boundary_quadrature.hpp 297 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142
  1. #ifndef _SCTL_BOUNDARY_QUADRATURE_HPP_
  2. #define _SCTL_BOUNDARY_QUADRATURE_HPP_
  3. #include SCTL_INCLUDE(tree.hpp)
  4. #include SCTL_INCLUDE(tensor.hpp)
  5. #include SCTL_INCLUDE(morton.hpp)
  6. #include SCTL_INCLUDE(matrix.hpp)
  7. #include SCTL_INCLUDE(vector.hpp)
  8. #include SCTL_INCLUDE(common.hpp)
  9. #include SCTL_INCLUDE(cheb_utils.hpp)
  10. #include SCTL_INCLUDE(kernel_functions.hpp)
  11. #include <biest.hpp>
  12. #include <mutex>
  13. #include <atomic>
  14. #include <tuple>
  15. #include <functional>
  16. #include <Eigen/Core>
  17. #include <LBFGS.h>
  18. namespace SCTL_NAMESPACE {
  19. template <class Real, Integer DIM, Integer ORDER> class Basis {
  20. public:
  21. using ValueType = Real;
  22. // class EvalOperator {
  23. // public:
  24. // };
  25. using EvalOpType = Matrix<ValueType>;
  26. static constexpr Long Dim() {
  27. return DIM;
  28. }
  29. static constexpr Long Size() {
  30. return pow<DIM,Long>(ORDER);
  31. }
  32. static const Matrix<ValueType>& Nodes() {
  33. static Matrix<ValueType> nodes_(DIM,Size());
  34. auto nodes_1d = [](Integer i) {
  35. return 0.5 - 0.5 * cos<ValueType>((2*i+1) * const_pi<ValueType>() / (2*ORDER));
  36. };
  37. { // Set nodes_
  38. static std::mutex mutex;
  39. static std::atomic<Integer> first_time(true);
  40. if (first_time.load(std::memory_order_relaxed)) {
  41. std::lock_guard<std::mutex> guard(mutex);
  42. if (first_time.load(std::memory_order_relaxed)) {
  43. Integer N = 1;
  44. for (Integer d = 0; d < DIM; d++) {
  45. for (Integer j = 0; j < ORDER; j++) {
  46. for (Integer i = 0; i < N; i++) {
  47. for (Integer k = 0; k < d; k++) {
  48. nodes_[k][j*N+i] = nodes_[k][i];
  49. }
  50. nodes_[d][j*N+i] = nodes_1d(j);
  51. }
  52. }
  53. N *= ORDER;
  54. }
  55. std::atomic_thread_fence(std::memory_order_seq_cst);
  56. first_time.store(false);
  57. }
  58. }
  59. }
  60. return nodes_;
  61. }
  62. static const Vector<ValueType>& QuadWts() {
  63. static Vector<ValueType> wts(Size());
  64. { // Set nodes_
  65. static std::mutex mutex;
  66. static std::atomic<Integer> first_time(true);
  67. if (first_time.load(std::memory_order_relaxed)) {
  68. std::lock_guard<std::mutex> guard(mutex);
  69. if (first_time.load(std::memory_order_relaxed)) {
  70. StaticArray<ValueType,ORDER> wts_1d;
  71. { // Set wts_1d
  72. Vector<ValueType> x_(ORDER);
  73. ChebBasis<ValueType>::template Nodes<1>(ORDER, x_);
  74. Vector<ValueType> V_cheb(ORDER * ORDER);
  75. { // Set V_cheb
  76. Vector<ValueType> I(ORDER*ORDER);
  77. I = 0;
  78. for (Long i = 0; i < ORDER; i++) I[i*ORDER+i] = 1;
  79. ChebBasis<ValueType>::template Approx<1>(ORDER, I, V_cheb);
  80. }
  81. Matrix<ValueType> M(ORDER, ORDER, V_cheb.begin());
  82. Vector<ValueType> w_sample(ORDER);
  83. for (Integer i = 0; i < ORDER; i++) {
  84. w_sample[i] = (i % 2 ? 0 : -(ORDER/(ValueType)(i*i-1)));
  85. }
  86. for (Integer j = 0; j < ORDER; j++) {
  87. wts_1d[j] = 0;
  88. for (Integer i = 0; i < ORDER; i++) {
  89. wts_1d[j] += M[j][i] * w_sample[i] / ORDER;
  90. }
  91. }
  92. }
  93. wts[0] = 1;
  94. Integer N = 1;
  95. for (Integer d = 0; d < DIM; d++) {
  96. for (Integer j = 1; j < ORDER; j++) {
  97. for (Integer i = 0; i < N; i++) {
  98. wts[j*N+i] = wts[i] * wts_1d[j];
  99. }
  100. }
  101. for (Integer i = 0; i < N; i++) {
  102. wts[i] *= wts_1d[0];
  103. }
  104. N *= ORDER;
  105. }
  106. std::atomic_thread_fence(std::memory_order_seq_cst);
  107. first_time.store(false);
  108. }
  109. }
  110. }
  111. return wts;
  112. }
  113. static void Grad(Vector<Basis>& dX, const Vector<Basis>& X) {
  114. static Matrix<ValueType> GradOp[DIM];
  115. static std::mutex mutex;
  116. static std::atomic<Integer> first_time(true);
  117. if (first_time.load(std::memory_order_relaxed)) {
  118. std::lock_guard<std::mutex> guard(mutex);
  119. if (first_time.load(std::memory_order_relaxed)) {
  120. { // Set GradOp
  121. auto nodes = Basis<ValueType,1,ORDER>::Nodes();
  122. SCTL_ASSERT(nodes.Dim(1) == ORDER);
  123. Matrix<ValueType> M(ORDER, ORDER);
  124. for (Integer i = 0; i < ORDER; i++) { // Set M
  125. Real x = nodes[0][i];
  126. for (Integer j = 0; j < ORDER; j++) {
  127. M[j][i] = 0;
  128. for (Integer l = 0; l < ORDER; l++) {
  129. if (l != j) {
  130. Real M_ = 1;
  131. for (Integer k = 0; k < ORDER; k++) {
  132. if (k != j && k != l) M_ *= (x - nodes[0][k]);
  133. if (k != j) M_ /= (nodes[0][j] - nodes[0][k]);
  134. }
  135. M[j][i] += M_;
  136. }
  137. }
  138. }
  139. }
  140. for (Integer d = 0; d < DIM; d++) {
  141. GradOp[d].ReInit(Size(), Size());
  142. GradOp[d] = 0;
  143. Integer stride0 = pow<Integer>(ORDER, d);
  144. Integer repeat0 = pow<Integer>(ORDER, d);
  145. Integer stride1 = pow<Integer>(ORDER, d+1);
  146. Integer repeat1 = pow<Integer>(ORDER, DIM-d-1);
  147. for (Integer k1 = 0; k1 < repeat1; k1++) {
  148. for (Integer i = 0; i < ORDER; i++) {
  149. for (Integer j = 0; j < ORDER; j++) {
  150. for (Integer k0 = 0; k0 < repeat0; k0++) {
  151. GradOp[d][k1*stride1 + i*stride0 + k0][k1*stride1 + j*stride0 + k0] = M[i][j];
  152. }
  153. }
  154. }
  155. }
  156. }
  157. }
  158. std::atomic_thread_fence(std::memory_order_seq_cst);
  159. first_time.store(false);
  160. }
  161. }
  162. if (dX.Dim() != X.Dim()*DIM) dX.ReInit(X.Dim()*DIM);
  163. for (Long i = 0; i < X.Dim(); i++) {
  164. const Matrix<ValueType> Vi(1, Size(), (Iterator<ValueType>)(ConstIterator<ValueType>)X[i].NodeValues_, false);
  165. for (Integer k = 0; k < DIM; k++) {
  166. Matrix<ValueType> Vo(1, Size(), dX[i*DIM+k].NodeValues_, false);
  167. Matrix<ValueType>::GEMM(Vo, Vi, GradOp[k]);
  168. }
  169. }
  170. }
  171. static EvalOpType SetupEval(const Matrix<ValueType>& X) {
  172. Long N = X.Dim(1);
  173. SCTL_ASSERT(X.Dim(0) == DIM);
  174. Matrix<ValueType> M(Size(), N);
  175. { // Set M
  176. auto nodes = Basis<ValueType,1,ORDER>::Nodes();
  177. Integer NN = Basis<ValueType,1,ORDER>::Size();
  178. Matrix<ValueType> M_(NN, DIM*N);
  179. for (Long i = 0; i < DIM*N; i++) {
  180. ValueType x = X[0][i];
  181. for (Integer j = 0; j < NN; j++) {
  182. ValueType y = 1;
  183. for (Integer k = 0; k < NN; k++) {
  184. y *= (j==k ? 1 : (nodes[0][k] - x) / (nodes[0][k] - nodes[0][j]));
  185. }
  186. M_[j][i] = y;
  187. }
  188. }
  189. if (DIM == 1) {
  190. SCTL_ASSERT(M.Dim(0) == M_.Dim(0));
  191. SCTL_ASSERT(M.Dim(1) == M_.Dim(1));
  192. M = M_;
  193. } else {
  194. Integer NNN = 1;
  195. M = 1;
  196. for (Integer d = 0; d < DIM; d++) {
  197. for (Integer k = 1; k < NN; k++) {
  198. for (Integer j = 0; j < NNN; j++) {
  199. for (Long i = 0; i < N; i++) {
  200. M[k*NNN+j][i] = M[j][i] * M_[k][d*N+i];
  201. }
  202. }
  203. }
  204. { // k = 0
  205. for (Integer j = 0; j < NNN; j++) {
  206. for (Long i = 0; i < N; i++) {
  207. M[j][i] *= M_[0][d*N+i];
  208. }
  209. }
  210. }
  211. NNN *= NN;
  212. }
  213. }
  214. }
  215. return M;
  216. }
  217. static void Eval(Matrix<ValueType>& Y, const Vector<Basis>& X, const EvalOpType& M) {
  218. Long N0 = X.Dim();
  219. Long N1 = M.Dim(1);
  220. SCTL_ASSERT(M.Dim(0) == Size());
  221. if (Y.Dim(0) != N0 || Y.Dim(1) != N1) Y.ReInit(N0, N1);
  222. for (Long i = 0; i < N0; i++) {
  223. const Matrix<ValueType> X_(1,Size(),(Iterator<ValueType>)(ConstIterator<ValueType>)X[i].NodeValues_,false);
  224. Matrix<ValueType> Y_(1,N1,Y[i],false);
  225. Matrix<ValueType>::GEMM(Y_,X_,M);
  226. }
  227. }
  228. Basis operator+(Basis X) const {
  229. for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] + X[i];
  230. return X;
  231. }
  232. Basis operator-(Basis X) const {
  233. for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] - X[i];
  234. return X;
  235. }
  236. Basis operator*(Basis X) const {
  237. for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] * X[i];
  238. return X;
  239. }
  240. Basis operator*(Real a) const {
  241. Basis X = (*this);
  242. for (Long i = 0; i < Size(); i++) X[i] *= a;
  243. return X;
  244. }
  245. Basis operator+(Real a) const {
  246. Basis X = (*this);
  247. for (Long i = 0; i < Size(); i++) X[i] += a;
  248. return X;
  249. }
  250. Basis& operator+=(const Basis& X) {
  251. for (Long i = 0; i < Size(); i++) (*this)[i] += X[i];
  252. return *this;
  253. }
  254. Basis& operator-=(const Basis& X) {
  255. for (Long i = 0; i < Size(); i++) (*this)[i] -= X[i];
  256. return *this;
  257. }
  258. Basis& operator*=(const Basis& X) {
  259. for (Long i = 0; i < Size(); i++) (*this)[i] *= X[i];
  260. return *this;
  261. }
  262. Basis& operator*=(Real a) {
  263. for (Long i = 0; i < Size(); i++) (*this)[i] *= a;
  264. return *this;
  265. }
  266. Basis& operator+=(Real a) {
  267. for (Long i = 0; i < Size(); i++) (*this)[i] += a;
  268. return *this;
  269. }
  270. Basis& operator=(Real a) {
  271. for (Long i = 0; i < Size(); i++) (*this)[i] = a;
  272. return *this;
  273. }
  274. const ValueType& operator[](Long i) const {
  275. SCTL_ASSERT(i < Size());
  276. return NodeValues_[i];
  277. }
  278. ValueType& operator[](Long i) {
  279. SCTL_ASSERT(i < Size());
  280. return NodeValues_[i];
  281. }
  282. private:
  283. StaticArray<ValueType,Size()> NodeValues_;
  284. };
  285. template <Integer COORD_DIM, class Basis> class ElemList {
  286. public:
  287. using CoordBasis = Basis;
  288. using CoordType = typename CoordBasis::ValueType;
  289. static constexpr Integer CoordDim() {
  290. return COORD_DIM;
  291. }
  292. static constexpr Integer ElemDim() {
  293. return CoordBasis::Dim();
  294. }
  295. ElemList(Long Nelem = 0) {
  296. ReInit(Nelem);
  297. }
  298. void ReInit(Long Nelem = 0) {
  299. Nelem_ = Nelem;
  300. X_.ReInit(Nelem_ * COORD_DIM);
  301. }
  302. void ReInit(const Vector<CoordBasis>& X) {
  303. Nelem_ = X.Dim() / COORD_DIM;
  304. SCTL_ASSERT(X.Dim() == Nelem_ * COORD_DIM);
  305. X_ = X;
  306. }
  307. Long NElem() const {
  308. return Nelem_;
  309. }
  310. CoordBasis& operator()(Long elem, Integer dim) {
  311. SCTL_ASSERT(elem >= 0 && elem < Nelem_);
  312. SCTL_ASSERT(dim >= 0 && dim < COORD_DIM);
  313. return X_[elem*COORD_DIM+dim];
  314. }
  315. const CoordBasis& operator()(Long elem, Integer dim) const {
  316. if (!(elem >= 0 && elem < Nelem_)) exit(0);
  317. SCTL_ASSERT(elem >= 0 && elem < Nelem_);
  318. SCTL_ASSERT(dim >= 0 && dim < COORD_DIM);
  319. return X_[elem*COORD_DIM+dim];
  320. }
  321. const Vector<CoordBasis>& ElemVector() const {
  322. return X_;
  323. }
  324. private:
  325. static_assert(CoordBasis::Dim() <= CoordDim(), "Basis dimension can not be greater than COORD_DIM.");
  326. Vector<CoordBasis> X_;
  327. Long Nelem_;
  328. //mutable Vector<CoordBasis> dX_;
  329. };
  330. template <class Real> class Quadrature {
  331. static Real machine_epsilon() {
  332. Real eps=1;
  333. while(eps*(Real)0.5+(Real)1.0>1.0) eps*=0.5;
  334. return eps;
  335. }
  336. template <Integer DIM> static void DuffyQuad(Matrix<Real>& nodes, Vector<Real>& weights, const Vector<Real>& coord, Integer order, Real adapt = -1.0) {
  337. SCTL_ASSERT(coord.Dim() == DIM);
  338. static Real eps = machine_epsilon()*16;
  339. Matrix<Real> qx;
  340. Vector<Real> qw;
  341. { // Set qx, qw
  342. Vector<Real> qx0, qw0;
  343. ChebBasis<Real>::quad_rule(order, qx0, qw0);
  344. Integer N = pow<DIM,Integer>(order);
  345. qx.ReInit(DIM,N);
  346. qw.ReInit(N);
  347. qw[0] = 1;
  348. Integer N_ = 1;
  349. for (Integer d = 0; d < DIM; d++) {
  350. for (Integer j = 0; j < order; j++) {
  351. for (Integer i = 0; i < N_; i++) {
  352. for (Integer k = 0; k < d; k++) {
  353. qx[k][j*N_+i] = qx[k][i];
  354. }
  355. qx[d][j*N_+i] = qx0[j];
  356. qw[j*N_+i] = qw[i];
  357. }
  358. }
  359. for (Integer j = 0; j < order; j++) {
  360. for (Integer i = 0; i < N_; i++) {
  361. qw[j*N_+i] *= qw0[j];
  362. }
  363. }
  364. N_ *= order;
  365. }
  366. }
  367. Vector<Real> X;
  368. { // Set X
  369. StaticArray<Real,2*DIM+2> X_;
  370. X_[0] = 0;
  371. X_[1] = adapt;
  372. for (Integer i = 0; i < DIM; i++) {
  373. X_[2*i+2] = fabs<Real>(coord[i]);
  374. X_[2*i+3] = fabs<Real>(coord[i]-1);
  375. }
  376. std::sort((Iterator<Real>)X_, (Iterator<Real>)X_+2*DIM+2);
  377. X.PushBack(std::max<Real>(0, X_[2*DIM]-1));
  378. for (Integer i = 0; i < 2*DIM+2; i++) {
  379. if (X[X.Dim()-1] < X_[i]) {
  380. if (X.Dim())
  381. X.PushBack(X_[i]);
  382. }
  383. }
  384. /////////////////////////////////////////////////////////////////////////////////////////////////
  385. Vector<Real> r(1);
  386. r[0] = X[0];
  387. for (Integer i = 1; i < X.Dim(); i++) {
  388. while (r[r.Dim() - 1] > 0.0 && (order*0.5) * r[r.Dim() - 1] < X[i]) r.PushBack((order*0.5) * r[r.Dim() - 1]); // TODO
  389. r.PushBack(X[i]);
  390. }
  391. X = r;
  392. /////////////////////////////////////////////////////////////////////////////////////////////////
  393. }
  394. Vector<Real> nds, wts;
  395. for (Integer k = 0; k < X.Dim()-1; k++) {
  396. for (Integer dd = 0; dd < 2*DIM; dd++) {
  397. Integer d0 = (dd>>1);
  398. StaticArray<Real,2*DIM> range0, range1;
  399. { // Set range0, range1
  400. Integer d1 = (dd%2?1:-1);
  401. for (Integer d = 0; d < DIM; d++) {
  402. range0[d*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d] - X[k] ));
  403. range0[d*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d] + X[k] ));
  404. range1[d*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d] - X[k+1]));
  405. range1[d*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d] + X[k+1]));
  406. }
  407. range0[d0*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+0]));
  408. range0[d0*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+0]));
  409. range1[d0*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+1]));
  410. range1[d0*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+1]));
  411. }
  412. { // if volume(range0, range1) == 0 then continue
  413. Real v0 = 1, v1 = 1;
  414. for (Integer d = 0; d < DIM; d++) {
  415. if (d == d0) {
  416. v0 *= fabs<Real>(range0[d*2+0]-range1[d*2+0]);
  417. v1 *= fabs<Real>(range0[d*2+0]-range1[d*2+0]);
  418. } else {
  419. v0 *= range0[d*2+1]-range0[d*2+0];
  420. v1 *= range1[d*2+1]-range1[d*2+0];
  421. }
  422. }
  423. if (v0 < eps && v1 < eps) continue;
  424. }
  425. for (Integer i = 0; i < qx.Dim(1); i++) { // Set nds, wts
  426. Real w = qw[i];
  427. Real z = qx[d0][i];
  428. for (Integer d = 0; d < DIM; d++) {
  429. Real y = qx[d][i];
  430. nds.PushBack((range0[d*2+0]*(1-y) + range0[d*2+1]*y)*(1-z) + (range1[d*2+0]*(1-y) + range1[d*2+1]*y)*z);
  431. if (d == d0) {
  432. w *= abs(range1[d*2+0] - range0[d*2+0]);
  433. } else {
  434. w *= (range0[d*2+1] - range0[d*2+0])*(1-z) + (range1[d*2+1] - range1[d*2+0])*z;
  435. }
  436. }
  437. wts.PushBack(w);
  438. }
  439. }
  440. }
  441. nodes = Matrix<Real>(nds.Dim()/DIM,DIM,nds.begin()).Transpose();
  442. weights = wts;
  443. }
  444. template <Integer DIM> static void TensorProductGaussQuad(Matrix<Real>& nodes, Vector<Real>& weights, Integer order) {
  445. Vector<Real> coord(DIM);
  446. coord = 0;
  447. coord[0] = -10;
  448. DuffyQuad<DIM>(nodes, weights, coord, order);
  449. }
  450. template <class DensityBasis, class ElemList, class Kernel> static void SetupSingular(Matrix<Real>& M_singular, const Matrix<Real>& trg_nds, const ElemList& elem_lst, const Kernel& kernel, Integer order_singular = 10, Integer order_direct = 10, Real Rqbx = 0) {
  451. using CoordBasis = typename ElemList::CoordBasis;
  452. using CoordEvalOpType = typename CoordBasis::EvalOpType;
  453. using DensityEvalOpType = typename DensityBasis::EvalOpType;
  454. constexpr Integer CoordDim = ElemList::CoordDim();
  455. constexpr Integer ElemDim = ElemList::ElemDim();
  456. constexpr Integer KDIM0 = Kernel::SrcDim();
  457. constexpr Integer KDIM1 = Kernel::TrgDim();
  458. const Long Nelem = elem_lst.NElem();
  459. const Integer Ntrg = trg_nds.Dim(1);
  460. SCTL_ASSERT(trg_nds.Dim(0) == ElemDim);
  461. const Vector<CoordBasis>& X = elem_lst.ElemVector();
  462. Vector<CoordBasis> dX;
  463. CoordBasis::Grad(dX, X);
  464. Vector<Real> Xt, Xnt;
  465. { // Set Xt, Xnt
  466. auto Meval = CoordBasis::SetupEval(trg_nds);
  467. eval_basis(Xt, X, CoordDim, trg_nds.Dim(1), Meval);
  468. Xnt = Xt;
  469. Vector<Real> dX_;
  470. eval_basis(dX_, dX, 2*CoordDim, trg_nds.Dim(1), Meval);
  471. for (Long i = 0; i < Ntrg; i++) {
  472. for (Long j = 0; j < Nelem; j++) {
  473. auto Xn = Xnt.begin() + (j*Ntrg+i)*CoordDim;
  474. auto dX0 = dX_.begin() + (j*Ntrg+i)*2*CoordDim;
  475. StaticArray<Real,CoordDim> normal;
  476. normal[0] = dX0[2]*dX0[5] - dX0[4]*dX0[3];
  477. normal[1] = dX0[4]*dX0[1] - dX0[0]*dX0[5];
  478. normal[2] = dX0[0]*dX0[3] - dX0[2]*dX0[1];
  479. Real Xa = sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  480. Real invXa = 1/Xa;
  481. normal[0] *= invXa;
  482. normal[1] *= invXa;
  483. normal[2] *= invXa;
  484. Real sqrt_Xa = sqrt<Real>(Xa);
  485. Xn[0] = normal[0]*sqrt_Xa*Rqbx;
  486. Xn[1] = normal[1]*sqrt_Xa*Rqbx;
  487. Xn[2] = normal[2]*sqrt_Xa*Rqbx;
  488. }
  489. }
  490. }
  491. SCTL_ASSERT(Xt.Dim() == Nelem * Ntrg * CoordDim);
  492. auto& M = M_singular;
  493. M.ReInit(Nelem * KDIM0 * DensityBasis::Size(), KDIM1 * Ntrg);
  494. #pragma omp parallel for schedule(static)
  495. for (Long i = 0; i < Ntrg; i++) { // Set M (singular)
  496. Matrix<Real> quad_nds;
  497. Vector<Real> quad_wts;
  498. { // Set quad_nds, quad_wts
  499. StaticArray<Real,ElemDim> trg_node_;
  500. for (Integer k = 0; k < ElemDim; k++) {
  501. trg_node_[k] = trg_nds[k][i];
  502. }
  503. Vector<Real> trg_node(ElemDim, trg_node_, false);
  504. DuffyQuad<ElemDim>(quad_nds, quad_wts, trg_node, order_singular, fabs(Rqbx));
  505. }
  506. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  507. Integer Nnds = quad_wts.Dim();
  508. Vector<Real> X_, dX_, Xa_, Xn_;
  509. { // Set X_, dX_
  510. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  511. eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
  512. }
  513. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  514. Long N = Nelem*Nnds;
  515. Xa_.ReInit(N);
  516. Xn_.ReInit(N*CoordDim);
  517. for (Long j = 0; j < N; j++) {
  518. StaticArray<Real,CoordDim> normal;
  519. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  520. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  521. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  522. Xa_[j] = sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  523. Real invXa = 1/Xa_[j];
  524. Xn_[j*3+0] = normal[0] * invXa;
  525. Xn_[j*3+1] = normal[1] * invXa;
  526. Xn_[j*3+2] = normal[2] * invXa;
  527. }
  528. }
  529. DensityEvalOpType DensityEvalOp;
  530. if (std::is_same<CoordBasis,DensityBasis>::value) {
  531. DensityEvalOp = CoordEvalOp;
  532. } else {
  533. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  534. }
  535. for (Long j = 0; j < Nelem; j++) {
  536. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  537. if (Rqbx == 0) { // Set kernel matrix M__
  538. const Vector<Real> X0_(CoordDim, Xt.begin() + (j * Ntrg + i) * CoordDim, false);
  539. const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
  540. const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
  541. kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
  542. } else {
  543. Vector<Real> X0_(CoordDim);
  544. constexpr Integer qbx_order = 6;
  545. StaticArray<Matrix<Real>,qbx_order> M___;
  546. for (Integer k = 0; k < qbx_order; k++) { // Set kernel matrix M___
  547. for (Integer kk = 0; kk < CoordDim; kk++) X0_[kk] = Xt[(j * Ntrg + i) * CoordDim + kk] + (k+1) * Xnt[(j * Ntrg + i) * CoordDim + kk];
  548. const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
  549. const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
  550. kernel.template KernelMatrix<Real>(M___[k], X0_, X__, Xn__);
  551. }
  552. for (Long k = 0; k < Nnds * KDIM0 * KDIM1; k++) {
  553. M__[0][k] = 0;
  554. M__[0][k] += 6*M___[0][0][k];
  555. M__[0][k] += -15*M___[1][0][k];
  556. M__[0][k] += 20*M___[2][0][k];
  557. M__[0][k] += -15*M___[3][0][k];
  558. M__[0][k] += 6*M___[4][0][k];
  559. M__[0][k] += -1*M___[5][0][k];
  560. }
  561. }
  562. for (Long k0 = 0; k0 < KDIM0; k0++) {
  563. for (Long k1 = 0; k1 < KDIM1; k1++) {
  564. for (Long l = 0; l < DensityBasis::Size(); l++) {
  565. Real M_lk = 0;
  566. for (Long n = 0; n < Nnds; n++) {
  567. Real quad_wt = Xa_[j * Nnds + n] * quad_wts[n];
  568. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  569. }
  570. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1 * Ntrg + i] = M_lk;
  571. }
  572. }
  573. }
  574. }
  575. }
  576. { // Set M (subtract direct)
  577. Matrix<Real> quad_nds;
  578. Vector<Real> quad_wts;
  579. TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
  580. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  581. Integer Nnds = quad_wts.Dim();
  582. Vector<Real> X_, dX_, Xa_, Xn_;
  583. { // Set X_, dX_
  584. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  585. eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
  586. }
  587. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  588. Long N = Nelem*Nnds;
  589. Xa_.ReInit(N);
  590. Xn_.ReInit(N*CoordDim);
  591. for (Long j = 0; j < N; j++) {
  592. StaticArray<Real,CoordDim> normal;
  593. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  594. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  595. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  596. Xa_[j] = sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  597. Real invXa = 1/Xa_[j];
  598. Xn_[j*3+0] = normal[0] * invXa;
  599. Xn_[j*3+1] = normal[1] * invXa;
  600. Xn_[j*3+2] = normal[2] * invXa;
  601. }
  602. }
  603. DensityEvalOpType DensityEvalOp;
  604. if (std::is_same<CoordBasis,DensityBasis>::value) {
  605. DensityEvalOp = CoordEvalOp;
  606. } else {
  607. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  608. }
  609. #pragma omp parallel for schedule(static)
  610. for (Long i = 0; i < Ntrg; i++) { // Subtract direct contribution
  611. for (Long j = 0; j < Nelem; j++) {
  612. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  613. { // Set kernel matrix M__
  614. const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + (j * Ntrg + i) * CoordDim, false);
  615. const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
  616. const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
  617. kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
  618. }
  619. for (Long k0 = 0; k0 < KDIM0; k0++) {
  620. for (Long k1 = 0; k1 < KDIM1; k1++) {
  621. for (Long l = 0; l < DensityBasis::Size(); l++) {
  622. Real M_lk = 0;
  623. for (Long n = 0; n < Nnds; n++) {
  624. Real quad_wt = Xa_[j * Nnds + n] * quad_wts[n];
  625. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  626. }
  627. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1 * Ntrg + i] -= M_lk;
  628. }
  629. }
  630. }
  631. }
  632. }
  633. }
  634. }
  635. template <class DensityBasis> static void EvalSingular(Matrix<Real>& U, const Vector<DensityBasis>& density, const Matrix<Real>& M, Integer KDIM0_, Integer KDIM1_) {
  636. if (M.Dim(0) == 0 || M.Dim(1) == 0) {
  637. U.ReInit(0,0);
  638. return;
  639. }
  640. const Long Ntrg = M.Dim(1) / KDIM1_;
  641. SCTL_ASSERT(M.Dim(1) == KDIM1_ * Ntrg);
  642. const Long Nelem = M.Dim(0) / (KDIM0_ * DensityBasis::Size());
  643. SCTL_ASSERT(M.Dim(0) == Nelem * KDIM0_ * DensityBasis::Size());
  644. const Integer dof = density.Dim() / (Nelem * KDIM0_);
  645. SCTL_ASSERT(density.Dim() == Nelem * dof * KDIM0_);
  646. if (U.Dim(0) != Nelem * dof * KDIM1_ || U.Dim(1) != Ntrg) {
  647. U.ReInit(Nelem * dof * KDIM1_, Ntrg);
  648. U = 0;
  649. }
  650. for (Long j = 0; j < Nelem; j++) {
  651. const Matrix<Real> M_(KDIM0_ * DensityBasis::Size(), KDIM1_ * Ntrg, (Iterator<Real>)M[j * KDIM0_ * DensityBasis::Size()], false);
  652. Matrix<Real> U_(dof, KDIM1_ * Ntrg, U[j*dof*KDIM1_], false);
  653. Matrix<Real> F_(dof, KDIM0_ * DensityBasis::Size());
  654. for (Long i = 0; i < dof; i++) {
  655. for (Long k = 0; k < KDIM0_; k++) {
  656. for (Long l = 0; l < DensityBasis::Size(); l++) {
  657. F_[i][k * DensityBasis::Size() + l] = density[(j * dof + i) * KDIM0_ + k][l];
  658. }
  659. }
  660. }
  661. Matrix<Real>::GEMM(U_, F_, M_);
  662. }
  663. }
  664. template <Integer DIM> struct PointData {
  665. bool operator<(const PointData& p) const {
  666. return mid < p.mid;
  667. }
  668. Long rank;
  669. Long surf_rank;
  670. Morton<DIM> mid;
  671. StaticArray<Real,DIM> coord;
  672. Real radius2;
  673. };
  674. template <class T1, class T2> struct Pair {
  675. Pair() {}
  676. Pair(T1 x, T2 y) : first(x), second(y) {}
  677. bool operator<(const Pair& p) const {
  678. return (first < p.first) || (((first == p.first) && (second < p.second)));
  679. }
  680. T1 first;
  681. T2 second;
  682. };
  683. template <class ElemList> static void BuildNbrList(Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt, const Vector<Long>& trg_surf, const ElemList& elem_lst, Real distance_factor, Real period_length, const Comm& comm) {
  684. using CoordBasis = typename ElemList::CoordBasis;
  685. constexpr Integer CoordDim = ElemList::CoordDim();
  686. constexpr Integer ElemDim = ElemList::ElemDim();
  687. using PtData = PointData<CoordDim>;
  688. const Integer rank = comm.Rank();
  689. Real R0 = 0;
  690. StaticArray<Real,CoordDim> X0;
  691. { // Find bounding box
  692. Long N = Xt.Dim() / CoordDim;
  693. SCTL_ASSERT(Xt.Dim() == N * CoordDim);
  694. SCTL_ASSERT(N);
  695. StaticArray<Real,CoordDim*2> Xloc;
  696. StaticArray<Real,CoordDim*2> Xglb;
  697. for (Integer k = 0; k < CoordDim; k++) {
  698. Xloc[0*CoordDim+k] = Xt[k];
  699. Xloc[1*CoordDim+k] = Xt[k];
  700. }
  701. for (Long i = 0; i < N; i++) {
  702. for (Integer k = 0; k < CoordDim; k++) {
  703. Xloc[0*CoordDim+k] = std::min<Real>(Xloc[0*CoordDim+k], Xt[i*CoordDim+k]);
  704. Xloc[1*CoordDim+k] = std::max<Real>(Xloc[1*CoordDim+k], Xt[i*CoordDim+k]);
  705. }
  706. }
  707. comm.Allreduce((ConstIterator<Real>)Xloc+0*CoordDim, (Iterator<Real>)Xglb+0*CoordDim, CoordDim, Comm::CommOp::MIN);
  708. comm.Allreduce((ConstIterator<Real>)Xloc+1*CoordDim, (Iterator<Real>)Xglb+1*CoordDim, CoordDim, Comm::CommOp::MAX);
  709. for (Integer k = 0; k < CoordDim; k++) {
  710. R0 = std::max(R0, Xglb[1*CoordDim+k]-Xglb[0*CoordDim+k]);
  711. }
  712. R0 = R0 * 2.0;
  713. for (Integer k = 0; k < CoordDim; k++) {
  714. X0[k] = Xglb[k] - R0*0.25;
  715. }
  716. }
  717. if (period_length > 0) {
  718. R0 = period_length;
  719. }
  720. Vector<PtData> PtSrc, PtTrg;
  721. Integer order_upsample = (Integer)(const_pi<Real>() / distance_factor + 0.5);
  722. { // Set PtSrc
  723. const Vector<CoordBasis>& X_elem_lst = elem_lst.ElemVector();
  724. Vector<CoordBasis> dX_elem_lst;
  725. CoordBasis::Grad(dX_elem_lst, X_elem_lst);
  726. Matrix<Real> nds;
  727. Vector<Real> wts;
  728. TensorProductGaussQuad<ElemDim>(nds, wts, order_upsample);
  729. const Long Nnds = nds.Dim(1);
  730. Vector<Real> X, dX;
  731. const auto CoordEvalOp = CoordBasis::SetupEval(nds);
  732. eval_basis(X, X_elem_lst, CoordDim, Nnds, CoordEvalOp);
  733. eval_basis(dX, dX_elem_lst, CoordDim * ElemDim, Nnds, CoordEvalOp);
  734. const Long N = X.Dim() / CoordDim;
  735. const Long Nelem = elem_lst.NElem();
  736. SCTL_ASSERT(X.Dim() == N * CoordDim);
  737. SCTL_ASSERT(N == Nelem * Nnds);
  738. Long rank_offset, surf_rank_offset;
  739. { // Set rank_offset, surf_rank_offset
  740. comm.Scan(Ptr2ConstItr<Long>(&N,1), Ptr2Itr<Long>(&rank_offset,1), 1, Comm::CommOp::SUM);
  741. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&surf_rank_offset,1), 1, Comm::CommOp::SUM);
  742. surf_rank_offset -= Nelem;
  743. rank_offset -= N;
  744. }
  745. PtSrc.ReInit(N);
  746. const Real R0inv = 1.0 / R0;
  747. for (Long i = 0; i < N; i++) { // Set coord
  748. for (Integer k = 0; k < CoordDim; k++) {
  749. PtSrc[i].coord[k] = (X[i*CoordDim+k] - X0[k]) * R0inv;
  750. }
  751. }
  752. if (period_length > 0) { // Wrap-around coord
  753. for (Long i = 0; i < N; i++) {
  754. auto& x = PtSrc[i].coord;
  755. for (Integer k = 0; k < CoordDim; k++) {
  756. x[k] -= (Long)(x[k]);
  757. }
  758. }
  759. }
  760. for (Long i = 0; i < N; i++) { // Set radius2, mid, rank
  761. Integer depth = 0;
  762. { // Set radius2, depth
  763. Real radius2 = 0;
  764. for (Integer k0 = 0; k0 < ElemDim; k0++) {
  765. Real R2 = 0;
  766. for (Integer k1 = 0; k1 < CoordDim; k1++) {
  767. Real dX_ = dX[(i*CoordDim+k1)*ElemDim+k0];
  768. R2 += dX_*dX_;
  769. }
  770. radius2 = std::max(radius2, R2);
  771. }
  772. radius2 *= R0inv*R0inv * distance_factor*distance_factor;
  773. PtSrc[i].radius2 = radius2;
  774. Long Rinv = (Long)(1.0/radius2);
  775. while (Rinv > 0) {
  776. Rinv = (Rinv>>2);
  777. depth++;
  778. }
  779. }
  780. PtSrc[i].mid = Morton<CoordDim>((Iterator<Real>)PtSrc[i].coord, std::min(Morton<CoordDim>::MaxDepth(),depth));
  781. PtSrc[i].rank = rank_offset + i;
  782. }
  783. for (Long i = 0 ; i < Nelem; i++) { // Set surf_rank
  784. for (Long j = 0; j < Nnds; j++) {
  785. PtSrc[i*Nnds+j].surf_rank = surf_rank_offset + i;
  786. }
  787. }
  788. Vector<PtData> PtSrcSorted;
  789. comm.HyperQuickSort(PtSrc, PtSrcSorted);
  790. PtSrc.Swap(PtSrcSorted);
  791. }
  792. { // Set PtTrg
  793. const Long N = Xt.Dim() / CoordDim;
  794. SCTL_ASSERT(Xt.Dim() == N * CoordDim);
  795. Long rank_offset;
  796. { // Set rank_offset
  797. comm.Scan(Ptr2ConstItr<Long>(&N,1), Ptr2Itr<Long>(&rank_offset,1), 1, Comm::CommOp::SUM);
  798. rank_offset -= N;
  799. }
  800. PtTrg.ReInit(N);
  801. const Real R0inv = 1.0 / R0;
  802. for (Long i = 0; i < N; i++) { // Set coord
  803. for (Integer k = 0; k < CoordDim; k++) {
  804. PtTrg[i].coord[k] = (Xt[i*CoordDim+k] - X0[k]) * R0inv;
  805. }
  806. }
  807. if (period_length > 0) { // Wrap-around coord
  808. for (Long i = 0; i < N; i++) {
  809. auto& x = PtTrg[i].coord;
  810. for (Integer k = 0; k < CoordDim; k++) {
  811. x[k] -= (Long)(x[k]);
  812. }
  813. }
  814. }
  815. for (Long i = 0; i < N; i++) { // Set radius2, mid, rank
  816. PtTrg[i].radius2 = 0;
  817. PtTrg[i].mid = Morton<CoordDim>((Iterator<Real>)PtTrg[i].coord);
  818. PtTrg[i].rank = rank_offset + i;
  819. }
  820. if (trg_surf.Dim()) { // Set surf_rank
  821. SCTL_ASSERT(trg_surf.Dim() == N);
  822. for (Long i = 0; i < N; i++) {
  823. PtTrg[i].surf_rank = trg_surf[i];
  824. }
  825. } else {
  826. for (Long i = 0; i < N; i++) {
  827. PtTrg[i].surf_rank = -1;
  828. }
  829. }
  830. Vector<PtData> PtTrgSorted;
  831. comm.HyperQuickSort(PtTrg, PtTrgSorted);
  832. PtTrg.Swap(PtTrgSorted);
  833. }
  834. Tree<CoordDim> tree(comm);
  835. { // Init tree
  836. Vector<Real> Xall(PtSrc.Dim()+PtTrg.Dim());
  837. { // Set Xall
  838. Xall.ReInit((PtSrc.Dim()+PtTrg.Dim())*CoordDim);
  839. Long Nsrc = PtSrc.Dim();
  840. Long Ntrg = PtTrg.Dim();
  841. for (Long i = 0; i < Nsrc; i++) {
  842. for (Integer k = 0; k < CoordDim; k++) {
  843. Xall[i*CoordDim+k] = PtSrc[i].coord[k];
  844. }
  845. }
  846. for (Long i = 0; i < Ntrg; i++) {
  847. for (Integer k = 0; k < CoordDim; k++) {
  848. Xall[(Nsrc+i)*CoordDim+k] = PtTrg[i].coord[k];
  849. }
  850. }
  851. }
  852. tree.UpdateRefinement(Xall, 1000, true, period_length>0);
  853. }
  854. { // Repartition PtSrc, PtTrg
  855. PtData splitter;
  856. splitter.mid = tree.GetPartitionMID()[rank];
  857. comm.PartitionS(PtSrc, splitter);
  858. comm.PartitionS(PtTrg, splitter);
  859. }
  860. { // Add tree data PtSrc
  861. const auto& node_mid = tree.GetNodeMID();
  862. const Long N = node_mid.Dim();
  863. SCTL_ASSERT(N);
  864. Vector<Long> dsp(N), cnt(N);
  865. for (Long i = 0; i < N; i++) {
  866. PtData m0;
  867. m0.mid = node_mid[i];
  868. dsp[i] = std::lower_bound(PtSrc.begin(), PtSrc.end(), m0) - PtSrc.begin();
  869. }
  870. for (Long i = 0; i < N-1; i++) {
  871. cnt[i] = dsp[i+1] - dsp[i];
  872. }
  873. cnt[N-1] = PtSrc.Dim() - dsp[N-1];
  874. tree.AddData("PtSrc", PtSrc, cnt);
  875. }
  876. tree.template Broadcast<PtData>("PtSrc");
  877. { // Build pair_lst
  878. Vector<Long> cnt;
  879. Vector<PtData> PtSrc;
  880. tree.GetData(PtSrc, cnt, "PtSrc");
  881. const auto& node_mid = tree.GetNodeMID();
  882. const auto& node_attr = tree.GetNodeAttr();
  883. Vector<Morton<CoordDim>> nbr_mid_tmp;
  884. for (Long i = 0; i < node_mid.Dim(); i++) {
  885. if (node_attr[i].Leaf && !node_attr[i].Ghost) {
  886. Vector<Morton<CoordDim>> child_mid;
  887. node_mid[i].Children(child_mid);
  888. for (const auto& trg_mid : child_mid) {
  889. Integer d0 = trg_mid.Depth();
  890. Vector<PtData> Src, Trg;
  891. { // Set Trg
  892. PtData m0, m1;
  893. m0.mid = trg_mid;
  894. m1.mid = trg_mid.Next();
  895. Long a = std::lower_bound(PtTrg.begin(), PtTrg.end(), m0) - PtTrg.begin();
  896. Long b = std::lower_bound(PtTrg.begin(), PtTrg.end(), m1) - PtTrg.begin();
  897. Trg.ReInit(b-a, PtTrg.begin()+a, false);
  898. if (!Trg.Dim()) continue;
  899. }
  900. Vector<std::set<Long>> near_elem(Trg.Dim());
  901. for (Integer d = 0; d <= d0; d++) {
  902. trg_mid.NbrList(nbr_mid_tmp, d, period_length>0);
  903. for (const auto& src_mid : nbr_mid_tmp) { // Set Src
  904. PtData m0, m1;
  905. m0.mid = src_mid;
  906. m1.mid = (d==d0 ? src_mid.Next() : src_mid.Ancestor(d+1));
  907. Long a = std::lower_bound(PtSrc.begin(), PtSrc.end(), m0) - PtSrc.begin();
  908. Long b = std::lower_bound(PtSrc.begin(), PtSrc.end(), m1) - PtSrc.begin();
  909. Src.ReInit(b-a, PtSrc.begin()+a, false);
  910. if (!Src.Dim()) continue;
  911. for (Long t = 0; t < Trg.Dim(); t++) { // set near_elem[t] <-- {s : dist(s,t) < radius(s)}
  912. for (Long s = 0; s < Src.Dim(); s++) {
  913. if (Trg[t].surf_rank != Src[s].surf_rank) {
  914. Real R2 = 0;
  915. for (Integer k = 0; k < CoordDim; k++) {
  916. Real dx = (Src[s].coord[k] - Trg[t].coord[k]);
  917. R2 += dx * dx;
  918. }
  919. if (R2 < Src[s].radius2) {
  920. near_elem[t].insert(Src[s].surf_rank);
  921. }
  922. }
  923. }
  924. }
  925. }
  926. }
  927. for (Long t = 0; t < Trg.Dim(); t++) { // Set pair_lst
  928. for (Long elem_idx : near_elem[t]) {
  929. pair_lst.PushBack(Pair<Long,Long>(elem_idx,Trg[t].rank));
  930. }
  931. }
  932. }
  933. }
  934. }
  935. }
  936. { // Sort and repartition pair_lst
  937. Vector<Pair<Long,Long>> pair_lst_sorted;
  938. comm.HyperQuickSort(pair_lst, pair_lst_sorted);
  939. Long surf_rank_offset;
  940. const Long Nelem = elem_lst.NElem();
  941. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&surf_rank_offset,1), 1, Comm::CommOp::SUM);
  942. surf_rank_offset -= Nelem;
  943. comm.PartitionS(pair_lst_sorted, Pair<Long,Long>(surf_rank_offset,0));
  944. pair_lst.Swap(pair_lst_sorted);
  945. }
  946. }
  947. template <class ElemList> static void BuildNbrListDeprecated(Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt, const ElemList& elem_lst, const Matrix<Real>& surf_nds, Real distance_factor) {
  948. using CoordBasis = typename ElemList::CoordBasis;
  949. constexpr Integer CoordDim = ElemList::CoordDim();
  950. constexpr Integer ElemDim = ElemList::ElemDim();
  951. const Long Nelem = elem_lst.NElem();
  952. const Long Ntrg = Xt.Dim() / CoordDim;
  953. SCTL_ASSERT(Xt.Dim() == Ntrg * CoordDim);
  954. Long Nnds, Nsurf_nds;
  955. Vector<Real> X_surf, X, dX;
  956. Integer order_upsample = (Integer)(const_pi<Real>() / distance_factor + 0.5);
  957. { // Set X, dX
  958. const Vector<CoordBasis>& X_elem_lst = elem_lst.ElemVector();
  959. Vector<CoordBasis> dX_elem_lst;
  960. CoordBasis::Grad(dX_elem_lst, X_elem_lst);
  961. Matrix<Real> nds_upsample;
  962. Vector<Real> wts_upsample;
  963. TensorProductGaussQuad<ElemDim>(nds_upsample, wts_upsample, order_upsample);
  964. Nnds = nds_upsample.Dim(1);
  965. const auto CoordEvalOp = CoordBasis::SetupEval(nds_upsample);
  966. eval_basis(X, X_elem_lst, CoordDim, nds_upsample.Dim(1), CoordEvalOp);
  967. eval_basis(dX, dX_elem_lst, CoordDim * ElemDim, nds_upsample.Dim(1), CoordEvalOp);
  968. Nsurf_nds = surf_nds.Dim(1);
  969. const auto CoordEvalOp_surf = CoordBasis::SetupEval(surf_nds);
  970. eval_basis(X_surf, X_elem_lst, CoordDim, Nsurf_nds, CoordEvalOp_surf);
  971. }
  972. Real d2 = distance_factor * distance_factor;
  973. for (Long i = 0; i < Nelem; i++) {
  974. std::set<Long> near_pts;
  975. std::set<Long> self_pts;
  976. for (Long j = 0; j < Nnds; j++) {
  977. Real R2_max = 0;
  978. StaticArray<Real, CoordDim> X0;
  979. for (Integer k = 0; k < CoordDim; k++) {
  980. X0[k] = X[(i*Nnds+j)*CoordDim+k];
  981. }
  982. for (Integer k0 = 0; k0 < ElemDim; k0++) {
  983. Real R2 = 0;
  984. for (Integer k1 = 0; k1 < CoordDim; k1++) {
  985. Real dX_ = dX[((i*Nnds+j)*CoordDim+k1)*ElemDim+k0];
  986. R2 += dX_*dX_;
  987. }
  988. R2_max = std::max(R2_max, R2*d2);
  989. }
  990. for (Long k = 0; k < Ntrg; k++) {
  991. Real R2 = 0;
  992. for (Integer l = 0; l < CoordDim; l++) {
  993. Real dX = Xt[k*CoordDim+l]- X0[l];
  994. R2 += dX * dX;
  995. }
  996. if (R2 < R2_max) near_pts.insert(k);
  997. }
  998. }
  999. for (Long j = 0; j < Nsurf_nds; j++) {
  1000. StaticArray<Real, CoordDim> X0;
  1001. for (Integer k = 0; k < CoordDim; k++) {
  1002. X0[k] = X_surf[(i*Nsurf_nds+j)*CoordDim+k];
  1003. }
  1004. for (Long k = 0; k < Ntrg; k++) {
  1005. Real R2 = 0;
  1006. for (Integer l = 0; l < CoordDim; l++) {
  1007. Real dX = Xt[k*CoordDim+l]- X0[l];
  1008. R2 += dX * dX;
  1009. }
  1010. if (R2 == 0) self_pts.insert(k);
  1011. }
  1012. }
  1013. for (Long trg_idx : self_pts) {
  1014. near_pts.erase(trg_idx);
  1015. }
  1016. for (Long trg_idx : near_pts) {
  1017. pair_lst.PushBack(Pair<Long,Long>(i,trg_idx));
  1018. }
  1019. }
  1020. }
  1021. template <class DensityBasis, class ElemList, class Kernel> static void SetupNearSingular(Matrix<Real>& M_near_singular, Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt_, const Vector<Long>& trg_surf, const ElemList& elem_lst, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) {
  1022. static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
  1023. static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
  1024. static_assert(DensityBasis::Dim() == ElemList::ElemDim());
  1025. using CoordBasis = typename ElemList::CoordBasis;
  1026. using CoordEvalOpType = typename CoordBasis::EvalOpType;
  1027. using DensityEvalOpType = typename DensityBasis::EvalOpType;
  1028. constexpr Integer CoordDim = ElemList::CoordDim();
  1029. constexpr Integer ElemDim = ElemList::ElemDim();
  1030. constexpr Integer KDIM0 = Kernel::SrcDim();
  1031. constexpr Integer KDIM1 = Kernel::TrgDim();
  1032. const Long Nelem = elem_lst.NElem();
  1033. BuildNbrList(pair_lst, Xt_, trg_surf, elem_lst, 2.5/order_direct, period_length, comm);
  1034. const Long Ninterac = pair_lst.Dim();
  1035. Vector<Real> Xt;
  1036. { // Set Xt
  1037. Integer rank = comm.Rank();
  1038. Integer np = comm.Size();
  1039. Vector<Long> splitter_ranks;
  1040. { // Set splitter_ranks
  1041. Vector<Long> cnt(np);
  1042. const Long N = Xt_.Dim() / CoordDim;
  1043. comm.Allgather(Ptr2ConstItr<Long>(&N,1), 1, cnt.begin(), 1);
  1044. scan(splitter_ranks, cnt);
  1045. }
  1046. Vector<Long> scatter_index, recv_index, recv_cnt(np), recv_dsp(np);
  1047. { // Set scatter_index, recv_index, recv_cnt, recv_dsp
  1048. { // Set scatter_index, recv_index
  1049. Vector<Pair<Long,Long>> scatter_pair(pair_lst.Dim());
  1050. for (Long i = 0; i < pair_lst.Dim(); i++) {
  1051. scatter_pair[i] = Pair<Long,Long>(pair_lst[i].second,i);
  1052. }
  1053. omp_par::merge_sort(scatter_pair.begin(), scatter_pair.end());
  1054. recv_index.ReInit(scatter_pair.Dim());
  1055. scatter_index.ReInit(scatter_pair.Dim());
  1056. for (Long i = 0; i < scatter_index.Dim(); i++) {
  1057. recv_index[i] = scatter_pair[i].first;
  1058. scatter_index[i] = scatter_pair[i].second;
  1059. }
  1060. }
  1061. for (Integer i = 0; i < np; i++) {
  1062. recv_dsp[i] = std::lower_bound(recv_index.begin(), recv_index.end(), splitter_ranks[i]) - recv_index.begin();
  1063. }
  1064. for (Integer i = 0; i < np-1; i++) {
  1065. recv_cnt[i] = recv_dsp[i+1] - recv_dsp[i];
  1066. }
  1067. recv_cnt[np-1] = recv_index.Dim() - recv_dsp[np-1];
  1068. }
  1069. Vector<Long> send_index, send_cnt(np), send_dsp(np);
  1070. { // Set send_index, send_cnt, send_dsp
  1071. comm.Alltoall(recv_cnt.begin(), 1, send_cnt.begin(), 1);
  1072. scan(send_dsp, send_cnt);
  1073. send_index.ReInit(send_cnt[np-1] + send_dsp[np-1]);
  1074. comm.Alltoallv(recv_index.begin(), recv_cnt.begin(), recv_dsp.begin(), send_index.begin(), send_cnt.begin(), send_dsp.begin());
  1075. }
  1076. Vector<Real> Xt_send(send_index.Dim() * CoordDim);
  1077. for (Long i = 0; i < send_index.Dim(); i++) { // Set Xt_send
  1078. Long idx = send_index[i] - splitter_ranks[rank];
  1079. for (Integer k = 0; k < CoordDim; k++) {
  1080. Xt_send[i*CoordDim+k] = Xt_[idx*CoordDim+k];
  1081. }
  1082. }
  1083. Vector<Real> Xt_recv(recv_index.Dim() * CoordDim);
  1084. { // Set Xt_recv
  1085. for (Long i = 0; i < np; i++) {
  1086. send_cnt[i] *= CoordDim;
  1087. send_dsp[i] *= CoordDim;
  1088. recv_cnt[i] *= CoordDim;
  1089. recv_dsp[i] *= CoordDim;
  1090. }
  1091. comm.Alltoallv(Xt_send.begin(), send_cnt.begin(), send_dsp.begin(), Xt_recv.begin(), recv_cnt.begin(), recv_dsp.begin());
  1092. }
  1093. Xt.ReInit(scatter_index.Dim() * CoordDim);
  1094. for (Long i = 0; i < scatter_index.Dim(); i++) { // Set Xt
  1095. Long idx = scatter_index[i];
  1096. for (Integer k = 0; k < CoordDim; k++) {
  1097. Xt[idx*CoordDim+k] = Xt_recv[i*CoordDim+k];
  1098. }
  1099. }
  1100. }
  1101. const Vector<CoordBasis>& X = elem_lst.ElemVector();
  1102. Vector<CoordBasis> dX;
  1103. CoordBasis::Grad(dX, X);
  1104. Long elem_rank_offset;
  1105. { // Set elem_rank_offset
  1106. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&elem_rank_offset,1), 1, Comm::CommOp::SUM);
  1107. elem_rank_offset -= Nelem;
  1108. }
  1109. auto& M = M_near_singular;
  1110. M.ReInit(Ninterac * KDIM0 * DensityBasis::Size(), KDIM1);
  1111. #pragma omp parallel for schedule(static)
  1112. for (Long j = 0; j < Ninterac; j++) { // Set M (near-singular)
  1113. const Long src_idx = pair_lst[j].first - elem_rank_offset;
  1114. Real adapt = -1.0;
  1115. Tensor<Real,true,ElemDim,1> u0;
  1116. { // Set u0 (project target point to the surface patch in parameter space)
  1117. ConstIterator<Real> Xt_ = Xt.begin() + j * CoordDim;
  1118. const auto& nodes = CoordBasis::Nodes();
  1119. Long min_idx = -1;
  1120. Real min_R2 = 1e10;
  1121. for (Long i = 0; i < CoordBasis::Size(); i++) {
  1122. Real R2 = 0;
  1123. for (Integer k = 0; k < CoordDim; k++) {
  1124. Real dX = X[src_idx * CoordDim + k][i] - Xt_[k];
  1125. R2 += dX * dX;
  1126. }
  1127. if (R2 < min_R2) {
  1128. min_R2 = R2;
  1129. min_idx = i;
  1130. }
  1131. }
  1132. SCTL_ASSERT(min_idx >= 0);
  1133. for (Integer k = 0; k < ElemDim; k++) {
  1134. u0(k,0) = nodes[k][min_idx];
  1135. }
  1136. for (Integer i = 0; i < 2; i++) { // iterate
  1137. Matrix<Real> X_, dX_;
  1138. for (Integer k = 0; k < ElemDim; k++) {
  1139. u0(k,0) = std::min<Real>(1.0, u0(k,0));
  1140. u0(k,0) = std::max<Real>(0.0, u0(k,0));
  1141. }
  1142. const auto eval_op = CoordBasis::SetupEval(Matrix<Real>(ElemDim,1,u0.begin(),false));
  1143. CoordBasis::Eval(X_, Vector<CoordBasis>(CoordDim,(Iterator<CoordBasis>)X.begin()+src_idx*CoordDim,false),eval_op);
  1144. CoordBasis::Eval(dX_, Vector<CoordBasis>(CoordDim*ElemDim,dX.begin()+src_idx*CoordDim*ElemDim,false),eval_op);
  1145. const Tensor<Real,false,CoordDim,1> x0((Iterator<Real>)Xt_);
  1146. const Tensor<Real,false,CoordDim,1> x(X_.begin());
  1147. const Tensor<Real,false,CoordDim,ElemDim> x_u(dX_.begin());
  1148. auto inv = [](const Tensor<Real,true,2,2>& M) {
  1149. Tensor<Real,true,2,2> Minv;
  1150. Real det_inv = 1.0 / (M(0,0)*M(1,1) - M(1,0)*M(0,1));
  1151. Minv(0,0) = M(1,1) * det_inv;
  1152. Minv(0,1) =-M(0,1) * det_inv;
  1153. Minv(1,0) =-M(1,0) * det_inv;
  1154. Minv(1,1) = M(0,0) * det_inv;
  1155. return Minv;
  1156. };
  1157. auto du = inv(x_u.RotateRight()*x_u) * x_u.RotateRight()*(x0-x);
  1158. u0 = u0 + du;
  1159. auto x_u_squared = x_u.RotateRight() * x_u;
  1160. adapt = sqrt<Real>( ((x0-x).RotateRight()*(x0-x))(0,0) / std::max<Real>(x_u_squared(0,0),x_u_squared(1,1)) );
  1161. }
  1162. }
  1163. Matrix<Real> quad_nds;
  1164. Vector<Real> quad_wts;
  1165. DuffyQuad<ElemDim>(quad_nds, quad_wts, Vector<Real>(ElemDim,u0.begin(),false), order_singular, adapt);
  1166. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  1167. Integer Nnds = quad_wts.Dim();
  1168. Vector<Real> X_, dX_, Xa_, Xn_;
  1169. { // Set X_, dX_
  1170. const Vector<CoordBasis> X__(CoordDim, (Iterator<CoordBasis>)X.begin() + src_idx * CoordDim, false);
  1171. const Vector<CoordBasis> dX__(CoordDim * ElemDim, (Iterator<CoordBasis>)dX.begin() + src_idx * CoordDim * ElemDim, false);
  1172. eval_basis(X_, X__, CoordDim, Nnds, CoordEvalOp);
  1173. eval_basis(dX_, dX__, CoordDim * ElemDim, Nnds, CoordEvalOp);
  1174. }
  1175. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  1176. Xa_.ReInit(Nnds);
  1177. Xn_.ReInit(Nnds*CoordDim);
  1178. for (Long j = 0; j < Nnds; j++) {
  1179. StaticArray<Real,CoordDim> normal;
  1180. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  1181. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  1182. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  1183. Xa_[j] = sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  1184. Real invXa = 1/Xa_[j];
  1185. Xn_[j*3+0] = normal[0] * invXa;
  1186. Xn_[j*3+1] = normal[1] * invXa;
  1187. Xn_[j*3+2] = normal[2] * invXa;
  1188. }
  1189. }
  1190. DensityEvalOpType DensityEvalOp;
  1191. if (std::is_same<CoordBasis,DensityBasis>::value) {
  1192. DensityEvalOp = CoordEvalOp;
  1193. } else {
  1194. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  1195. }
  1196. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  1197. { // Set kernel matrix M__
  1198. const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + j * CoordDim, false);
  1199. kernel.template KernelMatrix<Real>(M__, X0_, X_, Xn_);
  1200. }
  1201. for (Long k0 = 0; k0 < KDIM0; k0++) {
  1202. for (Long k1 = 0; k1 < KDIM1; k1++) {
  1203. for (Long l = 0; l < DensityBasis::Size(); l++) {
  1204. Real M_lk = 0;
  1205. for (Long n = 0; n < Nnds; n++) {
  1206. Real quad_wt = Xa_[n] * quad_wts[n];
  1207. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  1208. }
  1209. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1] = M_lk;
  1210. }
  1211. }
  1212. }
  1213. }
  1214. { // Set M (subtract direct)
  1215. Matrix<Real> quad_nds;
  1216. Vector<Real> quad_wts;
  1217. TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
  1218. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  1219. Integer Nnds = quad_wts.Dim();
  1220. Vector<Real> X_, dX_, Xa_, Xn_;
  1221. { // Set X_, dX_
  1222. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  1223. eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
  1224. }
  1225. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  1226. Long N = Nelem*Nnds;
  1227. Xa_.ReInit(N);
  1228. Xn_.ReInit(N*CoordDim);
  1229. for (Long j = 0; j < N; j++) {
  1230. StaticArray<Real,CoordDim> normal;
  1231. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  1232. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  1233. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  1234. Xa_[j] = sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  1235. Real invXa = 1/Xa_[j];
  1236. Xn_[j*3+0] = normal[0] * invXa;
  1237. Xn_[j*3+1] = normal[1] * invXa;
  1238. Xn_[j*3+2] = normal[2] * invXa;
  1239. }
  1240. }
  1241. DensityEvalOpType DensityEvalOp;
  1242. if (std::is_same<CoordBasis,DensityBasis>::value) {
  1243. DensityEvalOp = CoordEvalOp;
  1244. } else {
  1245. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  1246. }
  1247. #pragma omp parallel for schedule(static)
  1248. for (Long j = 0; j < Ninterac; j++) { // Subtract direct contribution
  1249. const Long src_idx = pair_lst[j].first - elem_rank_offset;
  1250. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  1251. { // Set kernel matrix M__
  1252. const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + j * CoordDim, false);
  1253. Vector<Real> X__(Nnds * CoordDim, X_.begin() + src_idx * Nnds * CoordDim, false);
  1254. Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + src_idx * Nnds * CoordDim, false);
  1255. kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
  1256. }
  1257. for (Long k0 = 0; k0 < KDIM0; k0++) {
  1258. for (Long k1 = 0; k1 < KDIM1; k1++) {
  1259. for (Long l = 0; l < DensityBasis::Size(); l++) {
  1260. Real M_lk = 0;
  1261. for (Long n = 0; n < Nnds; n++) {
  1262. Real quad_wt = Xa_[src_idx * Nnds + n] * quad_wts[n];
  1263. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  1264. }
  1265. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1] -= M_lk;
  1266. }
  1267. }
  1268. }
  1269. }
  1270. }
  1271. }
  1272. template <class DensityBasis> static void EvalNearSingular(Vector<Real>& U, const Vector<DensityBasis>& density, const Matrix<Real>& M, const Vector<Pair<Long,Long>>& pair_lst, Long Nelem_, Long Ntrg_, Integer KDIM0_, Integer KDIM1_, const Comm& comm) {
  1273. const Long Ninterac = pair_lst.Dim();
  1274. const Integer dof = density.Dim() / Nelem_ / KDIM0_;
  1275. SCTL_ASSERT(density.Dim() == Nelem_ * dof * KDIM0_);
  1276. Long elem_rank_offset;
  1277. { // Set elem_rank_offset
  1278. comm.Scan(Ptr2ConstItr<Long>(&Nelem_,1), Ptr2Itr<Long>(&elem_rank_offset,1), 1, Comm::CommOp::SUM);
  1279. elem_rank_offset -= Nelem_;
  1280. }
  1281. Vector<Real> U_loc(Ninterac*dof*KDIM1_);
  1282. for (Long j = 0; j < Ninterac; j++) {
  1283. const Long src_idx = pair_lst[j].first - elem_rank_offset;
  1284. const Matrix<Real> M_(KDIM0_ * DensityBasis::Size(), KDIM1_, (Iterator<Real>)M[j * KDIM0_ * DensityBasis::Size()], false);
  1285. Matrix<Real> U_(dof, KDIM1_, U_loc.begin() + j*dof*KDIM1_, false);
  1286. Matrix<Real> F_(dof, KDIM0_ * DensityBasis::Size());
  1287. for (Long i = 0; i < dof; i++) {
  1288. for (Long k = 0; k < KDIM0_; k++) {
  1289. for (Long l = 0; l < DensityBasis::Size(); l++) {
  1290. F_[i][k * DensityBasis::Size() + l] = density[(src_idx * dof + i) * KDIM0_ + k][l];
  1291. }
  1292. }
  1293. }
  1294. Matrix<Real>::GEMM(U_, F_, M_);
  1295. }
  1296. if (U.Dim() != Ntrg_ * dof * KDIM1_) {
  1297. U.ReInit(Ntrg_ * dof * KDIM1_);
  1298. U = 0;
  1299. }
  1300. { // Set U
  1301. Integer rank = comm.Rank();
  1302. Integer np = comm.Size();
  1303. Vector<Long> splitter_ranks;
  1304. { // Set splitter_ranks
  1305. Vector<Long> cnt(np);
  1306. comm.Allgather(Ptr2ConstItr<Long>(&Ntrg_,1), 1, cnt.begin(), 1);
  1307. scan(splitter_ranks, cnt);
  1308. }
  1309. Vector<Long> scatter_index, send_index, send_cnt(np), send_dsp(np);
  1310. { // Set scatter_index, send_index, send_cnt, send_dsp
  1311. { // Set scatter_index, send_index
  1312. Vector<Pair<Long,Long>> scatter_pair(pair_lst.Dim());
  1313. for (Long i = 0; i < pair_lst.Dim(); i++) {
  1314. scatter_pair[i] = Pair<Long,Long>(pair_lst[i].second,i);
  1315. }
  1316. omp_par::merge_sort(scatter_pair.begin(), scatter_pair.end());
  1317. send_index.ReInit(scatter_pair.Dim());
  1318. scatter_index.ReInit(scatter_pair.Dim());
  1319. for (Long i = 0; i < scatter_index.Dim(); i++) {
  1320. send_index[i] = scatter_pair[i].first;
  1321. scatter_index[i] = scatter_pair[i].second;
  1322. }
  1323. }
  1324. for (Integer i = 0; i < np; i++) {
  1325. send_dsp[i] = std::lower_bound(send_index.begin(), send_index.end(), splitter_ranks[i]) - send_index.begin();
  1326. }
  1327. for (Integer i = 0; i < np-1; i++) {
  1328. send_cnt[i] = send_dsp[i+1] - send_dsp[i];
  1329. }
  1330. send_cnt[np-1] = send_index.Dim() - send_dsp[np-1];
  1331. }
  1332. Vector<Long> recv_index, recv_cnt(np), recv_dsp(np);
  1333. { // Set recv_index, recv_cnt, recv_dsp
  1334. comm.Alltoall(send_cnt.begin(), 1, recv_cnt.begin(), 1);
  1335. scan(recv_dsp, recv_cnt);
  1336. recv_index.ReInit(recv_cnt[np-1] + recv_dsp[np-1]);
  1337. comm.Alltoallv(send_index.begin(), send_cnt.begin(), send_dsp.begin(), recv_index.begin(), recv_cnt.begin(), recv_dsp.begin());
  1338. }
  1339. Vector<Real> U_send(scatter_index.Dim() * dof * KDIM1_);
  1340. for (Long i = 0; i < scatter_index.Dim(); i++) {
  1341. Long idx = scatter_index[i]*dof*KDIM1_;
  1342. for (Long k = 0; k < dof * KDIM1_; k++) {
  1343. U_send[i*dof*KDIM1_ + k] = U_loc[idx + k];
  1344. }
  1345. }
  1346. Vector<Real> U_recv(recv_index.Dim() * dof * KDIM1_);
  1347. { // Set U_recv
  1348. for (Long i = 0; i < np; i++) {
  1349. send_cnt[i] *= dof * KDIM1_;
  1350. send_dsp[i] *= dof * KDIM1_;
  1351. recv_cnt[i] *= dof * KDIM1_;
  1352. recv_dsp[i] *= dof * KDIM1_;
  1353. }
  1354. comm.Alltoallv(U_send.begin(), send_cnt.begin(), send_dsp.begin(), U_recv.begin(), recv_cnt.begin(), recv_dsp.begin());
  1355. }
  1356. for (Long i = 0; i < recv_index.Dim(); i++) { // Set U
  1357. Long idx = (recv_index[i] - splitter_ranks[rank]) * dof * KDIM1_;
  1358. for (Integer k = 0; k < dof * KDIM1_; k++) {
  1359. U[idx + k] += U_recv[i*dof*KDIM1_ + k];
  1360. }
  1361. }
  1362. }
  1363. }
  1364. template <class ElemList, class DensityBasis, class Kernel> static void Direct(Vector<Real>& U, const Vector<Real>& Xt, const ElemList& elem_lst, const Vector<DensityBasis>& density, const Kernel& kernel, Integer order_direct, const Comm& comm) {
  1365. using CoordBasis = typename ElemList::CoordBasis;
  1366. using CoordEvalOpType = typename CoordBasis::EvalOpType;
  1367. using DensityEvalOpType = typename DensityBasis::EvalOpType;
  1368. constexpr Integer CoordDim = ElemList::CoordDim();
  1369. constexpr Integer ElemDim = ElemList::ElemDim();
  1370. constexpr Integer KDIM0 = Kernel::SrcDim();
  1371. constexpr Integer KDIM1 = Kernel::TrgDim();
  1372. const Long Nelem = elem_lst.NElem();
  1373. const Integer dof = density.Dim() / Nelem / KDIM0;
  1374. SCTL_ASSERT(density.Dim() == Nelem * dof * KDIM0);
  1375. Matrix<Real> quad_nds;
  1376. Vector<Real> quad_wts;
  1377. TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
  1378. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  1379. Integer Nnds = quad_wts.Dim();
  1380. const Vector<CoordBasis>& X = elem_lst.ElemVector();
  1381. Vector<CoordBasis> dX;
  1382. CoordBasis::Grad(dX, X);
  1383. Vector<Real> X_, dX_, Xa_, Xn_;
  1384. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  1385. eval_basis(dX_, dX, CoordDim*ElemDim, Nnds, CoordEvalOp);
  1386. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  1387. Long N = Nelem*Nnds;
  1388. Xa_.ReInit(N);
  1389. Xn_.ReInit(N*CoordDim);
  1390. for (Long j = 0; j < N; j++) {
  1391. StaticArray<Real,CoordDim> normal;
  1392. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  1393. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  1394. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  1395. Xa_[j] = sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  1396. Real invXa = 1/Xa_[j];
  1397. Xn_[j*3+0] = normal[0] * invXa;
  1398. Xn_[j*3+1] = normal[1] * invXa;
  1399. Xn_[j*3+2] = normal[2] * invXa;
  1400. }
  1401. }
  1402. Vector<Real> Fa_;
  1403. { // Set Fa_
  1404. Vector<Real> F_;
  1405. if (std::is_same<CoordBasis,DensityBasis>::value) {
  1406. eval_basis(F_, density, dof * KDIM0, Nnds, CoordEvalOp);
  1407. } else {
  1408. const DensityEvalOpType EvalOp = DensityBasis::SetupEval(quad_nds);
  1409. eval_basis(F_, density, dof * KDIM0, Nnds, EvalOp);
  1410. }
  1411. Fa_.ReInit(F_.Dim());
  1412. const Integer DensityDOF = dof * KDIM0;
  1413. SCTL_ASSERT(F_.Dim() == Nelem * Nnds * DensityDOF);
  1414. for (Long j = 0; j < Nelem; j++) {
  1415. for (Integer k = 0; k < Nnds; k++) {
  1416. Long idx = j * Nnds + k;
  1417. Real quad_wt = Xa_[idx] * quad_wts[k];
  1418. for (Integer l = 0; l < DensityDOF; l++) {
  1419. Fa_[idx * DensityDOF + l] = F_[idx * DensityDOF + l] * quad_wt;
  1420. }
  1421. }
  1422. }
  1423. }
  1424. { // Evaluate potential
  1425. const Long Ntrg = Xt.Dim() / CoordDim;
  1426. SCTL_ASSERT(Xt.Dim() == Ntrg * CoordDim);
  1427. if (U.Dim() != Ntrg * dof * KDIM1) {
  1428. U.ReInit(Ntrg * dof * KDIM1);
  1429. U = 0;
  1430. }
  1431. ParticleFMM<Real,CoordDim>::Eval(U, Xt, X_, Xn_, Fa_, kernel, comm);
  1432. }
  1433. }
  1434. public:
  1435. template <class DensityBasis, class ElemList, class Kernel> void Setup(const ElemList& elem_lst, const Vector<Real>& Xt, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) {
  1436. Xt_.ReInit(0);
  1437. M_singular.ReInit(0,0);
  1438. M_near_singular.ReInit(0,0);
  1439. pair_lst.ReInit(0);
  1440. order_direct_ = order_direct;
  1441. period_length_ = period_length;
  1442. comm_ = comm;
  1443. Profile::Tic("Setup", &comm_);
  1444. static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
  1445. static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
  1446. static_assert(DensityBasis::Dim() == ElemList::ElemDim());
  1447. Xt_ = Xt;
  1448. M_singular.ReInit(0,0);
  1449. Profile::Tic("SetupNearSingular", &comm_);
  1450. SetupNearSingular<DensityBasis>(M_near_singular, pair_lst, Xt_, Vector<Long>(), elem_lst, kernel, order_singular, order_direct_, period_length_, comm_);
  1451. Profile::Toc();
  1452. Profile::Toc();
  1453. }
  1454. template <class DensityBasis, class PotentialBasis, class ElemList, class Kernel> void Setup(const ElemList& elem_lst, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm, Real Rqbx = 0) {
  1455. Xt_.ReInit(0);
  1456. M_singular.ReInit(0,0);
  1457. M_near_singular.ReInit(0,0);
  1458. pair_lst.ReInit(0);
  1459. order_direct_ = order_direct;
  1460. period_length_ = period_length;
  1461. comm_ = comm;
  1462. Profile::Tic("Setup", &comm_);
  1463. static_assert(std::is_same<Real,typename PotentialBasis::ValueType>::value);
  1464. static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
  1465. static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
  1466. static_assert(PotentialBasis::Dim() == ElemList::ElemDim());
  1467. static_assert(DensityBasis::Dim() == ElemList::ElemDim());
  1468. Vector<Long> trg_surf;
  1469. { // Set Xt_
  1470. using CoordBasis = typename ElemList::CoordBasis;
  1471. Matrix<Real> trg_nds = PotentialBasis::Nodes();
  1472. auto Meval = CoordBasis::SetupEval(trg_nds);
  1473. eval_basis(Xt_, elem_lst.ElemVector(), ElemList::CoordDim(), trg_nds.Dim(1), Meval);
  1474. { // Set trg_surf
  1475. const Long Nelem = elem_lst.NElem();
  1476. const Long Nnds = trg_nds.Dim(1);
  1477. Long elem_offset;
  1478. { // Set elem_offset
  1479. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&elem_offset,1), 1, Comm::CommOp::SUM);
  1480. elem_offset -= Nelem;
  1481. }
  1482. trg_surf.ReInit(elem_lst.NElem() * trg_nds.Dim(1));
  1483. for (Long i = 0; i < Nelem; i++) {
  1484. for (Long j = 0; j < Nnds; j++) {
  1485. trg_surf[i*Nnds+j] = elem_offset + i;
  1486. }
  1487. }
  1488. }
  1489. }
  1490. Profile::Tic("SetupSingular", &comm_);
  1491. SetupSingular<DensityBasis>(M_singular, PotentialBasis::Nodes(), elem_lst, kernel, order_singular, order_direct_, Rqbx);
  1492. Profile::Toc();
  1493. Profile::Tic("SetupNearSingular", &comm_);
  1494. SetupNearSingular<DensityBasis>(M_near_singular, pair_lst, Xt_, trg_surf, elem_lst, kernel, order_singular, order_direct_, period_length_, comm_);
  1495. Profile::Toc();
  1496. Profile::Toc();
  1497. }
  1498. template <class DensityBasis, class PotentialBasis, class ElemList, class Kernel> void Eval(Vector<PotentialBasis>& U, const ElemList& elements, const Vector<DensityBasis>& F, const Kernel& kernel) const {
  1499. Profile::Tic("Eval", &comm_);
  1500. Matrix<Real> U_singular;
  1501. Vector<Real> U_direct, U_near_sing;
  1502. Profile::Tic("EvalDirect", &comm_);
  1503. Direct(U_direct, Xt_, elements, F, kernel, order_direct_, comm_);
  1504. Profile::Toc();
  1505. Profile::Tic("EvalSingular", &comm_);
  1506. EvalSingular(U_singular, F, M_singular, kernel.SrcDim(), kernel.TrgDim());
  1507. Profile::Toc();
  1508. Profile::Tic("EvalNearSingular", &comm_);
  1509. EvalNearSingular(U_near_sing, F, M_near_singular, pair_lst, elements.NElem(), Xt_.Dim() / ElemList::CoordDim(), kernel.SrcDim(), kernel.TrgDim(), comm_);
  1510. SCTL_ASSERT(U_near_sing.Dim() == U_direct.Dim());
  1511. Profile::Toc();
  1512. const Long dof = U_direct.Dim() / (elements.NElem() * PotentialBasis::Size() * kernel.TrgDim());
  1513. SCTL_ASSERT(U_direct .Dim() == elements.NElem() * PotentialBasis::Size() * dof * kernel.TrgDim());
  1514. SCTL_ASSERT(U_near_sing.Dim() == elements.NElem() * PotentialBasis::Size() * dof * kernel.TrgDim());
  1515. if (U.Dim() != elements.NElem() * dof * kernel.TrgDim()) {
  1516. U.ReInit(elements.NElem() * dof * kernel.TrgDim());
  1517. }
  1518. for (int i = 0; i < elements.NElem(); i++) {
  1519. for (int j = 0; j < PotentialBasis::Size(); j++) {
  1520. for (int k = 0; k < dof*kernel.TrgDim(); k++) {
  1521. Real& U_ = U[i*dof*kernel.TrgDim()+k][j];
  1522. U_ = 0;
  1523. U_ += U_direct [(i*PotentialBasis::Size()+j)*dof*kernel.TrgDim()+k];
  1524. U_ += U_near_sing[(i*PotentialBasis::Size()+j)*dof*kernel.TrgDim()+k];
  1525. U_ *= kernel.template ScaleFactor<Real>();
  1526. }
  1527. }
  1528. }
  1529. if (U_singular.Dim(1)) {
  1530. SCTL_ASSERT(U_singular.Dim(0) == elements.NElem() * dof * kernel.TrgDim());
  1531. SCTL_ASSERT(U_singular.Dim(1) == PotentialBasis::Size());
  1532. for (int i = 0; i < elements.NElem(); i++) {
  1533. for (int j = 0; j < PotentialBasis::Size(); j++) {
  1534. for (int k = 0; k < dof*kernel.TrgDim(); k++) {
  1535. U[i*dof*kernel.TrgDim()+k][j] += U_singular[i*dof*kernel.TrgDim()+k][j] * kernel.template ScaleFactor<Real>();
  1536. }
  1537. }
  1538. }
  1539. }
  1540. Profile::Toc();
  1541. }
  1542. template <class DensityBasis, class ElemList, class Kernel> void Eval(Vector<Real>& U, const ElemList& elements, const Vector<DensityBasis>& F, const Kernel& kernel) const {
  1543. Profile::Tic("Eval", &comm_);
  1544. Matrix<Real> U_singular;
  1545. Vector<Real> U_direct, U_near_sing;
  1546. Profile::Tic("EvalDirect", &comm_);
  1547. Direct(U_direct, Xt_, elements, F, kernel, order_direct_, comm_);
  1548. Profile::Toc();
  1549. Profile::Tic("EvalSingular", &comm_);
  1550. EvalSingular(U_singular, F, M_singular, kernel.SrcDim(), kernel.TrgDim());
  1551. Profile::Toc();
  1552. Profile::Tic("EvalNearSingular", &comm_);
  1553. EvalNearSingular(U_near_sing, F, M_near_singular, pair_lst, elements.NElem(), Xt_.Dim() / ElemList::CoordDim(), kernel.SrcDim(), kernel.TrgDim(), comm_);
  1554. SCTL_ASSERT(U_near_sing.Dim() == U_direct.Dim());
  1555. Profile::Toc();
  1556. Long Nt = Xt_.Dim() / ElemList::CoordDim();
  1557. const Long dof = U_direct.Dim() / (Nt * kernel.TrgDim());
  1558. SCTL_ASSERT(U_direct.Dim() == Nt * dof * kernel.TrgDim());
  1559. if (U.Dim() != U_direct.Dim()) {
  1560. U.ReInit(U_direct.Dim());
  1561. }
  1562. for (int i = 0; i < U.Dim(); i++) {
  1563. U[i] = (U_direct[i] + U_near_sing[i]) * kernel.template ScaleFactor<Real>();
  1564. }
  1565. if (U_singular.Dim(1)) {
  1566. SCTL_ASSERT(U_singular.Dim(0) == elements.NElem() * dof * kernel.TrgDim());
  1567. const Long Nnodes = U_singular.Dim(1);
  1568. for (int i = 0; i < elements.NElem(); i++) {
  1569. for (int j = 0; j < Nnodes; j++) {
  1570. for (int k = 0; k < dof*kernel.TrgDim(); k++) {
  1571. Real& U_ = U[(i*Nnodes+j)*dof*kernel.TrgDim()+k];
  1572. U_ += U_singular[i*dof*kernel.TrgDim()+k][j] * kernel.template ScaleFactor<Real>();
  1573. }
  1574. }
  1575. }
  1576. }
  1577. Profile::Toc();
  1578. }
  1579. template <Integer ORDER = 5> static void test(Integer order_singular = 10, Integer order_direct = 5, const Comm& comm = Comm::World()) {
  1580. constexpr Integer COORD_DIM = 3;
  1581. constexpr Integer ELEM_DIM = COORD_DIM-1;
  1582. using ElemList = ElemList<COORD_DIM, Basis<Real, ELEM_DIM, ORDER>>;
  1583. using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
  1584. using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
  1585. int np = comm.Size();
  1586. int rank = comm.Rank();
  1587. auto build_torus = [rank,np](ElemList& elements, long Nt, long Np, Real Rmajor, Real Rminor){
  1588. auto nodes = ElemList::CoordBasis::Nodes();
  1589. auto torus = [](Real theta, Real phi, Real Rmajor, Real Rminor) {
  1590. Real R = Rmajor + Rminor * cos<Real>(phi);
  1591. Real X = R * cos<Real>(theta);
  1592. Real Y = R * sin<Real>(theta);
  1593. Real Z = Rminor * sin<Real>(phi);
  1594. return std::make_tuple(X,Y,Z);
  1595. };
  1596. long start = Nt*Np*(rank+0)/np;
  1597. long end = Nt*Np*(rank+1)/np;
  1598. elements.ReInit(end - start);
  1599. for (long ii = start; ii < end; ii++) {
  1600. long i = ii / Np;
  1601. long j = ii % Np;
  1602. for (int k = 0; k < ElemList::CoordBasis::Size(); k++) {
  1603. Real X, Y, Z;
  1604. Real theta = 2 * const_pi<Real>() * (i + nodes[0][k]) / Nt;
  1605. Real phi = 2 * const_pi<Real>() * (j + nodes[1][k]) / Np;
  1606. std::tie(X,Y,Z) = torus(theta, phi, Rmajor, Rminor);
  1607. elements(ii-start,0)[k] = X;
  1608. elements(ii-start,1)[k] = Y;
  1609. elements(ii-start,2)[k] = Z;
  1610. }
  1611. }
  1612. };
  1613. ElemList elements_src, elements_trg;
  1614. build_torus(elements_src, 28, 16, 2, 1.0);
  1615. build_torus(elements_trg, 29, 17, 2, 0.99);
  1616. Vector<Real> Xt;
  1617. Vector<PotentialBasis> U_onsurf, U_offsurf;
  1618. Vector<DensityBasis> density_sl, density_dl;
  1619. { // Set Xt, elements_src, elements_trg, density_sl, density_dl, U
  1620. Real X0[COORD_DIM] = {3,2,1};
  1621. std::function<void(Real*,Real*,Real*)> potential = [X0](Real* U, Real* X, Real* Xn) {
  1622. Real dX[COORD_DIM] = {X[0]-X0[0],X[1]-X0[1],X[2]-X0[2]};
  1623. Real Rinv = 1/sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dX[2]);
  1624. U[0] = Rinv;
  1625. };
  1626. std::function<void(Real*,Real*,Real*)> potential_normal_derivative = [X0](Real* U, Real* X, Real* Xn) {
  1627. Real dX[COORD_DIM] = {X[0]-X0[0],X[1]-X0[1],X[2]-X0[2]};
  1628. Real Rinv = 1/sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dX[2]);
  1629. Real RdotN = dX[0]*Xn[0]+dX[1]*Xn[1]+dX[2]*Xn[2];
  1630. U[0] = -RdotN * Rinv*Rinv*Rinv;
  1631. };
  1632. DiscretizeSurfaceFn<COORD_DIM,1>(density_sl, elements_src, potential_normal_derivative);
  1633. DiscretizeSurfaceFn<COORD_DIM,1>(density_dl, elements_src, potential);
  1634. DiscretizeSurfaceFn<COORD_DIM,1>(U_onsurf , elements_src, potential);
  1635. DiscretizeSurfaceFn<COORD_DIM,1>(U_offsurf , elements_trg, potential);
  1636. for (long i = 0; i < elements_trg.NElem(); i++) { // Set Xt
  1637. for (long j = 0; j < PotentialBasis::Size(); j++) {
  1638. for (int k = 0; k < COORD_DIM; k++) {
  1639. Xt.PushBack(elements_trg(i,k)[j]);
  1640. }
  1641. }
  1642. }
  1643. }
  1644. GenericKernel<Laplace3D_DxU> Laplace_DxU;
  1645. GenericKernel<Laplace3D_FxU> Laplace_FxU;
  1646. Profile::Enable(true);
  1647. if (1) { // Greeen's identity test (Laplace, on-surface)
  1648. Profile::Tic("OnSurface", &comm);
  1649. Quadrature<Real> quadrature_DxU, quadrature_FxU;
  1650. quadrature_FxU.Setup<DensityBasis, PotentialBasis>(elements_src, Laplace_FxU, order_singular, order_direct, -1.0, comm);
  1651. quadrature_DxU.Setup<DensityBasis, PotentialBasis>(elements_src, Laplace_DxU, order_singular, order_direct, -1.0, comm);
  1652. Vector<PotentialBasis> U_sl, U_dl;
  1653. quadrature_FxU.Eval(U_sl, elements_src, density_sl, Laplace_FxU);
  1654. quadrature_DxU.Eval(U_dl, elements_src, density_dl, Laplace_DxU);
  1655. Profile::Toc();
  1656. Real max_err = 0;
  1657. Vector<PotentialBasis> err(U_onsurf.Dim());
  1658. for (long i = 0; i < U_sl.Dim(); i++) {
  1659. for (long j = 0; j < PotentialBasis::Size(); j++) {
  1660. err[i][j] = 0.5*U_onsurf[i][j] - (U_sl[i][j] + U_dl[i][j]);
  1661. max_err = std::max<Real>(max_err, fabs(err[i][j]));
  1662. }
  1663. }
  1664. { // Print error
  1665. Real glb_err;
  1666. comm.Allreduce(Ptr2ConstItr<Real>(&max_err,1), Ptr2Itr<Real>(&glb_err,1), 1, Comm::CommOp::MAX);
  1667. if (!comm.Rank()) std::cout<<"Error = "<<glb_err<<'\n';
  1668. }
  1669. { // Write VTK output
  1670. VTUData vtu;
  1671. vtu.AddElems(elements_src, err, ORDER);
  1672. vtu.WriteVTK("err", comm);
  1673. }
  1674. { // Write VTK output
  1675. VTUData vtu;
  1676. vtu.AddElems(elements_src, U_onsurf, ORDER);
  1677. vtu.WriteVTK("U", comm);
  1678. }
  1679. }
  1680. if (1) { // Greeen's identity test (Laplace, off-surface)
  1681. Profile::Tic("OffSurface", &comm);
  1682. Quadrature<Real> quadrature_DxU, quadrature_FxU;
  1683. quadrature_FxU.Setup<DensityBasis>(elements_src, Xt, Laplace_FxU, order_singular, order_direct, -1.0, comm);
  1684. quadrature_DxU.Setup<DensityBasis>(elements_src, Xt, Laplace_DxU, order_singular, order_direct, -1.0, comm);
  1685. Vector<Real> U_sl, U_dl;
  1686. quadrature_FxU.Eval(U_sl, elements_src, density_sl, Laplace_FxU);
  1687. quadrature_DxU.Eval(U_dl, elements_src, density_dl, Laplace_DxU);
  1688. Profile::Toc();
  1689. Real max_err = 0;
  1690. Vector<PotentialBasis> err(elements_trg.NElem());
  1691. for (long i = 0; i < elements_trg.NElem(); i++) {
  1692. for (long j = 0; j < PotentialBasis::Size(); j++) {
  1693. err[i][j] = U_offsurf[i][j] - (U_sl[i*PotentialBasis::Size()+j] + U_dl[i*PotentialBasis::Size()+j]);
  1694. max_err = std::max<Real>(max_err, fabs(err[i][j]));
  1695. }
  1696. }
  1697. { // Print error
  1698. Real glb_err;
  1699. comm.Allreduce(Ptr2ConstItr<Real>(&max_err,1), Ptr2Itr<Real>(&glb_err,1), 1, Comm::CommOp::MAX);
  1700. if (!comm.Rank()) std::cout<<"Error = "<<glb_err<<'\n';
  1701. }
  1702. { // Write VTK output
  1703. VTUData vtu;
  1704. vtu.AddElems(elements_trg, err, ORDER);
  1705. vtu.WriteVTK("err", comm);
  1706. }
  1707. { // Write VTK output
  1708. VTUData vtu;
  1709. vtu.AddElems(elements_trg, U_offsurf, ORDER);
  1710. vtu.WriteVTK("U", comm);
  1711. }
  1712. }
  1713. Profile::print(&comm);
  1714. }
  1715. static void test1() {
  1716. const Comm& comm = Comm::World();
  1717. constexpr Integer ORDER = 15;
  1718. Integer order_singular = 20;
  1719. Integer order_direct = 20;
  1720. constexpr Integer COORD_DIM = 3;
  1721. constexpr Integer ELEM_DIM = COORD_DIM-1;
  1722. using ElemList = ElemList<COORD_DIM, Basis<Real, ELEM_DIM, ORDER>>;
  1723. using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
  1724. using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
  1725. int np = comm.Size();
  1726. int rank = comm.Rank();
  1727. auto build_sphere = [rank,np](ElemList& elements, Real X, Real Y, Real Z, Real R){
  1728. auto nodes = ElemList::CoordBasis::Nodes();
  1729. long start = 2*COORD_DIM*(rank+0)/np;
  1730. long end = 2*COORD_DIM*(rank+1)/np;
  1731. elements.ReInit(end - start);
  1732. for (long ii = start; ii < end; ii++) {
  1733. long i = ii / 2;
  1734. long j = ii % 2;
  1735. for (int k = 0; k < ElemList::CoordBasis::Size(); k++) {
  1736. Real coord[COORD_DIM];
  1737. coord[(i+0)%COORD_DIM] = (j ? -1.0 : 1.0);
  1738. coord[(i+1)%COORD_DIM] = 2.0 * nodes[j?1:0][k] - 1.0;
  1739. coord[(i+2)%COORD_DIM] = 2.0 * nodes[j?0:1][k] - 1.0;
  1740. Real R0 = sqrt<Real>(coord[0]*coord[0] + coord[1]*coord[1] + coord[2]*coord[2]);
  1741. elements(ii-start,0)[k] = X + R * coord[0] / R0;
  1742. elements(ii-start,1)[k] = Y + R * coord[1] / R0;
  1743. elements(ii-start,2)[k] = Z + R * coord[2] / R0;
  1744. }
  1745. }
  1746. };
  1747. ElemList elements;
  1748. build_sphere(elements, 0.0, 0.0, 0.0, 1.00);
  1749. Vector<DensityBasis> density_sl;
  1750. { // Set density_sl
  1751. std::function<void(Real*,Real*,Real*)> sigma = [](Real* U, Real* X, Real* Xn) {
  1752. Real R = sqrt(X[0]*X[0]+X[1]*X[1]+X[2]*X[2]);
  1753. Real sinp = sqrt(X[1]*X[1] + X[2]*X[2]) / R;
  1754. Real cosp = -X[0] / R;
  1755. U[0] = -1.5;
  1756. U[1] = 0;
  1757. U[2] = 0;
  1758. };
  1759. DiscretizeSurfaceFn<COORD_DIM,3>(density_sl, elements, sigma);
  1760. }
  1761. GenericKernel<Stokes3D_DxU> Stokes_DxU;
  1762. GenericKernel<Stokes3D_FxU> Stokes_FxU;
  1763. Profile::Enable(true);
  1764. if (1) {
  1765. Vector<PotentialBasis> U;
  1766. Quadrature<Real> quadrature_FxU;
  1767. quadrature_FxU.Setup<DensityBasis, PotentialBasis>(elements, Stokes_FxU, order_singular, order_direct, -1.0, comm);
  1768. quadrature_FxU.Eval(U, elements, density_sl, Stokes_FxU);
  1769. { // Write VTK output
  1770. VTUData vtu;
  1771. vtu.AddElems(elements, U, ORDER);
  1772. vtu.WriteVTK("U", comm);
  1773. }
  1774. { // Write VTK output
  1775. VTUData vtu;
  1776. vtu.AddElems(elements, density_sl, ORDER);
  1777. vtu.WriteVTK("sigma", comm);
  1778. }
  1779. }
  1780. Profile::print(&comm);
  1781. }
  1782. private:
  1783. static void scan(Vector<Long>& dsp, const Vector<Long>& cnt) {
  1784. dsp.ReInit(cnt.Dim());
  1785. if (cnt.Dim()) dsp[0] = 0;
  1786. omp_par::scan(cnt.begin(), dsp.begin(), cnt.Dim());
  1787. }
  1788. template <class Basis> static void eval_basis(Vector<Real>& value, const Vector<Basis> X, Integer dof, Integer Nnds, const typename Basis::EvalOpType& EvalOp) {
  1789. Long Nelem = X.Dim() / dof;
  1790. SCTL_ASSERT(X.Dim() == Nelem * dof);
  1791. value.ReInit(Nelem*Nnds*dof);
  1792. Matrix<Real> X_(Nelem*dof, Nnds, value.begin(),false);
  1793. Basis::Eval(X_, X, EvalOp);
  1794. for (Long j = 0; j < Nelem; j++) { // Rearrange data
  1795. Matrix<Real> X(Nnds, dof, X_[j*dof], false);
  1796. X = Matrix<Real>(dof, Nnds, X_[j*dof], false).Transpose();
  1797. }
  1798. }
  1799. template <int CoordDim, int FnDim, class FnBasis, class ElemList> static void DiscretizeSurfaceFn(Vector<FnBasis>& U, const ElemList& elements, std::function<void(Real*,Real*,Real*)> fn) {
  1800. using CoordBasis = typename ElemList::CoordBasis;
  1801. const long Nelem = elements.NElem();
  1802. U.ReInit(Nelem * FnDim);
  1803. Matrix<Real> X, X_grad;
  1804. { // Set X, X_grad
  1805. Vector<CoordBasis> coord = elements.ElemVector();
  1806. Vector<CoordBasis> coord_grad;
  1807. CoordBasis::Grad(coord_grad, coord);
  1808. const auto Meval = CoordBasis::SetupEval(FnBasis::Nodes());
  1809. CoordBasis::Eval(X, coord, Meval);
  1810. CoordBasis::Eval(X_grad, coord_grad, Meval);
  1811. }
  1812. for (long i = 0; i < Nelem; i++) {
  1813. for (long j = 0; j < FnBasis::Size(); j++) {
  1814. Real X_[CoordDim], Xn[CoordDim], U_[FnDim];
  1815. for (long k = 0; k < CoordDim; k++) {
  1816. X_[k] = X[i*CoordDim+k][j];
  1817. }
  1818. { // Set Xn
  1819. Real Xu[CoordDim], Xv[CoordDim];
  1820. for (long k = 0; k < CoordDim; k++) {
  1821. Xu[k] = X_grad[(i*CoordDim+k)*2+0][j];
  1822. Xv[k] = X_grad[(i*CoordDim+k)*2+1][j];
  1823. }
  1824. Real dA = 0;
  1825. for (long k = 0; k < CoordDim; k++) {
  1826. Xn[k] = Xu[(k+1)%CoordDim] * Xv[(k+2)%CoordDim];
  1827. Xn[k] -= Xv[(k+1)%CoordDim] * Xu[(k+2)%CoordDim];
  1828. dA += Xn[k] * Xn[k];
  1829. }
  1830. dA = sqrt(dA);
  1831. for (long k = 0; k < CoordDim; k++) {
  1832. Xn[k] /= dA;
  1833. }
  1834. }
  1835. fn(U_, X_, Xn);
  1836. for (long k = 0; k < FnDim; k++) {
  1837. U[i*FnDim+k][j] = U_[k];
  1838. }
  1839. }
  1840. }
  1841. }
  1842. Vector<Real> Xt_;
  1843. Matrix<Real> M_singular;
  1844. Matrix<Real> M_near_singular;
  1845. Vector<Pair<Long,Long>> pair_lst;
  1846. Integer order_direct_;
  1847. Real period_length_;
  1848. Comm comm_;
  1849. };
  1850. template <class Real, Integer ORDER=10> class Stellarator {
  1851. private:
  1852. static constexpr Integer order_singular = 20;
  1853. static constexpr Integer order_direct = 25;
  1854. static constexpr Integer COORD_DIM = 3;
  1855. static constexpr Integer ELEM_DIM = COORD_DIM-1;
  1856. using ElemBasis = Basis<Real, ELEM_DIM, ORDER>;
  1857. using ElemLst = ElemList<COORD_DIM, ElemBasis>;
  1858. struct Laplace3D_dUxF {
  1859. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1860. return 1 / (4 * const_pi<ValueType>());
  1861. }
  1862. template <class ValueType> static void Eval(ValueType (&u)[3][1], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1863. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1864. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1865. ValueType rinv3 = rinv * rinv * rinv;
  1866. u[0][0] = -r[0] * rinv3;
  1867. u[1][0] = -r[1] * rinv3;
  1868. u[2][0] = -r[2] * rinv3;
  1869. }
  1870. };
  1871. struct BiotSavart3D {
  1872. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1873. return 1 / (4 * const_pi<ValueType>());
  1874. }
  1875. template <class ValueType> static void Eval(ValueType (&u)[3][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1876. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1877. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1878. ValueType rinv3 = rinv * rinv * rinv;
  1879. u[0][0] = (0) * rinv3; u[1][0] = r[2] * rinv3; u[2][0] = -r[1] * rinv3;
  1880. u[0][1] = -r[2] * rinv3; u[1][1] = (0) * rinv3; u[2][1] = r[0] * rinv3;
  1881. u[0][2] = r[1] * rinv3; u[1][2] = -r[0] * rinv3; u[2][2] = (0) * rinv3;
  1882. }
  1883. };
  1884. struct BiotSavartGrad3D {
  1885. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1886. return 1 / (4 * const_pi<ValueType>());
  1887. }
  1888. template <class ValueType> static void Eval(ValueType (&u)[3][9], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1889. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1890. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1891. ValueType rinv2 = rinv * rinv;
  1892. ValueType rinv3 = rinv2 * rinv;
  1893. ValueType rinv5 = rinv2 * rinv3;
  1894. u[0][0] = 0; u[1][0] = - 3 * r[2] * r[0] * rinv5; u[2][0] = 3 * r[1] * r[0] * rinv5;
  1895. u[0][1] = 0; u[1][1] = - 3 * r[2] * r[1] * rinv5; u[2][1] = -(1) * rinv3 + 3 * r[1] * r[1] * rinv5;
  1896. u[0][2] = 0; u[1][2] = (1) * rinv3 - 3 * r[2] * r[2] * rinv5; u[2][2] = 3 * r[1] * r[2] * rinv5;
  1897. u[0][3] = 3 * r[2] * r[0] * rinv5; u[1][3] = 0; u[2][3] = (1) * rinv3 - 3 * r[0] * r[0] * rinv5;
  1898. u[0][4] = 3 * r[2] * r[1] * rinv5; u[1][4] = 0; u[2][4] = - 3 * r[0] * r[1] * rinv5;
  1899. u[0][5] = -(1) * rinv3 + 3 * r[2] * r[2] * rinv5; u[1][5] = 0; u[2][5] = - 3 * r[0] * r[2] * rinv5;
  1900. u[0][6] = - 3 * r[1] * r[0] * rinv5; u[1][6] = -(1) * rinv3 + 3 * r[0] * r[0] * rinv5; u[2][6] = 0;
  1901. u[0][7] = (1) * rinv3 - 3 * r[1] * r[1] * rinv5; u[1][7] = 3 * r[0] * r[1] * rinv5; u[2][7] = 0;
  1902. u[0][8] = - 3 * r[1] * r[2] * rinv5; u[1][8] = 3 * r[0] * r[2] * rinv5; u[2][8] = 0;
  1903. }
  1904. };
  1905. struct Laplace3D_dUxD {
  1906. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1907. return 1 / (4 * const_pi<ValueType>());
  1908. }
  1909. template <class ValueType> static void Eval(ValueType (&u)[3][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1910. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1911. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1912. ValueType rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2];
  1913. ValueType rinv2 = rinv * rinv;
  1914. ValueType rinv3 = rinv * rinv2;
  1915. ValueType rinv5 = rinv3 * rinv2;
  1916. u[0][0] = -1 * rinv3 + 3 * r[0] * r[0] * rinv5;
  1917. u[0][1] = -0 * rinv3 + 3 * r[0] * r[1] * rinv5;
  1918. u[0][2] = -0 * rinv3 + 3 * r[0] * r[2] * rinv5;
  1919. u[1][0] = -0 * rinv3 + 3 * r[1] * r[0] * rinv5;
  1920. u[1][1] = -1 * rinv3 + 3 * r[1] * r[1] * rinv5;
  1921. u[1][2] = -0 * rinv3 + 3 * r[1] * r[2] * rinv5;
  1922. u[2][0] = -0 * rinv3 + 3 * r[2] * r[0] * rinv5;
  1923. u[2][1] = -0 * rinv3 + 3 * r[2] * r[1] * rinv5;
  1924. u[2][2] = -1 * rinv3 + 3 * r[2] * r[2] * rinv5;
  1925. }
  1926. };
  1927. struct Laplace3D_DxdU {
  1928. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1929. return 1 / (4 * const_pi<ValueType>());
  1930. }
  1931. template <class ValueType> static void Eval(ValueType (&u)[1][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1932. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1933. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1934. ValueType rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2];
  1935. ValueType rinv2 = rinv * rinv;
  1936. ValueType rinv3 = rinv * rinv2;
  1937. ValueType rinv5 = rinv3 * rinv2;
  1938. u[0][0] = -n[0] * rinv3 + 3*rdotn * r[0] * rinv5;
  1939. u[0][1] = -n[1] * rinv3 + 3*rdotn * r[1] * rinv5;
  1940. u[0][2] = -n[2] * rinv3 + 3*rdotn * r[2] * rinv5;
  1941. }
  1942. };
  1943. struct Laplace3D_Fxd2U {
  1944. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1945. return 1 / (4 * const_pi<ValueType>());
  1946. }
  1947. template <class ValueType> static void Eval(ValueType (&u)[1][9], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1948. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1949. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1950. ValueType rinv2 = rinv * rinv;
  1951. ValueType rinv3 = rinv * rinv2;
  1952. ValueType rinv5 = rinv3 * rinv2;
  1953. u[0][0+3*0] = -1 * rinv3 + 3 * r[0] * r[0] * rinv5;
  1954. u[0][1+3*0] = -0 * rinv3 + 3 * r[0] * r[1] * rinv5;
  1955. u[0][2+3*0] = -0 * rinv3 + 3 * r[0] * r[2] * rinv5;
  1956. u[0][0+3*1] = -0 * rinv3 + 3 * r[1] * r[0] * rinv5;
  1957. u[0][1+3*1] = -1 * rinv3 + 3 * r[1] * r[1] * rinv5;
  1958. u[0][2+3*1] = -0 * rinv3 + 3 * r[1] * r[2] * rinv5;
  1959. u[0][0+3*2] = -0 * rinv3 + 3 * r[2] * r[0] * rinv5;
  1960. u[0][1+3*2] = -0 * rinv3 + 3 * r[2] * r[1] * rinv5;
  1961. u[0][2+3*2] = -1 * rinv3 + 3 * r[2] * r[2] * rinv5;
  1962. }
  1963. };
  1964. static Real max_norm(const Vector<Real>& x) {
  1965. Real err = 0;
  1966. for (const auto& a : x) err = std::max(err, fabs<Real>(a));
  1967. return err;
  1968. }
  1969. public:
  1970. static Vector<ElemBasis> compute_dot_prod(const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  1971. const Long Nelem = A.Dim() / COORD_DIM;
  1972. const Long Nnodes = ElemBasis::Size();
  1973. SCTL_ASSERT(A.Dim() == Nelem * COORD_DIM);
  1974. SCTL_ASSERT(B.Dim() == Nelem * COORD_DIM);
  1975. Vector<ElemBasis> AdotB(Nelem);
  1976. for (Long i = 0; i < Nelem; i++) {
  1977. for (Long j = 0; j < Nnodes; j++) {
  1978. Real a_dot_b = 0;
  1979. a_dot_b += A[i*COORD_DIM+0][j]*B[i*COORD_DIM+0][j];
  1980. a_dot_b += A[i*COORD_DIM+1][j]*B[i*COORD_DIM+1][j];
  1981. a_dot_b += A[i*COORD_DIM+2][j]*B[i*COORD_DIM+2][j];
  1982. AdotB[i][j] = a_dot_b;
  1983. }
  1984. }
  1985. return AdotB;
  1986. }
  1987. static Real compute_inner_prod(const Vector<ElemBasis>& area_elem, const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  1988. const auto& quad_wts = ElemBasis::QuadWts();
  1989. const Long Nnodes = ElemBasis::Size();
  1990. const Long Nelem = area_elem.Dim();
  1991. const Long dof = B.Dim() / Nelem;
  1992. Real sum = 0;
  1993. for (Long i = 0; i < Nelem; i++) {
  1994. for (Long j = 0; j < Nnodes; j++) {
  1995. Real AdotB = 0;
  1996. for (Long k = 0; k < dof; k++) {
  1997. AdotB += A[i*dof+k][j] * B[i*dof+k][j];
  1998. }
  1999. sum += AdotB * area_elem[i][j] * quad_wts[j];
  2000. }
  2001. }
  2002. return sum;
  2003. }
  2004. static void compute_harmonic_vector_potentials(Vector<ElemBasis>& Jt, Vector<ElemBasis>& Jp, const Stellarator<Real,ORDER>& S) {
  2005. Comm comm = Comm::World();
  2006. Real gmres_tol = 1e-10;
  2007. Long max_iter = 100;
  2008. auto cheb2grid = [] (const Vector<ElemBasis>& X, Long Mt, Long Mp, Long Nt, Long Np) {
  2009. const Long dof = X.Dim() / (Mt * Mp);
  2010. SCTL_ASSERT(X.Dim() == Mt * Mp *dof);
  2011. Vector<Real> Xf(dof*Nt*Np); Xf = 0;
  2012. const Long Nnodes = ElemBasis::Size();
  2013. const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
  2014. for (Long t = 0; t < Nt; t++) {
  2015. for (Long p = 0; p < Np; p++) {
  2016. Real theta = t / (Real)Nt;
  2017. Real phi = p / (Real)Np;
  2018. Long i = (Long)(theta * Mt);
  2019. Long j = (Long)(phi * Mp);
  2020. Real x = theta * Mt - i;
  2021. Real y = phi * Mp - j;
  2022. Long elem_idx = i * Mp + j;
  2023. Vector<Real> Interp0(ORDER);
  2024. Vector<Real> Interp1(ORDER);
  2025. { // Set Interp0, Interp1
  2026. auto node = [&Mnodes] (Long i) {
  2027. return Mnodes[0][i];
  2028. };
  2029. for (Long i = 0; i < ORDER; i++) {
  2030. Real wt_x = 1, wt_y = 1;
  2031. for (Long j = 0; j < ORDER; j++) {
  2032. if (j != i) {
  2033. wt_x *= (x - node(j)) / (node(i) - node(j));
  2034. wt_y *= (y - node(j)) / (node(i) - node(j));
  2035. }
  2036. Interp0[i] = wt_x;
  2037. Interp1[i] = wt_y;
  2038. }
  2039. }
  2040. }
  2041. for (Long ii = 0; ii < ORDER; ii++) {
  2042. for (Long jj = 0; jj < ORDER; jj++) {
  2043. Long node_idx = jj * ORDER + ii;
  2044. for (Long k = 0; k < dof; k++) {
  2045. Xf[(k*Nt+t)*Np+p] += X[elem_idx*dof+k][node_idx] * Interp0[ii] * Interp1[jj];
  2046. }
  2047. }
  2048. }
  2049. }
  2050. }
  2051. return Xf;
  2052. };
  2053. auto grid2cheb = [] (const Vector<Real>& Xf, Long Nt, Long Np, Long Mt, Long Mp) {
  2054. Long dof = Xf.Dim() / (Nt*Np);
  2055. SCTL_ASSERT(Xf.Dim() == dof*Nt*Np);
  2056. Vector<ElemBasis> X(Mt*Mp*dof);
  2057. constexpr Integer INTERP_ORDER = 12;
  2058. for (Long tt = 0; tt < Mt; tt++) {
  2059. for (Long pp = 0; pp < Mp; pp++) {
  2060. for (Long t = 0; t < ORDER; t++) {
  2061. for (Long p = 0; p < ORDER; p++) {
  2062. Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
  2063. Real theta = (tt + Mnodes[0][t]) / Mt;
  2064. Real phi = (pp + Mnodes[0][p]) / Mp;
  2065. Long i = (Long)(theta * Nt);
  2066. Long j = (Long)(phi * Np);
  2067. Real x = theta * Nt - i;
  2068. Real y = phi * Np - j;
  2069. Vector<Real> Interp0(INTERP_ORDER);
  2070. Vector<Real> Interp1(INTERP_ORDER);
  2071. { // Set Interp0, Interp1
  2072. auto node = [] (Long i) {
  2073. return (Real)i - (INTERP_ORDER-1)/2;
  2074. };
  2075. for (Long i = 0; i < INTERP_ORDER; i++) {
  2076. Real wt_x = 1, wt_y = 1;
  2077. for (Long j = 0; j < INTERP_ORDER; j++) {
  2078. if (j != i) {
  2079. wt_x *= (x - node(j)) / (node(i) - node(j));
  2080. wt_y *= (y - node(j)) / (node(i) - node(j));
  2081. }
  2082. Interp0[i] = wt_x;
  2083. Interp1[i] = wt_y;
  2084. }
  2085. }
  2086. }
  2087. for (Long k = 0; k < dof; k++) {
  2088. Real X0 = 0;
  2089. for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  2090. for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  2091. Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  2092. Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  2093. X0 += Interp0[ii] * Interp1[jj] * Xf[(k*Nt+idx_i)*Np+idx_j];
  2094. }
  2095. }
  2096. Long elem_idx = tt * Mp + pp;
  2097. Long node_idx = p * ORDER + t;
  2098. X[elem_idx*dof+k][node_idx] = X0;
  2099. }
  2100. }
  2101. }
  2102. }
  2103. }
  2104. return X;
  2105. };
  2106. Long Nelem = S.NElem();
  2107. if (Jp.Dim() != Nelem * COORD_DIM) Jp.ReInit(Nelem * COORD_DIM);
  2108. if (Jt.Dim() != Nelem * COORD_DIM) Jt.ReInit(Nelem * COORD_DIM);
  2109. for (Long k = 0; k < S.Nsurf(); k++) {
  2110. Long Nt = S.NTor(k)*ORDER*2, Np = S.NPol(k)*ORDER*2;
  2111. const auto& X_ = S.GetElemList().ElemVector();
  2112. Vector<ElemBasis> X(S.NTor(k)*S.NPol(k)*COORD_DIM, (Iterator<ElemBasis>)X_.begin()+S.ElemDsp(k)*COORD_DIM, false);
  2113. biest::Surface<Real> SS(Nt, Np);
  2114. biest::SurfaceOp<Real> surf_op(comm, Nt, Np);
  2115. SS.Coord() = cheb2grid(X, S.NTor(k), S.NPol(k), Nt, Np);
  2116. Vector<Real> dX, d2X;
  2117. surf_op.Grad2D(dX, SS.Coord());
  2118. surf_op.Grad2D(d2X, dX);
  2119. Vector<Real> Jt_(COORD_DIM * Nt * Np);
  2120. Vector<Real> Jp_(COORD_DIM * Nt * Np);
  2121. { // Set Jt_, Jp_
  2122. Vector<Real> DivV, InvLapDivV, GradInvLapDivV;
  2123. for (Long i = 0; i < Nt*Np; i++) { // Set V
  2124. for (Long k =0; k < COORD_DIM; k++) {
  2125. Jt_[k * Nt*Np + i] = dX[(k*2+0) * Nt*Np + i];
  2126. Jp_[k * Nt*Np + i] = dX[(k*2+1) * Nt*Np + i];
  2127. }
  2128. }
  2129. surf_op.SurfDiv(DivV, dX, Jt_);
  2130. surf_op.GradInvSurfLap(GradInvLapDivV, dX, d2X, DivV, gmres_tol * max_norm(Jt_) / max_norm(DivV), max_iter, 1.5);
  2131. Jt_ = Jt_ - GradInvLapDivV;
  2132. surf_op.SurfDiv(DivV, dX, Jp_);
  2133. surf_op.GradInvSurfLap(GradInvLapDivV, dX, d2X, DivV, gmres_tol * max_norm(Jp_) / max_norm(DivV), max_iter, 1.5);
  2134. Jp_ = Jp_ - GradInvLapDivV;
  2135. }
  2136. Vector<ElemBasis> Jt__(S.NTor(k)*S.NPol(k)*COORD_DIM, (Iterator<ElemBasis>)Jt.begin()+S.ElemDsp(k)*COORD_DIM, false);
  2137. Vector<ElemBasis> Jp__(S.NTor(k)*S.NPol(k)*COORD_DIM, (Iterator<ElemBasis>)Jp.begin()+S.ElemDsp(k)*COORD_DIM, false);
  2138. Jt__ = grid2cheb(Jt_, Nt, Np, S.NTor(k), S.NPol(k));
  2139. Jp__ = grid2cheb(Jp_, Nt, Np, S.NTor(k), S.NPol(k));
  2140. }
  2141. }
  2142. static void compute_norm_area_elem(const Stellarator<Real,ORDER>& S, Vector<ElemBasis>& normal, Vector<ElemBasis>& area_elem){ // Set normal, area_elem
  2143. const Vector<ElemBasis>& X = S.GetElemList().ElemVector();
  2144. const Long Nelem = X.Dim() / COORD_DIM;
  2145. const Long Nnodes = ElemBasis::Size();
  2146. Vector<ElemBasis> dX;
  2147. ElemBasis::Grad(dX, X);
  2148. area_elem.ReInit(Nelem);
  2149. normal.ReInit(Nelem * COORD_DIM);
  2150. for (Long i = 0; i < Nelem; i++) {
  2151. for (Long j = 0; j < Nnodes; j++) {
  2152. Tensor<Real,true,COORD_DIM> x, n;
  2153. Tensor<Real,true,COORD_DIM,2> dx;
  2154. x(0) = X[i*COORD_DIM+0][j];
  2155. x(1) = X[i*COORD_DIM+1][j];
  2156. x(2) = X[i*COORD_DIM+2][j];
  2157. dx(0,0) = dX[i*COORD_DIM*2+0][j];
  2158. dx(0,1) = dX[i*COORD_DIM*2+1][j];
  2159. dx(1,0) = dX[i*COORD_DIM*2+2][j];
  2160. dx(1,1) = dX[i*COORD_DIM*2+3][j];
  2161. dx(2,0) = dX[i*COORD_DIM*2+4][j];
  2162. dx(2,1) = dX[i*COORD_DIM*2+5][j];
  2163. n(0) = dx(1,0) * dx(2,1) - dx(2,0) * dx(1,1);
  2164. n(1) = dx(2,0) * dx(0,1) - dx(0,0) * dx(2,1);
  2165. n(2) = dx(0,0) * dx(1,1) - dx(1,0) * dx(0,1);
  2166. Real area_elem_ = sqrt<Real>(n(0)*n(0) + n(1)*n(1) + n(2)*n(2));
  2167. Real ooae = 1 / area_elem_;
  2168. n(0) *= ooae;
  2169. n(1) *= ooae;
  2170. n(2) *= ooae;
  2171. normal[i*COORD_DIM+0][j] = n(0);
  2172. normal[i*COORD_DIM+1][j] = n(1);
  2173. normal[i*COORD_DIM+2][j] = n(2);
  2174. area_elem[i][j] = area_elem_;
  2175. }
  2176. }
  2177. }
  2178. static Vector<ElemBasis> compute_B(const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  2179. const Long Nelem = S.NElem();
  2180. Vector<ElemBasis> B(S.NElem() * COORD_DIM);
  2181. if (sigma.Dim()) {
  2182. const Long Nnodes = ElemBasis::Size();
  2183. Vector<ElemBasis> normal, area_elem;
  2184. compute_norm_area_elem(S, normal, area_elem);
  2185. if (S.Nsurf() == 2) {
  2186. Long Nelem0 = S.NTor(0)*S.NPol(0);
  2187. for (Long i = 0; i < Nelem0*COORD_DIM; i++) {
  2188. for (Long j = 0; j < Nnodes; j++) {
  2189. normal[i][j] *= -1.0;
  2190. }
  2191. }
  2192. }
  2193. EvalQuadrature(B, S.quadrature_FxdU, S, sigma, S.Laplace_FxdU);
  2194. for (Long i = 0; i < Nelem; i++) {
  2195. for (Long j = 0; j < Nnodes; j++) {
  2196. for (Long k = 0; k < COORD_DIM; k++) {
  2197. B[i*COORD_DIM+k][j] -= 0.5*sigma[i][j]*normal[i*COORD_DIM+k][j];
  2198. }
  2199. }
  2200. }
  2201. } else {
  2202. B = 0;
  2203. }
  2204. if (S.Nsurf() >= 1) B += S.Bt0*alpha;
  2205. if (S.Nsurf() >= 2) B += S.Bp0*beta;
  2206. return B;
  2207. }
  2208. static Vector<ElemBasis> compute_dB(const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  2209. const Long Nelem = S.NElem();
  2210. Vector<ElemBasis> dB(S.NElem() * COORD_DIM * COORD_DIM);
  2211. if (sigma.Dim()) {
  2212. EvalQuadrature(dB, S.quadrature_Fxd2U, S, sigma, S.Laplace_Fxd2U);
  2213. } else {
  2214. dB = 0;
  2215. }
  2216. if (S.Nsurf() >= 1) dB += S.dBt0*alpha;
  2217. if (S.Nsurf() >= 2) dB += S.dBp0*beta;
  2218. return dB;
  2219. }
  2220. static void compute_flux(Real& flux_tor, Real& flux_pol, const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& B, const Vector<ElemBasis>& normal) {
  2221. const Long Nelem = S.NElem();
  2222. const Long Nnodes = ElemBasis::Size();
  2223. SCTL_ASSERT(B.Dim() == Nelem*COORD_DIM);
  2224. SCTL_ASSERT(normal.Dim() == Nelem*COORD_DIM);
  2225. Vector<ElemBasis> J(Nelem * COORD_DIM);
  2226. for (Long i = 0; i < Nelem; i++) { // Set J
  2227. for (Long j = 0; j < Nnodes; j++) {
  2228. Tensor<Real,true,COORD_DIM> b, n;
  2229. b(0) = B[i*COORD_DIM+0][j];
  2230. b(1) = B[i*COORD_DIM+1][j];
  2231. b(2) = B[i*COORD_DIM+2][j];
  2232. n(0) = normal[i*COORD_DIM+0][j];
  2233. n(1) = normal[i*COORD_DIM+1][j];
  2234. n(2) = normal[i*COORD_DIM+2][j];
  2235. J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
  2236. J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
  2237. J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
  2238. }
  2239. }
  2240. Vector<ElemBasis> A;
  2241. EvalQuadrature(A, S.quadrature_FxU, S, J, S.Laplace_FxU);
  2242. Vector<Real> circ_pol(S.Nsurf()), circ_tor(S.Nsurf());
  2243. { // compute circ
  2244. Vector<ElemBasis> dX;
  2245. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2246. const auto& quad_wts = ElemBasis::QuadWts();
  2247. for (Long k = 0; k < S.Nsurf(); k++) {
  2248. circ_pol[k] = 0;
  2249. circ_tor[k] = 0;
  2250. Long Ndsp = S.ElemDsp(k);
  2251. for (Long i = 0; i < S.NTor(k)*S.NPol(k); i++) {
  2252. for (Long j = 0; j < Nnodes; j++) {
  2253. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+1][j] * quad_wts[j] / S.NTor(k);
  2254. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+3][j] * quad_wts[j] / S.NTor(k);
  2255. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+5][j] * quad_wts[j] / S.NTor(k);
  2256. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+0][j] * quad_wts[j] / S.NPol(k);
  2257. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+2][j] * quad_wts[j] / S.NPol(k);
  2258. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+4][j] * quad_wts[j] / S.NPol(k);
  2259. }
  2260. }
  2261. }
  2262. }
  2263. if (S.Nsurf() == 1) {
  2264. flux_tor = circ_pol[0];
  2265. flux_pol = 0;
  2266. } else if (S.Nsurf() == 2) {
  2267. flux_tor = circ_pol[1] - circ_pol[0];
  2268. flux_pol = circ_tor[0] - circ_tor[1];
  2269. } else {
  2270. SCTL_ASSERT(false);
  2271. }
  2272. }
  2273. static Vector<Real> compute_A(const Stellarator<Real,ORDER>& S, const Vector<Real>& x) {
  2274. const Long Nelem = S.NElem();
  2275. const Long Nnodes = ElemBasis::Size();
  2276. SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
  2277. Vector<ElemBasis> normal, area_elem;
  2278. compute_norm_area_elem(S, normal, area_elem);
  2279. if (S.Nsurf() == 2) {
  2280. Long Nelem0 = S.NTor(0)*S.NPol(0);
  2281. for (Long i = 0; i < Nelem0*COORD_DIM; i++) {
  2282. for (Long j = 0; j < Nnodes; j++) {
  2283. normal[i][j] *= -1.0;
  2284. }
  2285. }
  2286. }
  2287. Vector<ElemBasis> sigma(Nelem);
  2288. for (Long i = 0; i < Nelem; i++) {
  2289. for (Long j = 0; j < Nnodes; j++) {
  2290. sigma[i][j] = x[i*Nnodes+j];
  2291. }
  2292. }
  2293. Real alpha = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
  2294. Real beta = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
  2295. Vector<ElemBasis> B = compute_B(S, sigma, alpha, beta);
  2296. Vector<ElemBasis> BdotN = compute_dot_prod(B, normal);
  2297. Real flux_tor, flux_pol;
  2298. compute_flux(flux_tor, flux_pol, S, B, normal);
  2299. Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
  2300. for (Long i = 0; i < Nelem; i++) {
  2301. for (Long j = 0; j < Nnodes; j++) {
  2302. Ax[i*Nnodes+j] = BdotN[i][j];
  2303. }
  2304. }
  2305. if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = flux_tor;
  2306. if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = flux_pol;
  2307. return Ax;
  2308. }
  2309. static void compute_invA(Vector<ElemBasis>& sigma, Real& alpha, Real& beta, const Stellarator<Real,ORDER>& S, Vector<ElemBasis>& Bdotn, Real flux_tor, Real flux_pol, const Comm& comm) {
  2310. typename ParallelSolver<Real>::ParallelOp BIOp = [&S](Vector<Real>* Ax, const Vector<Real>& x) {
  2311. (*Ax) = compute_A(S, x);
  2312. };
  2313. const Long Nelem = S.NElem();
  2314. const Long Nnodes = ElemBasis::Size();
  2315. Vector<Real> rhs_(Nelem * Nnodes + S.Nsurf());
  2316. for (Long i = 0; i < Nelem; i++) {
  2317. for (Long j = 0; j < Nnodes; j++) {
  2318. rhs_[i*Nnodes+j] = Bdotn[i][j];
  2319. }
  2320. }
  2321. if (S.Nsurf() >= 1) rhs_[Nelem * Nnodes + 0] = flux_tor;
  2322. if (S.Nsurf() >= 2) rhs_[Nelem * Nnodes + 1] = flux_pol;
  2323. Vector<Real> x_(Nelem * Nnodes + S.Nsurf());
  2324. x_ = 0;
  2325. ParallelSolver<Real> linear_solver(comm, true);
  2326. linear_solver(&x_, BIOp, rhs_, 1e-10, 100);
  2327. sigma.ReInit(Nelem);
  2328. for (Long i = 0; i < Nelem; i++) {
  2329. for (Long j = 0; j < Nnodes; j++) {
  2330. sigma[i][j] = x_[i*Nnodes+j];
  2331. }
  2332. }
  2333. alpha = (S.Nsurf() >= 1 ? x_[Nelem * Nnodes + 0] : 0);
  2334. beta = (S.Nsurf() >= 2 ? x_[Nelem * Nnodes + 1] : 0);
  2335. };
  2336. static void compute_invA(Vector<ElemBasis>& sigma, Real& alpha, Real& beta, const Stellarator<Real,ORDER>& S, Real flux_tor, Real flux_pol, const Comm& comm) {
  2337. Vector<ElemBasis> Bdotn(S.NElem());
  2338. Bdotn = 0;
  2339. compute_invA(sigma, alpha, beta, S, Bdotn, flux_tor, flux_pol, comm);
  2340. }
  2341. static Vector<Real> compute_Aadj(const Stellarator<Real,ORDER>& S, const Vector<Real>& x) {
  2342. const Long Nelem = S.NElem();
  2343. const Long Nnodes = ElemBasis::Size();
  2344. SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
  2345. Vector<ElemBasis> normal, area_elem;
  2346. compute_norm_area_elem(S, normal, area_elem);
  2347. if (S.Nsurf() == 2) {
  2348. Long Nelem0 = S.NTor(0)*S.NPol(0);
  2349. for (Long i = 0; i < Nelem0*COORD_DIM; i++) {
  2350. for (Long j = 0; j < Nnodes; j++) {
  2351. normal[i][j] *= -1.0;
  2352. }
  2353. }
  2354. }
  2355. Vector<ElemBasis> x0(Nelem);
  2356. for (Long i = 0; i < Nelem; i++) {
  2357. for (Long j = 0; j < Nnodes; j++) {
  2358. x0[i][j] = x[i*Nnodes+j];
  2359. }
  2360. }
  2361. Real x1 = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
  2362. Real x2 = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
  2363. Vector<ElemBasis> Ax0;
  2364. Real Ax1, Ax2;
  2365. { // Set Ax0, Ax1, Ax2
  2366. Vector<ElemBasis> x0_n(Nelem*COORD_DIM);
  2367. for (Long i = 0; i < Nelem; i++) {
  2368. for (Long j = 0; j < Nnodes; j++) {
  2369. x0_n[i*COORD_DIM+0][j] = x0[i][j] * normal[i*COORD_DIM+0][j];
  2370. x0_n[i*COORD_DIM+1][j] = x0[i][j] * normal[i*COORD_DIM+1][j];
  2371. x0_n[i*COORD_DIM+2][j] = x0[i][j] * normal[i*COORD_DIM+2][j];
  2372. }
  2373. }
  2374. EvalQuadrature(Ax0, S.quadrature_dUxF, S, x0_n, S.Laplace_dUxF);
  2375. Ax0 = x0*(-0.5) - Ax0;
  2376. Ax1 = (S.Nsurf() >= 1 ? compute_inner_prod(area_elem, compute_dot_prod(S.Bt0, normal), x0) : 0);
  2377. Ax2 = (S.Nsurf() >= 2 ? compute_inner_prod(area_elem, compute_dot_prod(S.Bp0, normal), x0) : 0);
  2378. }
  2379. // TODO: precompute A21adj, A22adj
  2380. auto compute_A21adj = [&S,&normal,&area_elem] (bool toroidal_flux) {
  2381. const Long Nelem = S.NElem();
  2382. const Long Nnodes = ElemBasis::Size();
  2383. Vector<ElemBasis> density(Nelem * COORD_DIM);
  2384. { // Set density
  2385. Real scal[2];
  2386. if (S.Nsurf() == 1) {
  2387. SCTL_ASSERT(toroidal_flux == true);
  2388. scal[0] = 1.0 / S.NTor(0);
  2389. scal[1] = 0;
  2390. } else if (S.Nsurf() == 2) {
  2391. if (toroidal_flux == true) {
  2392. scal[0] = -1.0 / S.NTor(0);
  2393. scal[1] = 1.0 / S.NTor(1);
  2394. } else {
  2395. scal[0] = 1.0 / S.NPol(0);
  2396. scal[1] = -1.0 / S.NPol(1);
  2397. }
  2398. } else {
  2399. SCTL_ASSERT(false);
  2400. }
  2401. Vector<ElemBasis> dX;
  2402. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2403. for (Long k = 0; k < S.Nsurf(); k++) {
  2404. for (Long i_ = 0; i_ < S.NTor(k)*S.NPol(k); i_++) {
  2405. Long i = S.ElemDsp(k) + i_;
  2406. for (Long j = 0; j < Nnodes; j++) {
  2407. Real s = scal[k] / area_elem[i][j];
  2408. density[i*COORD_DIM+0][j] = dX[i*COORD_DIM*2+0+(toroidal_flux?1:0)][j] * s;
  2409. density[i*COORD_DIM+1][j] = dX[i*COORD_DIM*2+2+(toroidal_flux?1:0)][j] * s;
  2410. density[i*COORD_DIM+2][j] = dX[i*COORD_DIM*2+4+(toroidal_flux?1:0)][j] * s;
  2411. }
  2412. }
  2413. }
  2414. }
  2415. Vector<ElemBasis> Gdensity, nxGdensity(Nelem * COORD_DIM), A21adj;
  2416. EvalQuadrature(Gdensity, S.quadrature_FxU, S, density, S.Laplace_FxU);
  2417. for (Long i = 0; i < Nelem; i++) { // Set nxGdensity
  2418. for (Long j = 0; j < Nnodes; j++) {
  2419. Tensor<Real,true,COORD_DIM> Gdensity_, n;
  2420. Gdensity_(0) = Gdensity[i*COORD_DIM+0][j];
  2421. Gdensity_(1) = Gdensity[i*COORD_DIM+1][j];
  2422. Gdensity_(2) = Gdensity[i*COORD_DIM+2][j];
  2423. n(0) = normal[i*COORD_DIM+0][j];
  2424. n(1) = normal[i*COORD_DIM+1][j];
  2425. n(2) = normal[i*COORD_DIM+2][j];
  2426. nxGdensity[i*COORD_DIM+0][j] = n(1) * Gdensity_(2) - n(2) * Gdensity_(1);
  2427. nxGdensity[i*COORD_DIM+1][j] = n(2) * Gdensity_(0) - n(0) * Gdensity_(2);
  2428. nxGdensity[i*COORD_DIM+2][j] = n(0) * Gdensity_(1) - n(1) * Gdensity_(0);
  2429. }
  2430. }
  2431. EvalQuadrature(A21adj, S.quadrature_dUxF, S, nxGdensity, S.Laplace_dUxF);
  2432. return A21adj;
  2433. };
  2434. if (S.Nsurf() >= 1) Ax0 += compute_A21adj( true) * x1;
  2435. if (S.Nsurf() >= 2) Ax0 += compute_A21adj(false) * x2;
  2436. if (S.Nsurf() == 1) { // Add flux part of Ax1, Ax2
  2437. Real flux_tor, flux_pol;
  2438. compute_flux(flux_tor, flux_pol, S, S.Bt0, normal);
  2439. Ax1 += flux_tor * x1;
  2440. Ax2 += 0;
  2441. } else if (S.Nsurf() == 2) {
  2442. Real flux_tor, flux_pol;
  2443. compute_flux(flux_tor, flux_pol, S, S.Bt0, normal);
  2444. Ax1 += flux_tor * x1 + flux_pol * x2;
  2445. compute_flux(flux_tor, flux_pol, S, S.Bp0, normal);
  2446. Ax2 += flux_tor * x1 + flux_pol * x2;
  2447. } else {
  2448. SCTL_ASSERT(false);
  2449. }
  2450. Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
  2451. for (Long i = 0; i < Nelem; i++) {
  2452. for (Long j = 0; j < Nnodes; j++) {
  2453. Ax[i*Nnodes+j] = Ax0[i][j];
  2454. }
  2455. }
  2456. if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = Ax1;
  2457. if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = Ax2;
  2458. return Ax;
  2459. }
  2460. static Vector<Real> compute_invAadj(const Stellarator<Real,ORDER>& S, const Vector<Real>& b, const Comm& comm) {
  2461. typename ParallelSolver<Real>::ParallelOp BIOp = [&S](Vector<Real>* Ax, const Vector<Real>& x) {
  2462. (*Ax) = compute_Aadj(S,x);
  2463. };
  2464. const Long Nelem = S.NElem();
  2465. const Long Nnodes = ElemBasis::Size();
  2466. Vector<Real> x(b.Dim());
  2467. x = 0;
  2468. ParallelSolver<Real> linear_solver(comm, true);
  2469. linear_solver(&x, BIOp, b, 1e-8, 100);
  2470. return x;
  2471. }
  2472. static Vector<ElemBasis> compute_pressure_jump(const Vector<Stellarator<Real,ORDER>>& Svec, const Vector<Real>& pressure) {
  2473. const Long Nnodes = ElemBasis::Size();
  2474. const Long Nsurf = Svec.Dim();
  2475. SCTL_ASSERT(pressure.Dim() == Nsurf);
  2476. Vector<Vector<ElemBasis>> total_pressure(Nsurf);
  2477. for (Long i = 0; i < Nsurf; i++) { // Set total_pressure
  2478. const Long Nelem = Svec[i].NElem();
  2479. const auto& B = Svec[i].B;
  2480. total_pressure[i].ReInit(Nelem);
  2481. for (Long j = 0; j < Nelem; j++) {
  2482. for (Long k = 0; k < Nnodes; k++) {
  2483. Real B2 = 0;
  2484. B2 += B[j*COORD_DIM+0][k] * B[j*COORD_DIM+0][k];
  2485. B2 += B[j*COORD_DIM+1][k] * B[j*COORD_DIM+1][k];
  2486. B2 += B[j*COORD_DIM+2][k] * B[j*COORD_DIM+2][k];
  2487. total_pressure[i][j][k] = 0.5 * B2 + pressure[i];
  2488. }
  2489. }
  2490. }
  2491. Vector<Long> elem_cnt, elem_dsp;
  2492. for (Long i = 0; i < Nsurf; i++) {
  2493. if (i == 0) {
  2494. elem_cnt.PushBack(Svec[i].NTor(0) * Svec[i].NPol(0));
  2495. elem_dsp.PushBack(0);
  2496. } else {
  2497. elem_cnt.PushBack(Svec[i].NTor(1) * Svec[i].NPol(1));
  2498. elem_dsp.PushBack(elem_dsp[i-1] + elem_cnt[i-1]);
  2499. }
  2500. }
  2501. Vector<ElemBasis> pressure_jump(elem_dsp[Nsurf-1] + elem_cnt[Nsurf-1]);
  2502. pressure_jump = 0;
  2503. for (Long i = 0; i < Nsurf-1; i++) { // Set pressure_jump
  2504. Long Nelem, offset;
  2505. if (i == 0) {
  2506. offset = 0;
  2507. Nelem = Svec[i].NTor(0) * Svec[i].NPol(0);
  2508. } else {
  2509. offset = Svec[i].NTor(0) * Svec[i].NPol(0);
  2510. Nelem = Svec[i].NTor(1) * Svec[i].NPol(1);
  2511. }
  2512. for (Long j = 0; j < Nelem; j++) {
  2513. for (Long k = 0; k < Nnodes; k++) {
  2514. Real T0 = total_pressure[i][offset+j][k];
  2515. Real T1 = (i+1<Nsurf ? total_pressure[i+1][j][k] : 0);
  2516. pressure_jump[elem_dsp[i]+j][k] = T1 - T0;
  2517. }
  2518. }
  2519. }
  2520. return pressure_jump;
  2521. }
  2522. static void compute_gvec(const Vector<Stellarator<Real,ORDER>>& Svec, const Vector<Real>& pressure) {
  2523. Vector<ElemBasis> pressure_jump = compute_pressure_jump(Svec, pressure);
  2524. const Long Nnodes = ElemBasis::Size();
  2525. const Long Nsurf = Svec.Dim();
  2526. Long elem_offset = 0;
  2527. for (Long i = 0; i < Nsurf; i++) { // Allocate
  2528. Svec[i].gvec.ReInit(Svec[i].NElem());
  2529. Svec[i].gvec = 0;
  2530. }
  2531. for (Long i = 0; i < Nsurf-1; i++) { // Set gvec
  2532. Long Nelem, offset;
  2533. if (i == 0) {
  2534. offset = 0;
  2535. Nelem = Svec[i].NTor(0) * Svec[i].NPol(0);
  2536. } else {
  2537. offset = Svec[i].NTor(0) * Svec[i].NPol(0);
  2538. Nelem = Svec[i].NTor(1) * Svec[i].NPol(1);
  2539. }
  2540. for (Long j = 0; j < Nelem; j++) {
  2541. for (Long k = 0; k < Nnodes; k++) {
  2542. Real jump = pressure_jump[elem_offset+j][k];
  2543. Svec[i].gvec[offset+j][k] = 0.5 * jump * jump;
  2544. if (i+1<Nsurf) Svec[i+1].gvec[j][k] = 0.5 * jump * jump;
  2545. }
  2546. }
  2547. elem_offset += Nelem;
  2548. }
  2549. }
  2550. static void compute_dgdB(const Vector<Stellarator<Real,ORDER>>& Svec, const Vector<Real>& pressure) {
  2551. Vector<ElemBasis> pressure_jump = compute_pressure_jump(Svec, pressure);
  2552. const Long Nnodes = ElemBasis::Size();
  2553. const Long Nsurf = Svec.Dim();
  2554. Long elem_offset = 0;
  2555. for (Long i = 0; i < Nsurf; i++) { // Allocate
  2556. Svec[i].dgdB.ReInit(Svec[i].NElem() * COORD_DIM);
  2557. Svec[i].dgdB = 0;
  2558. }
  2559. for (Long i = 0; i < Nsurf-1; i++) { // Set dgdB
  2560. Long Nelem, offset;
  2561. if (i == 0) {
  2562. offset = 0;
  2563. Nelem = Svec[i].NTor(0) * Svec[i].NPol(0);
  2564. } else {
  2565. offset = Svec[i].NTor(0) * Svec[i].NPol(0);
  2566. Nelem = Svec[i].NTor(1) * Svec[i].NPol(1);
  2567. }
  2568. for (Long j = 0; j < Nelem; j++) {
  2569. for (Long k = 0; k < Nnodes; k++) {
  2570. Real jump = pressure_jump[elem_offset+j][k];
  2571. Svec[i].dgdB[(offset+j)*COORD_DIM+0][k] = -jump * Svec[i].B[(offset+j)*COORD_DIM+0][k];
  2572. Svec[i].dgdB[(offset+j)*COORD_DIM+1][k] = -jump * Svec[i].B[(offset+j)*COORD_DIM+1][k];
  2573. Svec[i].dgdB[(offset+j)*COORD_DIM+2][k] = -jump * Svec[i].B[(offset+j)*COORD_DIM+2][k];
  2574. if (i+1<Nsurf) {
  2575. Svec[i+1].dgdB[j*COORD_DIM+0][k] = jump * Svec[i+1].B[j*COORD_DIM+0][k];
  2576. Svec[i+1].dgdB[j*COORD_DIM+1][k] = jump * Svec[i+1].B[j*COORD_DIM+1][k];
  2577. Svec[i+1].dgdB[j*COORD_DIM+2][k] = jump * Svec[i+1].B[j*COORD_DIM+2][k];
  2578. }
  2579. }
  2580. }
  2581. elem_offset += Nelem;
  2582. }
  2583. }
  2584. static Real compute_g(const Vector<Stellarator<Real,ORDER>>& Svec, const Vector<Real>& pressure) {
  2585. Real g = 0;
  2586. compute_gvec(Svec, pressure);
  2587. for (Long i = 0; i < Svec.Dim(); i++) { // Set gvec
  2588. Vector<ElemBasis> normal, area_elem, wt(Svec[i].NElem());
  2589. compute_norm_area_elem(Svec[i], normal, area_elem);
  2590. wt = 0.5;
  2591. if (i == Svec.Dim()-1) {
  2592. Long Nsurf = Svec[i].Nsurf();
  2593. Long Nelem = Svec[i].NTor(Nsurf-1) * Svec[i].NPol(Nsurf-1);
  2594. Long offset = Svec[i].ElemDsp(Nsurf-1);
  2595. for (Long j = 0; j < Nelem; j++) {
  2596. wt[offset + j] = 1.0;
  2597. }
  2598. }
  2599. g += compute_inner_prod(area_elem, Svec[i].gvec, wt);
  2600. }
  2601. return g;
  2602. }
  2603. Stellarator(const Vector<Long>& NtNp = Vector<Long>()) {
  2604. NtNp_ = NtNp;
  2605. Long Nsurf = NtNp_.Dim() / 2;
  2606. SCTL_ASSERT(Nsurf*2 == NtNp_.Dim());
  2607. Long Nelem = 0;
  2608. elem_dsp.ReInit(Nsurf+1);
  2609. elem_dsp[0] = 0;
  2610. for (Long i = 0; i < Nsurf; i++) {
  2611. Nelem += NtNp_[i*2+0]*NtNp_[i*2+1];
  2612. elem_dsp[i+1] = Nelem;
  2613. }
  2614. elements.ReInit(Nelem);
  2615. for (Long i = 0; i < Nsurf; i++) {
  2616. InitSurf(i, this->Nsurf());
  2617. }
  2618. }
  2619. Long ElemIdx(Long s, Long t, Long p) {
  2620. SCTL_ASSERT(0 <= s && s < Nsurf());
  2621. SCTL_ASSERT(0 <= t && t < NtNp_[s*2+0]);
  2622. SCTL_ASSERT(0 <= p && p < NtNp_[s*2+1]);
  2623. return elem_dsp[s] + t*NtNp_[s*2+1] + p;
  2624. }
  2625. ElemBasis& Elem(Long elem, Integer dim) {
  2626. return elements(elem,dim);
  2627. }
  2628. const ElemBasis& Elem(Long elem, Integer dim) const {
  2629. return elements(elem,dim);
  2630. }
  2631. const ElemLst& GetElemList() const {
  2632. return elements;
  2633. }
  2634. Long Nsurf() const {
  2635. return elem_dsp.Dim()-1;
  2636. }
  2637. Long ElemDsp(Long s) const {
  2638. return elem_dsp[s];
  2639. }
  2640. Long NTor(Long s) const {
  2641. return NtNp_[s*2+0];
  2642. }
  2643. Long NPol(Long s) const {
  2644. return NtNp_[s*2+1];
  2645. }
  2646. Long NElem() const {
  2647. return elements.NElem();
  2648. }
  2649. static Vector<ElemBasis> compute_gradient(const Stellarator<Real,ORDER>& S_, const Vector<Real>& pressure, const Vector<Real>& flux_tor_, const Vector<Real>& flux_pol_, Real* g_ptr = nullptr) {
  2650. Comm comm = Comm::World();
  2651. Vector<Stellarator<Real,ORDER>> Svec(S_.Nsurf());
  2652. for (Long i = 0; i < S_.Nsurf(); i++) { // Set Svec[i] (quadratures, B)
  2653. const Long elem_dsp = (i==0 ? 0 : S_.ElemDsp(i-1));
  2654. const Long Nnodes = ElemBasis::Size();
  2655. Stellarator<Real,ORDER>& S = Svec[i];
  2656. if (i == 0) { // Init S
  2657. Vector<Long> NtNp;
  2658. NtNp.PushBack(S_.NTor(i));
  2659. NtNp.PushBack(S_.NPol(i));
  2660. S = Stellarator<Real,ORDER>(NtNp);
  2661. } else {
  2662. Vector<Long> NtNp;
  2663. NtNp.PushBack(S_.NTor(i-1));
  2664. NtNp.PushBack(S_.NPol(i-1));
  2665. NtNp.PushBack(S_.NTor(i));
  2666. NtNp.PushBack(S_.NPol(i));
  2667. S = Stellarator<Real,ORDER>(NtNp);
  2668. }
  2669. for (Long j = 0; j < S.NElem(); j++) { // Set S coordinates
  2670. for (Long k = 0; k < Nnodes; k++) {
  2671. S.Elem(j,0)[k] = S_.Elem(elem_dsp+j,0)[k];
  2672. S.Elem(j,1)[k] = S_.Elem(elem_dsp+j,1)[k];
  2673. S.Elem(j,2)[k] = S_.Elem(elem_dsp+j,2)[k];
  2674. }
  2675. }
  2676. SetupQuadrature(S.quadrature_dBS , S, S.BiotSavartGrad, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  2677. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  2678. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  2679. SetupQuadrature(S.quadrature_FxdU , S, S.Laplace_FxdU , order_singular, order_direct, -1.0, comm);
  2680. SetupQuadrature(S.quadrature_dUxF , S, S.Laplace_dUxF , order_singular, order_direct, -1.0, comm);
  2681. SetupQuadrature(S.quadrature_dUxD , S, S.Laplace_dUxD , order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  2682. SetupQuadrature(S.quadrature_Fxd2U, S, S.Laplace_Fxd2U , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  2683. { // Set Bt0, Bp0, dBt0, dBp0
  2684. Vector<ElemBasis> Jt, Jp;
  2685. compute_harmonic_vector_potentials(Jt, Jp, S);
  2686. EvalQuadrature(S.Bt0 , S.quadrature_BS , S, Jp, S.BiotSavart);
  2687. EvalQuadrature(S.Bp0 , S.quadrature_BS , S, Jt, S.BiotSavart);
  2688. EvalQuadrature(S.dBt0, S.quadrature_dBS, S, Jp, S.BiotSavartGrad);
  2689. EvalQuadrature(S.dBp0, S.quadrature_dBS, S, Jt, S.BiotSavartGrad);
  2690. }
  2691. compute_invA(S.sigma, S.alpha, S.beta, S, flux_tor_[i], flux_pol_[i], comm);
  2692. S.B = compute_B(S, S.sigma, S.alpha, S.beta);
  2693. if (0) { // Write VTU
  2694. VTUData vtu;
  2695. vtu.AddElems(S.GetElemList(), S.sigma, ORDER);
  2696. vtu.WriteVTK("sigma"+std::to_string(i), comm);
  2697. }
  2698. if (0) { // Write VTU
  2699. VTUData vtu;
  2700. vtu.AddElems(S.GetElemList(), S.B, ORDER);
  2701. vtu.WriteVTK("B"+std::to_string(i), comm);
  2702. }
  2703. }
  2704. compute_gvec(Svec, pressure);
  2705. compute_dgdB(Svec, pressure);
  2706. if (g_ptr != nullptr) g_ptr[0] = compute_g(Svec, pressure);
  2707. auto compute_gradient = [&comm] (const Stellarator<Real,ORDER>& S) {
  2708. const Long Nnodes = ElemBasis::Size();
  2709. const Long Nelem = S.NElem();
  2710. const auto& sigma = S.sigma;
  2711. const auto& alpha = S.alpha;
  2712. const auto& beta = S.beta;
  2713. const auto& B = S.B;
  2714. Vector<ElemBasis> normal, area_elem;
  2715. compute_norm_area_elem(S, normal, area_elem);
  2716. if (S.Nsurf() == 2) {
  2717. Long Nelem0 = S.NTor(0)*S.NPol(0);
  2718. for (Long i = 0; i < Nelem0*COORD_DIM; i++) {
  2719. for (Long j = 0; j < Nnodes; j++) {
  2720. normal[i][j] *= -1.0;
  2721. }
  2722. }
  2723. }
  2724. auto compute_H = [] (const ElemList<COORD_DIM,ElemBasis>& elem_lst, const Vector<ElemBasis>& normal) {
  2725. const Long Nnodes = ElemBasis::Size();
  2726. const Long Nelem = elem_lst.NElem();
  2727. const Vector<ElemBasis> X = elem_lst.ElemVector();
  2728. Vector<ElemBasis> dX, d2X, H(Nelem);
  2729. ElemBasis::Grad(dX, X);
  2730. ElemBasis::Grad(d2X, dX);
  2731. for (Long i = 0; i < Nelem; i++) {
  2732. for (Long j = 0; j < Nnodes; j++) {
  2733. Tensor<Real,true,2,2> I, invI, II;
  2734. for (Long k0 = 0; k0 < 2; k0++) {
  2735. for (Long k1 = 0; k1 < 2; k1++) {
  2736. I(k0,k1) = 0;
  2737. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  2738. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  2739. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  2740. II(k0,k1) = 0;
  2741. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  2742. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  2743. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  2744. }
  2745. }
  2746. { // Set invI
  2747. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  2748. invI(0,0) = I(1,1) / detI;
  2749. invI(0,1) = -I(0,1) / detI;
  2750. invI(1,0) = -I(1,0) / detI;
  2751. invI(1,1) = I(0,0) / detI;
  2752. }
  2753. { // Set H
  2754. H[i][j] = 0;
  2755. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  2756. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  2757. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  2758. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  2759. }
  2760. }
  2761. }
  2762. return H;
  2763. };
  2764. Vector<ElemBasis> H = compute_H(S.GetElemList(), normal);
  2765. auto compute_dg_dnu = [&S,&normal,&area_elem,&H]() { // dg_dnu = (B*B) 2H - (2 B) \cdot (n \cdnot nabla) \nabla G[sigma] + (2 B) \alpha dB0_dnu \hat{\theta} + sigma (\nabla D)^T [2 B] + (2H) sigma (\nabla G)^T [2 B]
  2766. const Long Nelem = S.NElem();
  2767. const Long Nnodes = ElemBasis::Size();
  2768. const Vector<ElemBasis>& gvec = S.gvec;
  2769. const Vector<ElemBasis>& v = S.dgdB;
  2770. const auto& sigma = S.sigma;
  2771. const auto& alpha = S.alpha;
  2772. const auto& beta = S.beta;
  2773. const auto& B = S.B;
  2774. Vector<ElemBasis> dg_dnu0(Nelem), dg_dnu1(Nelem), dg_dnu2(Nelem), dg_dnu3(Nelem), dg_dnu4(Nelem);
  2775. dg_dnu0 = 0;
  2776. dg_dnu1 = 0;
  2777. dg_dnu2 = 0;
  2778. dg_dnu3 = 0;
  2779. dg_dnu4 = 0;
  2780. // dg_dnu0 = (B*B) 2H
  2781. for (Long i = 0; i < Nelem; i++) {
  2782. for (Long j = 0; j < Nnodes; j++) {
  2783. dg_dnu0[i][j] = gvec[i][j] * (2.0*H[i][j]) * 0.5;
  2784. // multiplicative factor 0.5 is there so that this term is not
  2785. // counted twice from shape derivative of regions on either side
  2786. // of the domain.
  2787. }
  2788. }
  2789. // dg_dnu1 = (2 B) \cdot (n \cdnot \nabla) B
  2790. Vector<ElemBasis> dB = compute_dB(S, sigma, alpha, beta);
  2791. for (Long i = 0; i < Nelem; i++) {
  2792. for (Long j = 0; j < Nnodes; j++) {
  2793. dg_dnu1[i][j] = 0;
  2794. dg_dnu1[i][j] -= dB[i*9+0][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
  2795. dg_dnu1[i][j] -= dB[i*9+1][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
  2796. dg_dnu1[i][j] -= dB[i*9+2][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
  2797. dg_dnu1[i][j] -= dB[i*9+3][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
  2798. dg_dnu1[i][j] -= dB[i*9+4][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
  2799. dg_dnu1[i][j] -= dB[i*9+5][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
  2800. dg_dnu1[i][j] -= dB[i*9+6][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
  2801. dg_dnu1[i][j] -= dB[i*9+7][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
  2802. dg_dnu1[i][j] -= dB[i*9+8][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
  2803. }
  2804. }
  2805. // dg_dnu3 = (sigma (\nabla D)^T [2 B]
  2806. Vector<ElemBasis> nablaDtv;
  2807. EvalQuadrature(nablaDtv, S.quadrature_dUxD, S, v, S.Laplace_dUxD);
  2808. for (Long i = 0; i < Nelem; i++) {
  2809. for (Long j = 0; j < Nnodes; j++) {
  2810. dg_dnu3[i][j] = 0;
  2811. dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  2812. dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  2813. dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  2814. }
  2815. }
  2816. // dg_dnu4 = (2H) sigma (\nabla G)^T [2 B]
  2817. EvalQuadrature(dg_dnu4, S.quadrature_dUxF, S, v, S.Laplace_dUxF);
  2818. for (Long i = 0; i < Nelem; i++) {
  2819. for (Long j = 0; j < Nnodes; j++) {
  2820. dg_dnu4[i][j] += 0.5 * v[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  2821. dg_dnu4[i][j] += 0.5 * v[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  2822. dg_dnu4[i][j] += 0.5 * v[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  2823. dg_dnu4[i][j] *= 2*H[i][j] * sigma[i][j];
  2824. }
  2825. }
  2826. return dg_dnu0 + dg_dnu1 + dg_dnu3 - dg_dnu4;
  2827. };
  2828. Vector<ElemBasis> dg_dnu = compute_dg_dnu();
  2829. auto compute_dg_dsigma = [&S,&normal,&area_elem] () {
  2830. const Long Nnodes = ElemBasis::Size();
  2831. const Long Nelem = S.NElem();
  2832. const auto& B = S.B;
  2833. const Vector<ElemBasis>& dgdB = S.dgdB;
  2834. auto compute_dg_dsigma = [&S,&B,&dgdB,&normal]() { // dg_dsigma = \int 2 B \cdot (\nabla G + n/2)
  2835. Vector<ElemBasis> B_dot_gradG;
  2836. EvalQuadrature(B_dot_gradG, S.quadrature_dUxF, S, dgdB, S.Laplace_dUxF);
  2837. return B_dot_gradG * (-1.0) + compute_dot_prod(dgdB,normal) * 0.5;
  2838. };
  2839. auto compute_dg_dalpha = [&S,&B,&dgdB,&area_elem] () {
  2840. auto dB_dalpha = compute_B(S, Vector<ElemBasis>(),1,0);
  2841. return compute_inner_prod(area_elem, dgdB,dB_dalpha);
  2842. };
  2843. auto compute_dg_dbeta = [&S,&B,&dgdB,&area_elem] () {
  2844. auto dB_dalpha = compute_B(S, Vector<ElemBasis>(),0,1);
  2845. return compute_inner_prod(area_elem, dgdB,dB_dalpha);
  2846. };
  2847. Vector<Real> dg_dsigma(Nelem*Nnodes+S.Nsurf());
  2848. Vector<ElemBasis> dg_dsigma_ = compute_dg_dsigma();
  2849. for (Long i = 0; i < Nelem; i++) {
  2850. for (Long j = 0; j < Nnodes; j++) {
  2851. dg_dsigma[i*Nnodes+j] = dg_dsigma_[i][j];
  2852. }
  2853. }
  2854. if (S.Nsurf() >= 1) dg_dsigma[Nelem*Nnodes+0] = compute_dg_dalpha();
  2855. if (S.Nsurf() >= 2) dg_dsigma[Nelem*Nnodes+1] = compute_dg_dbeta ();
  2856. return dg_dsigma;
  2857. };
  2858. Vector<Real> dg_dsigma = compute_dg_dsigma();
  2859. Vector<Real> dg_dsigma_invA = compute_invAadj(S, dg_dsigma, comm);
  2860. ///////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2861. ///////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2862. auto compute_grad_adj = [&S,&area_elem] (const Vector<ElemBasis>& V) {
  2863. const Long Nelem = S.NElem();
  2864. const Long Nnodes = ElemBasis::Size();
  2865. Vector<ElemBasis> du_dX(Nelem*COORD_DIM*2);
  2866. { // Set du_dX
  2867. Vector<ElemBasis> dX;
  2868. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2869. auto inv2x2 = [](Tensor<Real, true, 2, 2> M) {
  2870. Tensor<Real, true, 2, 2> Mout;
  2871. Real oodet = 1 / (M(0,0) * M(1,1) - M(0,1) * M(1,0));
  2872. Mout(0,0) = M(1,1) * oodet;
  2873. Mout(0,1) = -M(0,1) * oodet;
  2874. Mout(1,0) = -M(1,0) * oodet;
  2875. Mout(1,1) = M(0,0) * oodet;
  2876. return Mout;
  2877. };
  2878. for (Long i = 0; i < Nelem; i++) {
  2879. for (Long j = 0; j < Nnodes; j++) {
  2880. Tensor<Real, true, 3, 2> dX_du;
  2881. dX_du(0,0) = dX[(i*COORD_DIM+0)*2+0][j];
  2882. dX_du(1,0) = dX[(i*COORD_DIM+1)*2+0][j];
  2883. dX_du(2,0) = dX[(i*COORD_DIM+2)*2+0][j];
  2884. dX_du(0,1) = dX[(i*COORD_DIM+0)*2+1][j];
  2885. dX_du(1,1) = dX[(i*COORD_DIM+1)*2+1][j];
  2886. dX_du(2,1) = dX[(i*COORD_DIM+2)*2+1][j];
  2887. Tensor<Real, true, 2, 2> G; // = dX_du.Transpose() * dX_du;
  2888. G(0,0) = dX_du(0,0) * dX_du(0,0) + dX_du(1,0) * dX_du(1,0) + dX_du(2,0) * dX_du(2,0);
  2889. G(0,1) = dX_du(0,0) * dX_du(0,1) + dX_du(1,0) * dX_du(1,1) + dX_du(2,0) * dX_du(2,1);
  2890. G(1,0) = dX_du(0,1) * dX_du(0,0) + dX_du(1,1) * dX_du(1,0) + dX_du(2,1) * dX_du(2,0);
  2891. G(1,1) = dX_du(0,1) * dX_du(0,1) + dX_du(1,1) * dX_du(1,1) + dX_du(2,1) * dX_du(2,1);
  2892. Tensor<Real, true, 2, 2> Ginv = inv2x2(G);
  2893. du_dX[(i*COORD_DIM+0)*2+0][j] = Ginv(0,0) * dX_du(0,0) + Ginv(0,1) * dX_du(0,1);
  2894. du_dX[(i*COORD_DIM+1)*2+0][j] = Ginv(0,0) * dX_du(1,0) + Ginv(0,1) * dX_du(1,1);
  2895. du_dX[(i*COORD_DIM+2)*2+0][j] = Ginv(0,0) * dX_du(2,0) + Ginv(0,1) * dX_du(2,1);
  2896. du_dX[(i*COORD_DIM+0)*2+1][j] = Ginv(1,0) * dX_du(0,0) + Ginv(1,1) * dX_du(0,1);
  2897. du_dX[(i*COORD_DIM+1)*2+1][j] = Ginv(1,0) * dX_du(1,0) + Ginv(1,1) * dX_du(1,1);
  2898. du_dX[(i*COORD_DIM+2)*2+1][j] = Ginv(1,0) * dX_du(2,0) + Ginv(1,1) * dX_du(2,1);
  2899. }
  2900. }
  2901. }
  2902. Vector<ElemBasis> dudX_V(Nelem*2);
  2903. for (Long i = 0; i < Nelem; i++) {
  2904. for (Long j = 0; j < Nnodes; j++) {
  2905. dudX_V[i*2+0][j] = 0;
  2906. dudX_V[i*2+1][j] = 0;
  2907. dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+0)*2+0][j] * V[i*COORD_DIM+0][j] * area_elem[i][j];
  2908. dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+1)*2+0][j] * V[i*COORD_DIM+1][j] * area_elem[i][j];
  2909. dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+2)*2+0][j] * V[i*COORD_DIM+2][j] * area_elem[i][j];
  2910. dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+0)*2+1][j] * V[i*COORD_DIM+0][j] * area_elem[i][j];
  2911. dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+1)*2+1][j] * V[i*COORD_DIM+1][j] * area_elem[i][j];
  2912. dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+2)*2+1][j] * V[i*COORD_DIM+2][j] * area_elem[i][j];
  2913. }
  2914. }
  2915. Vector<ElemBasis> grad_dudX_V;
  2916. ElemBasis::Grad(grad_dudX_V, dudX_V);
  2917. Vector<ElemBasis> grad_adj_V(Nelem);
  2918. for (Long i = 0; i < Nelem; i++) {
  2919. for (Long j = 0; j < Nnodes; j++) {
  2920. grad_adj_V[i][j] = -(grad_dudX_V[(i*2+0)*2+0][j] + grad_dudX_V[(i*2+1)*2+1][j]) / area_elem[i][j];
  2921. }
  2922. }
  2923. return grad_adj_V;
  2924. };
  2925. auto compute_u_dAdnu_v_0 = [&S,&normal,&H,&compute_grad_adj] (const Vector<Real>& u_, const Vector<ElemBasis>& v, Real alpha, Real beta) {
  2926. const Long Nnodes = ElemBasis::Size();
  2927. const Long Nelem = S.NElem();
  2928. Vector<ElemBasis> dAdnu0(Nelem), dAdnu1(Nelem), dAdnu2(Nelem), dAdnu3(Nelem);
  2929. Vector<ElemBasis> u(Nelem), u_n(Nelem*COORD_DIM);
  2930. for (Long i = 0; i < Nelem; i++) {
  2931. for (Long j = 0; j < Nnodes; j++) {
  2932. u[i][j] = u_[i*Nnodes+j];
  2933. u_n[i*COORD_DIM+0][j] = u[i][j] * normal[i*COORD_DIM+0][j];
  2934. u_n[i*COORD_DIM+1][j] = u[i][j] * normal[i*COORD_DIM+1][j];
  2935. u_n[i*COORD_DIM+2][j] = u[i][j] * normal[i*COORD_DIM+2][j];
  2936. }
  2937. }
  2938. // dAdnu0 = u B \cdot grad_nu
  2939. Vector<ElemBasis> B = compute_B(S, v, alpha, beta);
  2940. Vector<ElemBasis> u_B(Nelem*COORD_DIM);
  2941. for (Long i = 0; i < Nelem; i++) {
  2942. for (Long j = 0; j < Nnodes; j++) {
  2943. u_B[i*COORD_DIM+0][j] = u[i][j] * B[i*COORD_DIM+0][j];
  2944. u_B[i*COORD_DIM+1][j] = u[i][j] * B[i*COORD_DIM+1][j];
  2945. u_B[i*COORD_DIM+2][j] = u[i][j] * B[i*COORD_DIM+2][j];
  2946. }
  2947. }
  2948. dAdnu0 = compute_grad_adj(u_B)*(-1.0);
  2949. // dAdnu1 = (u n) \cdot (n \cdnot \nabla) B
  2950. Vector<ElemBasis> dB = compute_dB(S, v, alpha, beta);
  2951. for (Long i = 0; i < Nelem; i++) {
  2952. for (Long j = 0; j < Nnodes; j++) {
  2953. dAdnu1[i][j] = 0;
  2954. dAdnu1[i][j] -= dB[i*9+0][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+0][j];
  2955. dAdnu1[i][j] -= dB[i*9+1][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+1][j];
  2956. dAdnu1[i][j] -= dB[i*9+2][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+2][j];
  2957. dAdnu1[i][j] -= dB[i*9+3][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+0][j];
  2958. dAdnu1[i][j] -= dB[i*9+4][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+1][j];
  2959. dAdnu1[i][j] -= dB[i*9+5][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+2][j];
  2960. dAdnu1[i][j] -= dB[i*9+6][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+0][j];
  2961. dAdnu1[i][j] -= dB[i*9+7][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+1][j];
  2962. dAdnu1[i][j] -= dB[i*9+8][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+2][j];
  2963. }
  2964. }
  2965. // dAdnu2 = (2H) v (I/2 + \nabla G)^T [u n]
  2966. EvalQuadrature(dAdnu2, S.quadrature_dUxF, S, u_n, S.Laplace_dUxF);
  2967. for (Long i = 0; i < Nelem; i++) {
  2968. for (Long j = 0; j < Nnodes; j++) {
  2969. dAdnu2[i][j] += 0.5 * u_n[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  2970. dAdnu2[i][j] += 0.5 * u_n[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  2971. dAdnu2[i][j] += 0.5 * u_n[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  2972. dAdnu2[i][j] *= -2*H[i][j] * v[i][j];
  2973. }
  2974. }
  2975. // dAdnu3 = (v n \cdot \nabla D[u]
  2976. Vector<ElemBasis> nablaDt_u_n;
  2977. EvalQuadrature(nablaDt_u_n, S.quadrature_dUxD, S, u_n, S.Laplace_dUxD);
  2978. for (Long i = 0; i < Nelem; i++) {
  2979. for (Long j = 0; j < Nnodes; j++) {
  2980. dAdnu3[i][j] = 0;
  2981. dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  2982. dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  2983. dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  2984. }
  2985. }
  2986. return dAdnu0 + dAdnu1 + dAdnu2 + dAdnu3;
  2987. };
  2988. auto compute_u_dAdnu_v_1 = [&S,&area_elem,&normal,&H,&compute_grad_adj] (const Vector<ElemBasis>& sigma, Real alpha, Real beta, bool toroidal_flux) {
  2989. const Long Nnodes = ElemBasis::Size();
  2990. const Long Nelem = S.NElem();
  2991. Vector<ElemBasis> B = compute_B(S, sigma, alpha, beta);
  2992. Vector<ElemBasis> gradB = compute_dB(S, sigma, alpha, beta);
  2993. auto compute_v = [&S,&area_elem,&toroidal_flux] (const Vector<ElemBasis>& X) {
  2994. const Long Nelem = S.NElem();
  2995. const Long Nnodes = ElemBasis::Size();
  2996. Real scal[2];
  2997. if (S.Nsurf() == 1) {
  2998. SCTL_ASSERT(toroidal_flux == true);
  2999. scal[0] = 1.0 / S.NTor(0);
  3000. scal[1] = 0;
  3001. } else if (S.Nsurf() == 2) {
  3002. if (toroidal_flux == true) {
  3003. scal[0] = -1.0 / S.NTor(0);
  3004. scal[1] = 1.0 / S.NTor(1);
  3005. } else {
  3006. scal[0] = 1.0 / S.NPol(0);
  3007. scal[1] = -1.0 / S.NPol(1);
  3008. }
  3009. } else {
  3010. SCTL_ASSERT(false);
  3011. }
  3012. Vector<ElemBasis> v(Nelem * COORD_DIM);
  3013. Vector<ElemBasis> dX;
  3014. ElemBasis::Grad(dX, X);
  3015. for (Long k = 0; k < S.Nsurf(); k++) {
  3016. for (Long i_ = 0; i_ < S.NTor(k)*S.NPol(k); i_++) {
  3017. Long i = S.ElemDsp(k) + i_;
  3018. for (Long j = 0; j < Nnodes; j++) {
  3019. Real s = scal[k] / area_elem[i][j];
  3020. v[i*COORD_DIM+0][j] = dX[i*COORD_DIM*2+0+(toroidal_flux?1:0)][j] * s;
  3021. v[i*COORD_DIM+1][j] = dX[i*COORD_DIM*2+2+(toroidal_flux?1:0)][j] * s;
  3022. v[i*COORD_DIM+2][j] = dX[i*COORD_DIM*2+4+(toroidal_flux?1:0)][j] * s;
  3023. }
  3024. }
  3025. }
  3026. return v;
  3027. };
  3028. auto compute_AxB = [&S] (const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  3029. const Long Nelem = S.NElem();
  3030. const Long Nnodes = ElemBasis::Size();
  3031. Vector<ElemBasis> J(Nelem * COORD_DIM);
  3032. for (Long i = 0; i < Nelem; i++) { // Set J
  3033. for (Long j = 0; j < Nnodes; j++) {
  3034. Tensor<Real,true,COORD_DIM> a, b;
  3035. a(0) = A[i*COORD_DIM+0][j];
  3036. a(1) = A[i*COORD_DIM+1][j];
  3037. a(2) = A[i*COORD_DIM+2][j];
  3038. b(0) = B[i*COORD_DIM+0][j];
  3039. b(1) = B[i*COORD_DIM+1][j];
  3040. b(2) = B[i*COORD_DIM+2][j];
  3041. J[i*COORD_DIM+0][j] = a(1) * b(2) - a(2) * b(1);
  3042. J[i*COORD_DIM+1][j] = a(2) * b(0) - a(0) * b(2);
  3043. J[i*COORD_DIM+2][j] = a(0) * b(1) - a(1) * b(0);
  3044. }
  3045. }
  3046. return J;
  3047. };
  3048. auto compute_dphi_dnu0 = [&S,&normal,&compute_AxB,&compute_v,&B,compute_grad_adj] () {
  3049. const Long Nelem = S.NElem();
  3050. const Long Nnodes = ElemBasis::Size();
  3051. Vector<ElemBasis> Gv;
  3052. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3053. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  3054. Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
  3055. return compute_grad_adj(BxGv)*(-1.0);
  3056. };
  3057. auto compute_dphi_dnu1 = [&S,&normal,&H,&compute_AxB,&compute_v,&B] () {
  3058. const Long Nelem = S.NElem();
  3059. const Long Nnodes = ElemBasis::Size();
  3060. Vector<ElemBasis> Gv;
  3061. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3062. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  3063. Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
  3064. Vector<ElemBasis> n_dot_BxGv = compute_dot_prod(normal,BxGv);
  3065. Vector<ElemBasis> dphi_dnu(Nelem);
  3066. for (Long i = 0; i < Nelem; i++) {
  3067. for (Long j = 0; j < Nnodes; j++) {
  3068. dphi_dnu[i][j] = n_dot_BxGv[i][j] * 2*H[i][j];
  3069. }
  3070. }
  3071. return dphi_dnu;
  3072. };
  3073. auto compute_dphi_dnu2 = [&S,&normal,&H,&compute_AxB,&compute_v,&B] () {
  3074. const Long Nelem = S.NElem();
  3075. const Long Nnodes = ElemBasis::Size();
  3076. Vector<ElemBasis> GnxB;
  3077. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3078. EvalQuadrature(GnxB, S.quadrature_FxU, S, nxB, S.Laplace_FxU);
  3079. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3080. Vector<ElemBasis> v_dot_GnxB = compute_dot_prod(v,GnxB);
  3081. Vector<ElemBasis> dphi_dnu(Nelem);
  3082. for (Long i = 0; i < Nelem; i++) {
  3083. for (Long j = 0; j < Nnodes; j++) {
  3084. dphi_dnu[i][j] = v_dot_GnxB[i][j] * 2*H[i][j];
  3085. }
  3086. }
  3087. return dphi_dnu;
  3088. };
  3089. auto compute_dphi_dnu3 = [&S,&normal,&area_elem,&H,&compute_AxB,&compute_v,&B] () {
  3090. const Long Nelem = S.NElem();
  3091. const Long Nnodes = ElemBasis::Size();
  3092. Vector<ElemBasis> GnxB;
  3093. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3094. EvalQuadrature(GnxB, S.quadrature_FxU, S, nxB, S.Laplace_FxU);
  3095. Vector<ElemBasis> dGnxB = compute_v(GnxB);
  3096. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3097. Vector<ElemBasis> dv_dnu1(Nelem), dv_dnu2(Nelem);
  3098. { // Set dv_dnu1, dv_dnu2
  3099. for (Long i = 0; i < Nelem; i++) {
  3100. for (Long j = 0; j < Nnodes; j++) {
  3101. dv_dnu1[i][j] = 0;
  3102. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+0][j] * v[i*COORD_DIM+0][j] * 2 * H[i][j];
  3103. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+1][j] * v[i*COORD_DIM+1][j] * 2 * H[i][j];
  3104. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+2][j] * v[i*COORD_DIM+2][j] * 2 * H[i][j];
  3105. dv_dnu2[i][j] = 0;
  3106. dv_dnu2[i][j] += -dGnxB[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  3107. dv_dnu2[i][j] += -dGnxB[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  3108. dv_dnu2[i][j] += -dGnxB[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  3109. }
  3110. }
  3111. }
  3112. return dv_dnu1 + dv_dnu2;
  3113. };
  3114. auto compute_dphi_dnu4 = [&S,&normal,&compute_AxB,&compute_v,&B] () {
  3115. const Long Nelem = S.NElem();
  3116. const Long Nnodes = ElemBasis::Size();
  3117. Vector<ElemBasis> dGnxB;
  3118. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3119. EvalQuadrature(dGnxB, S.quadrature_FxdU, S, nxB, S.Laplace_FxdU);
  3120. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3121. Vector<ElemBasis> dphi_dnu(Nelem);
  3122. for (Long i = 0; i < Nelem; i++) {
  3123. for (Long j = 0; j < Nnodes; j++) {
  3124. Real dphi_dnu_ = 0;
  3125. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
  3126. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
  3127. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
  3128. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
  3129. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
  3130. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
  3131. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
  3132. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
  3133. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
  3134. dphi_dnu[i][j] = dphi_dnu_;
  3135. }
  3136. }
  3137. return dphi_dnu;
  3138. };
  3139. auto compute_dphi_dnu5 = [&S,&normal,&compute_AxB,&compute_v,&B] () {
  3140. const Long Nelem = S.NElem();
  3141. const Long Nnodes = ElemBasis::Size();
  3142. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3143. Vector<ElemBasis> dGv;
  3144. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3145. EvalQuadrature(dGv, S.quadrature_FxdU, S, v, S.Laplace_FxdU);
  3146. Vector<ElemBasis> dphi_dnu(Nelem);
  3147. for (Long i = 0; i < Nelem; i++) {
  3148. for (Long j = 0; j < Nnodes; j++) {
  3149. Real dphi_dnu_ = 0;
  3150. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+0][j] * nxB[i*COORD_DIM+0][j];
  3151. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+1][j] * nxB[i*COORD_DIM+0][j];
  3152. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+2][j] * nxB[i*COORD_DIM+0][j];
  3153. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+0][j] * nxB[i*COORD_DIM+1][j];
  3154. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+1][j] * nxB[i*COORD_DIM+1][j];
  3155. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+2][j] * nxB[i*COORD_DIM+1][j];
  3156. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+0][j] * nxB[i*COORD_DIM+2][j];
  3157. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+1][j] * nxB[i*COORD_DIM+2][j];
  3158. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+2][j] * nxB[i*COORD_DIM+2][j];
  3159. dphi_dnu[i][j] = dphi_dnu_;
  3160. }
  3161. }
  3162. return dphi_dnu;
  3163. };
  3164. auto compute_dphi_dnu6 = [&S,&normal,&compute_AxB,&compute_v,&gradB] () {
  3165. const Long Nelem = S.NElem();
  3166. const Long Nnodes = ElemBasis::Size();
  3167. Vector<ElemBasis> Gv;
  3168. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3169. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  3170. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3171. Vector<ElemBasis> dphi_dnu(Nelem);
  3172. for (Long i = 0; i < Nelem; i++) {
  3173. for (Long j = 0; j < Nnodes; j++) {
  3174. Real dphi_dnu_ = 0;
  3175. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  3176. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+1][j] * normal[i*COORD_DIM+0][j];
  3177. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+2][j] * normal[i*COORD_DIM+0][j];
  3178. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+0][j] * normal[i*COORD_DIM+1][j];
  3179. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  3180. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+2][j] * normal[i*COORD_DIM+1][j];
  3181. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+0][j] * normal[i*COORD_DIM+2][j];
  3182. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+1][j] * normal[i*COORD_DIM+2][j];
  3183. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  3184. dphi_dnu[i][j] = dphi_dnu_;
  3185. }
  3186. }
  3187. return dphi_dnu;
  3188. };
  3189. auto compute_dphi_dnu7 = [&S,&normal,&H,&compute_AxB,&compute_v,&sigma] () {
  3190. const Long Nelem = S.NElem();
  3191. const Long Nnodes = ElemBasis::Size();
  3192. Vector<ElemBasis> Gv;
  3193. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3194. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  3195. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3196. Vector<ElemBasis> dphi_dnu(Nelem);
  3197. EvalQuadrature(dphi_dnu, S.quadrature_dUxF, S, nxGv, S.Laplace_dUxF);
  3198. for (Long i = 0; i < Nelem; i++) {
  3199. for (Long j = 0; j < Nnodes; j++) {
  3200. dphi_dnu[i][j] *= -2*H[i][j] * sigma[i][j];
  3201. }
  3202. }
  3203. return dphi_dnu;
  3204. };
  3205. auto compute_dphi_dnu8 = [&S,&normal,&H,&compute_AxB,&compute_v,&sigma] () {
  3206. const Long Nelem = S.NElem();
  3207. const Long Nnodes = ElemBasis::Size();
  3208. Vector<ElemBasis> Gv;
  3209. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3210. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  3211. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3212. Vector<ElemBasis> dphi_dnu(Nelem);
  3213. Vector<ElemBasis> nablaDt_nxGv;
  3214. EvalQuadrature(nablaDt_nxGv, S.quadrature_dUxD, S, nxGv, S.Laplace_dUxD);
  3215. for (Long i = 0; i < Nelem; i++) {
  3216. for (Long j = 0; j < Nnodes; j++) {
  3217. dphi_dnu[i][j] = 0;
  3218. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  3219. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  3220. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  3221. }
  3222. }
  3223. return dphi_dnu;
  3224. };
  3225. auto dphi_dnu0 = compute_dphi_dnu0();
  3226. auto dphi_dnu1 = compute_dphi_dnu1();
  3227. auto dphi_dnu2 = compute_dphi_dnu2();
  3228. auto dphi_dnu3 = compute_dphi_dnu3();
  3229. auto dphi_dnu4 = compute_dphi_dnu4();
  3230. auto dphi_dnu5 = compute_dphi_dnu5();
  3231. auto dphi_dnu6 = compute_dphi_dnu6();
  3232. auto dphi_dnu7 = compute_dphi_dnu7();
  3233. auto dphi_dnu8 = compute_dphi_dnu8();
  3234. return (dphi_dnu0+dphi_dnu1+dphi_dnu2+dphi_dnu3+dphi_dnu4+dphi_dnu5+dphi_dnu6+dphi_dnu7+dphi_dnu8);
  3235. };
  3236. { // Set dg_dnu -= dg_dsigma invA dA_dnu sigma
  3237. dg_dnu -= compute_u_dAdnu_v_0(dg_dsigma_invA, sigma, alpha, beta);
  3238. if (S.Nsurf() >= 1) dg_dnu -= compute_u_dAdnu_v_1(sigma, alpha, beta, true) * dg_dsigma_invA[Nelem*Nnodes+0];
  3239. if (S.Nsurf() >= 2) dg_dnu -= compute_u_dAdnu_v_1(sigma, alpha, beta, false) * dg_dsigma_invA[Nelem*Nnodes+1];
  3240. }
  3241. return dg_dnu;
  3242. };
  3243. Vector<ElemBasis> dgdnu;
  3244. { // Set dgdnu
  3245. dgdnu.ReInit(S_.NElem());
  3246. dgdnu = 0;
  3247. for (Long i = 0; i < S_.Nsurf(); i++) {
  3248. const Long elem_dsp = (i==0 ? 0 : S_.ElemDsp(i-1));
  3249. const Long Nnodes = ElemBasis::Size();
  3250. auto dgdnu_ = compute_gradient(Svec[i]);
  3251. if (0) { // Write VTU
  3252. VTUData vtu;
  3253. vtu.AddElems(Svec[i].GetElemList(), dgdnu_, ORDER);
  3254. vtu.WriteVTK("dgdnu-"+std::to_string(i), comm);
  3255. }
  3256. for (Long j = 0; j < (i==0?0:Svec[i].NTor(0)*Svec[i].NPol(0)); j++) {
  3257. for (Long k = 0; k < Nnodes; k++) {
  3258. dgdnu[elem_dsp+j][k] -= dgdnu_[j][k];
  3259. }
  3260. }
  3261. for (Long j = (i==0?0:Svec[i].NTor(0)*Svec[i].NPol(0)); j < dgdnu_.Dim(); j++) {
  3262. for (Long k = 0; k < Nnodes; k++) {
  3263. dgdnu[elem_dsp+j][k] += dgdnu_[j][k];
  3264. }
  3265. }
  3266. }
  3267. }
  3268. return dgdnu;
  3269. }
  3270. static Vector<ElemBasis> compute_pressure_jump(const Stellarator<Real,ORDER>& S_, const Vector<Real>& pressure, const Vector<Real>& flux_tor_, const Vector<Real>& flux_pol_, Real* g_ptr = nullptr) {
  3271. Comm comm = Comm::World();
  3272. Vector<Stellarator<Real,ORDER>> Svec(S_.Nsurf());
  3273. for (Long i = 0; i < S_.Nsurf(); i++) { // Set Svec[i] (quadratures, B)
  3274. const Long elem_dsp = (i==0 ? 0 : S_.ElemDsp(i-1));
  3275. const Long Nnodes = ElemBasis::Size();
  3276. Stellarator<Real,ORDER>& S = Svec[i];
  3277. if (i == 0) { // Init S
  3278. Vector<Long> NtNp;
  3279. NtNp.PushBack(S_.NTor(i));
  3280. NtNp.PushBack(S_.NPol(i));
  3281. S = Stellarator<Real,ORDER>(NtNp);
  3282. } else {
  3283. Vector<Long> NtNp;
  3284. NtNp.PushBack(S_.NTor(i-1));
  3285. NtNp.PushBack(S_.NPol(i-1));
  3286. NtNp.PushBack(S_.NTor(i));
  3287. NtNp.PushBack(S_.NPol(i));
  3288. S = Stellarator<Real,ORDER>(NtNp);
  3289. }
  3290. for (Long j = 0; j < S.NElem(); j++) { // Set S coordinates
  3291. for (Long k = 0; k < Nnodes; k++) {
  3292. S.Elem(j,0)[k] = S_.Elem(elem_dsp+j,0)[k];
  3293. S.Elem(j,1)[k] = S_.Elem(elem_dsp+j,1)[k];
  3294. S.Elem(j,2)[k] = S_.Elem(elem_dsp+j,2)[k];
  3295. }
  3296. }
  3297. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm);//, -0.01 * pow<-2,Real>(ORDER));
  3298. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  3299. SetupQuadrature(S.quadrature_FxdU , S, S.Laplace_FxdU , order_singular, order_direct, -1.0, comm);
  3300. { // Set Bt0, Bp0, dBt0, dBp0
  3301. Vector<ElemBasis> Jt, Jp;
  3302. compute_harmonic_vector_potentials(Jt, Jp, S);
  3303. EvalQuadrature(S.Bt0 , S.quadrature_BS , S, Jp, S.BiotSavart);
  3304. EvalQuadrature(S.Bp0 , S.quadrature_BS , S, Jt, S.BiotSavart);
  3305. Vector<ElemBasis> normal, area_elem;
  3306. compute_norm_area_elem(S, normal, area_elem);
  3307. if (S.Nsurf() == 2) {
  3308. Long Nelem0 = S.NTor(0)*S.NPol(0);
  3309. for (Long i = 0; i < Nelem0*COORD_DIM; i++) {
  3310. for (Long j = 0; j < Nnodes; j++) {
  3311. normal[i][j] *= -1.0;
  3312. }
  3313. }
  3314. }
  3315. const Long Nelem = S.NElem();
  3316. const Long Nnodes = ElemBasis::Size();
  3317. for (Long j = 0; j < Nelem; j++) {
  3318. for (Long k = 0; k < Nnodes; k++) {
  3319. Real Jxn[COORD_DIM];
  3320. Jxn[0] = Jp[j*COORD_DIM+1][k] * normal[j*COORD_DIM+2][k] - Jp[j*COORD_DIM+2][k] * normal[j*COORD_DIM+1][k];
  3321. Jxn[1] = Jp[j*COORD_DIM+2][k] * normal[j*COORD_DIM+0][k] - Jp[j*COORD_DIM+0][k] * normal[j*COORD_DIM+2][k];
  3322. Jxn[2] = Jp[j*COORD_DIM+0][k] * normal[j*COORD_DIM+1][k] - Jp[j*COORD_DIM+1][k] * normal[j*COORD_DIM+0][k];
  3323. S.Bt0[j*COORD_DIM+0][k] += 0.5 * Jxn[0];
  3324. S.Bt0[j*COORD_DIM+1][k] += 0.5 * Jxn[1];
  3325. S.Bt0[j*COORD_DIM+2][k] += 0.5 * Jxn[2];
  3326. Jxn[0] = Jt[j*COORD_DIM+1][k] * normal[j*COORD_DIM+2][k] - Jt[j*COORD_DIM+2][k] * normal[j*COORD_DIM+1][k];
  3327. Jxn[1] = Jt[j*COORD_DIM+2][k] * normal[j*COORD_DIM+0][k] - Jt[j*COORD_DIM+0][k] * normal[j*COORD_DIM+2][k];
  3328. Jxn[2] = Jt[j*COORD_DIM+0][k] * normal[j*COORD_DIM+1][k] - Jt[j*COORD_DIM+1][k] * normal[j*COORD_DIM+0][k];
  3329. S.Bp0[j*COORD_DIM+0][k] += 0.5 * Jxn[0];
  3330. S.Bp0[j*COORD_DIM+1][k] += 0.5 * Jxn[1];
  3331. S.Bp0[j*COORD_DIM+2][k] += 0.5 * Jxn[2];
  3332. }
  3333. }
  3334. }
  3335. compute_invA(S.sigma, S.alpha, S.beta, S, flux_tor_[i], flux_pol_[i], comm);
  3336. S.B = compute_B(S, S.sigma, S.alpha, S.beta);
  3337. }
  3338. if (g_ptr != nullptr) g_ptr[0] = compute_g(Svec, pressure);
  3339. return compute_pressure_jump(Svec, pressure);
  3340. }
  3341. static void test() {
  3342. Comm comm = Comm::World();
  3343. Profile::Enable(true);
  3344. Long Nsurf = 2;
  3345. Stellarator<Real,ORDER> S;
  3346. Vector<Real> flux_tor(Nsurf), flux_pol(Nsurf), pressure(Nsurf);
  3347. { // Init S, flux_tor, flux_pol, pressure
  3348. Vector<Long> NtNp;
  3349. for (Long i = 0; i < Nsurf; i++) {
  3350. NtNp.PushBack(30);
  3351. NtNp.PushBack(4);
  3352. }
  3353. S = Stellarator<Real,ORDER>(NtNp);
  3354. flux_tor = 1;
  3355. flux_pol = 1;
  3356. pressure = 0;
  3357. //flux_tor[0] = 1; //0.791881512;
  3358. //flux_tor[1] = 1;
  3359. //flux_pol[0] = 0;
  3360. //flux_pol[1] = 0;
  3361. //pressure[0] = 0;
  3362. //pressure[1] = 0;
  3363. }
  3364. { // find equilibrium flux surfaces
  3365. {
  3366. //auto filter = [](const Stellarator<Real,ORDER>& S, Vector<ElemBasis>& f) {
  3367. // auto cheb2grid = [] (const Vector<ElemBasis>& X, Long Mt, Long Mp, Long Nt, Long Np) {
  3368. // const Long dof = X.Dim() / (Mt * Mp);
  3369. // SCTL_ASSERT(X.Dim() == Mt * Mp *dof);
  3370. // Vector<Real> Xf(dof*Nt*Np); Xf = 0;
  3371. // const Long Nnodes = ElemBasis::Size();
  3372. // const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
  3373. // for (Long t = 0; t < Nt; t++) {
  3374. // for (Long p = 0; p < Np; p++) {
  3375. // Real theta = t / (Real)Nt;
  3376. // Real phi = p / (Real)Np;
  3377. // Long i = (Long)(theta * Mt);
  3378. // Long j = (Long)(phi * Mp);
  3379. // Real x = theta * Mt - i;
  3380. // Real y = phi * Mp - j;
  3381. // Long elem_idx = i * Mp + j;
  3382. // Vector<Real> Interp0(ORDER);
  3383. // Vector<Real> Interp1(ORDER);
  3384. // { // Set Interp0, Interp1
  3385. // auto node = [&Mnodes] (Long i) {
  3386. // return Mnodes[0][i];
  3387. // };
  3388. // for (Long i = 0; i < ORDER; i++) {
  3389. // Real wt_x = 1, wt_y = 1;
  3390. // for (Long j = 0; j < ORDER; j++) {
  3391. // if (j != i) {
  3392. // wt_x *= (x - node(j)) / (node(i) - node(j));
  3393. // wt_y *= (y - node(j)) / (node(i) - node(j));
  3394. // }
  3395. // Interp0[i] = wt_x;
  3396. // Interp1[i] = wt_y;
  3397. // }
  3398. // }
  3399. // }
  3400. // for (Long ii = 0; ii < ORDER; ii++) {
  3401. // for (Long jj = 0; jj < ORDER; jj++) {
  3402. // Long node_idx = jj * ORDER + ii;
  3403. // for (Long k = 0; k < dof; k++) {
  3404. // Xf[(k*Nt+t)*Np+p] += X[elem_idx*dof+k][node_idx] * Interp0[ii] * Interp1[jj];
  3405. // }
  3406. // }
  3407. // }
  3408. // }
  3409. // }
  3410. // return Xf;
  3411. // };
  3412. // auto grid2cheb = [] (const Vector<Real>& Xf, Long Nt, Long Np, Long Mt, Long Mp) {
  3413. // Long dof = Xf.Dim() / (Nt*Np);
  3414. // SCTL_ASSERT(Xf.Dim() == dof*Nt*Np);
  3415. // Vector<ElemBasis> X(Mt*Mp*dof);
  3416. // constexpr Integer INTERP_ORDER = 12;
  3417. // for (Long tt = 0; tt < Mt; tt++) {
  3418. // for (Long pp = 0; pp < Mp; pp++) {
  3419. // for (Long t = 0; t < ORDER; t++) {
  3420. // for (Long p = 0; p < ORDER; p++) {
  3421. // Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
  3422. // Real theta = (tt + Mnodes[0][t]) / Mt;
  3423. // Real phi = (pp + Mnodes[0][p]) / Mp;
  3424. // Long i = (Long)(theta * Nt);
  3425. // Long j = (Long)(phi * Np);
  3426. // Real x = theta * Nt - i;
  3427. // Real y = phi * Np - j;
  3428. // Vector<Real> Interp0(INTERP_ORDER);
  3429. // Vector<Real> Interp1(INTERP_ORDER);
  3430. // { // Set Interp0, Interp1
  3431. // auto node = [] (Long i) {
  3432. // return (Real)i - (INTERP_ORDER-1)/2;
  3433. // };
  3434. // for (Long i = 0; i < INTERP_ORDER; i++) {
  3435. // Real wt_x = 1, wt_y = 1;
  3436. // for (Long j = 0; j < INTERP_ORDER; j++) {
  3437. // if (j != i) {
  3438. // wt_x *= (x - node(j)) / (node(i) - node(j));
  3439. // wt_y *= (y - node(j)) / (node(i) - node(j));
  3440. // }
  3441. // Interp0[i] = wt_x;
  3442. // Interp1[i] = wt_y;
  3443. // }
  3444. // }
  3445. // }
  3446. // for (Long k = 0; k < dof; k++) {
  3447. // Real X0 = 0;
  3448. // for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  3449. // for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  3450. // Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  3451. // Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  3452. // X0 += Interp0[ii] * Interp1[jj] * Xf[(k*Nt+idx_i)*Np+idx_j];
  3453. // }
  3454. // }
  3455. // Long elem_idx = tt * Mp + pp;
  3456. // Long node_idx = p * ORDER + t;
  3457. // X[elem_idx*dof+k][node_idx] = X0;
  3458. // }
  3459. // }
  3460. // }
  3461. // }
  3462. // }
  3463. // return X;
  3464. // };
  3465. // Long dof = f.Dim() / S.NElem();
  3466. // SCTL_ASSERT(f.Dim() == S.NElem() * dof);
  3467. // for (Long i = 0; i < S.Nsurf(); i++) {
  3468. // const Long Mt = S.NTor(i);
  3469. // const Long Mp = S.NPol(i);
  3470. // const Long Nelem = Mt * Mp;
  3471. // const Long offset = S.ElemDsp(i);
  3472. // const Long Nt = Mt * ORDER / 5;
  3473. // const Long Np = Mp * ORDER / 5;
  3474. // Vector<ElemBasis> f_(Nelem*dof, f.begin() + offset*dof, false);
  3475. // Vector<Real> f_fourier = cheb2grid(f_, Mt, Mp, Nt, Np);
  3476. // f_ = grid2cheb(f_fourier, Nt, Np, Mt, Mp);
  3477. // }
  3478. //};
  3479. }
  3480. auto filter = [](const Stellarator<Real,ORDER>& S, const Comm& comm, Vector<ElemBasis>& f, Real sigma) {
  3481. auto cheb2grid = [] (const Vector<ElemBasis>& X, Long Mt, Long Mp, Long Nt, Long Np) {
  3482. const Long dof = X.Dim() / (Mt * Mp);
  3483. SCTL_ASSERT(X.Dim() == Mt * Mp *dof);
  3484. Vector<Real> Xf(dof*Nt*Np); Xf = 0;
  3485. const Long Nnodes = ElemBasis::Size();
  3486. const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
  3487. for (Long t = 0; t < Nt; t++) {
  3488. for (Long p = 0; p < Np; p++) {
  3489. Real theta = t / (Real)Nt;
  3490. Real phi = p / (Real)Np;
  3491. Long i = (Long)(theta * Mt);
  3492. Long j = (Long)(phi * Mp);
  3493. Real x = theta * Mt - i;
  3494. Real y = phi * Mp - j;
  3495. Long elem_idx = i * Mp + j;
  3496. Vector<Real> Interp0(ORDER);
  3497. Vector<Real> Interp1(ORDER);
  3498. { // Set Interp0, Interp1
  3499. auto node = [&Mnodes] (Long i) {
  3500. return Mnodes[0][i];
  3501. };
  3502. for (Long i = 0; i < ORDER; i++) {
  3503. Real wt_x = 1, wt_y = 1;
  3504. for (Long j = 0; j < ORDER; j++) {
  3505. if (j != i) {
  3506. wt_x *= (x - node(j)) / (node(i) - node(j));
  3507. wt_y *= (y - node(j)) / (node(i) - node(j));
  3508. }
  3509. Interp0[i] = wt_x;
  3510. Interp1[i] = wt_y;
  3511. }
  3512. }
  3513. }
  3514. for (Long ii = 0; ii < ORDER; ii++) {
  3515. for (Long jj = 0; jj < ORDER; jj++) {
  3516. Long node_idx = jj * ORDER + ii;
  3517. for (Long k = 0; k < dof; k++) {
  3518. Xf[(k*Nt+t)*Np+p] += X[elem_idx*dof+k][node_idx] * Interp0[ii] * Interp1[jj];
  3519. }
  3520. }
  3521. }
  3522. }
  3523. }
  3524. return Xf;
  3525. };
  3526. auto grid2cheb = [] (const Vector<Real>& Xf, Long Nt, Long Np, Long Mt, Long Mp) {
  3527. Long dof = Xf.Dim() / (Nt*Np);
  3528. SCTL_ASSERT(Xf.Dim() == dof*Nt*Np);
  3529. Vector<ElemBasis> X(Mt*Mp*dof);
  3530. constexpr Integer INTERP_ORDER = 12;
  3531. for (Long tt = 0; tt < Mt; tt++) {
  3532. for (Long pp = 0; pp < Mp; pp++) {
  3533. for (Long t = 0; t < ORDER; t++) {
  3534. for (Long p = 0; p < ORDER; p++) {
  3535. Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
  3536. Real theta = (tt + Mnodes[0][t]) / Mt;
  3537. Real phi = (pp + Mnodes[0][p]) / Mp;
  3538. Long i = (Long)(theta * Nt);
  3539. Long j = (Long)(phi * Np);
  3540. Real x = theta * Nt - i;
  3541. Real y = phi * Np - j;
  3542. Vector<Real> Interp0(INTERP_ORDER);
  3543. Vector<Real> Interp1(INTERP_ORDER);
  3544. { // Set Interp0, Interp1
  3545. auto node = [] (Long i) {
  3546. return (Real)i - (INTERP_ORDER-1)/2;
  3547. };
  3548. for (Long i = 0; i < INTERP_ORDER; i++) {
  3549. Real wt_x = 1, wt_y = 1;
  3550. for (Long j = 0; j < INTERP_ORDER; j++) {
  3551. if (j != i) {
  3552. wt_x *= (x - node(j)) / (node(i) - node(j));
  3553. wt_y *= (y - node(j)) / (node(i) - node(j));
  3554. }
  3555. Interp0[i] = wt_x;
  3556. Interp1[i] = wt_y;
  3557. }
  3558. }
  3559. }
  3560. for (Long k = 0; k < dof; k++) {
  3561. Real X0 = 0;
  3562. for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  3563. for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  3564. Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  3565. Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  3566. X0 += Interp0[ii] * Interp1[jj] * Xf[(k*Nt+idx_i)*Np+idx_j];
  3567. }
  3568. }
  3569. Long elem_idx = tt * Mp + pp;
  3570. Long node_idx = p * ORDER + t;
  3571. X[elem_idx*dof+k][node_idx] = X0;
  3572. }
  3573. }
  3574. }
  3575. }
  3576. }
  3577. return X;
  3578. };
  3579. auto fourier_filter = [](Vector<Real>& X, long Nt_, long Np_, Real sigma, const Comm& comm) {
  3580. long dof = X.Dim() / (Nt_ * Np_);
  3581. SCTL_ASSERT(X.Dim() == dof * Nt_ * Np_);
  3582. FFT<Real> fft_r2c, fft_c2r;
  3583. StaticArray<Long, 2> fft_dim = {Nt_, Np_};
  3584. fft_r2c.Setup(FFT_Type::R2C, 1, Vector<Long>(2, fft_dim, false), omp_get_max_threads());
  3585. fft_c2r.Setup(FFT_Type::C2R, 1, Vector<Long>(2, fft_dim, false), omp_get_max_threads());
  3586. long Nt = Nt_;
  3587. long Np = fft_r2c.Dim(1) / (Nt * 2);
  3588. SCTL_ASSERT(fft_r2c.Dim(1) == Nt * Np * 2);
  3589. //auto filter_fn = [](Real x2, Real sigma) {return exp(-x2/(2*sigma*sigma));};
  3590. auto filter_fn = [](Real x2, Real sigma) {return (x2<sigma*sigma?1.0:0.0);};
  3591. Vector<Real> normal, gradX;
  3592. biest::SurfaceOp<Real> op(comm, Nt_, Np_);
  3593. Vector<Real> coeff(fft_r2c.Dim(1));
  3594. for (long k = 0; k < dof; k++) {
  3595. Vector<Real> X_(Nt_*Np_, X.begin() + k*Nt_*Np_, false);
  3596. fft_r2c.Execute(X_, coeff);
  3597. for (long t = 0; t < Nt; t++) {
  3598. for (long p = 0; p < Np; p++) {
  3599. Real tt = (t - (t > Nt / 2 ? Nt : 0)) / (Real)(Nt / 2);
  3600. Real pp = p / (Real)Np;
  3601. Real f = filter_fn(tt*tt+pp*pp, sigma);
  3602. coeff[(t * Np + p) * 2 + 0] *= f;
  3603. coeff[(t * Np + p) * 2 + 1] *= f;
  3604. }
  3605. }
  3606. fft_c2r.Execute(coeff, X_);
  3607. }
  3608. };
  3609. Long dof = f.Dim() / S.NElem();
  3610. SCTL_ASSERT(f.Dim() == S.NElem() * dof);
  3611. for (Long i = 0; i < S.Nsurf(); i++) {
  3612. const Long Mt = S.NTor(i);
  3613. const Long Mp = S.NPol(i);
  3614. const Long Nelem = Mt * Mp;
  3615. const Long offset = S.ElemDsp(i);
  3616. const Long Nt = Mt * ORDER * 4;
  3617. const Long Np = Mp * ORDER * 4;
  3618. Vector<ElemBasis> f_(Nelem*dof, f.begin() + offset*dof, false);
  3619. Vector<Real> f_fourier = cheb2grid(f_, Mt, Mp, Nt, Np);
  3620. fourier_filter(f_fourier, Nt, Np, 0.25 * sigma, comm);
  3621. f_ = grid2cheb(f_fourier, Nt, Np, Mt, Mp);
  3622. }
  3623. };
  3624. Long iter = 0;
  3625. Real dt = 0.1;
  3626. while (1) { // time-step
  3627. Vector<ElemBasis> dgdnu = compute_gradient(S, pressure, flux_tor, flux_pol)*(-1);
  3628. //Vector<ElemBasis> dgdnu = compute_pressure_jump(S, pressure, flux_tor, flux_pol)*(-1);
  3629. Vector<ElemBasis> dXdt(dgdnu.Dim()*COORD_DIM);
  3630. { // Set dXdt
  3631. dXdt = 0;
  3632. const Long Nnodes = ElemBasis::Size();
  3633. Vector<ElemBasis> normal, area_elem;
  3634. compute_norm_area_elem(S, normal, area_elem);
  3635. for (Long i = 0; i < S.ElemDsp(S.Nsurf()-1); i++) {
  3636. for (Long j = 0; j < Nnodes; j++) {
  3637. dXdt[i*COORD_DIM+0][j] = normal[i*COORD_DIM+0][j] * dgdnu[i][j];
  3638. dXdt[i*COORD_DIM+1][j] = normal[i*COORD_DIM+1][j] * dgdnu[i][j];
  3639. dXdt[i*COORD_DIM+2][j] = normal[i*COORD_DIM+2][j] * dgdnu[i][j];
  3640. }
  3641. }
  3642. filter(S, comm, dXdt, 0.1);
  3643. }
  3644. { // Update dt
  3645. const Long Nelem = S.NElem();
  3646. Stellarator<Real,ORDER> S0 = S, S1 = S, S2 = S;
  3647. for (Long i = 0; i < S.NElem(); i++) {
  3648. S0.Elem(i, 0) += dXdt[i*COORD_DIM+0] * 0.0 * dt;
  3649. S0.Elem(i, 1) += dXdt[i*COORD_DIM+1] * 0.0 * dt;
  3650. S0.Elem(i, 2) += dXdt[i*COORD_DIM+2] * 0.0 * dt;
  3651. S1.Elem(i, 0) += dXdt[i*COORD_DIM+0] * 0.5 * dt;
  3652. S1.Elem(i, 1) += dXdt[i*COORD_DIM+1] * 0.5 * dt;
  3653. S1.Elem(i, 2) += dXdt[i*COORD_DIM+2] * 0.5 * dt;
  3654. S2.Elem(i, 0) += dXdt[i*COORD_DIM+0] * 1.0 * dt;
  3655. S2.Elem(i, 1) += dXdt[i*COORD_DIM+1] * 1.0 * dt;
  3656. S2.Elem(i, 2) += dXdt[i*COORD_DIM+2] * 1.0 * dt;
  3657. }
  3658. Real g0, g1, g2;
  3659. compute_pressure_jump(S0, pressure, flux_tor, flux_pol, &g0);
  3660. compute_pressure_jump(S1, pressure, flux_tor, flux_pol, &g1);
  3661. compute_pressure_jump(S2, pressure, flux_tor, flux_pol, &g2);
  3662. { // Calculate optimal step size dt
  3663. Real a = 2*g0 - 4*g1 + 2*g2;
  3664. Real b =-3*g0 + 4*g1 - g2;
  3665. Real c = g0;
  3666. Real s = -b/(2*a);
  3667. dt *= s;
  3668. Real g_ = a*s*s + b*s + c;
  3669. std::cout<<"g = "<<g_<<' ';
  3670. std::cout<<g0<<' ';
  3671. std::cout<<g1<<' ';
  3672. std::cout<<g2<<' ';
  3673. std::cout<<dt<<'\n';
  3674. }
  3675. }
  3676. { // Write VTU
  3677. VTUData vtu;
  3678. vtu.AddElems(S.GetElemList(), dgdnu*dt, ORDER);
  3679. vtu.WriteVTK("dgdnu"+std::to_string(iter), comm);
  3680. }
  3681. { // Write VTU
  3682. VTUData vtu;
  3683. vtu.AddElems(S.GetElemList(), dXdt*dt, ORDER);
  3684. vtu.WriteVTK("dXdt"+std::to_string(iter), comm);
  3685. }
  3686. { // Write VTU
  3687. Vector<ElemBasis> pressure_jump = compute_pressure_jump(S, pressure, flux_tor, flux_pol);
  3688. VTUData vtu;
  3689. vtu.AddElems(S.GetElemList(), pressure_jump, ORDER);
  3690. vtu.WriteVTK("pressure_jump"+std::to_string(iter), comm);
  3691. }
  3692. { // Update S <-- filter(S + dXdt * dt)
  3693. const Long Nelem = S.NElem();
  3694. Vector<ElemBasis> X(Nelem*COORD_DIM);
  3695. for (Long i = 0; i < S.NElem(); i++) {
  3696. X[i*COORD_DIM+0] = S.Elem(i, 0) + dXdt[i*COORD_DIM+0] * dt;
  3697. X[i*COORD_DIM+1] = S.Elem(i, 1) + dXdt[i*COORD_DIM+1] * dt;
  3698. X[i*COORD_DIM+2] = S.Elem(i, 2) + dXdt[i*COORD_DIM+2] * dt;
  3699. }
  3700. filter(S, comm, X, 0.3);
  3701. for (Long i = 0; i < S.NElem(); i++) {
  3702. S.Elem(i, 0) = X[i*COORD_DIM+0];
  3703. S.Elem(i, 1) = X[i*COORD_DIM+1];
  3704. S.Elem(i, 2) = X[i*COORD_DIM+2];
  3705. }
  3706. }
  3707. iter++;
  3708. }
  3709. return;
  3710. }
  3711. { // Verify using finite difference approximation
  3712. Vector<ElemBasis> dgdnu = compute_gradient(S, pressure, flux_tor, flux_pol);
  3713. { // Write VTU
  3714. VTUData vtu;
  3715. vtu.AddElems(S.GetElemList(), dgdnu, ORDER);
  3716. vtu.WriteVTK("dgdnu", comm);
  3717. }
  3718. Real eps = 1e-4;
  3719. const Long Nnodes = ElemBasis::Size();
  3720. Vector<ElemBasis> normal, area_elem;
  3721. compute_norm_area_elem(S, normal, area_elem);
  3722. Vector<ElemBasis> nu = area_elem;
  3723. for (Long i = S.ElemDsp(S.Nsurf()-1); i < S.NElem(); i++) nu[i] = 0;
  3724. Stellarator<Real,ORDER> S0 = S, S1 = S;
  3725. for (Long i = 0; i < S.NElem(); i++) {
  3726. for (Long j = 0; j < Nnodes; j++) {
  3727. S0.Elem(i, 0)[j] -= 0.5 * eps * normal[i*COORD_DIM+0][j] * nu[i][j];
  3728. S0.Elem(i, 1)[j] -= 0.5 * eps * normal[i*COORD_DIM+1][j] * nu[i][j];
  3729. S0.Elem(i, 2)[j] -= 0.5 * eps * normal[i*COORD_DIM+2][j] * nu[i][j];
  3730. S1.Elem(i, 0)[j] += 0.5 * eps * normal[i*COORD_DIM+0][j] * nu[i][j];
  3731. S1.Elem(i, 1)[j] += 0.5 * eps * normal[i*COORD_DIM+1][j] * nu[i][j];
  3732. S1.Elem(i, 2)[j] += 0.5 * eps * normal[i*COORD_DIM+2][j] * nu[i][j];
  3733. }
  3734. }
  3735. Real g0, g1;
  3736. compute_pressure_jump(S0, pressure, flux_tor, flux_pol, &g0);
  3737. compute_pressure_jump(S1, pressure, flux_tor, flux_pol, &g1);
  3738. std::cout<<"g0 = "<<g0<<"; g1 = "<<g1<<"; dgdnu_ = "<<(g1-g0)/eps<<'\n';
  3739. std::cout<<"dgdnu = "<<compute_inner_prod(area_elem, dgdnu, nu)<<'\n';
  3740. }
  3741. }
  3742. static void test_() {
  3743. Comm comm = Comm::World();
  3744. Profile::Enable(true);
  3745. Real flux_tor = 1.0, flux_pol = 1.0;
  3746. Stellarator<Real,ORDER> S;
  3747. { // Init S
  3748. Vector<Long> NtNp;
  3749. NtNp.PushBack(20);
  3750. NtNp.PushBack(4);
  3751. //NtNp.PushBack(20);
  3752. //NtNp.PushBack(4);
  3753. S = Stellarator<Real,ORDER>(NtNp);
  3754. }
  3755. if (S.Nsurf() == 1) flux_pol = 0.0;
  3756. Vector<ElemBasis> pressure;
  3757. { // Set pressure
  3758. Vector<ElemBasis> normal, area_elem;
  3759. compute_norm_area_elem(S, normal, area_elem);
  3760. pressure = area_elem*0;
  3761. }
  3762. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  3763. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3764. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  3765. SetupQuadrature(S.quadrature_FxdU, S, S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  3766. SetupQuadrature(S.quadrature_dUxF, S, S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
  3767. Vector<ElemBasis> Bt0, Bp0;
  3768. { // Set Bt0, Bp0
  3769. Vector<ElemBasis> Jt, Jp;
  3770. compute_harmonic_vector_potentials(Jt, Jp, S);
  3771. EvalQuadrature(Bt0, S.quadrature_BS, S, Jp, S.BiotSavart);
  3772. EvalQuadrature(Bp0, S.quadrature_BS, S, Jt, S.BiotSavart);
  3773. }
  3774. auto compute_B = [&S,&Bt0,&Bp0] (const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  3775. const Long Nelem = S.NElem();
  3776. Vector<ElemBasis> B(S.NElem() * COORD_DIM);
  3777. if (sigma.Dim()) {
  3778. const Long Nnodes = ElemBasis::Size();
  3779. Vector<ElemBasis> normal, area_elem;
  3780. compute_norm_area_elem(S, normal, area_elem);
  3781. EvalQuadrature(B, S.quadrature_FxdU, S, sigma, S.Laplace_FxdU);
  3782. for (Long i = 0; i < Nelem; i++) {
  3783. for (Long j = 0; j < Nnodes; j++) {
  3784. for (Long k = 0; k < COORD_DIM; k++) {
  3785. B[i*COORD_DIM+k][j] -= 0.5*sigma[i][j]*normal[i*COORD_DIM+k][j];
  3786. }
  3787. }
  3788. }
  3789. } else {
  3790. B = 0;
  3791. }
  3792. if (S.Nsurf() >= 1) B += Bt0*alpha;
  3793. if (S.Nsurf() >= 2) B += Bp0*beta;
  3794. return B;
  3795. };
  3796. auto compute_flux = [&S] (Real& flux_tor, Real& flux_pol, const Vector<ElemBasis>& B, const Vector<ElemBasis>& normal) {
  3797. const Long Nelem = S.NElem();
  3798. const Long Nnodes = ElemBasis::Size();
  3799. SCTL_ASSERT(B.Dim() == Nelem*COORD_DIM);
  3800. SCTL_ASSERT(normal.Dim() == Nelem*COORD_DIM);
  3801. Vector<ElemBasis> J(Nelem * COORD_DIM);
  3802. for (Long i = 0; i < Nelem; i++) { // Set J
  3803. for (Long j = 0; j < Nnodes; j++) {
  3804. Tensor<Real,true,COORD_DIM> b, n;
  3805. b(0) = B[i*COORD_DIM+0][j];
  3806. b(1) = B[i*COORD_DIM+1][j];
  3807. b(2) = B[i*COORD_DIM+2][j];
  3808. n(0) = normal[i*COORD_DIM+0][j];
  3809. n(1) = normal[i*COORD_DIM+1][j];
  3810. n(2) = normal[i*COORD_DIM+2][j];
  3811. J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
  3812. J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
  3813. J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
  3814. }
  3815. }
  3816. Vector<ElemBasis> A;
  3817. EvalQuadrature(A, S.quadrature_FxU, S, J, S.Laplace_FxU);
  3818. Vector<Real> circ_pol(S.Nsurf()), circ_tor(S.Nsurf());
  3819. { // compute circ
  3820. Vector<ElemBasis> dX;
  3821. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  3822. const auto& quad_wts = ElemBasis::QuadWts();
  3823. for (Long k = 0; k < S.Nsurf(); k++) {
  3824. circ_pol[k] = 0;
  3825. circ_tor[k] = 0;
  3826. Long Ndsp = S.ElemDsp(k);
  3827. for (Long i = 0; i < S.NTor(k)*S.NPol(k); i++) {
  3828. for (Long j = 0; j < Nnodes; j++) {
  3829. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+1][j] * quad_wts[j] / S.NTor(k);
  3830. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+3][j] * quad_wts[j] / S.NTor(k);
  3831. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+5][j] * quad_wts[j] / S.NTor(k);
  3832. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+0][j] * quad_wts[j] / S.NPol(k);
  3833. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+2][j] * quad_wts[j] / S.NPol(k);
  3834. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+4][j] * quad_wts[j] / S.NPol(k);
  3835. }
  3836. }
  3837. }
  3838. }
  3839. if (S.Nsurf() == 1) {
  3840. flux_tor = circ_pol[0];
  3841. flux_pol = 0;
  3842. } else if (S.Nsurf() == 2) {
  3843. flux_tor = circ_pol[1] - circ_pol[0];
  3844. flux_pol = circ_tor[0] - circ_tor[1];
  3845. } else {
  3846. SCTL_ASSERT(false);
  3847. }
  3848. };
  3849. auto compute_A = [&S,compute_B,&compute_flux] (const Vector<Real>& x) {
  3850. const Long Nelem = S.NElem();
  3851. const Long Nnodes = ElemBasis::Size();
  3852. SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
  3853. Vector<ElemBasis> normal, area_elem;
  3854. compute_norm_area_elem(S, normal, area_elem);
  3855. Vector<ElemBasis> sigma(Nelem);
  3856. for (Long i = 0; i < Nelem; i++) {
  3857. for (Long j = 0; j < Nnodes; j++) {
  3858. sigma[i][j] = x[i*Nnodes+j];
  3859. }
  3860. }
  3861. Real alpha = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
  3862. Real beta = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
  3863. Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
  3864. Vector<ElemBasis> BdotN = compute_dot_prod(B, normal);
  3865. Real flux_tor, flux_pol;
  3866. compute_flux(flux_tor, flux_pol, B, normal);
  3867. Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
  3868. for (Long i = 0; i < Nelem; i++) {
  3869. for (Long j = 0; j < Nnodes; j++) {
  3870. Ax[i*Nnodes+j] = BdotN[i][j];
  3871. }
  3872. }
  3873. if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = flux_tor;
  3874. if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = flux_pol;
  3875. return Ax;
  3876. };
  3877. auto compute_invA = [&S,&comm,&compute_A] (Vector<ElemBasis>& sigma, Real& alpha, Real& beta, Real flux_tor, Real flux_pol) {
  3878. typename ParallelSolver<Real>::ParallelOp BIOp = [&compute_A](Vector<Real>* Ax, const Vector<Real>& x) {
  3879. (*Ax) = compute_A(x);
  3880. };
  3881. const Long Nelem = S.NElem();
  3882. const Long Nnodes = ElemBasis::Size();
  3883. Vector<Real> rhs_(Nelem * Nnodes + S.Nsurf());
  3884. rhs_ = 0;
  3885. if (S.Nsurf() >= 1) rhs_[Nelem * Nnodes + 0] = flux_tor;
  3886. if (S.Nsurf() >= 2) rhs_[Nelem * Nnodes + 1] = flux_pol;
  3887. Vector<Real> x_(Nelem * Nnodes + S.Nsurf());
  3888. x_ = 0;
  3889. ParallelSolver<Real> linear_solver(comm, true);
  3890. linear_solver(&x_, BIOp, rhs_, 1e-8, 100);
  3891. sigma.ReInit(Nelem);
  3892. for (Long i = 0; i < Nelem; i++) {
  3893. for (Long j = 0; j < Nnodes; j++) {
  3894. sigma[i][j] = x_[i*Nnodes+j];
  3895. }
  3896. }
  3897. alpha = (S.Nsurf() >= 1 ? x_[Nelem * Nnodes + 0] : 0);
  3898. beta = (S.Nsurf() >= 2 ? x_[Nelem * Nnodes + 1] : 0);
  3899. };
  3900. Vector<ElemBasis> dg_dnu = compute_gradient(S, pressure, flux_tor, flux_pol);
  3901. { // Write VTU
  3902. VTUData vtu;
  3903. vtu.AddElems(S.GetElemList(), dg_dnu, ORDER);
  3904. vtu.WriteVTK("dg_dnu", comm);
  3905. }
  3906. if (1) { // test grad_g
  3907. auto compute_g = [&S,&Bt0,&Bp0,&compute_B,&compute_invA,&comm] (const Vector<ElemBasis>& nu, Real eps, Real flux_tor, Real flux_pol, const Vector<ElemBasis>& pressure) {
  3908. const Long Nelem = S.NElem();
  3909. const Long Nnodes = ElemBasis::Size();
  3910. Vector<ElemBasis> normal, area_elem;
  3911. compute_norm_area_elem(S, normal, area_elem);
  3912. Vector<ElemBasis> X_orig(Nelem*COORD_DIM);
  3913. for (Long i = 0; i < Nelem; i++) {
  3914. for (Long j = 0; j < Nnodes; j++) {
  3915. X_orig[i*COORD_DIM+0][j] = S.Elem(i,0)[j];
  3916. X_orig[i*COORD_DIM+1][j] = S.Elem(i,1)[j];
  3917. X_orig[i*COORD_DIM+2][j] = S.Elem(i,2)[j];
  3918. S.Elem(i,0)[j] += eps*nu[i][j] * normal[i*COORD_DIM+0][j];
  3919. S.Elem(i,1)[j] += eps*nu[i][j] * normal[i*COORD_DIM+1][j];
  3920. S.Elem(i,2)[j] += eps*nu[i][j] * normal[i*COORD_DIM+2][j];
  3921. }
  3922. }
  3923. /////////////////////////////////////////////////////////////////////////////////////////////////////////////
  3924. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3925. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  3926. SetupQuadrature(S.quadrature_FxdU, S, S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  3927. Vector<ElemBasis> Jt, Jp;
  3928. compute_harmonic_vector_potentials(Jt, Jp, S);
  3929. EvalQuadrature(Bt0, S.quadrature_BS, S, Jp, S.BiotSavart);
  3930. EvalQuadrature(Bp0, S.quadrature_BS, S, Jt, S.BiotSavart);
  3931. Real alpha, beta;
  3932. Vector<ElemBasis> sigma;
  3933. compute_invA(sigma, alpha, beta, flux_tor, flux_pol);
  3934. Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
  3935. compute_norm_area_elem(S, normal, area_elem);
  3936. Real g = compute_inner_prod(area_elem, compute_gvec(S,B,pressure), area_elem*0+1);
  3937. /////////////////////////////////////////////////////////////////////////////////////////////////////////////
  3938. for (Long i = 0; i < Nelem; i++) {
  3939. for (Long j = 0; j < Nnodes; j++) {
  3940. S.Elem(i,0)[j] = X_orig[i*COORD_DIM+0][j];
  3941. S.Elem(i,1)[j] = X_orig[i*COORD_DIM+1][j];
  3942. S.Elem(i,2)[j] = X_orig[i*COORD_DIM+2][j];
  3943. }
  3944. }
  3945. return g;
  3946. };
  3947. Vector<ElemBasis> normal, area_elem;
  3948. compute_norm_area_elem(S, normal, area_elem);
  3949. const Long Nelem = S.NElem();
  3950. {
  3951. Vector<ElemBasis> nu(Nelem);
  3952. nu = area_elem;
  3953. Real eps = 1e-4;
  3954. Real g0 = compute_g(nu,-eps, flux_tor, flux_pol, pressure);
  3955. Real g1 = compute_g(nu,eps, flux_tor, flux_pol, pressure);
  3956. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  3957. std::cout<<"dg_dnu = "<<compute_inner_prod(area_elem,nu, dg_dnu)<<'\n';
  3958. }
  3959. {
  3960. Vector<ElemBasis> nu(Nelem);
  3961. nu = 1;
  3962. Real eps = 1e-4;
  3963. Real g0 = compute_g(nu,-eps, flux_tor, flux_pol, pressure);
  3964. Real g1 = compute_g(nu,eps, flux_tor, flux_pol, pressure);
  3965. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  3966. std::cout<<"dg_dnu = "<<compute_inner_prod(area_elem,nu, dg_dnu)<<'\n';
  3967. }
  3968. {
  3969. Vector<ElemBasis> nu(Nelem);
  3970. nu = dg_dnu;
  3971. Real eps = 1e-4;
  3972. Real g0 = compute_g(nu,-eps, flux_tor, flux_pol, pressure);
  3973. Real g1 = compute_g(nu,eps, flux_tor, flux_pol, pressure);
  3974. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  3975. std::cout<<"dg_dnu = "<<compute_inner_prod(area_elem,nu, dg_dnu)<<'\n';
  3976. }
  3977. }
  3978. }
  3979. static void test_askham() {
  3980. auto Setup = [] (Stellarator<Real,ORDER>& S, const Comm& comm) { // Set quadratures, Bt0, Bp0, ...
  3981. SetupQuadrature(S.quadrature_dBS , S, S.BiotSavartGrad, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3982. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3983. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  3984. SetupQuadrature(S.quadrature_FxdU , S, S.Laplace_FxdU , order_singular, order_direct, -1.0, comm);
  3985. SetupQuadrature(S.quadrature_dUxF , S, S.Laplace_dUxF , order_singular, order_direct, -1.0, comm);
  3986. SetupQuadrature(S.quadrature_dUxD , S, S.Laplace_dUxD , order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  3987. SetupQuadrature(S.quadrature_Fxd2U, S, S.Laplace_Fxd2U , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3988. { // Set Bt0, Bp0, dBt0, dBp0
  3989. Vector<ElemBasis> Jt, Jp;
  3990. compute_harmonic_vector_potentials(Jt, Jp, S);
  3991. EvalQuadrature(S.Bt0 , S.quadrature_BS , S, Jp, S.BiotSavart);
  3992. EvalQuadrature(S.Bp0 , S.quadrature_BS , S, Jt, S.BiotSavart);
  3993. EvalQuadrature(S.dBt0, S.quadrature_dBS, S, Jp, S.BiotSavartGrad);
  3994. EvalQuadrature(S.dBp0, S.quadrature_dBS, S, Jt, S.BiotSavartGrad);
  3995. }
  3996. };
  3997. auto compute_grad = [] (const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& V) {
  3998. const Long Nelem = S.GetElemList().NElem();
  3999. const Long Nnodes = ElemBasis::Size();
  4000. const Long dof = V.Dim() / Nelem;
  4001. SCTL_ASSERT(Nelem * dof == V.Dim());
  4002. Vector<ElemBasis> du_dX(Nelem*COORD_DIM*2);
  4003. { // Set du_dX
  4004. Vector<ElemBasis> dX;
  4005. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  4006. auto inv2x2 = [](Tensor<Real, true, 2, 2> M) {
  4007. Tensor<Real, true, 2, 2> Mout;
  4008. Real oodet = 1 / (M(0,0) * M(1,1) - M(0,1) * M(1,0));
  4009. Mout(0,0) = M(1,1) * oodet;
  4010. Mout(0,1) = -M(0,1) * oodet;
  4011. Mout(1,0) = -M(1,0) * oodet;
  4012. Mout(1,1) = M(0,0) * oodet;
  4013. return Mout;
  4014. };
  4015. for (Long i = 0; i < Nelem; i++) {
  4016. for (Long j = 0; j < Nnodes; j++) {
  4017. Tensor<Real, true, 3, 2> dX_du;
  4018. dX_du(0,0) = dX[(i*COORD_DIM+0)*2+0][j];
  4019. dX_du(1,0) = dX[(i*COORD_DIM+1)*2+0][j];
  4020. dX_du(2,0) = dX[(i*COORD_DIM+2)*2+0][j];
  4021. dX_du(0,1) = dX[(i*COORD_DIM+0)*2+1][j];
  4022. dX_du(1,1) = dX[(i*COORD_DIM+1)*2+1][j];
  4023. dX_du(2,1) = dX[(i*COORD_DIM+2)*2+1][j];
  4024. Tensor<Real, true, 2, 2> G; // = dX_du.Transpose() * dX_du;
  4025. G(0,0) = dX_du(0,0) * dX_du(0,0) + dX_du(1,0) * dX_du(1,0) + dX_du(2,0) * dX_du(2,0);
  4026. G(0,1) = dX_du(0,0) * dX_du(0,1) + dX_du(1,0) * dX_du(1,1) + dX_du(2,0) * dX_du(2,1);
  4027. G(1,0) = dX_du(0,1) * dX_du(0,0) + dX_du(1,1) * dX_du(1,0) + dX_du(2,1) * dX_du(2,0);
  4028. G(1,1) = dX_du(0,1) * dX_du(0,1) + dX_du(1,1) * dX_du(1,1) + dX_du(2,1) * dX_du(2,1);
  4029. Tensor<Real, true, 2, 2> Ginv = inv2x2(G);
  4030. du_dX[(i*COORD_DIM+0)*2+0][j] = Ginv(0,0) * dX_du(0,0) + Ginv(0,1) * dX_du(0,1);
  4031. du_dX[(i*COORD_DIM+1)*2+0][j] = Ginv(0,0) * dX_du(1,0) + Ginv(0,1) * dX_du(1,1);
  4032. du_dX[(i*COORD_DIM+2)*2+0][j] = Ginv(0,0) * dX_du(2,0) + Ginv(0,1) * dX_du(2,1);
  4033. du_dX[(i*COORD_DIM+0)*2+1][j] = Ginv(1,0) * dX_du(0,0) + Ginv(1,1) * dX_du(0,1);
  4034. du_dX[(i*COORD_DIM+1)*2+1][j] = Ginv(1,0) * dX_du(1,0) + Ginv(1,1) * dX_du(1,1);
  4035. du_dX[(i*COORD_DIM+2)*2+1][j] = Ginv(1,0) * dX_du(2,0) + Ginv(1,1) * dX_du(2,1);
  4036. }
  4037. }
  4038. }
  4039. Vector<ElemBasis> dV;
  4040. ElemBasis::Grad(dV, V);
  4041. Vector<ElemBasis> gradV(Nelem*dof*COORD_DIM);
  4042. for (Long i = 0; i < Nelem; i++) {
  4043. for (Long j = 0; j < Nnodes; j++) {
  4044. for (Long k = 0; k < dof; k++) {
  4045. gradV[(i*dof+k)*COORD_DIM+0][j] = dV[(i*dof+k)*2+0][j] * du_dX[(i*COORD_DIM+0)*2+0][j] + dV[(i*dof+k)*2+1][j] * du_dX[(i*COORD_DIM+0)*2+1][j];
  4046. gradV[(i*dof+k)*COORD_DIM+1][j] = dV[(i*dof+k)*2+0][j] * du_dX[(i*COORD_DIM+1)*2+0][j] + dV[(i*dof+k)*2+1][j] * du_dX[(i*COORD_DIM+1)*2+1][j];
  4047. gradV[(i*dof+k)*COORD_DIM+2][j] = dV[(i*dof+k)*2+0][j] * du_dX[(i*COORD_DIM+2)*2+0][j] + dV[(i*dof+k)*2+1][j] * du_dX[(i*COORD_DIM+2)*2+1][j];
  4048. }
  4049. }
  4050. }
  4051. return gradV;
  4052. };
  4053. auto compute_surfdiv = [&compute_grad] (const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& V) {
  4054. const Long Nelem = S.GetElemList().NElem();
  4055. const Long Nnodes = ElemBasis::Size();
  4056. SCTL_ASSERT(V.Dim() == Nelem* COORD_DIM);
  4057. Vector<ElemBasis> gradV = compute_grad(S, V);
  4058. Vector<ElemBasis> divV(Nelem);
  4059. for (Long i = 0; i < Nelem; i++) {
  4060. for (Long j = 0; j < Nnodes; j++) {
  4061. divV[i][j] = gradV[(i*COORD_DIM+0)*COORD_DIM+0][j] + gradV[(i*COORD_DIM+1)*COORD_DIM+1][j] + gradV[(i*COORD_DIM+2)*COORD_DIM+2][j];
  4062. }
  4063. }
  4064. return divV;
  4065. };
  4066. auto compute_g = [](const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& B) {
  4067. const Long Nelem = S.NElem();
  4068. const Long Nnodes = ElemBasis::Size();
  4069. Vector<ElemBasis> normal, area_elem;
  4070. compute_norm_area_elem(S, normal, area_elem);
  4071. Vector<ElemBasis> B2(Nelem);
  4072. for (Long i = 0; i < Nelem; i++) {
  4073. for (Long j = 0; j < Nnodes; j++) {
  4074. B2[i][j] = 0;
  4075. B2[i][j] += B[i*COORD_DIM+0][j] * B[i*COORD_DIM+0][j];
  4076. B2[i][j] += B[i*COORD_DIM+1][j] * B[i*COORD_DIM+1][j];
  4077. B2[i][j] += B[i*COORD_DIM+2][j] * B[i*COORD_DIM+2][j];
  4078. }
  4079. }
  4080. return compute_inner_prod(area_elem,B2, B2) * 0.25;
  4081. };
  4082. auto compute_H = [] (const ElemList<COORD_DIM,ElemBasis>& elem_lst, const Vector<ElemBasis>& normal) {
  4083. const Long Nnodes = ElemBasis::Size();
  4084. const Long Nelem = elem_lst.NElem();
  4085. const Vector<ElemBasis> X = elem_lst.ElemVector();
  4086. Vector<ElemBasis> dX, d2X, H(Nelem);
  4087. ElemBasis::Grad(dX, X);
  4088. ElemBasis::Grad(d2X, dX);
  4089. for (Long i = 0; i < Nelem; i++) {
  4090. for (Long j = 0; j < Nnodes; j++) {
  4091. Tensor<Real,true,2,2> I, invI, II;
  4092. for (Long k0 = 0; k0 < 2; k0++) {
  4093. for (Long k1 = 0; k1 < 2; k1++) {
  4094. I(k0,k1) = 0;
  4095. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  4096. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  4097. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  4098. II(k0,k1) = 0;
  4099. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  4100. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  4101. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  4102. }
  4103. }
  4104. { // Set invI
  4105. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  4106. invI(0,0) = I(1,1) / detI;
  4107. invI(0,1) = -I(0,1) / detI;
  4108. invI(1,0) = -I(1,0) / detI;
  4109. invI(1,1) = I(0,0) / detI;
  4110. }
  4111. { // Set H
  4112. H[i][j] = 0;
  4113. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  4114. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  4115. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  4116. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  4117. }
  4118. }
  4119. }
  4120. return H;
  4121. };
  4122. auto compute_A_ = [](const Stellarator<Real,ORDER>& S, const Vector<Real>& x) {
  4123. const Long Nelem = S.NElem();
  4124. const Long Nnodes = ElemBasis::Size();
  4125. SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
  4126. Vector<ElemBasis> normal, area_elem;
  4127. compute_norm_area_elem(S, normal, area_elem);
  4128. if (S.Nsurf() == 2) {
  4129. Long Nelem0 = S.NTor(0)*S.NPol(0);
  4130. for (Long i = 0; i < Nelem0*COORD_DIM; i++) {
  4131. for (Long j = 0; j < Nnodes; j++) {
  4132. normal[i][j] *= -1.0;
  4133. }
  4134. }
  4135. }
  4136. Vector<ElemBasis> sigma(Nelem);
  4137. for (Long i = 0; i < Nelem; i++) {
  4138. for (Long j = 0; j < Nnodes; j++) {
  4139. sigma[i][j] = x[i*Nnodes+j];
  4140. }
  4141. }
  4142. Real alpha = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
  4143. Real beta = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
  4144. Vector<ElemBasis> B = compute_B(S, sigma, alpha, beta);
  4145. Vector<ElemBasis> BdotN = compute_dot_prod(B, normal);
  4146. Real flux_tor = 0, flux_pol = 0;
  4147. //compute_flux(flux_tor, flux_pol, S, B, normal);
  4148. { // compute flux_tor
  4149. SCTL_ASSERT(S.Nsurf() == 1);
  4150. const Long Nelem = S.NElem();
  4151. const Long Nnodes = ElemBasis::Size();
  4152. SCTL_ASSERT(B.Dim() == Nelem*COORD_DIM);
  4153. SCTL_ASSERT(normal.Dim() == Nelem*COORD_DIM);
  4154. Vector<ElemBasis> J(Nelem * COORD_DIM);
  4155. for (Long i = 0; i < Nelem; i++) { // Set J
  4156. for (Long j = 0; j < Nnodes; j++) {
  4157. Tensor<Real,true,COORD_DIM> b, n;
  4158. b(0) = B[i*COORD_DIM+0][j];
  4159. b(1) = B[i*COORD_DIM+1][j];
  4160. b(2) = B[i*COORD_DIM+2][j];
  4161. n(0) = normal[i*COORD_DIM+0][j];
  4162. n(1) = normal[i*COORD_DIM+1][j];
  4163. n(2) = normal[i*COORD_DIM+2][j];
  4164. J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
  4165. J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
  4166. J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
  4167. }
  4168. }
  4169. Vector<ElemBasis> A;
  4170. EvalQuadrature(A, S.quadrature_FxU, S, J, S.Laplace_FxU);
  4171. Vector<Real> circ_pol(S.Nsurf()), circ_tor(S.Nsurf());
  4172. { // compute circ
  4173. const Vector<ElemBasis>& X = S.GetElemList().ElemVector();
  4174. const auto& quad_wts = ElemBasis::QuadWts();
  4175. for (Long k = 0; k < S.Nsurf(); k++) {
  4176. circ_pol[k] = 0;
  4177. circ_tor[k] = 0;
  4178. Long Ndsp = S.ElemDsp(k);
  4179. for (Long i = 0; i < S.NTor(k)*S.NPol(k); i++) {
  4180. for (Long j = 0; j < Nnodes; j++) {
  4181. Tensor<Real,true,COORD_DIM> x, n, axis, phi_over_R, nxphi_over_R;
  4182. { // Set nxphi_over_R
  4183. x(0) = S.Elem(Ndsp+i,0)[j];
  4184. x(1) = S.Elem(Ndsp+i,1)[j];
  4185. x(2) = S.Elem(Ndsp+i,2)[j];
  4186. n(0) = normal[(Ndsp+i)*COORD_DIM+0][j];
  4187. n(1) = normal[(Ndsp+i)*COORD_DIM+1][j];
  4188. n(2) = normal[(Ndsp+i)*COORD_DIM+2][j];
  4189. axis(0) = 0;
  4190. axis(1) = 0;
  4191. axis(2) = 1;
  4192. phi_over_R(0) = axis(1) * x(2) - axis(2) * x(1);
  4193. phi_over_R(1) = axis(2) * x(0) - axis(0) * x(2);
  4194. phi_over_R(2) = axis(0) * x(1) - axis(1) * x(0);
  4195. Real scale = 1 / (phi_over_R(0)*phi_over_R(0) + phi_over_R(1)*phi_over_R(1) + phi_over_R(2)*phi_over_R(2));
  4196. phi_over_R(0) *= scale;
  4197. phi_over_R(1) *= scale;
  4198. phi_over_R(2) *= scale;
  4199. nxphi_over_R(0) = n(1) * phi_over_R(2) - n(2) * phi_over_R(1);
  4200. nxphi_over_R(1) = n(2) * phi_over_R(0) - n(0) * phi_over_R(2);
  4201. nxphi_over_R(2) = n(0) * phi_over_R(1) - n(1) * phi_over_R(0);
  4202. }
  4203. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+0][j] * nxphi_over_R(0) * quad_wts[j] * area_elem[i][j] / (2 * const_pi<Real>());
  4204. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+1][j] * nxphi_over_R(1) * quad_wts[j] * area_elem[i][j] / (2 * const_pi<Real>());
  4205. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+2][j] * nxphi_over_R(2) * quad_wts[j] * area_elem[i][j] / (2 * const_pi<Real>());
  4206. //circ_tor[k] += ;
  4207. //circ_tor[k] += ;
  4208. //circ_tor[k] += ;
  4209. }
  4210. }
  4211. }
  4212. }
  4213. if (S.Nsurf() == 1) {
  4214. flux_tor = circ_pol[0];
  4215. flux_pol = 0;
  4216. } else if (S.Nsurf() == 2) {
  4217. flux_tor = circ_pol[1] - circ_pol[0];
  4218. flux_pol = circ_tor[0] - circ_tor[1];
  4219. } else {
  4220. SCTL_ASSERT(false);
  4221. }
  4222. }
  4223. { // update flux_tor
  4224. Vector<ElemBasis> G_BdotN(Nelem), phi_dot_N_over_R(Nelem);
  4225. EvalQuadrature(G_BdotN, S.quadrature_FxU, S, BdotN, S.Laplace_FxU);
  4226. for (Long i = 0; i < Nelem; i++) {
  4227. for (Long j = 0; j < Nnodes; j++) {
  4228. Tensor<Real,true,COORD_DIM> x, axis, phi_over_R;
  4229. x(0) = S.Elem(i,0)[j];
  4230. x(1) = S.Elem(i,1)[j];
  4231. x(2) = S.Elem(i,2)[j];
  4232. axis(0) = 0;
  4233. axis(1) = 0;
  4234. axis(2) = 1;
  4235. phi_over_R(0) = axis(1) * x(2) - axis(2) * x(1);
  4236. phi_over_R(1) = axis(2) * x(0) - axis(0) * x(2);
  4237. phi_over_R(2) = axis(0) * x(1) - axis(1) * x(0);
  4238. Real scale = 1 / (phi_over_R(0)*phi_over_R(0) + phi_over_R(1)*phi_over_R(1) + phi_over_R(2)*phi_over_R(2));
  4239. phi_over_R(0) *= scale;
  4240. phi_over_R(1) *= scale;
  4241. phi_over_R(2) *= scale;
  4242. phi_dot_N_over_R[i][j] = 0;
  4243. phi_dot_N_over_R[i][j] += normal[i*COORD_DIM+0][j] * phi_over_R(0);
  4244. phi_dot_N_over_R[i][j] += normal[i*COORD_DIM+1][j] * phi_over_R(1);
  4245. phi_dot_N_over_R[i][j] += normal[i*COORD_DIM+2][j] * phi_over_R(2);
  4246. }
  4247. }
  4248. flux_tor += compute_inner_prod(area_elem, phi_dot_N_over_R, G_BdotN)/(2*const_pi<Real>());
  4249. }
  4250. Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
  4251. for (Long i = 0; i < Nelem; i++) {
  4252. for (Long j = 0; j < Nnodes; j++) {
  4253. Ax[i*Nnodes+j] = BdotN[i][j];
  4254. }
  4255. }
  4256. if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = flux_tor;
  4257. if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = flux_pol;
  4258. return Ax;
  4259. };
  4260. auto compute_invA_ = [&compute_A_](Vector<ElemBasis>& sigma, Real& alpha, Real& beta, const Stellarator<Real,ORDER>& S, Vector<ElemBasis>& Bdotn, Real flux_tor, Real flux_pol, const Comm& comm) {
  4261. typename ParallelSolver<Real>::ParallelOp BIOp = [&S,&compute_A_](Vector<Real>* Ax, const Vector<Real>& x) {
  4262. (*Ax) = compute_A_(S, x);
  4263. };
  4264. const Long Nelem = S.NElem();
  4265. const Long Nnodes = ElemBasis::Size();
  4266. Vector<Real> rhs_(Nelem * Nnodes + S.Nsurf());
  4267. for (Long i = 0; i < Nelem; i++) {
  4268. for (Long j = 0; j < Nnodes; j++) {
  4269. rhs_[i*Nnodes+j] = Bdotn[i][j];
  4270. }
  4271. }
  4272. if (S.Nsurf() >= 1) rhs_[Nelem * Nnodes + 0] = flux_tor;
  4273. if (S.Nsurf() >= 2) rhs_[Nelem * Nnodes + 1] = flux_pol;
  4274. Vector<Real> x_(Nelem * Nnodes + S.Nsurf());
  4275. x_ = 0;
  4276. ParallelSolver<Real> linear_solver(comm, true);
  4277. linear_solver(&x_, BIOp, rhs_, 1e-6, 100);
  4278. sigma.ReInit(Nelem);
  4279. for (Long i = 0; i < Nelem; i++) {
  4280. for (Long j = 0; j < Nnodes; j++) {
  4281. sigma[i][j] = x_[i*Nnodes+j];
  4282. }
  4283. }
  4284. alpha = (S.Nsurf() >= 1 ? x_[Nelem * Nnodes + 0] : 0);
  4285. beta = (S.Nsurf() >= 2 ? x_[Nelem * Nnodes + 1] : 0);
  4286. };
  4287. Comm comm = Comm::World();
  4288. Profile::Enable(true);
  4289. Long Nsurf = 1;
  4290. Stellarator<Real,ORDER> S;
  4291. Vector<Real> flux_tor(Nsurf), flux_pol(Nsurf);
  4292. { // Init S, flux_tor, flux_pol, pressure
  4293. Vector<Long> NtNp;
  4294. NtNp.PushBack(30);
  4295. NtNp.PushBack(4);
  4296. S = Stellarator<Real,ORDER>(NtNp);
  4297. flux_tor = 1;
  4298. flux_pol = 1;
  4299. }
  4300. Setup(S, comm);
  4301. const Long Nelem = S.NElem();
  4302. const Long Nnodes = ElemBasis::Size();
  4303. Vector<ElemBasis> normal, area_elem;
  4304. compute_norm_area_elem(S, normal, area_elem);
  4305. Vector<ElemBasis> nu(Nelem);
  4306. { // Set nu
  4307. //nu = area_elem;
  4308. //nu = 1;
  4309. //for (Long i = 0; i < Nelem; i++) {
  4310. // for (Long j = 0; j < Nnodes; j++) {
  4311. // Tensor<Real,true,COORD_DIM> x;
  4312. // x(0) = S.Elem(i,0)[j];
  4313. // x(1) = S.Elem(i,1)[j];
  4314. // x(2) = S.Elem(i,2)[j];
  4315. // nu[i][j] = x(2);
  4316. // }
  4317. //}
  4318. for (Long i = 0; i < Nelem; i++) {
  4319. for (Long j = 0; j < Nnodes; j++) {
  4320. Tensor<Real,true,COORD_DIM> x;
  4321. x(0) = S.Elem(i,0)[j]-8;
  4322. x(1) = S.Elem(i,1)[j]+6;
  4323. x(2) = S.Elem(i,2)[j]-3;
  4324. nu[i][j] = 1/sqrt(x(0)*x(0)+x(1)*x(1)+x(2)*x(2));
  4325. }
  4326. }
  4327. nu = nu * (1.0/sqrt(compute_inner_prod(area_elem, nu, nu)));
  4328. }
  4329. { // Write VTU
  4330. VTUData vtu;
  4331. vtu.AddElems(S.GetElemList(), nu, ORDER);
  4332. vtu.WriteVTK("nu", comm);
  4333. }
  4334. Vector<ElemBasis> B, nu_dBdn, nu_n_dot_dBdn;
  4335. { // Set B, nu_dBdn, nu_n_dot_dBdn
  4336. Real alpha, beta;
  4337. Vector<ElemBasis> sigma;
  4338. compute_invA(sigma, alpha, beta, S, flux_tor[0], flux_pol[0], comm);
  4339. B = compute_B(S, sigma, alpha, beta);
  4340. Vector<ElemBasis> dB = compute_dB(S, sigma, alpha, beta);
  4341. nu_dBdn.ReInit(Nelem * COORD_DIM);
  4342. nu_n_dot_dBdn.ReInit(Nelem);
  4343. for (Long i = 0; i < Nelem; i++) {
  4344. for (Long j = 0; j < Nnodes; j++) {
  4345. Real nu_dBdn_[COORD_DIM] = {0,0,0};
  4346. nu_dBdn_[0] -= dB[(i*COORD_DIM+0)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j] * nu[i][j];
  4347. nu_dBdn_[0] -= dB[(i*COORD_DIM+0)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j] * nu[i][j];
  4348. nu_dBdn_[0] -= dB[(i*COORD_DIM+0)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j] * nu[i][j];
  4349. nu_dBdn_[1] -= dB[(i*COORD_DIM+1)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j] * nu[i][j];
  4350. nu_dBdn_[1] -= dB[(i*COORD_DIM+1)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j] * nu[i][j];
  4351. nu_dBdn_[1] -= dB[(i*COORD_DIM+1)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j] * nu[i][j];
  4352. nu_dBdn_[2] -= dB[(i*COORD_DIM+2)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j] * nu[i][j];
  4353. nu_dBdn_[2] -= dB[(i*COORD_DIM+2)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j] * nu[i][j];
  4354. nu_dBdn_[2] -= dB[(i*COORD_DIM+2)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j] * nu[i][j];
  4355. nu_dBdn[i*COORD_DIM+0][j] = nu_dBdn_[0];
  4356. nu_dBdn[i*COORD_DIM+1][j] = nu_dBdn_[1];
  4357. nu_dBdn[i*COORD_DIM+2][j] = nu_dBdn_[2];
  4358. Real nu_n_dot_dBdn_ = 0;
  4359. nu_n_dot_dBdn_ += nu_dBdn_[0] * normal[i*COORD_DIM+0][j];
  4360. nu_n_dot_dBdn_ += nu_dBdn_[1] * normal[i*COORD_DIM+1][j];
  4361. nu_n_dot_dBdn_ += nu_dBdn_[2] * normal[i*COORD_DIM+2][j];
  4362. nu_n_dot_dBdn[i][j] = nu_n_dot_dBdn_;
  4363. }
  4364. }
  4365. }
  4366. { // Write VTU
  4367. VTUData vtu;
  4368. vtu.AddElems(S.GetElemList(), B, ORDER);
  4369. vtu.WriteVTK("B", comm);
  4370. }
  4371. Real dgdnu;
  4372. Vector<ElemBasis> dBdnu, n_dot_dBdnu;
  4373. { // Set dBdnu, n_dot_dBdnu, dgdnu (finite-difference approximation)
  4374. Real eps = 1e-3;
  4375. Stellarator<Real,ORDER> S0 = S, S1 = S;
  4376. for (Long i = 0; i < Nelem; i++) {
  4377. for (Long j = 0; j < Nnodes; j++) {
  4378. S0.Elem(i, 0)[j] -= 0.5 * eps * normal[i*COORD_DIM+0][j] * nu[i][j];
  4379. S0.Elem(i, 1)[j] -= 0.5 * eps * normal[i*COORD_DIM+1][j] * nu[i][j];
  4380. S0.Elem(i, 2)[j] -= 0.5 * eps * normal[i*COORD_DIM+2][j] * nu[i][j];
  4381. S1.Elem(i, 0)[j] += 0.5 * eps * normal[i*COORD_DIM+0][j] * nu[i][j];
  4382. S1.Elem(i, 1)[j] += 0.5 * eps * normal[i*COORD_DIM+1][j] * nu[i][j];
  4383. S1.Elem(i, 2)[j] += 0.5 * eps * normal[i*COORD_DIM+2][j] * nu[i][j];
  4384. }
  4385. }
  4386. Setup(S0, comm);
  4387. Setup(S1, comm);
  4388. Real alpha0, alpha1, beta0, beta1;
  4389. Vector<ElemBasis> sigma0, sigma1;
  4390. compute_invA(sigma0, alpha0, beta0, S0, flux_tor[0], flux_pol[0], comm);
  4391. compute_invA(sigma1, alpha1, beta1, S1, flux_tor[0], flux_pol[0], comm);
  4392. Vector<ElemBasis> B0 = compute_B(S0, sigma0, alpha0, beta0);
  4393. Vector<ElemBasis> B1 = compute_B(S1, sigma1, alpha1, beta1);
  4394. dBdnu = (B1 - B0) * (1/eps);
  4395. dgdnu = (compute_g(S1,B1) - compute_g(S0,B0)) * (1/eps);
  4396. n_dot_dBdnu.ReInit(Nelem);
  4397. for (Long i = 0; i < Nelem; i++) {
  4398. for (Long j = 0; j < Nnodes; j++) {
  4399. Real n_dot_dBdnu_ = 0;
  4400. n_dot_dBdnu_ += normal[i*COORD_DIM+0][j] * dBdnu[i*COORD_DIM+0][j];
  4401. n_dot_dBdnu_ += normal[i*COORD_DIM+1][j] * dBdnu[i*COORD_DIM+1][j];
  4402. n_dot_dBdnu_ += normal[i*COORD_DIM+2][j] * dBdnu[i*COORD_DIM+2][j];
  4403. n_dot_dBdnu[i][j] = n_dot_dBdnu_;
  4404. }
  4405. }
  4406. }
  4407. Vector<ElemBasis> B_dot_gradnu, nu_surfdivB, surfdivBnu;
  4408. { // Set B_dot_gradnu
  4409. Vector<ElemBasis> gradnu = compute_grad(S, nu);
  4410. B_dot_gradnu.ReInit(Nelem);
  4411. for (Long i = 0; i < Nelem; i++) {
  4412. for (Long j = 0; j < Nnodes; j++) {
  4413. Real B_dot_gradnu_ = 0;
  4414. B_dot_gradnu_ += B[i*COORD_DIM+0][j] * gradnu[i*COORD_DIM+0][j];
  4415. B_dot_gradnu_ += B[i*COORD_DIM+1][j] * gradnu[i*COORD_DIM+1][j];
  4416. B_dot_gradnu_ += B[i*COORD_DIM+2][j] * gradnu[i*COORD_DIM+2][j];
  4417. B_dot_gradnu[i][j] = B_dot_gradnu_;
  4418. }
  4419. }
  4420. }
  4421. { // Set nu_surfdivB
  4422. Vector<ElemBasis> surfdivB = compute_surfdiv(S, B);
  4423. nu_surfdivB.ReInit(Nelem);
  4424. for (Long i = 0; i < Nelem; i++) {
  4425. for (Long j = 0; j < Nnodes; j++) {
  4426. nu_surfdivB[i][j] = nu[i][j] * surfdivB[i][j];
  4427. }
  4428. }
  4429. }
  4430. { // Set surfdivBnu
  4431. Vector<ElemBasis> Bnu(Nelem*COORD_DIM);
  4432. for (Long i = 0; i < Nelem; i++) {
  4433. for (Long j = 0; j < Nnodes; j++) {
  4434. Bnu[i*COORD_DIM+0][j] = B[i*COORD_DIM+0][j] * nu[i][j];
  4435. Bnu[i*COORD_DIM+1][j] = B[i*COORD_DIM+1][j] * nu[i][j];
  4436. Bnu[i*COORD_DIM+2][j] = B[i*COORD_DIM+2][j] * nu[i][j];
  4437. }
  4438. }
  4439. surfdivBnu = compute_surfdiv(S, Bnu);
  4440. }
  4441. // nu_surfdivB == -nu_n_dot_dBdn
  4442. // B_dot_gradnu == n_dot_dBdnu
  4443. // surfdivBnu == B_dot_gradnu - nu_n_dot_dBdn
  4444. Vector<ElemBasis> dBdnu_;
  4445. { // Compute dBdnu_
  4446. Real alpha, beta;
  4447. Real flux_tor = 0, flux_pol = 0;
  4448. { // Set flux_tor, flux_pol
  4449. Vector<ElemBasis> B_dot_phi_over_R(Nelem);
  4450. for (Long i = 0; i < Nelem; i++) {
  4451. for (Long j = 0; j < Nnodes; j++) {
  4452. Tensor<Real,true,COORD_DIM> x, n, axis, phi_over_R;
  4453. { // Set phi_over_R
  4454. x(0) = S.Elem(i,0)[j];
  4455. x(1) = S.Elem(i,1)[j];
  4456. x(2) = S.Elem(i,2)[j];
  4457. n(0) = normal[i*COORD_DIM+0][j];
  4458. n(1) = normal[i*COORD_DIM+1][j];
  4459. n(2) = normal[i*COORD_DIM+2][j];
  4460. axis(0) = 0;
  4461. axis(1) = 0;
  4462. axis(2) = 1;
  4463. phi_over_R(0) = axis(1) * x(2) - axis(2) * x(1);
  4464. phi_over_R(1) = axis(2) * x(0) - axis(0) * x(2);
  4465. phi_over_R(2) = axis(0) * x(1) - axis(1) * x(0);
  4466. Real scale = 1 / (phi_over_R(0)*phi_over_R(0) + phi_over_R(1)*phi_over_R(1) + phi_over_R(2)*phi_over_R(2));
  4467. phi_over_R(0) *= scale;
  4468. phi_over_R(1) *= scale;
  4469. phi_over_R(2) *= scale;
  4470. }
  4471. B_dot_phi_over_R[i][j] = 0;
  4472. B_dot_phi_over_R[i][j] += B[i*COORD_DIM+0][j] * phi_over_R(0);
  4473. B_dot_phi_over_R[i][j] += B[i*COORD_DIM+1][j] * phi_over_R(1);
  4474. B_dot_phi_over_R[i][j] += B[i*COORD_DIM+2][j] * phi_over_R(2);
  4475. }
  4476. }
  4477. flux_tor = -compute_inner_prod(area_elem, B_dot_phi_over_R, nu) / (2 * const_pi<Real>());
  4478. }
  4479. Vector<ElemBasis> sigma, Bdotn = B_dot_gradnu - nu_n_dot_dBdn;
  4480. compute_invA_(sigma, alpha, beta, S, Bdotn, flux_tor, flux_pol, comm);
  4481. dBdnu_ = compute_B(S, sigma, alpha, beta) + nu_dBdn;
  4482. }
  4483. { // Write VTU
  4484. VTUData vtu;
  4485. vtu.AddElems(S.GetElemList(), dBdnu, ORDER);
  4486. vtu.WriteVTK("dBdnu", comm);
  4487. }
  4488. { // Write VTU
  4489. VTUData vtu;
  4490. vtu.AddElems(S.GetElemList(), dBdnu_, ORDER);
  4491. vtu.WriteVTK("dBdnu_", comm);
  4492. }
  4493. { // Write VTU
  4494. VTUData vtu;
  4495. vtu.AddElems(S.GetElemList(), dBdnu_ - dBdnu, ORDER);
  4496. vtu.WriteVTK("err", comm);
  4497. }
  4498. Real dgdnu0, dgdnu1, dgdnu2;
  4499. { // Set dgdnu0 = \int_{Gamma} (B^2 - p) B . B'
  4500. Vector<ElemBasis> dB = dBdnu - nu_dBdn;
  4501. Vector<ElemBasis> B2_p(Nelem), B_dot_dB(Nelem);
  4502. for (Long i = 0; i < Nelem; i++) {
  4503. for (Long j = 0; j < Nnodes; j++) {
  4504. B2_p[i][j] = 0;
  4505. B2_p[i][j] += B[i*COORD_DIM+0][j]*B[i*COORD_DIM+0][j];
  4506. B2_p[i][j] += B[i*COORD_DIM+1][j]*B[i*COORD_DIM+1][j];
  4507. B2_p[i][j] += B[i*COORD_DIM+2][j]*B[i*COORD_DIM+2][j];
  4508. B_dot_dB[i][j] = 0;
  4509. B_dot_dB[i][j] += B[i*COORD_DIM+0][j] * dB[i*COORD_DIM+0][j];
  4510. B_dot_dB[i][j] += B[i*COORD_DIM+1][j] * dB[i*COORD_DIM+1][j];
  4511. B_dot_dB[i][j] += B[i*COORD_DIM+2][j] * dB[i*COORD_DIM+2][j];
  4512. }
  4513. }
  4514. dgdnu0 = compute_inner_prod(area_elem, B2_p, B_dot_dB);
  4515. }
  4516. { // Set dgdnu1 = \int_{Gamma} (B^2-p) B . nu_dBdn
  4517. Vector<ElemBasis> dB = nu_dBdn;
  4518. Vector<ElemBasis> B2_p(Nelem), B_dot_dB(Nelem);
  4519. for (Long i = 0; i < Nelem; i++) {
  4520. for (Long j = 0; j < Nnodes; j++) {
  4521. B2_p[i][j] = 0;
  4522. B2_p[i][j] += B[i*COORD_DIM+0][j]*B[i*COORD_DIM+0][j];
  4523. B2_p[i][j] += B[i*COORD_DIM+1][j]*B[i*COORD_DIM+1][j];
  4524. B2_p[i][j] += B[i*COORD_DIM+2][j]*B[i*COORD_DIM+2][j];
  4525. B_dot_dB[i][j] = 0;
  4526. B_dot_dB[i][j] += B[i*COORD_DIM+0][j] * dB[i*COORD_DIM+0][j];
  4527. B_dot_dB[i][j] += B[i*COORD_DIM+1][j] * dB[i*COORD_DIM+1][j];
  4528. B_dot_dB[i][j] += B[i*COORD_DIM+2][j] * dB[i*COORD_DIM+2][j];
  4529. }
  4530. }
  4531. dgdnu1 = compute_inner_prod(area_elem, B2_p, B_dot_dB);
  4532. }
  4533. { // Set dgdnu2 = \int_{Gamma} 2H(B^2-p)^2 \nu
  4534. Vector<ElemBasis> H = compute_H(S.GetElemList(), normal);
  4535. Vector<ElemBasis> H_B2_p_2(Nelem);
  4536. for (Long i = 0; i < Nelem; i++) {
  4537. for (Long j = 0; j < Nnodes; j++) {
  4538. Real B2_p = 0;
  4539. B2_p += B[i*COORD_DIM+0][j]*B[i*COORD_DIM+0][j];
  4540. B2_p += B[i*COORD_DIM+1][j]*B[i*COORD_DIM+1][j];
  4541. B2_p += B[i*COORD_DIM+2][j]*B[i*COORD_DIM+2][j];
  4542. H_B2_p_2[i][j] = H[i][j] * B2_p*B2_p;
  4543. }
  4544. }
  4545. dgdnu2 = 0.5 * compute_inner_prod(area_elem,H_B2_p_2, nu);
  4546. }
  4547. std::cout<<dgdnu0<<' '<<dgdnu1<<' '<<dgdnu2<<' '<<dgdnu0+dgdnu1+dgdnu2<<'\n';
  4548. std::cout<<dgdnu<<'\n';
  4549. #if 0
  4550. Comm comm = Comm::World();
  4551. Profile::Enable(true);
  4552. Real flux_tor = 1.0, flux_pol = 1.0;
  4553. Stellarator<Real,ORDER> S;
  4554. { // Init S
  4555. Vector<Long> NtNp;
  4556. NtNp.PushBack(20);
  4557. NtNp.PushBack(4);
  4558. S = Stellarator<Real,ORDER>(NtNp);
  4559. }
  4560. Vector<ElemBasis> pressure(S.NElem());
  4561. pressure = 0;
  4562. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  4563. if (S.Nsurf() == 1) flux_pol = 0.0;
  4564. SetupQuadrature(S.quadrature_dBS , S, S.BiotSavartGrad, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  4565. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  4566. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  4567. SetupQuadrature(S.quadrature_FxdU, S, S.Laplace_FxdU , order_singular, order_direct, -1.0, comm);
  4568. SetupQuadrature(S.quadrature_dUxF, S, S.Laplace_dUxF , order_singular, order_direct, -1.0, comm);
  4569. Vector<ElemBasis> Bt0, Bp0;
  4570. Vector<ElemBasis> dBt0, dBp0;
  4571. { // Set Bt0, Bp0
  4572. Vector<ElemBasis> Jt, Jp;
  4573. compute_harmonic_vector_potentials(Jt, Jp, S);
  4574. EvalQuadrature(Bt0, S.quadrature_BS, S, Jp, S.BiotSavart);
  4575. EvalQuadrature(Bp0, S.quadrature_BS, S, Jt, S.BiotSavart);
  4576. EvalQuadrature(dBt0, S.quadrature_dBS, S, Jp, S.BiotSavartGrad);
  4577. EvalQuadrature(dBp0, S.quadrature_dBS, S, Jt, S.BiotSavartGrad);
  4578. }
  4579. auto compute_B = [&S,&Bt0,&Bp0] (const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  4580. const Long Nelem = S.NElem();
  4581. Vector<ElemBasis> B(S.NElem() * COORD_DIM);
  4582. if (sigma.Dim()) {
  4583. const Long Nnodes = ElemBasis::Size();
  4584. Vector<ElemBasis> normal, area_elem;
  4585. compute_norm_area_elem(S, normal, area_elem);
  4586. EvalQuadrature(B, S.quadrature_FxdU, S, sigma, S.Laplace_FxdU);
  4587. for (Long i = 0; i < Nelem; i++) {
  4588. for (Long j = 0; j < Nnodes; j++) {
  4589. for (Long k = 0; k < COORD_DIM; k++) {
  4590. B[i*COORD_DIM+k][j] -= 0.5*sigma[i][j]*normal[i*COORD_DIM+k][j];
  4591. }
  4592. }
  4593. }
  4594. } else {
  4595. B = 0;
  4596. }
  4597. if (S.Nsurf() >= 1) B += Bt0*alpha;
  4598. if (S.Nsurf() >= 2) B += Bp0*beta;
  4599. return B;
  4600. };
  4601. auto compute_dB = [&S,&dBt0,&dBp0] (const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  4602. const Long Nelem = S.NElem();
  4603. Vector<ElemBasis> dB(S.NElem() * COORD_DIM * COORD_DIM);
  4604. if (sigma.Dim()) {
  4605. EvalQuadrature(dB, S.quadrature_Fxd2U, S, sigma, S.Laplace_Fxd2U);
  4606. } else {
  4607. dB = 0;
  4608. }
  4609. if (S.Nsurf() >= 1) dB += dBt0*alpha;
  4610. if (S.Nsurf() >= 2) dB += dBp0*beta;
  4611. return dB;
  4612. };
  4613. auto compute_flux = [&S] (Real& flux_tor, Real& flux_pol, const Vector<ElemBasis>& B, const Vector<ElemBasis>& normal) {
  4614. const Long Nelem = S.NElem();
  4615. const Long Nnodes = ElemBasis::Size();
  4616. SCTL_ASSERT(B.Dim() == Nelem*COORD_DIM);
  4617. SCTL_ASSERT(normal.Dim() == Nelem*COORD_DIM);
  4618. Vector<ElemBasis> J(Nelem * COORD_DIM);
  4619. for (Long i = 0; i < Nelem; i++) { // Set J
  4620. for (Long j = 0; j < Nnodes; j++) {
  4621. Tensor<Real,true,COORD_DIM> b, n;
  4622. b(0) = B[i*COORD_DIM+0][j];
  4623. b(1) = B[i*COORD_DIM+1][j];
  4624. b(2) = B[i*COORD_DIM+2][j];
  4625. n(0) = normal[i*COORD_DIM+0][j];
  4626. n(1) = normal[i*COORD_DIM+1][j];
  4627. n(2) = normal[i*COORD_DIM+2][j];
  4628. J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
  4629. J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
  4630. J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
  4631. }
  4632. }
  4633. Vector<ElemBasis> A;
  4634. EvalQuadrature(A, S.quadrature_FxU, S, J, S.Laplace_FxU);
  4635. Vector<Real> circ_pol(S.Nsurf()), circ_tor(S.Nsurf());
  4636. { // compute circ
  4637. Vector<ElemBasis> dX;
  4638. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  4639. const auto& quad_wts = ElemBasis::QuadWts();
  4640. for (Long k = 0; k < S.Nsurf(); k++) {
  4641. circ_pol[k] = 0;
  4642. circ_tor[k] = 0;
  4643. Long Ndsp = S.ElemDsp(k);
  4644. for (Long i = 0; i < S.NTor(k)*S.NPol(k); i++) {
  4645. for (Long j = 0; j < Nnodes; j++) {
  4646. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+1][j] * quad_wts[j] / S.NTor(k);
  4647. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+3][j] * quad_wts[j] / S.NTor(k);
  4648. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+5][j] * quad_wts[j] / S.NTor(k);
  4649. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+0][j] * quad_wts[j] / S.NPol(k);
  4650. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+2][j] * quad_wts[j] / S.NPol(k);
  4651. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+4][j] * quad_wts[j] / S.NPol(k);
  4652. }
  4653. }
  4654. }
  4655. }
  4656. if (S.Nsurf() == 1) {
  4657. flux_tor = circ_pol[0];
  4658. flux_pol = 0;
  4659. } else if (S.Nsurf() == 2) {
  4660. flux_tor = circ_pol[1] - circ_pol[0];
  4661. flux_pol = circ_tor[0] - circ_tor[1];
  4662. } else {
  4663. SCTL_ASSERT(false);
  4664. }
  4665. };
  4666. auto compute_A = [&S,compute_B,&compute_flux] (const Vector<Real>& x) {
  4667. const Long Nelem = S.NElem();
  4668. const Long Nnodes = ElemBasis::Size();
  4669. SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
  4670. Vector<ElemBasis> normal, area_elem;
  4671. compute_norm_area_elem(S, normal, area_elem);
  4672. Vector<ElemBasis> sigma(Nelem);
  4673. for (Long i = 0; i < Nelem; i++) {
  4674. for (Long j = 0; j < Nnodes; j++) {
  4675. sigma[i][j] = x[i*Nnodes+j];
  4676. }
  4677. }
  4678. Real alpha = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
  4679. Real beta = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
  4680. Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
  4681. Vector<ElemBasis> BdotN = compute_dot_prod(B, normal);
  4682. Real flux_tor, flux_pol;
  4683. compute_flux(flux_tor, flux_pol, B, normal);
  4684. Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
  4685. for (Long i = 0; i < Nelem; i++) {
  4686. for (Long j = 0; j < Nnodes; j++) {
  4687. Ax[i*Nnodes+j] = BdotN[i][j];
  4688. }
  4689. }
  4690. if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = flux_tor;
  4691. if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = flux_pol;
  4692. return Ax;
  4693. };
  4694. auto compute_invA = [&S,&comm,&compute_A] (Vector<ElemBasis>& sigma, Real& alpha, Real& beta, Real flux_tor, Real flux_pol) {
  4695. typename ParallelSolver<Real>::ParallelOp BIOp = [&compute_A](Vector<Real>* Ax, const Vector<Real>& x) {
  4696. (*Ax) = compute_A(x);
  4697. };
  4698. const Long Nelem = S.NElem();
  4699. const Long Nnodes = ElemBasis::Size();
  4700. Vector<Real> rhs_(Nelem * Nnodes + S.Nsurf());
  4701. rhs_ = 0;
  4702. if (S.Nsurf() >= 1) rhs_[Nelem * Nnodes + 0] = flux_tor;
  4703. if (S.Nsurf() >= 2) rhs_[Nelem * Nnodes + 1] = flux_pol;
  4704. Vector<Real> x_(Nelem * Nnodes + S.Nsurf());
  4705. x_ = 0;
  4706. ParallelSolver<Real> linear_solver(comm, true);
  4707. linear_solver(&x_, BIOp, rhs_, 1e-8, 100);
  4708. sigma.ReInit(Nelem);
  4709. for (Long i = 0; i < Nelem; i++) {
  4710. for (Long j = 0; j < Nnodes; j++) {
  4711. sigma[i][j] = x_[i*Nnodes+j];
  4712. }
  4713. }
  4714. alpha = (S.Nsurf() >= 1 ? x_[Nelem * Nnodes + 0] : 0);
  4715. beta = (S.Nsurf() >= 2 ? x_[Nelem * Nnodes + 1] : 0);
  4716. };
  4717. auto compute_H = [] (const ElemList<COORD_DIM,ElemBasis>& elem_lst, const Vector<ElemBasis>& normal) {
  4718. const Long Nnodes = ElemBasis::Size();
  4719. const Long Nelem = elem_lst.NElem();
  4720. const Vector<ElemBasis> X = elem_lst.ElemVector();
  4721. Vector<ElemBasis> dX, d2X, H(Nelem);
  4722. ElemBasis::Grad(dX, X);
  4723. ElemBasis::Grad(d2X, dX);
  4724. for (Long i = 0; i < Nelem; i++) {
  4725. for (Long j = 0; j < Nnodes; j++) {
  4726. Tensor<Real,true,2,2> I, invI, II;
  4727. for (Long k0 = 0; k0 < 2; k0++) {
  4728. for (Long k1 = 0; k1 < 2; k1++) {
  4729. I(k0,k1) = 0;
  4730. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  4731. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  4732. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  4733. II(k0,k1) = 0;
  4734. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  4735. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  4736. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  4737. }
  4738. }
  4739. { // Set invI
  4740. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  4741. invI(0,0) = I(1,1) / detI;
  4742. invI(0,1) = -I(0,1) / detI;
  4743. invI(1,0) = -I(1,0) / detI;
  4744. invI(1,1) = I(0,0) / detI;
  4745. }
  4746. { // Set H
  4747. H[i][j] = 0;
  4748. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  4749. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  4750. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  4751. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  4752. }
  4753. }
  4754. }
  4755. return H;
  4756. };
  4757. auto compute_grad = [&S,&compute_B,&compute_dB,&compute_invA,&compute_H](Vector<ElemBasis>& pressure, Real flux_tor, Real flux_pol) {
  4758. const Long Nelem = S.NElem();
  4759. const Long Nnodes = ElemBasis::Size();
  4760. Real alpha, beta;
  4761. Vector<ElemBasis> sigma;
  4762. compute_invA(sigma, alpha, beta, flux_tor, flux_pol);
  4763. Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
  4764. Vector<ElemBasis> dB = compute_dB(sigma, alpha, beta);
  4765. Vector<ElemBasis> normal, area_elem;
  4766. compute_norm_area_elem(S, normal, area_elem);
  4767. Vector<ElemBasis> gvec = compute_gvec(S, B, pressure);
  4768. Vector<ElemBasis> dgdB = compute_dgdB(S, B, pressure);
  4769. Vector<ElemBasis> H = compute_H(S.GetElemList(), normal);
  4770. Vector<ElemBasis> dgdnu(Nelem);
  4771. dgdnu = 0;
  4772. for (Long i = 0; i < Nelem; i++) {
  4773. for (Long j = 0; j < Nnodes; j++) {
  4774. Real dgdB_dot_dBdn = 0;
  4775. Real dBdn[COORD_DIM] = {0,0,0};
  4776. for (Long k = 0; k < COORD_DIM; k++) {
  4777. dBdn[0] += dB[(i*COORD_DIM+0)*COORD_DIM+k][j] * normal[i*COORD_DIM+k][j];
  4778. dBdn[1] += dB[(i*COORD_DIM+1)*COORD_DIM+k][j] * normal[i*COORD_DIM+k][j];
  4779. dBdn[2] += dB[(i*COORD_DIM+2)*COORD_DIM+k][j] * normal[i*COORD_DIM+k][j];
  4780. }
  4781. for (Long k = 0; k < COORD_DIM; k++) {
  4782. dgdB_dot_dBdn += dgdB[i*COORD_DIM+k][j] * dBdn[k];
  4783. }
  4784. dgdnu[i][j] = dgdB_dot_dBdn + 2*H[i][j]*gvec[i][j];
  4785. }
  4786. }
  4787. return dgdnu;
  4788. };
  4789. auto dg_dnu0 = compute_gradient(S, pressure, flux_tor, flux_pol);
  4790. auto dg_dnu1 = compute_grad ( pressure, flux_tor, flux_pol);
  4791. { // Write VTU
  4792. VTUData vtu;
  4793. vtu.AddElems(S.GetElemList(), dg_dnu0, ORDER);
  4794. vtu.WriteVTK("dg_dnu0", comm);
  4795. }
  4796. { // Write VTU
  4797. VTUData vtu;
  4798. vtu.AddElems(S.GetElemList(), dg_dnu1, ORDER);
  4799. vtu.WriteVTK("dg_dnu1", comm);
  4800. }
  4801. #endif
  4802. }
  4803. private:
  4804. static void tmp() {
  4805. //if (0) { // Save data
  4806. // Matrix<Real> M(S.NtNp_[0]*ORDER, S.NtNp_[1]*ORDER);
  4807. // for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
  4808. // for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
  4809. // for (Long t = 0; t < ORDER; t++) {
  4810. // for (Long p = 0; p < ORDER; p++) {
  4811. // Long elem_idx = tt * S.NtNp_[1] + pp;
  4812. // Long node_idx = p * ORDER + t;
  4813. // M[tt*ORDER+t][pp*ORDER+p] = dg_dnu[elem_idx][node_idx];
  4814. // }
  4815. // }
  4816. // }
  4817. // }
  4818. // M.Write("dg_dnu.mat");
  4819. //}
  4820. //if (0) { // filter dg_dnu and write VTU
  4821. // const Long Nelem = S.NElem();
  4822. // const Long Nnodes = ElemBasis::Size();
  4823. // const Integer INTERP_ORDER = 12;
  4824. // Long Nt = S.NtNp_[0]*ORDER/5, Np = S.NtNp_[1]*ORDER/5;
  4825. // Matrix<Real> M(Nt, Np); M = 0;
  4826. // const auto& quad_wts = ElemBasis::QuadWts();
  4827. // const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
  4828. // for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
  4829. // for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
  4830. // for (Long t = 0; t < ORDER; t++) {
  4831. // for (Long p = 0; p < ORDER; p++) {
  4832. // Real theta = (tt + Mnodes[0][t]) / S.NtNp_[0];
  4833. // Real phi = (pp + Mnodes[0][p]) / S.NtNp_[1];
  4834. // Long i = (Long)(theta * Nt);
  4835. // Long j = (Long)(phi * Np);
  4836. // Real x = theta * Nt - i;
  4837. // Real y = phi * Np - j;
  4838. // Long elem_idx = tt * S.NtNp_[1] + pp;
  4839. // Long node_idx = p * ORDER + t;
  4840. // Vector<Real> Interp0(INTERP_ORDER);
  4841. // Vector<Real> Interp1(INTERP_ORDER);
  4842. // { // Set Interp0, Interp1
  4843. // auto node = [] (Long i) {
  4844. // return (Real)i - (INTERP_ORDER-1)/2;
  4845. // };
  4846. // for (Long i = 0; i < INTERP_ORDER; i++) {
  4847. // Real wt_x = 1, wt_y = 1;
  4848. // for (Long j = 0; j < INTERP_ORDER; j++) {
  4849. // if (j != i) {
  4850. // wt_x *= (x - node(j)) / (node(i) - node(j));
  4851. // wt_y *= (y - node(j)) / (node(i) - node(j));
  4852. // }
  4853. // Interp0[i] = wt_x;
  4854. // Interp1[i] = wt_y;
  4855. // }
  4856. // }
  4857. // }
  4858. // for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  4859. // for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  4860. // Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  4861. // Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  4862. // M[idx_i][idx_j] += dg_dnu[elem_idx][node_idx] * quad_wts[node_idx] * Interp0[ii] * Interp1[jj] / (S.NtNp_[0] * S.NtNp_[1]) * (Nt * Np);
  4863. // }
  4864. // }
  4865. // }
  4866. // }
  4867. // }
  4868. // }
  4869. // Vector<ElemBasis> f(Nelem);
  4870. // for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
  4871. // for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
  4872. // for (Long t = 0; t < ORDER; t++) {
  4873. // for (Long p = 0; p < ORDER; p++) {
  4874. // Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
  4875. // Real theta = (tt + Mnodes[0][t]) / S.NtNp_[0];
  4876. // Real phi = (pp + Mnodes[0][p]) / S.NtNp_[1];
  4877. // Long i = (Long)(theta * Nt);
  4878. // Long j = (Long)(phi * Np);
  4879. // Real x = theta * Nt - i;
  4880. // Real y = phi * Np - j;
  4881. // Vector<Real> Interp0(INTERP_ORDER);
  4882. // Vector<Real> Interp1(INTERP_ORDER);
  4883. // { // Set Interp0, Interp1
  4884. // auto node = [] (Long i) {
  4885. // return (Real)i - (INTERP_ORDER-1)/2;
  4886. // };
  4887. // for (Long i = 0; i < INTERP_ORDER; i++) {
  4888. // Real wt_x = 1, wt_y = 1;
  4889. // for (Long j = 0; j < INTERP_ORDER; j++) {
  4890. // if (j != i) {
  4891. // wt_x *= (x - node(j)) / (node(i) - node(j));
  4892. // wt_y *= (y - node(j)) / (node(i) - node(j));
  4893. // }
  4894. // Interp0[i] = wt_x;
  4895. // Interp1[i] = wt_y;
  4896. // }
  4897. // }
  4898. // }
  4899. // Real f0 = 0;
  4900. // for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  4901. // for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  4902. // Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  4903. // Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  4904. // f0 += Interp0[ii] * Interp1[jj] * M[idx_i][idx_j];
  4905. // }
  4906. // }
  4907. // Long elem_idx = tt * S.NtNp_[1] + pp;
  4908. // Long node_idx = p * ORDER + t;
  4909. // f[elem_idx][node_idx] = f0;
  4910. // }
  4911. // }
  4912. // }
  4913. // }
  4914. // { // Write VTU
  4915. // VTUData vtu;
  4916. // vtu.AddElems(S.GetElemList(), f, ORDER);
  4917. // vtu.WriteVTK("dg_dnu_filtered", comm);
  4918. // }
  4919. // dg_dnu = f;
  4920. //}
  4921. }
  4922. static void FlipNormal(Vector<ElemBasis>& v) {
  4923. for (Long i = 0; i < v.Dim(); i++) {
  4924. const auto elem = v[i];
  4925. for (Long j0 = 0; j0 < ORDER; j0++) {
  4926. for (Long j1 = 0; j1 < ORDER; j1++) {
  4927. v[i][j0*ORDER+j1] = elem[j0*ORDER+(ORDER-j1-1)];
  4928. }
  4929. }
  4930. }
  4931. }
  4932. template <class Kernel> static void SetupQuadrature(Quadrature<Real>& quadrature, const Stellarator<Real,ORDER>& S, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm, Real Rqbx = 0) {
  4933. if (S.Nsurf() == 2) {
  4934. Long Nelem0 = S.NTor(0)*S.NPol(0);
  4935. ElemList<COORD_DIM, ElemBasis> elem_lst = S.GetElemList();
  4936. { // Update elem_lst
  4937. Vector<ElemBasis> X = elem_lst.ElemVector();
  4938. Vector<ElemBasis> X0(Nelem0*COORD_DIM, X.begin(), false);
  4939. FlipNormal(X0);
  4940. elem_lst.ReInit(X);
  4941. }
  4942. quadrature.template Setup<ElemBasis, ElemBasis>(elem_lst, kernel, order_singular, order_direct, period_length, comm, Rqbx);
  4943. } else {
  4944. quadrature.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), kernel, order_singular, order_direct, period_length, comm, Rqbx);
  4945. }
  4946. }
  4947. template <class Kernel> static void EvalQuadrature(Vector<ElemBasis>& potential, const Quadrature<Real>& quadrature, const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& density, const Kernel& kernel) {
  4948. if (S.Nsurf() == 2) {
  4949. Long Nelem0 = S.NTor(0)*S.NPol(0);
  4950. Vector<ElemBasis> potential_, density_ = density;
  4951. ElemList<COORD_DIM, ElemBasis> elem_lst = S.GetElemList();
  4952. { // Update elem_lst
  4953. Vector<ElemBasis> X = elem_lst.ElemVector();
  4954. Vector<ElemBasis> X0(Nelem0*COORD_DIM, X.begin(), false);
  4955. FlipNormal(X0);
  4956. elem_lst.ReInit(X);
  4957. }
  4958. { // Update density_
  4959. Long dof = density_.Dim() / S.NElem();
  4960. Vector<ElemBasis> density0(Nelem0*dof, density_.begin(), false);
  4961. FlipNormal(density0);
  4962. }
  4963. quadrature.Eval(potential_, elem_lst, density_, kernel);
  4964. { // Update potential_
  4965. Long dof = potential_.Dim() / S.NElem();
  4966. Vector<ElemBasis> potential0(Nelem0*dof, potential_.begin(), false);
  4967. FlipNormal(potential0);
  4968. }
  4969. potential = potential_;
  4970. } else {
  4971. quadrature.Eval(potential, S.GetElemList(), density, kernel);
  4972. }
  4973. }
  4974. void InitSurf(Long l, Long Nsurf) {
  4975. const auto& nodes = ElemBasis::Nodes();
  4976. const Long Nt = NTor(l);
  4977. const Long Np = NPol(l);
  4978. for (Long i = 0; i < Nt; i++) {
  4979. for (Long j = 0; j < Np; j++) {
  4980. for (Long k = 0; k < ElemBasis::Size(); k++) {
  4981. Real theta = (i + nodes[0][k]) * 2*const_pi<Real>()/Nt;
  4982. Real phi = (j + nodes[1][k]) * 2*const_pi<Real>()/Np;
  4983. Real X,Y,Z;
  4984. SurfGeom(X,Y,Z,theta,phi, (2.0+l)/(1.0+Nsurf));
  4985. Elem(ElemIdx(l,i,j),0)[k] = X;
  4986. Elem(ElemIdx(l,i,j),1)[k] = Y;
  4987. Elem(ElemIdx(l,i,j),2)[k] = Z;
  4988. }
  4989. }
  4990. }
  4991. }
  4992. static void SurfGeom(Real& X, Real& Y, Real& Z, Real theta, Real phi, Real s) {
  4993. Integer Nperiod = 5;
  4994. #if 0
  4995. Real Aspect_ratio = 10.27932548522949;
  4996. Real coeffmat[21][21] = { 0.00000478813217, 0.00000000000000, 0.00000351611652, 0.00000135354389, 0.00000061357832, 0.00000220091101, 0.00000423862912, -0.00003000058678, 0.00000064187111, -0.00024228452821, 0.00003116775770, 0.00000176210710, 0.00000289141326, -0.00000150300525, 0.00000772853855, 0.00000098855242, 0.00000316606793, 0.00000002168364, 0.00000212047939, 0.00000299016097, 0.00000443224508,
  4997. 0.00000028202930, 0.00000000000000, -0.00000249222421, -0.00000203136278, 0.00000131104809, 0.00000011987446, -0.00000370760154, 0.00004553918916, -0.00007711342914, -0.00004685295062, 0.00011049838213, -0.00000197486270, 0.00000395827146, 0.00000615046474, 0.00000755337123, 0.00000700606006, 0.00000922725030, -0.00000043310337, 0.00000107416383, 0.00000449787694, 0.00000305137178,
  4998. 0.00001226376662, 0.00000000000000, 0.00000270820692, 0.00000208059305, 0.00000521478523, 0.00001779037302, 0.00000846544117, 0.00001120913385, -0.00065816845745, -0.00085107452469, -0.00013171190221, -0.00005540943675, -0.00001835885450, 0.00000101879823, 0.00000209222071, 0.00000091532502, -0.00000521515358, -0.00000209227142, -0.00000678545939, -0.00000034963549, -0.00000015111488,
  4999. 0.00001560274177, 0.00000000000000, 0.00000350691471, -0.00001160475040, -0.00001763036562, 0.00003487367940, -0.00002787247831, -0.00000910982726, 0.00008818832430, -0.00524408789352, 0.00009378376126, 0.00004184526188, 0.00002849263365, -0.00002757280527, 0.00003388467667, 0.00000706207265, 0.00000625263419, -0.00003315929280, -0.00001181772132, 0.00000311426015, 0.00001875682574,
  5000. -0.00000398287420, 0.00000000000000, -0.00001524541040, 0.00001724056165, 0.00002245173346, 0.00002806861812, -0.00000388776925, 0.00008143573359, -0.00005900909309, 0.00110496615525, 0.00134626252111, 0.00005128383054, -0.00001372421866, 0.00003612563887, 0.00002236580076, -0.00002728391883, 0.00001981237256, 0.00000655450458, 0.00000985319002, 0.00001347597299, 0.00000645987802,
  5001. 0.00003304968050, 0.00000000000000, -0.00000530822217, 0.00001324870937, -0.00003610889689, -0.00005478735329, -0.00005818806312, -0.00037112057908, -0.00017812002625, -0.00093204283621, 0.00115969858598, -0.00033559172880, -0.00010441876657, -0.00001617923044, -0.00000555065844, 0.00007343527250, -0.00004408047607, 0.00000403802142, 0.00001843931204, 0.00001694047933, 0.00001213414362,
  5002. -0.00000751115658, 0.00000000000000, 0.00005457974839, -0.00000334614515, 0.00005845565465, 0.00015000770509, 0.00021849104087, 0.00002724147635, 0.00167233624961, 0.00011666602222, 0.00276563479565, -0.00085952825611, -0.00030217235326, -0.00008841593808, 0.00000997664119, -0.00015285826521, 0.00002517224675, 0.00003009161810, 0.00001883217556, 0.00002146127554, 0.00001822445302,
  5003. -0.00004128706860, 0.00000000000000, -0.00003496417776, 0.00001088761655, -0.00000298955979, -0.00005359326315, -0.00019021633489, -0.00017992728681, -0.00347794801928, 0.00064632791327, 0.00449698418379, -0.00017710507382, 0.00006126180233, 0.00018059254216, 0.00002354096432, 0.00008189838991, -0.00010060678323, -0.00017183290038, 0.00019413756672, 0.00021334811754, 0.00011263617489,
  5004. 0.00000853522670, -0.00000000000000, -0.00006544789358, 0.00005424076880, -0.00000679056529, -0.00001249735487, -0.00053082982777, 0.00035396864405, -0.00115020677913, 0.05894451215863, 0.06573092192411, 0.01498018857092, 0.00278125284240, 0.00145188067108, 0.00033717858605, 0.00000800427370, -0.00009335305367, 0.00024286781263, -0.00023916347709, 0.00031213948387, 0.00018134393031,
  5005. -0.00002521496390, -0.00000000000000, -0.00054337945767, 0.00012690725271, 0.00053313979879, 0.00064233405283, -0.00047686311882, 0.00176536326762, 0.00074157933705, -0.02684566564858, 1.00000000000000, 0.07176169008017, 0.00837037432939, -0.00000381640211, 0.00088998704450, -0.00049218931235, -0.00024546548957, -0.00036608282244, 0.00049480766756, 0.00031158892671, 0.00006898906577,
  5006. 0.00021280418150, 0.00028127161204, -0.00070030166535, 0.00022237010126, -0.00028713891516, -0.00013800295710, 0.00005912094275, 0.00172126013786, -0.00618684850633, 0.03608432412148, Aspect_ratio , 0.49896776676178, 0.00091372377938, -0.00085712829605, -0.00124801427592, -0.00007427225501, -0.00005245858847, 0.00002841771493, 0.00020249813679, -0.00014303345233, 0.00001406490901,
  5007. 0.00023699452868, 0.00008661757602, 0.00025744654704, -0.00022715188970, -0.00076146807987, 0.00055185536621, -0.00012325309217, -0.00072356045712, -0.00160693109501, 0.00246682553552, -0.14175094664097, -0.36207047104836, -0.04089594259858, 0.00060774467420, 0.00088646943914, 0.00004865296432, -0.00041878610500, -0.00023025234987, -0.00009676301852, -0.00000000000000, 0.00008409228758,
  5008. 0.00011432896281, -0.00000707848403, 0.00004698805787, -0.00043642931269, 0.00081384339137, -0.00065635429928, -0.00011831733718, 0.00017413357273, 0.00224463525228, 0.00478497287259, 0.03294761106372, 0.01078986655921, 0.10731782764196, 0.00075034319889, -0.00009241879889, 0.00055023463210, 0.00006596000458, 0.00005045382932, 0.00014874986664, 0.00000000000000, -0.00015369028552,
  5009. 0.00001037383754, 0.00009250180301, 0.00026204055757, 0.00007424291834, -0.00047751804232, 0.00029184055165, 0.00050921301590, -0.00004825839278, -0.00029933769838, 0.00279659987427, 0.00210463814437, -0.00618590926751, -0.02400829829276, -0.02316811867058, -0.00086368201301, -0.00032258985448, -0.00018304496189, 0.00008438774967, -0.00008305341908, 0.00000000000000, 0.00013047417451,
  5010. -0.00001376930322, -0.00001723831701, -0.00011543079017, -0.00022646733851, 0.00013467084500, -0.00004661652201, -0.00008419520600, 0.00035772417323, -0.00011815709877, 0.00028718306567, 0.00092207465786, -0.00317224999890, 0.00061770365573, 0.01017294172198, 0.00294739892706, 0.00014669894881, 0.00015702951350, 0.00003432080121, -0.00008555022214, -0.00000000000000, 0.00000454909878,
  5011. -0.00000196001542, -0.00003198397462, -0.00004425687075, -0.00004129848094, -0.00003789070615, -0.00027583551127, 0.00025874207495, -0.00002334945384, -0.00007259396807, -0.00008295358566, 0.00011360697681, -0.00101968157105, 0.00046784928418, -0.00208410434425, -0.00313158822246, -0.00046005158219, -0.00010552268213, -0.00005850767775, 0.00003971093611, 0.00000000000000, -0.00005275657168,
  5012. -0.00001065901233, -0.00001934838656, -0.00001220186732, -0.00002060524639, -0.00000225423423, -0.00001894621164, -0.00001533334580, -0.00001791087379, 0.00008156246622, -0.00008441298269, 0.00021060956351, -0.00030303673702, 0.00075949780876, -0.00010539998038, 0.00109045265708, 0.00068949378328, 0.00009268362192, 0.00003471063246, 0.00001204656473, -0.00000000000000, 0.00001500743110,
  5013. 0.00000105878155, -0.00000910870767, -0.00000172467264, -0.00000722095228, 0.00000699280463, -0.00002061720625, -0.00000889817693, -0.00001993474507, 0.00000370749740, -0.00000090311920, 0.00002677819793, 0.00043428712524, 0.00210293265991, 0.00018200518389, -0.00009621794743, -0.00035250501242, -0.00012996385340, -0.00002185157609, -0.00001116586463, -0.00000000000000, -0.00000451994811,
  5014. 0.00000424055270, -0.00000463139304, 0.00000301006116, -0.00000123974939, 0.00000632465435, -0.00002090823000, 0.00001773388794, 0.00000121050368, 0.00001886057362, -0.00001043497195, -0.00002269273500, -0.00021979617304, -0.00001043962493, -0.00116343051195, -0.00004193381756, 0.00007944958634, 0.00007301353617, 0.00002082651736, -0.00000119863023, -0.00000000000000, -0.00001440504820,
  5015. -0.00000391270805, -0.00000490489265, -0.00000504441778, -0.00000904507579, -0.00000111389932, 0.00000597532107, 0.00000047090245, -0.00001553130096, -0.00001524566323, -0.00000522222899, -0.00007707672921, -0.00004165665086, 0.00015764687851, 0.00035649110214, 0.00038701237645, 0.00002386798405, -0.00001946414341, -0.00000913835174, -0.00000489907188, 0.00000000000000, 0.00000172327657,
  5016. -0.00000015388650, -0.00000603232729, -0.00000397650865, 0.00000280493782, 0.00000463132073, -0.00000788678426, -0.00000471605335, -0.00000283715985, -0.00000422824724, 0.00000366817630, -0.00001159603562, -0.00001625759251, 0.00049116823357, 0.00005048640014, -0.00020234247495, -0.00006341376866, -0.00000807822744, 0.00000070463199, 0.00000014041755, 0.00000000000000, -0.00000718306910};
  5017. #else
  5018. Real Aspect_ratio = 5;
  5019. Real coeffmat[21][21] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5020. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5021. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5022. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5023. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5024. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5025. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5026. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5027. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5028. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, s, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5029. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Aspect_ratio, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5030. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2*s, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5031. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5032. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5033. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5034. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5035. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5036. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5037. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5038. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5039. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0};
  5040. #endif
  5041. Z = 0;
  5042. Real R = 0;
  5043. for (long i = -10; i <= 10; i++) {
  5044. for (long j = -10; j <= 10; j++) {
  5045. R += coeffmat[i+10][j+10] * cos(-i*phi + Nperiod*j*theta);
  5046. Z += coeffmat[i+10][j+10] * sin(-i*phi + Nperiod*j*theta);
  5047. }
  5048. }
  5049. X = R * cos(theta);
  5050. Y = R * sin(theta);
  5051. }
  5052. GenericKernel<BiotSavart3D> BiotSavart ;
  5053. GenericKernel<BiotSavartGrad3D> BiotSavartGrad;
  5054. GenericKernel<Laplace3D_FxU > Laplace_FxU ;
  5055. GenericKernel<Laplace3D_FxdU> Laplace_FxdU;
  5056. GenericKernel<Laplace3D_dUxF> Laplace_dUxF;
  5057. GenericKernel<Laplace3D_dUxD> Laplace_dUxD;
  5058. GenericKernel<Laplace3D_Fxd2U> Laplace_Fxd2U;
  5059. mutable Quadrature<Real> quadrature_BS ;
  5060. mutable Quadrature<Real> quadrature_dBS ;
  5061. mutable Quadrature<Real> quadrature_FxU ;
  5062. mutable Quadrature<Real> quadrature_FxdU;
  5063. mutable Quadrature<Real> quadrature_dUxF;
  5064. mutable Quadrature<Real> quadrature_dUxD;
  5065. mutable Quadrature<Real> quadrature_Fxd2U;
  5066. mutable Vector<ElemBasis> Bt0, Bp0, dBt0, dBp0;
  5067. mutable Vector<ElemBasis> sigma, B, gvec, dgdB;
  5068. mutable Real alpha, beta;
  5069. ElemLst elements;
  5070. Vector<Long> NtNp_;
  5071. Vector<Long> elem_dsp;
  5072. };
  5073. template <class Real, Integer ORDER=10> class MHDEquilib {
  5074. static constexpr Integer fourier_dim0 = 50*10*4;
  5075. static constexpr Integer fourier_dim1 = 10*10*4;
  5076. //static constexpr Integer fourier_upsample = 4;
  5077. static constexpr Integer COORD_DIM = 3;
  5078. static constexpr Integer ELEM_DIM = COORD_DIM-1;
  5079. using ElemBasis = Basis<Real, ELEM_DIM, ORDER>;
  5080. static Vector<Real> cheb2grid(const Vector<ElemBasis>& X, Long Mt, Long Mp, Long Nt, Long Np) {
  5081. const Long dof = X.Dim() / (Mt * Mp);
  5082. SCTL_ASSERT(X.Dim() == Mt * Mp *dof);
  5083. Vector<Real> Xf(dof*Nt*Np); Xf = 0;
  5084. const Long Nnodes = ElemBasis::Size();
  5085. const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
  5086. for (Long t = 0; t < Nt; t++) {
  5087. for (Long p = 0; p < Np; p++) {
  5088. Real theta = t / (Real)Nt;
  5089. Real phi = p / (Real)Np;
  5090. Long i = (Long)(theta * Mt);
  5091. Long j = (Long)(phi * Mp);
  5092. Real x = theta * Mt - i;
  5093. Real y = phi * Mp - j;
  5094. Long elem_idx = i * Mp + j;
  5095. Vector<Real> Interp0(ORDER);
  5096. Vector<Real> Interp1(ORDER);
  5097. { // Set Interp0, Interp1
  5098. auto node = [&Mnodes] (Long i) {
  5099. return Mnodes[0][i];
  5100. };
  5101. for (Long i = 0; i < ORDER; i++) {
  5102. Real wt_x = 1, wt_y = 1;
  5103. for (Long j = 0; j < ORDER; j++) {
  5104. if (j != i) {
  5105. wt_x *= (x - node(j)) / (node(i) - node(j));
  5106. wt_y *= (y - node(j)) / (node(i) - node(j));
  5107. }
  5108. Interp0[i] = wt_x;
  5109. Interp1[i] = wt_y;
  5110. }
  5111. }
  5112. }
  5113. for (Long ii = 0; ii < ORDER; ii++) {
  5114. for (Long jj = 0; jj < ORDER; jj++) {
  5115. Long node_idx = jj * ORDER + ii;
  5116. for (Long k = 0; k < dof; k++) {
  5117. Xf[(k*Nt+t)*Np+p] += X[elem_idx*dof+k][node_idx] * Interp0[ii] * Interp1[jj];
  5118. }
  5119. }
  5120. }
  5121. }
  5122. }
  5123. return Xf;
  5124. }
  5125. static Vector<ElemBasis> grid2cheb(const Vector<Real>& Xf, Long Nt, Long Np, Long Mt, Long Mp) {
  5126. Long dof = Xf.Dim() / (Nt*Np);
  5127. SCTL_ASSERT(Xf.Dim() == dof*Nt*Np);
  5128. Vector<ElemBasis> X(Mt*Mp*dof);
  5129. constexpr Integer INTERP_ORDER = 12;
  5130. for (Long tt = 0; tt < Mt; tt++) {
  5131. for (Long pp = 0; pp < Mp; pp++) {
  5132. for (Long t = 0; t < ORDER; t++) {
  5133. for (Long p = 0; p < ORDER; p++) {
  5134. Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
  5135. Real theta = (tt + Mnodes[0][t]) / Mt;
  5136. Real phi = (pp + Mnodes[0][p]) / Mp;
  5137. Long i = (Long)(theta * Nt);
  5138. Long j = (Long)(phi * Np);
  5139. Real x = theta * Nt - i;
  5140. Real y = phi * Np - j;
  5141. Vector<Real> Interp0(INTERP_ORDER);
  5142. Vector<Real> Interp1(INTERP_ORDER);
  5143. { // Set Interp0, Interp1
  5144. auto node = [] (Long i) {
  5145. return (Real)i - (INTERP_ORDER-1)/2;
  5146. };
  5147. for (Long i = 0; i < INTERP_ORDER; i++) {
  5148. Real wt_x = 1, wt_y = 1;
  5149. for (Long j = 0; j < INTERP_ORDER; j++) {
  5150. if (j != i) {
  5151. wt_x *= (x - node(j)) / (node(i) - node(j));
  5152. wt_y *= (y - node(j)) / (node(i) - node(j));
  5153. }
  5154. Interp0[i] = wt_x;
  5155. Interp1[i] = wt_y;
  5156. }
  5157. }
  5158. }
  5159. for (Long k = 0; k < dof; k++) {
  5160. Real X0 = 0;
  5161. for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  5162. for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  5163. Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  5164. Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  5165. X0 += Interp0[ii] * Interp1[jj] * Xf[(k*Nt+idx_i)*Np+idx_j];
  5166. }
  5167. }
  5168. Long elem_idx = tt * Mp + pp;
  5169. Long node_idx = p * ORDER + t;
  5170. X[elem_idx*dof+k][node_idx] = X0;
  5171. }
  5172. }
  5173. }
  5174. }
  5175. }
  5176. return X;
  5177. }
  5178. static void fourier_filter(Vector<Real>& X, long Nt_, long Np_, Real sigma) {
  5179. long dof = X.Dim() / (Nt_ * Np_);
  5180. SCTL_ASSERT(X.Dim() == dof * Nt_ * Np_);
  5181. FFT<Real> fft_r2c, fft_c2r;
  5182. StaticArray<Long, 2> fft_dim = {Nt_, Np_};
  5183. fft_r2c.Setup(FFT_Type::R2C, 1, Vector<Long>(2, fft_dim, false), omp_get_max_threads());
  5184. fft_c2r.Setup(FFT_Type::C2R, 1, Vector<Long>(2, fft_dim, false), omp_get_max_threads());
  5185. long Nt = Nt_;
  5186. long Np = fft_r2c.Dim(1) / (Nt * 2);
  5187. SCTL_ASSERT(fft_r2c.Dim(1) == Nt * Np * 2);
  5188. auto filter_fn = [](Real x2, Real sigma) {return exp(-x2/(2*sigma*sigma));};
  5189. //auto filter_fn = [](Real x2, Real sigma) {return (x2<sigma*sigma?1.0:0.0);};
  5190. Vector<Real> coeff(fft_r2c.Dim(1));
  5191. for (long k = 0; k < dof; k++) {
  5192. Vector<Real> X_(Nt_*Np_, X.begin() + k*Nt_*Np_, false);
  5193. fft_r2c.Execute(X_, coeff);
  5194. for (long t = 0; t < Nt; t++) {
  5195. for (long p = 0; p < Np; p++) {
  5196. Real tt = (t - (t > Nt / 2 ? Nt : 0)) * (2*Np/(Real)Nt);
  5197. Real pp = p;
  5198. Real f = filter_fn(tt*tt+pp*pp, sigma);
  5199. coeff[(t * Np + p) * 2 + 0] *= f;
  5200. coeff[(t * Np + p) * 2 + 1] *= f;
  5201. }
  5202. }
  5203. fft_c2r.Execute(coeff, X_);
  5204. }
  5205. };
  5206. static void fourier_print_spectrum(const Vector<Real>& X, long Nt_, long Np_) {
  5207. // long dof = X.Dim() / (Nt_ * Np_);
  5208. // SCTL_ASSERT(X.Dim() == dof * Nt_ * Np_);
  5209. // FFT<Real> fft_r2c, fft_c2r;
  5210. // StaticArray<Long, 2> fft_dim = {Nt_, Np_};
  5211. // fft_r2c.Setup(FFT_Type::R2C, 1, Vector<Long>(2, fft_dim, false), omp_get_max_threads());
  5212. // long Nt = Nt_;
  5213. // long Np = fft_r2c.Dim(1) / (Nt * 2);
  5214. // SCTL_ASSERT(fft_r2c.Dim(1) == Nt * Np * 2);
  5215. // Vector<Real> coeff(fft_r2c.Dim(1));
  5216. // Vector<Real> spectrum(200); spectrum = 0;
  5217. // for (long k = 0; k < dof; k++) {
  5218. // const Vector<Real> X_(Nt_*Np_, (Iterator<Real>)X.begin() + k*Nt_*Np_, false);
  5219. // fft_r2c.Execute(X_, coeff);
  5220. // for (long t = 0; t < Nt; t++) {
  5221. // for (long p = 0; p < Np; p++) {
  5222. // Real tt = (t - (t > Nt / 2 ? Nt : 0)) / (Real)(Nt / 2);
  5223. // Real pp = p / (Real)Np;
  5224. // Long freq = (Long)(sqrt<Real>(tt*tt+pp*pp)*spectrum.Dim());
  5225. // if (freq<spectrum.Dim()) spectrum[freq] += coeff[(t*Np+p)*2+0]*coeff[(t*Np+p)*2+0];
  5226. // if (freq<spectrum.Dim()) spectrum[freq] += coeff[(t*Np+p)*2+1]*coeff[(t*Np+p)*2+1];
  5227. // }
  5228. // }
  5229. // }
  5230. // for (Long i = 0; i < spectrum.Dim(); i++) {
  5231. // spectrum[i] = log<Real>(sqrt<Real>(spectrum[i]))/log<Real>(10.0);
  5232. // }
  5233. // std::cout<<"spectrum = "<<spectrum<<'\n';
  5234. };
  5235. static void fourier_print_spectrum(std::string var_name, const sctl::Vector<Real>& B0, sctl::Long Nt0, sctl::Long Np0) {
  5236. auto Resample = [](const sctl::Vector<Real>& B, long Nt, long Np, long Nt0, long Np0) {
  5237. sctl::Vector<Real> B0;
  5238. biest::SurfaceOp<Real>::Upsample(B,Nt,Np, B0,Nt0,Np0);
  5239. return B0;
  5240. };
  5241. auto max_rel_err = [](const sctl::Vector<Real> A, const sctl::Vector<Real> B) {
  5242. SCTL_ASSERT(A.Dim() == B.Dim());
  5243. Real max_err = 0;
  5244. Real max_val = 1e-20;
  5245. for (sctl::Long i = 0; i < A.Dim(); i++) {
  5246. max_err = std::max<Real>(max_err, fabs(A[i]-B[i]));
  5247. max_val = std::max<Real>(max_val, fabs(A[i]));
  5248. }
  5249. return max_err/max_val;
  5250. };
  5251. auto max_err = [](const sctl::Vector<Real> A, const sctl::Vector<Real> B) {
  5252. SCTL_ASSERT(A.Dim() == B.Dim());
  5253. Real max_err = 0;
  5254. for (sctl::Long i = 0; i < A.Dim(); i++) {
  5255. max_err = std::max<Real>(max_err, fabs(A[i]-B[i]));
  5256. }
  5257. return max_err;
  5258. };
  5259. std::cout<<var_name<<"=[";
  5260. for (sctl::Long i = 1; i < 140; i++) {
  5261. sctl::Long Nt1 = 6*i, Np1 = i;
  5262. auto B1 = Resample(Resample(B0, Nt0,Np0, Nt1,Np1), Nt1,Np1, Nt0,Np0);
  5263. std::cout<<log(max_err(B0, B1))/log(10)<<' ';
  5264. }
  5265. std::cout<<"];\n";
  5266. //if (0) {
  5267. // auto B1 = Resample(B0, Nt0,Np0, 70*30,14*30);
  5268. // B1.Write(var_name.c_str());
  5269. //} else {
  5270. // auto B1 = Resample(B0, Nt0,Np0, 70*30,14*30);
  5271. // sctl::Vector<Real> B2; B2.Read(var_name.c_str());
  5272. // Real max_err = 0, max_val = 0;
  5273. // for (sctl::Long i = 0; i < B1.Dim(); i++) {
  5274. // max_err = std::max<Real>(max_err, fabs(B1[i]-B2[i]));
  5275. // max_val = std::max<Real>(max_val, fabs(B2[i]));
  5276. // }
  5277. // std::cout<<"Error "<<var_name<<" = "<<max_err/max_val<<'\n';
  5278. //}
  5279. };
  5280. static void fourier_print_spectrum(std::string var_name, const Vector<Real>& X_, Stellarator<Real,ORDER> S_) {
  5281. Long dof = X_.Dim()/(S_.Nsurf()*fourier_dim0*fourier_dim1);
  5282. SCTL_ASSERT(dof * (S_.Nsurf()*fourier_dim0*fourier_dim1) == X_.Dim());
  5283. for (Long i = 0; i < S_.Nsurf(); i++) {
  5284. const Long Mt = S_.NTor(i);
  5285. const Long Mp = S_.NPol(i);
  5286. const Long offset = S_.ElemDsp(i);
  5287. const Long Nt = fourier_dim0;
  5288. const Long Np = fourier_dim1;
  5289. const Vector<Real> X(dof*Nt*Np, (Iterator<Real>)X_.begin() + dof * i * (fourier_dim0*fourier_dim1), false);
  5290. fourier_print_spectrum(var_name+std::to_string(i),X,Nt,Np);
  5291. }
  5292. std::cout<<"\n";
  5293. }
  5294. static void filter_deprecated(const Stellarator<Real,ORDER>& S, const Comm& comm, Vector<ElemBasis>& f, Real sigma) {
  5295. Long dof = f.Dim() / S.NElem();
  5296. SCTL_ASSERT(f.Dim() == S.NElem() * dof);
  5297. for (Long i = 0; i < S.Nsurf()-1; i++) {
  5298. const Long Mt = S.NTor(i);
  5299. const Long Mp = S.NPol(i);
  5300. const Long Nelem = Mt * Mp;
  5301. const Long offset = S.ElemDsp(i);
  5302. const Long Nt = Mt * ORDER * 4;
  5303. const Long Np = Mp * ORDER * 4;
  5304. Vector<ElemBasis> f_(Nelem*dof, f.begin() + offset*dof, false);
  5305. Vector<Real> f_fourier = cheb2grid(f_, Mt, Mp, Nt, Np);
  5306. fourier_filter(f_fourier, Nt, Np, 0.25 * sigma);
  5307. f_ = grid2cheb(f_fourier, Nt, Np, Mt, Mp);
  5308. }
  5309. };
  5310. static Vector<Real> cheb2grid(const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& f) {
  5311. const Long Nnodes = ElemBasis::Size();
  5312. const Long Nelem = S.NElem();
  5313. const Long dof = f.Dim() / Nelem;
  5314. SCTL_ASSERT(Nelem * dof == f.Dim());
  5315. Vector<Real> f_fourier(dof * S.Nsurf() * (fourier_dim0*fourier_dim1));
  5316. for (Long i = 0; i < S.Nsurf(); i++) {
  5317. const Long Mt = S.NTor(i);
  5318. const Long Mp = S.NPol(i);
  5319. const Long offset = S.ElemDsp(i);
  5320. const Long Nt = fourier_dim0;
  5321. const Long Np = fourier_dim1;
  5322. const Vector<ElemBasis> f_(Mt*Mp*dof, (Iterator<ElemBasis>)f.begin() + offset*dof, false);
  5323. Vector<Real> f_fourier_(dof*Nt*Np, f_fourier.begin() + dof*i * (fourier_dim0*fourier_dim1), false);
  5324. f_fourier_ = cheb2grid(f_, Mt, Mp, Nt, Np);
  5325. SCTL_ASSERT(f_fourier_.Dim() == dof*Nt*Np);
  5326. }
  5327. return f_fourier;
  5328. }
  5329. static Vector<ElemBasis> grid2cheb(const Stellarator<Real,ORDER>& S, const Vector<Real>& f_fourier) {
  5330. const Long Nnodes = ElemBasis::Size();
  5331. const Long Nelem = S.NElem();
  5332. const Long dof = f_fourier.Dim() / (S.Nsurf() * (fourier_dim0*fourier_dim1));
  5333. SCTL_ASSERT(dof * (S.Nsurf() * (fourier_dim0*fourier_dim1)) == f_fourier.Dim());
  5334. Vector<ElemBasis> f(Nelem * dof);
  5335. for (Long i = 0; i < S.Nsurf(); i++) {
  5336. const Long Mt = S.NTor(i);
  5337. const Long Mp = S.NPol(i);
  5338. const Long offset = S.ElemDsp(i);
  5339. const Long Nt = fourier_dim0;
  5340. const Long Np = fourier_dim1;
  5341. Vector<ElemBasis> f_(Mt*Mp*dof, f.begin() + offset*dof, false);
  5342. const Vector<Real> f_fourier_(dof*Nt*Np, (Iterator<Real>)f_fourier.begin() + dof*i * (fourier_dim0*fourier_dim1), false);
  5343. f_ = grid2cheb(f_fourier_, Nt, Np, Mt, Mp);
  5344. SCTL_ASSERT(f_.Dim() == Mt*Mp*dof);
  5345. }
  5346. return f;
  5347. }
  5348. template <class Real, class GradOp> static Long GradientDescent3(GradOp& grad_fn, Eigen::VectorXd& x, Real& fx, Long max_iter, Real tol) {
  5349. Real dt = 0.1;
  5350. Real step_tol = 1e-1;
  5351. for (Long iter = 0; iter < max_iter; iter++) {
  5352. auto time_step = [](Eigen::VectorXd* x, const Real dt, const Eigen::VectorXd& x0_, GradOp& F, Real* error = nullptr) {
  5353. Long N = x0_.size();
  5354. Eigen::VectorXd F0(N), F1(N), F2(N), F3(N);
  5355. F(x0_, F0);
  5356. F(x0_ - F0 * (0.50*dt), F1);
  5357. F(x0_ - F1 * (0.75*dt), F2);
  5358. F(x0_ - F0 * (2.0/9.0*dt) - F1 * (1.0/3.0*dt) - F2 * (4.0/9.0*dt), F3);
  5359. x[0] = x0_ - F0 * (7.0/24.0*dt) - F1 * (1.0/4.0*dt) - F2 * (1.0/3.0*dt) - F3 * (1.0/8.0*dt);
  5360. Real err = 0;
  5361. const Eigen::VectorXd err_vec = x[0] - (x0_ - F0 * (2.0/9.0*dt) - F1 * (1.0/3.0*dt) - F2 * (4.0/9.0*dt));
  5362. for (Long i = 0; i < err_vec.size(); i++) err = std::max(err, fabs(err_vec[i]));
  5363. if (error != nullptr) error[0] = err / dt;
  5364. };
  5365. Real error;
  5366. Eigen::VectorXd x_(x.size());
  5367. time_step(&x_, dt, x, grad_fn, &error);
  5368. if (error > 2.0 * step_tol) {
  5369. dt *= 0.5;
  5370. } else {
  5371. x = x_;
  5372. }
  5373. if (error < 0.5 * step_tol) dt *= 1.4;
  5374. std::cout<<"Error = "<<error<<" dt = "<<dt<<'\n';
  5375. }
  5376. return max_iter;
  5377. }
  5378. template <class Real, class GradOp> static Long GradientDescent2(GradOp& grad_fn, Eigen::VectorXd& x, Real& fx, Long max_iter, Real tol) {
  5379. Real dt = 0.1;
  5380. Real step_tol = 1e-1;
  5381. for (Long iter = 0; iter < max_iter; iter++) {
  5382. auto time_step = [](Eigen::VectorXd* x, const Real dt, const Eigen::VectorXd& x0_, GradOp& F, Real* error = nullptr) {
  5383. Long N = x0_.size();
  5384. Eigen::VectorXd F0(N), F1(N), F2(N), F3(N);
  5385. F(x0_, F0);
  5386. F(x0_ - F0 * dt, F1);
  5387. F(x0_ - F0 * (0.5 * dt) - F1 * (0.5 * dt), F2);
  5388. F(x0_ - F0 * (0.5 * dt) - F2 * (0.5 * dt), F3);
  5389. x[0] = x0_ - F0 * (0.5 * dt) - F3 * (0.5 * dt);
  5390. Real err0 = 0, err1 = 0;
  5391. const Eigen::VectorXd err_vec0 = (F1 - F3) * dt;
  5392. const Eigen::VectorXd err_vec1 = (F2 - F3) * dt;
  5393. for (Long i = 0; i < err_vec0.size(); i++) err0 = std::max(err0, fabs(err_vec0[i]));
  5394. for (Long i = 0; i < err_vec1.size(); i++) err1 = std::max(err1, fabs(err_vec1[i]));
  5395. if (error != nullptr) {
  5396. error[0] = err1 / dt;
  5397. if (err1 > err0) error[0] = 1;
  5398. }
  5399. };
  5400. Real error;
  5401. Eigen::VectorXd x_(x.size());
  5402. time_step(&x_, dt, x, grad_fn, &error);
  5403. if (error > 2.0 * step_tol) {
  5404. dt *= 0.5;
  5405. } else {
  5406. x = x_;
  5407. }
  5408. if (error < 0.5 * step_tol) dt *= 1.4;
  5409. std::cout<<"Error = "<<error<<" dt = "<<dt<<'\n';
  5410. }
  5411. return max_iter;
  5412. }
  5413. template <class Real, class GradOp> static Long GradientDescent2_(GradOp& grad_fn, Eigen::VectorXd& x, Real& fx, Long max_iter, Real tol) {
  5414. Real dt_ = 0, fx_ = 0;
  5415. Eigen::VectorXd x_ = x;
  5416. Real dt = 0.296951;
  5417. for (Long iter = 0; iter < max_iter; iter++) {
  5418. Eigen::VectorXd grad0(x.size()), grad1(x.size()), grad2(x.size());
  5419. fx_ = fx;
  5420. fx = grad_fn(x, grad0);
  5421. if (fx < tol) return iter;
  5422. if (iter && fx > fx_) {
  5423. x = x_;
  5424. fx = fx_;
  5425. dt = 0.5 * dt_;
  5426. continue;
  5427. } else {
  5428. x_ = x;
  5429. dt_ = dt;
  5430. }
  5431. { // Update dt
  5432. Real fx1, fx2;
  5433. fx1 = grad_fn(x - grad0 * dt * 0.50, grad1);
  5434. fx1 = grad_fn(x - grad0 * dt * 0.25 - grad1 * dt * 0.25, grad1);
  5435. fx2 = grad_fn(x - grad1 * dt, grad2);
  5436. fx2 = grad_fn(x - grad0 * dt * (1.0/6.0) - grad1 * dt * (2.0/3.0) - grad2 * dt * (1.0/6.0), grad2);
  5437. Real s;
  5438. { // Calculate optimal step size dt
  5439. Real a = 2*fx - 4*fx1 + 2*fx2;
  5440. Real b =-3*fx + 4*fx1 - fx2;
  5441. Real c = fx;
  5442. s = -b/(2*a);
  5443. Real fx_ = a*s*s + b*s + c;
  5444. std::cout<<"g = "<<fx_<<' ';
  5445. std::cout<<fx<<' ';
  5446. std::cout<<fx1<<' ';
  5447. std::cout<<fx2<<' ';
  5448. std::cout<<dt<<'\n';
  5449. }
  5450. x = x - grad0 * dt * (2*s*s*s/3 - 3*s*s/2 + s) - grad1 * dt * (-4*s*s*s/3 + 2*s*s) - grad2 * dt * (2*s*s*s/3 - s*s/2);
  5451. dt *= s;
  5452. }
  5453. }
  5454. return max_iter;
  5455. }
  5456. template <class Real, class GradOp> static Long GradientDescent(GradOp& grad_fn, Eigen::VectorXd& x, Real& fx, Long max_iter, Real tol) {
  5457. Real dt = 0.192081;
  5458. for (Long iter = 0; iter < max_iter; iter++) {
  5459. Eigen::VectorXd grad(x.size());
  5460. fx = grad_fn(x, grad);
  5461. { // Update dt
  5462. Eigen::VectorXd grad_(x.size());
  5463. Eigen::VectorXd x1 = x - grad * dt * 0.5;
  5464. Eigen::VectorXd x2 = x - grad * dt * 1.0;
  5465. Real fx1 = grad_fn(x1, grad_);
  5466. Real fx2 = grad_fn(x2, grad_);
  5467. { // Calculate optimal step size dt
  5468. Real a = 2*fx - 4*fx1 + 2*fx2;
  5469. Real b =-3*fx + 4*fx1 - fx2;
  5470. Real c = fx;
  5471. Real s = -b/(2*a);
  5472. dt *= s;
  5473. Real fx_ = a*s*s + b*s + c;
  5474. std::cout<<"g = "<<fx_<<' ';
  5475. std::cout<<fx<<' ';
  5476. std::cout<<fx1<<' ';
  5477. std::cout<<fx2<<' ';
  5478. std::cout<<dt<<'\n';
  5479. }
  5480. }
  5481. x = x - grad * dt;
  5482. if (fx < tol) return iter;
  5483. }
  5484. return max_iter;
  5485. }
  5486. template <class ValueType> static ValueType QuadraticInterp(Real t, const ValueType& v0, const ValueType& v1, const ValueType& v2, Real t0, Real t1, Real t2) {
  5487. ValueType v = v0 * (((t-t1)*(t-t2))/((t0-t1)*(t0-t2)));
  5488. v += v1 * (((t-t0)*(t-t2))/((t1-t0)*(t1-t2)));
  5489. v += v2 * (((t-t0)*(t-t1))/((t2-t0)*(t2-t1)));
  5490. return v;
  5491. }
  5492. template <class Real, class GradOp> static Long GradientDescentNew(GradOp& grad_fn, Eigen::VectorXd& x0, Real& fx, Long max_iter, Real tol) {
  5493. auto compute_inner_prod = [](const Eigen::VectorXd& A, const Eigen::VectorXd& B) {
  5494. Real sum = 0;
  5495. Long N = A.size();
  5496. SCTL_ASSERT(B.size() == N);
  5497. for (Long i = 0; i < N; i++) sum += A[i] * B[i];
  5498. return sum;
  5499. };
  5500. auto compute_dt_scale = [&compute_inner_prod](const Eigen::VectorXd& x, const Eigen::VectorXd& y){
  5501. Real dot_prod = compute_inner_prod(x, y) / sqrt<Real>(compute_inner_prod(x,x)*compute_inner_prod(y,y));
  5502. return 0.05 / sqrt<Real>(1-dot_prod*dot_prod);
  5503. };
  5504. Eigen::VectorXd grad, x = x0;
  5505. Real g = grad_fn(x, grad);
  5506. Real t = 0, dt = -0.1;
  5507. for (Long j = 0; j < max_iter; j++) {
  5508. Eigen::VectorXd grad0, grad1, grad2;
  5509. Real g0 = grad_fn(x + grad*(dt*0.5) + grad *(dt*0.5), grad0);
  5510. Real g1 = grad_fn(x + grad*(dt*0.5) + grad0*(dt*0.5), grad1);
  5511. Real g2 = grad_fn(x + grad*(dt*0.5) + grad1*(dt*0.5), grad2);
  5512. Eigen::VectorXd grad4, grad3;
  5513. Real c = compute_inner_prod(grad2-grad1,grad2-grad1) / compute_inner_prod(grad1-grad0,grad2-grad1);
  5514. grad3 = (grad2 - grad1*c) * (1/(1-c));
  5515. Real g3 = grad_fn(x + grad*(dt*0.5) + grad3*(dt*0.5), grad4);
  5516. std::cout<<sqrt<Real>(compute_inner_prod(grad -grad4,grad -grad4)/compute_inner_prod(grad4,grad4))<<' ';
  5517. std::cout<<sqrt<Real>(compute_inner_prod(grad -grad3,grad -grad3)/compute_inner_prod(grad4,grad4))<<' ';
  5518. std::cout<<sqrt<Real>(compute_inner_prod(grad -grad2,grad -grad2)/compute_inner_prod(grad4,grad4))<<' ';
  5519. std::cout<<sqrt<Real>(compute_inner_prod(grad -grad1,grad -grad1)/compute_inner_prod(grad4,grad4))<<' ';
  5520. std::cout<<sqrt<Real>(compute_inner_prod(grad -grad0,grad -grad0)/compute_inner_prod(grad4,grad4))<<'\n';
  5521. std::cout<<sqrt<Real>(compute_inner_prod(grad0-grad4,grad0-grad4)/compute_inner_prod(grad4,grad4))<<' ';
  5522. std::cout<<sqrt<Real>(compute_inner_prod(grad0-grad3,grad0-grad3)/compute_inner_prod(grad4,grad4))<<' ';
  5523. std::cout<<sqrt<Real>(compute_inner_prod(grad0-grad2,grad0-grad2)/compute_inner_prod(grad4,grad4))<<' ';
  5524. std::cout<<sqrt<Real>(compute_inner_prod(grad0-grad1,grad0-grad1)/compute_inner_prod(grad4,grad4))<<'\n';
  5525. std::cout<<sqrt<Real>(compute_inner_prod(grad1-grad4,grad1-grad4)/compute_inner_prod(grad4,grad4))<<' ';
  5526. std::cout<<sqrt<Real>(compute_inner_prod(grad1-grad3,grad1-grad3)/compute_inner_prod(grad4,grad4))<<' ';
  5527. std::cout<<sqrt<Real>(compute_inner_prod(grad1-grad2,grad1-grad2)/compute_inner_prod(grad4,grad4))<<'\n';
  5528. std::cout<<sqrt<Real>(compute_inner_prod(grad2-grad4,grad2-grad4)/compute_inner_prod(grad4,grad4))<<' ';
  5529. std::cout<<sqrt<Real>(compute_inner_prod(grad2-grad3,grad2-grad3)/compute_inner_prod(grad4,grad4))<<'\n';
  5530. std::cout<<sqrt<Real>(compute_inner_prod(grad3-grad4,grad3-grad4)/compute_inner_prod(grad4,grad4))<<'\n';
  5531. Real s0 = sqrt<Real>(compute_inner_prod(grad -grad4,grad -grad4)/compute_inner_prod(grad4,grad4));
  5532. Real s1 = sqrt<Real>(compute_inner_prod(grad0-grad1,grad0-grad1)/compute_inner_prod(grad4,grad4));
  5533. Real s2 = sqrt<Real>(compute_inner_prod(grad1-grad2,grad1-grad2)/compute_inner_prod(grad4,grad4));
  5534. Real s3 = sqrt<Real>(compute_inner_prod(grad3-grad4,grad3-grad4)/compute_inner_prod(grad4,grad4));
  5535. Real dt_scale = (0.1/s0); // 0.5*(s1/s2);
  5536. if (s3 > s2) dt_scale = std::min(0.5, dt_scale);
  5537. std::cout<<s0<<' '<<s1<<' '<<s2<<' '<<s3<<" dt_scale = "<<dt_scale<<'\n'; ////////////////////
  5538. if (dt_scale>0.5) {
  5539. t += dt;
  5540. g = g3;
  5541. x = x + grad *(dt*0.5) + grad3*(dt*0.5);
  5542. grad = grad4;
  5543. std::cout<<"iter = "<<j<<" t = "<<t<<" g = "<<g<<" dt = "<<dt<<'\n';
  5544. } else {
  5545. j--;
  5546. }
  5547. dt *= dt_scale;
  5548. }
  5549. return 0;
  5550. }
  5551. template <class Real, class GradOp> static Long GradientDescentNew__(GradOp& grad_fn, Eigen::VectorXd& x, Real& fx, Long max_iter, Real tol) {
  5552. auto compute_inner_prod = [](const Eigen::VectorXd& A, const Eigen::VectorXd& B) {
  5553. Real sum = 0;
  5554. Long N = A.size();
  5555. SCTL_ASSERT(B.size() == N);
  5556. for (Long i = 0; i < N; i++) sum += A[i] * B[i];
  5557. return sum;
  5558. };
  5559. auto compute_dt_scale = [&compute_inner_prod](const Eigen::VectorXd& x, const Eigen::VectorXd& y){
  5560. Real dot_prod = compute_inner_prod(x, y) / sqrt<Real>(compute_inner_prod(x,x)*compute_inner_prod(y,y));
  5561. return 0.05 / sqrt<Real>(1-dot_prod*dot_prod);
  5562. };
  5563. Eigen::VectorXd x0, grad0, grad_op0;
  5564. Eigen::VectorXd x1, grad1, grad_op1;
  5565. Eigen::VectorXd x2, grad2, grad_op2;
  5566. x0 = x;
  5567. Real t = 0, dt = -0.1;
  5568. for (Long j = 0; j < max_iter; j++) {
  5569. Real g0 = grad_fn(x0, grad0);
  5570. Real g1 = grad_fn(x0 + grad0*(dt*0.1), grad1);
  5571. Real g2 = grad_fn(x0 + grad0*(dt*0.1) + grad1*(dt*0.1), grad2);
  5572. // Fit v = v0 + v1 exp(-alpha * dt)
  5573. auto v1 = (grad1-grad0) * (1/(dt*0.1));
  5574. Real alpha = (sqrt<Real>(compute_inner_prod(grad1-grad0,grad1-grad0))/sqrt<Real>(compute_inner_prod(grad2-grad1,grad2-grad1))-1) / (0.1*dt);
  5575. auto v0 = grad0 - v1;
  5576. x0 = x0 + v0*dt - v1 * ((exp<Real>(-alpha*dt)-1.0)/alpha);
  5577. t += dt;
  5578. std::cout<<"iter = "<<j<<" t = "<<t<<" g = "<<g0<<" dt = "<<dt<<'\n';
  5579. }
  5580. return 0;
  5581. }
  5582. template <class Real, class GradOp> static Long GradientDescentNew_(GradOp& grad_fn, Eigen::VectorXd& x0, Real& fx, Long max_iter, Real tol) {
  5583. constexpr Long order = 3;
  5584. Eigen::VectorXd x[order], grad[order], grad_op[order];
  5585. Real g[order], t[order];
  5586. auto compute_inner_prod = [](const Eigen::VectorXd& A, const Eigen::VectorXd& B) {
  5587. Real sum = 0;
  5588. Long N = A.size();
  5589. SCTL_ASSERT(B.size() == N);
  5590. for (Long i = 0; i < N; i++) sum += A[i] * B[i];
  5591. return sum;
  5592. };
  5593. auto compute_dt_scale = [&compute_inner_prod](const Eigen::VectorXd& x, const Eigen::VectorXd& y){
  5594. Real dot_prod = compute_inner_prod(x, y) / sqrt<Real>(compute_inner_prod(x,x)*compute_inner_prod(y,y));
  5595. return 0.05 / sqrt<Real>(1-dot_prod*dot_prod);
  5596. };
  5597. t[1] = 0;
  5598. x[1] = x0;
  5599. g[1] = grad_fn(x[1], grad[1], &grad_op[1]);
  5600. Real dt = -0.1;
  5601. for (Long j = 1; j < order-1; j++) {
  5602. //t[0] = t[1] + dt;
  5603. //x[0] = x[1] + grad[1] * dt;
  5604. //g[0] = grad_fn(x[0], grad[0], &grad_op[0]);
  5605. //Real dot_prod = compute_inner_prod(grad[0], grad[1]) / sqrt<Real>(compute_inner_prod(grad[0], grad[0])*compute_inner_prod(grad[1], grad[1]));
  5606. //Real dt_scale = 0.1 / sqrt<Real>(1-dot_prod*dot_prod);
  5607. //dt *= dt_scale;
  5608. //if (dt_scale < 0.5 || g[0] >= g[1]) {
  5609. // j--;
  5610. // continue;
  5611. //}
  5612. //std::cout<<"iter = "<<j<<" t = "<<t[0]<<" g = "<<g[0]<<" dt = "<<dt<<'\n';
  5613. //for (Long i = order-1; i >= 1; i--) {
  5614. // x[i] = x[i-1];
  5615. // grad[i] = grad[i-1];
  5616. // grad_op[i] = grad_op[i-1];
  5617. // g[i] = g[i-1];
  5618. // t[i] = t[i-1];
  5619. //}
  5620. }
  5621. for (Long j = 0; j < max_iter; j++) {
  5622. Eigen::VectorXd x_, grad_, grad_op_;
  5623. Real g_ = grad_fn(x[1] + grad[1]*(dt*0.5), grad_, &grad_op_);
  5624. Real dt_scale = compute_dt_scale(grad_, grad[1]);
  5625. dt *= dt_scale;
  5626. if (dt_scale < 0.5 || g[0] >= g[1]) {
  5627. std::cout<<"dt = "<<dt<<'\n';
  5628. j--;
  5629. continue;
  5630. }
  5631. t[0] = t[1] + dt;
  5632. x[0] = x[1] + grad_*dt;
  5633. g[0] = grad_fn(x[0], grad[0], &grad_op[0]);
  5634. dt_scale = compute_dt_scale(grad[0], grad_);
  5635. dt *= dt_scale;
  5636. if (dt_scale < 0.5 || g[0] >= g[1]) {
  5637. std::cout<<"dt = "<<dt<<'\n';
  5638. j--;
  5639. continue;
  5640. }
  5641. std::cout<<"iter = "<<j<<" t = "<<t[0]<<" g = "<<g[0]<<" dt = "<<dt<<'\n';
  5642. for (Long i = order-1; i >= 1; i--) {
  5643. x[i] = x[i-1];
  5644. grad[i] = grad[i-1];
  5645. grad_op[i] = grad_op[i-1];
  5646. g[i] = g[i-1];
  5647. t[i] = t[i-1];
  5648. }
  5649. }
  5650. for (Long j = 0; j < max_iter; j++) {
  5651. Eigen::VectorXd x_, grad_, grad_op_;
  5652. Real g_ = grad_fn(x[1] + grad[1]*(dt*0.5), grad_, &grad_op_);
  5653. if (compute_dt_scale(grad_, grad[1])<0.5 || g_ > g[1]) {
  5654. dt = dt * compute_dt_scale(grad_, grad[1]);
  5655. std::cout<<"dt = "<<dt<<'\n';
  5656. j--;
  5657. continue;
  5658. }
  5659. t[0] = t[1] + dt;
  5660. x[0] = x[1] + grad_*dt;
  5661. g[0] = grad_fn(x[0], grad[0], &grad_op[0]);
  5662. Real dt_scale = compute_dt_scale(grad[0], grad[1]); /// todo use grad_ instead of grad[1]
  5663. dt *= dt_scale;
  5664. if (dt_scale < 0.5 || g[0] >= g[1]) {
  5665. std::cout<<"dt = "<<dt<<'\n';
  5666. j--;
  5667. continue;
  5668. }
  5669. std::cout<<"iter = "<<j<<" t = "<<t[0]<<" g = "<<g[0]<<" dt = "<<dt<<'\n';
  5670. for (Long i = order-1; i >= 1; i--) {
  5671. x[i] = x[i-1];
  5672. grad[i] = grad[i-1];
  5673. grad_op[i] = grad_op[i-1];
  5674. g[i] = g[i-1];
  5675. t[i] = t[i-1];
  5676. }
  5677. }
  5678. //for (Long iter = 0; iter < max_iter; iter++) {
  5679. // t[0] = t[1] + dt;
  5680. // x[0] = x[1] + grad[1] * dt;
  5681. // g[0] = grad_fn(x[0], grad[0], &grad_op[0]);
  5682. // Real dot_prod = compute_inner_prod(grad[0], grad[1]) / sqrt<Real>(compute_inner_prod(grad[0], grad[0])*compute_inner_prod(grad[1], grad[1]));
  5683. // if (dot_prod < 0.95 || g[0] < g[1]) {
  5684. // dt = dt * 1.5;
  5685. // }
  5686. // if (dot_prod < 0.85 || g[0] >= g[1]) {
  5687. // dt = dt * 0.5;
  5688. // continue;
  5689. // }
  5690. // for (Long i = order-2; i >= 0; i--) {
  5691. // x[i+1] = x[i];
  5692. // grad[i+1] = grad[i];
  5693. // grad_op[i+1] = grad_op[i];
  5694. // g[i+1] = g[i];
  5695. // t[i+1] = t[i];
  5696. // }
  5697. //}
  5698. //for (Long iter = 0; iter < max_iter; iter++) {
  5699. // fx = grad_fn(x, grad, &grad_op);
  5700. // { // Update dt
  5701. // Eigen::VectorXd grad_(x.size());
  5702. // Eigen::VectorXd x1 = x - grad * dt * 0.5;
  5703. // Eigen::VectorXd x2 = x - grad * dt * 1.0;
  5704. // Real fx1 = grad_fn(x1, grad_);
  5705. // Real fx2 = grad_fn(x2, grad_);
  5706. // { // Calculate optimal step size dt
  5707. // Real a = 2*fx - 4*fx1 + 2*fx2;
  5708. // Real b =-3*fx + 4*fx1 - fx2;
  5709. // Real c = fx;
  5710. // Real s = -b/(2*a);
  5711. // dt *= s;
  5712. // Real fx_ = a*s*s + b*s + c;
  5713. // std::cout<<"g = "<<fx_<<' ';
  5714. // std::cout<<fx<<' ';
  5715. // std::cout<<fx1<<' ';
  5716. // std::cout<<fx2<<' ';
  5717. // std::cout<<dt<<'\n';
  5718. // }
  5719. // }
  5720. // x = x - grad * dt;
  5721. // if (fx < tol) return iter;
  5722. //}
  5723. //return max_iter;
  5724. return 0;
  5725. }
  5726. public:
  5727. MHDEquilib(const Stellarator<Real,ORDER>& S, const Vector<Real>& pressure, const Vector<Real>& flux_tor, const Vector<Real>& flux_pol) {
  5728. S_ = S;
  5729. pressure_ = pressure;
  5730. flux_tor_ = flux_tor;
  5731. flux_pol_ = flux_pol;
  5732. iter = 57;
  5733. }
  5734. Real operator()(const Eigen::VectorXd& x, Eigen::VectorXd& grad_direction, Eigen::VectorXd* grad_op_ptr = nullptr) {
  5735. auto compute_H = [] (const ElemList<COORD_DIM,ElemBasis>& elem_lst, const Vector<ElemBasis>& normal) {
  5736. const Long Nnodes = ElemBasis::Size();
  5737. const Long Nelem = elem_lst.NElem();
  5738. const Vector<ElemBasis> X = elem_lst.ElemVector();
  5739. Vector<ElemBasis> dX, d2X, H(Nelem);
  5740. ElemBasis::Grad(dX, X);
  5741. ElemBasis::Grad(d2X, dX);
  5742. for (Long i = 0; i < Nelem; i++) {
  5743. for (Long j = 0; j < Nnodes; j++) {
  5744. Tensor<Real,true,2,2> I, invI, II;
  5745. for (Long k0 = 0; k0 < 2; k0++) {
  5746. for (Long k1 = 0; k1 < 2; k1++) {
  5747. I(k0,k1) = 0;
  5748. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  5749. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  5750. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  5751. II(k0,k1) = 0;
  5752. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  5753. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  5754. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  5755. }
  5756. }
  5757. { // Set invI
  5758. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  5759. invI(0,0) = I(1,1) / detI;
  5760. invI(0,1) = -I(0,1) / detI;
  5761. invI(1,0) = -I(1,0) / detI;
  5762. invI(1,1) = I(0,0) / detI;
  5763. }
  5764. { // Set H
  5765. H[i][j] = 0;
  5766. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  5767. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  5768. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  5769. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  5770. }
  5771. }
  5772. }
  5773. return H;
  5774. };
  5775. const Comm comm = Comm::World();
  5776. const Long Nelem = S_.NElem();
  5777. const Long Nnodes = ElemBasis::Size();
  5778. Vector<Real> X_fourier(x.size());
  5779. for (Long i = 0; i < x.size(); i++) { // Set X_fourier
  5780. X_fourier[i] = x(i);
  5781. }
  5782. { // Write to file
  5783. X_fourier.Write(("X"+std::to_string(iter)).c_str());
  5784. }
  5785. Vector<ElemBasis> X = grid2cheb(S_, X_fourier);
  5786. for (Long i = 0; i < Nelem; i++) { // Set S_
  5787. for (Long j = 0; j < Nnodes; j++) {
  5788. S_.Elem(i,0)[j] = X[i*COORD_DIM+0][j];
  5789. S_.Elem(i,1)[j] = X[i*COORD_DIM+1][j];
  5790. S_.Elem(i,2)[j] = X[i*COORD_DIM+2][j];
  5791. }
  5792. }
  5793. Vector<ElemBasis> normal, area_elem;
  5794. Stellarator<Real,ORDER>::compute_norm_area_elem(S_, normal, area_elem);
  5795. Real g;
  5796. //Vector<ElemBasis> dgdnu = Stellarator<Real,ORDER>::compute_gradient(S_, pressure_, flux_tor_, flux_pol_, &g);
  5797. Vector<ElemBasis> dgdnu = Stellarator<Real,ORDER>::compute_pressure_jump(S_, pressure_, flux_tor_, flux_pol_, &g);
  5798. Vector<Real> grad_direction_, grad_op_, grad_direction_orig_;
  5799. { // Set grad_direction_ and filter
  5800. Vector<ElemBasis> H = compute_H(S_.GetElemList(), normal);
  5801. Vector<Real> H_fourier = cheb2grid(S_, H);
  5802. grad_op_.ReInit(x.size());
  5803. grad_direction_.ReInit(x.size());
  5804. grad_direction_orig_.ReInit(x.size());
  5805. Vector<Real> dgdnu_fourier = cheb2grid(S_, dgdnu);
  5806. for (Long i = 0; i < S_.Nsurf(); i++) { // Init grad_direction_, make it divergence-free, filter
  5807. const Long Mt = S_.NTor(i);
  5808. const Long Mp = S_.NPol(i);
  5809. const Long offset = S_.ElemDsp(i);
  5810. const Long Nt = fourier_dim0;
  5811. const Long Np = fourier_dim1;
  5812. const Vector<Real> dgdnu( Nt*Np, (Iterator<Real>)dgdnu_fourier.begin() + i * (fourier_dim0*fourier_dim1), false);
  5813. const Vector<Real> H( Nt*Np, (Iterator<Real>)H_fourier.begin() + i * (fourier_dim0*fourier_dim1), false);
  5814. const Vector<Real> X(COORD_DIM*Nt*Np, (Iterator<Real>)X_fourier.begin() + COORD_DIM*i * (fourier_dim0*fourier_dim1), false);
  5815. Vector<Real> grad_direction(COORD_DIM*Nt*Np, (Iterator<Real>)grad_direction_.begin() + COORD_DIM*i * (fourier_dim0*fourier_dim1), false);
  5816. Vector<Real> grad_op(COORD_DIM*Nt*Np, (Iterator<Real>)grad_op_.begin() + COORD_DIM*i * (fourier_dim0*fourier_dim1), false);
  5817. Vector<Real> dX, d2X, normal, area_elem;
  5818. biest::SurfaceOp<Real> Sop(comm, Nt, Np);
  5819. Sop.Grad2D(dX, X);
  5820. Sop.Grad2D(d2X, dX);
  5821. Sop.SurfNormalAreaElem(&normal, &area_elem, dX, nullptr);
  5822. for (Long j = 0; j < Nt*Np; j++) { // Set grad_op
  5823. grad_op[0*Nt*Np+j] = normal[0*Nt*Np+j] * dgdnu[j] * area_elem[j];
  5824. grad_op[1*Nt*Np+j] = normal[1*Nt*Np+j] * dgdnu[j] * area_elem[j];
  5825. grad_op[2*Nt*Np+j] = normal[2*Nt*Np+j] * dgdnu[j] * area_elem[j];
  5826. }
  5827. if (i < S_.Nsurf() - 1) { // Set grad_direction
  5828. Vector<Real> F(Nt*Np), GradInvLapF;
  5829. for (Long j = 0; j < Nt*Np; j++) { // Set F <-- 2H * dgdnu
  5830. F[j] = 2*H[j] * dgdnu[j];
  5831. }
  5832. Sop.GradInvSurfLap(GradInvLapF, dX, d2X, F, 1e-8, 100, 1.0);
  5833. for (Long j = 0; j < Nt*Np; j++) { // grad_direction <-- normal * dgdnu - GradInvLapF
  5834. grad_direction[0*Nt*Np+j] = normal[0*Nt*Np+j] * dgdnu[j] - GradInvLapF[0*Nt*Np+j]*0;
  5835. grad_direction[1*Nt*Np+j] = normal[1*Nt*Np+j] * dgdnu[j] - GradInvLapF[1*Nt*Np+j]*0;
  5836. grad_direction[2*Nt*Np+j] = normal[2*Nt*Np+j] * dgdnu[j] - GradInvLapF[2*Nt*Np+j]*0;
  5837. }
  5838. { ////////////////////
  5839. Vector<Real> grad_direction_orig(COORD_DIM*Nt*Np, (Iterator<Real>)grad_direction_orig_.begin() + COORD_DIM*i * (fourier_dim0*fourier_dim1), false);
  5840. grad_direction_orig = grad_direction;
  5841. }
  5842. fourier_filter(grad_direction, Nt, Np, 2);
  5843. for (Long k = 0; k < 50; k++) { // reparameterize
  5844. Real max_resid = 0;
  5845. Vector<Real> correction(COORD_DIM*Nt*Np);
  5846. for (Long i = 0; i < Nt*Np; i++) { // Set correction
  5847. Real resid = dgdnu[i];
  5848. resid -= normal[0*Nt*Np+i] * grad_direction[0*Nt*Np+i];
  5849. resid -= normal[1*Nt*Np+i] * grad_direction[1*Nt*Np+i];
  5850. resid -= normal[2*Nt*Np+i] * grad_direction[2*Nt*Np+i];
  5851. max_resid = std::max(max_resid, fabs(resid));
  5852. correction[0*Nt*Np+i] = normal[0*Nt*Np+i] * resid;
  5853. correction[1*Nt*Np+i] = normal[1*Nt*Np+i] * resid;
  5854. correction[2*Nt*Np+i] = normal[2*Nt*Np+i] * resid;
  5855. }
  5856. std::cout<<max_resid<<' '; //////////////////////////////////
  5857. fourier_filter(correction, Nt, Np, 2);
  5858. Real alpha = 0;
  5859. { // Set alpha <-- (dgdnu - x.n, c.n) / (c.n, c.n)
  5860. Real dgdnu_xncn = 0, cncn = 0, max_c = 0;
  5861. for (Long i = 0; i < Nt*Np; i++) {
  5862. max_c = std::max<Real>(max_c, correction[0*Nt*Np+i]);
  5863. max_c = std::max<Real>(max_c, correction[1*Nt*Np+i]);
  5864. max_c = std::max<Real>(max_c, correction[2*Nt*Np+i]);
  5865. Real resid = dgdnu[i];
  5866. resid -= normal[0*Nt*Np+i] * grad_direction[0*Nt*Np+i];
  5867. resid -= normal[1*Nt*Np+i] * grad_direction[1*Nt*Np+i];
  5868. resid -= normal[2*Nt*Np+i] * grad_direction[2*Nt*Np+i];
  5869. Real cn = 0;
  5870. cn += correction[0*Nt*Np+i] * normal[0*Nt*Np+i];
  5871. cn += correction[1*Nt*Np+i] * normal[1*Nt*Np+i];
  5872. cn += correction[2*Nt*Np+i] * normal[2*Nt*Np+i];
  5873. dgdnu_xncn += resid*cn;
  5874. cncn += cn*cn;
  5875. }
  5876. alpha = dgdnu_xncn / cncn;
  5877. std::cout<<alpha*max_c<<'\n';
  5878. }
  5879. grad_direction += correction * alpha;
  5880. }
  5881. //fourier_print_spectrum("dgdnu", dgdnu, Nt, Np);
  5882. //fourier_print_spectrum("grad_dir", grad_direction, Nt, Np);
  5883. } else {
  5884. grad_direction = 0;
  5885. }
  5886. }
  5887. }
  5888. /////////////////////////////////////////////////////////////////////////
  5889. fourier_print_spectrum("X", X_fourier, S_);
  5890. fourier_print_spectrum("normal", cheb2grid(S_,normal), S_);
  5891. fourier_print_spectrum("dgdnu", cheb2grid(S_, dgdnu), S_);
  5892. fourier_print_spectrum("grad_dir", grad_direction_, S_);
  5893. fourier_print_spectrum("grad_dir_orig", grad_direction_orig_, S_);
  5894. /////////////////////////////////////////////////////////////////////////
  5895. { // Set grad_direction <-- grad_direction_
  5896. if (grad_direction.size() != grad_direction_.Dim()) {
  5897. grad_direction = Eigen::VectorXd(grad_direction_.Dim());
  5898. }
  5899. for (Long i = 0; i < grad_direction.size(); i++) {
  5900. grad_direction(i) = grad_direction_[i];
  5901. }
  5902. }
  5903. if (grad_op_ptr) { // Set grad_op_ptr
  5904. grad_op_ptr[0] = Eigen::VectorXd(grad_op_.Dim());
  5905. for (Long i = 0; i < grad_op_ptr->size(); i++) {
  5906. grad_op_ptr[0](i) = grad_op_[i];
  5907. }
  5908. }
  5909. if (1) { // Write VTU
  5910. VTUData vtu;
  5911. vtu.AddElems(S_.GetElemList(), dgdnu, ORDER);
  5912. vtu.WriteVTK("dgdnu"+std::to_string(iter), comm);
  5913. }
  5914. if (1) { // Write VTU
  5915. VTUData vtu;
  5916. Vector<ElemBasis> grad_direction = grid2cheb(S_, grad_direction_);
  5917. Vector<ElemBasis> dgdnu_ = Stellarator<Real,ORDER>::compute_dot_prod(normal, grad_direction);
  5918. vtu.AddElems(S_.GetElemList(), dgdnu_, ORDER);
  5919. vtu.WriteVTK("dgdnu-"+std::to_string(iter), comm);
  5920. }
  5921. if (1) { // Write VTU
  5922. VTUData vtu;
  5923. Vector<ElemBasis> grad_direction = grid2cheb(S_, grad_direction_);
  5924. vtu.AddElems(S_.GetElemList(), grad_direction, ORDER);
  5925. vtu.WriteVTK("grad_direction"+std::to_string(iter), comm);
  5926. }
  5927. std::cout<<"iter = "<<iter<<" g = "<<g<<'\n';
  5928. iter++;
  5929. return g;
  5930. }
  5931. static void ComputeEquilibrium(MHDEquilib& mhd_equilib) {
  5932. Comm comm = Comm::World();
  5933. const Long Nelem = mhd_equilib.S_.NElem();
  5934. const Long Nnodes = ElemBasis::Size();
  5935. // Initial guess
  5936. Eigen::VectorXd x;
  5937. { // Set x
  5938. Vector<ElemBasis> X(Nelem * COORD_DIM);
  5939. for (Long i = 0; i < Nelem; i++) { // Set x
  5940. X[i*COORD_DIM+0] = mhd_equilib.S_.Elem(i,0);
  5941. X[i*COORD_DIM+1] = mhd_equilib.S_.Elem(i,1);
  5942. X[i*COORD_DIM+2] = mhd_equilib.S_.Elem(i,2);
  5943. }
  5944. Vector<Real> X_fourier = cheb2grid(mhd_equilib.S_, X);
  5945. x.resize(X_fourier.Dim());
  5946. X_fourier.Read(("X"+std::to_string(mhd_equilib.iter)+"_").c_str()); // Read from file
  5947. for (Long i = 0; i < X_fourier.Dim(); i++) {
  5948. x(i) = X_fourier[i];
  5949. }
  5950. }
  5951. Real fx;
  5952. if (0) {
  5953. LBFGSpp::LBFGSParam<Real> param;
  5954. param.max_iterations = 200;
  5955. param.epsilon = 1e-16;
  5956. param.m = 20;
  5957. LBFGSpp::LBFGSSolver<Real> solver(param);
  5958. Integer niter = solver.minimize(mhd_equilib, x, fx);
  5959. } else {
  5960. //Integer niter = GradientDescentNew(mhd_equilib, x, fx, 200, 1e-12);
  5961. Integer niter = GradientDescent(mhd_equilib, x, fx, 200, 1e-12);
  5962. }
  5963. { // Set x
  5964. // TODO
  5965. }
  5966. }
  5967. static void test() {
  5968. Comm comm = Comm::World();
  5969. Profile::Enable(true);
  5970. Long Nsurf = 2;
  5971. Stellarator<Real,ORDER> S;
  5972. Vector<Real> flux_tor(Nsurf), flux_pol(Nsurf), pressure(Nsurf);
  5973. { // Init S, flux_tor, flux_pol, pressure
  5974. Vector<Long> NtNp;
  5975. for (Long i = 0; i < Nsurf; i++) {
  5976. NtNp.PushBack(70);
  5977. NtNp.PushBack(14);
  5978. //NtNp.PushBack(30);
  5979. //NtNp.PushBack(4);
  5980. }
  5981. S = Stellarator<Real,ORDER>(NtNp);
  5982. flux_tor = 1;
  5983. flux_pol = 1;
  5984. pressure = 0;
  5985. //flux_tor[0] = 1; //0.791881512;
  5986. //flux_tor[1] = 1;
  5987. //flux_pol[0] = 0;
  5988. //flux_pol[1] = 0;
  5989. //pressure[0] = 0;
  5990. //pressure[1] = 0;
  5991. }
  5992. MHDEquilib mhd_equilib(S, pressure, flux_tor, flux_pol);
  5993. ComputeEquilibrium(mhd_equilib);
  5994. }
  5995. static void test_() {
  5996. Comm comm = Comm::World();
  5997. Profile::Enable(true);
  5998. Long Nsurf = 2;
  5999. Stellarator<Real,ORDER> S;
  6000. Vector<Real> flux_tor(Nsurf), flux_pol(Nsurf), pressure(Nsurf);
  6001. { // Init S, flux_tor, flux_pol, pressure
  6002. Vector<Long> NtNp;
  6003. for (Long i = 0; i < Nsurf; i++) {
  6004. NtNp.PushBack(50);
  6005. NtNp.PushBack(10);
  6006. //NtNp.PushBack(30);
  6007. //NtNp.PushBack(4);
  6008. }
  6009. S = Stellarator<Real,ORDER>(NtNp);
  6010. flux_tor = 1;
  6011. flux_pol = 1;
  6012. pressure = 0;
  6013. //flux_tor[0] = 1; //0.791881512;
  6014. //flux_tor[1] = 1;
  6015. //flux_pol[0] = 0;
  6016. //flux_pol[1] = 0;
  6017. //pressure[0] = 0;
  6018. //pressure[1] = 0;
  6019. }
  6020. MHDEquilib mhd_equilib(S, pressure, flux_tor, flux_pol);
  6021. const Long Nelem = mhd_equilib.S_.NElem();
  6022. const Long Nnodes = ElemBasis::Size();
  6023. Eigen::VectorXd x, grad_direction;
  6024. { // Read x
  6025. Vector<ElemBasis> X(Nelem * COORD_DIM);
  6026. for (Long i = 0; i < Nelem; i++) {
  6027. X[i*COORD_DIM+0] = S.Elem(i,0);
  6028. X[i*COORD_DIM+1] = S.Elem(i,1);
  6029. X[i*COORD_DIM+2] = S.Elem(i,2);
  6030. }
  6031. Vector<Real> X_fourier = cheb2grid(S, X);
  6032. //X_fourier.Read("X_tmp");
  6033. x.resize(X_fourier.Dim());
  6034. for (Long i = 0; i < X_fourier.Dim(); i++) {
  6035. x(i) = X_fourier[i];
  6036. }
  6037. }
  6038. Real g = mhd_equilib(x, grad_direction);
  6039. { // Write grad_direction
  6040. Vector<Real> dXdt(grad_direction.size());
  6041. for (Long i = 0; i < dXdt.Dim(); i++) {
  6042. dXdt[i] = grad_direction(i);
  6043. }
  6044. dXdt.Write("dXdt_tmp");
  6045. }
  6046. }
  6047. private:
  6048. Stellarator<Real,ORDER> S_;
  6049. Vector<Real> pressure_;
  6050. Vector<Real> flux_tor_;
  6051. Vector<Real> flux_pol_;
  6052. Long iter;
  6053. };
  6054. template <class Real, Integer ORDER=5> class Spheres {
  6055. static constexpr Integer COORD_DIM = 3;
  6056. static constexpr Integer ELEM_DIM = COORD_DIM-1;
  6057. using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
  6058. using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
  6059. using CoordBasis = Basis<Real, ELEM_DIM, ORDER>;
  6060. using ElemLst = ElemList<COORD_DIM, CoordBasis>;
  6061. public:
  6062. Spheres(Long N = 0) {
  6063. Vector<Real> X(N*COORD_DIM);
  6064. Vector<Real> R(N);
  6065. X=0;
  6066. R=1;
  6067. for (Long i = 0; i < N; i++) X[i*COORD_DIM] = (i==0?-1.015:1.015); ///////////
  6068. InitSpheres(X,R);
  6069. }
  6070. const ElemLst& GetElem() const {
  6071. return elements;
  6072. }
  6073. static void test() {
  6074. constexpr Integer order_singular = 35;
  6075. constexpr Integer order_direct = 35;
  6076. Comm comm = Comm::World();
  6077. Profile::Enable(true);
  6078. Long Ns = 2;
  6079. Spheres S(Ns);
  6080. S.quadrature_FxT.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_FxT, order_singular, order_direct, -1.0, comm);
  6081. S.quadrature_FxU.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_FxU, order_singular, order_direct, -1.0, comm);
  6082. S.quadrature_DxU.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_DxU, order_singular, order_direct, -1.0, comm);
  6083. const auto SetMotion = [&S](Vector<DensityBasis>& density, const Vector<Real>& force_avg, const Vector<Real>& torque_avg) {
  6084. Long Nelem = S.GetElem().NElem();
  6085. Long Nsurf = S.elem_cnt.Dim();
  6086. const auto& X = S.GetElem().ElemVector();
  6087. Vector<Real> area, Xc;
  6088. Vector<DensityBasis> one(Nelem);
  6089. for (Long i = 0; i < Nelem; i++) {
  6090. for (Long j = 0; j < DensityBasis::Size(); j++) {
  6091. one[i][j] = 1;
  6092. }
  6093. }
  6094. S.SurfInteg(area, one);
  6095. S.SurfInteg(Xc, S.GetElem().ElemVector());
  6096. for (Long i = 0; i < Nsurf; i++) {
  6097. for (Long k = 0; k < COORD_DIM; k++) {
  6098. Xc[i*COORD_DIM+k] /= area[i];
  6099. }
  6100. }
  6101. if (density.Dim() != Nelem*COORD_DIM) density.ReInit(Nelem*COORD_DIM);
  6102. Long elem_itr = 0;
  6103. for (Long i = 0; i < Nsurf; i++) {
  6104. for (Long j = 0; j < S.elem_cnt[i]; j++) {
  6105. for (Long k = 0; k < DensityBasis::Size(); k++) {
  6106. StaticArray<Real,COORD_DIM> dX;
  6107. dX[0] = (X[elem_itr*COORD_DIM+0][k] - Xc[i*COORD_DIM+0]);
  6108. dX[1] = (X[elem_itr*COORD_DIM+1][k] - Xc[i*COORD_DIM+1]);
  6109. dX[2] = (X[elem_itr*COORD_DIM+2][k] - Xc[i*COORD_DIM+2]);
  6110. density[elem_itr*COORD_DIM+0][k] = force_avg[i*COORD_DIM+0]*(1/area[i]) + (torque_avg[i*COORD_DIM+1] * dX[2] - torque_avg[i*COORD_DIM+2] * dX[1]) / (2*area[i]/3);
  6111. density[elem_itr*COORD_DIM+1][k] = force_avg[i*COORD_DIM+1]*(1/area[i]) + (torque_avg[i*COORD_DIM+2] * dX[0] - torque_avg[i*COORD_DIM+0] * dX[2]) / (2*area[i]/3);
  6112. density[elem_itr*COORD_DIM+2][k] = force_avg[i*COORD_DIM+2]*(1/area[i]) + (torque_avg[i*COORD_DIM+0] * dX[1] - torque_avg[i*COORD_DIM+1] * dX[0]) / (2*area[i]/3);
  6113. }
  6114. elem_itr++;
  6115. }
  6116. }
  6117. };
  6118. const auto GetMotion = [&S](Vector<Real>& force_avg, Vector<Real>& torque_avg, const Vector<DensityBasis>& density) {
  6119. Long Nelem = S.GetElem().NElem();
  6120. Long Nsurf = S.elem_cnt.Dim();
  6121. const auto& X = S.GetElem().ElemVector();
  6122. S.SurfInteg(force_avg, density);
  6123. Vector<Real> area, Xc;
  6124. Vector<DensityBasis> one(Nelem);
  6125. for (Long i = 0; i < Nelem; i++) {
  6126. for (Long j = 0; j < DensityBasis::Size(); j++) {
  6127. one[i][j] = 1;
  6128. }
  6129. }
  6130. S.SurfInteg(area, one);
  6131. S.SurfInteg(Xc, S.GetElem().ElemVector());
  6132. for (Long i = 0; i < Nsurf; i++) {
  6133. for (Long k = 0; k < COORD_DIM; k++) {
  6134. Xc[i*COORD_DIM+k] /= area[i];
  6135. }
  6136. }
  6137. { // Set torque_avg
  6138. Long elem_itr = 0;
  6139. Vector<DensityBasis> torque(Nelem*COORD_DIM);
  6140. for (Long i = 0; i < Nsurf; i++) {
  6141. for (Long j = 0; j < S.elem_cnt[i]; j++) {
  6142. for (Long k = 0; k < DensityBasis::Size(); k++) {
  6143. StaticArray<Real,COORD_DIM> dX;
  6144. dX[0] = (X[elem_itr*COORD_DIM+0][k] - Xc[i*COORD_DIM+0]);
  6145. dX[1] = (X[elem_itr*COORD_DIM+1][k] - Xc[i*COORD_DIM+1]);
  6146. dX[2] = (X[elem_itr*COORD_DIM+2][k] - Xc[i*COORD_DIM+2]);
  6147. torque[elem_itr*COORD_DIM+0][k] = dX[1] * density[elem_itr*COORD_DIM+2][k] - dX[2] * density[elem_itr*COORD_DIM+1][k];
  6148. torque[elem_itr*COORD_DIM+1][k] = dX[2] * density[elem_itr*COORD_DIM+0][k] - dX[0] * density[elem_itr*COORD_DIM+2][k];
  6149. torque[elem_itr*COORD_DIM+2][k] = dX[0] * density[elem_itr*COORD_DIM+1][k] - dX[1] * density[elem_itr*COORD_DIM+0][k];
  6150. }
  6151. elem_itr++;
  6152. }
  6153. }
  6154. S.SurfInteg(torque_avg, torque);
  6155. }
  6156. };
  6157. const auto BIOpL = [&GetMotion,&SetMotion](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  6158. Vector<Real> force_avg, torque_avg;
  6159. GetMotion(force_avg, torque_avg, density);
  6160. SetMotion(potential, force_avg, torque_avg);
  6161. };
  6162. const auto BIOpK = [&S](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  6163. Vector<DensityBasis> traction;
  6164. S.quadrature_FxT.Eval(traction, S.GetElem(), density, S.Stokes_FxT);
  6165. Vector<CoordBasis> dX;
  6166. const auto X = S.GetElem().ElemVector();
  6167. CoordBasis::Grad(dX, X);
  6168. Long Nelem = S.GetElem().NElem();
  6169. Long Nnodes = CoordBasis::Size();
  6170. potential.ReInit(Nelem * COORD_DIM);
  6171. for (Long i = 0; i < Nelem; i++) {
  6172. for (Long j = 0; j < Nnodes; j++) {
  6173. StaticArray<Real,COORD_DIM> Xn;
  6174. Xn[0] = dX[i*COORD_DIM*2+2][j]*dX[i*COORD_DIM*2+5][j] - dX[i*COORD_DIM*2+4][j]*dX[i*COORD_DIM*2+3][j];
  6175. Xn[1] = dX[i*COORD_DIM*2+4][j]*dX[i*COORD_DIM*2+1][j] - dX[i*COORD_DIM*2+0][j]*dX[i*COORD_DIM*2+5][j];
  6176. Xn[2] = dX[i*COORD_DIM*2+0][j]*dX[i*COORD_DIM*2+3][j] - dX[i*COORD_DIM*2+2][j]*dX[i*COORD_DIM*2+1][j];
  6177. Real AreaElem = sqrt<Real>(Xn[0]*Xn[0] + Xn[1]*Xn[1] + Xn[2]*Xn[2]);
  6178. Real OOAreaElem = 1 / AreaElem;
  6179. Xn[0] *= OOAreaElem;
  6180. Xn[1] *= OOAreaElem;
  6181. Xn[2] *= OOAreaElem;
  6182. potential[i*COORD_DIM+0][j] = traction[i*COORD_DIM*COORD_DIM+0][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+1][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+2][j]*Xn[2];
  6183. potential[i*COORD_DIM+1][j] = traction[i*COORD_DIM*COORD_DIM+3][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+4][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+5][j]*Xn[2];
  6184. potential[i*COORD_DIM+2][j] = traction[i*COORD_DIM*COORD_DIM+6][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+7][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+8][j]*Xn[2];
  6185. }
  6186. }
  6187. };
  6188. const auto BIOp_half_K_L = [&S,&BIOpK,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  6189. Vector<DensityBasis> potential_K;
  6190. Vector<DensityBasis> potential_L;
  6191. BIOpK(potential_K, density);
  6192. BIOpL(potential_L, density);
  6193. if (potential.Dim() != potential_K.Dim()) {
  6194. potential.ReInit(potential_K.Dim());
  6195. }
  6196. for (Long i = 0; i < potential_K.Dim(); i++) {
  6197. for (Long k = 0; k < DensityBasis::Size(); k++) {
  6198. potential[i][k] = -0.5*density[i][k] + potential_K[i][k] + potential_L[i][k];
  6199. }
  6200. }
  6201. };
  6202. const auto BIOp_half_K = [&S,&BIOpK,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  6203. Vector<DensityBasis> potential_K;
  6204. BIOpK(potential_K, density);
  6205. if (potential.Dim() != potential_K.Dim()) {
  6206. potential.ReInit(potential_K.Dim());
  6207. }
  6208. for (Long i = 0; i < potential_K.Dim(); i++) {
  6209. for (Long k = 0; k < DensityBasis::Size(); k++) {
  6210. potential[i][k] = -0.5*density[i][k] + potential_K[i][k];
  6211. }
  6212. }
  6213. };
  6214. const auto BIOp_half_S_D = [&S,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  6215. Vector<DensityBasis> U;
  6216. S.quadrature_DxU.Eval(U, S.GetElem(), density, S.Stokes_DxU);
  6217. Vector<PotentialBasis> U1;
  6218. Vector<DensityBasis> sigma1;
  6219. BIOpL(sigma1,density);
  6220. S.quadrature_FxU.Eval(U1, S.GetElem(), sigma1, S.Stokes_FxU);
  6221. Long Nelem = S.GetElem().NElem();
  6222. Long Nnodes = CoordBasis::Size();
  6223. potential.ReInit(Nelem * COORD_DIM);
  6224. for (Long i = 0; i < Nelem; i++) {
  6225. for (Long j = 0; j < Nnodes; j++) {
  6226. potential[i*COORD_DIM+0][j] = 0.5*density[i*COORD_DIM+0][j] + U[i*COORD_DIM+0][j] + U1[i*COORD_DIM+0][j];
  6227. potential[i*COORD_DIM+1][j] = 0.5*density[i*COORD_DIM+1][j] + U[i*COORD_DIM+1][j] + U1[i*COORD_DIM+1][j];
  6228. potential[i*COORD_DIM+2][j] = 0.5*density[i*COORD_DIM+2][j] + U[i*COORD_DIM+2][j] + U1[i*COORD_DIM+2][j];
  6229. }
  6230. }
  6231. };
  6232. Vector<PotentialBasis> U;
  6233. { // Rachh
  6234. Vector<DensityBasis> sigma0;
  6235. { // Set sigma0
  6236. srand48(comm.Rank());
  6237. Vector<Real> force(Ns*COORD_DIM), torque(Ns*COORD_DIM);
  6238. //for (auto& x : force) x = drand48();
  6239. //for (auto& x : torque) x = drand48();
  6240. force = 0;
  6241. torque = 0;
  6242. force[0] = 1;
  6243. //force[4] = 1;
  6244. SetMotion(sigma0, force, torque);
  6245. }
  6246. Vector<DensityBasis> rhs;
  6247. BIOp_half_K(rhs, sigma0);
  6248. Vector<DensityBasis> sigma;
  6249. { // Set sigma
  6250. Long Nnode = DensityBasis::Size();
  6251. Long Nelem = S.GetElem().NElem();
  6252. typename ParallelSolver<Real>::ParallelOp A = [&S,&BIOp_half_K_L](Vector<Real>* Ax, const Vector<Real>& x) {
  6253. Long Nnode = DensityBasis::Size();
  6254. Long Nelem = S.GetElem().NElem();
  6255. Ax->ReInit(Nelem*COORD_DIM*Nnode);
  6256. Vector<DensityBasis> x_(Nelem*COORD_DIM), Ax_(Nelem*COORD_DIM);
  6257. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set x_
  6258. for (Long k = 0; k < Nnode; k++) {
  6259. x_[i][k] = x[i*Nnode+k];
  6260. }
  6261. }
  6262. BIOp_half_K_L(Ax_, x_);
  6263. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set Ax
  6264. for (Long k = 0; k < Nnode; k++) {
  6265. (*Ax)[i*Nnode+k] = Ax_[i][k];
  6266. }
  6267. }
  6268. };
  6269. Vector<Real> sigma_(Nelem*COORD_DIM*Nnode), rhs_(Nelem*COORD_DIM*Nnode);
  6270. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set rhs_
  6271. for (Long k = 0; k < Nnode; k++) {
  6272. rhs_[i*Nnode+k] = rhs[i][k];
  6273. }
  6274. }
  6275. sigma_ = 0;
  6276. ParallelSolver<Real> linear_solver(comm, true);
  6277. linear_solver(&sigma_, A, rhs_, 1e-6, 50);
  6278. sigma.ReInit(Nelem * COORD_DIM);
  6279. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set sigma
  6280. for (Long k = 0; k < Nnode; k++) {
  6281. sigma[i][k] = sigma_[i*Nnode+k] - sigma0[i][k];
  6282. }
  6283. }
  6284. }
  6285. S.quadrature_FxU.Eval(U, S.GetElem(), sigma, S.Stokes_FxU);
  6286. { // Write VTU
  6287. VTUData vtu_sigma;
  6288. vtu_sigma.AddElems(S.elements, sigma, ORDER);
  6289. vtu_sigma.WriteVTK("sphere-sigma0", comm);
  6290. VTUData vtu_U;
  6291. vtu_U.AddElems(S.elements, U, ORDER);
  6292. vtu_U.WriteVTK("sphere-U0", comm);
  6293. }
  6294. }
  6295. { // Tornberg
  6296. Vector<DensityBasis> rhs;
  6297. BIOpL(rhs, U);
  6298. Vector<DensityBasis> sigma;
  6299. { // Set sigma
  6300. Long Nnode = DensityBasis::Size();
  6301. Long Nelem = S.GetElem().NElem();
  6302. typename ParallelSolver<Real>::ParallelOp A = [&S,&BIOp_half_S_D](Vector<Real>* Ax, const Vector<Real>& x) {
  6303. Long Nnode = DensityBasis::Size();
  6304. Long Nelem = S.GetElem().NElem();
  6305. Ax->ReInit(Nelem*COORD_DIM*Nnode);
  6306. Vector<DensityBasis> x_(Nelem*COORD_DIM), Ax_(Nelem*COORD_DIM);
  6307. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set x_
  6308. for (Long k = 0; k < Nnode; k++) {
  6309. x_[i][k] = x[i*Nnode+k];
  6310. }
  6311. }
  6312. BIOp_half_S_D(Ax_, x_);
  6313. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set Ax
  6314. for (Long k = 0; k < Nnode; k++) {
  6315. (*Ax)[i*Nnode+k] = Ax_[i][k];
  6316. }
  6317. }
  6318. };
  6319. Vector<Real> sigma_(Nelem*COORD_DIM*Nnode), rhs_(Nelem*COORD_DIM*Nnode);
  6320. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set rhs_
  6321. for (Long k = 0; k < Nnode; k++) {
  6322. rhs_[i*Nnode+k] = rhs[i][k];
  6323. }
  6324. }
  6325. sigma_ = 0;
  6326. ParallelSolver<Real> linear_solver(comm, true);
  6327. linear_solver(&sigma_, A, rhs_, 1e-6, 50);
  6328. sigma.ReInit(Nelem * COORD_DIM);
  6329. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set sigma
  6330. for (Long k = 0; k < Nnode; k++) {
  6331. sigma[i][k] = sigma_[i*Nnode+k];
  6332. }
  6333. }
  6334. }
  6335. Vector<PotentialBasis> U1;
  6336. BIOp_half_S_D(U1, sigma);
  6337. { // Write VTU
  6338. VTUData vtu_sigma;
  6339. vtu_sigma.AddElems(S.elements, sigma, ORDER);
  6340. vtu_sigma.WriteVTK("sphere-sigma1", comm);
  6341. VTUData vtu_U;
  6342. vtu_U.AddElems(S.elements, U1, ORDER);
  6343. vtu_U.WriteVTK("sphere-U1", comm);
  6344. }
  6345. }
  6346. Profile::print(&comm);
  6347. }
  6348. private:
  6349. template <class FnBasis> void SurfInteg(Vector<Real>& I, const Vector<FnBasis>& f) {
  6350. static_assert(std::is_same<FnBasis,CoordBasis>::value, "FnBasis is different from CoordBasis");
  6351. const Long Nelem = elements.NElem();
  6352. const Long dof = f.Dim() / Nelem;
  6353. SCTL_ASSERT(f.Dim() == Nelem * dof);
  6354. auto nodes = FnBasis::Nodes();
  6355. auto quad_wts = FnBasis::QuadWts();
  6356. const Long Nnodes = FnBasis::Size();
  6357. auto EvalOp = CoordBasis::SetupEval(nodes);
  6358. Vector<CoordBasis> dX;
  6359. const auto& X = elements.ElemVector();
  6360. SCTL_ASSERT(X.Dim() == Nelem * COORD_DIM);
  6361. CoordBasis::Grad(dX, X);
  6362. Matrix<Real> I_(Nelem, dof);
  6363. for (Long i = 0; i < Nelem; i++) {
  6364. for (Long k = 0; k < dof; k++) {
  6365. I_[i][k] = 0;
  6366. }
  6367. for (Long j = 0; j < Nnodes; j++) {
  6368. Real dA = 0;
  6369. StaticArray<Real,COORD_DIM> Xn;
  6370. Xn[0] = dX[i*COORD_DIM*2+2][j] * dX[i*COORD_DIM*2+5][j] - dX[i*COORD_DIM*2+3][j] * dX[i*COORD_DIM*2+4][j];
  6371. Xn[1] = dX[i*COORD_DIM*2+4][j] * dX[i*COORD_DIM*2+1][j] - dX[i*COORD_DIM*2+5][j] * dX[i*COORD_DIM*2+0][j];
  6372. Xn[2] = dX[i*COORD_DIM*2+0][j] * dX[i*COORD_DIM*2+3][j] - dX[i*COORD_DIM*2+1][j] * dX[i*COORD_DIM*2+2][j];
  6373. dA += sqrt<Real>(Xn[0]*Xn[0] + Xn[1]*Xn[1] + Xn[2]*Xn[2]) * quad_wts[j];
  6374. for (Long k = 0; k < dof; k++) {
  6375. I_[i][k] += dA * f[i*dof+k][j];
  6376. }
  6377. }
  6378. }
  6379. Long Ns = elem_cnt.Dim();
  6380. if (I.Dim() != Ns * dof) I.ReInit(Ns * dof);
  6381. I = 0;
  6382. Long elem_itr = 0;
  6383. for (Long i = 0; i < Ns; i++) {
  6384. for (Long j = 0; j < elem_cnt[i]; j++) {
  6385. for (Long k = 0; k < dof; k++) {
  6386. I[i*dof+k] += I_[elem_itr][k];
  6387. }
  6388. elem_itr++;
  6389. }
  6390. }
  6391. }
  6392. void InitSpheres(const Vector<Real> X, const Vector<Real>& R){
  6393. SCTL_ASSERT(X.Dim() == R.Dim() * COORD_DIM);
  6394. Long N = R.Dim();
  6395. elements.ReInit(2*COORD_DIM*N);
  6396. auto nodes = ElemLst::CoordBasis::Nodes();
  6397. for (Long l = 0; l < N; l++) {
  6398. for (Integer i = 0; i < COORD_DIM; i++) {
  6399. for (Integer j = 0; j < 2; j++) {
  6400. for (int k = 0; k < ElemLst::CoordBasis::Size(); k++) {
  6401. Real coord[COORD_DIM];
  6402. coord[(i+0)%COORD_DIM] = (j ? -1.0 : 1.0);
  6403. coord[(i+1)%COORD_DIM] = 2.0 * nodes[j?1:0][k] - 1.0;
  6404. coord[(i+2)%COORD_DIM] = 2.0 * nodes[j?0:1][k] - 1.0;
  6405. Real R0 = sqrt<Real>(coord[0]*coord[0] + coord[1]*coord[1] + coord[2]*coord[2]);
  6406. elements((l*COORD_DIM+i)*2+j,0)[k] = X[l*COORD_DIM+0] + R[l] * coord[0] / R0;
  6407. elements((l*COORD_DIM+i)*2+j,1)[k] = X[l*COORD_DIM+1] + R[l] * coord[1] / R0;
  6408. elements((l*COORD_DIM+i)*2+j,2)[k] = X[l*COORD_DIM+2] + R[l] * coord[2] / R0;
  6409. }
  6410. }
  6411. }
  6412. }
  6413. elem_cnt.ReInit(N);
  6414. elem_cnt = 6;
  6415. }
  6416. GenericKernel<Stokes3D_DxU> Stokes_DxU;
  6417. GenericKernel<Stokes3D_FxU> Stokes_FxU;
  6418. GenericKernel<Stokes3D_FxT> Stokes_FxT;
  6419. Quadrature<Real> quadrature_DxU;
  6420. Quadrature<Real> quadrature_FxU;
  6421. Quadrature<Real> quadrature_FxT;
  6422. ElemLst elements;
  6423. Vector<Long> elem_cnt;
  6424. };
  6425. } // end namespace
  6426. #endif //_SCTL_BOUNDARY_QUADRATURE_HPP_