kernel_functions.hpp 10.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288
  1. #ifndef _SCTL_KERNEL_FUNCTIONS_HPP_
  2. #define _SCTL_KERNEL_FUNCTIONS_HPP_
  3. namespace SCTL_NAMESPACE {
  4. struct Laplace3D_FxU {
  5. template <class Real> static constexpr Real ScaleFactor() {
  6. return 1 / (4 * const_pi<Real>());
  7. }
  8. template <class Real> static void Eval(Real (&u)[1][1], const Real (&r)[3], const Real (&n)[3], void* ctx_ptr) {
  9. Real r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  10. Real rinv = (r2>1e-16 ? 1/sqrt<Real>(r2) : 0);
  11. u[0][0] = rinv;
  12. }
  13. };
  14. struct Laplace3D_DxU {
  15. template <class Real> static constexpr Real ScaleFactor() {
  16. return 1 / (4 * const_pi<Real>());
  17. }
  18. template <class Real> static void Eval(Real (&u)[1][1], const Real (&r)[3], const Real (&n)[3], void* ctx_ptr) {
  19. Real r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  20. Real rinv = (r2>1e-16 ? 1/sqrt<Real>(r2) : 0);
  21. Real rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2];
  22. Real rinv3 = rinv * rinv * rinv;
  23. u[0][0] = rdotn * rinv3;
  24. }
  25. };
  26. struct Laplace3D_FxdU{
  27. template <class Real> static constexpr Real ScaleFactor() {
  28. return 1 / (4 * const_pi<Real>());
  29. }
  30. template <class Real> static void Eval(Real (&u)[1][3], const Real (&r)[3], const Real (&n)[3], void* ctx_ptr) {
  31. Real r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  32. Real rinv = (r2>1e-16 ? 1/sqrt<Real>(r2) : 0);
  33. Real rinv3 = rinv * rinv * rinv;
  34. u[0][0] = -r[0] * rinv3;
  35. u[0][1] = -r[1] * rinv3;
  36. u[0][2] = -r[2] * rinv3;
  37. }
  38. };
  39. struct Stokes3D_FxU {
  40. template <class Real> static constexpr Real ScaleFactor() {
  41. return 1 / (8 * const_pi<Real>());
  42. }
  43. template <class Real> static void Eval(Real (&u)[3][3], const Real (&r)[3], const Real (&n)[3], void* ctx_ptr) {
  44. Real r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  45. Real rinv = (r2>1e-16 ? 1/sqrt<Real>(r2) : 0);
  46. Real rinv3 = rinv*rinv*rinv;
  47. for (Integer i = 0; i < 3; i++) {
  48. for (Integer j = 0; j < 3; j++) {
  49. u[i][j] = (i==j ? rinv : 0) + r[i]*r[j]*rinv3;
  50. }
  51. }
  52. }
  53. };
  54. struct Stokes3D_DxU {
  55. template <class Real> static constexpr Real ScaleFactor() {
  56. return -3 / (4 * const_pi<Real>());
  57. }
  58. template <class Real> static void Eval(Real (&u)[3][3], const Real (&r)[3], const Real (&n)[3], void* ctx_ptr) {
  59. Real r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  60. Real rinv = (r2>1e-16 ? 1/sqrt<Real>(r2) : 0);
  61. Real rinv2 = rinv*rinv;
  62. Real rinv5 = rinv2*rinv2*rinv;
  63. Real rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2];
  64. for (Integer i = 0; i < 3; i++) {
  65. for (Integer j = 0; j < 3; j++) {
  66. u[i][j] = r[i]*r[j]*rdotn*rinv5;
  67. }
  68. }
  69. }
  70. };
  71. struct Stokes3D_FxT {
  72. template <class Real> static constexpr Real ScaleFactor() {
  73. return -3 / (4 * const_pi<Real>());
  74. }
  75. template <class Real> static void Eval(Real (&u)[3][9], const Real (&r)[3], const Real (&n)[3], void* ctx_ptr) {
  76. Real r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  77. Real rinv = (r2>1e-16 ? 1/sqrt<Real>(r2) : 0);
  78. Real rinv2 = rinv*rinv;
  79. Real rinv5 = rinv2*rinv2*rinv;
  80. for (Integer i = 0; i < 3; i++) {
  81. for (Integer j = 0; j < 3; j++) {
  82. for (Integer k = 0; k < 3; k++) {
  83. u[i][j*3+k] = r[i]*r[j]*r[k]*rinv5;
  84. }
  85. }
  86. }
  87. }
  88. };
  89. template <class uKernel> class GenericKernel {
  90. template <class Real, Integer D, Integer K0, Integer K1> static constexpr Integer get_DIM (void (*uKer)(Real (&u)[K0][K1], const Real (&r)[D], const Real (&n)[D], void* ctx_ptr)) { return D; }
  91. template <class Real, Integer D, Integer K0, Integer K1> static constexpr Integer get_KDIM0(void (*uKer)(Real (&u)[K0][K1], const Real (&r)[D], const Real (&n)[D], void* ctx_ptr)) { return K0; }
  92. template <class Real, Integer D, Integer K0, Integer K1> static constexpr Integer get_KDIM1(void (*uKer)(Real (&u)[K0][K1], const Real (&r)[D], const Real (&n)[D], void* ctx_ptr)) { return K1; }
  93. static constexpr Integer DIM = get_DIM (uKernel::template Eval<double>);
  94. static constexpr Integer KDIM0 = get_KDIM0(uKernel::template Eval<double>);
  95. static constexpr Integer KDIM1 = get_KDIM1(uKernel::template Eval<double>);
  96. public:
  97. static constexpr Integer CoordDim() {
  98. return DIM;
  99. }
  100. static constexpr Integer SrcDim() {
  101. return KDIM0;
  102. }
  103. static constexpr Integer TrgDim() {
  104. return KDIM1;
  105. }
  106. template <class Real> static constexpr Real ScaleFactor() {
  107. return uKernel::template ScaleFactor<Real>();
  108. }
  109. template <class Real, Integer DOF> void uKernelEval(Iterator<Real> u, ConstIterator<Real> r, ConstIterator<Real> n, ConstIterator<Real> f) const {
  110. SCTL_UNUSED(u[0]);
  111. SCTL_UNUSED(f[0]);
  112. SCTL_UNUSED(r[0]);
  113. SCTL_UNUSED(n[0]);
  114. SCTL_UNUSED(u[KDIM1*DOF-1]);
  115. SCTL_UNUSED(f[KDIM0*DOF-1]);
  116. SCTL_UNUSED(r[DIM-1]);
  117. SCTL_UNUSED(n[DIM-1]);
  118. Real M[KDIM0][KDIM1];
  119. uKernel::Eval(M, *(Real (*)[DIM])(&r[0]), *(Real (*)[DIM])(&n[0]), ctx_ptr);
  120. for (Integer i = 0; i < DOF; i++) {
  121. for (Integer k0 = 0; k0 < KDIM0; k0++) {
  122. for (Integer k1 = 0; k1 < KDIM1; k1++) {
  123. u[i*KDIM1+k1] += M[k0][k1] * f[i*KDIM0+k0];
  124. }
  125. }
  126. }
  127. }
  128. template <class Real, Integer DOF_ = 0> void Eval(Vector<Real>& U, const Vector<Real>& Xt, const Vector<Real>& Xs, const Vector<Real>& Xn, const Vector<Real>& F) const {
  129. Long Ns = Xs.Dim() / DIM;
  130. Long Nt = Xt.Dim() / DIM;
  131. Long DOF = (DOF_ ? DOF_ : F.Dim() / Ns / KDIM0);
  132. SCTL_ASSERT(Xs.Dim() == Ns * DIM);
  133. SCTL_ASSERT(Xt.Dim() == Nt * DIM);
  134. SCTL_ASSERT(F.Dim() == Ns * DOF * KDIM0);
  135. if (!DOF_) {
  136. if (DOF == 1) Eval<Real,1>(U,Xt,Xs,Xn,F);
  137. if (DOF == 2) Eval<Real,2>(U,Xt,Xs,Xn,F);
  138. if (DOF == 3) Eval<Real,3>(U,Xt,Xs,Xn,F);
  139. if (DOF == 4) Eval<Real,4>(U,Xt,Xs,Xn,F);
  140. if (DOF == 5) Eval<Real,5>(U,Xt,Xs,Xn,F);
  141. if (DOF == 6) Eval<Real,6>(U,Xt,Xs,Xn,F);
  142. if (DOF <= 6) return;
  143. }
  144. if (U.Dim() != Nt * DOF * KDIM1) {
  145. U.ReInit(Nt * DOF * KDIM1);
  146. U.SetZero();
  147. }
  148. #pragma omp parallel for schedule(static)
  149. for (Long t = 0; t < Nt; t++) {
  150. Iterator<Real> u;
  151. Vector<Real> u_buff0;
  152. StaticArray<Real,DOF_*KDIM1> u_buff1;
  153. if (!DOF_) { // Set u
  154. u_buff0.ReInit(DOF*KDIM1);
  155. u = u_buff0.begin();
  156. } else {
  157. u = (Iterator<Real>)u_buff1;
  158. }
  159. for (Integer k = 0; k < DOF*KDIM1; k++) {
  160. u[k] = 0;
  161. }
  162. StaticArray<Real,DIM> r;
  163. for (Long s = 0; s < Ns; s++) {
  164. for (Integer k = 0; k < DIM; k++) {
  165. r[k] = Xs[s*DIM+k] - Xt[t*DIM+k];
  166. }
  167. ConstIterator<Real> n = Xn.begin() + s*DIM;
  168. if (DOF_) {
  169. ConstIterator<Real> f = F.begin() + s*DOF_*KDIM0;
  170. this->template uKernelEval<Real,DOF_>(u,r,n,f);
  171. } else {
  172. ConstIterator<Real> f = F.begin() + s*DOF*KDIM0;
  173. for (Integer k = 0; k < DOF; k++) {
  174. this->template uKernelEval<Real,1>(u + k*KDIM1,r,n,f + k*KDIM0);
  175. }
  176. }
  177. }
  178. for (Integer k = 0; k < DOF*KDIM1; k++) {
  179. U[t*DOF*KDIM1 + k] += u[k];
  180. }
  181. }
  182. }
  183. template <class Real> void KernelMatrix(Matrix<Real>& M, const Vector<Real>& Xt, const Vector<Real>& Xs, const Vector<Real>& Xn) const {
  184. Long Ns = Xs.Dim() / DIM;
  185. Long Nt = Xt.Dim() / DIM;
  186. SCTL_ASSERT(Xs.Dim() == Ns * DIM);
  187. SCTL_ASSERT(Xt.Dim() == Nt * DIM);
  188. if (M.Dim(0) != Ns * KDIM0 || M.Dim(1) != Nt * KDIM1) {
  189. M.ReInit(Ns * KDIM0, Nt * KDIM1);
  190. }
  191. #pragma omp parallel for schedule(static)
  192. for (Long t = 0; t < Nt; t++) {
  193. StaticArray<Real,DIM> r;
  194. StaticArray<Real,KDIM0> f;
  195. for (Integer k = 0; k < KDIM0; k++) {
  196. f[k] = 0;
  197. }
  198. for (Long s = 0; s < Ns; s++) {
  199. for (Integer k = 0; k < DIM; k++) {
  200. r[k] = Xs[s*DIM+k] - Xt[t*DIM+k];
  201. }
  202. ConstIterator<Real> n = Xn.begin() + s*DIM;
  203. for (Integer k = 0; k < KDIM0; k++) {
  204. f[k] = 1;
  205. Iterator<Real> u = M[s*KDIM0+k] + t*KDIM1;
  206. for (Integer i = 0; i < KDIM1; i++) u[i] = 0;
  207. this->template uKernelEval<Real,1>(u,r,n,f);
  208. f[k] = 0;
  209. }
  210. }
  211. }
  212. }
  213. private:
  214. void* ctx_ptr;
  215. };
  216. template <class Real, Integer DIM> class ParticleFMM {
  217. public:
  218. template <class Kernel> static void Eval(Vector<Real>& U, const Vector<Real>& Xt, const Vector<Real>& Xs, const Vector<Real>& Xn, const Vector<Real>& F, const Kernel& kernel, const Comm& comm) {
  219. #ifdef SCTL_HAVE_PVFMM
  220. SCTL_ASSERT(false);
  221. #else
  222. constexpr Integer KDIM0 = Kernel::SrcDim();
  223. constexpr Integer KDIM1 = Kernel::TrgDim();
  224. const Integer rank = comm.Rank();
  225. const Integer np = comm.Size();
  226. const Long Ns = Xs.Dim() / DIM;
  227. const Long Nt = Xt.Dim() / DIM;
  228. SCTL_ASSERT(Xt.Dim() == Nt * DIM);
  229. const Long dof = F.Dim() / (Ns * KDIM0);
  230. SCTL_ASSERT(Ns && F.Dim() == Ns * dof * KDIM0);
  231. Vector<Real> Xs_, Xn_, F_;
  232. if (U.Dim() != Nt * dof * KDIM1) {
  233. U.ReInit(Nt * dof * KDIM1);
  234. U.SetZero();
  235. }
  236. for (Long i = 0; i < np; i++) {
  237. auto send_recv_vec = [comm,rank,np](Vector<Real>& X_, const Vector<Real>& X, Integer offset){
  238. Integer send_partner = (rank + offset) % np;
  239. Integer recv_partner = (rank + np - offset) % np;
  240. Long send_cnt = X.Dim(), recv_cnt;
  241. void* recv_req = comm.Irecv( Ptr2Itr<Long>(&recv_cnt,1), 1, recv_partner, offset);
  242. void* send_req = comm.Isend(Ptr2ConstItr<Long>(&send_cnt,1), 1, send_partner, offset);
  243. comm.Wait(recv_req);
  244. comm.Wait(send_req);
  245. X_.ReInit(recv_cnt);
  246. recv_req = comm.Irecv(X_.begin(), recv_cnt, recv_partner, offset);
  247. send_req = comm.Isend(X .begin(), send_cnt, send_partner, offset);
  248. comm.Wait(recv_req);
  249. comm.Wait(send_req);
  250. };
  251. send_recv_vec(Xs_, Xs, i);
  252. send_recv_vec(Xn_, Xn, i);
  253. send_recv_vec(F_ , F , i);
  254. kernel.Eval(U, Xt, Xs_, Xn_, F_);
  255. }
  256. #endif
  257. }
  258. private:
  259. };
  260. } // end namespace
  261. #endif //_SCTL_KERNEL_FUNCTIONS_HPP_