123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416 |
- #ifndef _SCTL_CHEB_UTILS_HPP_
- #define _SCTL_CHEB_UTILS_HPP_
- //#include SCTL_INCLUDE(kernel.hpp)
- #include SCTL_INCLUDE(matrix.hpp)
- #include SCTL_INCLUDE(vector.hpp)
- #include SCTL_INCLUDE(common.hpp)
- #include SCTL_INCLUDE(legendre_rule.hpp)
- #include <type_traits>
- #include <functional>
- namespace SCTL_NAMESPACE {
- template <class ValueType, class Derived> class BasisInterface {
- public:
- template <Integer DIM> static void Nodes(Integer order, Vector<ValueType>& nodes) {
- if (DIM == 1) {
- Derived::Nodes1D(order, nodes);
- return;
- }
- Vector<ValueType> nodes1d;
- Derived::Nodes1D(order, nodes1d);
- Integer order_DIM = pow<Integer>(order, DIM);
- if (nodes.Dim() != order_DIM * DIM) nodes.ReInit(order_DIM * DIM);
- StaticArray<Integer, DIM> idx;
- for (Integer i = 0; i < DIM; i++) idx[i] = 0;
- Integer itr = 0;
- for (Integer j = 0; j < order_DIM; j++) {
- for (Integer i = 0; i < DIM; i++) {
- if (idx[i] == order) idx[i] = 0;
- nodes[itr + i] = nodes1d[idx[i]];
- }
- itr += DIM;
- idx[0]++;
- for (Integer i = 1; i < DIM; i++) {
- if (idx[i - 1] == order) idx[i]++;
- }
- }
- }
- /**
- * \brief Computes approximation from function values at node points.
- * \param[in] fn_v Function values at node points (dof x order^DIM).
- * \param[out] coeff Coefficient values (dof x Ncoeff).
- */
- template <Integer DIM> static void Approx(Integer order, const Vector<ValueType>& fn_v, Vector<ValueType>& coeff) {
- Matrix<ValueType> Mp;
- { // Precompute
- static Vector<Matrix<ValueType>> precomp(1000);
- SCTL_ASSERT(order < precomp.Dim());
- if (precomp[order].Dim(0) * precomp[order].Dim(1) == 0) {
- #pragma omp critical(BASIS_APPROX)
- if (precomp[order].Dim(0) * precomp[order].Dim(1) == 0) {
- Vector<ValueType> x, p;
- Derived::Nodes1D(order, x);
- Derived::EvalBasis1D(order, x, p);
- Matrix<ValueType> Mp1(order, order, p.begin(), false);
- Mp1.pinv().Swap(precomp[order]);
- }
- }
- Mp.ReInit(precomp[order].Dim(0), precomp[order].Dim(1), precomp[order].begin(), false);
- }
- Integer order_DIM = pow<Integer>(order, DIM);
- Integer order_DIM_ = pow<Integer>(order, DIM - 1);
- Long dof = fn_v.Dim() / order_DIM;
- SCTL_ASSERT(fn_v.Dim() == dof * order_DIM);
- // Create work buffers
- Long buff_size = dof * order_DIM;
- Vector<ValueType> buff(2 * buff_size);
- Iterator<ValueType> buff1 = buff.begin() + buff_size * 0;
- Iterator<ValueType> buff2 = buff.begin() + buff_size * 1;
- Vector<ValueType> fn(order_DIM * dof, (Iterator<ValueType>)fn_v.begin(), false);
- for (Integer k = 0; k < DIM; k++) { // Apply Mp along k-dimension
- Matrix<ValueType> Mi(dof * order_DIM_, order, fn.begin(), false);
- Matrix<ValueType> Mo(dof * order_DIM_, order, buff2, false);
- Matrix<ValueType>::GEMM(Mo, Mi, Mp);
- Matrix<ValueType> Mo_t(order, dof * order_DIM_, buff1, false);
- for (Long i = 0; i < Mo.Dim(0); i++) {
- for (Long j = 0; j < Mo.Dim(1); j++) {
- Mo_t[j][i] = Mo[i][j];
- }
- }
- fn.ReInit(order_DIM * dof, buff1, false);
- }
- { // Rearrange and write to coeff
- Vector<ValueType> tensor(order_DIM * dof, buff1, false);
- tensor2coeff<DIM>(order, tensor, coeff);
- }
- }
- /**
- * \brief Evaluates values from input coefficients at points on a regular
- * grid defined by in_x, in_y, in_z the values in the input vector.
- * \param[in] coeff Coefficient values (dof x Ncoeff).
- * \param[out] out Values at node points (in_x[DIM-1].Dim() x ... x in_x[0].Dim() x dof).
- */
- template <Integer DIM> static void Eval(Integer order, const Vector<ValueType>& coeff, ConstIterator<Vector<ValueType>> in_x, Vector<ValueType>& out) {
- Integer Ncoeff = 1;
- for (Integer i = 0; i < DIM; i++) {
- Ncoeff = (Ncoeff * (order + i)) / (i + 1);
- }
- Long dof = coeff.Dim() / Ncoeff;
- SCTL_ASSERT(coeff.Dim() == Ncoeff * dof);
- // Precomputation
- Long buff_size = dof;
- StaticArray<Matrix<ValueType>, DIM> Mp;
- for (Integer i = 0; i < DIM; i++) {
- Integer n = in_x[i].Dim();
- if (!n) return;
- Mp[i].ReInit(order, n);
- Vector<ValueType> p(order * n, Mp[i].begin(), false);
- Derived::EvalBasis1D(order, in_x[i], p);
- buff_size *= std::max(order, n);
- }
- // Create work buffers
- Vector<ValueType> buff(2 * buff_size);
- Iterator<ValueType> buff1 = buff.begin() + buff_size * 0;
- Iterator<ValueType> buff2 = buff.begin() + buff_size * 1;
- { // Rearrange coefficients into a tensor.
- Vector<ValueType> tensor(dof * pow<Integer>(order, DIM), buff1, false);
- coeff2tensor<DIM>(order, coeff, tensor);
- }
- { // ReInit out
- Long len = dof;
- for (Integer i = 0; i < DIM; i++) len *= in_x[i].Dim();
- if (out.Dim() != len) out.ReInit(len);
- }
- for (Integer k = 0; k < DIM; k++) { // Apply Mp along k-dimension
- Integer order_DIM = pow<Integer>(order, DIM - k - 1);
- for (Integer i = 0; i < k; i++) order_DIM *= in_x[i].Dim();
- Matrix<ValueType> Mi(dof * order_DIM, order, buff1, false);
- Matrix<ValueType> Mo(dof * order_DIM, in_x[k].Dim(), buff2, false);
- Matrix<ValueType>::GEMM(Mo, Mi, Mp[k]);
- Matrix<ValueType> Mo_t(in_x[k].Dim(), dof * order_DIM, buff1, false);
- if (k == DIM - 1) Mo_t.ReInit(in_x[k].Dim(), dof * order_DIM, out.begin(), false);
- for (Long i = 0; i < Mo.Dim(0); i++) {
- for (Long j = 0; j < Mo.Dim(1); j++) {
- Mo_t[j][i] = Mo[i][j];
- }
- }
- }
- }
- /**
- * \brief Returns the sum of the absolute value of coefficients of the
- * highest order terms as an estimate of truncation error.
- * \param[in] coeff Coefficient values (dof x Ncoeff).
- */
- template <Integer DIM> static ValueType TruncErr(Integer order, const Vector<ValueType>& coeff) {
- Integer Ncoeff = 1;
- { // Set Ncoeff
- for (Integer i = 0; i < DIM; i++) Ncoeff = (Ncoeff * (order + i)) / (i + 1);
- }
- Long dof = coeff.Dim() / Ncoeff;
- SCTL_ASSERT(coeff.Dim() == Ncoeff * dof);
- ValueType err = 0;
- for (Long l = 0; l < dof; l++) { // TODO: optimize this
- Long offset0 = l * Ncoeff;
- Integer indx0 = 0;
- Integer indx1 = 0;
- StaticArray<Integer, DIM + 1> i0;
- for (Integer i = 0; i <= DIM; i++) i0[i] = 0;
- Integer sum = 0;
- while (1) {
- if (sum < order) {
- if (sum == order - 1) err += fabs<ValueType>(coeff[offset0 + indx0]);
- indx0++;
- }
- indx1++;
- sum++;
- i0[0]++;
- for (Integer j = 0; j < DIM && i0[j] == order; j++) {
- i0[j] = 0;
- i0[j + 1]++;
- sum = sum + 1 - order;
- }
- if (i0[DIM]) break;
- }
- }
- return err;
- }
- /**
- * \brief Compute gradient.
- * \param[in] coeff_in Input coefficients (dof x Ncoeff)
- * \param[out] coeff_out Output coefficients (dof x DIM x Ncoeff)
- */
- template <Integer DIM> static void Grad(Integer order, const Vector<ValueType>& coeff_in, Vector<ValueType>* coeff_out) {
- Integer Ncoeff = 1;
- for (Integer i = 0; i < DIM; i++) {
- Ncoeff = (Ncoeff * (order + i)) / (i + 1);
- }
- Long dof = coeff_in.Dim() / Ncoeff;
- SCTL_ASSERT(coeff_in.Dim() == Ncoeff * dof);
- Matrix<ValueType> Mdiff;
- { // Precompute
- static Vector<Matrix<ValueType>> precomp(1000);
- SCTL_ASSERT(order < precomp.Dim());
- if (precomp[order].Dim(0) * precomp[order].Dim(1) == 0) {
- #pragma omp critical(BASIS_GRAD)
- if (precomp[order].Dim(0) * precomp[order].Dim(1) == 0) {
- Matrix<ValueType> M;
- diff_1d(order, &M);
- M.Swap(precomp[order]);
- }
- }
- Mdiff.ReInit(precomp[order].Dim(0), precomp[order].Dim(1), precomp[order].begin(), false);
- }
- // Create work buffers
- Long buff_size = dof * pow<Integer>(order, DIM);
- Vector<ValueType> buff((3 + DIM) * buff_size);
- Vector<ValueType> buff0(buff_size * 1, buff.begin() + buff_size * 0, false);
- Vector<ValueType> buff1(buff_size * 1, buff.begin() + buff_size * 1, false);
- Vector<ValueType> buff2(buff_size * 1, buff.begin() + buff_size * 2, false);
- Vector<ValueType> buff3(buff_size * DIM, buff.begin() + buff_size * 3, false);
- { // buff0 <-- coeff2tensor(coeff_in);
- coeff2tensor<DIM>(order, coeff_in, buff0);
- }
- for (Integer k = 0; k < DIM; k++) { // buff2 <-- Grad(buff0)
- Long N0 = pow<Integer>(order, k);
- Long N1 = order;
- Long N2 = pow<Integer>(order, DIM - k - 1);
- for (Long i3 = 0; i3 < dof; i3++) { // buff1 <-- transpose(buff0)
- for (Long i2 = 0; i2 < N2; i2++) {
- for (Long i1 = 0; i1 < N1; i1++) {
- for (Long i0 = 0; i0 < N0; i0++) {
- buff1[((i3 * N2 + i2) * N0 + i0) * N1 + i1] = buff0[((i3 * N2 + i2) * N1 + i1) * N0 + i0];
- }
- }
- }
- }
- { // buff2 <-- buff1 * Mdiff
- Matrix<ValueType> Mi(dof * N0 * N2, N1, buff1.begin(), false);
- Matrix<ValueType> Mo(dof * N0 * N2, N1, buff2.begin(), false);
- Matrix<ValueType>::GEMM(Mo, Mi, Mdiff);
- }
- for (Long i3 = 0; i3 < dof; i3++) { // buff3 <-- transpose(buff2)
- for (Long i2 = 0; i2 < N2; i2++) {
- for (Long i1 = 0; i1 < N1; i1++) {
- for (Long i0 = 0; i0 < N0; i0++) {
- buff3[(((i2 * N1 + i1) * N0 + i0) * dof + i3) * DIM + k] = buff2[((i3 * N2 + i2) * N0 + i0) * N1 + i1];
- }
- }
- }
- }
- }
- { // coeff_out <-- tensor2coeff(buff2);
- tensor2coeff<DIM>(order, buff3, *coeff_out);
- }
- }
- template <Integer DIM, Integer SUBDIM, class Kernel> static void Integ(Matrix<ValueType>& Mcoeff, Integer order, ConstIterator<ValueType> trg_, ValueType side, Integer src_face, const Kernel& ker, ValueType tol = -1, Integer Nq = 0) {
- if (!Nq) Nq = order;
- Integ_<DIM, SUBDIM>(Mcoeff, order, trg_, side, src_face, ker, Nq);
- if (tol < 0) tol = 1e-10; //machine_eps() * 256;
- ValueType err = tol + 1;
- Matrix<ValueType> Mtmp;
- while (err > tol) {
- err = 0;
- ValueType max_val = pow<SUBDIM>(side);
- Nq = std::max((Integer)(Nq * 1.26), Nq + 1);
- Integ_<DIM, SUBDIM>(Mtmp, order, trg_, side, src_face, ker, Nq);
- for (Integer i = 0; i < Mtmp.Dim(0) * Mtmp.Dim(1); i++) {
- err = std::max(err, fabs<ValueType>(Mtmp[0][i] - Mcoeff[0][i]));
- max_val = std::max(max_val, fabs<ValueType>(Mtmp[0][i]));
- }
- err /= max_val;
- Mcoeff = Mtmp;
- if (Nq>200) {
- SCTL_WARN("Failed to converge, error = "<<err);
- break;
- }
- }
- Mcoeff = Mcoeff.Transpose();
- }
- template <Integer DIM> static void tensor2coeff(Integer order, const Vector<ValueType>& tensor, Vector<ValueType>& coeff) {
- Integer Ncoeff = 1, Ntensor = pow<Integer>(order, DIM);
- for (Integer i = 0; i < DIM; i++) Ncoeff = (Ncoeff * (order + i)) / (i + 1);
- Long dof = tensor.Dim() / Ntensor;
- SCTL_ASSERT(tensor.Dim() == Ntensor * dof);
- if (coeff.Dim() != Ncoeff * dof) coeff.ReInit(Ncoeff * dof);
- for (Long l = 0; l < dof; l++) { // TODO: optimize this
- Long offset0 = l * Ncoeff;
- Integer indx0 = 0;
- Integer indx1 = 0;
- StaticArray<Integer, DIM + 1> i0;
- for (Integer i = 0; i <= DIM; i++) i0[i] = 0;
- Integer sum = 0;
- while (1) {
- if (sum < order) {
- coeff[offset0 + indx0] = tensor[l + indx1 * dof];
- indx0++;
- }
- indx1++;
- sum++;
- i0[0]++;
- for (Integer j = 0; j < DIM && i0[j] == order; j++) {
- i0[j] = 0;
- i0[j + 1]++;
- sum = sum + 1 - order;
- }
- if (i0[DIM]) break;
- }
- }
- }
- template <Integer DIM> static void coeff2tensor(Integer order, const Vector<ValueType>& coeff, Vector<ValueType>& tensor) {
- Integer Ncoeff = 1, Ntensor = pow<Integer>(order, DIM);
- for (Integer i = 0; i < DIM; i++) Ncoeff = (Ncoeff * (order + i)) / (i + 1);
- Long dof = coeff.Dim() / Ncoeff;
- SCTL_ASSERT(coeff.Dim() == Ncoeff * dof);
- if (tensor.Dim() != Ntensor * dof) tensor.ReInit(Ntensor * dof);
- for (Long l = 0; l < dof; l++) { // TODO: optimize this
- Long offset0 = l * Ncoeff;
- Long offset1 = l * Ntensor;
- Integer indx0 = 0;
- Integer indx1 = 0;
- StaticArray<Integer, DIM + 1> i0;
- for (Integer i = 0; i <= DIM; i++) i0[i] = 0;
- Integer sum = 0;
- while (1) {
- if (sum < order) {
- tensor[offset1 + indx1] = coeff[offset0 + indx0];
- indx0++;
- } else {
- tensor[offset1 + indx1] = 0;
- }
- indx1++;
- sum++;
- i0[0]++;
- for (Integer j = 0; j < DIM && i0[j] == order; j++) {
- i0[j] = 0;
- i0[j + 1]++;
- sum = sum + 1 - order;
- }
- if (i0[DIM]) break;
- }
- }
- }
- template <Integer DIM> static void Truncate(Vector<ValueType> &coeff0, Integer order0, Integer order1) {
- SCTL_ASSERT(order1 <= order0);
- Integer Ncoeff0 = 1, Ncoeff1 = 1;
- for (Integer i = 0; i < DIM; i++) Ncoeff0 = (Ncoeff0 * (order0 + i)) / (i + 1);
- for (Integer i = 0; i < DIM; i++) Ncoeff1 = (Ncoeff1 * (order1 + i)) / (i + 1);
- Long dof = coeff0.Dim() / Ncoeff0;
- SCTL_ASSERT(coeff0.Dim() == Ncoeff0 * dof);
- Vector<ValueType> coeff1(dof * Ncoeff1);
- coeff1.SetZero();
- for (Long l = 0; l < dof; l++) { // TODO: optimize this
- Long offset0 = l * Ncoeff0;
- Long offset1 = l * Ncoeff1;
- Integer indx0 = 0;
- Integer indx1 = 0;
- StaticArray<Integer, DIM + 1> i0;
- for (Integer i = 0; i <= DIM; i++) i0[i] = 0;
- Integer sum = 0;
- while (1) {
- if (sum < order1) coeff1[offset1 + indx1] = coeff0[offset0 + indx0];
- if (sum < order0) indx0++;
- if (sum < order1) indx1++;
- sum++;
- i0[0]++;
- for (Integer j = 0; j < DIM && i0[j] == order0; j++) {
- i0[j] = 0;
- i0[j + 1]++;
- sum = sum + 1 - order0;
- }
- if (i0[DIM]) break;
- }
- }
- coeff0 = coeff1;
- }
- template <Integer DIM> static void Reflect(Vector<ValueType> &coeff, Integer order, Integer dir) {
- SCTL_ASSERT(dir < DIM);
- Integer Ncoeff = 1;
- for (Integer i = 0; i < DIM; i++) Ncoeff = (Ncoeff * (order + i)) / (i + 1);
- Long dof = coeff.Dim() / Ncoeff;
- SCTL_ASSERT(coeff.Dim() == Ncoeff * dof);
- for (Long l = 0; l < dof; l++) { // TODO: optimize this
- Long offset = l * Ncoeff;
- Integer indx = 0;
- StaticArray<Integer, DIM + 1> i0;
- for (Integer i = 0; i <= DIM; i++) i0[i] = 0;
- Integer sum = 0;
- while (1) {
- if (sum < order) coeff[offset + indx] = coeff[offset + indx] * (i0[dir] % 2 ? -1 : 1) * (1);
- if (sum < order) indx++;
- sum++;
- i0[0]++;
- for (Integer j = 0; j < DIM && i0[j] == order; j++) {
- i0[j] = 0;
- i0[j + 1]++;
- sum = sum + 1 - order;
- }
- if (i0[DIM]) break;
- }
- }
- }
- template <Integer DIM, Integer CONTINUITY> static void MakeContinuous(Vector<ValueType> &coeff0, Vector<ValueType> &coeff1, Integer order, Integer dir0, Integer dir1) {
- if (dir0>=2*DIM || dir1>=2*DIM) return;
- Integer Ncoeff = 1;
- for (Integer i = 0; i < DIM; i++) Ncoeff = (Ncoeff * (order + i)) / (i + 1);
- Long dof = coeff0.Dim() / Ncoeff;
- SCTL_ASSERT(coeff0.Dim() == Ncoeff * dof);
- SCTL_ASSERT(coeff1.Dim() == Ncoeff * dof);
- static Matrix<Matrix<ValueType>> M(2*DIM, 2*DIM);
- if (M[dir0][dir1].Dim(0) != 2 * Ncoeff) {
- Integer Ngrid = pow<Integer>(order, DIM - 1);
- Vector<ValueType> nodes;
- Nodes<1>(order, nodes);
- Matrix<ValueType> M_diff(2*Ncoeff, Ngrid);
- { // Set M_diff
- M_diff.SetZero();
- StaticArray<Vector<ValueType>, DIM> nodes_;
- for (Integer i = 0; i < DIM; i++) { // Set nodes_
- nodes_[i].ReInit(nodes.Dim(), nodes.begin(), false);
- }
- Vector<ValueType> nodes0, nodes1;
- nodes0.PushBack(0);
- nodes1.PushBack(1);
- Vector<ValueType> value;
- Vector<ValueType> coeff(Ncoeff);
- coeff.SetZero();
- for (Integer i = 0; i < Ncoeff; i++) {
- coeff[i]=0.5;
- value.ReInit(Ngrid, M_diff[i + Ncoeff * 0], false);
- nodes_[dir0/2].ReInit(1, (dir0 & 1 ? nodes1.begin() : nodes0.begin()), false);
- Eval<DIM>(order, coeff, nodes_, value);
- nodes_[dir0/2].ReInit(nodes.Dim(), nodes.begin(), false);
- coeff[i]=-0.5;
- value.ReInit(Ngrid, M_diff[i + Ncoeff * 1], false);
- nodes_[dir1/2].ReInit(1, (dir1 & 1 ? nodes1.begin() : nodes0.begin()), false);
- Eval<DIM>(order, coeff, nodes_, value);
- nodes_[dir1/2].ReInit(nodes.Dim(), nodes.begin(), false);
- coeff[i]=0;
- }
- }
- Matrix<ValueType> M_grad(2 * Ncoeff, 2 * Ncoeff);
- { // Set M_grad
- M_grad.SetZero();
- Vector<ValueType> coeff(Ncoeff * Ncoeff), coeff_grad;
- coeff.SetZero();
- for(Integer i = 0; i < Ncoeff; i++) coeff[i * Ncoeff + i] = 1;
- Grad<DIM>(order, coeff, &coeff_grad);
- for (Integer i = 0; i < Ncoeff; i++){
- for (Integer j = 0; j < Ncoeff; j++){
- M_grad[i + Ncoeff * 0][j + Ncoeff * 0] = coeff_grad[j + (i * DIM + dir0/2) * Ncoeff];
- M_grad[i + Ncoeff * 1][j + Ncoeff * 1] = coeff_grad[j + (i * DIM + dir1/2) * Ncoeff];
- }
- }
- }
- auto fn_perturb = [&](std::function<ValueType(ValueType)> fn, bool even) { // Set M0
- Matrix<ValueType> M0(Ngrid, 2 * Ncoeff);
- M0.SetZero();
- { // dir0
- Integer N0=pow<Integer>(order, dir0/2);
- Integer N1=pow<Integer>(order, 1);
- Integer N2=pow<Integer>(order, DIM - dir0/2 - 1);
- SCTL_ASSERT(N0 * N2 == Ngrid);
- Vector<ValueType> val(Ngrid * order), coeff;
- val.SetZero();
- for (Integer i0=0;i0<N0;i0++){
- for (Integer i2=0;i2<N2;i2++){
- for (Integer i1=0;i1<N1;i1++){
- val[(i2*N1+i1)*N0+i0] = (dir0 & 1 ? fn(nodes[i1]) : fn(1.0 - nodes[i1])) * (even ? 1.0 : -1.0);
- }
- coeff.ReInit(Ncoeff, M0[i2 * N0 + i0] + Ncoeff * 0, false);
- Approx<DIM>(order, val, coeff);
- for (Integer i1=0;i1<N1;i1++){
- val[(i2*N1+i1)*N0+i0] = 0;
- }
- }
- }
- }
- { // dir1
- Integer N0=pow<Integer>(order, dir1/2);
- Integer N1=pow<Integer>(order, 1);
- Integer N2=pow<Integer>(order, DIM - dir1/2 - 1);
- SCTL_ASSERT(N0 * N2 == Ngrid);
- Vector<ValueType> val(Ngrid * order), coeff;
- val.SetZero();
- for (Integer i0=0;i0<N0;i0++){
- for (Integer i2=0;i2<N2;i2++){
- for (Integer i1=0;i1<N1;i1++){
- val[(i2*N1+i1)*N0+i0] = (dir1 & 1 ? fn(nodes[i1]) : fn(1.0 - nodes[i1]));
- }
- coeff.ReInit(Ncoeff, M0[i2 * N0 + i0] + Ncoeff * 1, false);
- Approx<DIM>(order, val, coeff);
- for (Integer i1=0;i1<N1;i1++){
- val[(i2*N1+i1)*N0+i0] = 0;
- }
- }
- }
- }
- return M0;
- };
- if (CONTINUITY == 0) {
- auto fn0 = [](ValueType x) {return x;};
- Matrix<ValueType> M0 = fn_perturb(fn0, 0);
- M[dir0][dir1] = M_diff * M0;
- } else if (CONTINUITY == 1) {
- auto fn0 = [](ValueType x) {return (-2*x + 3) * x * x;};
- auto fn1 = [](ValueType x) {return (1 - x) * x * x;};
- Matrix<ValueType> M0 = fn_perturb(fn0, 0);
- Matrix<ValueType> M1 = fn_perturb(fn1, 1);
- M[dir0][dir1] = M_diff * M0 + M_grad * M_diff * M1;
- } else if (CONTINUITY == 2) {
- auto fn0 = [](ValueType x) {return x*x*x*(6*x*x-15*x+10);};
- auto fn1 = [](ValueType x) {return x*x*x*(-3*x*x+7*x-4);};
- auto fn2 = [](ValueType x) {return x*x*x*(0.5*x*x-1*x+0.5);};
- Matrix<ValueType> M0 = fn_perturb(fn0, 0);
- Matrix<ValueType> M1 = fn_perturb(fn1, 1);
- Matrix<ValueType> M2 = fn_perturb(fn2, 0);
- M[dir0][dir1] = M_diff * M0 + M_grad * M_diff * M1 + M_grad * M_grad * M_diff * M2;
- }
- for (Integer i=0;i<2*Ncoeff;i++){
- M[dir0][dir1][i][i]+=1.0;
- }
- if(0){ //// Alternate approach // DOESN'T WORK
- //Matrix<ValueType> Mgrid2coeff;
- //{ // Set Mgrid2coeff
- // Integer Ngrid = pow<Integer>(order, DIM);
- // Matrix<ValueType> M(Ngrid, Ncoeff);
- // Vector<ValueType> val(Ngrid);
- // val.SetZero();
- // for (Integer i=0;i<Ngrid;i++) {
- // val[i]=1.0;
- // Vector<ValueType> coeff(Ncoeff, M[i], false);
- // Approx<DIM>(order, val, coeff);
- // val[i]=0.0;
- // }
- // Mgrid2coeff.ReInit(2*Ngrid, 2*Ncoeff);
- // Mgrid2coeff.SetZero();
- // for(Integer i=0;i<Ngrid;i++){
- // for(Integer j=0;j<Ncoeff;j++){
- // Mgrid2coeff[i+Ngrid*0][j+Ncoeff*0]=M[i][j];
- // Mgrid2coeff[i+Ngrid*1][j+Ncoeff*1]=M[i][j];
- // }
- // }
- //}
- //Matrix<ValueType> Mcoeff2grid;
- //{ // Set Mgrid2coeff
- // StaticArray<Vector<ValueType>, DIM> nodes_;
- // for (Integer i = 0; i < DIM; i++) { // Set nodes_
- // nodes_[i].ReInit(nodes.Dim(), nodes.begin(), false);
- // }
- // Integer Ngrid = pow<Integer>(order, DIM);
- // Matrix<ValueType> M(Ncoeff, Ngrid);
- // Vector<ValueType> coeff(Ncoeff);
- // coeff.SetZero();
- // for (Integer i=0;i<Ncoeff;i++) {
- // coeff[i]=1.0;
- // Vector<ValueType> val(Ngrid, M[i], false);
- // Eval<DIM>(order, coeff, nodes_, val);
- // coeff[i]=0.0;
- // }
- // Mcoeff2grid.ReInit(2*Ncoeff, 2*Ngrid);
- // Mcoeff2grid.SetZero();
- // for(Integer i=0;i<Ncoeff;i++){
- // for(Integer j=0;j<Ngrid;j++){
- // Mcoeff2grid[i+Ncoeff*0][j+Ngrid*0]=M[i][j];
- // Mcoeff2grid[i+Ncoeff*1][j+Ngrid*1]=M[i][j];
- // }
- // }
- //}
- //if(0){
- // Integer Ngrid0 = Ngrid*order;
- // Matrix<ValueType> MM(2*Ngrid0 + 2*Ngrid, 2*Ngrid0);
- // MM.SetZero();
- // for (Integer i=0;i<2*Ngrid0;i++) MM[i][i]=1;
- // Matrix<ValueType> M0_(Ngrid, 2 * Ngrid0, MM[2 * Ngrid0 + Ngrid * 0], false); M0_ = (Mgrid2coeff * M_diff).Transpose();
- // Matrix<ValueType> M1_(Ngrid, 2 * Ngrid0, MM[2 * Ngrid0 + Ngrid * 1], false); M1_ = (Mgrid2coeff * M_grad * M_diff).Transpose();
- // for (Long i=0;i<2*Ngrid*2*Ngrid0;i++) MM[0][2*Ngrid0*2*Ngrid0 +i] *= 10000;
- // MM = MM.Transpose().pinv();
- // M[dir].ReInit(2 * Ngrid0, 2 * Ngrid0, MM.begin());
- // M[dir] = Mcoeff2grid * M[dir] * Mgrid2coeff;
- //} else {
- // SCTL_ASSERT(DIM==2);
- // Vector<ValueType> coeff_weight;
- // for (Integer i=0;i<order;i++) {
- // for (Integer j=0;j<order;j++) {
- // if(i+j<order) coeff_weight.PushBack(pow<ValueType>(1.5, i+j)*1e-4);
- // }
- // }
- // SCTL_ASSERT(coeff_weight.Dim()==Ncoeff);
- // auto M0_ = M_diff.Transpose();
- // auto M1_ = (M_grad * M_diff).Transpose();
- // Matrix<ValueType> MM(2*Ncoeff + 6*Ngrid, 2*Ncoeff);
- // MM.SetZero();
- // for (Integer i=0;i<Ncoeff;i++) {
- // MM[i+Ncoeff*0][i+Ncoeff*0]=coeff_weight[i];
- // MM[i+Ncoeff*1][i+Ncoeff*1]=coeff_weight[i];
- // }
- // for (Integer i=0;i<Ngrid;i++) {
- // for (Integer j=0;j<Ncoeff;j++) {
- // MM[2 * Ncoeff + 0 * Ngrid +i][0 * Ncoeff + j] = M0_[0 * Ngrid + i][0 * Ncoeff + j];
- // MM[2 * Ncoeff + 0 * Ngrid +i][1 * Ncoeff + j] = M0_[0 * Ngrid + i][1 * Ncoeff + j];
- // MM[2 * Ncoeff + 1 * Ngrid +i][0 * Ncoeff + j] = M1_[0 * Ngrid + i][0 * Ncoeff + j];
- // MM[2 * Ncoeff + 1 * Ngrid +i][1 * Ncoeff + j] = M1_[0 * Ngrid + i][1 * Ncoeff + j];
- // MM[2 * Ncoeff + 2 * Ngrid +i][0 * Ncoeff + j] = M0_[0 * Ngrid + i][1 * Ncoeff + j];
- // MM[2 * Ncoeff + 3 * Ngrid +i][1 * Ncoeff + j] = M0_[0 * Ngrid + i][0 * Ncoeff + j];
- // MM[2 * Ncoeff + 4 * Ngrid +i][0 * Ncoeff + j] = M1_[0 * Ngrid + i][1 * Ncoeff + j];
- // MM[2 * Ncoeff + 5 * Ngrid +i][1 * Ncoeff + j] = M1_[0 * Ngrid + i][0 * Ncoeff + j];
- // }
- // }
- // Matrix<ValueType> MMM(2*Ncoeff + 6*Ngrid, 2*Ncoeff);
- // MMM.SetZero();
- // for (Integer i=0;i<Ncoeff;i++) {
- // MMM[i+Ncoeff*0][i+Ncoeff*0]=coeff_weight[i];
- // MMM[i+Ncoeff*1][i+Ncoeff*1]=coeff_weight[i];
- // }
- // for (Integer i=0;i<Ngrid;i++) {
- // for (Integer j=0;j<Ncoeff;j++) {
- // // MMM[2 * Ncoeff + 0 * Ngrid +i][0 * Ncoeff + j] = M0_[0 * Ngrid + i][0 * Ncoeff + j];
- // // MMM[2 * Ncoeff + 0 * Ngrid +i][1 * Ncoeff + j] = M0_[0 * Ngrid + i][1 * Ncoeff + j];
- // // MMM[2 * Ncoeff + 1 * Ngrid +i][0 * Ncoeff + j] = M1_[0 * Ngrid + i][0 * Ncoeff + j];
- // // MMM[2 * Ncoeff + 1 * Ngrid +i][1 * Ncoeff + j] = M1_[0 * Ngrid + i][1 * Ncoeff + j];
- // MMM[2 * Ncoeff + 2 * Ngrid +i][0 * Ncoeff + j] = M0_[0 * Ngrid + i][1 * Ncoeff + j];
- // MMM[2 * Ncoeff + 3 * Ngrid +i][1 * Ncoeff + j] = M0_[0 * Ngrid + i][0 * Ncoeff + j];
- // MMM[2 * Ncoeff + 4 * Ngrid +i][0 * Ncoeff + j] = M1_[0 * Ngrid + i][1 * Ncoeff + j];
- // MMM[2 * Ncoeff + 5 * Ngrid +i][1 * Ncoeff + j] = M1_[0 * Ngrid + i][0 * Ncoeff + j];
- // }
- // }
- // M[dir] = (MM.pinv(1e-10) * MMM).Transpose();
- //}
- //M[dir]=M[dir]*M[dir];
- ////M[dir]=M[dir]*M[dir];
- ////M[dir]=M[dir]*M[dir];
- ////M[dir]=M[dir]*M[dir];
- ////M[dir]=M[dir]*M[dir];
- ////M[dir]=M[dir]*M[dir];
- ////M[dir]=M[dir]*M[dir];
- ////M[dir]=M[dir]*M[dir];
- ////M[dir]=M[dir]*M[dir];
- ////M[dir]=M[dir]*M[dir];
- ////M[dir]=M[dir]*M[dir];
- ////M[dir]=M[dir]*M[dir];
- ////M[dir]=M[dir]*M[dir];
- ////M[dir]=M[dir]*M[dir];
- ////M[dir]=M[dir]*M[dir];
- ////M[dir]=M[dir]*M[dir];
- }
- }
- Matrix<ValueType> x(dof, 2 * Ncoeff), y(dof, 2 * Ncoeff);
- for (Long i = 0; i < dof; i++) {
- for (Integer j = 0; j < Ncoeff; j++) {
- x[i][Ncoeff * 0 + j] = coeff0[i * Ncoeff + j];
- x[i][Ncoeff * 1 + j] = coeff1[i * Ncoeff + j];
- }
- }
- Matrix<ValueType>::GEMM(y, x, M[dir0][dir1]);
- for (Long i = 0; i < dof; i++) {
- for (Integer j = 0; j < Ncoeff; j++) {
- coeff0[i * Ncoeff + j] = y[i][Ncoeff * 0 + j];
- coeff1[i * Ncoeff + j] = y[i][Ncoeff * 1 + j];
- }
- }
- }
- template <Integer DIM, Integer CONTINUITY> static void MakeContinuousEdge(Vector<ValueType> &coeff0, Vector<ValueType> &coeff1, Integer order, Integer dir0, Integer dir1, Integer norm0, Integer norm1) {
- SCTL_ASSERT(DIM==2);
- if (dir0>=2*DIM || dir1>=2*DIM) return;
- Integer Ncoeff = 1;
- for (Integer i = 0; i < DIM; i++) Ncoeff = (Ncoeff * (order + i)) / (i + 1);
- Long dof = coeff0.Dim() / Ncoeff;
- SCTL_ASSERT(coeff0.Dim() == Ncoeff * dof);
- SCTL_ASSERT(coeff1.Dim() == Ncoeff * dof);
- static Matrix<Matrix<ValueType>> M(2*DIM, 2*DIM);
- static Matrix<Matrix<ValueType>> MM(2*DIM, 2*DIM);
- if (M[dir0][dir1].Dim(0) != 2 * Ncoeff) {
- Integer Ngrid = pow<Integer>(order, DIM - 1);
- Vector<ValueType> nodes;
- Nodes<1>(order, nodes);
- Matrix<ValueType> Mtrunc(2*Ncoeff, 2*Ncoeff);
- { // Set Mtrunc
- Vector<ValueType> w;
- w.SetZero();
- for (Integer i=0;i<order;i++){
- for (Integer j=0;j<order;j++){
- if (i+j<order) {
- w.PushBack(i<order-CONTINUITY*2-1 && j<order-CONTINUITY*2-1);
- }
- }
- }
- Mtrunc.SetZero();
- for (Integer i=0;i<Ncoeff;i++){
- Mtrunc[i + Ncoeff * 0][i + Ncoeff * 0] = w[i];
- Mtrunc[i + Ncoeff * 1][i + Ncoeff * 1] = w[i];
- }
- }
- Matrix<ValueType> M_diff(2*Ncoeff, Ngrid);
- { // Set M_diff
- M_diff.SetZero();
- StaticArray<Vector<ValueType>, DIM> nodes_;
- for (Integer i = 0; i < DIM; i++) { // Set nodes_
- nodes_[i].ReInit(nodes.Dim(), nodes.begin(), false);
- }
- Vector<ValueType> nodes0, nodes1;
- nodes0.PushBack(0);
- nodes1.PushBack(1);
- Vector<ValueType> value;
- Vector<ValueType> coeff(Ncoeff);
- coeff.SetZero();
- for (Integer i = 0; i < Ncoeff; i++) {
- coeff[i]=0.5;
- value.ReInit(Ngrid, M_diff[i + Ncoeff * 0], false);
- nodes_[dir0/2].ReInit(1, (dir0 & 1 ? nodes1.begin() : nodes0.begin()), false);
- Eval<DIM>(order, coeff, nodes_, value);
- nodes_[dir0/2].ReInit(nodes.Dim(), nodes.begin(), false);
- coeff[i]=-0.5;
- value.ReInit(Ngrid, M_diff[i + Ncoeff * 1], false);
- nodes_[dir1/2].ReInit(1, (dir1 & 1 ? nodes1.begin() : nodes0.begin()), false);
- Eval<DIM>(order, coeff, nodes_, value);
- nodes_[dir1/2].ReInit(nodes.Dim(), nodes.begin(), false);
- coeff[i]=0;
- }
- }
- Matrix<ValueType> M_grad(2 * Ncoeff, 2 * Ncoeff);
- { // Set M_grad
- M_grad.SetZero();
- Vector<ValueType> coeff(Ncoeff * Ncoeff), coeff_grad;
- coeff.SetZero();
- for(Integer i = 0; i < Ncoeff; i++) coeff[i * Ncoeff + i] = 1;
- Grad<DIM>(order, coeff, &coeff_grad);
- for (Integer i = 0; i < Ncoeff; i++){
- for (Integer j = 0; j < Ncoeff; j++){
- M_grad[i + Ncoeff * 0][j + Ncoeff * 0] = coeff_grad[j + (i * DIM + dir0/2) * Ncoeff];
- M_grad[i + Ncoeff * 1][j + Ncoeff * 1] = coeff_grad[j + (i * DIM + dir1/2) * Ncoeff];
- }
- }
- }
- auto fn_perturb = [&](std::function<ValueType(ValueType)> fn, bool even) { // Set M0
- Matrix<ValueType> M0(Ngrid, 2 * Ncoeff);
- M0.SetZero();
- { // dir0
- Integer N0=pow<Integer>(order, dir0/2);
- Integer N1=pow<Integer>(order, 1);
- Integer N2=pow<Integer>(order, DIM - dir0/2 - 1);
- SCTL_ASSERT(N0 * N2 == Ngrid);
- Vector<ValueType> val(Ngrid * order), coeff;
- val.SetZero();
- for (Integer i0=0;i0<N0;i0++){
- for (Integer i2=0;i2<N2;i2++){
- for (Integer i1=0;i1<N1;i1++){
- val[(i2*N1+i1)*N0+i0] = (dir0 & 1 ? fn(nodes[i1]) : fn(1.0 - nodes[i1])) * (even ? 1.0 : -1.0);
- }
- coeff.ReInit(Ncoeff, M0[i2 * N0 + i0] + Ncoeff * 0, false);
- Approx<DIM>(order, val, coeff);
- for (Integer i1=0;i1<N1;i1++){
- val[(i2*N1+i1)*N0+i0] = 0;
- }
- }
- }
- }
- { // dir1
- Integer N0=pow<Integer>(order, dir1/2);
- Integer N1=pow<Integer>(order, 1);
- Integer N2=pow<Integer>(order, DIM - dir1/2 - 1);
- SCTL_ASSERT(N0 * N2 == Ngrid);
- Vector<ValueType> val(Ngrid * order), coeff;
- val.SetZero();
- for (Integer i0=0;i0<N0;i0++){
- for (Integer i2=0;i2<N2;i2++){
- for (Integer i1=0;i1<N1;i1++){
- val[(i2*N1+i1)*N0+i0] = (dir1 & 1 ? fn(nodes[i1]) : fn(1.0 - nodes[i1]));
- }
- coeff.ReInit(Ncoeff, M0[i2 * N0 + i0] + Ncoeff * 1, false);
- Approx<DIM>(order, val, coeff);
- for (Integer i1=0;i1<N1;i1++){
- val[(i2*N1+i1)*N0+i0] = 0;
- }
- }
- }
- }
- return M0;
- };
- Matrix<ValueType> Mfilter[2];
- { // Set Mfilter
- Mfilter[0].ReInit(2*Ncoeff, 2*Ncoeff);
- Mfilter[1].ReInit(2*Ncoeff, 2*Ncoeff);
- Mfilter[0].SetZero();
- Mfilter[1].SetZero();
- for (Integer i=0;i<Ncoeff;i++) {
- Mfilter[0][i + Ncoeff * 0][i + Ncoeff * 0] = 1;
- Mfilter[1][i + Ncoeff * 1][i + Ncoeff * 1] = 1;
- }
- }
- if (CONTINUITY == 0) {
- auto fn0 = [](ValueType x) {return x;};
- Matrix<ValueType> M0 = fn_perturb(fn0, 0);
- M[dir0][dir1] = M_diff * M0;
- } else if (CONTINUITY == 1) {
- auto fn0 = [](ValueType x) {return (-2*x + 3) * x * x;};
- auto fn1 = [](ValueType x) {return (1 - x) * x * x;};
- Matrix<ValueType> M0 = fn_perturb(fn0, 0);
- Matrix<ValueType> M1 = fn_perturb(fn1, 1);
- M[dir0][dir1] = M_diff * M0;
- if (dir0 & 1) M[dir0][dir1] += (M_grad+M_grad) * (Mfilter[0] * M_diff * M1 * Mfilter[0]);
- else M[dir0][dir1] -= (M_grad+M_grad) * (Mfilter[0] * M_diff * M1 * Mfilter[0]);
- if (dir1 & 1) M[dir0][dir1] -= (M_grad+M_grad) * (Mfilter[1] * M_diff * M1 * Mfilter[1]);
- else M[dir0][dir1] += (M_grad+M_grad) * (Mfilter[1] * M_diff * M1 * Mfilter[1]);
- }
- if (CONTINUITY == 1) {
- auto fn1 = [](ValueType x) {return (1 - x) * x * x;};
- Matrix<ValueType> M1 = fn_perturb(fn1, 1);
- MM[dir0][dir1] = M_grad * M_diff * M1;
- for (Integer i=0;i<Ncoeff;i++){
- for (Integer j=0;j<2*Ncoeff;j++){
- MM[dir0][dir1][i + Ncoeff*1][j]*=-1;
- }
- }
- for (Integer i=0;i<2*Ncoeff;i++){
- for (Integer j=0;j<Ncoeff;j++){
- MM[dir0][dir1][i][j + Ncoeff*0]*=(dir0 & 1 ? 1.0 : -1.0);
- MM[dir0][dir1][i][j + Ncoeff*1]*=(dir1 & 1 ? 1.0 : -1.0);
- }
- }
- }
- for (Integer i=0;i<2*Ncoeff;i++){
- M[dir0][dir1][i][i]+=1.0;
- MM[dir0][dir1][i][i]+=1.0;
- }
- M[dir0][dir1] = Mtrunc * M[dir0][dir1] * Mtrunc;
- MM[dir0][dir1] = Mtrunc * MM[dir0][dir1] * Mtrunc;
- for (Integer i=0;i<10;i++) {
- M[dir0][dir1]=M[dir0][dir1]*M[dir0][dir1];
- }
- }
- Matrix<ValueType> x(dof, 2 * Ncoeff), y(dof, 2 * Ncoeff);
- for (Long i = 0; i < dof; i++) {
- for (Integer j = 0; j < Ncoeff; j++) {
- x[i][Ncoeff * 0 + j] = coeff0[i * Ncoeff + j];
- x[i][Ncoeff * 1 + j] = coeff1[i * Ncoeff + j];
- }
- }
- Matrix<ValueType>::GEMM(y, x, M[dir0][dir1]);
- { ////
- Matrix<ValueType> xx(1, 2*Ncoeff), yy(1, 2*Ncoeff);
- for (Integer j = 0; j < Ncoeff; j++) {
- xx[0][Ncoeff * 0 + j] = coeff0[norm0 * Ncoeff + j];
- xx[0][Ncoeff * 1 + j] = coeff1[norm1 * Ncoeff + j];
- }
- Matrix<ValueType>::GEMM(yy, xx, MM[dir0][dir1]);
- for (Integer j = 0; j < Ncoeff; j++) {
- y[norm0][Ncoeff * 0 + j] = yy[0][Ncoeff * 0 + j];
- y[norm1][Ncoeff * 1 + j] = yy[0][Ncoeff * 1 + j];
- }
- }
- for (Long i = 0; i < dof; i++) {
- for (Integer j = 0; j < Ncoeff; j++) {
- coeff0[i * Ncoeff + j] = y[i][Ncoeff * 0 + j];
- coeff1[i * Ncoeff + j] = y[i][Ncoeff * 1 + j];
- }
- }
- }
- static void quad_rule(Integer order, Vector<ValueType>& x, Vector<ValueType>& w) {
- static Vector<Vector<ValueType>> x_lst(10000);
- static Vector<Vector<ValueType>> w_lst(x_lst.Dim());
- SCTL_ASSERT(order < x_lst.Dim());
- if (x.Dim() != order) x.ReInit(order);
- if (w.Dim() != order) w.ReInit(order);
- if (!order) return;
- bool done = false;
- #pragma omp critical(QUAD_RULE)
- if (x_lst[order].Dim()) {
- Vector<ValueType>& x_ = x_lst[order];
- Vector<ValueType>& w_ = w_lst[order];
- for (Integer i = 0; i < order; i++) {
- x[i] = x_[i];
- w[i] = w_[i];
- }
- done = true;
- }
- if (done) return;
- Vector<ValueType> x_(order);
- Vector<ValueType> w_(order);
- if (std::is_same<ValueType, double>::value || std::is_same<ValueType, float>::value) { // Gauss-Legendre quadrature nodes and weights
- Vector<double> xd(order);
- Vector<double> wd(order);
- int kind = 1;
- double alpha = 0.0, beta = 0.0, a = -1.0, b = 1.0;
- cgqf(order, kind, (double)alpha, (double)beta, (double)a, (double)b, &xd[0], &wd[0]);
- for (Integer i = 0; i < order; i++) {
- x_[i] = (ValueType)(0.5 * xd[i] + 0.5);
- w_[i] = (ValueType)(0.5 * wd[i]);
- }
- } else { // Chebyshev quadrature nodes and weights
- cheb_nodes_1d(order, x_);
- for (Integer i = 0; i < order; i++) w_[i] = 0;
- Vector<ValueType> V_cheb(order * order);
- cheb_basis_1d(order, x_, V_cheb);
- for (Integer i = 0; i < order; i++) V_cheb[i] /= 2.0;
- Matrix<ValueType> M(order, order, V_cheb.begin());
- Vector<ValueType> w_sample(order);
- w_sample.SetZero();
- for (Integer i = 0; i < order; i += 2) w_sample[i] = -((ValueType)2.0 / (i + 1) / (i - 1));
- for (Integer i = 0; i < order; i++) {
- for (Integer j = 0; j < order; j++) {
- w_[j] += M[i][j] * w_sample[i] / order;
- }
- }
- }
- #pragma omp critical(QUAD_RULE)
- if (!x_lst[order].Dim()) { // Set x_lst, w_lst
- x_lst[order].Swap(x_);
- w_lst[order].Swap(w_);
- }
- quad_rule(order, x, w);
- }
- private:
- BasisInterface() {
- void (*EvalBasis1D)(Integer, const Vector<ValueType>&, Vector<ValueType>&) = Derived::EvalBasis1D;
- void (*Nodes1D)(Integer, Vector<ValueType>&) = Derived::Nodes1D;
- }
- static void cheb_nodes_1d(Integer order, Vector<ValueType>& nodes) {
- if (nodes.Dim() != order) nodes.ReInit(order);
- for (Integer i = 0; i < order; i++) {
- nodes[i] = -cos<ValueType>((i + (ValueType)0.5) * const_pi<ValueType>() / order) * (ValueType)0.5 + (ValueType)0.5;
- }
- }
- static void cheb_basis_1d(Integer order, const Vector<ValueType>& x, Vector<ValueType>& y) {
- Integer n = x.Dim();
- if (y.Dim() != order * n) y.ReInit(order * n);
- if (order > 0) {
- for (Long i = 0; i < n; i++) {
- y[i] = 1.0;
- }
- }
- if (order > 1) {
- for (Long i = 0; i < n; i++) {
- y[i + n] = x[i] * 2 - 1;
- }
- }
- for (Integer i = 2; i < order; i++) {
- for (Long j = 0; j < n; j++) {
- y[i * n + j] = 2 * y[n + j] * y[i * n - 1 * n + j] - y[i * n - 2 * n + j];
- }
- }
- }
- static ValueType machine_eps() {
- ValueType eps = 1.0;
- while (eps + (ValueType)1.0 > 1.0) eps *= 0.5;
- return eps;
- }
- template <Integer DIM, Integer SUBDIM, class Kernel> static void Integ_(Matrix<ValueType>& Mcoeff, Integer order, ConstIterator<ValueType> trg_, ValueType side, Integer src_face, const Kernel& ker, Integer Nq = 0) {
- static const ValueType eps = machine_eps() * 64;
- ValueType side_inv = 1.0 / side;
- if (!Nq) Nq = order;
- Vector<ValueType> qp, qw;
- quad_rule(Nq, qp, qw);
- Integer Ncoeff;
- { // Set Ncoeff
- Ncoeff = 1;
- for (Integer i = 0; i < SUBDIM; i++) Ncoeff = (Ncoeff * (order + i)) / (i + 1);
- }
- StaticArray<Integer, 2> kdim;
- kdim[0] = ker.Dim(0);
- kdim[1] = ker.Dim(1);
- StaticArray<Integer, DIM> perm0;
- StaticArray<ValueType, DIM> trg; // target after rotation
- { // Set perm0
- SCTL_ASSERT(0 <= src_face && src_face < 2 * DIM);
- if (SUBDIM == DIM - 1) {
- for (Integer i = 0; i < DIM; i++) {
- perm0[i] = (i + (src_face >> 1) + 1) % DIM;
- }
- } else {
- for (Integer i = 0; i < DIM; i++) {
- perm0[i] = i;
- }
- }
- for (Integer i = 0; i < DIM; i++) trg[i] = trg_[perm0[i]];
- if (SUBDIM == DIM - 1) trg[DIM - 1] -= side * (src_face & 1);
- }
- Vector<ValueType> r;
- { // Set r
- Vector<ValueType> r_;
- r_.PushBack(0);
- for (Integer i = 0; i < SUBDIM; i++) {
- r_.PushBack(fabs(trg[i] - 0.0));
- r_.PushBack(fabs(trg[i] - side));
- }
- std::sort(r_.begin(), r_.begin() + r_.Dim());
- ValueType r0, r1 = r_[r_.Dim() - 1];
- r0 = (r1 > side ? r1 - side : 0.0);
- for (Integer i = SUBDIM; i < DIM; i++) r0 = std::max(r0, fabs(trg[i]));
- if (r0 > eps) r.PushBack(-r0);
- r.PushBack(r0);
- for (Integer i = 0; i < r_.Dim(); i++) {
- if (r_[i] > r0) {
- while (r[r.Dim() - 1] > 0.0 && 3.0 * r[r.Dim() - 1] < r_[i]) r.PushBack(3.0 * r[r.Dim() - 1]);
- r.PushBack(r_[i]);
- }
- }
- }
- // Work vectors
- StaticArray<Vector<ValueType>, SUBDIM> eval_mesh;
- StaticArray<Vector<ValueType>, SUBDIM> eval_poly;
- Vector<ValueType> eval_coord_tmp;
- Vector<ValueType> eval_coord;
- Vector<ValueType> kern_value;
- // Temporary vectors
- Vector<ValueType> r_src, n_src, v_src;
- { // Init r_src, n_src, v_src
- r_src.ReInit(DIM);
- for (Integer k = 0; k < DIM; k++) r_src[k] = 0.0;
- if (SUBDIM == DIM - 1) {
- n_src.ReInit(DIM);
- for (Integer k = 0; k < DIM; k++) n_src[k] = 0.0;
- n_src[src_face >> 1] = (src_face & 1 ? -1.0 : 1.0);
- }
- v_src.ReInit(kdim[0]);
- }
- Vector<ValueType> v0;
- Vector<ValueType> v1;
- Matrix<ValueType> Mtensor(kdim[1] * kdim[0], pow<Integer>(order, SUBDIM));
- Mtensor.SetZero();
- for (Integer i0 = 0; i0 < r.Dim() - 1; i0++) { // for each layer
- for (Integer i1 = 0; i1 < 2 * SUBDIM; i1++) { // for each direction
- StaticArray<ValueType, 2 * SUBDIM> range0;
- StaticArray<ValueType, 2 * SUBDIM> range1;
- { // Set range0, range1
- for (Integer k = 0; k < SUBDIM; k++) {
- if (i1 >> 1 == k) {
- ValueType s = (i1 & 1 ? 1.0 : -1.0);
- range0[k * 2 + 0] = trg[k] + s * r[i0 + 0];
- range0[k * 2 + 1] = trg[k] + s * r[i0 + 0];
- range1[k * 2 + 0] = trg[k] + s * r[i0 + 1];
- range1[k * 2 + 1] = trg[k] + s * r[i0 + 1];
- } else {
- range0[k * 2 + 0] = trg[k] - fabs(r[i0 + 0]);
- range0[k * 2 + 1] = trg[k] + fabs(r[i0 + 0]);
- range1[k * 2 + 0] = trg[k] - fabs(r[i0 + 1]);
- range1[k * 2 + 1] = trg[k] + fabs(r[i0 + 1]);
- }
- }
- for (Integer k = 0; k < 2 * SUBDIM; k++) {
- if (range0[k] > side) range0[k] = side;
- if (range0[k] < 0.0) range0[k] = 0.0;
- if (range1[k] > side) range1[k] = side;
- if (range1[k] < 0.0) range1[k] = 0.0;
- }
- bool continue_flag = false;
- for (Integer k = 0; k < SUBDIM; k++) { // continue if volume if 0
- if (i1 >> 1 == k) {
- if (fabs(range0[2 * k + 0] - range1[2 * k + 0]) < eps && fabs(range0[2 * k + 1] - range1[2 * k + 1]) < eps) {
- continue_flag = true;
- break;
- }
- } else {
- if (fabs(range0[2 * k + 0] - range0[2 * k + 1]) < eps && fabs(range1[2 * k + 0] - range1[2 * k + 1]) < eps) {
- continue_flag = true;
- break;
- }
- }
- }
- if (continue_flag) continue;
- }
- for (Integer i2 = 0; i2 < Nq; i2++) { // for each quadrature point
- StaticArray<ValueType, 2 * SUBDIM> range;
- for (Integer k = 0; k < 2 * SUBDIM; k++) { // Set range
- range[k] = range0[k] + (range1[k] - range0[k]) * qp[i2];
- }
- for (Integer k = 0; k < SUBDIM; k++) { // Set eval_mesh
- if (k == (i1 >> 1)) {
- eval_mesh[k].ReInit(1);
- eval_mesh[k][0] = range[2 * k];
- } else {
- eval_mesh[k].ReInit(Nq);
- for (Integer l = 0; l < Nq; l++) eval_mesh[k][l] = range[2 * k + 0] + (range[2 * k + 1] - range[2 * k + 0]) * qp[l];
- }
- }
- { // Set eval_coord
- Integer N = 1;
- eval_coord.ReInit(0);
- for (Integer k = 0; k < SUBDIM; k++) {
- Integer Nk = eval_mesh[k].Dim();
- eval_coord_tmp.Swap(eval_coord);
- eval_coord.ReInit(Nk * N * DIM);
- for (Integer l0 = 0; l0 < Nk; l0++) {
- for (Integer l1 = 0; l1 < N; l1++) {
- for (Integer l2 = 0; l2 < k; l2++) {
- eval_coord[DIM * (N * l0 + l1) + l2] = eval_coord_tmp[DIM * l1 + l2];
- }
- eval_coord[DIM * (N * l0 + l1) + k] = trg[k] - eval_mesh[k][l0];
- }
- }
- N *= Nk;
- }
- StaticArray<ValueType, DIM> c;
- for (Integer k = 0; k < N; k++) { // Rotate
- for (Integer l = 0; l < SUBDIM; l++) c[l] = eval_coord[k * DIM + l];
- for (Integer l = SUBDIM; l < DIM; l++) c[l] = trg[l];
- for (Integer l = 0; l < DIM; l++) eval_coord[k * DIM + perm0[l]] = c[l];
- }
- }
- for (Integer k = 0; k < SUBDIM; k++) { // Set eval_poly
- Integer N = eval_mesh[k].Dim();
- for (Integer l = 0; l < eval_mesh[k].Dim(); l++) { // Scale eval_mesh to [0, 1]
- eval_mesh[k][l] *= side_inv;
- }
- Derived::EvalBasis1D(order, eval_mesh[k], eval_poly[k]);
- if (k == (i1 >> 1)) {
- assert(N == 1);
- ValueType qscal = fabs(range1[i1] - range0[i1]);
- for (Integer l0 = 0; l0 < order; l0++) {
- eval_poly[k][l0] *= qscal * qw[i2];
- }
- } else {
- assert(N == Nq);
- ValueType qscal = (range[2 * k + 1] - range[2 * k + 0]);
- for (Integer l0 = 0; l0 < order; l0++) {
- for (Integer l1 = 0; l1 < N; l1++) {
- eval_poly[k][N * l0 + l1] *= qscal * qw[l1];
- }
- }
- }
- }
- { // Set kern_value
- Integer N = eval_coord.Dim() / DIM;
- kern_value.ReInit(kdim[0] * N * kdim[1]);
- kern_value.SetZero();
- for (Integer j = 0; j < kdim[0]; j++) { // Evaluate ker
- for (Integer k = 0; k < kdim[0]; k++) v_src[k] = 0.0;
- v_src[j] = 1.0;
- Vector<ValueType> ker_value(N * kdim[1], kern_value.begin() + j * N * kdim[1], false);
- ker(r_src, n_src, v_src, eval_coord, ker_value);
- }
- { // Transpose
- v0.ReInit(kern_value.Dim());
- for (Integer k = 0; k < v0.Dim(); k++) v0[k] = kern_value[k];
- Matrix<ValueType> M0(kdim[0], N * kdim[1], v0.begin(), false);
- Matrix<ValueType> M1(N * kdim[1], kdim[0], kern_value.begin(), false);
- for (Integer l0 = 0; l0 < M1.Dim(0); l0++) { // Transpose
- for (Integer l1 = 0; l1 < M1.Dim(1); l1++) {
- M1[l0][l1] = M0[l1][l0];
- }
- }
- }
- }
- { // Set Update M
- Matrix<ValueType> Mkern(eval_mesh[SUBDIM - 1].Dim(), kern_value.Dim() / eval_mesh[SUBDIM - 1].Dim(), kern_value.begin(), false);
- for (Integer k = SUBDIM - 1; k >= 0; k--) { // Compute v0
- Matrix<ValueType> Mpoly(order, eval_mesh[k].Dim(), eval_poly[k].begin(), false);
- v1.ReInit(Mpoly.Dim(0) * Mkern.Dim(1));
- Matrix<ValueType> Mcoef(Mpoly.Dim(0), Mkern.Dim(1), v1.begin(), false);
- Matrix<ValueType>::GEMM(Mcoef, Mpoly, Mkern);
- v0.ReInit(v1.Dim());
- Matrix<ValueType> Mt(Mkern.Dim(1), Mpoly.Dim(0), v0.begin(), false);
- for (Integer l0 = 0; l0 < Mt.Dim(0); l0++) { // Transpose
- for (Integer l1 = 0; l1 < Mt.Dim(1); l1++) {
- Mt[l0][l1] = Mcoef[l1][l0];
- }
- }
- if (k > 0) { // Reinit Mkern
- Mkern.ReInit(eval_mesh[k - 1].Dim(), v0.Dim() / eval_mesh[k - 1].Dim(), v0.begin(), false);
- }
- }
- assert(v0.Dim() == Mtensor.Dim(0) * Mtensor.Dim(1));
- for (Integer k = 0; k < v0.Dim(); k++) { // Update M
- Mtensor[0][k] += v0[k];
- }
- }
- }
- if (r[i0] < 0.0) break;
- }
- }
- Mtensor = Mtensor.Transpose();
- { // Set Mcoeff
- if (Mcoeff.Dim(0) != kdim[1] || Mcoeff.Dim(1) != kdim[0] * Ncoeff) {
- Mcoeff.ReInit(kdim[1], kdim[0] * Ncoeff);
- }
- Vector<ValueType> Mtensor_(Mtensor.Dim(0) * Mtensor.Dim(1), Mtensor.begin(), false);
- Vector<ValueType> Mcoeff_(Mcoeff.Dim(0) * Mcoeff.Dim(1), Mcoeff.begin(), false);
- tensor2coeff<SUBDIM>(order, Mtensor_, Mcoeff_);
- }
- }
- static void diff_1d(Integer order, Matrix<ValueType>* M) {
- Vector<ValueType> nodes;
- Nodes<1>(order, nodes);
- Integer N = nodes.Dim();
- Matrix<ValueType> M0(N, N);
- for (Integer i = 0; i < N; i++) {
- for (Integer j = 0; j < N; j++) {
- M0[i][j] = 0;
- for (Integer l = 0; l < N; l++) {
- if (l != i) {
- ValueType Mij = 1;
- for (Integer k = 0; k < N; k++) {
- if (k != i) {
- if (l == k) {
- Mij *= 1 / (nodes[i] - nodes[k]);
- } else {
- Mij *= (nodes[j] - nodes[k]) / (nodes[i] - nodes[k]);
- }
- }
- }
- M0[i][j] += Mij;
- }
- }
- }
- }
- Vector<ValueType> p;
- Derived::EvalBasis1D(order, nodes, p);
- Matrix<ValueType> Mp(order, N, p.begin(), false);
- M0 = Mp * M0;
- Vector<ValueType> coeff;
- Approx<1>(order, Vector<ValueType>(M0.Dim(0) * M0.Dim(1), M0.begin(), false), coeff);
- (*M) = Matrix<ValueType>(M0.Dim(0), coeff.Dim() / M0.Dim(0), coeff.begin(), false);
- }
- template <Integer DIM> static void Approx_deprecated(Integer order, const Vector<ValueType>& fn_v, Vector<ValueType>& coeff, ValueType scale) {
- Matrix<ValueType> Mp;
- { // Precompute
- static Vector<Matrix<ValueType>> precomp(1000);
- SCTL_ASSERT(order < precomp.Dim());
- if (precomp[order].Dim(0) * precomp[order].Dim(1) == 0) {
- #pragma omp critical(BASIS_APPROX)
- if (precomp[order].Dim(0) * precomp[order].Dim(1) == 0) {
- Vector<ValueType> x, p;
- Derived::Nodes1D(order, x);
- for (Integer i = 0; i < order; i++) x[i] = (x[i] - 0.5) * scale + 0.5;
- Derived::EvalBasis1D(order, x, p);
- Matrix<ValueType> Mp1(order, order, p.begin(), false);
- Mp1.pinv().Swap(precomp[order]);
- }
- }
- Mp.ReInit(precomp[order].Dim(0), precomp[order].Dim(1), precomp[order].begin(), false);
- }
- Integer order_DIM = pow<Integer>(order, DIM);
- Integer order_DIM_ = pow<Integer>(order, DIM - 1);
- Long dof = fn_v.Dim() / order_DIM;
- SCTL_ASSERT(fn_v.Dim() == dof * order_DIM);
- // Create work buffers
- Long buff_size = dof * order_DIM;
- Vector<ValueType> buff(2 * buff_size);
- Iterator<ValueType> buff1 = buff.begin() + buff_size * 0;
- Iterator<ValueType> buff2 = buff.begin() + buff_size * 1;
- Vector<ValueType> fn(order_DIM * dof, (Iterator<ValueType>)fn_v.begin(), false);
- for (Integer k = 0; k < DIM; k++) { // Apply Mp along k-dimension
- Matrix<ValueType> Mi(dof * order_DIM_, order, fn.begin(), false);
- Matrix<ValueType> Mo(dof * order_DIM_, order, buff2, false);
- Matrix<ValueType>::GEMM(Mo, Mi, Mp);
- Matrix<ValueType> Mo_t(order, dof * order_DIM_, buff1, false);
- for (Long i = 0; i < Mo.Dim(0); i++) {
- for (Long j = 0; j < Mo.Dim(1); j++) {
- Mo_t[j][i] = Mo[i][j];
- }
- }
- fn.ReInit(order_DIM * dof, buff1, false);
- }
- { // Rearrange and write to coeff
- Vector<ValueType> tensor(order_DIM * dof, buff1, false);
- tensor2coeff<DIM>(order, tensor, coeff);
- }
- }
- friend Derived;
- };
- template <class ValueType> class ChebBasis : public BasisInterface<ValueType, ChebBasis<ValueType>> {
- private:
- ChebBasis();
- static void Nodes1D(Integer order, Vector<ValueType>& nodes) { BasisInterface<ValueType, ChebBasis<ValueType>>::cheb_nodes_1d(order, nodes); }
- /**
- * \brief Returns the values of all Chebyshev polynomials up to degree d,
- * evaluated at points in the input vector. Output format:
- * { T0[x[0]], ..., T0[x[n-1]], T1[x[0]], ..., Td[x[n-1]] }
- */
- static void EvalBasis1D(Integer order, const Vector<ValueType>& x, Vector<ValueType>& y) { BasisInterface<ValueType, ChebBasis<ValueType>>::cheb_basis_1d(order, x, y); }
- friend BasisInterface<ValueType, ChebBasis<ValueType>>;
- };
- } // end namespace
- #endif //_SCTL_CHEB_UTILS_HPP_
|