12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478 |
- #ifndef _SCTL_BOUNDARY_QUADRATURE_HPP_
- #define _SCTL_BOUNDARY_QUADRATURE_HPP_
- #include <biest.hpp>
- #include <mutex>
- #include <atomic>
- #include <tuple>
- namespace SCTL_NAMESPACE {
- template <class Real, Integer DIM, Integer ORDER> class Basis {
- public:
- using ValueType = Real;
- // class EvalOperator {
- // public:
- // };
- using EvalOpType = Matrix<ValueType>;
- static constexpr Long Dim() {
- return DIM;
- }
- static constexpr Long Size() {
- return pow<DIM,Long>(ORDER);
- }
- static const Matrix<ValueType>& Nodes() {
- static Matrix<ValueType> nodes_(DIM,Size());
- auto nodes_1d = [](Integer i) {
- return 0.5 - 0.5 * sctl::cos<ValueType>((2*i+1) * const_pi<ValueType>() / (2*ORDER));
- };
- { // Set nodes_
- static std::mutex mutex;
- static std::atomic<Integer> first_time(true);
- if (first_time.load(std::memory_order_relaxed)) {
- std::lock_guard<std::mutex> guard(mutex);
- if (first_time.load(std::memory_order_relaxed)) {
- Integer N = 1;
- for (Integer d = 0; d < DIM; d++) {
- for (Integer j = 0; j < ORDER; j++) {
- for (Integer i = 0; i < N; i++) {
- for (Integer k = 0; k < d; k++) {
- nodes_[k][j*N+i] = nodes_[k][i];
- }
- nodes_[d][j*N+i] = nodes_1d(j);
- }
- }
- N *= ORDER;
- }
- std::atomic_thread_fence(std::memory_order_seq_cst);
- first_time.store(false);
- }
- }
- }
- return nodes_;
- }
- static const Vector<ValueType>& QuadWts() {
- static Vector<ValueType> wts(Size());
- { // Set nodes_
- static std::mutex mutex;
- static std::atomic<Integer> first_time(true);
- if (first_time.load(std::memory_order_relaxed)) {
- std::lock_guard<std::mutex> guard(mutex);
- if (first_time.load(std::memory_order_relaxed)) {
- StaticArray<ValueType,ORDER> wts_1d;
- { // Set wts_1d
- Vector<ValueType> x_(ORDER);
- ChebBasis<ValueType>::template Nodes<1>(ORDER, x_);
- Vector<ValueType> V_cheb(ORDER * ORDER);
- { // Set V_cheb
- Vector<ValueType> I(ORDER*ORDER);
- I = 0;
- for (Long i = 0; i < ORDER; i++) I[i*ORDER+i] = 1;
- ChebBasis<ValueType>::template Approx<1>(ORDER, I, V_cheb);
- }
- Matrix<ValueType> M(ORDER, ORDER, V_cheb.begin());
- Vector<ValueType> w_sample(ORDER);
- for (Integer i = 0; i < ORDER; i++) {
- w_sample[i] = (i % 2 ? 0 : -(ORDER/(ValueType)(i*i-1)));
- }
- for (Integer j = 0; j < ORDER; j++) {
- wts_1d[j] = 0;
- for (Integer i = 0; i < ORDER; i++) {
- wts_1d[j] += M[j][i] * w_sample[i] / ORDER;
- }
- }
- }
- wts[0] = 1;
- Integer N = 1;
- for (Integer d = 0; d < DIM; d++) {
- for (Integer j = 1; j < ORDER; j++) {
- for (Integer i = 0; i < N; i++) {
- wts[j*N+i] = wts[i] * wts_1d[j];
- }
- }
- for (Integer i = 0; i < N; i++) {
- wts[i] *= wts_1d[0];
- }
- N *= ORDER;
- }
- std::atomic_thread_fence(std::memory_order_seq_cst);
- first_time.store(false);
- }
- }
- }
- return wts;
- }
- static void Grad(Vector<Basis>& dX, const Vector<Basis>& X) {
- static Matrix<ValueType> GradOp[DIM];
- static std::mutex mutex;
- static std::atomic<Integer> first_time(true);
- if (first_time.load(std::memory_order_relaxed)) {
- std::lock_guard<std::mutex> guard(mutex);
- if (first_time.load(std::memory_order_relaxed)) {
- { // Set GradOp
- auto nodes = Basis<ValueType,1,ORDER>::Nodes();
- SCTL_ASSERT(nodes.Dim(1) == ORDER);
- Matrix<ValueType> M(ORDER, ORDER);
- for (Integer i = 0; i < ORDER; i++) { // Set M
- Real x = nodes[0][i];
- for (Integer j = 0; j < ORDER; j++) {
- M[j][i] = 0;
- for (Integer l = 0; l < ORDER; l++) {
- if (l != j) {
- Real M_ = 1;
- for (Integer k = 0; k < ORDER; k++) {
- if (k != j && k != l) M_ *= (x - nodes[0][k]);
- if (k != j) M_ /= (nodes[0][j] - nodes[0][k]);
- }
- M[j][i] += M_;
- }
- }
- }
- }
- for (Integer d = 0; d < DIM; d++) {
- GradOp[d].ReInit(Size(), Size());
- GradOp[d] = 0;
- Integer stride0 = sctl::pow<Integer>(ORDER, d);
- Integer repeat0 = sctl::pow<Integer>(ORDER, d);
- Integer stride1 = sctl::pow<Integer>(ORDER, d+1);
- Integer repeat1 = sctl::pow<Integer>(ORDER, DIM-d-1);
- for (Integer k1 = 0; k1 < repeat1; k1++) {
- for (Integer i = 0; i < ORDER; i++) {
- for (Integer j = 0; j < ORDER; j++) {
- for (Integer k0 = 0; k0 < repeat0; k0++) {
- GradOp[d][k1*stride1 + i*stride0 + k0][k1*stride1 + j*stride0 + k0] = M[i][j];
- }
- }
- }
- }
- }
- }
- std::atomic_thread_fence(std::memory_order_seq_cst);
- first_time.store(false);
- }
- }
- if (dX.Dim() != X.Dim()*DIM) dX.ReInit(X.Dim()*DIM);
- for (Long i = 0; i < X.Dim(); i++) {
- const Matrix<ValueType> Vi(1, Size(), (Iterator<ValueType>)(ConstIterator<ValueType>)X[i].NodeValues_, false);
- for (Integer k = 0; k < DIM; k++) {
- Matrix<ValueType> Vo(1, Size(), dX[i*DIM+k].NodeValues_, false);
- Matrix<ValueType>::GEMM(Vo, Vi, GradOp[k]);
- }
- }
- }
- static EvalOpType SetupEval(const Matrix<ValueType>& X) {
- Long N = X.Dim(1);
- SCTL_ASSERT(X.Dim(0) == DIM);
- Matrix<ValueType> M(Size(), N);
- { // Set M
- auto nodes = Basis<ValueType,1,ORDER>::Nodes();
- Integer NN = Basis<ValueType,1,ORDER>::Size();
- Matrix<ValueType> M_(NN, DIM*N);
- for (Long i = 0; i < DIM*N; i++) {
- ValueType x = X[0][i];
- for (Integer j = 0; j < NN; j++) {
- ValueType y = 1;
- for (Integer k = 0; k < NN; k++) {
- y *= (j==k ? 1 : (nodes[0][k] - x) / (nodes[0][k] - nodes[0][j]));
- }
- M_[j][i] = y;
- }
- }
- if (DIM == 1) {
- SCTL_ASSERT(M.Dim(0) == M_.Dim(0));
- SCTL_ASSERT(M.Dim(1) == M_.Dim(1));
- M = M_;
- } else {
- Integer NNN = 1;
- M = 1;
- for (Integer d = 0; d < DIM; d++) {
- for (Integer k = 1; k < NN; k++) {
- for (Integer j = 0; j < NNN; j++) {
- for (Long i = 0; i < N; i++) {
- M[k*NNN+j][i] = M[j][i] * M_[k][d*N+i];
- }
- }
- }
- { // k = 0
- for (Integer j = 0; j < NNN; j++) {
- for (Long i = 0; i < N; i++) {
- M[j][i] *= M_[0][d*N+i];
- }
- }
- }
- NNN *= NN;
- }
- }
- }
- return M;
- }
- static void Eval(Matrix<ValueType>& Y, const Vector<Basis>& X, const EvalOpType& M) {
- Long N0 = X.Dim();
- Long N1 = M.Dim(1);
- SCTL_ASSERT(M.Dim(0) == Size());
- if (Y.Dim(0) != N0 || Y.Dim(1) != N1) Y.ReInit(N0, N1);
- for (Long i = 0; i < N0; i++) {
- const Matrix<ValueType> X_(1,Size(),(Iterator<ValueType>)(ConstIterator<ValueType>)X[i].NodeValues_,false);
- Matrix<ValueType> Y_(1,N1,Y[i],false);
- Matrix<ValueType>::GEMM(Y_,X_,M);
- }
- }
- Basis operator+(Basis X) const {
- for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] + X[i];
- return X;
- }
- Basis operator-(Basis X) const {
- for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] - X[i];
- return X;
- }
- Basis operator*(Basis X) const {
- for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] * X[i];
- return X;
- }
- Basis operator*(Real a) const {
- Basis X = (*this);
- for (Long i = 0; i < Size(); i++) X[i] *= a;
- return X;
- }
- Basis operator+(Real a) const {
- Basis X = (*this);
- for (Long i = 0; i < Size(); i++) X[i] += a;
- return X;
- }
- Basis& operator+=(const Basis& X) {
- for (Long i = 0; i < Size(); i++) (*this)[i] += X[i];
- return *this;
- }
- Basis& operator-=(const Basis& X) {
- for (Long i = 0; i < Size(); i++) (*this)[i] -= X[i];
- return *this;
- }
- Basis& operator*=(const Basis& X) {
- for (Long i = 0; i < Size(); i++) (*this)[i] *= X[i];
- return *this;
- }
- Basis& operator*=(Real a) {
- for (Long i = 0; i < Size(); i++) (*this)[i] *= a;
- return *this;
- }
- Basis& operator+=(Real a) {
- for (Long i = 0; i < Size(); i++) (*this)[i] += a;
- return *this;
- }
- Basis& operator=(Real a) {
- for (Long i = 0; i < Size(); i++) (*this)[i] = a;
- return *this;
- }
- const ValueType& operator[](Long i) const {
- SCTL_ASSERT(i < Size());
- return NodeValues_[i];
- }
- ValueType& operator[](Long i) {
- SCTL_ASSERT(i < Size());
- return NodeValues_[i];
- }
- private:
- StaticArray<ValueType,Size()> NodeValues_;
- };
- template <Integer COORD_DIM, class Basis> class ElemList {
- public:
- using CoordBasis = Basis;
- using CoordType = typename CoordBasis::ValueType;
- static constexpr Integer CoordDim() {
- return COORD_DIM;
- }
- static constexpr Integer ElemDim() {
- return CoordBasis::Dim();
- }
- ElemList(Long Nelem = 0) {
- ReInit(Nelem);
- }
- void ReInit(Long Nelem = 0) {
- Nelem_ = Nelem;
- X_.ReInit(Nelem_ * COORD_DIM);
- }
- void ReInit(const Vector<CoordBasis>& X) {
- Nelem_ = X.Dim() / COORD_DIM;
- SCTL_ASSERT(X.Dim() == Nelem_ * COORD_DIM);
- X_ = X;
- }
- Long NElem() const {
- return Nelem_;
- }
- CoordBasis& operator()(Long elem, Integer dim) {
- SCTL_ASSERT(elem >= 0 && elem < Nelem_);
- SCTL_ASSERT(dim >= 0 && dim < COORD_DIM);
- return X_[elem*COORD_DIM+dim];
- }
- const CoordBasis& operator()(Long elem, Integer dim) const {
- SCTL_ASSERT(elem >= 0 && elem < Nelem_);
- SCTL_ASSERT(dim >= 0 && dim < COORD_DIM);
- return X_[elem*COORD_DIM+dim];
- }
- const Vector<CoordBasis>& ElemVector() const {
- return X_;
- }
- private:
- static_assert(CoordBasis::Dim() <= CoordDim(), "Basis dimension can not be greater than COORD_DIM.");
- Vector<CoordBasis> X_;
- Long Nelem_;
- //mutable Vector<CoordBasis> dX_;
- };
- template <class Real> class Quadrature {
- static Real machine_epsilon() {
- Real eps=1;
- while(eps*(Real)0.5+(Real)1.0>1.0) eps*=0.5;
- return eps;
- }
- template <Integer DIM> static void DuffyQuad(Matrix<Real>& nodes, Vector<Real>& weights, const Vector<Real>& coord, Integer order, Real adapt = -1.0) {
- SCTL_ASSERT(coord.Dim() == DIM);
- static Real eps = machine_epsilon()*16;
- Matrix<Real> qx;
- Vector<Real> qw;
- { // Set qx, qw
- Vector<Real> qx0, qw0;
- ChebBasis<Real>::quad_rule(order, qx0, qw0);
- Integer N = sctl::pow<DIM,Integer>(order);
- qx.ReInit(DIM,N);
- qw.ReInit(N);
- qw[0] = 1;
- Integer N_ = 1;
- for (Integer d = 0; d < DIM; d++) {
- for (Integer j = 0; j < order; j++) {
- for (Integer i = 0; i < N_; i++) {
- for (Integer k = 0; k < d; k++) {
- qx[k][j*N_+i] = qx[k][i];
- }
- qx[d][j*N_+i] = qx0[j];
- qw[j*N_+i] = qw[i];
- }
- }
- for (Integer j = 0; j < order; j++) {
- for (Integer i = 0; i < N_; i++) {
- qw[j*N_+i] *= qw0[j];
- }
- }
- N_ *= order;
- }
- }
- Vector<Real> X;
- { // Set X
- StaticArray<Real,2*DIM+2> X_;
- X_[0] = 0;
- X_[1] = adapt;
- for (Integer i = 0; i < DIM; i++) {
- X_[2*i+2] = sctl::fabs<Real>(coord[i]);
- X_[2*i+3] = sctl::fabs<Real>(coord[i]-1);
- }
- std::sort((Iterator<Real>)X_, (Iterator<Real>)X_+2*DIM+2);
- X.PushBack(std::max<Real>(0, X_[2*DIM]-1));
- for (Integer i = 0; i < 2*DIM+2; i++) {
- if (X[X.Dim()-1] < X_[i]) {
- if (X.Dim())
- X.PushBack(X_[i]);
- }
- }
- /////////////////////////////////////////////////////////////////////////////////////////////////
- Vector<Real> r(1);
- r[0] = X[0];
- for (Integer i = 1; i < X.Dim(); i++) {
- while (r[r.Dim() - 1] > 0.0 && (order*0.5) * r[r.Dim() - 1] < X[i]) r.PushBack((order*0.5) * r[r.Dim() - 1]); // TODO
- r.PushBack(X[i]);
- }
- X = r;
- /////////////////////////////////////////////////////////////////////////////////////////////////
- }
- Vector<Real> nds, wts;
- for (Integer k = 0; k < X.Dim()-1; k++) {
- for (Integer dd = 0; dd < 2*DIM; dd++) {
- Integer d0 = (dd>>1);
- StaticArray<Real,2*DIM> range0, range1;
- { // Set range0, range1
- Integer d1 = (dd%2?1:-1);
- for (Integer d = 0; d < DIM; d++) {
- range0[d*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d] - X[k] ));
- range0[d*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d] + X[k] ));
- range1[d*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d] - X[k+1]));
- range1[d*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d] + X[k+1]));
- }
- range0[d0*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+0]));
- range0[d0*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+0]));
- range1[d0*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+1]));
- range1[d0*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+1]));
- }
- { // if volume(range0, range1) == 0 then continue
- Real v0 = 1, v1 = 1;
- for (Integer d = 0; d < DIM; d++) {
- if (d == d0) {
- v0 *= sctl::fabs<Real>(range0[d*2+0]-range1[d*2+0]);
- v1 *= sctl::fabs<Real>(range0[d*2+0]-range1[d*2+0]);
- } else {
- v0 *= range0[d*2+1]-range0[d*2+0];
- v1 *= range1[d*2+1]-range1[d*2+0];
- }
- }
- if (v0 < eps && v1 < eps) continue;
- }
- for (Integer i = 0; i < qx.Dim(1); i++) { // Set nds, wts
- Real w = qw[i];
- Real z = qx[d0][i];
- for (Integer d = 0; d < DIM; d++) {
- Real y = qx[d][i];
- nds.PushBack((range0[d*2+0]*(1-y) + range0[d*2+1]*y)*(1-z) + (range1[d*2+0]*(1-y) + range1[d*2+1]*y)*z);
- if (d == d0) {
- w *= abs(range1[d*2+0] - range0[d*2+0]);
- } else {
- w *= (range0[d*2+1] - range0[d*2+0])*(1-z) + (range1[d*2+1] - range1[d*2+0])*z;
- }
- }
- wts.PushBack(w);
- }
- }
- }
- nodes = Matrix<Real>(nds.Dim()/DIM,DIM,nds.begin()).Transpose();
- weights = wts;
- }
- template <Integer DIM> static void TensorProductGaussQuad(Matrix<Real>& nodes, Vector<Real>& weights, Integer order) {
- Vector<Real> coord(DIM);
- coord = 0;
- coord[0] = -10;
- DuffyQuad<DIM>(nodes, weights, coord, order);
- }
- template <class DensityBasis, class ElemList, class Kernel> static void SetupSingular(Matrix<Real>& M_singular, const Matrix<Real>& trg_nds, const ElemList& elem_lst, const Kernel& kernel, Integer order_singular = 10, Integer order_direct = 10, Real Rqbx = 0) {
- using CoordBasis = typename ElemList::CoordBasis;
- using CoordEvalOpType = typename CoordBasis::EvalOpType;
- using DensityEvalOpType = typename DensityBasis::EvalOpType;
- constexpr Integer CoordDim = ElemList::CoordDim();
- constexpr Integer ElemDim = ElemList::ElemDim();
- constexpr Integer KDIM0 = Kernel::SrcDim();
- constexpr Integer KDIM1 = Kernel::TrgDim();
- const Long Nelem = elem_lst.NElem();
- const Integer Ntrg = trg_nds.Dim(1);
- SCTL_ASSERT(trg_nds.Dim(0) == ElemDim);
- const Vector<CoordBasis>& X = elem_lst.ElemVector();
- Vector<CoordBasis> dX;
- CoordBasis::Grad(dX, X);
- Vector<Real> Xt, Xnt;
- { // Set Xt, Xnt
- auto Meval = CoordBasis::SetupEval(trg_nds);
- eval_basis(Xt, X, CoordDim, trg_nds.Dim(1), Meval);
- Xnt = Xt;
- Vector<Real> dX_;
- eval_basis(dX_, dX, 2*CoordDim, trg_nds.Dim(1), Meval);
- for (Long i = 0; i < Ntrg; i++) {
- for (Long j = 0; j < Nelem; j++) {
- auto Xn = Xnt.begin() + (j*Ntrg+i)*CoordDim;
- auto dX0 = dX_.begin() + (j*Ntrg+i)*2*CoordDim;
- StaticArray<Real,CoordDim> normal;
- normal[0] = dX0[2]*dX0[5] - dX0[4]*dX0[3];
- normal[1] = dX0[4]*dX0[1] - dX0[0]*dX0[5];
- normal[2] = dX0[0]*dX0[3] - dX0[2]*dX0[1];
- Real Xa = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
- Real invXa = 1/Xa;
- normal[0] *= invXa;
- normal[1] *= invXa;
- normal[2] *= invXa;
- Real sqrt_Xa = sqrt<Real>(Xa);
- Xn[0] = normal[0]*sqrt_Xa*Rqbx;
- Xn[1] = normal[1]*sqrt_Xa*Rqbx;
- Xn[2] = normal[2]*sqrt_Xa*Rqbx;
- }
- }
- }
- SCTL_ASSERT(Xt.Dim() == Nelem * Ntrg * CoordDim);
- auto& M = M_singular;
- M.ReInit(Nelem * KDIM0 * DensityBasis::Size(), KDIM1 * Ntrg);
- #pragma omp parallel for schedule(static)
- for (Long i = 0; i < Ntrg; i++) { // Set M (singular)
- Matrix<Real> quad_nds;
- Vector<Real> quad_wts;
- { // Set quad_nds, quad_wts
- StaticArray<Real,ElemDim> trg_node_;
- for (Integer k = 0; k < ElemDim; k++) {
- trg_node_[k] = trg_nds[k][i];
- }
- Vector<Real> trg_node(ElemDim, trg_node_, false);
- DuffyQuad<ElemDim>(quad_nds, quad_wts, trg_node, order_singular, fabs(Rqbx));
- }
- const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
- Integer Nnds = quad_wts.Dim();
- Vector<Real> X_, dX_, Xa_, Xn_;
- { // Set X_, dX_
- eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
- eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
- }
- if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
- Long N = Nelem*Nnds;
- Xa_.ReInit(N);
- Xn_.ReInit(N*CoordDim);
- for (Long j = 0; j < N; j++) {
- StaticArray<Real,CoordDim> normal;
- normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
- normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
- normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
- Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
- Real invXa = 1/Xa_[j];
- Xn_[j*3+0] = normal[0] * invXa;
- Xn_[j*3+1] = normal[1] * invXa;
- Xn_[j*3+2] = normal[2] * invXa;
- }
- }
- DensityEvalOpType DensityEvalOp;
- if (std::is_same<CoordBasis,DensityBasis>::value) {
- DensityEvalOp = CoordEvalOp;
- } else {
- DensityEvalOp = DensityBasis::SetupEval(quad_nds);
- }
- for (Long j = 0; j < Nelem; j++) {
- Matrix<Real> M__(Nnds * KDIM0, KDIM1);
- if (Rqbx == 0) { // Set kernel matrix M__
- const Vector<Real> X0_(CoordDim, Xt.begin() + (j * Ntrg + i) * CoordDim, false);
- const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
- const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
- kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
- } else {
- Vector<Real> X0_(CoordDim);
- constexpr Integer qbx_order = 6;
- StaticArray<Matrix<Real>,qbx_order> M___;
- for (Integer k = 0; k < qbx_order; k++) { // Set kernel matrix M___
- for (Integer kk = 0; kk < CoordDim; kk++) X0_[kk] = Xt[(j * Ntrg + i) * CoordDim + kk] + (k+1) * Xnt[(j * Ntrg + i) * CoordDim + kk];
- const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
- const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
- kernel.template KernelMatrix<Real>(M___[k], X0_, X__, Xn__);
- }
- for (Long k = 0; k < Nnds * KDIM0 * KDIM1; k++) {
- M__[0][k] = 0;
- M__[0][k] += 6*M___[0][0][k];
- M__[0][k] += -15*M___[1][0][k];
- M__[0][k] += 20*M___[2][0][k];
- M__[0][k] += -15*M___[3][0][k];
- M__[0][k] += 6*M___[4][0][k];
- M__[0][k] += -1*M___[5][0][k];
- }
- }
- for (Long k0 = 0; k0 < KDIM0; k0++) {
- for (Long k1 = 0; k1 < KDIM1; k1++) {
- for (Long l = 0; l < DensityBasis::Size(); l++) {
- Real M_lk = 0;
- for (Long n = 0; n < Nnds; n++) {
- Real quad_wt = Xa_[j * Nnds + n] * quad_wts[n];
- M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
- }
- M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1 * Ntrg + i] = M_lk;
- }
- }
- }
- }
- }
- { // Set M (subtract direct)
- Matrix<Real> quad_nds;
- Vector<Real> quad_wts;
- TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
- const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
- Integer Nnds = quad_wts.Dim();
- Vector<Real> X_, dX_, Xa_, Xn_;
- { // Set X_, dX_
- eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
- eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
- }
- if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
- Long N = Nelem*Nnds;
- Xa_.ReInit(N);
- Xn_.ReInit(N*CoordDim);
- for (Long j = 0; j < N; j++) {
- StaticArray<Real,CoordDim> normal;
- normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
- normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
- normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
- Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
- Real invXa = 1/Xa_[j];
- Xn_[j*3+0] = normal[0] * invXa;
- Xn_[j*3+1] = normal[1] * invXa;
- Xn_[j*3+2] = normal[2] * invXa;
- }
- }
- DensityEvalOpType DensityEvalOp;
- if (std::is_same<CoordBasis,DensityBasis>::value) {
- DensityEvalOp = CoordEvalOp;
- } else {
- DensityEvalOp = DensityBasis::SetupEval(quad_nds);
- }
- #pragma omp parallel for schedule(static)
- for (Long i = 0; i < Ntrg; i++) { // Subtract direct contribution
- for (Long j = 0; j < Nelem; j++) {
- Matrix<Real> M__(Nnds * KDIM0, KDIM1);
- { // Set kernel matrix M__
- const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + (j * Ntrg + i) * CoordDim, false);
- const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
- const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
- kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
- }
- for (Long k0 = 0; k0 < KDIM0; k0++) {
- for (Long k1 = 0; k1 < KDIM1; k1++) {
- for (Long l = 0; l < DensityBasis::Size(); l++) {
- Real M_lk = 0;
- for (Long n = 0; n < Nnds; n++) {
- Real quad_wt = Xa_[j * Nnds + n] * quad_wts[n];
- M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
- }
- M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1 * Ntrg + i] -= M_lk;
- }
- }
- }
- }
- }
- }
- }
- template <class DensityBasis> static void EvalSingular(Matrix<Real>& U, const Vector<DensityBasis>& density, const Matrix<Real>& M, Integer KDIM0_, Integer KDIM1_) {
- if (M.Dim(0) == 0 || M.Dim(1) == 0) {
- U.ReInit(0,0);
- return;
- }
- const Long Ntrg = M.Dim(1) / KDIM1_;
- SCTL_ASSERT(M.Dim(1) == KDIM1_ * Ntrg);
- const Long Nelem = M.Dim(0) / (KDIM0_ * DensityBasis::Size());
- SCTL_ASSERT(M.Dim(0) == Nelem * KDIM0_ * DensityBasis::Size());
- const Integer dof = density.Dim() / (Nelem * KDIM0_);
- SCTL_ASSERT(density.Dim() == Nelem * dof * KDIM0_);
- if (U.Dim(0) != Nelem * dof * KDIM1_ || U.Dim(1) != Ntrg) {
- U.ReInit(Nelem * dof * KDIM1_, Ntrg);
- U = 0;
- }
- for (Long j = 0; j < Nelem; j++) {
- const Matrix<Real> M_(KDIM0_ * DensityBasis::Size(), KDIM1_ * Ntrg, (Iterator<Real>)M[j * KDIM0_ * DensityBasis::Size()], false);
- Matrix<Real> U_(dof, KDIM1_ * Ntrg, U[j*dof*KDIM1_], false);
- Matrix<Real> F_(dof, KDIM0_ * DensityBasis::Size());
- for (Long i = 0; i < dof; i++) {
- for (Long k = 0; k < KDIM0_; k++) {
- for (Long l = 0; l < DensityBasis::Size(); l++) {
- F_[i][k * DensityBasis::Size() + l] = density[(j * dof + i) * KDIM0_ + k][l];
- }
- }
- }
- Matrix<Real>::GEMM(U_, F_, M_);
- }
- }
- template <Integer DIM> struct PointData {
- bool operator<(const PointData& p) const {
- return mid < p.mid;
- }
- Long rank;
- Long surf_rank;
- Morton<DIM> mid;
- StaticArray<Real,DIM> coord;
- Real radius2;
- };
- template <class T1, class T2> struct Pair {
- Pair() {}
- Pair(T1 x, T2 y) : first(x), second(y) {}
- bool operator<(const Pair& p) const {
- return (first < p.first) || (((first == p.first) && (second < p.second)));
- }
- T1 first;
- T2 second;
- };
- template <class ElemList> static void BuildNbrList(Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt, const Vector<Long>& trg_surf, const ElemList& elem_lst, Real distance_factor, Real period_length, const Comm& comm) {
- using CoordBasis = typename ElemList::CoordBasis;
- constexpr Integer CoordDim = ElemList::CoordDim();
- constexpr Integer ElemDim = ElemList::ElemDim();
- using PtData = PointData<CoordDim>;
- const Integer rank = comm.Rank();
- Real R0 = 0;
- StaticArray<Real,CoordDim> X0;
- { // Find bounding box
- Long N = Xt.Dim() / CoordDim;
- SCTL_ASSERT(Xt.Dim() == N * CoordDim);
- SCTL_ASSERT(N);
- StaticArray<Real,CoordDim*2> Xloc;
- StaticArray<Real,CoordDim*2> Xglb;
- for (Integer k = 0; k < CoordDim; k++) {
- Xloc[0*CoordDim+k] = Xt[k];
- Xloc[1*CoordDim+k] = Xt[k];
- }
- for (Long i = 0; i < N; i++) {
- for (Integer k = 0; k < CoordDim; k++) {
- Xloc[0*CoordDim+k] = std::min<Real>(Xloc[0*CoordDim+k], Xt[i*CoordDim+k]);
- Xloc[1*CoordDim+k] = std::max<Real>(Xloc[1*CoordDim+k], Xt[i*CoordDim+k]);
- }
- }
- comm.Allreduce((ConstIterator<Real>)Xloc+0*CoordDim, (Iterator<Real>)Xglb+0*CoordDim, CoordDim, Comm::CommOp::MIN);
- comm.Allreduce((ConstIterator<Real>)Xloc+1*CoordDim, (Iterator<Real>)Xglb+1*CoordDim, CoordDim, Comm::CommOp::MAX);
- for (Integer k = 0; k < CoordDim; k++) {
- R0 = std::max(R0, Xglb[1*CoordDim+k]-Xglb[0*CoordDim+k]);
- }
- R0 = R0 * 2.0;
- for (Integer k = 0; k < CoordDim; k++) {
- X0[k] = Xglb[k] - R0*0.25;
- }
- }
- if (period_length > 0) {
- R0 = period_length;
- }
- Vector<PtData> PtSrc, PtTrg;
- Integer order_upsample = (Integer)(const_pi<Real>() / distance_factor + 0.5);
- { // Set PtSrc
- const Vector<CoordBasis>& X_elem_lst = elem_lst.ElemVector();
- Vector<CoordBasis> dX_elem_lst;
- CoordBasis::Grad(dX_elem_lst, X_elem_lst);
- Matrix<Real> nds;
- Vector<Real> wts;
- TensorProductGaussQuad<ElemDim>(nds, wts, order_upsample);
- const Long Nnds = nds.Dim(1);
- Vector<Real> X, dX;
- const auto CoordEvalOp = CoordBasis::SetupEval(nds);
- eval_basis(X, X_elem_lst, CoordDim, Nnds, CoordEvalOp);
- eval_basis(dX, dX_elem_lst, CoordDim * ElemDim, Nnds, CoordEvalOp);
- const Long N = X.Dim() / CoordDim;
- const Long Nelem = elem_lst.NElem();
- SCTL_ASSERT(X.Dim() == N * CoordDim);
- SCTL_ASSERT(N == Nelem * Nnds);
- Long rank_offset, surf_rank_offset;
- { // Set rank_offset, surf_rank_offset
- comm.Scan(Ptr2ConstItr<Long>(&N,1), Ptr2Itr<Long>(&rank_offset,1), 1, Comm::CommOp::SUM);
- comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&surf_rank_offset,1), 1, Comm::CommOp::SUM);
- surf_rank_offset -= Nelem;
- rank_offset -= N;
- }
- PtSrc.ReInit(N);
- const Real R0inv = 1.0 / R0;
- for (Long i = 0; i < N; i++) { // Set coord
- for (Integer k = 0; k < CoordDim; k++) {
- PtSrc[i].coord[k] = (X[i*CoordDim+k] - X0[k]) * R0inv;
- }
- }
- if (period_length > 0) { // Wrap-around coord
- for (Long i = 0; i < N; i++) {
- auto& x = PtSrc[i].coord;
- for (Integer k = 0; k < CoordDim; k++) {
- x[k] -= (Long)(x[k]);
- }
- }
- }
- for (Long i = 0; i < N; i++) { // Set radius2, mid, rank
- Integer depth = 0;
- { // Set radius2, depth
- Real radius2 = 0;
- for (Integer k0 = 0; k0 < ElemDim; k0++) {
- Real R2 = 0;
- for (Integer k1 = 0; k1 < CoordDim; k1++) {
- Real dX_ = dX[(i*CoordDim+k1)*ElemDim+k0];
- R2 += dX_*dX_;
- }
- radius2 = std::max(radius2, R2);
- }
- radius2 *= R0inv*R0inv * distance_factor*distance_factor;
- PtSrc[i].radius2 = radius2;
- Long Rinv = (Long)(1.0/radius2);
- while (Rinv > 0) {
- Rinv = (Rinv>>2);
- depth++;
- }
- }
- PtSrc[i].mid = Morton<CoordDim>((Iterator<Real>)PtSrc[i].coord, std::min(Morton<CoordDim>::MaxDepth(),depth));
- PtSrc[i].rank = rank_offset + i;
- }
- for (Long i = 0 ; i < Nelem; i++) { // Set surf_rank
- for (Long j = 0; j < Nnds; j++) {
- PtSrc[i*Nnds+j].surf_rank = surf_rank_offset + i;
- }
- }
- Vector<PtData> PtSrcSorted;
- comm.HyperQuickSort(PtSrc, PtSrcSorted);
- PtSrc.Swap(PtSrcSorted);
- }
- { // Set PtTrg
- const Long N = Xt.Dim() / CoordDim;
- SCTL_ASSERT(Xt.Dim() == N * CoordDim);
- Long rank_offset;
- { // Set rank_offset
- comm.Scan(Ptr2ConstItr<Long>(&N,1), Ptr2Itr<Long>(&rank_offset,1), 1, Comm::CommOp::SUM);
- rank_offset -= N;
- }
- PtTrg.ReInit(N);
- const Real R0inv = 1.0 / R0;
- for (Long i = 0; i < N; i++) { // Set coord
- for (Integer k = 0; k < CoordDim; k++) {
- PtTrg[i].coord[k] = (Xt[i*CoordDim+k] - X0[k]) * R0inv;
- }
- }
- if (period_length > 0) { // Wrap-around coord
- for (Long i = 0; i < N; i++) {
- auto& x = PtTrg[i].coord;
- for (Integer k = 0; k < CoordDim; k++) {
- x[k] -= (Long)(x[k]);
- }
- }
- }
- for (Long i = 0; i < N; i++) { // Set radius2, mid, rank
- PtTrg[i].radius2 = 0;
- PtTrg[i].mid = Morton<CoordDim>((Iterator<Real>)PtTrg[i].coord);
- PtTrg[i].rank = rank_offset + i;
- }
- if (trg_surf.Dim()) { // Set surf_rank
- SCTL_ASSERT(trg_surf.Dim() == N);
- for (Long i = 0; i < N; i++) {
- PtTrg[i].surf_rank = trg_surf[i];
- }
- } else {
- for (Long i = 0; i < N; i++) {
- PtTrg[i].surf_rank = -1;
- }
- }
- Vector<PtData> PtTrgSorted;
- comm.HyperQuickSort(PtTrg, PtTrgSorted);
- PtTrg.Swap(PtTrgSorted);
- }
- Tree<CoordDim> tree(comm);
- { // Init tree
- Vector<Real> Xall(PtSrc.Dim()+PtTrg.Dim());
- { // Set Xall
- Xall.ReInit((PtSrc.Dim()+PtTrg.Dim())*CoordDim);
- Long Nsrc = PtSrc.Dim();
- Long Ntrg = PtTrg.Dim();
- for (Long i = 0; i < Nsrc; i++) {
- for (Integer k = 0; k < CoordDim; k++) {
- Xall[i*CoordDim+k] = PtSrc[i].coord[k];
- }
- }
- for (Long i = 0; i < Ntrg; i++) {
- for (Integer k = 0; k < CoordDim; k++) {
- Xall[(Nsrc+i)*CoordDim+k] = PtTrg[i].coord[k];
- }
- }
- }
- tree.UpdateRefinement(Xall, 1000, true, period_length>0);
- }
- { // Repartition PtSrc, PtTrg
- PtData splitter;
- splitter.mid = tree.GetPartitionMID()[rank];
- comm.PartitionS(PtSrc, splitter);
- comm.PartitionS(PtTrg, splitter);
- }
- { // Add tree data PtSrc
- const auto& node_mid = tree.GetNodeMID();
- const Long N = node_mid.Dim();
- SCTL_ASSERT(N);
- Vector<Long> dsp(N), cnt(N);
- for (Long i = 0; i < N; i++) {
- PtData m0;
- m0.mid = node_mid[i];
- dsp[i] = std::lower_bound(PtSrc.begin(), PtSrc.end(), m0) - PtSrc.begin();
- }
- for (Long i = 0; i < N-1; i++) {
- cnt[i] = dsp[i+1] - dsp[i];
- }
- cnt[N-1] = PtSrc.Dim() - dsp[N-1];
- tree.AddData("PtSrc", PtSrc, cnt);
- }
- tree.template Broadcast<PtData>("PtSrc");
- { // Build pair_lst
- Vector<Long> cnt;
- Vector<PtData> PtSrc;
- tree.GetData(PtSrc, cnt, "PtSrc");
- const auto& node_mid = tree.GetNodeMID();
- const auto& node_attr = tree.GetNodeAttr();
- Vector<Morton<CoordDim>> nbr_mid_tmp;
- for (Long i = 0; i < node_mid.Dim(); i++) {
- if (node_attr[i].Leaf && !node_attr[i].Ghost) {
- Vector<Morton<CoordDim>> child_mid;
- node_mid[i].Children(child_mid);
- for (const auto& trg_mid : child_mid) {
- Integer d0 = trg_mid.Depth();
- Vector<PtData> Src, Trg;
- { // Set Trg
- PtData m0, m1;
- m0.mid = trg_mid;
- m1.mid = trg_mid.Next();
- Long a = std::lower_bound(PtTrg.begin(), PtTrg.end(), m0) - PtTrg.begin();
- Long b = std::lower_bound(PtTrg.begin(), PtTrg.end(), m1) - PtTrg.begin();
- Trg.ReInit(b-a, PtTrg.begin()+a, false);
- if (!Trg.Dim()) continue;
- }
- Vector<std::set<Long>> near_elem(Trg.Dim());
- for (Integer d = 0; d <= d0; d++) {
- trg_mid.NbrList(nbr_mid_tmp, d, period_length>0);
- for (const auto& src_mid : nbr_mid_tmp) { // Set Src
- PtData m0, m1;
- m0.mid = src_mid;
- m1.mid = (d==d0 ? src_mid.Next() : src_mid.Ancestor(d+1));
- Long a = std::lower_bound(PtSrc.begin(), PtSrc.end(), m0) - PtSrc.begin();
- Long b = std::lower_bound(PtSrc.begin(), PtSrc.end(), m1) - PtSrc.begin();
- Src.ReInit(b-a, PtSrc.begin()+a, false);
- if (!Src.Dim()) continue;
- for (Long t = 0; t < Trg.Dim(); t++) { // set near_elem[t] <-- {s : dist(s,t) < radius(s)}
- for (Long s = 0; s < Src.Dim(); s++) {
- if (Trg[t].surf_rank != Src[s].surf_rank) {
- Real R2 = 0;
- for (Integer k = 0; k < CoordDim; k++) {
- Real dx = (Src[s].coord[k] - Trg[t].coord[k]);
- R2 += dx * dx;
- }
- if (R2 < Src[s].radius2) {
- near_elem[t].insert(Src[s].surf_rank);
- }
- }
- }
- }
- }
- }
- for (Long t = 0; t < Trg.Dim(); t++) { // Set pair_lst
- for (Long elem_idx : near_elem[t]) {
- pair_lst.PushBack(Pair<Long,Long>(elem_idx,Trg[t].rank));
- }
- }
- }
- }
- }
- }
- { // Sort and repartition pair_lst
- Vector<Pair<Long,Long>> pair_lst_sorted;
- comm.HyperQuickSort(pair_lst, pair_lst_sorted);
- Long surf_rank_offset;
- const Long Nelem = elem_lst.NElem();
- comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&surf_rank_offset,1), 1, Comm::CommOp::SUM);
- surf_rank_offset -= Nelem;
- comm.PartitionS(pair_lst_sorted, Pair<Long,Long>(surf_rank_offset,0));
- pair_lst.Swap(pair_lst_sorted);
- }
- }
- template <class ElemList> static void BuildNbrListDeprecated(Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt, const ElemList& elem_lst, const Matrix<Real>& surf_nds, Real distance_factor) {
- using CoordBasis = typename ElemList::CoordBasis;
- constexpr Integer CoordDim = ElemList::CoordDim();
- constexpr Integer ElemDim = ElemList::ElemDim();
- const Long Nelem = elem_lst.NElem();
- const Long Ntrg = Xt.Dim() / CoordDim;
- SCTL_ASSERT(Xt.Dim() == Ntrg * CoordDim);
- Long Nnds, Nsurf_nds;
- Vector<Real> X_surf, X, dX;
- Integer order_upsample = (Integer)(const_pi<Real>() / distance_factor + 0.5);
- { // Set X, dX
- const Vector<CoordBasis>& X_elem_lst = elem_lst.ElemVector();
- Vector<CoordBasis> dX_elem_lst;
- CoordBasis::Grad(dX_elem_lst, X_elem_lst);
- Matrix<Real> nds_upsample;
- Vector<Real> wts_upsample;
- TensorProductGaussQuad<ElemDim>(nds_upsample, wts_upsample, order_upsample);
- Nnds = nds_upsample.Dim(1);
- const auto CoordEvalOp = CoordBasis::SetupEval(nds_upsample);
- eval_basis(X, X_elem_lst, CoordDim, nds_upsample.Dim(1), CoordEvalOp);
- eval_basis(dX, dX_elem_lst, CoordDim * ElemDim, nds_upsample.Dim(1), CoordEvalOp);
- Nsurf_nds = surf_nds.Dim(1);
- const auto CoordEvalOp_surf = CoordBasis::SetupEval(surf_nds);
- eval_basis(X_surf, X_elem_lst, CoordDim, Nsurf_nds, CoordEvalOp_surf);
- }
- Real d2 = distance_factor * distance_factor;
- for (Long i = 0; i < Nelem; i++) {
- std::set<Long> near_pts;
- std::set<Long> self_pts;
- for (Long j = 0; j < Nnds; j++) {
- Real R2_max = 0;
- StaticArray<Real, CoordDim> X0;
- for (Integer k = 0; k < CoordDim; k++) {
- X0[k] = X[(i*Nnds+j)*CoordDim+k];
- }
- for (Integer k0 = 0; k0 < ElemDim; k0++) {
- Real R2 = 0;
- for (Integer k1 = 0; k1 < CoordDim; k1++) {
- Real dX_ = dX[((i*Nnds+j)*CoordDim+k1)*ElemDim+k0];
- R2 += dX_*dX_;
- }
- R2_max = std::max(R2_max, R2*d2);
- }
- for (Long k = 0; k < Ntrg; k++) {
- Real R2 = 0;
- for (Integer l = 0; l < CoordDim; l++) {
- Real dX = Xt[k*CoordDim+l]- X0[l];
- R2 += dX * dX;
- }
- if (R2 < R2_max) near_pts.insert(k);
- }
- }
- for (Long j = 0; j < Nsurf_nds; j++) {
- StaticArray<Real, CoordDim> X0;
- for (Integer k = 0; k < CoordDim; k++) {
- X0[k] = X_surf[(i*Nsurf_nds+j)*CoordDim+k];
- }
- for (Long k = 0; k < Ntrg; k++) {
- Real R2 = 0;
- for (Integer l = 0; l < CoordDim; l++) {
- Real dX = Xt[k*CoordDim+l]- X0[l];
- R2 += dX * dX;
- }
- if (R2 == 0) self_pts.insert(k);
- }
- }
- for (Long trg_idx : self_pts) {
- near_pts.erase(trg_idx);
- }
- for (Long trg_idx : near_pts) {
- pair_lst.PushBack(Pair<Long,Long>(i,trg_idx));
- }
- }
- }
- template <class DensityBasis, class ElemList, class Kernel> static void SetupNearSingular(Matrix<Real>& M_near_singular, Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt_, const Vector<Long>& trg_surf, const ElemList& elem_lst, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) {
- static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
- static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
- static_assert(DensityBasis::Dim() == ElemList::ElemDim());
- using CoordBasis = typename ElemList::CoordBasis;
- using CoordEvalOpType = typename CoordBasis::EvalOpType;
- using DensityEvalOpType = typename DensityBasis::EvalOpType;
- constexpr Integer CoordDim = ElemList::CoordDim();
- constexpr Integer ElemDim = ElemList::ElemDim();
- constexpr Integer KDIM0 = Kernel::SrcDim();
- constexpr Integer KDIM1 = Kernel::TrgDim();
- const Long Nelem = elem_lst.NElem();
- BuildNbrList(pair_lst, Xt_, trg_surf, elem_lst, 2.5/order_direct, period_length, comm);
- const Long Ninterac = pair_lst.Dim();
- Vector<Real> Xt;
- { // Set Xt
- Integer rank = comm.Rank();
- Integer np = comm.Size();
- Vector<Long> splitter_ranks;
- { // Set splitter_ranks
- Vector<Long> cnt(np);
- const Long N = Xt_.Dim() / CoordDim;
- comm.Allgather(Ptr2ConstItr<Long>(&N,1), 1, cnt.begin(), 1);
- scan(splitter_ranks, cnt);
- }
- Vector<Long> scatter_index, recv_index, recv_cnt(np), recv_dsp(np);
- { // Set scatter_index, recv_index, recv_cnt, recv_dsp
- { // Set scatter_index, recv_index
- Vector<Pair<Long,Long>> scatter_pair(pair_lst.Dim());
- for (Long i = 0; i < pair_lst.Dim(); i++) {
- scatter_pair[i] = Pair<Long,Long>(pair_lst[i].second,i);
- }
- omp_par::merge_sort(scatter_pair.begin(), scatter_pair.end());
- recv_index.ReInit(scatter_pair.Dim());
- scatter_index.ReInit(scatter_pair.Dim());
- for (Long i = 0; i < scatter_index.Dim(); i++) {
- recv_index[i] = scatter_pair[i].first;
- scatter_index[i] = scatter_pair[i].second;
- }
- }
- for (Integer i = 0; i < np; i++) {
- recv_dsp[i] = std::lower_bound(recv_index.begin(), recv_index.end(), splitter_ranks[i]) - recv_index.begin();
- }
- for (Integer i = 0; i < np-1; i++) {
- recv_cnt[i] = recv_dsp[i+1] - recv_dsp[i];
- }
- recv_cnt[np-1] = recv_index.Dim() - recv_dsp[np-1];
- }
- Vector<Long> send_index, send_cnt(np), send_dsp(np);
- { // Set send_index, send_cnt, send_dsp
- comm.Alltoall(recv_cnt.begin(), 1, send_cnt.begin(), 1);
- scan(send_dsp, send_cnt);
- send_index.ReInit(send_cnt[np-1] + send_dsp[np-1]);
- comm.Alltoallv(recv_index.begin(), recv_cnt.begin(), recv_dsp.begin(), send_index.begin(), send_cnt.begin(), send_dsp.begin());
- }
- Vector<Real> Xt_send(send_index.Dim() * CoordDim);
- for (Long i = 0; i < send_index.Dim(); i++) { // Set Xt_send
- Long idx = send_index[i] - splitter_ranks[rank];
- for (Integer k = 0; k < CoordDim; k++) {
- Xt_send[i*CoordDim+k] = Xt_[idx*CoordDim+k];
- }
- }
- Vector<Real> Xt_recv(recv_index.Dim() * CoordDim);
- { // Set Xt_recv
- for (Long i = 0; i < np; i++) {
- send_cnt[i] *= CoordDim;
- send_dsp[i] *= CoordDim;
- recv_cnt[i] *= CoordDim;
- recv_dsp[i] *= CoordDim;
- }
- comm.Alltoallv(Xt_send.begin(), send_cnt.begin(), send_dsp.begin(), Xt_recv.begin(), recv_cnt.begin(), recv_dsp.begin());
- }
- Xt.ReInit(scatter_index.Dim() * CoordDim);
- for (Long i = 0; i < scatter_index.Dim(); i++) { // Set Xt
- Long idx = scatter_index[i];
- for (Integer k = 0; k < CoordDim; k++) {
- Xt[idx*CoordDim+k] = Xt_recv[i*CoordDim+k];
- }
- }
- }
- const Vector<CoordBasis>& X = elem_lst.ElemVector();
- Vector<CoordBasis> dX;
- CoordBasis::Grad(dX, X);
- Long elem_rank_offset;
- { // Set elem_rank_offset
- comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&elem_rank_offset,1), 1, Comm::CommOp::SUM);
- elem_rank_offset -= Nelem;
- }
- auto& M = M_near_singular;
- M.ReInit(Ninterac * KDIM0 * DensityBasis::Size(), KDIM1);
- #pragma omp parallel for schedule(static)
- for (Long j = 0; j < Ninterac; j++) { // Set M (near-singular)
- const Long src_idx = pair_lst[j].first - elem_rank_offset;
- Real adapt = -1.0;
- Tensor<Real,true,ElemDim,1> u0;
- { // Set u0 (project target point to the surface patch in parameter space)
- ConstIterator<Real> Xt_ = Xt.begin() + j * CoordDim;
- const auto& nodes = CoordBasis::Nodes();
- Long min_idx = -1;
- Real min_R2 = 1e10;
- for (Long i = 0; i < CoordBasis::Size(); i++) {
- Real R2 = 0;
- for (Integer k = 0; k < CoordDim; k++) {
- Real dX = X[src_idx * CoordDim + k][i] - Xt_[k];
- R2 += dX * dX;
- }
- if (R2 < min_R2) {
- min_R2 = R2;
- min_idx = i;
- }
- }
- SCTL_ASSERT(min_idx >= 0);
- for (Integer k = 0; k < ElemDim; k++) {
- u0(k,0) = nodes[k][min_idx];
- }
- for (Integer i = 0; i < 2; i++) { // iterate
- Matrix<Real> X_, dX_;
- for (Integer k = 0; k < ElemDim; k++) {
- u0(k,0) = std::min<Real>(1.0, u0(k,0));
- u0(k,0) = std::max<Real>(0.0, u0(k,0));
- }
- const auto eval_op = CoordBasis::SetupEval(Matrix<Real>(ElemDim,1,u0.begin(),false));
- CoordBasis::Eval(X_, Vector<CoordBasis>(CoordDim,(Iterator<CoordBasis>)X.begin()+src_idx*CoordDim,false),eval_op);
- CoordBasis::Eval(dX_, Vector<CoordBasis>(CoordDim*ElemDim,dX.begin()+src_idx*CoordDim*ElemDim,false),eval_op);
- const Tensor<Real,false,CoordDim,1> x0((Iterator<Real>)Xt_);
- const Tensor<Real,false,CoordDim,1> x(X_.begin());
- const Tensor<Real,false,CoordDim,ElemDim> x_u(dX_.begin());
- auto inv = [](const Tensor<Real,true,2,2>& M) {
- Tensor<Real,true,2,2> Minv;
- Real det_inv = 1.0 / (M(0,0)*M(1,1) - M(1,0)*M(0,1));
- Minv(0,0) = M(1,1) * det_inv;
- Minv(0,1) =-M(0,1) * det_inv;
- Minv(1,0) =-M(1,0) * det_inv;
- Minv(1,1) = M(0,0) * det_inv;
- return Minv;
- };
- auto du = inv(x_u.RotateRight()*x_u) * x_u.RotateRight()*(x0-x);
- u0 = u0 + du;
- auto x_u_squared = x_u.RotateRight() * x_u;
- adapt = sctl::sqrt<Real>( ((x0-x).RotateRight()*(x0-x))(0,0) / std::max<Real>(x_u_squared(0,0),x_u_squared(1,1)) );
- }
- }
- Matrix<Real> quad_nds;
- Vector<Real> quad_wts;
- DuffyQuad<ElemDim>(quad_nds, quad_wts, Vector<Real>(ElemDim,u0.begin(),false), order_singular, adapt);
- const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
- Integer Nnds = quad_wts.Dim();
- Vector<Real> X_, dX_, Xa_, Xn_;
- { // Set X_, dX_
- const Vector<CoordBasis> X__(CoordDim, (Iterator<CoordBasis>)X.begin() + src_idx * CoordDim, false);
- const Vector<CoordBasis> dX__(CoordDim * ElemDim, (Iterator<CoordBasis>)dX.begin() + src_idx * CoordDim * ElemDim, false);
- eval_basis(X_, X__, CoordDim, Nnds, CoordEvalOp);
- eval_basis(dX_, dX__, CoordDim * ElemDim, Nnds, CoordEvalOp);
- }
- if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
- Xa_.ReInit(Nnds);
- Xn_.ReInit(Nnds*CoordDim);
- for (Long j = 0; j < Nnds; j++) {
- StaticArray<Real,CoordDim> normal;
- normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
- normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
- normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
- Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
- Real invXa = 1/Xa_[j];
- Xn_[j*3+0] = normal[0] * invXa;
- Xn_[j*3+1] = normal[1] * invXa;
- Xn_[j*3+2] = normal[2] * invXa;
- }
- }
- DensityEvalOpType DensityEvalOp;
- if (std::is_same<CoordBasis,DensityBasis>::value) {
- DensityEvalOp = CoordEvalOp;
- } else {
- DensityEvalOp = DensityBasis::SetupEval(quad_nds);
- }
- Matrix<Real> M__(Nnds * KDIM0, KDIM1);
- { // Set kernel matrix M__
- const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + j * CoordDim, false);
- kernel.template KernelMatrix<Real>(M__, X0_, X_, Xn_);
- }
- for (Long k0 = 0; k0 < KDIM0; k0++) {
- for (Long k1 = 0; k1 < KDIM1; k1++) {
- for (Long l = 0; l < DensityBasis::Size(); l++) {
- Real M_lk = 0;
- for (Long n = 0; n < Nnds; n++) {
- Real quad_wt = Xa_[n] * quad_wts[n];
- M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
- }
- M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1] = M_lk;
- }
- }
- }
- }
- { // Set M (subtract direct)
- Matrix<Real> quad_nds;
- Vector<Real> quad_wts;
- TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
- const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
- Integer Nnds = quad_wts.Dim();
- Vector<Real> X_, dX_, Xa_, Xn_;
- { // Set X_, dX_
- eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
- eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
- }
- if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
- Long N = Nelem*Nnds;
- Xa_.ReInit(N);
- Xn_.ReInit(N*CoordDim);
- for (Long j = 0; j < N; j++) {
- StaticArray<Real,CoordDim> normal;
- normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
- normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
- normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
- Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
- Real invXa = 1/Xa_[j];
- Xn_[j*3+0] = normal[0] * invXa;
- Xn_[j*3+1] = normal[1] * invXa;
- Xn_[j*3+2] = normal[2] * invXa;
- }
- }
- DensityEvalOpType DensityEvalOp;
- if (std::is_same<CoordBasis,DensityBasis>::value) {
- DensityEvalOp = CoordEvalOp;
- } else {
- DensityEvalOp = DensityBasis::SetupEval(quad_nds);
- }
- #pragma omp parallel for schedule(static)
- for (Long j = 0; j < Ninterac; j++) { // Subtract direct contribution
- const Long src_idx = pair_lst[j].first - elem_rank_offset;
- Matrix<Real> M__(Nnds * KDIM0, KDIM1);
- { // Set kernel matrix M__
- const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + j * CoordDim, false);
- Vector<Real> X__(Nnds * CoordDim, X_.begin() + src_idx * Nnds * CoordDim, false);
- Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + src_idx * Nnds * CoordDim, false);
- kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
- }
- for (Long k0 = 0; k0 < KDIM0; k0++) {
- for (Long k1 = 0; k1 < KDIM1; k1++) {
- for (Long l = 0; l < DensityBasis::Size(); l++) {
- Real M_lk = 0;
- for (Long n = 0; n < Nnds; n++) {
- Real quad_wt = Xa_[src_idx * Nnds + n] * quad_wts[n];
- M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
- }
- M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1] -= M_lk;
- }
- }
- }
- }
- }
- }
- template <class DensityBasis> static void EvalNearSingular(Vector<Real>& U, const Vector<DensityBasis>& density, const Matrix<Real>& M, const Vector<Pair<Long,Long>>& pair_lst, Long Nelem_, Long Ntrg_, Integer KDIM0_, Integer KDIM1_, const Comm& comm) {
- const Long Ninterac = pair_lst.Dim();
- const Integer dof = density.Dim() / Nelem_ / KDIM0_;
- SCTL_ASSERT(density.Dim() == Nelem_ * dof * KDIM0_);
- Long elem_rank_offset;
- { // Set elem_rank_offset
- comm.Scan(Ptr2ConstItr<Long>(&Nelem_,1), Ptr2Itr<Long>(&elem_rank_offset,1), 1, Comm::CommOp::SUM);
- elem_rank_offset -= Nelem_;
- }
- Vector<Real> U_loc(Ninterac*dof*KDIM1_);
- for (Long j = 0; j < Ninterac; j++) {
- const Long src_idx = pair_lst[j].first - elem_rank_offset;
- const Matrix<Real> M_(KDIM0_ * DensityBasis::Size(), KDIM1_, (Iterator<Real>)M[j * KDIM0_ * DensityBasis::Size()], false);
- Matrix<Real> U_(dof, KDIM1_, U_loc.begin() + j*dof*KDIM1_, false);
- Matrix<Real> F_(dof, KDIM0_ * DensityBasis::Size());
- for (Long i = 0; i < dof; i++) {
- for (Long k = 0; k < KDIM0_; k++) {
- for (Long l = 0; l < DensityBasis::Size(); l++) {
- F_[i][k * DensityBasis::Size() + l] = density[(src_idx * dof + i) * KDIM0_ + k][l];
- }
- }
- }
- Matrix<Real>::GEMM(U_, F_, M_);
- }
- if (U.Dim() != Ntrg_ * dof * KDIM1_) {
- U.ReInit(Ntrg_ * dof * KDIM1_);
- U = 0;
- }
- { // Set U
- Integer rank = comm.Rank();
- Integer np = comm.Size();
- Vector<Long> splitter_ranks;
- { // Set splitter_ranks
- Vector<Long> cnt(np);
- comm.Allgather(Ptr2ConstItr<Long>(&Ntrg_,1), 1, cnt.begin(), 1);
- scan(splitter_ranks, cnt);
- }
- Vector<Long> scatter_index, send_index, send_cnt(np), send_dsp(np);
- { // Set scatter_index, send_index, send_cnt, send_dsp
- { // Set scatter_index, send_index
- Vector<Pair<Long,Long>> scatter_pair(pair_lst.Dim());
- for (Long i = 0; i < pair_lst.Dim(); i++) {
- scatter_pair[i] = Pair<Long,Long>(pair_lst[i].second,i);
- }
- omp_par::merge_sort(scatter_pair.begin(), scatter_pair.end());
- send_index.ReInit(scatter_pair.Dim());
- scatter_index.ReInit(scatter_pair.Dim());
- for (Long i = 0; i < scatter_index.Dim(); i++) {
- send_index[i] = scatter_pair[i].first;
- scatter_index[i] = scatter_pair[i].second;
- }
- }
- for (Integer i = 0; i < np; i++) {
- send_dsp[i] = std::lower_bound(send_index.begin(), send_index.end(), splitter_ranks[i]) - send_index.begin();
- }
- for (Integer i = 0; i < np-1; i++) {
- send_cnt[i] = send_dsp[i+1] - send_dsp[i];
- }
- send_cnt[np-1] = send_index.Dim() - send_dsp[np-1];
- }
- Vector<Long> recv_index, recv_cnt(np), recv_dsp(np);
- { // Set recv_index, recv_cnt, recv_dsp
- comm.Alltoall(send_cnt.begin(), 1, recv_cnt.begin(), 1);
- scan(recv_dsp, recv_cnt);
- recv_index.ReInit(recv_cnt[np-1] + recv_dsp[np-1]);
- comm.Alltoallv(send_index.begin(), send_cnt.begin(), send_dsp.begin(), recv_index.begin(), recv_cnt.begin(), recv_dsp.begin());
- }
- Vector<Real> U_send(scatter_index.Dim() * dof * KDIM1_);
- for (Long i = 0; i < scatter_index.Dim(); i++) {
- Long idx = scatter_index[i]*dof*KDIM1_;
- for (Long k = 0; k < dof * KDIM1_; k++) {
- U_send[i*dof*KDIM1_ + k] = U_loc[idx + k];
- }
- }
- Vector<Real> U_recv(recv_index.Dim() * dof * KDIM1_);
- { // Set U_recv
- for (Long i = 0; i < np; i++) {
- send_cnt[i] *= dof * KDIM1_;
- send_dsp[i] *= dof * KDIM1_;
- recv_cnt[i] *= dof * KDIM1_;
- recv_dsp[i] *= dof * KDIM1_;
- }
- comm.Alltoallv(U_send.begin(), send_cnt.begin(), send_dsp.begin(), U_recv.begin(), recv_cnt.begin(), recv_dsp.begin());
- }
- for (Long i = 0; i < recv_index.Dim(); i++) { // Set U
- Long idx = (recv_index[i] - splitter_ranks[rank]) * dof * KDIM1_;
- for (Integer k = 0; k < dof * KDIM1_; k++) {
- U[idx + k] += U_recv[i*dof*KDIM1_ + k];
- }
- }
- }
- }
- template <class ElemList, class DensityBasis, class Kernel> static void Direct(Vector<Real>& U, const Vector<Real>& Xt, const ElemList& elem_lst, const Vector<DensityBasis>& density, const Kernel& kernel, Integer order_direct, const Comm& comm) {
- using CoordBasis = typename ElemList::CoordBasis;
- using CoordEvalOpType = typename CoordBasis::EvalOpType;
- using DensityEvalOpType = typename DensityBasis::EvalOpType;
- constexpr Integer CoordDim = ElemList::CoordDim();
- constexpr Integer ElemDim = ElemList::ElemDim();
- constexpr Integer KDIM0 = Kernel::SrcDim();
- constexpr Integer KDIM1 = Kernel::TrgDim();
- const Long Nelem = elem_lst.NElem();
- const Integer dof = density.Dim() / Nelem / KDIM0;
- SCTL_ASSERT(density.Dim() == Nelem * dof * KDIM0);
- Matrix<Real> quad_nds;
- Vector<Real> quad_wts;
- TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
- const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
- Integer Nnds = quad_wts.Dim();
- const Vector<CoordBasis>& X = elem_lst.ElemVector();
- Vector<CoordBasis> dX;
- CoordBasis::Grad(dX, X);
- Vector<Real> X_, dX_, Xa_, Xn_;
- eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
- eval_basis(dX_, dX, CoordDim*ElemDim, Nnds, CoordEvalOp);
- if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
- Long N = Nelem*Nnds;
- Xa_.ReInit(N);
- Xn_.ReInit(N*CoordDim);
- for (Long j = 0; j < N; j++) {
- StaticArray<Real,CoordDim> normal;
- normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
- normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
- normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
- Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
- Real invXa = 1/Xa_[j];
- Xn_[j*3+0] = normal[0] * invXa;
- Xn_[j*3+1] = normal[1] * invXa;
- Xn_[j*3+2] = normal[2] * invXa;
- }
- }
- Vector<Real> Fa_;
- { // Set Fa_
- Vector<Real> F_;
- if (std::is_same<CoordBasis,DensityBasis>::value) {
- eval_basis(F_, density, dof * KDIM0, Nnds, CoordEvalOp);
- } else {
- const DensityEvalOpType EvalOp = DensityBasis::SetupEval(quad_nds);
- eval_basis(F_, density, dof * KDIM0, Nnds, EvalOp);
- }
- Fa_.ReInit(F_.Dim());
- const Integer DensityDOF = dof * KDIM0;
- SCTL_ASSERT(F_.Dim() == Nelem * Nnds * DensityDOF);
- for (Long j = 0; j < Nelem; j++) {
- for (Integer k = 0; k < Nnds; k++) {
- Long idx = j * Nnds + k;
- Real quad_wt = Xa_[idx] * quad_wts[k];
- for (Integer l = 0; l < DensityDOF; l++) {
- Fa_[idx * DensityDOF + l] = F_[idx * DensityDOF + l] * quad_wt;
- }
- }
- }
- }
- { // Evaluate potential
- const Long Ntrg = Xt.Dim() / CoordDim;
- SCTL_ASSERT(Xt.Dim() == Ntrg * CoordDim);
- if (U.Dim() != Ntrg * dof * KDIM1) {
- U.ReInit(Ntrg * dof * KDIM1);
- U = 0;
- }
- ParticleFMM<Real,CoordDim>::Eval(U, Xt, X_, Xn_, Fa_, kernel, comm);
- }
- }
- public:
- template <class DensityBasis, class ElemList, class Kernel> void Setup(const ElemList& elem_lst, const Vector<Real>& Xt, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) {
- Xt_.ReInit(0);
- M_singular.ReInit(0,0);
- M_near_singular.ReInit(0,0);
- pair_lst.ReInit(0);
- order_direct_ = order_direct;
- period_length_ = period_length;
- comm_ = comm;
- Profile::Tic("Setup", &comm_);
- static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
- static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
- static_assert(DensityBasis::Dim() == ElemList::ElemDim());
- Xt_ = Xt;
- M_singular.ReInit(0,0);
- Profile::Tic("SetupNearSingular", &comm_);
- SetupNearSingular<DensityBasis>(M_near_singular, pair_lst, Xt_, Vector<Long>(), elem_lst, kernel, order_singular, order_direct_, period_length_, comm_);
- Profile::Toc();
- Profile::Toc();
- }
- template <class DensityBasis, class PotentialBasis, class ElemList, class Kernel> void Setup(const ElemList& elem_lst, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm, Real Rqbx = 0) {
- Xt_.ReInit(0);
- M_singular.ReInit(0,0);
- M_near_singular.ReInit(0,0);
- pair_lst.ReInit(0);
- order_direct_ = order_direct;
- period_length_ = period_length;
- comm_ = comm;
- Profile::Tic("Setup", &comm_);
- static_assert(std::is_same<Real,typename PotentialBasis::ValueType>::value);
- static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
- static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
- static_assert(PotentialBasis::Dim() == ElemList::ElemDim());
- static_assert(DensityBasis::Dim() == ElemList::ElemDim());
- Vector<Long> trg_surf;
- { // Set Xt_
- using CoordBasis = typename ElemList::CoordBasis;
- Matrix<Real> trg_nds = PotentialBasis::Nodes();
- auto Meval = CoordBasis::SetupEval(trg_nds);
- eval_basis(Xt_, elem_lst.ElemVector(), ElemList::CoordDim(), trg_nds.Dim(1), Meval);
- { // Set trg_surf
- const Long Nelem = elem_lst.NElem();
- const Long Nnds = trg_nds.Dim(1);
- Long elem_offset;
- { // Set elem_offset
- comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&elem_offset,1), 1, Comm::CommOp::SUM);
- elem_offset -= Nelem;
- }
- trg_surf.ReInit(elem_lst.NElem() * trg_nds.Dim(1));
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnds; j++) {
- trg_surf[i*Nnds+j] = elem_offset + i;
- }
- }
- }
- }
- Profile::Tic("SetupSingular", &comm_);
- SetupSingular<DensityBasis>(M_singular, PotentialBasis::Nodes(), elem_lst, kernel, order_singular, order_direct_, Rqbx);
- Profile::Toc();
- Profile::Tic("SetupNearSingular", &comm_);
- SetupNearSingular<DensityBasis>(M_near_singular, pair_lst, Xt_, trg_surf, elem_lst, kernel, order_singular, order_direct_, period_length_, comm_);
- Profile::Toc();
- Profile::Toc();
- }
- template <class DensityBasis, class PotentialBasis, class ElemList, class Kernel> void Eval(Vector<PotentialBasis>& U, const ElemList& elements, const Vector<DensityBasis>& F, const Kernel& kernel) const {
- Profile::Tic("Eval", &comm_);
- Matrix<Real> U_singular;
- Vector<Real> U_direct, U_near_sing;
- Profile::Tic("EvalDirect", &comm_);
- Direct(U_direct, Xt_, elements, F, kernel, order_direct_, comm_);
- Profile::Toc();
- Profile::Tic("EvalSingular", &comm_);
- EvalSingular(U_singular, F, M_singular, kernel.SrcDim(), kernel.TrgDim());
- Profile::Toc();
- Profile::Tic("EvalNearSingular", &comm_);
- EvalNearSingular(U_near_sing, F, M_near_singular, pair_lst, elements.NElem(), Xt_.Dim() / ElemList::CoordDim(), kernel.SrcDim(), kernel.TrgDim(), comm_);
- SCTL_ASSERT(U_near_sing.Dim() == U_direct.Dim());
- Profile::Toc();
- const Long dof = U_direct.Dim() / (elements.NElem() * PotentialBasis::Size() * kernel.TrgDim());
- SCTL_ASSERT(U_direct .Dim() == elements.NElem() * PotentialBasis::Size() * dof * kernel.TrgDim());
- SCTL_ASSERT(U_near_sing.Dim() == elements.NElem() * PotentialBasis::Size() * dof * kernel.TrgDim());
- if (U.Dim() != elements.NElem() * dof * kernel.TrgDim()) {
- U.ReInit(elements.NElem() * dof * kernel.TrgDim());
- }
- for (int i = 0; i < elements.NElem(); i++) {
- for (int j = 0; j < PotentialBasis::Size(); j++) {
- for (int k = 0; k < dof*kernel.TrgDim(); k++) {
- Real& U_ = U[i*dof*kernel.TrgDim()+k][j];
- U_ = 0;
- U_ += U_direct [(i*PotentialBasis::Size()+j)*dof*kernel.TrgDim()+k];
- U_ += U_near_sing[(i*PotentialBasis::Size()+j)*dof*kernel.TrgDim()+k];
- U_ *= kernel.template ScaleFactor<Real>();
- }
- }
- }
- if (U_singular.Dim(1)) {
- SCTL_ASSERT(U_singular.Dim(0) == elements.NElem() * dof * kernel.TrgDim());
- SCTL_ASSERT(U_singular.Dim(1) == PotentialBasis::Size());
- for (int i = 0; i < elements.NElem(); i++) {
- for (int j = 0; j < PotentialBasis::Size(); j++) {
- for (int k = 0; k < dof*kernel.TrgDim(); k++) {
- U[i*dof*kernel.TrgDim()+k][j] += U_singular[i*dof*kernel.TrgDim()+k][j] * kernel.template ScaleFactor<Real>();
- }
- }
- }
- }
- Profile::Toc();
- }
- template <class DensityBasis, class ElemList, class Kernel> void Eval(Vector<Real>& U, const ElemList& elements, const Vector<DensityBasis>& F, const Kernel& kernel) const {
- Profile::Tic("Eval", &comm_);
- Matrix<Real> U_singular;
- Vector<Real> U_direct, U_near_sing;
- Profile::Tic("EvalDirect", &comm_);
- Direct(U_direct, Xt_, elements, F, kernel, order_direct_, comm_);
- Profile::Toc();
- Profile::Tic("EvalSingular", &comm_);
- EvalSingular(U_singular, F, M_singular, kernel.SrcDim(), kernel.TrgDim());
- Profile::Toc();
- Profile::Tic("EvalNearSingular", &comm_);
- EvalNearSingular(U_near_sing, F, M_near_singular, pair_lst, elements.NElem(), Xt_.Dim() / ElemList::CoordDim(), kernel.SrcDim(), kernel.TrgDim(), comm_);
- SCTL_ASSERT(U_near_sing.Dim() == U_direct.Dim());
- Profile::Toc();
- Long Nt = Xt_.Dim() / ElemList::CoordDim();
- const Long dof = U_direct.Dim() / (Nt * kernel.TrgDim());
- SCTL_ASSERT(U_direct.Dim() == Nt * dof * kernel.TrgDim());
- if (U.Dim() != U_direct.Dim()) {
- U.ReInit(U_direct.Dim());
- }
- for (int i = 0; i < U.Dim(); i++) {
- U[i] = (U_direct[i] + U_near_sing[i]) * kernel.template ScaleFactor<Real>();
- }
- if (U_singular.Dim(1)) {
- SCTL_ASSERT(U_singular.Dim(0) == elements.NElem() * dof * kernel.TrgDim());
- const Long Nnodes = U_singular.Dim(1);
- for (int i = 0; i < elements.NElem(); i++) {
- for (int j = 0; j < Nnodes; j++) {
- for (int k = 0; k < dof*kernel.TrgDim(); k++) {
- Real& U_ = U[(i*Nnodes+j)*dof*kernel.TrgDim()+k];
- U_ += U_singular[i*dof*kernel.TrgDim()+k][j] * kernel.template ScaleFactor<Real>();
- }
- }
- }
- }
- Profile::Toc();
- }
- template <Integer ORDER = 5> static void test(Integer order_singular = 10, Integer order_direct = 5, const Comm& comm = Comm::World()) {
- constexpr Integer COORD_DIM = 3;
- constexpr Integer ELEM_DIM = COORD_DIM-1;
- using ElemList = ElemList<COORD_DIM, Basis<Real, ELEM_DIM, ORDER>>;
- using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
- using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
- int np = comm.Size();
- int rank = comm.Rank();
- auto build_torus = [rank,np](ElemList& elements, long Nt, long Np, Real Rmajor, Real Rminor){
- auto nodes = ElemList::CoordBasis::Nodes();
- auto torus = [](Real theta, Real phi, Real Rmajor, Real Rminor) {
- Real R = Rmajor + Rminor * cos<Real>(phi);
- Real X = R * cos<Real>(theta);
- Real Y = R * sin<Real>(theta);
- Real Z = Rminor * sin<Real>(phi);
- return std::make_tuple(X,Y,Z);
- };
- long start = Nt*Np*(rank+0)/np;
- long end = Nt*Np*(rank+1)/np;
- elements.ReInit(end - start);
- for (long ii = start; ii < end; ii++) {
- long i = ii / Np;
- long j = ii % Np;
- for (int k = 0; k < ElemList::CoordBasis::Size(); k++) {
- Real X, Y, Z;
- Real theta = 2 * const_pi<Real>() * (i + nodes[0][k]) / Nt;
- Real phi = 2 * const_pi<Real>() * (j + nodes[1][k]) / Np;
- std::tie(X,Y,Z) = torus(theta, phi, Rmajor, Rminor);
- elements(ii-start,0)[k] = X;
- elements(ii-start,1)[k] = Y;
- elements(ii-start,2)[k] = Z;
- }
- }
- };
- ElemList elements_src, elements_trg;
- build_torus(elements_src, 28, 16, 2, 1.0);
- build_torus(elements_trg, 29, 17, 2, 0.99);
- Vector<Real> Xt;
- Vector<PotentialBasis> U_onsurf, U_offsurf;
- Vector<DensityBasis> density_sl, density_dl;
- { // Set Xt, elements_src, elements_trg, density_sl, density_dl, U
- Real X0[COORD_DIM] = {3,2,1};
- std::function<void(Real*,Real*,Real*)> potential = [X0](Real* U, Real* X, Real* Xn) {
- Real dX[COORD_DIM] = {X[0]-X0[0],X[1]-X0[1],X[2]-X0[2]};
- Real Rinv = 1/sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dX[2]);
- U[0] = Rinv;
- };
- std::function<void(Real*,Real*,Real*)> potential_normal_derivative = [X0](Real* U, Real* X, Real* Xn) {
- Real dX[COORD_DIM] = {X[0]-X0[0],X[1]-X0[1],X[2]-X0[2]};
- Real Rinv = 1/sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dX[2]);
- Real RdotN = dX[0]*Xn[0]+dX[1]*Xn[1]+dX[2]*Xn[2];
- U[0] = -RdotN * Rinv*Rinv*Rinv;
- };
- DiscretizeSurfaceFn<COORD_DIM,1>(density_sl, elements_src, potential_normal_derivative);
- DiscretizeSurfaceFn<COORD_DIM,1>(density_dl, elements_src, potential);
- DiscretizeSurfaceFn<COORD_DIM,1>(U_onsurf , elements_src, potential);
- DiscretizeSurfaceFn<COORD_DIM,1>(U_offsurf , elements_trg, potential);
- for (long i = 0; i < elements_trg.NElem(); i++) { // Set Xt
- for (long j = 0; j < PotentialBasis::Size(); j++) {
- for (int k = 0; k < COORD_DIM; k++) {
- Xt.PushBack(elements_trg(i,k)[j]);
- }
- }
- }
- }
- GenericKernel<Laplace3D_DxU> Laplace_DxU;
- GenericKernel<Laplace3D_FxU> Laplace_FxU;
- Profile::Enable(true);
- if (1) { // Greeen's identity test (Laplace, on-surface)
- Profile::Tic("OnSurface", &comm);
- Quadrature<Real> quadrature_DxU, quadrature_FxU;
- quadrature_FxU.Setup<DensityBasis, PotentialBasis>(elements_src, Laplace_FxU, order_singular, order_direct, -1.0, comm);
- quadrature_DxU.Setup<DensityBasis, PotentialBasis>(elements_src, Laplace_DxU, order_singular, order_direct, -1.0, comm);
- Vector<PotentialBasis> U_sl, U_dl;
- quadrature_FxU.Eval(U_sl, elements_src, density_sl, Laplace_FxU);
- quadrature_DxU.Eval(U_dl, elements_src, density_dl, Laplace_DxU);
- Profile::Toc();
- Real max_err = 0;
- Vector<PotentialBasis> err(U_onsurf.Dim());
- for (long i = 0; i < U_sl.Dim(); i++) {
- for (long j = 0; j < PotentialBasis::Size(); j++) {
- err[i][j] = 0.5*U_onsurf[i][j] - (U_sl[i][j] + U_dl[i][j]);
- max_err = std::max<Real>(max_err, fabs(err[i][j]));
- }
- }
- { // Print error
- Real glb_err;
- comm.Allreduce(Ptr2ConstItr<Real>(&max_err,1), Ptr2Itr<Real>(&glb_err,1), 1, Comm::CommOp::MAX);
- if (!comm.Rank()) std::cout<<"Error = "<<glb_err<<'\n';
- }
- { // Write VTK output
- VTUData vtu;
- vtu.AddElems(elements_src, err, ORDER);
- vtu.WriteVTK("err", comm);
- }
- { // Write VTK output
- VTUData vtu;
- vtu.AddElems(elements_src, U_onsurf, ORDER);
- vtu.WriteVTK("U", comm);
- }
- }
- if (1) { // Greeen's identity test (Laplace, off-surface)
- Profile::Tic("OffSurface", &comm);
- Quadrature<Real> quadrature_DxU, quadrature_FxU;
- quadrature_FxU.Setup<DensityBasis>(elements_src, Xt, Laplace_FxU, order_singular, order_direct, -1.0, comm);
- quadrature_DxU.Setup<DensityBasis>(elements_src, Xt, Laplace_DxU, order_singular, order_direct, -1.0, comm);
- Vector<Real> U_sl, U_dl;
- quadrature_FxU.Eval(U_sl, elements_src, density_sl, Laplace_FxU);
- quadrature_DxU.Eval(U_dl, elements_src, density_dl, Laplace_DxU);
- Profile::Toc();
- Real max_err = 0;
- Vector<PotentialBasis> err(elements_trg.NElem());
- for (long i = 0; i < elements_trg.NElem(); i++) {
- for (long j = 0; j < PotentialBasis::Size(); j++) {
- err[i][j] = U_offsurf[i][j] - (U_sl[i*PotentialBasis::Size()+j] + U_dl[i*PotentialBasis::Size()+j]);
- max_err = std::max<Real>(max_err, fabs(err[i][j]));
- }
- }
- { // Print error
- Real glb_err;
- comm.Allreduce(Ptr2ConstItr<Real>(&max_err,1), Ptr2Itr<Real>(&glb_err,1), 1, Comm::CommOp::MAX);
- if (!comm.Rank()) std::cout<<"Error = "<<glb_err<<'\n';
- }
- { // Write VTK output
- VTUData vtu;
- vtu.AddElems(elements_trg, err, ORDER);
- vtu.WriteVTK("err", comm);
- }
- { // Write VTK output
- VTUData vtu;
- vtu.AddElems(elements_trg, U_offsurf, ORDER);
- vtu.WriteVTK("U", comm);
- }
- }
- Profile::print(&comm);
- }
- static void test1() {
- const Comm& comm = Comm::World();
- constexpr Integer ORDER = 15;
- Integer order_singular = 20;
- Integer order_direct = 20;
- constexpr Integer COORD_DIM = 3;
- constexpr Integer ELEM_DIM = COORD_DIM-1;
- using ElemList = ElemList<COORD_DIM, Basis<Real, ELEM_DIM, ORDER>>;
- using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
- using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
- int np = comm.Size();
- int rank = comm.Rank();
- auto build_sphere = [rank,np](ElemList& elements, Real X, Real Y, Real Z, Real R){
- auto nodes = ElemList::CoordBasis::Nodes();
- long start = 2*COORD_DIM*(rank+0)/np;
- long end = 2*COORD_DIM*(rank+1)/np;
- elements.ReInit(end - start);
- for (long ii = start; ii < end; ii++) {
- long i = ii / 2;
- long j = ii % 2;
- for (int k = 0; k < ElemList::CoordBasis::Size(); k++) {
- Real coord[COORD_DIM];
- coord[(i+0)%COORD_DIM] = (j ? -1.0 : 1.0);
- coord[(i+1)%COORD_DIM] = 2.0 * nodes[j?1:0][k] - 1.0;
- coord[(i+2)%COORD_DIM] = 2.0 * nodes[j?0:1][k] - 1.0;
- Real R0 = sqrt<Real>(coord[0]*coord[0] + coord[1]*coord[1] + coord[2]*coord[2]);
- elements(ii-start,0)[k] = X + R * coord[0] / R0;
- elements(ii-start,1)[k] = Y + R * coord[1] / R0;
- elements(ii-start,2)[k] = Z + R * coord[2] / R0;
- }
- }
- };
- ElemList elements;
- build_sphere(elements, 0.0, 0.0, 0.0, 1.00);
- Vector<DensityBasis> density_sl;
- { // Set density_sl
- std::function<void(Real*,Real*,Real*)> sigma = [](Real* U, Real* X, Real* Xn) {
- Real R = sqrt(X[0]*X[0]+X[1]*X[1]+X[2]*X[2]);
- Real sinp = sqrt(X[1]*X[1] + X[2]*X[2]) / R;
- Real cosp = -X[0] / R;
- U[0] = -1.5;
- U[1] = 0;
- U[2] = 0;
- };
- DiscretizeSurfaceFn<COORD_DIM,3>(density_sl, elements, sigma);
- }
- GenericKernel<Stokes3D_DxU> Stokes_DxU;
- GenericKernel<Stokes3D_FxU> Stokes_FxU;
- Profile::Enable(true);
- if (1) {
- Vector<PotentialBasis> U;
- Quadrature<Real> quadrature_FxU;
- quadrature_FxU.Setup<DensityBasis, PotentialBasis>(elements, Stokes_FxU, order_singular, order_direct, -1.0, comm);
- quadrature_FxU.Eval(U, elements, density_sl, Stokes_FxU);
- { // Write VTK output
- VTUData vtu;
- vtu.AddElems(elements, U, ORDER);
- vtu.WriteVTK("U", comm);
- }
- { // Write VTK output
- VTUData vtu;
- vtu.AddElems(elements, density_sl, ORDER);
- vtu.WriteVTK("sigma", comm);
- }
- }
- Profile::print(&comm);
- }
- private:
- static void scan(Vector<Long>& dsp, const Vector<Long>& cnt) {
- dsp.ReInit(cnt.Dim());
- if (cnt.Dim()) dsp[0] = 0;
- omp_par::scan(cnt.begin(), dsp.begin(), cnt.Dim());
- }
- template <class Basis> static void eval_basis(Vector<Real>& value, const Vector<Basis> X, Integer dof, Integer Nnds, const typename Basis::EvalOpType& EvalOp) {
- Long Nelem = X.Dim() / dof;
- SCTL_ASSERT(X.Dim() == Nelem * dof);
- value.ReInit(Nelem*Nnds*dof);
- Matrix<Real> X_(Nelem*dof, Nnds, value.begin(),false);
- Basis::Eval(X_, X, EvalOp);
- for (Long j = 0; j < Nelem; j++) { // Rearrange data
- Matrix<Real> X(Nnds, dof, X_[j*dof], false);
- X = Matrix<Real>(dof, Nnds, X_[j*dof], false).Transpose();
- }
- }
- template <int CoordDim, int FnDim, class FnBasis, class ElemList> static void DiscretizeSurfaceFn(Vector<FnBasis>& U, const ElemList& elements, std::function<void(Real*,Real*,Real*)> fn) {
- using CoordBasis = typename ElemList::CoordBasis;
- const long Nelem = elements.NElem();
- U.ReInit(Nelem * FnDim);
- Matrix<Real> X, X_grad;
- { // Set X, X_grad
- Vector<CoordBasis> coord = elements.ElemVector();
- Vector<CoordBasis> coord_grad;
- CoordBasis::Grad(coord_grad, coord);
- const auto Meval = CoordBasis::SetupEval(FnBasis::Nodes());
- CoordBasis::Eval(X, coord, Meval);
- CoordBasis::Eval(X_grad, coord_grad, Meval);
- }
- for (long i = 0; i < Nelem; i++) {
- for (long j = 0; j < FnBasis::Size(); j++) {
- Real X_[CoordDim], Xn[CoordDim], U_[FnDim];
- for (long k = 0; k < CoordDim; k++) {
- X_[k] = X[i*CoordDim+k][j];
- }
- { // Set Xn
- Real Xu[CoordDim], Xv[CoordDim];
- for (long k = 0; k < CoordDim; k++) {
- Xu[k] = X_grad[(i*CoordDim+k)*2+0][j];
- Xv[k] = X_grad[(i*CoordDim+k)*2+1][j];
- }
- Real dA = 0;
- for (long k = 0; k < CoordDim; k++) {
- Xn[k] = Xu[(k+1)%CoordDim] * Xv[(k+2)%CoordDim];
- Xn[k] -= Xv[(k+1)%CoordDim] * Xu[(k+2)%CoordDim];
- dA += Xn[k] * Xn[k];
- }
- dA = sqrt(dA);
- for (long k = 0; k < CoordDim; k++) {
- Xn[k] /= dA;
- }
- }
- fn(U_, X_, Xn);
- for (long k = 0; k < FnDim; k++) {
- U[i*FnDim+k][j] = U_[k];
- }
- }
- }
- }
- Vector<Real> Xt_;
- Matrix<Real> M_singular;
- Matrix<Real> M_near_singular;
- Vector<Pair<Long,Long>> pair_lst;
- Integer order_direct_;
- Real period_length_;
- Comm comm_;
- };
- template <class Real, Integer ORDER=10> class Stellarator {
- private:
- static constexpr Integer COORD_DIM = 3;
- static constexpr Integer ELEM_DIM = COORD_DIM-1;
- using ElemBasis = Basis<Real, ELEM_DIM, ORDER>;
- using ElemLst = ElemList<COORD_DIM, ElemBasis>;
- struct Laplace3D_dUxF {
- template <class ValueType> static constexpr ValueType ScaleFactor() {
- return 1 / (4 * const_pi<ValueType>());
- }
- template <class ValueType> static void Eval(ValueType (&u)[3][1], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
- ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
- ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
- ValueType rinv3 = rinv * rinv * rinv;
- u[0][0] = -r[0] * rinv3;
- u[1][0] = -r[1] * rinv3;
- u[2][0] = -r[2] * rinv3;
- }
- };
- struct BiotSavart3D {
- template <class ValueType> static constexpr ValueType ScaleFactor() {
- return 1 / (4 * const_pi<ValueType>());
- }
- template <class ValueType> static void Eval(ValueType (&u)[3][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
- ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
- ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
- ValueType rinv3 = rinv * rinv * rinv;
- u[0][0] = (0) * rinv3; u[1][0] = r[2] * rinv3; u[2][0] = -r[1] * rinv3;
- u[0][1] = -r[2] * rinv3; u[1][1] = (0) * rinv3; u[2][1] = r[0] * rinv3;
- u[0][2] = r[1] * rinv3; u[1][2] = -r[0] * rinv3; u[2][2] = (0) * rinv3;
- }
- };
- struct BiotSavartGrad3D {
- template <class ValueType> static constexpr ValueType ScaleFactor() {
- return 1 / (4 * const_pi<ValueType>());
- }
- template <class ValueType> static void Eval(ValueType (&u)[3][9], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
- ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
- ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
- ValueType rinv2 = rinv * rinv;
- ValueType rinv3 = rinv2 * rinv;
- ValueType rinv5 = rinv2 * rinv3;
- u[0][0] = 0; u[1][0] = - 3 * r[2] * r[0] * rinv5; u[2][0] = 3 * r[1] * r[0] * rinv5;
- u[0][1] = 0; u[1][1] = - 3 * r[2] * r[1] * rinv5; u[2][1] = -(1) * rinv3 + 3 * r[1] * r[1] * rinv5;
- u[0][2] = 0; u[1][2] = (1) * rinv3 - 3 * r[2] * r[2] * rinv5; u[2][2] = 3 * r[1] * r[2] * rinv5;
- u[0][3] = 3 * r[2] * r[0] * rinv5; u[1][3] = 0; u[2][3] = (1) * rinv3 - 3 * r[0] * r[0] * rinv5;
- u[0][4] = 3 * r[2] * r[1] * rinv5; u[1][4] = 0; u[2][4] = - 3 * r[0] * r[1] * rinv5;
- u[0][5] = -(1) * rinv3 + 3 * r[2] * r[2] * rinv5; u[1][5] = 0; u[2][5] = - 3 * r[0] * r[2] * rinv5;
- u[0][6] = - 3 * r[1] * r[0] * rinv5; u[1][6] = -(1) * rinv3 + 3 * r[0] * r[0] * rinv5; u[2][6] = 0;
- u[0][7] = (1) * rinv3 - 3 * r[1] * r[1] * rinv5; u[1][7] = 3 * r[0] * r[1] * rinv5; u[2][7] = 0;
- u[0][8] = - 3 * r[1] * r[2] * rinv5; u[1][8] = 3 * r[0] * r[2] * rinv5; u[2][8] = 0;
- }
- };
- struct Laplace3D_dUxD {
- template <class ValueType> static constexpr ValueType ScaleFactor() {
- return 1 / (4 * const_pi<ValueType>());
- }
- template <class ValueType> static void Eval(ValueType (&u)[3][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
- ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
- ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
- ValueType rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2];
- ValueType rinv2 = rinv * rinv;
- ValueType rinv3 = rinv * rinv2;
- ValueType rinv5 = rinv3 * rinv2;
- u[0][0] = -1 * rinv3 + 3 * r[0] * r[0] * rinv5;
- u[0][1] = -0 * rinv3 + 3 * r[0] * r[1] * rinv5;
- u[0][2] = -0 * rinv3 + 3 * r[0] * r[2] * rinv5;
- u[1][0] = -0 * rinv3 + 3 * r[1] * r[0] * rinv5;
- u[1][1] = -1 * rinv3 + 3 * r[1] * r[1] * rinv5;
- u[1][2] = -0 * rinv3 + 3 * r[1] * r[2] * rinv5;
- u[2][0] = -0 * rinv3 + 3 * r[2] * r[0] * rinv5;
- u[2][1] = -0 * rinv3 + 3 * r[2] * r[1] * rinv5;
- u[2][2] = -1 * rinv3 + 3 * r[2] * r[2] * rinv5;
- }
- };
- struct Laplace3D_DxdU {
- template <class ValueType> static constexpr ValueType ScaleFactor() {
- return 1 / (4 * const_pi<ValueType>());
- }
- template <class ValueType> static void Eval(ValueType (&u)[1][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
- ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
- ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
- ValueType rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2];
- ValueType rinv2 = rinv * rinv;
- ValueType rinv3 = rinv * rinv2;
- ValueType rinv5 = rinv3 * rinv2;
- u[0][0] = -n[0] * rinv3 + 3*rdotn * r[0] * rinv5;
- u[0][1] = -n[1] * rinv3 + 3*rdotn * r[1] * rinv5;
- u[0][2] = -n[2] * rinv3 + 3*rdotn * r[2] * rinv5;
- }
- };
- struct Laplace3D_Fxd2U {
- template <class ValueType> static constexpr ValueType ScaleFactor() {
- return 1 / (4 * const_pi<ValueType>());
- }
- template <class ValueType> static void Eval(ValueType (&u)[1][9], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
- ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
- ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
- ValueType rinv2 = rinv * rinv;
- ValueType rinv3 = rinv * rinv2;
- ValueType rinv5 = rinv3 * rinv2;
- u[0][0+3*0] = -1 * rinv3 + 3 * r[0] * r[0] * rinv5;
- u[0][1+3*0] = -0 * rinv3 + 3 * r[0] * r[1] * rinv5;
- u[0][2+3*0] = -0 * rinv3 + 3 * r[0] * r[2] * rinv5;
- u[0][0+3*1] = -0 * rinv3 + 3 * r[1] * r[0] * rinv5;
- u[0][1+3*1] = -1 * rinv3 + 3 * r[1] * r[1] * rinv5;
- u[0][2+3*1] = -0 * rinv3 + 3 * r[1] * r[2] * rinv5;
- u[0][0+3*2] = -0 * rinv3 + 3 * r[2] * r[0] * rinv5;
- u[0][1+3*2] = -0 * rinv3 + 3 * r[2] * r[1] * rinv5;
- u[0][2+3*2] = -1 * rinv3 + 3 * r[2] * r[2] * rinv5;
- }
- };
- static Real max_norm(const sctl::Vector<Real>& x) {
- Real err = 0;
- for (const auto& a : x) err = std::max(err, sctl::fabs<Real>(a));
- return err;
- }
- static Vector<ElemBasis> compute_dot_prod(const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
- const Long Nelem = A.Dim() / COORD_DIM;
- const Long Nnodes = ElemBasis::Size();
- SCTL_ASSERT(A.Dim() == Nelem * COORD_DIM);
- SCTL_ASSERT(B.Dim() == Nelem * COORD_DIM);
- Vector<ElemBasis> AdotB(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Real a_dot_b = 0;
- a_dot_b += A[i*COORD_DIM+0][j]*B[i*COORD_DIM+0][j];
- a_dot_b += A[i*COORD_DIM+1][j]*B[i*COORD_DIM+1][j];
- a_dot_b += A[i*COORD_DIM+2][j]*B[i*COORD_DIM+2][j];
- AdotB[i][j] = a_dot_b;
- }
- }
- return AdotB;
- }
- static Real compute_inner_prod(const Vector<ElemBasis>& area_elem, const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
- const auto& quad_wts = ElemBasis::QuadWts();
- const Long Nnodes = ElemBasis::Size();
- const Long Nelem = area_elem.Dim();
- const Long dof = B.Dim() / Nelem;
- Real sum = 0;
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Real AdotB = 0;
- for (Long k = 0; k < dof; k++) {
- AdotB += A[i*dof+k][j] * B[i*dof+k][j];
- }
- sum += AdotB * area_elem[i][j] * quad_wts[j];
- }
- }
- return sum;
- }
- static void compute_harmonic_vector_potentials(Vector<ElemBasis>& Jt, Vector<ElemBasis>& Jp, const Stellarator<Real,ORDER>& S) {
- Comm comm = Comm::World();
- Real gmres_tol = 1e-8;
- Long max_iter = 100;
- auto cheb2grid = [] (const Vector<ElemBasis>& X, Long Mt, Long Mp, Long Nt, Long Np) {
- const Long dof = X.Dim() / (Mt * Mp);
- SCTL_ASSERT(X.Dim() == Mt * Mp *dof);
- Vector<Real> Xf(dof*Nt*Np); Xf = 0;
- const Long Nnodes = ElemBasis::Size();
- const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
- for (Long t = 0; t < Nt; t++) {
- for (Long p = 0; p < Np; p++) {
- Real theta = t / (Real)Nt;
- Real phi = p / (Real)Np;
- Long i = (Long)(theta * Mt);
- Long j = (Long)(phi * Mp);
- Real x = theta * Mt - i;
- Real y = phi * Mp - j;
- Long elem_idx = i * Mp + j;
- Vector<Real> Interp0(ORDER);
- Vector<Real> Interp1(ORDER);
- { // Set Interp0, Interp1
- auto node = [&Mnodes] (Long i) {
- return Mnodes[0][i];
- };
- for (Long i = 0; i < ORDER; i++) {
- Real wt_x = 1, wt_y = 1;
- for (Long j = 0; j < ORDER; j++) {
- if (j != i) {
- wt_x *= (x - node(j)) / (node(i) - node(j));
- wt_y *= (y - node(j)) / (node(i) - node(j));
- }
- Interp0[i] = wt_x;
- Interp1[i] = wt_y;
- }
- }
- }
- for (Long ii = 0; ii < ORDER; ii++) {
- for (Long jj = 0; jj < ORDER; jj++) {
- Long node_idx = jj * ORDER + ii;
- for (Long k = 0; k < dof; k++) {
- Xf[(k*Nt+t)*Np+p] += X[elem_idx*dof+k][node_idx] * Interp0[ii] * Interp1[jj];
- }
- }
- }
- }
- }
- return Xf;
- };
- auto grid2cheb = [] (const Vector<Real>& Xf, Long Nt, Long Np, Long Mt, Long Mp) {
- Long dof = Xf.Dim() / (Nt*Np);
- SCTL_ASSERT(Xf.Dim() == dof*Nt*Np);
- Vector<ElemBasis> X(Mt*Mp*dof);
- constexpr Integer INTERP_ORDER = 12;
- for (Long tt = 0; tt < Mt; tt++) {
- for (Long pp = 0; pp < Mp; pp++) {
- for (Long t = 0; t < ORDER; t++) {
- for (Long p = 0; p < ORDER; p++) {
- Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
- Real theta = (tt + Mnodes[0][t]) / Mt;
- Real phi = (pp + Mnodes[0][p]) / Mp;
- Long i = (Long)(theta * Nt);
- Long j = (Long)(phi * Np);
- Real x = theta * Nt - i;
- Real y = phi * Np - j;
- Vector<Real> Interp0(INTERP_ORDER);
- Vector<Real> Interp1(INTERP_ORDER);
- { // Set Interp0, Interp1
- auto node = [] (Long i) {
- return (Real)i - (INTERP_ORDER-1)/2;
- };
- for (Long i = 0; i < INTERP_ORDER; i++) {
- Real wt_x = 1, wt_y = 1;
- for (Long j = 0; j < INTERP_ORDER; j++) {
- if (j != i) {
- wt_x *= (x - node(j)) / (node(i) - node(j));
- wt_y *= (y - node(j)) / (node(i) - node(j));
- }
- Interp0[i] = wt_x;
- Interp1[i] = wt_y;
- }
- }
- }
- for (Long k = 0; k < dof; k++) {
- Real X0 = 0;
- for (Long ii = 0; ii < INTERP_ORDER; ii++) {
- for (Long jj = 0; jj < INTERP_ORDER; jj++) {
- Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
- Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
- X0 += Interp0[ii] * Interp1[jj] * Xf[(k*Nt+idx_i)*Np+idx_j];
- }
- }
- Long elem_idx = tt * Mp + pp;
- Long node_idx = p * ORDER + t;
- X[elem_idx*dof+k][node_idx] = X0;
- }
- }
- }
- }
- }
- return X;
- };
- Long Nelem = S.NElem();
- if (Jp.Dim() != Nelem * COORD_DIM) Jp.ReInit(Nelem * COORD_DIM);
- if (Jt.Dim() != Nelem * COORD_DIM) Jt.ReInit(Nelem * COORD_DIM);
- for (Long k = 0; k < S.Nsurf(); k++) {
- Long Nt = S.NTor(k)*ORDER, Np = S.NPol(k)*ORDER;
- const auto& X_ = S.GetElemList().ElemVector();
- Vector<ElemBasis> X(S.NTor(k)*S.NPol(k)*COORD_DIM, (Iterator<ElemBasis>)X_.begin()+S.ElemDsp(k)*COORD_DIM, false);
- biest::Surface<Real> SS(Nt, Np);
- biest::SurfaceOp<Real> surf_op(comm, Nt, Np);
- SS.Coord() = cheb2grid(X, S.NTor(k), S.NPol(k), Nt, Np);
- Vector<Real> dX, d2X;
- surf_op.Grad2D(dX, SS.Coord());
- surf_op.Grad2D(d2X, dX);
- sctl::Vector<Real> Jt_(COORD_DIM * Nt * Np);
- sctl::Vector<Real> Jp_(COORD_DIM * Nt * Np);
- { // Set Jt_, Jp_
- Vector<Real> DivV, InvLapDivV, GradInvLapDivV;
- for (sctl::Long i = 0; i < Nt*Np; i++) { // Set V
- for (sctl::Long k =0; k < COORD_DIM; k++) {
- Jt_[k * Nt*Np + i] = dX[(k*2+0) * Nt*Np + i];
- Jp_[k * Nt*Np + i] = dX[(k*2+1) * Nt*Np + i];
- }
- }
- surf_op.SurfDiv(DivV, dX, Jt_);
- surf_op.GradInvSurfLap(GradInvLapDivV, dX, d2X, DivV, gmres_tol * max_norm(Jt_) / max_norm(DivV), max_iter, 1.5);
- Jt_ = Jt_ - GradInvLapDivV;
- surf_op.SurfDiv(DivV, dX, Jp_);
- surf_op.GradInvSurfLap(GradInvLapDivV, dX, d2X, DivV, gmres_tol * max_norm(Jp_) / max_norm(DivV), max_iter, 1.5);
- Jp_ = Jp_ - GradInvLapDivV;
- }
- Vector<ElemBasis> Jt__(S.NTor(k)*S.NPol(k)*COORD_DIM, (Iterator<ElemBasis>)Jt.begin()+S.ElemDsp(k)*COORD_DIM, false);
- Vector<ElemBasis> Jp__(S.NTor(k)*S.NPol(k)*COORD_DIM, (Iterator<ElemBasis>)Jp.begin()+S.ElemDsp(k)*COORD_DIM, false);
- Jt__ = grid2cheb(Jt_, Nt, Np, S.NTor(k), S.NPol(k));
- Jp__ = grid2cheb(Jp_, Nt, Np, S.NTor(k), S.NPol(k));
- }
- }
- static void compute_norm_area_elem(const Stellarator<Real,10>& S, Vector<ElemBasis>& normal, Vector<ElemBasis>& area_elem){ // Set normal, area_elem
- const Vector<ElemBasis>& X = S.GetElemList().ElemVector();
- const Long Nelem = X.Dim() / COORD_DIM;
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> dX;
- ElemBasis::Grad(dX, X);
- area_elem.ReInit(Nelem);
- normal.ReInit(Nelem * COORD_DIM);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,COORD_DIM> x, n;
- Tensor<Real,true,COORD_DIM,2> dx;
- x(0) = X[i*COORD_DIM+0][j];
- x(1) = X[i*COORD_DIM+1][j];
- x(2) = X[i*COORD_DIM+2][j];
- dx(0,0) = dX[i*COORD_DIM*2+0][j];
- dx(0,1) = dX[i*COORD_DIM*2+1][j];
- dx(1,0) = dX[i*COORD_DIM*2+2][j];
- dx(1,1) = dX[i*COORD_DIM*2+3][j];
- dx(2,0) = dX[i*COORD_DIM*2+4][j];
- dx(2,1) = dX[i*COORD_DIM*2+5][j];
- n(0) = dx(1,0) * dx(2,1) - dx(2,0) * dx(1,1);
- n(1) = dx(2,0) * dx(0,1) - dx(0,0) * dx(2,1);
- n(2) = dx(0,0) * dx(1,1) - dx(1,0) * dx(0,1);
- Real area_elem_ = sqrt<Real>(n(0)*n(0) + n(1)*n(1) + n(2)*n(2));
- Real ooae = 1 / area_elem_;
- n(0) *= ooae;
- n(1) *= ooae;
- n(2) *= ooae;
- normal[i*COORD_DIM+0][j] = n(0);
- normal[i*COORD_DIM+1][j] = n(1);
- normal[i*COORD_DIM+2][j] = n(2);
- area_elem[i][j] = area_elem_;
- }
- }
- if (S.Nsurf() == 2) {
- Long Nelem0 = S.NTor(0)*S.NPol(0);
- for (Long i = 0; i < Nelem0*COORD_DIM; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- normal[i][j] *= -1.0;
- }
- }
- }
- }
- static Vector<ElemBasis> compute_gvec(const Stellarator<Real,ORDER> S, const Vector<ElemBasis>& B, const Vector<ElemBasis>& pressure) {
- const Long Nelem = S.NElem();
- const Long Nnodes = ElemBasis::Size();
- SCTL_ASSERT(B.Dim() == Nelem * COORD_DIM);
- SCTL_ASSERT(pressure.Dim() == Nelem);
- Vector<ElemBasis> gvec(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Real B2 = 0;
- B2 += B[i*COORD_DIM+0][j] * B[i*COORD_DIM+0][j];
- B2 += B[i*COORD_DIM+1][j] * B[i*COORD_DIM+1][j];
- B2 += B[i*COORD_DIM+2][j] * B[i*COORD_DIM+2][j];
- gvec[i][j] = (B2*0.5 - pressure[i][j]) * (B2*0.5 - pressure[i][j]);
- }
- }
- return gvec;
- };
- static Vector<ElemBasis> compute_dgdB(const Stellarator<Real,ORDER> S, const Vector<ElemBasis>& B, const Vector<ElemBasis>& pressure) {
- const Long Nelem = S.NElem();
- const Long Nnodes = ElemBasis::Size();
- SCTL_ASSERT(B.Dim() == Nelem * COORD_DIM);
- SCTL_ASSERT(pressure.Dim() == Nelem);
- Vector<ElemBasis> dgdB(Nelem*COORD_DIM);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Real B2 = 0;
- B2 += B[i*COORD_DIM+0][j] * B[i*COORD_DIM+0][j];
- B2 += B[i*COORD_DIM+1][j] * B[i*COORD_DIM+1][j];
- B2 += B[i*COORD_DIM+2][j] * B[i*COORD_DIM+2][j];
- dgdB[i*COORD_DIM+0][j] = 2 * (B2*0.5 - pressure[i][j]) * B[i*COORD_DIM+0][j];
- dgdB[i*COORD_DIM+1][j] = 2 * (B2*0.5 - pressure[i][j]) * B[i*COORD_DIM+1][j];
- dgdB[i*COORD_DIM+2][j] = 2 * (B2*0.5 - pressure[i][j]) * B[i*COORD_DIM+2][j];
- }
- }
- return dgdB;
- };
- public:
- Stellarator(const Vector<Long>& NtNp = Vector<Long>()) {
- NtNp_ = NtNp;
- Long Nsurf = NtNp_.Dim() / 2;
- SCTL_ASSERT(Nsurf*2 == NtNp_.Dim());
- Long Nelem = 0;
- elem_dsp.ReInit(Nsurf);
- if (elem_dsp.Dim()) elem_dsp[0] = 0;
- for (Long i = 0; i < Nsurf; i++) {
- Nelem += NtNp_[i*2+0]*NtNp_[i*2+1];
- if (i+1 < Nsurf) elem_dsp[i+1] = Nelem;
- }
- elements.ReInit(Nelem);
- for (Long i = 0; i < Nsurf; i++) {
- InitSurf(i, this->Nsurf());
- }
- }
- Long ElemIdx(Long s, Long t, Long p) {
- SCTL_ASSERT(0 <= s && s < elem_dsp.Dim());
- SCTL_ASSERT(0 <= t && t < NtNp_[s*2+0]);
- SCTL_ASSERT(0 <= p && p < NtNp_[s*2+1]);
- return elem_dsp[s] + t*NtNp_[s*2+1] + p;
- }
- ElemBasis& Elem(Long elem, Integer dim) {
- return elements(elem,dim);
- }
- const ElemBasis& Elem(Long elem, Integer dim) const {
- return elements(elem,dim);
- }
- const ElemLst& GetElemList() const {
- return elements;
- }
- Long Nsurf() const {
- return elem_dsp.Dim();
- }
- Long ElemDsp(Long s) const {
- return elem_dsp[s];
- }
- Long NTor(Long s) const {
- return NtNp_[s*2+0];
- }
- Long NPol(Long s) const {
- return NtNp_[s*2+1];
- }
- Long NElem() const {
- return elements.NElem();
- }
- static Vector<ElemBasis> compute_gradient(const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& pressure, Real flux_tor, Real flux_pol) {
- constexpr Integer order_singular = 15;
- constexpr Integer order_direct = 35;
- Comm comm = Comm::World();
- SetupQuadrature(S.quadrature_dBS , S, S.BiotSavartGrad, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
- SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
- SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
- SetupQuadrature(S.quadrature_FxdU , S, S.Laplace_FxdU , order_singular, order_direct, -1.0, comm);
- SetupQuadrature(S.quadrature_dUxF , S, S.Laplace_dUxF , order_singular, order_direct, -1.0, comm);
- SetupQuadrature(S.quadrature_dUxD , S, S.Laplace_dUxD , order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
- SetupQuadrature(S.quadrature_Fxd2U, S, S.Laplace_Fxd2U , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
- Vector<ElemBasis> Jt, Jp;
- Vector<ElemBasis> Bt0, Bp0;
- Vector<ElemBasis> dBt0, dBp0;
- { // Set Bt0, Bp0
- compute_harmonic_vector_potentials(Jt, Jp, S);
- EvalQuadrature(Bt0, S.quadrature_BS, S, Jp, S.BiotSavart);
- EvalQuadrature(Bp0, S.quadrature_BS, S, Jt, S.BiotSavart);
- EvalQuadrature(dBt0, S.quadrature_dBS, S, Jp, S.BiotSavartGrad);
- EvalQuadrature(dBp0, S.quadrature_dBS, S, Jt, S.BiotSavartGrad);
- }
- auto compute_B = [&S,&Bt0,&Bp0] (const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
- const Long Nelem = S.NElem();
- Vector<ElemBasis> B(S.NElem() * COORD_DIM);
- if (sigma.Dim()) {
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> normal, area_elem;
- compute_norm_area_elem(S, normal, area_elem);
- EvalQuadrature(B, S.quadrature_FxdU, S, sigma, S.Laplace_FxdU);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- for (Long k = 0; k < COORD_DIM; k++) {
- B[i*COORD_DIM+k][j] -= 0.5*sigma[i][j]*normal[i*COORD_DIM+k][j];
- }
- }
- }
- } else {
- B = 0;
- }
- if (S.Nsurf() >= 1) B += Bt0*alpha;
- if (S.Nsurf() >= 2) B += Bp0*beta;
- return B;
- };
- auto compute_dB = [&S,&dBt0,&dBp0] (const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
- const Long Nelem = S.NElem();
- Vector<ElemBasis> dB(S.NElem() * COORD_DIM * COORD_DIM);
- if (sigma.Dim()) {
- EvalQuadrature(dB, S.quadrature_Fxd2U, S, sigma, S.Laplace_Fxd2U);
- } else {
- dB = 0;
- }
- if (S.Nsurf() >= 1) dB += dBt0*alpha;
- if (S.Nsurf() >= 2) dB += dBp0*beta;
- return dB;
- };
- auto compute_flux = [&S] (Real& flux_tor, Real& flux_pol, const Vector<ElemBasis>& B, const Vector<ElemBasis>& normal) {
- const Long Nelem = S.NElem();
- const Long Nnodes = ElemBasis::Size();
- SCTL_ASSERT(B.Dim() == Nelem*COORD_DIM);
- SCTL_ASSERT(normal.Dim() == Nelem*COORD_DIM);
- Vector<ElemBasis> J(Nelem * COORD_DIM);
- for (Long i = 0; i < Nelem; i++) { // Set J
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,COORD_DIM> b, n;
- b(0) = B[i*COORD_DIM+0][j];
- b(1) = B[i*COORD_DIM+1][j];
- b(2) = B[i*COORD_DIM+2][j];
- n(0) = normal[i*COORD_DIM+0][j];
- n(1) = normal[i*COORD_DIM+1][j];
- n(2) = normal[i*COORD_DIM+2][j];
- J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
- J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
- J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
- }
- }
- Vector<ElemBasis> A;
- EvalQuadrature(A, S.quadrature_FxU, S, J, S.Laplace_FxU);
- Vector<Real> circ_pol(S.Nsurf()), circ_tor(S.Nsurf());
- { // compute circ
- Vector<ElemBasis> dX;
- ElemBasis::Grad(dX, S.GetElemList().ElemVector());
- const auto& quad_wts = ElemBasis::QuadWts();
- for (Long k = 0; k < S.Nsurf(); k++) {
- circ_pol[k] = 0;
- circ_tor[k] = 0;
- Long Ndsp = S.ElemDsp(k);
- for (Long i = 0; i < S.NTor(k)*S.NPol(k); i++) {
- for (Long j = 0; j < Nnodes; j++) {
- circ_pol[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+1][j] * quad_wts[j] / S.NTor(k);
- circ_pol[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+3][j] * quad_wts[j] / S.NTor(k);
- circ_pol[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+5][j] * quad_wts[j] / S.NTor(k);
- circ_tor[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+0][j] * quad_wts[j] / S.NPol(k);
- circ_tor[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+2][j] * quad_wts[j] / S.NPol(k);
- circ_tor[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+4][j] * quad_wts[j] / S.NPol(k);
- }
- }
- }
- }
- if (S.Nsurf() == 1) {
- flux_tor = circ_pol[0];
- flux_pol = 0;
- } else if (S.Nsurf() == 2) {
- flux_tor = circ_pol[1] - circ_pol[0];
- flux_pol = circ_tor[0] - circ_tor[1];
- } else {
- SCTL_ASSERT(false);
- }
- };
- auto compute_A = [&S,compute_B,&compute_flux] (const Vector<Real>& x) {
- const Long Nelem = S.NElem();
- const Long Nnodes = ElemBasis::Size();
- SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
- Vector<ElemBasis> normal, area_elem;
- compute_norm_area_elem(S, normal, area_elem);
- Vector<ElemBasis> sigma(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- sigma[i][j] = x[i*Nnodes+j];
- }
- }
- Real alpha = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
- Real beta = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
- Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
- Vector<ElemBasis> BdotN = compute_dot_prod(B, normal);
- Real flux_tor, flux_pol;
- compute_flux(flux_tor, flux_pol, B, normal);
- Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Ax[i*Nnodes+j] = BdotN[i][j];
- }
- }
- if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = flux_tor;
- if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = flux_pol;
- return Ax;
- };
- auto compute_invA = [&S,&comm,&compute_A] (Vector<ElemBasis>& sigma, Real& alpha, Real& beta, Real flux_tor, Real flux_pol) {
- typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&compute_A](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
- (*Ax) = compute_A(x);
- };
- const Long Nelem = S.NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<Real> rhs_(Nelem * Nnodes + S.Nsurf());
- rhs_ = 0;
- if (S.Nsurf() >= 1) rhs_[Nelem * Nnodes + 0] = flux_tor;
- if (S.Nsurf() >= 2) rhs_[Nelem * Nnodes + 1] = flux_pol;
- Vector<Real> x_(Nelem * Nnodes + S.Nsurf());
- x_ = 0;
- ParallelSolver<Real> linear_solver(comm, true);
- linear_solver(&x_, BIOp, rhs_, 1e-8, 100);
- sigma.ReInit(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- sigma[i][j] = x_[i*Nnodes+j];
- }
- }
- alpha = (S.Nsurf() >= 1 ? x_[Nelem * Nnodes + 0] : 0);
- beta = (S.Nsurf() >= 2 ? x_[Nelem * Nnodes + 1] : 0);
- };
- auto compute_Aadj = [&S,&Bt0,&Bp0,&compute_flux] (const Vector<Real>& x) {
- const Long Nelem = S.NElem();
- const Long Nnodes = ElemBasis::Size();
- SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
- Vector<ElemBasis> normal, area_elem;
- compute_norm_area_elem(S, normal, area_elem);
- Vector<ElemBasis> x0(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- x0[i][j] = x[i*Nnodes+j];
- }
- }
- Real x1 = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
- Real x2 = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
- Vector<ElemBasis> Ax0;
- Real Ax1, Ax2;
- { // Set Ax0, Ax1, Ax2
- Vector<ElemBasis> x0_n(Nelem*COORD_DIM);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- x0_n[i*COORD_DIM+0][j] = x0[i][j] * normal[i*COORD_DIM+0][j];
- x0_n[i*COORD_DIM+1][j] = x0[i][j] * normal[i*COORD_DIM+1][j];
- x0_n[i*COORD_DIM+2][j] = x0[i][j] * normal[i*COORD_DIM+2][j];
- }
- }
- EvalQuadrature(Ax0, S.quadrature_dUxF, S, x0_n, S.Laplace_dUxF);
- Ax0 = x0*(-0.5) - Ax0;
- Ax1 = (S.Nsurf() >= 1 ? compute_inner_prod(area_elem, compute_dot_prod(Bt0, normal), x0) : 0);
- Ax2 = (S.Nsurf() >= 2 ? compute_inner_prod(area_elem, compute_dot_prod(Bp0, normal), x0) : 0);
- }
- // TODO: precompute A21adj, A22adj
- auto compute_A21adj = [&S,&normal,&area_elem] (bool toroidal_flux) {
- const Long Nelem = S.NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> density(Nelem * COORD_DIM);
- { // Set density
- Real scal[2];
- if (S.Nsurf() == 1) {
- SCTL_ASSERT(toroidal_flux == true);
- scal[0] = 1.0 / S.NTor(0);
- scal[1] = 0;
- } else if (S.Nsurf() == 2) {
- if (toroidal_flux == true) {
- scal[0] = -1.0 / S.NTor(0);
- scal[1] = 1.0 / S.NTor(1);
- } else {
- scal[0] = 1.0 / S.NPol(0);
- scal[1] = -1.0 / S.NPol(1);
- }
- } else {
- SCTL_ASSERT(false);
- }
- Vector<ElemBasis> dX;
- ElemBasis::Grad(dX, S.GetElemList().ElemVector());
- for (Long k = 0; k < S.Nsurf(); k++) {
- for (Long i_ = 0; i_ < S.NTor(k)*S.NPol(k); i_++) {
- Long i = S.ElemDsp(k) + i_;
- for (Long j = 0; j < Nnodes; j++) {
- Real s = scal[k] / area_elem[i][j];
- density[i*COORD_DIM+0][j] = dX[i*COORD_DIM*2+0+(toroidal_flux?1:0)][j] * s;
- density[i*COORD_DIM+1][j] = dX[i*COORD_DIM*2+2+(toroidal_flux?1:0)][j] * s;
- density[i*COORD_DIM+2][j] = dX[i*COORD_DIM*2+4+(toroidal_flux?1:0)][j] * s;
- }
- }
- }
- }
- Vector<ElemBasis> Gdensity, nxGdensity(Nelem * COORD_DIM), A21adj;
- EvalQuadrature(Gdensity, S.quadrature_FxU, S, density, S.Laplace_FxU);
- for (Long i = 0; i < Nelem; i++) { // Set nxGdensity
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,COORD_DIM> Gdensity_, n;
- Gdensity_(0) = Gdensity[i*COORD_DIM+0][j];
- Gdensity_(1) = Gdensity[i*COORD_DIM+1][j];
- Gdensity_(2) = Gdensity[i*COORD_DIM+2][j];
- n(0) = normal[i*COORD_DIM+0][j];
- n(1) = normal[i*COORD_DIM+1][j];
- n(2) = normal[i*COORD_DIM+2][j];
- nxGdensity[i*COORD_DIM+0][j] = n(1) * Gdensity_(2) - n(2) * Gdensity_(1);
- nxGdensity[i*COORD_DIM+1][j] = n(2) * Gdensity_(0) - n(0) * Gdensity_(2);
- nxGdensity[i*COORD_DIM+2][j] = n(0) * Gdensity_(1) - n(1) * Gdensity_(0);
- }
- }
- EvalQuadrature(A21adj, S.quadrature_dUxF, S, nxGdensity, S.Laplace_dUxF);
- return A21adj;
- };
- if (S.Nsurf() >= 1) Ax0 += compute_A21adj( true) * x1;
- if (S.Nsurf() >= 2) Ax0 += compute_A21adj(false) * x2;
- if (S.Nsurf() == 1) { // Add flux part of Ax1, Ax2
- Real flux_tor, flux_pol;
- compute_flux(flux_tor, flux_pol, Bt0, normal);
- Ax1 += flux_tor * x1;
- Ax2 += 0;
- } else if (S.Nsurf() == 2) {
- Real flux_tor, flux_pol;
- compute_flux(flux_tor, flux_pol, Bt0, normal);
- Ax1 += flux_tor * x1 + flux_pol * x2;
- compute_flux(flux_tor, flux_pol, Bp0, normal);
- Ax2 += flux_tor * x1 + flux_pol * x2;
- } else {
- SCTL_ASSERT(false);
- }
- Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Ax[i*Nnodes+j] = Ax0[i][j];
- }
- }
- if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = Ax1;
- if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = Ax2;
- return Ax;
- };
- auto compute_invAadj = [&S,&comm,&compute_Aadj] (Vector<Real>& b) {
- typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&compute_Aadj](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
- (*Ax) = compute_Aadj(x);
- };
- const Long Nelem = S.NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<Real> x(b.Dim());
- x = 0;
- ParallelSolver<Real> linear_solver(comm, true);
- linear_solver(&x, BIOp, b, 1e-8, 100);
- return x;
- };
- if (0) { // Check u_t A v == v_t Aadj u
- auto pack = [&S](Vector<Real>& x, const Vector<ElemBasis>& x0, Real x1, Real x2) {
- const Long Nelem = S.NElem();
- const Long Nnodes = ElemBasis::Size();
- x.ReInit(Nelem*Nnodes+S.Nsurf());
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- x[i*Nnodes+j] = x0[i][j];
- }
- }
- if (S.Nsurf() >= 1) x[Nelem*Nnodes+0] = x1;
- if (S.Nsurf() >= 2) x[Nelem*Nnodes+1] = x2;
- };
- auto unpack = [&S](Vector<ElemBasis>& x0, Real& x1, Real& x2, const Vector<Real>& x) {
- const Long Nelem = S.NElem();
- const Long Nnodes = ElemBasis::Size();
- x0.ReInit(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- x0[i][j] = x[i*Nnodes+j];
- }
- }
- if (S.Nsurf() >= 1) x1 = x[Nelem*Nnodes+0];
- if (S.Nsurf() >= 2) x2 = x[Nelem*Nnodes+1];
- };
- const Long Nelem = S.NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> normal, area_elem;
- compute_norm_area_elem(S, normal, area_elem);
- Vector<Real> u, v;
- Vector<ElemBasis> u0 = area_elem*0; Real u1 = 3.141, u2 = 0.4142;
- Vector<ElemBasis> v0 = area_elem*0; Real v1 = 1.645, v2 = 3.6055;
- { // Set u0, v0
- auto X = S.GetElemList().ElemVector();
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- u0[i][j] = X[i*COORD_DIM+0][j] + X[i*COORD_DIM+1][j] + X[i*COORD_DIM+2][j];
- v0[i][j] = X[i*COORD_DIM+0][j] + X[i*COORD_DIM+1][j] + X[i*COORD_DIM+2][j];
- }
- }
- }
- pack(u,u0,u1,u2);
- pack(v,v0,v1,v2);
- Vector<Real> Av = compute_A(v);
- Vector<Real> uA = compute_Aadj(u);
- Vector<ElemBasis> Av0; Real Av1, Av2;
- Vector<ElemBasis> uA0; Real uA1, uA2;
- unpack(Av0, Av1, Av2, Av);
- unpack(uA0, uA1, uA2, uA);
- std::cout << compute_inner_prod(area_elem, u0, Av0) + u1*Av1 + (S.Nsurf()>=2?u2*Av2:0) << '\n';
- std::cout << compute_inner_prod(area_elem, uA0, v0) + uA1*v1 + (S.Nsurf()>=2?uA2*v2:0) << '\n';
- exit(0);
- }
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- Real alpha, beta;
- Vector<ElemBasis> sigma;
- compute_invA(sigma, alpha, beta, flux_tor, flux_pol);
- Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
- { // Write VTU
- VTUData vtu;
- vtu.AddElems(S.GetElemList(), sigma, ORDER);
- vtu.WriteVTK("sigma", comm);
- }
- { // Write VTU
- VTUData vtu;
- vtu.AddElems(S.GetElemList(), B, ORDER);
- vtu.WriteVTK("B", comm);
- }
- { // Compute g
- Vector<ElemBasis> normal, area_elem;
- compute_norm_area_elem(S, normal, area_elem);
- Real g = compute_inner_prod(area_elem, compute_gvec(S,B,pressure), area_elem*0+1);
- std::cout<<"g = "<<g<<'\n';
- }
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- auto compute_gradient = [&S, &sigma,&alpha,&beta,&Jt,&Jp,&B,&pressure, &compute_invAadj,&compute_B,&compute_dB] () {
- const Long Nnodes = ElemBasis::Size();
- const Long Nelem = S.NElem();
- Vector<ElemBasis> normal, area_elem;
- compute_norm_area_elem(S, normal, area_elem);
- auto compute_H = [] (const ElemList<COORD_DIM,ElemBasis>& elem_lst, const Vector<ElemBasis>& normal) {
- const Long Nnodes = ElemBasis::Size();
- const Long Nelem = elem_lst.NElem();
- const Vector<ElemBasis> X = elem_lst.ElemVector();
- Vector<ElemBasis> dX, d2X, H(Nelem);
- ElemBasis::Grad(dX, X);
- ElemBasis::Grad(d2X, dX);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,2,2> I, invI, II;
- for (Long k0 = 0; k0 < 2; k0++) {
- for (Long k1 = 0; k1 < 2; k1++) {
- I(k0,k1) = 0;
- I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
- II(k0,k1) = 0;
- II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
- II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
- II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
- }
- }
- { // Set invI
- Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
- invI(0,0) = I(1,1) / detI;
- invI(0,1) = -I(0,1) / detI;
- invI(1,0) = -I(1,0) / detI;
- invI(1,1) = I(0,0) / detI;
- }
- { // Set H
- H[i][j] = 0;
- H[i][j] += -0.5 * II(0,0)*invI(0,0);
- H[i][j] += -0.5 * II(0,1)*invI(0,1);
- H[i][j] += -0.5 * II(1,0)*invI(1,0);
- H[i][j] += -0.5 * II(1,1)*invI(1,1);
- }
- }
- }
- return H;
- };
- Vector<ElemBasis> H = compute_H(S.GetElemList(), normal);
- auto compute_dg_dnu = [&S,&normal,&area_elem,&H,&compute_dB](const Vector<ElemBasis>& sigma, Real alpha, Real beta, const Vector<ElemBasis>& B, const Vector<ElemBasis>& pressure) { // dg_dnu = (B*B) 2H - (2 B) \cdot (n \cdnot nabla) \nabla G[sigma] + (2 B) \alpha dB0_dnu \hat{\theta} + sigma (\nabla D)^T [2 B] + (2H) sigma (\nabla G)^T [2 B]
- const Long Nelem = S.NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> gvec = compute_gvec(S,B,pressure);
- Vector<ElemBasis> v = compute_dgdB(S,B,pressure);
- Vector<ElemBasis> dg_dnu0(Nelem), dg_dnu1(Nelem), dg_dnu2(Nelem), dg_dnu3(Nelem), dg_dnu4(Nelem);
- dg_dnu0 = 0;
- dg_dnu1 = 0;
- dg_dnu2 = 0;
- dg_dnu3 = 0;
- dg_dnu4 = 0;
- // dg_dnu0 = (B*B) 2H
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dg_dnu0[i][j] = 0;
- dg_dnu0[i][j] += gvec[i][j] * (2.0*H[i][j]);
- }
- }
- // dg_dnu1 = (2 B) \cdot (n \cdnot \nabla) B
- Vector<ElemBasis> dB = compute_dB(sigma, alpha, beta);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dg_dnu1[i][j] = 0;
- dg_dnu1[i][j] -= dB[i*9+0][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
- dg_dnu1[i][j] -= dB[i*9+1][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
- dg_dnu1[i][j] -= dB[i*9+2][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
- dg_dnu1[i][j] -= dB[i*9+3][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
- dg_dnu1[i][j] -= dB[i*9+4][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
- dg_dnu1[i][j] -= dB[i*9+5][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
- dg_dnu1[i][j] -= dB[i*9+6][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
- dg_dnu1[i][j] -= dB[i*9+7][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
- dg_dnu1[i][j] -= dB[i*9+8][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
- }
- }
- // dg_dnu3 = (sigma (\nabla D)^T [2 B]
- Vector<ElemBasis> nablaDtv;
- EvalQuadrature(nablaDtv, S.quadrature_dUxD, S, v, S.Laplace_dUxD);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dg_dnu3[i][j] = 0;
- dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
- dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
- dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
- }
- }
- // dg_dnu4 = (2H) sigma (\nabla G)^T [2 B]
- EvalQuadrature(dg_dnu4, S.quadrature_dUxF, S, v, S.Laplace_dUxF);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dg_dnu4[i][j] += 0.5 * v[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
- dg_dnu4[i][j] += 0.5 * v[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
- dg_dnu4[i][j] += 0.5 * v[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
- dg_dnu4[i][j] *= 2*H[i][j] * sigma[i][j];
- }
- }
- return dg_dnu0 + dg_dnu1 + dg_dnu3 - dg_dnu4;
- };
- Vector<ElemBasis> dg_dnu = compute_dg_dnu(sigma, alpha, beta, B, pressure);
- auto compute_dg_dsigma = [&S,&normal,&area_elem,&compute_B] (const Vector<ElemBasis>& B, const Vector<ElemBasis>& pressure) {
- const Long Nnodes = ElemBasis::Size();
- const Long Nelem = S.NElem();
- auto compute_dg_dsigma = [&S,&normal](const Vector<ElemBasis>& B, const Vector<ElemBasis>& pressure) { // dg_dsigma = \int 2 B \cdot (\nabla G + n/2)
- Vector<ElemBasis> dgdB = compute_dgdB(S,B,pressure);
- Vector<ElemBasis> B_dot_gradG;
- EvalQuadrature(B_dot_gradG, S.quadrature_dUxF, S, dgdB, S.Laplace_dUxF);
- return B_dot_gradG * (-1.0) + compute_dot_prod(dgdB,normal) * 0.5;
- };
- auto compute_dg_dalpha = [&S,&area_elem,&compute_B] (const Vector<ElemBasis>& B, const Vector<ElemBasis>& pressure) {
- Vector<ElemBasis> dgdB = compute_dgdB(S,B,pressure);
- auto dB_dalpha = compute_B(Vector<ElemBasis>(),1,0);
- return compute_inner_prod(area_elem, dgdB,dB_dalpha);
- };
- auto compute_dg_dbeta = [&S,&area_elem,&compute_B] (const Vector<ElemBasis>& B, const Vector<ElemBasis>& pressure) {
- Vector<ElemBasis> dgdB = compute_dgdB(S,B,pressure);
- auto dB_dalpha = compute_B(Vector<ElemBasis>(),0,1);
- return compute_inner_prod(area_elem, dgdB,dB_dalpha);
- };
- Vector<Real> dg_dsigma(Nelem*Nnodes+S.Nsurf());
- Vector<ElemBasis> dg_dsigma_ = compute_dg_dsigma(B,pressure);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dg_dsigma[i*Nnodes+j] = dg_dsigma_[i][j];
- }
- }
- if (S.Nsurf() >= 1) dg_dsigma[Nelem*Nnodes+0] = compute_dg_dalpha(B,pressure);
- if (S.Nsurf() >= 2) dg_dsigma[Nelem*Nnodes+1] = compute_dg_dbeta (B,pressure);
- return dg_dsigma;
- };
- Vector<Real> dg_dsigma = compute_dg_dsigma(B, pressure);
- Vector<Real> dg_dsigma_invA = compute_invAadj(dg_dsigma);
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////
- auto compute_grad_adj = [&S,&area_elem] (const Vector<ElemBasis>& V) {
- const Long Nelem = S.NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> du_dX(Nelem*COORD_DIM*2);
- { // Set du_dX
- Vector<ElemBasis> dX;
- ElemBasis::Grad(dX, S.GetElemList().ElemVector());
- auto inv2x2 = [](Tensor<Real, true, 2, 2> M) {
- Tensor<Real, true, 2, 2> Mout;
- Real oodet = 1 / (M(0,0) * M(1,1) - M(0,1) * M(1,0));
- Mout(0,0) = M(1,1) * oodet;
- Mout(0,1) = -M(0,1) * oodet;
- Mout(1,0) = -M(1,0) * oodet;
- Mout(1,1) = M(0,0) * oodet;
- return Mout;
- };
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real, true, 3, 2> dX_du;
- dX_du(0,0) = dX[(i*COORD_DIM+0)*2+0][j];
- dX_du(1,0) = dX[(i*COORD_DIM+1)*2+0][j];
- dX_du(2,0) = dX[(i*COORD_DIM+2)*2+0][j];
- dX_du(0,1) = dX[(i*COORD_DIM+0)*2+1][j];
- dX_du(1,1) = dX[(i*COORD_DIM+1)*2+1][j];
- dX_du(2,1) = dX[(i*COORD_DIM+2)*2+1][j];
- Tensor<Real, true, 2, 2> G; // = dX_du.Transpose() * dX_du;
- G(0,0) = dX_du(0,0) * dX_du(0,0) + dX_du(1,0) * dX_du(1,0) + dX_du(2,0) * dX_du(2,0);
- G(0,1) = dX_du(0,0) * dX_du(0,1) + dX_du(1,0) * dX_du(1,1) + dX_du(2,0) * dX_du(2,1);
- G(1,0) = dX_du(0,1) * dX_du(0,0) + dX_du(1,1) * dX_du(1,0) + dX_du(2,1) * dX_du(2,0);
- G(1,1) = dX_du(0,1) * dX_du(0,1) + dX_du(1,1) * dX_du(1,1) + dX_du(2,1) * dX_du(2,1);
- Tensor<Real, true, 2, 2> Ginv = inv2x2(G);
- du_dX[(i*COORD_DIM+0)*2+0][j] = Ginv(0,0) * dX_du(0,0) + Ginv(0,1) * dX_du(0,1);
- du_dX[(i*COORD_DIM+1)*2+0][j] = Ginv(0,0) * dX_du(1,0) + Ginv(0,1) * dX_du(1,1);
- du_dX[(i*COORD_DIM+2)*2+0][j] = Ginv(0,0) * dX_du(2,0) + Ginv(0,1) * dX_du(2,1);
- du_dX[(i*COORD_DIM+0)*2+1][j] = Ginv(1,0) * dX_du(0,0) + Ginv(1,1) * dX_du(0,1);
- du_dX[(i*COORD_DIM+1)*2+1][j] = Ginv(1,0) * dX_du(1,0) + Ginv(1,1) * dX_du(1,1);
- du_dX[(i*COORD_DIM+2)*2+1][j] = Ginv(1,0) * dX_du(2,0) + Ginv(1,1) * dX_du(2,1);
- }
- }
- }
- Vector<ElemBasis> dudX_V(Nelem*2);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dudX_V[i*2+0][j] = 0;
- dudX_V[i*2+1][j] = 0;
- dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+0)*2+0][j] * V[i*COORD_DIM+0][j] * area_elem[i][j];
- dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+1)*2+0][j] * V[i*COORD_DIM+1][j] * area_elem[i][j];
- dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+2)*2+0][j] * V[i*COORD_DIM+2][j] * area_elem[i][j];
- dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+0)*2+1][j] * V[i*COORD_DIM+0][j] * area_elem[i][j];
- dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+1)*2+1][j] * V[i*COORD_DIM+1][j] * area_elem[i][j];
- dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+2)*2+1][j] * V[i*COORD_DIM+2][j] * area_elem[i][j];
- }
- }
- Vector<ElemBasis> grad_dudX_V;
- ElemBasis::Grad(grad_dudX_V, dudX_V);
- Vector<ElemBasis> grad_adj_V(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- grad_adj_V[i][j] = -(grad_dudX_V[(i*2+0)*2+0][j] + grad_dudX_V[(i*2+1)*2+1][j]) / area_elem[i][j];
- }
- }
- return grad_adj_V;
- };
- auto compute_u_dAdnu_v_0 = [&S,&normal,&H,&compute_B,&compute_dB,&compute_grad_adj] (const Vector<Real>& u_, const Vector<ElemBasis>& v, Real alpha, Real beta) {
- const Long Nnodes = ElemBasis::Size();
- const Long Nelem = S.NElem();
- Vector<ElemBasis> dAdnu0(Nelem), dAdnu1(Nelem), dAdnu2(Nelem), dAdnu3(Nelem);
- Vector<ElemBasis> u(Nelem), u_n(Nelem*COORD_DIM);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- u[i][j] = u_[i*Nnodes+j];
- u_n[i*COORD_DIM+0][j] = u[i][j] * normal[i*COORD_DIM+0][j];
- u_n[i*COORD_DIM+1][j] = u[i][j] * normal[i*COORD_DIM+1][j];
- u_n[i*COORD_DIM+2][j] = u[i][j] * normal[i*COORD_DIM+2][j];
- }
- }
- // dAdnu0 = u B \cdot grad_nu
- Vector<ElemBasis> B = compute_B(v, alpha, beta);
- Vector<ElemBasis> u_B(Nelem*COORD_DIM);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- u_B[i*COORD_DIM+0][j] = u[i][j] * B[i*COORD_DIM+0][j];
- u_B[i*COORD_DIM+1][j] = u[i][j] * B[i*COORD_DIM+1][j];
- u_B[i*COORD_DIM+2][j] = u[i][j] * B[i*COORD_DIM+2][j];
- }
- }
- dAdnu0 = compute_grad_adj(u_B)*(-1.0);
- // dAdnu1 = (u n) \cdot (n \cdnot \nabla) B
- Vector<ElemBasis> dB = compute_dB(v, alpha, beta);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dAdnu1[i][j] = 0;
- dAdnu1[i][j] -= dB[i*9+0][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+0][j];
- dAdnu1[i][j] -= dB[i*9+1][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+1][j];
- dAdnu1[i][j] -= dB[i*9+2][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+2][j];
- dAdnu1[i][j] -= dB[i*9+3][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+0][j];
- dAdnu1[i][j] -= dB[i*9+4][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+1][j];
- dAdnu1[i][j] -= dB[i*9+5][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+2][j];
- dAdnu1[i][j] -= dB[i*9+6][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+0][j];
- dAdnu1[i][j] -= dB[i*9+7][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+1][j];
- dAdnu1[i][j] -= dB[i*9+8][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+2][j];
- }
- }
- // dAdnu2 = (2H) v (I/2 + \nabla G)^T [u n]
- EvalQuadrature(dAdnu2, S.quadrature_dUxF, S, u_n, S.Laplace_dUxF);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dAdnu2[i][j] += 0.5 * u_n[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
- dAdnu2[i][j] += 0.5 * u_n[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
- dAdnu2[i][j] += 0.5 * u_n[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
- dAdnu2[i][j] *= -2*H[i][j] * v[i][j];
- }
- }
- // dAdnu3 = (v n \cdot \nabla D[u]
- Vector<ElemBasis> nablaDt_u_n;
- EvalQuadrature(nablaDt_u_n, S.quadrature_dUxD, S, u_n, S.Laplace_dUxD);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dAdnu3[i][j] = 0;
- dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
- dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
- dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
- }
- }
- return dAdnu0 + dAdnu1 + dAdnu2 + dAdnu3;
- };
- auto compute_u_dAdnu_v_1 = [&S,&area_elem,&normal,&H,&compute_grad_adj,&compute_B,&compute_dB] (const Vector<ElemBasis>& sigma, Real alpha, Real beta, bool toroidal_flux) {
- const Long Nnodes = ElemBasis::Size();
- const Long Nelem = S.NElem();
- Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
- Vector<ElemBasis> gradB = compute_dB(sigma, alpha, beta);
- auto compute_v = [&S,&area_elem,&toroidal_flux] (const Vector<ElemBasis>& X) {
- const Long Nelem = S.NElem();
- const Long Nnodes = ElemBasis::Size();
- Real scal[2];
- if (S.Nsurf() == 1) {
- SCTL_ASSERT(toroidal_flux == true);
- scal[0] = 1.0 / S.NTor(0);
- scal[1] = 0;
- } else if (S.Nsurf() == 2) {
- if (toroidal_flux == true) {
- scal[0] = -1.0 / S.NTor(0);
- scal[1] = 1.0 / S.NTor(1);
- } else {
- scal[0] = 1.0 / S.NPol(0);
- scal[1] = -1.0 / S.NPol(1);
- }
- } else {
- SCTL_ASSERT(false);
- }
- Vector<ElemBasis> v(Nelem * COORD_DIM);
- Vector<ElemBasis> dX;
- ElemBasis::Grad(dX, X);
- for (Long k = 0; k < S.Nsurf(); k++) {
- for (Long i_ = 0; i_ < S.NTor(k)*S.NPol(k); i_++) {
- Long i = S.ElemDsp(k) + i_;
- for (Long j = 0; j < Nnodes; j++) {
- Real s = scal[k] / area_elem[i][j];
- v[i*COORD_DIM+0][j] = dX[i*COORD_DIM*2+0+(toroidal_flux?1:0)][j] * s;
- v[i*COORD_DIM+1][j] = dX[i*COORD_DIM*2+2+(toroidal_flux?1:0)][j] * s;
- v[i*COORD_DIM+2][j] = dX[i*COORD_DIM*2+4+(toroidal_flux?1:0)][j] * s;
- }
- }
- }
- return v;
- };
- auto compute_AxB = [&S] (const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
- const Long Nelem = S.NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> J(Nelem * COORD_DIM);
- for (Long i = 0; i < Nelem; i++) { // Set J
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,COORD_DIM> a, b;
- a(0) = A[i*COORD_DIM+0][j];
- a(1) = A[i*COORD_DIM+1][j];
- a(2) = A[i*COORD_DIM+2][j];
- b(0) = B[i*COORD_DIM+0][j];
- b(1) = B[i*COORD_DIM+1][j];
- b(2) = B[i*COORD_DIM+2][j];
- J[i*COORD_DIM+0][j] = a(1) * b(2) - a(2) * b(1);
- J[i*COORD_DIM+1][j] = a(2) * b(0) - a(0) * b(2);
- J[i*COORD_DIM+2][j] = a(0) * b(1) - a(1) * b(0);
- }
- }
- return J;
- };
- auto compute_dphi_dnu0 = [&S,&normal,&compute_AxB,&compute_v,&B,compute_grad_adj] () {
- const Long Nelem = S.NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> Gv;
- Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
- EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
- Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
- return compute_grad_adj(BxGv)*(-1.0);
- };
- auto compute_dphi_dnu1 = [&S,&normal,&H,&compute_AxB,&compute_v,&B] () {
- const Long Nelem = S.NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> Gv;
- Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
- EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
- Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
- Vector<ElemBasis> n_dot_BxGv = compute_dot_prod(normal,BxGv);
- Vector<ElemBasis> dphi_dnu(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dphi_dnu[i][j] = n_dot_BxGv[i][j] * 2*H[i][j];
- }
- }
- return dphi_dnu;
- };
- auto compute_dphi_dnu2 = [&S,&normal,&H,&compute_AxB,&compute_v,&B] () {
- const Long Nelem = S.NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> GnxB;
- Vector<ElemBasis> nxB = compute_AxB(normal,B);
- EvalQuadrature(GnxB, S.quadrature_FxU, S, nxB, S.Laplace_FxU);
- Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
- Vector<ElemBasis> v_dot_GnxB = compute_dot_prod(v,GnxB);
- Vector<ElemBasis> dphi_dnu(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dphi_dnu[i][j] = v_dot_GnxB[i][j] * 2*H[i][j];
- }
- }
- return dphi_dnu;
- };
- auto compute_dphi_dnu3 = [&S,&normal,&area_elem,&H,&compute_AxB,&compute_v,&B] () {
- const Long Nelem = S.NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> GnxB;
- Vector<ElemBasis> nxB = compute_AxB(normal,B);
- EvalQuadrature(GnxB, S.quadrature_FxU, S, nxB, S.Laplace_FxU);
- Vector<ElemBasis> dGnxB = compute_v(GnxB);
- Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
- Vector<ElemBasis> dv_dnu1(Nelem), dv_dnu2(Nelem);
- { // Set dv_dnu1, dv_dnu2
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dv_dnu1[i][j] = 0;
- dv_dnu1[i][j] += -GnxB[i*COORD_DIM+0][j] * v[i*COORD_DIM+0][j] * 2 * H[i][j];
- dv_dnu1[i][j] += -GnxB[i*COORD_DIM+1][j] * v[i*COORD_DIM+1][j] * 2 * H[i][j];
- dv_dnu1[i][j] += -GnxB[i*COORD_DIM+2][j] * v[i*COORD_DIM+2][j] * 2 * H[i][j];
- dv_dnu2[i][j] = 0;
- dv_dnu2[i][j] += -dGnxB[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
- dv_dnu2[i][j] += -dGnxB[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
- dv_dnu2[i][j] += -dGnxB[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
- }
- }
- }
- return dv_dnu1 + dv_dnu2;
- };
- auto compute_dphi_dnu4 = [&S,&normal,&compute_AxB,&compute_v,&B] () {
- const Long Nelem = S.NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> dGnxB;
- Vector<ElemBasis> nxB = compute_AxB(normal,B);
- EvalQuadrature(dGnxB, S.quadrature_FxdU, S, nxB, S.Laplace_FxdU);
- Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
- Vector<ElemBasis> dphi_dnu(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Real dphi_dnu_ = 0;
- dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
- dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
- dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
- dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
- dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
- dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
- dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
- dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
- dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
- dphi_dnu[i][j] = dphi_dnu_;
- }
- }
- return dphi_dnu;
- };
- auto compute_dphi_dnu5 = [&S,&normal,&compute_AxB,&compute_v,&B] () {
- const Long Nelem = S.NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> nxB = compute_AxB(normal,B);
- Vector<ElemBasis> dGv;
- Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
- EvalQuadrature(dGv, S.quadrature_FxdU, S, v, S.Laplace_FxdU);
- Vector<ElemBasis> dphi_dnu(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Real dphi_dnu_ = 0;
- dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+0][j] * nxB[i*COORD_DIM+0][j];
- dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+1][j] * nxB[i*COORD_DIM+0][j];
- dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+2][j] * nxB[i*COORD_DIM+0][j];
- dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+0][j] * nxB[i*COORD_DIM+1][j];
- dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+1][j] * nxB[i*COORD_DIM+1][j];
- dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+2][j] * nxB[i*COORD_DIM+1][j];
- dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+0][j] * nxB[i*COORD_DIM+2][j];
- dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+1][j] * nxB[i*COORD_DIM+2][j];
- dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+2][j] * nxB[i*COORD_DIM+2][j];
- dphi_dnu[i][j] = dphi_dnu_;
- }
- }
- return dphi_dnu;
- };
- auto compute_dphi_dnu6 = [&S,&normal,&compute_AxB,&compute_v,&gradB] () {
- const Long Nelem = S.NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> Gv;
- Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
- EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
- Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
- Vector<ElemBasis> dphi_dnu(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Real dphi_dnu_ = 0;
- dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
- dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+1][j] * normal[i*COORD_DIM+0][j];
- dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+2][j] * normal[i*COORD_DIM+0][j];
- dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+0][j] * normal[i*COORD_DIM+1][j];
- dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
- dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+2][j] * normal[i*COORD_DIM+1][j];
- dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+0][j] * normal[i*COORD_DIM+2][j];
- dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+1][j] * normal[i*COORD_DIM+2][j];
- dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
- dphi_dnu[i][j] = dphi_dnu_;
- }
- }
- return dphi_dnu;
- };
- auto compute_dphi_dnu7 = [&S,&normal,&H,&compute_AxB,&compute_v,&sigma] () {
- const Long Nelem = S.NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> Gv;
- Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
- EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
- Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
- Vector<ElemBasis> dphi_dnu(Nelem);
- EvalQuadrature(dphi_dnu, S.quadrature_dUxF, S, nxGv, S.Laplace_dUxF);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dphi_dnu[i][j] *= -2*H[i][j] * sigma[i][j];
- }
- }
- return dphi_dnu;
- };
- auto compute_dphi_dnu8 = [&S,&normal,&H,&compute_AxB,&compute_v,&sigma] () {
- const Long Nelem = S.NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> Gv;
- Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
- EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
- Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
- Vector<ElemBasis> dphi_dnu(Nelem);
- Vector<ElemBasis> nablaDt_nxGv;
- EvalQuadrature(nablaDt_nxGv, S.quadrature_dUxD, S, nxGv, S.Laplace_dUxD);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dphi_dnu[i][j] = 0;
- dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
- dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
- dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
- }
- }
- return dphi_dnu;
- };
- auto dphi_dnu0 = compute_dphi_dnu0();
- auto dphi_dnu1 = compute_dphi_dnu1();
- auto dphi_dnu2 = compute_dphi_dnu2();
- auto dphi_dnu3 = compute_dphi_dnu3();
- auto dphi_dnu4 = compute_dphi_dnu4();
- auto dphi_dnu5 = compute_dphi_dnu5();
- auto dphi_dnu6 = compute_dphi_dnu6();
- auto dphi_dnu7 = compute_dphi_dnu7();
- auto dphi_dnu8 = compute_dphi_dnu8();
- return (dphi_dnu0+dphi_dnu1+dphi_dnu2+dphi_dnu3+dphi_dnu4+dphi_dnu5+dphi_dnu6+dphi_dnu7+dphi_dnu8);
- };
- { // Set dg_dnu -= dg_dsigma invA dA_dnu sigma
- dg_dnu -= compute_u_dAdnu_v_0(dg_dsigma_invA, sigma, alpha, beta);
- if (S.Nsurf() >= 1) dg_dnu -= compute_u_dAdnu_v_1(sigma, alpha, beta, true) * dg_dsigma_invA[Nelem*Nnodes+0];
- if (S.Nsurf() >= 2) dg_dnu -= compute_u_dAdnu_v_1(sigma, alpha, beta, false) * dg_dsigma_invA[Nelem*Nnodes+1];
- }
- return dg_dnu;
- };
- auto dg_dnu = compute_gradient();
- return dg_dnu;
- }
- static void test() {
- constexpr Integer order_singular = 15;
- constexpr Integer order_direct = 35;
- Comm comm = Comm::World();
- Profile::Enable(true);
- Real flux_tor = 1.0, flux_pol = 1.0;
- Stellarator<Real,ORDER> S;
- { // Init S
- Vector<Long> NtNp;
- NtNp.PushBack(20);
- NtNp.PushBack(4);
- //NtNp.PushBack(20);
- //NtNp.PushBack(4);
- S = Stellarator<Real,ORDER>(NtNp);
- }
- if (S.Nsurf() == 1) flux_pol = 0.0;
- Vector<ElemBasis> pressure;
- { // Set pressure
- Vector<ElemBasis> normal, area_elem;
- compute_norm_area_elem(S, normal, area_elem);
- pressure = area_elem*0;
- }
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
- SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
- SetupQuadrature(S.quadrature_FxdU, S, S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
- SetupQuadrature(S.quadrature_dUxF, S, S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
- Vector<ElemBasis> Bt0, Bp0;
- { // Set Bt0, Bp0
- Vector<ElemBasis> Jt, Jp;
- compute_harmonic_vector_potentials(Jt, Jp, S);
- EvalQuadrature(Bt0, S.quadrature_BS, S, Jp, S.BiotSavart);
- EvalQuadrature(Bp0, S.quadrature_BS, S, Jt, S.BiotSavart);
- }
- auto compute_B = [&S,&Bt0,&Bp0] (const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
- const Long Nelem = S.NElem();
- Vector<ElemBasis> B(S.NElem() * COORD_DIM);
- if (sigma.Dim()) {
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> normal, area_elem;
- compute_norm_area_elem(S, normal, area_elem);
- EvalQuadrature(B, S.quadrature_FxdU, S, sigma, S.Laplace_FxdU);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- for (Long k = 0; k < COORD_DIM; k++) {
- B[i*COORD_DIM+k][j] -= 0.5*sigma[i][j]*normal[i*COORD_DIM+k][j];
- }
- }
- }
- } else {
- B = 0;
- }
- if (S.Nsurf() >= 1) B += Bt0*alpha;
- if (S.Nsurf() >= 2) B += Bp0*beta;
- return B;
- };
- auto compute_flux = [&S] (Real& flux_tor, Real& flux_pol, const Vector<ElemBasis>& B, const Vector<ElemBasis>& normal) {
- const Long Nelem = S.NElem();
- const Long Nnodes = ElemBasis::Size();
- SCTL_ASSERT(B.Dim() == Nelem*COORD_DIM);
- SCTL_ASSERT(normal.Dim() == Nelem*COORD_DIM);
- Vector<ElemBasis> J(Nelem * COORD_DIM);
- for (Long i = 0; i < Nelem; i++) { // Set J
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,COORD_DIM> b, n;
- b(0) = B[i*COORD_DIM+0][j];
- b(1) = B[i*COORD_DIM+1][j];
- b(2) = B[i*COORD_DIM+2][j];
- n(0) = normal[i*COORD_DIM+0][j];
- n(1) = normal[i*COORD_DIM+1][j];
- n(2) = normal[i*COORD_DIM+2][j];
- J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
- J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
- J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
- }
- }
- Vector<ElemBasis> A;
- EvalQuadrature(A, S.quadrature_FxU, S, J, S.Laplace_FxU);
- Vector<Real> circ_pol(S.Nsurf()), circ_tor(S.Nsurf());
- { // compute circ
- Vector<ElemBasis> dX;
- ElemBasis::Grad(dX, S.GetElemList().ElemVector());
- const auto& quad_wts = ElemBasis::QuadWts();
- for (Long k = 0; k < S.Nsurf(); k++) {
- circ_pol[k] = 0;
- circ_tor[k] = 0;
- Long Ndsp = S.ElemDsp(k);
- for (Long i = 0; i < S.NTor(k)*S.NPol(k); i++) {
- for (Long j = 0; j < Nnodes; j++) {
- circ_pol[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+1][j] * quad_wts[j] / S.NTor(k);
- circ_pol[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+3][j] * quad_wts[j] / S.NTor(k);
- circ_pol[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+5][j] * quad_wts[j] / S.NTor(k);
- circ_tor[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+0][j] * quad_wts[j] / S.NPol(k);
- circ_tor[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+2][j] * quad_wts[j] / S.NPol(k);
- circ_tor[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+4][j] * quad_wts[j] / S.NPol(k);
- }
- }
- }
- }
- if (S.Nsurf() == 1) {
- flux_tor = circ_pol[0];
- flux_pol = 0;
- } else if (S.Nsurf() == 2) {
- flux_tor = circ_pol[1] - circ_pol[0];
- flux_pol = circ_tor[0] - circ_tor[1];
- } else {
- SCTL_ASSERT(false);
- }
- };
- auto compute_A = [&S,compute_B,&compute_flux] (const Vector<Real>& x) {
- const Long Nelem = S.NElem();
- const Long Nnodes = ElemBasis::Size();
- SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
- Vector<ElemBasis> normal, area_elem;
- compute_norm_area_elem(S, normal, area_elem);
- Vector<ElemBasis> sigma(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- sigma[i][j] = x[i*Nnodes+j];
- }
- }
- Real alpha = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
- Real beta = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
- Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
- Vector<ElemBasis> BdotN = compute_dot_prod(B, normal);
- Real flux_tor, flux_pol;
- compute_flux(flux_tor, flux_pol, B, normal);
- Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Ax[i*Nnodes+j] = BdotN[i][j];
- }
- }
- if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = flux_tor;
- if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = flux_pol;
- return Ax;
- };
- auto compute_invA = [&S,&comm,&compute_A] (Vector<ElemBasis>& sigma, Real& alpha, Real& beta, Real flux_tor, Real flux_pol) {
- typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&compute_A](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
- (*Ax) = compute_A(x);
- };
- const Long Nelem = S.NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<Real> rhs_(Nelem * Nnodes + S.Nsurf());
- rhs_ = 0;
- if (S.Nsurf() >= 1) rhs_[Nelem * Nnodes + 0] = flux_tor;
- if (S.Nsurf() >= 2) rhs_[Nelem * Nnodes + 1] = flux_pol;
- Vector<Real> x_(Nelem * Nnodes + S.Nsurf());
- x_ = 0;
- ParallelSolver<Real> linear_solver(comm, true);
- linear_solver(&x_, BIOp, rhs_, 1e-8, 100);
- sigma.ReInit(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- sigma[i][j] = x_[i*Nnodes+j];
- }
- }
- alpha = (S.Nsurf() >= 1 ? x_[Nelem * Nnodes + 0] : 0);
- beta = (S.Nsurf() >= 2 ? x_[Nelem * Nnodes + 1] : 0);
- };
- Vector<ElemBasis> dg_dnu = compute_gradient(S, pressure, flux_tor, flux_pol);
- { // Write VTU
- VTUData vtu;
- vtu.AddElems(S.GetElemList(), dg_dnu, ORDER);
- vtu.WriteVTK("dg_dnu", comm);
- }
- if (1) { // test grad_g
- auto compute_g = [&S,&Bt0,&Bp0,&compute_B,&compute_invA,&comm] (const Vector<ElemBasis>& nu, Real eps, Real flux_tor, Real flux_pol, const Vector<ElemBasis>& pressure) {
- const Long Nelem = S.NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> normal, area_elem;
- compute_norm_area_elem(S, normal, area_elem);
- Vector<ElemBasis> X_orig(Nelem*COORD_DIM);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- X_orig[i*COORD_DIM+0][j] = S.Elem(i,0)[j];
- X_orig[i*COORD_DIM+1][j] = S.Elem(i,1)[j];
- X_orig[i*COORD_DIM+2][j] = S.Elem(i,2)[j];
- S.Elem(i,0)[j] += eps*nu[i][j] * normal[i*COORD_DIM+0][j];
- S.Elem(i,1)[j] += eps*nu[i][j] * normal[i*COORD_DIM+1][j];
- S.Elem(i,2)[j] += eps*nu[i][j] * normal[i*COORD_DIM+2][j];
- }
- }
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////
- SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
- SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
- SetupQuadrature(S.quadrature_FxdU, S, S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
- Vector<ElemBasis> Jt, Jp;
- compute_harmonic_vector_potentials(Jt, Jp, S);
- EvalQuadrature(Bt0, S.quadrature_BS, S, Jp, S.BiotSavart);
- EvalQuadrature(Bp0, S.quadrature_BS, S, Jt, S.BiotSavart);
- Real alpha, beta;
- Vector<ElemBasis> sigma;
- compute_invA(sigma, alpha, beta, flux_tor, flux_pol);
- Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
- compute_norm_area_elem(S, normal, area_elem);
- Real g = compute_inner_prod(area_elem, compute_gvec(S,B,pressure), area_elem*0+1);
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- S.Elem(i,0)[j] = X_orig[i*COORD_DIM+0][j];
- S.Elem(i,1)[j] = X_orig[i*COORD_DIM+1][j];
- S.Elem(i,2)[j] = X_orig[i*COORD_DIM+2][j];
- }
- }
- return g;
- };
- Vector<ElemBasis> normal, area_elem;
- compute_norm_area_elem(S, normal, area_elem);
- const Long Nelem = S.NElem();
- {
- Vector<ElemBasis> nu(Nelem);
- nu = area_elem;
- Real eps = 1e-4;
- Real g0 = compute_g(nu,-eps, flux_tor, flux_pol, pressure);
- Real g1 = compute_g(nu,eps, flux_tor, flux_pol, pressure);
- std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
- std::cout<<"dg_dnu = "<<compute_inner_prod(area_elem,nu, dg_dnu)<<'\n';
- }
- {
- Vector<ElemBasis> nu(Nelem);
- nu = 1;
- Real eps = 1e-4;
- Real g0 = compute_g(nu,-eps, flux_tor, flux_pol, pressure);
- Real g1 = compute_g(nu,eps, flux_tor, flux_pol, pressure);
- std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
- std::cout<<"dg_dnu = "<<compute_inner_prod(area_elem,nu, dg_dnu)<<'\n';
- }
- {
- Vector<ElemBasis> nu(Nelem);
- nu = dg_dnu;
- Real eps = 1e-4;
- Real g0 = compute_g(nu,-eps, flux_tor, flux_pol, pressure);
- Real g1 = compute_g(nu,eps, flux_tor, flux_pol, pressure);
- std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
- std::cout<<"dg_dnu = "<<compute_inner_prod(area_elem,nu, dg_dnu)<<'\n';
- }
- }
- }
- private:
- static void tmp() {
- //if (0) { // Save data
- // Matrix<Real> M(S.NtNp_[0]*ORDER, S.NtNp_[1]*ORDER);
- // for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
- // for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
- // for (Long t = 0; t < ORDER; t++) {
- // for (Long p = 0; p < ORDER; p++) {
- // Long elem_idx = tt * S.NtNp_[1] + pp;
- // Long node_idx = p * ORDER + t;
- // M[tt*ORDER+t][pp*ORDER+p] = dg_dnu[elem_idx][node_idx];
- // }
- // }
- // }
- // }
- // M.Write("dg_dnu.mat");
- //}
- //if (0) { // filter dg_dnu and write VTU
- // const Long Nelem = S.NElem();
- // const Long Nnodes = ElemBasis::Size();
- // const Integer INTERP_ORDER = 12;
- // Long Nt = S.NtNp_[0]*ORDER/5, Np = S.NtNp_[1]*ORDER/5;
- // Matrix<Real> M(Nt, Np); M = 0;
- // const auto& quad_wts = ElemBasis::QuadWts();
- // const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
- // for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
- // for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
- // for (Long t = 0; t < ORDER; t++) {
- // for (Long p = 0; p < ORDER; p++) {
- // Real theta = (tt + Mnodes[0][t]) / S.NtNp_[0];
- // Real phi = (pp + Mnodes[0][p]) / S.NtNp_[1];
- // Long i = (Long)(theta * Nt);
- // Long j = (Long)(phi * Np);
- // Real x = theta * Nt - i;
- // Real y = phi * Np - j;
- // Long elem_idx = tt * S.NtNp_[1] + pp;
- // Long node_idx = p * ORDER + t;
- // Vector<Real> Interp0(INTERP_ORDER);
- // Vector<Real> Interp1(INTERP_ORDER);
- // { // Set Interp0, Interp1
- // auto node = [] (Long i) {
- // return (Real)i - (INTERP_ORDER-1)/2;
- // };
- // for (Long i = 0; i < INTERP_ORDER; i++) {
- // Real wt_x = 1, wt_y = 1;
- // for (Long j = 0; j < INTERP_ORDER; j++) {
- // if (j != i) {
- // wt_x *= (x - node(j)) / (node(i) - node(j));
- // wt_y *= (y - node(j)) / (node(i) - node(j));
- // }
- // Interp0[i] = wt_x;
- // Interp1[i] = wt_y;
- // }
- // }
- // }
- // for (Long ii = 0; ii < INTERP_ORDER; ii++) {
- // for (Long jj = 0; jj < INTERP_ORDER; jj++) {
- // Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
- // Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
- // M[idx_i][idx_j] += dg_dnu[elem_idx][node_idx] * quad_wts[node_idx] * Interp0[ii] * Interp1[jj] / (S.NtNp_[0] * S.NtNp_[1]) * (Nt * Np);
- // }
- // }
- // }
- // }
- // }
- // }
- // Vector<ElemBasis> f(Nelem);
- // for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
- // for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
- // for (Long t = 0; t < ORDER; t++) {
- // for (Long p = 0; p < ORDER; p++) {
- // Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
- // Real theta = (tt + Mnodes[0][t]) / S.NtNp_[0];
- // Real phi = (pp + Mnodes[0][p]) / S.NtNp_[1];
- // Long i = (Long)(theta * Nt);
- // Long j = (Long)(phi * Np);
- // Real x = theta * Nt - i;
- // Real y = phi * Np - j;
- // Vector<Real> Interp0(INTERP_ORDER);
- // Vector<Real> Interp1(INTERP_ORDER);
- // { // Set Interp0, Interp1
- // auto node = [] (Long i) {
- // return (Real)i - (INTERP_ORDER-1)/2;
- // };
- // for (Long i = 0; i < INTERP_ORDER; i++) {
- // Real wt_x = 1, wt_y = 1;
- // for (Long j = 0; j < INTERP_ORDER; j++) {
- // if (j != i) {
- // wt_x *= (x - node(j)) / (node(i) - node(j));
- // wt_y *= (y - node(j)) / (node(i) - node(j));
- // }
- // Interp0[i] = wt_x;
- // Interp1[i] = wt_y;
- // }
- // }
- // }
- // Real f0 = 0;
- // for (Long ii = 0; ii < INTERP_ORDER; ii++) {
- // for (Long jj = 0; jj < INTERP_ORDER; jj++) {
- // Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
- // Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
- // f0 += Interp0[ii] * Interp1[jj] * M[idx_i][idx_j];
- // }
- // }
- // Long elem_idx = tt * S.NtNp_[1] + pp;
- // Long node_idx = p * ORDER + t;
- // f[elem_idx][node_idx] = f0;
- // }
- // }
- // }
- // }
- // { // Write VTU
- // VTUData vtu;
- // vtu.AddElems(S.GetElemList(), f, ORDER);
- // vtu.WriteVTK("dg_dnu_filtered", comm);
- // }
- // dg_dnu = f;
- //}
- }
- static void FlipNormal(Vector<ElemBasis>& v) {
- for (Long i = 0; i < v.Dim(); i++) {
- const auto elem = v[i];
- for (Long j0 = 0; j0 < ORDER; j0++) {
- for (Long j1 = 0; j1 < ORDER; j1++) {
- v[i][j0*ORDER+j1] = elem[j0*ORDER+(ORDER-j1-1)];
- }
- }
- }
- }
- template <class Kernel> static void SetupQuadrature(Quadrature<Real>& quadrature, const Stellarator<Real,ORDER>& S, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm, Real Rqbx = 0) {
- if (S.Nsurf() == 2) {
- Long Nelem0 = S.NTor(0)*S.NPol(0);
- ElemList<COORD_DIM, ElemBasis> elem_lst = S.GetElemList();
- { // Update elem_lst
- Vector<ElemBasis> X = elem_lst.ElemVector();
- Vector<ElemBasis> X0(Nelem0*COORD_DIM, X.begin(), false);
- FlipNormal(X0);
- elem_lst.ReInit(X);
- }
- quadrature.template Setup<ElemBasis, ElemBasis>(elem_lst, kernel, order_singular, order_direct, period_length, comm, Rqbx);
- } else {
- quadrature.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), kernel, order_singular, order_direct, period_length, comm, Rqbx);
- }
- }
- template <class Kernel> static void EvalQuadrature(Vector<ElemBasis>& potential, const Quadrature<Real>& quadrature, const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& density, const Kernel& kernel) {
- if (S.Nsurf() == 2) {
- Long Nelem0 = S.NTor(0)*S.NPol(0);
- Vector<ElemBasis> potential_, density_ = density;
- ElemList<COORD_DIM, ElemBasis> elem_lst = S.GetElemList();
- { // Update elem_lst
- Vector<ElemBasis> X = elem_lst.ElemVector();
- Vector<ElemBasis> X0(Nelem0*COORD_DIM, X.begin(), false);
- FlipNormal(X0);
- elem_lst.ReInit(X);
- }
- { // Update density_
- Long dof = density_.Dim() / S.NElem();
- Vector<ElemBasis> density0(Nelem0*dof, density_.begin(), false);
- FlipNormal(density0);
- }
- quadrature.Eval(potential_, elem_lst, density_, kernel);
- { // Update potential_
- Long dof = potential_.Dim() / S.NElem();
- Vector<ElemBasis> potential0(Nelem0*dof, potential_.begin(), false);
- FlipNormal(potential0);
- }
- potential = potential_;
- } else {
- quadrature.Eval(potential, S.GetElemList(), density, kernel);
- }
- }
- void InitSurf(Long l, Long Nsurf) {
- const auto& nodes = ElemBasis::Nodes();
- const Long Nt = NTor(l);
- const Long Np = NPol(l);
- for (Long i = 0; i < Nt; i++) {
- for (Long j = 0; j < Np; j++) {
- for (Long k = 0; k < ElemBasis::Size(); k++) {
- Real theta = (i + nodes[0][k]) * 2*const_pi<Real>()/Nt;
- Real phi = (j + nodes[1][k]) * 2*const_pi<Real>()/Np;
- Real X,Y,Z;
- SurfGeom(X,Y,Z,theta,phi, (2.0+l)/(1.0+Nsurf));
- Elem(ElemIdx(l,i,j),0)[k] = X;
- Elem(ElemIdx(l,i,j),1)[k] = Y;
- Elem(ElemIdx(l,i,j),2)[k] = Z;
- }
- }
- }
- }
- static void SurfGeom(Real& X, Real& Y, Real& Z, Real theta, Real phi, Real s) {
- sctl::Integer Nperiod = 5;
- #if 0
- Real Aspect_ratio = 10.27932548522949;
- Real coeffmat[21][21] = { 0.00000478813217, 0.00000000000000, 0.00000351611652, 0.00000135354389, 0.00000061357832, 0.00000220091101, 0.00000423862912, -0.00003000058678, 0.00000064187111, -0.00024228452821, 0.00003116775770, 0.00000176210710, 0.00000289141326, -0.00000150300525, 0.00000772853855, 0.00000098855242, 0.00000316606793, 0.00000002168364, 0.00000212047939, 0.00000299016097, 0.00000443224508,
- 0.00000028202930, 0.00000000000000, -0.00000249222421, -0.00000203136278, 0.00000131104809, 0.00000011987446, -0.00000370760154, 0.00004553918916, -0.00007711342914, -0.00004685295062, 0.00011049838213, -0.00000197486270, 0.00000395827146, 0.00000615046474, 0.00000755337123, 0.00000700606006, 0.00000922725030, -0.00000043310337, 0.00000107416383, 0.00000449787694, 0.00000305137178,
- 0.00001226376662, 0.00000000000000, 0.00000270820692, 0.00000208059305, 0.00000521478523, 0.00001779037302, 0.00000846544117, 0.00001120913385, -0.00065816845745, -0.00085107452469, -0.00013171190221, -0.00005540943675, -0.00001835885450, 0.00000101879823, 0.00000209222071, 0.00000091532502, -0.00000521515358, -0.00000209227142, -0.00000678545939, -0.00000034963549, -0.00000015111488,
- 0.00001560274177, 0.00000000000000, 0.00000350691471, -0.00001160475040, -0.00001763036562, 0.00003487367940, -0.00002787247831, -0.00000910982726, 0.00008818832430, -0.00524408789352, 0.00009378376126, 0.00004184526188, 0.00002849263365, -0.00002757280527, 0.00003388467667, 0.00000706207265, 0.00000625263419, -0.00003315929280, -0.00001181772132, 0.00000311426015, 0.00001875682574,
- -0.00000398287420, 0.00000000000000, -0.00001524541040, 0.00001724056165, 0.00002245173346, 0.00002806861812, -0.00000388776925, 0.00008143573359, -0.00005900909309, 0.00110496615525, 0.00134626252111, 0.00005128383054, -0.00001372421866, 0.00003612563887, 0.00002236580076, -0.00002728391883, 0.00001981237256, 0.00000655450458, 0.00000985319002, 0.00001347597299, 0.00000645987802,
- 0.00003304968050, 0.00000000000000, -0.00000530822217, 0.00001324870937, -0.00003610889689, -0.00005478735329, -0.00005818806312, -0.00037112057908, -0.00017812002625, -0.00093204283621, 0.00115969858598, -0.00033559172880, -0.00010441876657, -0.00001617923044, -0.00000555065844, 0.00007343527250, -0.00004408047607, 0.00000403802142, 0.00001843931204, 0.00001694047933, 0.00001213414362,
- -0.00000751115658, 0.00000000000000, 0.00005457974839, -0.00000334614515, 0.00005845565465, 0.00015000770509, 0.00021849104087, 0.00002724147635, 0.00167233624961, 0.00011666602222, 0.00276563479565, -0.00085952825611, -0.00030217235326, -0.00008841593808, 0.00000997664119, -0.00015285826521, 0.00002517224675, 0.00003009161810, 0.00001883217556, 0.00002146127554, 0.00001822445302,
- -0.00004128706860, 0.00000000000000, -0.00003496417776, 0.00001088761655, -0.00000298955979, -0.00005359326315, -0.00019021633489, -0.00017992728681, -0.00347794801928, 0.00064632791327, 0.00449698418379, -0.00017710507382, 0.00006126180233, 0.00018059254216, 0.00002354096432, 0.00008189838991, -0.00010060678323, -0.00017183290038, 0.00019413756672, 0.00021334811754, 0.00011263617489,
- 0.00000853522670, -0.00000000000000, -0.00006544789358, 0.00005424076880, -0.00000679056529, -0.00001249735487, -0.00053082982777, 0.00035396864405, -0.00115020677913, 0.05894451215863, 0.06573092192411, 0.01498018857092, 0.00278125284240, 0.00145188067108, 0.00033717858605, 0.00000800427370, -0.00009335305367, 0.00024286781263, -0.00023916347709, 0.00031213948387, 0.00018134393031,
- -0.00002521496390, -0.00000000000000, -0.00054337945767, 0.00012690725271, 0.00053313979879, 0.00064233405283, -0.00047686311882, 0.00176536326762, 0.00074157933705, -0.02684566564858, 1.00000000000000, 0.07176169008017, 0.00837037432939, -0.00000381640211, 0.00088998704450, -0.00049218931235, -0.00024546548957, -0.00036608282244, 0.00049480766756, 0.00031158892671, 0.00006898906577,
- 0.00021280418150, 0.00028127161204, -0.00070030166535, 0.00022237010126, -0.00028713891516, -0.00013800295710, 0.00005912094275, 0.00172126013786, -0.00618684850633, 0.03608432412148, Aspect_ratio , 0.49896776676178, 0.00091372377938, -0.00085712829605, -0.00124801427592, -0.00007427225501, -0.00005245858847, 0.00002841771493, 0.00020249813679, -0.00014303345233, 0.00001406490901,
- 0.00023699452868, 0.00008661757602, 0.00025744654704, -0.00022715188970, -0.00076146807987, 0.00055185536621, -0.00012325309217, -0.00072356045712, -0.00160693109501, 0.00246682553552, -0.14175094664097, -0.36207047104836, -0.04089594259858, 0.00060774467420, 0.00088646943914, 0.00004865296432, -0.00041878610500, -0.00023025234987, -0.00009676301852, -0.00000000000000, 0.00008409228758,
- 0.00011432896281, -0.00000707848403, 0.00004698805787, -0.00043642931269, 0.00081384339137, -0.00065635429928, -0.00011831733718, 0.00017413357273, 0.00224463525228, 0.00478497287259, 0.03294761106372, 0.01078986655921, 0.10731782764196, 0.00075034319889, -0.00009241879889, 0.00055023463210, 0.00006596000458, 0.00005045382932, 0.00014874986664, 0.00000000000000, -0.00015369028552,
- 0.00001037383754, 0.00009250180301, 0.00026204055757, 0.00007424291834, -0.00047751804232, 0.00029184055165, 0.00050921301590, -0.00004825839278, -0.00029933769838, 0.00279659987427, 0.00210463814437, -0.00618590926751, -0.02400829829276, -0.02316811867058, -0.00086368201301, -0.00032258985448, -0.00018304496189, 0.00008438774967, -0.00008305341908, 0.00000000000000, 0.00013047417451,
- -0.00001376930322, -0.00001723831701, -0.00011543079017, -0.00022646733851, 0.00013467084500, -0.00004661652201, -0.00008419520600, 0.00035772417323, -0.00011815709877, 0.00028718306567, 0.00092207465786, -0.00317224999890, 0.00061770365573, 0.01017294172198, 0.00294739892706, 0.00014669894881, 0.00015702951350, 0.00003432080121, -0.00008555022214, -0.00000000000000, 0.00000454909878,
- -0.00000196001542, -0.00003198397462, -0.00004425687075, -0.00004129848094, -0.00003789070615, -0.00027583551127, 0.00025874207495, -0.00002334945384, -0.00007259396807, -0.00008295358566, 0.00011360697681, -0.00101968157105, 0.00046784928418, -0.00208410434425, -0.00313158822246, -0.00046005158219, -0.00010552268213, -0.00005850767775, 0.00003971093611, 0.00000000000000, -0.00005275657168,
- -0.00001065901233, -0.00001934838656, -0.00001220186732, -0.00002060524639, -0.00000225423423, -0.00001894621164, -0.00001533334580, -0.00001791087379, 0.00008156246622, -0.00008441298269, 0.00021060956351, -0.00030303673702, 0.00075949780876, -0.00010539998038, 0.00109045265708, 0.00068949378328, 0.00009268362192, 0.00003471063246, 0.00001204656473, -0.00000000000000, 0.00001500743110,
- 0.00000105878155, -0.00000910870767, -0.00000172467264, -0.00000722095228, 0.00000699280463, -0.00002061720625, -0.00000889817693, -0.00001993474507, 0.00000370749740, -0.00000090311920, 0.00002677819793, 0.00043428712524, 0.00210293265991, 0.00018200518389, -0.00009621794743, -0.00035250501242, -0.00012996385340, -0.00002185157609, -0.00001116586463, -0.00000000000000, -0.00000451994811,
- 0.00000424055270, -0.00000463139304, 0.00000301006116, -0.00000123974939, 0.00000632465435, -0.00002090823000, 0.00001773388794, 0.00000121050368, 0.00001886057362, -0.00001043497195, -0.00002269273500, -0.00021979617304, -0.00001043962493, -0.00116343051195, -0.00004193381756, 0.00007944958634, 0.00007301353617, 0.00002082651736, -0.00000119863023, -0.00000000000000, -0.00001440504820,
- -0.00000391270805, -0.00000490489265, -0.00000504441778, -0.00000904507579, -0.00000111389932, 0.00000597532107, 0.00000047090245, -0.00001553130096, -0.00001524566323, -0.00000522222899, -0.00007707672921, -0.00004165665086, 0.00015764687851, 0.00035649110214, 0.00038701237645, 0.00002386798405, -0.00001946414341, -0.00000913835174, -0.00000489907188, 0.00000000000000, 0.00000172327657,
- -0.00000015388650, -0.00000603232729, -0.00000397650865, 0.00000280493782, 0.00000463132073, -0.00000788678426, -0.00000471605335, -0.00000283715985, -0.00000422824724, 0.00000366817630, -0.00001159603562, -0.00001625759251, 0.00049116823357, 0.00005048640014, -0.00020234247495, -0.00006341376866, -0.00000807822744, 0.00000070463199, 0.00000014041755, 0.00000000000000, -0.00000718306910};
- #else
- Real Aspect_ratio = 5;
- Real coeffmat[21][21] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, s, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Aspect_ratio, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2*s, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0};
- #endif
- Z = 0;
- Real R = 0;
- for (long i = -10; i <= 10; i++) {
- for (long j = -10; j <= 10; j++) {
- R += coeffmat[i+10][j+10] * sctl::cos(-i*phi + Nperiod*j*theta);
- Z += coeffmat[i+10][j+10] * sctl::sin(-i*phi + Nperiod*j*theta);
- }
- }
- X = R * sctl::cos(theta);
- Y = R * sctl::sin(theta);
- }
- GenericKernel<BiotSavart3D> BiotSavart ;
- GenericKernel<BiotSavartGrad3D> BiotSavartGrad;
- GenericKernel<Laplace3D_FxU > Laplace_FxU ;
- GenericKernel<Laplace3D_FxdU> Laplace_FxdU;
- GenericKernel<Laplace3D_dUxF> Laplace_dUxF;
- GenericKernel<Laplace3D_dUxD> Laplace_dUxD;
- GenericKernel<Laplace3D_Fxd2U> Laplace_Fxd2U;
- mutable Quadrature<Real> quadrature_BS ;
- mutable Quadrature<Real> quadrature_dBS ;
- mutable Quadrature<Real> quadrature_FxU ;
- mutable Quadrature<Real> quadrature_FxdU;
- mutable Quadrature<Real> quadrature_dUxF;
- mutable Quadrature<Real> quadrature_dUxD;
- mutable Quadrature<Real> quadrature_Fxd2U;
- ElemLst elements;
- Vector<Long> NtNp_;
- Vector<Long> elem_dsp;
- };
- template <class Real, Integer ORDER=5> class Spheres {
- static constexpr Integer COORD_DIM = 3;
- static constexpr Integer ELEM_DIM = COORD_DIM-1;
- using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
- using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
- using CoordBasis = Basis<Real, ELEM_DIM, ORDER>;
- using ElemLst = ElemList<COORD_DIM, CoordBasis>;
- public:
- Spheres(Long N = 0) {
- Vector<Real> X(N*COORD_DIM);
- Vector<Real> R(N);
- X=0;
- R=1;
- for (Long i = 0; i < N; i++) X[i*COORD_DIM] = (i==0?-1.015:1.015); ///////////
- InitSpheres(X,R);
- }
- const ElemLst& GetElem() const {
- return elements;
- }
- static void test() {
- constexpr Integer order_singular = 35;
- constexpr Integer order_direct = 35;
- Comm comm = Comm::World();
- Profile::Enable(true);
- Long Ns = 2;
- Spheres S(Ns);
- S.quadrature_FxT.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_FxT, order_singular, order_direct, -1.0, comm);
- S.quadrature_FxU.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_FxU, order_singular, order_direct, -1.0, comm);
- S.quadrature_DxU.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_DxU, order_singular, order_direct, -1.0, comm);
- const auto SetMotion = [&S](Vector<DensityBasis>& density, const Vector<Real>& force_avg, const Vector<Real>& torque_avg) {
- Long Nelem = S.GetElem().NElem();
- Long Nsurf = S.elem_cnt.Dim();
- const auto& X = S.GetElem().ElemVector();
- Vector<Real> area, Xc;
- Vector<DensityBasis> one(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < DensityBasis::Size(); j++) {
- one[i][j] = 1;
- }
- }
- S.SurfInteg(area, one);
- S.SurfInteg(Xc, S.GetElem().ElemVector());
- for (Long i = 0; i < Nsurf; i++) {
- for (Long k = 0; k < COORD_DIM; k++) {
- Xc[i*COORD_DIM+k] /= area[i];
- }
- }
- if (density.Dim() != Nelem*COORD_DIM) density.ReInit(Nelem*COORD_DIM);
- Long elem_itr = 0;
- for (Long i = 0; i < Nsurf; i++) {
- for (Long j = 0; j < S.elem_cnt[i]; j++) {
- for (Long k = 0; k < DensityBasis::Size(); k++) {
- StaticArray<Real,COORD_DIM> dX;
- dX[0] = (X[elem_itr*COORD_DIM+0][k] - Xc[i*COORD_DIM+0]);
- dX[1] = (X[elem_itr*COORD_DIM+1][k] - Xc[i*COORD_DIM+1]);
- dX[2] = (X[elem_itr*COORD_DIM+2][k] - Xc[i*COORD_DIM+2]);
- density[elem_itr*COORD_DIM+0][k] = force_avg[i*COORD_DIM+0]*(1/area[i]) + (torque_avg[i*COORD_DIM+1] * dX[2] - torque_avg[i*COORD_DIM+2] * dX[1]) / (2*area[i]/3);
- density[elem_itr*COORD_DIM+1][k] = force_avg[i*COORD_DIM+1]*(1/area[i]) + (torque_avg[i*COORD_DIM+2] * dX[0] - torque_avg[i*COORD_DIM+0] * dX[2]) / (2*area[i]/3);
- density[elem_itr*COORD_DIM+2][k] = force_avg[i*COORD_DIM+2]*(1/area[i]) + (torque_avg[i*COORD_DIM+0] * dX[1] - torque_avg[i*COORD_DIM+1] * dX[0]) / (2*area[i]/3);
- }
- elem_itr++;
- }
- }
- };
- const auto GetMotion = [&S](Vector<Real>& force_avg, Vector<Real>& torque_avg, const Vector<DensityBasis>& density) {
- Long Nelem = S.GetElem().NElem();
- Long Nsurf = S.elem_cnt.Dim();
- const auto& X = S.GetElem().ElemVector();
- S.SurfInteg(force_avg, density);
- Vector<Real> area, Xc;
- Vector<DensityBasis> one(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < DensityBasis::Size(); j++) {
- one[i][j] = 1;
- }
- }
- S.SurfInteg(area, one);
- S.SurfInteg(Xc, S.GetElem().ElemVector());
- for (Long i = 0; i < Nsurf; i++) {
- for (Long k = 0; k < COORD_DIM; k++) {
- Xc[i*COORD_DIM+k] /= area[i];
- }
- }
- { // Set torque_avg
- Long elem_itr = 0;
- Vector<DensityBasis> torque(Nelem*COORD_DIM);
- for (Long i = 0; i < Nsurf; i++) {
- for (Long j = 0; j < S.elem_cnt[i]; j++) {
- for (Long k = 0; k < DensityBasis::Size(); k++) {
- StaticArray<Real,COORD_DIM> dX;
- dX[0] = (X[elem_itr*COORD_DIM+0][k] - Xc[i*COORD_DIM+0]);
- dX[1] = (X[elem_itr*COORD_DIM+1][k] - Xc[i*COORD_DIM+1]);
- dX[2] = (X[elem_itr*COORD_DIM+2][k] - Xc[i*COORD_DIM+2]);
- torque[elem_itr*COORD_DIM+0][k] = dX[1] * density[elem_itr*COORD_DIM+2][k] - dX[2] * density[elem_itr*COORD_DIM+1][k];
- torque[elem_itr*COORD_DIM+1][k] = dX[2] * density[elem_itr*COORD_DIM+0][k] - dX[0] * density[elem_itr*COORD_DIM+2][k];
- torque[elem_itr*COORD_DIM+2][k] = dX[0] * density[elem_itr*COORD_DIM+1][k] - dX[1] * density[elem_itr*COORD_DIM+0][k];
- }
- elem_itr++;
- }
- }
- S.SurfInteg(torque_avg, torque);
- }
- };
- const auto BIOpL = [&GetMotion,&SetMotion](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
- Vector<Real> force_avg, torque_avg;
- GetMotion(force_avg, torque_avg, density);
- SetMotion(potential, force_avg, torque_avg);
- };
- const auto BIOpK = [&S](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
- Vector<DensityBasis> traction;
- S.quadrature_FxT.Eval(traction, S.GetElem(), density, S.Stokes_FxT);
- Vector<CoordBasis> dX;
- const auto X = S.GetElem().ElemVector();
- CoordBasis::Grad(dX, X);
- Long Nelem = S.GetElem().NElem();
- Long Nnodes = CoordBasis::Size();
- potential.ReInit(Nelem * COORD_DIM);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- StaticArray<Real,COORD_DIM> Xn;
- Xn[0] = dX[i*COORD_DIM*2+2][j]*dX[i*COORD_DIM*2+5][j] - dX[i*COORD_DIM*2+4][j]*dX[i*COORD_DIM*2+3][j];
- Xn[1] = dX[i*COORD_DIM*2+4][j]*dX[i*COORD_DIM*2+1][j] - dX[i*COORD_DIM*2+0][j]*dX[i*COORD_DIM*2+5][j];
- Xn[2] = dX[i*COORD_DIM*2+0][j]*dX[i*COORD_DIM*2+3][j] - dX[i*COORD_DIM*2+2][j]*dX[i*COORD_DIM*2+1][j];
- Real AreaElem = sqrt<Real>(Xn[0]*Xn[0] + Xn[1]*Xn[1] + Xn[2]*Xn[2]);
- Real OOAreaElem = 1 / AreaElem;
- Xn[0] *= OOAreaElem;
- Xn[1] *= OOAreaElem;
- Xn[2] *= OOAreaElem;
- potential[i*COORD_DIM+0][j] = traction[i*COORD_DIM*COORD_DIM+0][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+1][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+2][j]*Xn[2];
- potential[i*COORD_DIM+1][j] = traction[i*COORD_DIM*COORD_DIM+3][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+4][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+5][j]*Xn[2];
- potential[i*COORD_DIM+2][j] = traction[i*COORD_DIM*COORD_DIM+6][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+7][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+8][j]*Xn[2];
- }
- }
- };
- const auto BIOp_half_K_L = [&S,&BIOpK,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
- Vector<DensityBasis> potential_K;
- Vector<DensityBasis> potential_L;
- BIOpK(potential_K, density);
- BIOpL(potential_L, density);
- if (potential.Dim() != potential_K.Dim()) {
- potential.ReInit(potential_K.Dim());
- }
- for (Long i = 0; i < potential_K.Dim(); i++) {
- for (Long k = 0; k < DensityBasis::Size(); k++) {
- potential[i][k] = -0.5*density[i][k] + potential_K[i][k] + potential_L[i][k];
- }
- }
- };
- const auto BIOp_half_K = [&S,&BIOpK,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
- Vector<DensityBasis> potential_K;
- BIOpK(potential_K, density);
- if (potential.Dim() != potential_K.Dim()) {
- potential.ReInit(potential_K.Dim());
- }
- for (Long i = 0; i < potential_K.Dim(); i++) {
- for (Long k = 0; k < DensityBasis::Size(); k++) {
- potential[i][k] = -0.5*density[i][k] + potential_K[i][k];
- }
- }
- };
- const auto BIOp_half_S_D = [&S,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
- Vector<DensityBasis> U;
- S.quadrature_DxU.Eval(U, S.GetElem(), density, S.Stokes_DxU);
- Vector<PotentialBasis> U1;
- Vector<DensityBasis> sigma1;
- BIOpL(sigma1,density);
- S.quadrature_FxU.Eval(U1, S.GetElem(), sigma1, S.Stokes_FxU);
- Long Nelem = S.GetElem().NElem();
- Long Nnodes = CoordBasis::Size();
- potential.ReInit(Nelem * COORD_DIM);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- potential[i*COORD_DIM+0][j] = 0.5*density[i*COORD_DIM+0][j] + U[i*COORD_DIM+0][j] + U1[i*COORD_DIM+0][j];
- potential[i*COORD_DIM+1][j] = 0.5*density[i*COORD_DIM+1][j] + U[i*COORD_DIM+1][j] + U1[i*COORD_DIM+1][j];
- potential[i*COORD_DIM+2][j] = 0.5*density[i*COORD_DIM+2][j] + U[i*COORD_DIM+2][j] + U1[i*COORD_DIM+2][j];
- }
- }
- };
- Vector<PotentialBasis> U;
- { // Rachh
- Vector<DensityBasis> sigma0;
- { // Set sigma0
- srand48(comm.Rank());
- Vector<Real> force(Ns*COORD_DIM), torque(Ns*COORD_DIM);
- //for (auto& x : force) x = drand48();
- //for (auto& x : torque) x = drand48();
- force = 0;
- torque = 0;
- force[0] = 1;
- //force[4] = 1;
- SetMotion(sigma0, force, torque);
- }
- Vector<DensityBasis> rhs;
- BIOp_half_K(rhs, sigma0);
- Vector<DensityBasis> sigma;
- { // Set sigma
- Long Nnode = DensityBasis::Size();
- Long Nelem = S.GetElem().NElem();
- typename sctl::ParallelSolver<Real>::ParallelOp A = [&S,&BIOp_half_K_L](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
- Long Nnode = DensityBasis::Size();
- Long Nelem = S.GetElem().NElem();
- Ax->ReInit(Nelem*COORD_DIM*Nnode);
- Vector<DensityBasis> x_(Nelem*COORD_DIM), Ax_(Nelem*COORD_DIM);
- for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set x_
- for (Long k = 0; k < Nnode; k++) {
- x_[i][k] = x[i*Nnode+k];
- }
- }
- BIOp_half_K_L(Ax_, x_);
- for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set Ax
- for (Long k = 0; k < Nnode; k++) {
- (*Ax)[i*Nnode+k] = Ax_[i][k];
- }
- }
- };
- Vector<Real> sigma_(Nelem*COORD_DIM*Nnode), rhs_(Nelem*COORD_DIM*Nnode);
- for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set rhs_
- for (Long k = 0; k < Nnode; k++) {
- rhs_[i*Nnode+k] = rhs[i][k];
- }
- }
- sigma_ = 0;
- ParallelSolver<Real> linear_solver(comm, true);
- linear_solver(&sigma_, A, rhs_, 1e-6, 50);
- sigma.ReInit(Nelem * COORD_DIM);
- for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set sigma
- for (Long k = 0; k < Nnode; k++) {
- sigma[i][k] = sigma_[i*Nnode+k] - sigma0[i][k];
- }
- }
- }
- S.quadrature_FxU.Eval(U, S.GetElem(), sigma, S.Stokes_FxU);
- { // Write VTU
- VTUData vtu_sigma;
- vtu_sigma.AddElems(S.elements, sigma, ORDER);
- vtu_sigma.WriteVTK("sphere-sigma0", comm);
- VTUData vtu_U;
- vtu_U.AddElems(S.elements, U, ORDER);
- vtu_U.WriteVTK("sphere-U0", comm);
- }
- }
- { // Tornberg
- Vector<DensityBasis> rhs;
- BIOpL(rhs, U);
- Vector<DensityBasis> sigma;
- { // Set sigma
- Long Nnode = DensityBasis::Size();
- Long Nelem = S.GetElem().NElem();
- typename sctl::ParallelSolver<Real>::ParallelOp A = [&S,&BIOp_half_S_D](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
- Long Nnode = DensityBasis::Size();
- Long Nelem = S.GetElem().NElem();
- Ax->ReInit(Nelem*COORD_DIM*Nnode);
- Vector<DensityBasis> x_(Nelem*COORD_DIM), Ax_(Nelem*COORD_DIM);
- for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set x_
- for (Long k = 0; k < Nnode; k++) {
- x_[i][k] = x[i*Nnode+k];
- }
- }
- BIOp_half_S_D(Ax_, x_);
- for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set Ax
- for (Long k = 0; k < Nnode; k++) {
- (*Ax)[i*Nnode+k] = Ax_[i][k];
- }
- }
- };
- Vector<Real> sigma_(Nelem*COORD_DIM*Nnode), rhs_(Nelem*COORD_DIM*Nnode);
- for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set rhs_
- for (Long k = 0; k < Nnode; k++) {
- rhs_[i*Nnode+k] = rhs[i][k];
- }
- }
- sigma_ = 0;
- ParallelSolver<Real> linear_solver(comm, true);
- linear_solver(&sigma_, A, rhs_, 1e-6, 50);
- sigma.ReInit(Nelem * COORD_DIM);
- for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set sigma
- for (Long k = 0; k < Nnode; k++) {
- sigma[i][k] = sigma_[i*Nnode+k];
- }
- }
- }
- Vector<PotentialBasis> U1;
- BIOp_half_S_D(U1, sigma);
- { // Write VTU
- VTUData vtu_sigma;
- vtu_sigma.AddElems(S.elements, sigma, ORDER);
- vtu_sigma.WriteVTK("sphere-sigma1", comm);
- VTUData vtu_U;
- vtu_U.AddElems(S.elements, U1, ORDER);
- vtu_U.WriteVTK("sphere-U1", comm);
- }
- }
- Profile::print(&comm);
- }
- private:
- template <class FnBasis> void SurfInteg(Vector<Real>& I, const Vector<FnBasis>& f) {
- static_assert(std::is_same<FnBasis,CoordBasis>::value, "FnBasis is different from CoordBasis");
- const Long Nelem = elements.NElem();
- const Long dof = f.Dim() / Nelem;
- SCTL_ASSERT(f.Dim() == Nelem * dof);
- auto nodes = FnBasis::Nodes();
- auto quad_wts = FnBasis::QuadWts();
- const Long Nnodes = FnBasis::Size();
- auto EvalOp = CoordBasis::SetupEval(nodes);
- Vector<CoordBasis> dX;
- const auto& X = elements.ElemVector();
- SCTL_ASSERT(X.Dim() == Nelem * COORD_DIM);
- CoordBasis::Grad(dX, X);
- Matrix<Real> I_(Nelem, dof);
- for (Long i = 0; i < Nelem; i++) {
- for (Long k = 0; k < dof; k++) {
- I_[i][k] = 0;
- }
- for (Long j = 0; j < Nnodes; j++) {
- Real dA = 0;
- StaticArray<Real,COORD_DIM> Xn;
- Xn[0] = dX[i*COORD_DIM*2+2][j] * dX[i*COORD_DIM*2+5][j] - dX[i*COORD_DIM*2+3][j] * dX[i*COORD_DIM*2+4][j];
- Xn[1] = dX[i*COORD_DIM*2+4][j] * dX[i*COORD_DIM*2+1][j] - dX[i*COORD_DIM*2+5][j] * dX[i*COORD_DIM*2+0][j];
- Xn[2] = dX[i*COORD_DIM*2+0][j] * dX[i*COORD_DIM*2+3][j] - dX[i*COORD_DIM*2+1][j] * dX[i*COORD_DIM*2+2][j];
- dA += sqrt<Real>(Xn[0]*Xn[0] + Xn[1]*Xn[1] + Xn[2]*Xn[2]) * quad_wts[j];
- for (Long k = 0; k < dof; k++) {
- I_[i][k] += dA * f[i*dof+k][j];
- }
- }
- }
- Long Ns = elem_cnt.Dim();
- if (I.Dim() != Ns * dof) I.ReInit(Ns * dof);
- I = 0;
- Long elem_itr = 0;
- for (Long i = 0; i < Ns; i++) {
- for (Long j = 0; j < elem_cnt[i]; j++) {
- for (Long k = 0; k < dof; k++) {
- I[i*dof+k] += I_[elem_itr][k];
- }
- elem_itr++;
- }
- }
- }
- void InitSpheres(const Vector<Real> X, const Vector<Real>& R){
- SCTL_ASSERT(X.Dim() == R.Dim() * COORD_DIM);
- Long N = R.Dim();
- elements.ReInit(2*COORD_DIM*N);
- auto nodes = ElemLst::CoordBasis::Nodes();
- for (Long l = 0; l < N; l++) {
- for (Integer i = 0; i < COORD_DIM; i++) {
- for (Integer j = 0; j < 2; j++) {
- for (int k = 0; k < ElemLst::CoordBasis::Size(); k++) {
- Real coord[COORD_DIM];
- coord[(i+0)%COORD_DIM] = (j ? -1.0 : 1.0);
- coord[(i+1)%COORD_DIM] = 2.0 * nodes[j?1:0][k] - 1.0;
- coord[(i+2)%COORD_DIM] = 2.0 * nodes[j?0:1][k] - 1.0;
- Real R0 = sqrt<Real>(coord[0]*coord[0] + coord[1]*coord[1] + coord[2]*coord[2]);
- elements((l*COORD_DIM+i)*2+j,0)[k] = X[l*COORD_DIM+0] + R[l] * coord[0] / R0;
- elements((l*COORD_DIM+i)*2+j,1)[k] = X[l*COORD_DIM+1] + R[l] * coord[1] / R0;
- elements((l*COORD_DIM+i)*2+j,2)[k] = X[l*COORD_DIM+2] + R[l] * coord[2] / R0;
- }
- }
- }
- }
- elem_cnt.ReInit(N);
- elem_cnt = 6;
- }
- GenericKernel<Stokes3D_DxU> Stokes_DxU;
- GenericKernel<Stokes3D_FxU> Stokes_FxU;
- GenericKernel<Stokes3D_FxT> Stokes_FxT;
- Quadrature<Real> quadrature_DxU;
- Quadrature<Real> quadrature_FxU;
- Quadrature<Real> quadrature_FxT;
- ElemLst elements;
- Vector<Long> elem_cnt;
- };
- } // end namespace
- #endif //_SCTL_BOUNDARY_QUADRATURE_HPP_
|