Dim()!=N*2*6*M1) DL0.ReInit(2*N*6*M1);
- Vector<Real>& qw=SphericalHarmonics<Real>::SingularWeights(p1);
- const Real scal_const_dl = 3.0/(4.0*M_PI);
- const Real scal_const_sl = 1.0/(8.0*M_PI);
- static Real eps=-1;
- if(eps<0){
- eps=1;
- while(eps*(Real)0.5+(Real)1.0>1.0) eps*=0.5;
- }
- #pragma omp parallel
- {
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for(Long i=a;i<b;i++){
- for(Long t=0;t<2;t++){
- Real tx, ty, tz;
- { // Read target coordinates
- tx=trg[i*2*COORD_DIM+0*2+t];
- ty=trg[i*2*COORD_DIM+1*2+t];
- tz=trg[i*2*COORD_DIM+2*2+t];
- }
- for(Long j0=0;j0<p1+1;j0++){
- for(Long j1=0;j1<2*p1;j1++){
- Long s=2*p1*j0+j1;
- Real dx, dy, dz;
- { // Compute dx, dy, dz
- dx=tx-X[(i*COORD_DIM+0)*M1+s];
- dy=ty-X[(i*COORD_DIM+1)*M1+s];
- dz=tz-X[(i*COORD_DIM+2)*M1+s];
- }
- Real nx, ny, nz;
- { // Compute source normal
- Real x_theta=X_theta[(i*COORD_DIM+0)*M1+s];
- Real y_theta=X_theta[(i*COORD_DIM+1)*M1+s];
- Real z_theta=X_theta[(i*COORD_DIM+2)*M1+s];
- Real x_phi=X_phi[(i*COORD_DIM+0)*M1+s];
- Real y_phi=X_phi[(i*COORD_DIM+1)*M1+s];
- Real z_phi=X_phi[(i*COORD_DIM+2)*M1+s];
- nx=(y_theta*z_phi-z_theta*y_phi);
- ny=(z_theta*x_phi-x_theta*z_phi);
- nz=(x_theta*y_phi-y_theta*x_phi);
- }
- Real area_elem=1.0;
- if(SLayer){ // Compute area_elem
- area_elem=sqrt(nx*nx+ny*ny+nz*nz);
- }
- Real rinv, rinv2;
- { // Compute rinv, rinv2
- Real r2=dx*dx+dy*dy+dz*dz;
- rinv=1.0/sqrt(r2);
- if(r2<=eps) rinv=0;
- rinv2=rinv*rinv;
- }
- if(DLayer){
- Real rinv5=rinv2*rinv2*rinv;
- Real r_dot_n_rinv5=scal_const_dl*qw[j0*t+(p1-j0)*(1-t)] * (nx*dx+ny*dy+nz*dz)*rinv5;
- DL0[((i*2+t)*6+0)*M1+s]=dx*dx*r_dot_n_rinv5;
- DL0[((i*2+t)*6+1)*M1+s]=dx*dy*r_dot_n_rinv5;
- DL0[((i*2+t)*6+2)*M1+s]=dx*dz*r_dot_n_rinv5;
- DL0[((i*2+t)*6+3)*M1+s]=dy*dy*r_dot_n_rinv5;
- DL0[((i*2+t)*6+4)*M1+s]=dy*dz*r_dot_n_rinv5;
- DL0[((i*2+t)*6+5)*M1+s]=dz*dz*r_dot_n_rinv5;
- }
- if(SLayer){
- Real area_rinv =scal_const_sl*qw[j0*t+(p1-j0)*(1-t)] * area_elem*rinv;
- Real area_rinv2=area_rinv*rinv2;
- SL0[((i*2+t)*6+0)*M1+s]=area_rinv+dx*dx*area_rinv2;
- SL0[((i*2+t)*6+1)*M1+s]= dx*dy*area_rinv2;
- SL0[((i*2+t)*6+2)*M1+s]= dx*dz*area_rinv2;
- SL0[((i*2+t)*6+3)*M1+s]=area_rinv+dy*dy*area_rinv2;
- SL0[((i*2+t)*6+4)*M1+s]= dy*dz*area_rinv2;
- SL0[((i*2+t)*6+5)*M1+s]=area_rinv+dz*dz*area_rinv2;
- }
- }
- }
- }
- }
- }
- Profile::Add_FLOP(20*(2*p1)*(p1+1)*2*N);
- if(SLayer) Profile::Add_FLOP((19+6)*(2*p1)*(p1+1)*2*N);
- if(DLayer) Profile::Add_FLOP( 22 *(2*p1)*(p1+1)*2*N);
- }
- Profile::Toc();
- Profile::Tic("UpsampleTranspose");
- static Vector<Real> SL1, DL1;
- SphericalHarmonics<Real>::SHC2GridTranspose(SL0, p1, p0, SL1);
- SphericalHarmonics<Real>::SHC2GridTranspose(DL0, p1, p0, DL1);
- Profile::Toc();
- Profile::Tic("RotateTranspose");
- static Vector<Real> SL2, DL2;
- SphericalHarmonics<Real>::RotateTranspose(SL1, p0, 2*6, SL2);
- SphericalHarmonics<Real>::RotateTranspose(DL1, p0, 2*6, DL2);
- Profile::Toc();
- Profile::Tic("Rearrange");
- static Vector<Real> SL3, DL3;
- { // Transpose
- Long Ncoef=p0*(p0+2);
- Long Ngrid=2*p0*(p0+1);
- { // Transpose SL2
- Long N=SL2.Dim()/(6*Ncoef*Ngrid);
- SL3.ReInit(N*COORD_DIM*Ncoef*COORD_DIM*Ngrid);
- #pragma omp parallel
- {
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Matrix<Real> B(COORD_DIM*Ncoef,Ngrid*COORD_DIM);
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for(Long i=a;i<b;i++){
- Matrix<Real> M0(Ngrid*6, Ncoef, SL2.begin()+i*Ngrid*6*Ncoef, false);
- for(Long k=0;k<Ncoef;k++){ // Transpose
- for(Long j=0;j<Ngrid;j++){ // TODO: needs blocking
- B[k+Ncoef*0][j*COORD_DIM+0]=M0[j*6+0][k];
- B[k+Ncoef*1][j*COORD_DIM+0]=M0[j*6+1][k];
- B[k+Ncoef*2][j*COORD_DIM+0]=M0[j*6+2][k];
- B[k+Ncoef*0][j*COORD_DIM+1]=M0[j*6+1][k];
- B[k+Ncoef*1][j*COORD_DIM+1]=M0[j*6+3][k];
- B[k+Ncoef*2][j*COORD_DIM+1]=M0[j*6+4][k];
- B[k+Ncoef*0][j*COORD_DIM+2]=M0[j*6+2][k];
- B[k+Ncoef*1][j*COORD_DIM+2]=M0[j*6+4][k];
- B[k+Ncoef*2][j*COORD_DIM+2]=M0[j*6+5][k];
- }
- }
- Matrix<Real> M1(Ncoef*COORD_DIM, COORD_DIM*Ngrid, SL3.begin()+i*COORD_DIM*Ncoef*COORD_DIM*Ngrid, false);
- for(Long k=0;k<B.Dim(0);k++){ // Rearrange
- for(Long j0=0;j0<COORD_DIM;j0++){
- for(Long j1=0;j1<p0+1;j1++){
- for(Long j2=0;j2<p0;j2++) M1[k][((j0*(p0+1)+ j1)*2+0)*p0+j2]=B[k][((j1*p0+j2)*2+0)*COORD_DIM+j0];
- for(Long j2=0;j2<p0;j2++) M1[k][((j0*(p0+1)+p0-j1)*2+1)*p0+j2]=B[k][((j1*p0+j2)*2+1)*COORD_DIM+j0];
- }
- }
- }
- }
- }
- }
- { // Transpose DL2
- Long N=DL2.Dim()/(6*Ncoef*Ngrid);
- DL3.ReInit(N*COORD_DIM*Ncoef*COORD_DIM*Ngrid);
- #pragma omp parallel
- {
- Integer tid=omp_get_thread_num();
- Integer omp_p=omp_get_num_threads();
- Matrix<Real> B(COORD_DIM*Ncoef,Ngrid*COORD_DIM);
- Long a=(tid+0)*N/omp_p;
- Long b=(tid+1)*N/omp_p;
- for(Long i=a;i<b;i++){
- Matrix<Real> M0(Ngrid*6, Ncoef, DL2.begin()+i*Ngrid*6*Ncoef, false);
- for(Long k=0;k<Ncoef;k++){ // Transpose
- for(Long j=0;j<Ngrid;j++){ // TODO: needs blocking
- B[k+Ncoef*0][j*COORD_DIM+0]=M0[j*6+0][k];
- B[k+Ncoef*1][j*COORD_DIM+0]=M0[j*6+1][k];
- B[k+Ncoef*2][j*COORD_DIM+0]=M0[j*6+2][k];
- B[k+Ncoef*0][j*COORD_DIM+1]=M0[j*6+1][k];
- B[k+Ncoef*1][j*COORD_DIM+1]=M0[j*6+3][k];
- B[k+Ncoef*2][j*COORD_DIM+1]=M0[j*6+4][k];
- B[k+Ncoef*0][j*COORD_DIM+2]=M0[j*6+2][k];
- B[k+Ncoef*1][j*COORD_DIM+2]=M0[j*6+4][k];
- B[k+Ncoef*2][j*COORD_DIM+2]=M0[j*6+5][k];
- }
- }
- Matrix<Real> M1(Ncoef*COORD_DIM, COORD_DIM*Ngrid, DL3.begin()+i*COORD_DIM*Ncoef*COORD_DIM*Ngrid, false);
- for(Long k=0;k<B.Dim(0);k++){ // Rearrange
- for(Long j0=0;j0<COORD_DIM;j0++){
- for(Long j1=0;j1<p0+1;j1++){
- for(Long j2=0;j2<p0;j2++) M1[k][((j0*(p0+1)+ j1)*2+0)*p0+j2]=B[k][((j1*p0+j2)*2+0)*COORD_DIM+j0];
- for(Long j2=0;j2<p0;j2++) M1[k][((j0*(p0+1)+p0-j1)*2+1)*p0+j2]=B[k][((j1*p0+j2)*2+1)*COORD_DIM+j0];
- }
- }
- }
- }
- }
- }
- }
- Profile::Toc();
- Profile::Tic("Grid2SHC");
- SphericalHarmonics<Real>::Grid2SHC(SL3, p0, p0, SL);
- SphericalHarmonics<Real>::Grid2SHC(DL3, p0, p0, DL);
- Profile::Toc();
- }
- template <class Real> void SphericalHarmonics<Real>::WriteVTK(const char* fname, long p0, long p1, Real period, const Vector<Real>* S, const Vector<Real>* v_ptr, MPI_Comm comm){
- typedef double VTKReal;
- Vector<Real> SS;
- if (S == nullptr) {
- Integer p = 2;
- Integer Ncoeff = p * (p + 2);
- Vector<Real> SSS(COORD_DIM * Ncoeff);
- SSS.SetZero();
- SSS[1+0*p+0*Ncoeff] = sqrt<Real>(2.0)/sqrt<Real>(3.0);
- SSS[1+1*p+1*Ncoeff] = 2/sqrt<Real>(3.0);
- SSS[1+2*p+2*Ncoeff] = 2/sqrt<Real>(3.0);
- SphericalHarmonics<Real>::SHC2Grid(SSS, p, p0, SS);
- S = &SS;
- }
- Vector<Real> X, Xp, V, Vp;
- { // Upsample X
- const Vector<Real>& X0=*S;
- Vector<Real> X1;
- SphericalHarmonics<Real>::Grid2SHC(X0, p0, p0, X1);
- SphericalHarmonics<Real>::SHC2Grid(X1, p0, p1, X);
- SphericalHarmonics<Real>::SHC2Pole(X1, p0, Xp);
- }
- if(v_ptr){ // Upsample V
- const Vector<Real>& X0=*v_ptr;
- Vector<Real> X1;
- SphericalHarmonics<Real>::Grid2SHC(X0, p0, p0, X1);
- SphericalHarmonics<Real>::SHC2Grid(X1, p0, p1, V );
- SphericalHarmonics<Real>::SHC2Pole(X1, p0, Vp);
- }
- std::vector<VTKReal> point_coord;
- std::vector<VTKReal> point_value;
- std::vector<int32_t> poly_connect;
- std::vector<int32_t> poly_offset;
- { // Set point_coord, point_value, poly_connect
- Long N_ves = X.Dim()/(2*p1*(p1+1)*COORD_DIM); // Number of vesicles
- assert(Xp.Dim() == N_ves*2*COORD_DIM);
- for(Long k=0;k<N_ves;k++){ // Set point_coord
- Real C[COORD_DIM]={0,0,0};
- if(period>0){
- for(Integer l=0;l<COORD_DIM;l++) C[l]=0;
- for(Long i=0;i<p1+1;i++){
- for(Long j=0;j<2*p1;j++){
- for(Integer l=0;l<COORD_DIM;l++){
- C[l]+=X[j+2*p1*(i+(p1+1)*(l+k*COORD_DIM))];
- }
- }
- }
- for(Integer l=0;l<COORD_DIM;l++) C[l]+=Xp[0+2*(l+k*COORD_DIM)];
- for(Integer l=0;l<COORD_DIM;l++) C[l]+=Xp[1+2*(l+k*COORD_DIM)];
- for(Integer l=0;l<COORD_DIM;l++) C[l]/=2*p1*(p1+1)+2;
- for(Integer l=0;l<COORD_DIM;l++) C[l]=(round(C[l]/period))*period;
- }
- for(Long i=0;i<p1+1;i++){
- for(Long j=0;j<2*p1;j++){
- for(Integer l=0;l<COORD_DIM;l++){
- point_coord.push_back(X[j+2*p1*(i+(p1+1)*(l+k*COORD_DIM))]-C[l]);
- }
- }
- }
- for(Integer l=0;l<COORD_DIM;l++) point_coord.push_back(Xp[0+2*(l+k*COORD_DIM)]-C[l]);
- for(Integer l=0;l<COORD_DIM;l++) point_coord.push_back(Xp[1+2*(l+k*COORD_DIM)]-C[l]);
- }
- if(v_ptr) {
- Long data__dof = V.Dim() / (2*p1*(p1+1));
- for(Long k=0;k<N_ves;k++){ // Set point_value
- for(Long i=0;i<p1+1;i++){
- for(Long j=0;j<2*p1;j++){
- for(Long l=0;l<data__dof;l++){
- point_value.push_back(V[j+2*p1*(i+(p1+1)*(l+k*data__dof))]);
- }
- }
- }
- for(Long l=0;l<data__dof;l++) point_value.push_back(Vp[0+2*(l+k*data__dof)]);
- for(Long l=0;l<data__dof;l++) point_value.push_back(Vp[1+2*(l+k*data__dof)]);
- }
- }
- for(Long k=0;k<N_ves;k++){
- for(Long j=0;j<2*p1;j++){
- Long i0= 0;
- Long i1=p1;
- Long j0=((j+0) );
- Long j1=((j+1)%(2*p1));
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*(p1+1)+0);
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i0+j0);
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i0+j1);
- poly_offset.push_back(poly_connect.size());
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*(p1+1)+1);
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i1+j0);
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i1+j1);
- poly_offset.push_back(poly_connect.size());
- }
- for(Long i=0;i<p1;i++){
- for(Long j=0;j<2*p1;j++){
- Long i0=((i+0) );
- Long i1=((i+1) );
- Long j0=((j+0) );
- Long j1=((j+1)%(2*p1));
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i0+j0);
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i1+j0);
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i1+j1);
- poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i0+j1);
- poly_offset.push_back(poly_connect.size());
- }
- }
- }
- }
- int myrank, np;
- MPI_Comm_size(comm,&np);
- MPI_Comm_rank(comm,&myrank);
- std::vector<VTKReal>& coord=point_coord;
- std::vector<VTKReal>& value=point_value;
- std::vector<int32_t>& connect=poly_connect;
- std::vector<int32_t>& offset=poly_offset;
- Long pt_cnt=coord.size()/COORD_DIM;
- Long poly_cnt=poly_offset.size();
- // Open file for writing.
- std::stringstream vtufname;
- vtufname<<fname<<"_"<<std::setfill('0')<<std::setw(6)<<myrank<<".vtp";
- std::ofstream vtufile;
- vtufile.open(vtufname.str().c_str());
- if(vtufile.fail()) return;
- bool isLittleEndian;
- { // Set isLittleEndian
- uint16_t number = 0x1;
- uint8_t *numPtr = (uint8_t*)&number;
- isLittleEndian=(numPtr[0] == 1);
- }
- // Proceed to write to file.
- Long data_size=0;
- vtufile<<"<?xml version=\"1.0\"?>\n";
- if(isLittleEndian) vtufile<<"<VTKFile type=\"PolyData\" version=\"0.1\" byte_order=\"LittleEndian\">\n";
- else vtufile<<"<VTKFile type=\"PolyData\" version=\"0.1\" byte_order=\"BigEndian\">\n";
- //===========================================================================
- vtufile<<" <PolyData>\n";
- vtufile<<" <Piece NumberOfPoints=\""<<pt_cnt<<"\" NumberOfVerts=\"0\" NumberOfLines=\"0\" NumberOfStrips=\"0\" NumberOfPolys=\""<<poly_cnt<<"\">\n";
- //---------------------------------------------------------------------------
- vtufile<<" <Points>\n";
- vtufile<<" <DataArray type=\"Float"<<sizeof(VTKReal)*8<<"\" NumberOfComponents=\""<<COORD_DIM<<"\" Name=\"Position\" format=\"appended\" offset=\""<<data_size<<"\" />\n";
- data_size+=sizeof(uint32_t)+coord.size()*sizeof(VTKReal);
- vtufile<<" </Points>\n";
- //---------------------------------------------------------------------------
- if(value.size()){ // value
- vtufile<<" <PointData>\n";
- vtufile<<" <DataArray type=\"Float"<<sizeof(VTKReal)*8<<"\" NumberOfComponents=\""<<value.size()/pt_cnt<<"\" Name=\""<<"value"<<"\" format=\"appended\" offset=\""<<data_size<<"\" />\n";
- data_size+=sizeof(uint32_t)+value.size()*sizeof(VTKReal);
- vtufile<<" </PointData>\n";
- }
- //---------------------------------------------------------------------------
- vtufile<<" <Polys>\n";
- vtufile<<" <DataArray type=\"Int32\" Name=\"connectivity\" format=\"appended\" offset=\""<<data_size<<"\" />\n";
- data_size+=sizeof(uint32_t)+connect.size()*sizeof(int32_t);
- vtufile<<" <DataArray type=\"Int32\" Name=\"offsets\" format=\"appended\" offset=\""<<data_size<<"\" />\n";
- data_size+=sizeof(uint32_t)+offset.size() *sizeof(int32_t);
- vtufile<<" </Polys>\n";
- //---------------------------------------------------------------------------
- vtufile<<" </Piece>\n";
- vtufile<<" </PolyData>\n";
- //===========================================================================
- vtufile<<" <AppendedData encoding=\"raw\">\n";
- vtufile<<" _";
- int32_t block_size;
- block_size=coord.size()*sizeof(VTKReal); vtufile.write((char*)&block_size, sizeof(int32_t)); vtufile.write((char*)&coord [0], coord.size()*sizeof(VTKReal));
- if(value.size()){ // value
- block_size=value.size()*sizeof(VTKReal); vtufile.write((char*)&block_size, sizeof(int32_t)); vtufile.write((char*)&value [0], value.size()*sizeof(VTKReal));
- }
- block_size=connect.size()*sizeof(int32_t); vtufile.write((char*)&block_size, sizeof(int32_t)); vtufile.write((char*)&connect[0], connect.size()*sizeof(int32_t));
- block_size=offset .size()*sizeof(int32_t); vtufile.write((char*)&block_size, sizeof(int32_t)); vtufile.write((char*)&offset [0], offset .size()*sizeof(int32_t));
- vtufile<<"\n";
- vtufile<<" </AppendedData>\n";
- //===========================================================================
- vtufile<<"</VTKFile>\n";
- vtufile.close();
- if(myrank) return;
- std::stringstream pvtufname;
- pvtufname<<fname<<".pvtp";
- std::ofstream pvtufile;
- pvtufile.open(pvtufname.str().c_str());
- if(pvtufile.fail()) return;
- pvtufile<<"<?xml version=\"1.0\"?>\n";
- pvtufile<<"<VTKFile type=\"PPolyData\">\n";
- pvtufile<<" <PPolyData GhostLevel=\"0\">\n";
- pvtufile<<" <PPoints>\n";
- pvtufile<<" <PDataArray type=\"Float"<<sizeof(VTKReal)*8<<"\" NumberOfComponents=\""<<COORD_DIM<<"\" Name=\"Position\"/>\n";
- pvtufile<<" </PPoints>\n";
- if(value.size()){ // value
- pvtufile<<" <PPointData>\n";
- pvtufile<<" <PDataArray type=\"Float"<<sizeof(VTKReal)*8<<"\" NumberOfComponents=\""<<value.size()/pt_cnt<<"\" Name=\""<<"value"<<"\"/>\n";
- pvtufile<<" </PPointData>\n";
- }
- {
- // Extract filename from path.
- std::stringstream vtupath;
- vtupath<<'/'<<fname;
- std::string pathname = vtupath.str();
- auto found = pathname.find_last_of("/\\");
- std::string fname_ = pathname.substr(found+1);
- for(Integer i=0;i<np;i++) pvtufile<<" <Piece Source=\""<<fname_<<"_"<<std::setfill('0')<<std::setw(6)<<i<<".vtp\"/>\n";
- }
- pvtufile<<" </PPolyData>\n";
- pvtufile<<"</VTKFile>\n";
- pvtufile.close();
- }
- } // end namespace
|