123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538 |
- #ifndef _PVFMM_INTRIN_WRAPPER_HPP_
- #define _PVFMM_INTRIN_WRAPPER_HPP_
- #ifdef __SSE__
- #include <xmmintrin.h>
- #endif
- #ifdef __SSE2__
- #include <emmintrin.h>
- #endif
- #ifdef __SSE3__
- #include <pmmintrin.h>
- #endif
- #ifdef __AVX__
- #include <immintrin.h>
- #endif
- #if defined(__MIC__)
- #include <immintrin.h>
- #endif
- namespace pvfmm {
- template <class T> inline T zero_intrin() { return (T)0; }
- template <class T, class Real> inline T set_intrin(const Real& a) { return a; }
- template <class T, class Real> inline T load_intrin(Real const* a) { return a[0]; }
- template <class T, class Real> inline T bcast_intrin(Real const* a) { return a[0]; }
- template <class T, class Real> inline void store_intrin(Real* a, const T& b) { a[0] = b; }
- template <class T> inline T mul_intrin(const T& a, const T& b) { return a * b; }
- template <class T> inline T add_intrin(const T& a, const T& b) { return a + b; }
- template <class T> inline T sub_intrin(const T& a, const T& b) { return a - b; }
- template <class T> inline T cmplt_intrin(const T& a, const T& b) {
- T r = 0;
- uint8_t* r_ = reinterpret_cast<uint8_t*>(&r);
- if (a < b)
- for (int i = 0; i < sizeof(T); i++) r_[i] = ~(uint8_t)0;
- return r;
- }
- template <class T> inline T and_intrin(const T& a, const T& b) {
- T r = 0;
- const uint8_t* a_ = reinterpret_cast<const uint8_t*>(&a);
- const uint8_t* b_ = reinterpret_cast<const uint8_t*>(&b);
- uint8_t* r_ = reinterpret_cast<uint8_t*>(&r);
- for (int i = 0; i < sizeof(T); i++) r_[i] = a_[i] & b_[i];
- return r;
- }
- template <class T> inline T rsqrt_approx_intrin(const T& r2) {
- if (r2 != 0) return 1.0 / pvfmm::sqrt<T>(r2);
- return 0;
- }
- template <class T, class Real> inline void rsqrt_newton_intrin(T& rinv, const T& r2, const Real& nwtn_const) { rinv = rinv * (nwtn_const - r2 * rinv * rinv); }
- template <class T> inline T rsqrt_single_intrin(const T& r2) {
- if (r2 != 0) return 1.0 / pvfmm::sqrt<T>(r2);
- return 0;
- }
- template <class T> inline T max_intrin(const T& a, const T& b) {
- if (a > b)
- return a;
- else
- return b;
- }
- template <class T> inline T min_intrin(const T& a, const T& b) {
- if (a > b)
- return b;
- else
- return a;
- }
- template <class T> inline T sin_intrin(const T& t) { return pvfmm::sin<T>(t); }
- template <class T> inline T cos_intrin(const T& t) { return pvfmm::cos<T>(t); }
- #ifdef __SSE3__
- template <> inline __m128 zero_intrin() { return _mm_setzero_ps(); }
- template <> inline __m128d zero_intrin() { return _mm_setzero_pd(); }
- template <> inline __m128 set_intrin(const float& a) { return _mm_set_ps1(a); }
- template <> inline __m128d set_intrin(const double& a) { return _mm_set_pd1(a); }
- template <> inline __m128 load_intrin(float const* a) { return _mm_load_ps(a); }
- template <> inline __m128d load_intrin(double const* a) { return _mm_load_pd(a); }
- template <> inline __m128 bcast_intrin(float const* a) { return _mm_set_ps1(a[0]); }
- template <> inline __m128d bcast_intrin(double const* a) { return _mm_load_pd1(a); }
- template <> inline void store_intrin(float* a, const __m128& b) { return _mm_store_ps(a, b); }
- template <> inline void store_intrin(double* a, const __m128d& b) { return _mm_store_pd(a, b); }
- template <> inline __m128 mul_intrin(const __m128& a, const __m128& b) { return _mm_mul_ps(a, b); }
- template <> inline __m128d mul_intrin(const __m128d& a, const __m128d& b) { return _mm_mul_pd(a, b); }
- template <> inline __m128 add_intrin(const __m128& a, const __m128& b) { return _mm_add_ps(a, b); }
- template <> inline __m128d add_intrin(const __m128d& a, const __m128d& b) { return _mm_add_pd(a, b); }
- template <> inline __m128 sub_intrin(const __m128& a, const __m128& b) { return _mm_sub_ps(a, b); }
- template <> inline __m128d sub_intrin(const __m128d& a, const __m128d& b) { return _mm_sub_pd(a, b); }
- template <> inline __m128 cmplt_intrin(const __m128& a, const __m128& b) { return _mm_cmplt_ps(a, b); }
- template <> inline __m128d cmplt_intrin(const __m128d& a, const __m128d& b) { return _mm_cmplt_pd(a, b); }
- template <> inline __m128 and_intrin(const __m128& a, const __m128& b) { return _mm_and_ps(a, b); }
- template <> inline __m128d and_intrin(const __m128d& a, const __m128d& b) { return _mm_and_pd(a, b); }
- template <> inline __m128 rsqrt_approx_intrin(const __m128& r2) {
- #define VEC_INTRIN __m128
- #define RSQRT_INTRIN(a) _mm_rsqrt_ps(a)
- #define CMPEQ_INTRIN(a, b) _mm_cmpeq_ps(a, b)
- #define ANDNOT_INTRIN(a, b) _mm_andnot_ps(a, b)
- // Approx inverse square root which returns zero for r2=0
- return ANDNOT_INTRIN(CMPEQ_INTRIN(r2, zero_intrin<VEC_INTRIN>()), RSQRT_INTRIN(r2));
- #undef VEC_INTRIN
- #undef RSQRT_INTRIN
- #undef CMPEQ_INTRIN
- #undef ANDNOT_INTRIN
- }
- template <> inline __m128d rsqrt_approx_intrin(const __m128d& r2) {
- #define PD2PS(a) _mm_cvtpd_ps(a)
- #define PS2PD(a) _mm_cvtps_pd(a)
- return PS2PD(rsqrt_approx_intrin(PD2PS(r2)));
- #undef PD2PS
- #undef PS2PD
- }
- template <> inline void rsqrt_newton_intrin(__m128& rinv, const __m128& r2, const float& nwtn_const) {
- #define VEC_INTRIN __m128
- // Newton iteration: rinv = 0.5 rinv_approx ( 3 - r2 rinv_approx^2 )
- // We do not compute the product with 0.5 and this needs to be adjusted later
- rinv = mul_intrin(rinv, sub_intrin(set_intrin<VEC_INTRIN>(nwtn_const), mul_intrin(r2, mul_intrin(rinv, rinv))));
- #undef VEC_INTRIN
- }
- template <> inline void rsqrt_newton_intrin(__m128d& rinv, const __m128d& r2, const double& nwtn_const) {
- #define VEC_INTRIN __m128d
- // Newton iteration: rinv = 0.5 rinv_approx ( 3 - r2 rinv_approx^2 )
- // We do not compute the product with 0.5 and this needs to be adjusted later
- rinv = mul_intrin(rinv, sub_intrin(set_intrin<VEC_INTRIN>(nwtn_const), mul_intrin(r2, mul_intrin(rinv, rinv))));
- #undef VEC_INTRIN
- }
- template <> inline __m128 rsqrt_single_intrin(const __m128& r2) {
- #define VEC_INTRIN __m128
- VEC_INTRIN rinv = rsqrt_approx_intrin(r2);
- rsqrt_newton_intrin(rinv, r2, (float)3.0);
- return rinv;
- #undef VEC_INTRIN
- }
- template <> inline __m128d rsqrt_single_intrin(const __m128d& r2) {
- #define PD2PS(a) _mm_cvtpd_ps(a)
- #define PS2PD(a) _mm_cvtps_pd(a)
- return PS2PD(rsqrt_single_intrin(PD2PS(r2)));
- #undef PD2PS
- #undef PS2PD
- }
- template <> inline __m128 max_intrin(const __m128& a, const __m128& b) { return _mm_max_ps(a, b); }
- template <> inline __m128d max_intrin(const __m128d& a, const __m128d& b) { return _mm_max_pd(a, b); }
- template <> inline __m128 min_intrin(const __m128& a, const __m128& b) { return _mm_min_ps(a, b); }
- template <> inline __m128d min_intrin(const __m128d& a, const __m128d& b) { return _mm_min_pd(a, b); }
- #ifdef PVFMM_HAVE_INTEL_SVML
- template <> inline __m128 sin_intrin(const __m128& t) { return _mm_sin_ps(t); }
- template <> inline __m128 cos_intrin(const __m128& t) { return _mm_cos_ps(t); }
- template <> inline __m128d sin_intrin(const __m128d& t) { return _mm_sin_pd(t); }
- template <> inline __m128d cos_intrin(const __m128d& t) { return _mm_cos_pd(t); }
- #else
- template <> inline __m128 sin_intrin(const __m128& t_) {
- union {
- float e[4];
- __m128 d;
- } t;
- store_intrin(t.e, t_);
- return _mm_set_ps(pvfmm::sin<float>(t.e[3]), pvfmm::sin<float>(t.e[2]), pvfmm::sin<float>(t.e[1]), pvfmm::sin<float>(t.e[0]));
- }
- template <> inline __m128 cos_intrin(const __m128& t_) {
- union {
- float e[4];
- __m128 d;
- } t;
- store_intrin(t.e, t_);
- return _mm_set_ps(pvfmm::cos<float>(t.e[3]), pvfmm::cos<float>(t.e[2]), pvfmm::cos<float>(t.e[1]), pvfmm::cos<float>(t.e[0]));
- }
- template <> inline __m128d sin_intrin(const __m128d& t_) {
- union {
- double e[2];
- __m128d d;
- } t;
- store_intrin(t.e, t_);
- return _mm_set_pd(pvfmm::sin<double>(t.e[1]), pvfmm::sin<double>(t.e[0]));
- }
- template <> inline __m128d cos_intrin(const __m128d& t_) {
- union {
- double e[2];
- __m128d d;
- } t;
- store_intrin(t.e, t_);
- return _mm_set_pd(pvfmm::cos<double>(t.e[1]), pvfmm::cos<double>(t.e[0]));
- }
- #endif
- #endif
- #ifdef __AVX__
- template <> inline __m256 zero_intrin() { return _mm256_setzero_ps(); }
- template <> inline __m256d zero_intrin() { return _mm256_setzero_pd(); }
- template <> inline __m256 set_intrin(const float& a) { return _mm256_set_ps(a, a, a, a, a, a, a, a); }
- template <> inline __m256d set_intrin(const double& a) { return _mm256_set_pd(a, a, a, a); }
- template <> inline __m256 load_intrin(float const* a) { return _mm256_load_ps(a); }
- template <> inline __m256d load_intrin(double const* a) { return _mm256_load_pd(a); }
- template <> inline __m256 bcast_intrin(float const* a) { return _mm256_broadcast_ss(a); }
- template <> inline __m256d bcast_intrin(double const* a) { return _mm256_broadcast_sd(a); }
- template <> inline void store_intrin(float* a, const __m256& b) { return _mm256_store_ps(a, b); }
- template <> inline void store_intrin(double* a, const __m256d& b) { return _mm256_store_pd(a, b); }
- template <> inline __m256 mul_intrin(const __m256& a, const __m256& b) { return _mm256_mul_ps(a, b); }
- template <> inline __m256d mul_intrin(const __m256d& a, const __m256d& b) { return _mm256_mul_pd(a, b); }
- template <> inline __m256 add_intrin(const __m256& a, const __m256& b) { return _mm256_add_ps(a, b); }
- template <> inline __m256d add_intrin(const __m256d& a, const __m256d& b) { return _mm256_add_pd(a, b); }
- template <> inline __m256 sub_intrin(const __m256& a, const __m256& b) { return _mm256_sub_ps(a, b); }
- template <> inline __m256d sub_intrin(const __m256d& a, const __m256d& b) { return _mm256_sub_pd(a, b); }
- template <> inline __m256 cmplt_intrin(const __m256& a, const __m256& b) { return _mm256_cmp_ps(a, b, _CMP_LT_OS); }
- template <> inline __m256d cmplt_intrin(const __m256d& a, const __m256d& b) { return _mm256_cmp_pd(a, b, _CMP_LT_OS); }
- template <> inline __m256 and_intrin(const __m256& a, const __m256& b) { return _mm256_and_ps(a, b); }
- template <> inline __m256d and_intrin(const __m256d& a, const __m256d& b) { return _mm256_and_pd(a, b); }
- template <> inline __m256 rsqrt_approx_intrin(const __m256& r2) {
- #define VEC_INTRIN __m256
- #define RSQRT_INTRIN(a) _mm256_rsqrt_ps(a)
- #define CMPEQ_INTRIN(a, b) _mm256_cmp_ps(a, b, _CMP_EQ_OS)
- #define ANDNOT_INTRIN(a, b) _mm256_andnot_ps(a, b)
- // Approx inverse square root which returns zero for r2=0
- return ANDNOT_INTRIN(CMPEQ_INTRIN(r2, zero_intrin<VEC_INTRIN>()), RSQRT_INTRIN(r2));
- #undef VEC_INTRIN
- #undef RSQRT_INTRIN
- #undef CMPEQ_INTRIN
- #undef ANDNOT_INTRIN
- }
- template <> inline __m256d rsqrt_approx_intrin(const __m256d& r2) {
- #define PD2PS(a) _mm256_cvtpd_ps(a)
- #define PS2PD(a) _mm256_cvtps_pd(a)
- return PS2PD(rsqrt_approx_intrin(PD2PS(r2)));
- #undef PD2PS
- #undef PS2PD
- }
- template <> inline void rsqrt_newton_intrin(__m256& rinv, const __m256& r2, const float& nwtn_const) {
- #define VEC_INTRIN __m256
- // Newton iteration: rinv = 0.5 rinv_approx ( 3 - r2 rinv_approx^2 )
- // We do not compute the product with 0.5 and this needs to be adjusted later
- rinv = mul_intrin(rinv, sub_intrin(set_intrin<VEC_INTRIN>(nwtn_const), mul_intrin(r2, mul_intrin(rinv, rinv))));
- #undef VEC_INTRIN
- }
- template <> inline void rsqrt_newton_intrin(__m256d& rinv, const __m256d& r2, const double& nwtn_const) {
- #define VEC_INTRIN __m256d
- // Newton iteration: rinv = 0.5 rinv_approx ( 3 - r2 rinv_approx^2 )
- // We do not compute the product with 0.5 and this needs to be adjusted later
- rinv = mul_intrin(rinv, sub_intrin(set_intrin<VEC_INTRIN>(nwtn_const), mul_intrin(r2, mul_intrin(rinv, rinv))));
- #undef VEC_INTRIN
- }
- template <> inline __m256 rsqrt_single_intrin(const __m256& r2) {
- #define VEC_INTRIN __m256
- VEC_INTRIN rinv = rsqrt_approx_intrin(r2);
- rsqrt_newton_intrin(rinv, r2, (float)3.0);
- return rinv;
- #undef VEC_INTRIN
- }
- template <> inline __m256d rsqrt_single_intrin(const __m256d& r2) {
- #define PD2PS(a) _mm256_cvtpd_ps(a)
- #define PS2PD(a) _mm256_cvtps_pd(a)
- return PS2PD(rsqrt_single_intrin(PD2PS(r2)));
- #undef PD2PS
- #undef PS2PD
- }
- template <> inline __m256 max_intrin(const __m256& a, const __m256& b) { return _mm256_max_ps(a, b); }
- template <> inline __m256d max_intrin(const __m256d& a, const __m256d& b) { return _mm256_max_pd(a, b); }
- template <> inline __m256 min_intrin(const __m256& a, const __m256& b) { return _mm256_min_ps(a, b); }
- template <> inline __m256d min_intrin(const __m256d& a, const __m256d& b) { return _mm256_min_pd(a, b); }
- #ifdef PVFMM_HAVE_INTEL_SVML
- template <> inline __m256 sin_intrin(const __m256& t) { return _mm256_sin_ps(t); }
- template <> inline __m256 cos_intrin(const __m256& t) { return _mm256_cos_ps(t); }
- template <> inline __m256d sin_intrin(const __m256d& t) { return _mm256_sin_pd(t); }
- template <> inline __m256d cos_intrin(const __m256d& t) { return _mm256_cos_pd(t); }
- #else
- template <> inline __m256 sin_intrin(const __m256& t_) {
- union {
- float e[8];
- __m256 d;
- } t;
- store_intrin(t.e, t_); // t.d=t_;
- return _mm256_set_ps(pvfmm::sin<float>(t.e[7]), pvfmm::sin<float>(t.e[6]), pvfmm::sin<float>(t.e[5]), pvfmm::sin<float>(t.e[4]), pvfmm::sin<float>(t.e[3]), pvfmm::sin<float>(t.e[2]), pvfmm::sin<float>(t.e[1]), pvfmm::sin<float>(t.e[0]));
- }
- template <> inline __m256 cos_intrin(const __m256& t_) {
- union {
- float e[8];
- __m256 d;
- } t;
- store_intrin(t.e, t_); // t.d=t_;
- return _mm256_set_ps(pvfmm::cos<float>(t.e[7]), pvfmm::cos<float>(t.e[6]), pvfmm::cos<float>(t.e[5]), pvfmm::cos<float>(t.e[4]), pvfmm::cos<float>(t.e[3]), pvfmm::cos<float>(t.e[2]), pvfmm::cos<float>(t.e[1]), pvfmm::cos<float>(t.e[0]));
- }
- template <> inline __m256d sin_intrin(const __m256d& t_) {
- union {
- double e[4];
- __m256d d;
- } t;
- store_intrin(t.e, t_); // t.d=t_;
- return _mm256_set_pd(pvfmm::sin<double>(t.e[3]), pvfmm::sin<double>(t.e[2]), pvfmm::sin<double>(t.e[1]), pvfmm::sin<double>(t.e[0]));
- }
- template <> inline __m256d cos_intrin(const __m256d& t_) {
- union {
- double e[4];
- __m256d d;
- } t;
- store_intrin(t.e, t_); // t.d=t_;
- return _mm256_set_pd(pvfmm::cos<double>(t.e[3]), pvfmm::cos<double>(t.e[2]), pvfmm::cos<double>(t.e[1]), pvfmm::cos<double>(t.e[0]));
- }
- #endif
- #endif
- template <class VEC, class Real> inline VEC rsqrt_intrin0(VEC r2) {
- #define NWTN0 0
- #define NWTN1 0
- #define NWTN2 0
- #define NWTN3 0
- // Real scal=1; Real const_nwtn0=3*scal*scal;
- // scal=(NWTN0?2*scal*scal*scal:scal); Real const_nwtn1=3*scal*scal;
- // scal=(NWTN1?2*scal*scal*scal:scal); Real const_nwtn2=3*scal*scal;
- // scal=(NWTN2?2*scal*scal*scal:scal); Real const_nwtn3=3*scal*scal;
- VEC rinv;
- #if NWTN0
- rinv = rsqrt_single_intrin(r2);
- #else
- rinv = rsqrt_approx_intrin(r2);
- #endif
- #if NWTN1
- rsqrt_newton_intrin(rinv, r2, const_nwtn1);
- #endif
- #if NWTN2
- rsqrt_newton_intrin(rinv, r2, const_nwtn2);
- #endif
- #if NWTN3
- rsqrt_newton_intrin(rinv, r2, const_nwtn3);
- #endif
- return rinv;
- #undef NWTN0
- #undef NWTN1
- #undef NWTN2
- #undef NWTN3
- }
- template <class VEC, class Real> inline VEC rsqrt_intrin1(VEC r2) {
- #define NWTN0 0
- #define NWTN1 1
- #define NWTN2 0
- #define NWTN3 0
- Real scal = 1; // Real const_nwtn0=3*scal*scal;
- scal = (NWTN0 ? 2 * scal * scal * scal : scal);
- Real const_nwtn1 = 3 * scal * scal;
- // scal=(NWTN1?2*scal*scal*scal:scal); Real const_nwtn2=3*scal*scal;
- // scal=(NWTN2?2*scal*scal*scal:scal); Real const_nwtn3=3*scal*scal;
- VEC rinv;
- #if NWTN0
- rinv = rsqrt_single_intrin(r2);
- #else
- rinv = rsqrt_approx_intrin(r2);
- #endif
- #if NWTN1
- rsqrt_newton_intrin(rinv, r2, const_nwtn1);
- #endif
- #if NWTN2
- rsqrt_newton_intrin(rinv, r2, const_nwtn2);
- #endif
- #if NWTN3
- rsqrt_newton_intrin(rinv, r2, const_nwtn3);
- #endif
- return rinv;
- #undef NWTN0
- #undef NWTN1
- #undef NWTN2
- #undef NWTN3
- }
- template <class VEC, class Real> inline VEC rsqrt_intrin2(VEC r2) {
- #define NWTN0 0
- #define NWTN1 1
- #define NWTN2 1
- #define NWTN3 0
- Real scal = 1; // Real const_nwtn0=3*scal*scal;
- scal = (NWTN0 ? 2 * scal * scal * scal : scal);
- Real const_nwtn1 = 3 * scal * scal;
- scal = (NWTN1 ? 2 * scal * scal * scal : scal);
- Real const_nwtn2 = 3 * scal * scal;
- // scal=(NWTN2?2*scal*scal*scal:scal); Real const_nwtn3=3*scal*scal;
- VEC rinv;
- #if NWTN0
- rinv = rsqrt_single_intrin(r2);
- #else
- rinv = rsqrt_approx_intrin(r2);
- #endif
- #if NWTN1
- rsqrt_newton_intrin(rinv, r2, const_nwtn1);
- #endif
- #if NWTN2
- rsqrt_newton_intrin(rinv, r2, const_nwtn2);
- #endif
- #if NWTN3
- rsqrt_newton_intrin(rinv, r2, const_nwtn3);
- #endif
- return rinv;
- #undef NWTN0
- #undef NWTN1
- #undef NWTN2
- #undef NWTN3
- }
- template <class VEC, class Real> inline VEC rsqrt_intrin3(VEC r2) {
- #define NWTN0 0
- #define NWTN1 1
- #define NWTN2 1
- #define NWTN3 1
- Real scal = 1; // Real const_nwtn0=3*scal*scal;
- scal = (NWTN0 ? 2 * scal * scal * scal : scal);
- Real const_nwtn1 = 3 * scal * scal;
- scal = (NWTN1 ? 2 * scal * scal * scal : scal);
- Real const_nwtn2 = 3 * scal * scal;
- scal = (NWTN2 ? 2 * scal * scal * scal : scal);
- Real const_nwtn3 = 3 * scal * scal;
- VEC rinv;
- #if NWTN0
- rinv = rsqrt_single_intrin(r2);
- #else
- rinv = rsqrt_approx_intrin(r2);
- #endif
- #if NWTN1
- rsqrt_newton_intrin(rinv, r2, const_nwtn1);
- #endif
- #if NWTN2
- rsqrt_newton_intrin(rinv, r2, const_nwtn2);
- #endif
- #if NWTN3
- rsqrt_newton_intrin(rinv, r2, const_nwtn3);
- #endif
- return rinv;
- #undef NWTN0
- #undef NWTN1
- #undef NWTN2
- #undef NWTN3
- }
- }
- #endif //_PVFMM_INTRIN_WRAPPER_HPP_
|