boundary_quadrature.hpp 202 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778
  1. #ifndef _SCTL_BOUNDARY_QUADRATURE_HPP_
  2. #define _SCTL_BOUNDARY_QUADRATURE_HPP_
  3. #include <biest.hpp>
  4. #include <mutex>
  5. #include <atomic>
  6. #include <tuple>
  7. namespace SCTL_NAMESPACE {
  8. template <class Real, Integer DIM, Integer ORDER> class Basis {
  9. public:
  10. using ValueType = Real;
  11. // class EvalOperator {
  12. // public:
  13. // };
  14. using EvalOpType = Matrix<ValueType>;
  15. static constexpr Long Dim() {
  16. return DIM;
  17. }
  18. static constexpr Long Size() {
  19. return pow<DIM,Long>(ORDER);
  20. }
  21. static const Matrix<ValueType>& Nodes() {
  22. static Matrix<ValueType> nodes_(DIM,Size());
  23. auto nodes_1d = [](Integer i) {
  24. return 0.5 - 0.5 * sctl::cos<ValueType>((2*i+1) * const_pi<ValueType>() / (2*ORDER));
  25. };
  26. { // Set nodes_
  27. static std::mutex mutex;
  28. static std::atomic<Integer> first_time(true);
  29. if (first_time.load(std::memory_order_relaxed)) {
  30. std::lock_guard<std::mutex> guard(mutex);
  31. if (first_time.load(std::memory_order_relaxed)) {
  32. Integer N = 1;
  33. for (Integer d = 0; d < DIM; d++) {
  34. for (Integer j = 0; j < ORDER; j++) {
  35. for (Integer i = 0; i < N; i++) {
  36. for (Integer k = 0; k < d; k++) {
  37. nodes_[k][j*N+i] = nodes_[k][i];
  38. }
  39. nodes_[d][j*N+i] = nodes_1d(j);
  40. }
  41. }
  42. N *= ORDER;
  43. }
  44. std::atomic_thread_fence(std::memory_order_seq_cst);
  45. first_time.store(false);
  46. }
  47. }
  48. }
  49. return nodes_;
  50. }
  51. static const Vector<ValueType>& QuadWts() {
  52. static Vector<ValueType> wts(Size());
  53. { // Set nodes_
  54. static std::mutex mutex;
  55. static std::atomic<Integer> first_time(true);
  56. if (first_time.load(std::memory_order_relaxed)) {
  57. std::lock_guard<std::mutex> guard(mutex);
  58. if (first_time.load(std::memory_order_relaxed)) {
  59. StaticArray<ValueType,ORDER> wts_1d;
  60. { // Set wts_1d
  61. Vector<ValueType> x_(ORDER);
  62. ChebBasis<ValueType>::template Nodes<1>(ORDER, x_);
  63. Vector<ValueType> V_cheb(ORDER * ORDER);
  64. { // Set V_cheb
  65. Vector<ValueType> I(ORDER*ORDER);
  66. I = 0;
  67. for (Long i = 0; i < ORDER; i++) I[i*ORDER+i] = 1;
  68. ChebBasis<ValueType>::template Approx<1>(ORDER, I, V_cheb);
  69. }
  70. Matrix<ValueType> M(ORDER, ORDER, V_cheb.begin());
  71. Vector<ValueType> w_sample(ORDER);
  72. for (Integer i = 0; i < ORDER; i++) {
  73. w_sample[i] = (i % 2 ? 0 : -(ORDER/(ValueType)(i*i-1)));
  74. }
  75. for (Integer j = 0; j < ORDER; j++) {
  76. wts_1d[j] = 0;
  77. for (Integer i = 0; i < ORDER; i++) {
  78. wts_1d[j] += M[j][i] * w_sample[i] / ORDER;
  79. }
  80. }
  81. }
  82. wts[0] = 1;
  83. Integer N = 1;
  84. for (Integer d = 0; d < DIM; d++) {
  85. for (Integer j = 1; j < ORDER; j++) {
  86. for (Integer i = 0; i < N; i++) {
  87. wts[j*N+i] = wts[i] * wts_1d[j];
  88. }
  89. }
  90. for (Integer i = 0; i < N; i++) {
  91. wts[i] *= wts_1d[0];
  92. }
  93. N *= ORDER;
  94. }
  95. std::atomic_thread_fence(std::memory_order_seq_cst);
  96. first_time.store(false);
  97. }
  98. }
  99. }
  100. return wts;
  101. }
  102. static void Grad(Vector<Basis>& dX, const Vector<Basis>& X) {
  103. static Matrix<ValueType> GradOp[DIM];
  104. static std::mutex mutex;
  105. static std::atomic<Integer> first_time(true);
  106. if (first_time.load(std::memory_order_relaxed)) {
  107. std::lock_guard<std::mutex> guard(mutex);
  108. if (first_time.load(std::memory_order_relaxed)) {
  109. { // Set GradOp
  110. auto nodes = Basis<ValueType,1,ORDER>::Nodes();
  111. SCTL_ASSERT(nodes.Dim(1) == ORDER);
  112. Matrix<ValueType> M(ORDER, ORDER);
  113. for (Integer i = 0; i < ORDER; i++) { // Set M
  114. Real x = nodes[0][i];
  115. for (Integer j = 0; j < ORDER; j++) {
  116. M[j][i] = 0;
  117. for (Integer l = 0; l < ORDER; l++) {
  118. if (l != j) {
  119. Real M_ = 1;
  120. for (Integer k = 0; k < ORDER; k++) {
  121. if (k != j && k != l) M_ *= (x - nodes[0][k]);
  122. if (k != j) M_ /= (nodes[0][j] - nodes[0][k]);
  123. }
  124. M[j][i] += M_;
  125. }
  126. }
  127. }
  128. }
  129. for (Integer d = 0; d < DIM; d++) {
  130. GradOp[d].ReInit(Size(), Size());
  131. GradOp[d] = 0;
  132. Integer stride0 = sctl::pow<Integer>(ORDER, d);
  133. Integer repeat0 = sctl::pow<Integer>(ORDER, d);
  134. Integer stride1 = sctl::pow<Integer>(ORDER, d+1);
  135. Integer repeat1 = sctl::pow<Integer>(ORDER, DIM-d-1);
  136. for (Integer k1 = 0; k1 < repeat1; k1++) {
  137. for (Integer i = 0; i < ORDER; i++) {
  138. for (Integer j = 0; j < ORDER; j++) {
  139. for (Integer k0 = 0; k0 < repeat0; k0++) {
  140. GradOp[d][k1*stride1 + i*stride0 + k0][k1*stride1 + j*stride0 + k0] = M[i][j];
  141. }
  142. }
  143. }
  144. }
  145. }
  146. }
  147. std::atomic_thread_fence(std::memory_order_seq_cst);
  148. first_time.store(false);
  149. }
  150. }
  151. if (dX.Dim() != X.Dim()*DIM) dX.ReInit(X.Dim()*DIM);
  152. for (Long i = 0; i < X.Dim(); i++) {
  153. const Matrix<ValueType> Vi(1, Size(), (Iterator<ValueType>)(ConstIterator<ValueType>)X[i].NodeValues_, false);
  154. for (Integer k = 0; k < DIM; k++) {
  155. Matrix<ValueType> Vo(1, Size(), dX[i*DIM+k].NodeValues_, false);
  156. Matrix<ValueType>::GEMM(Vo, Vi, GradOp[k]);
  157. }
  158. }
  159. }
  160. static EvalOpType SetupEval(const Matrix<ValueType>& X) {
  161. Long N = X.Dim(1);
  162. SCTL_ASSERT(X.Dim(0) == DIM);
  163. Matrix<ValueType> M(Size(), N);
  164. { // Set M
  165. auto nodes = Basis<ValueType,1,ORDER>::Nodes();
  166. Integer NN = Basis<ValueType,1,ORDER>::Size();
  167. Matrix<ValueType> M_(NN, DIM*N);
  168. for (Long i = 0; i < DIM*N; i++) {
  169. ValueType x = X[0][i];
  170. for (Integer j = 0; j < NN; j++) {
  171. ValueType y = 1;
  172. for (Integer k = 0; k < NN; k++) {
  173. y *= (j==k ? 1 : (nodes[0][k] - x) / (nodes[0][k] - nodes[0][j]));
  174. }
  175. M_[j][i] = y;
  176. }
  177. }
  178. if (DIM == 1) {
  179. SCTL_ASSERT(M.Dim(0) == M_.Dim(0));
  180. SCTL_ASSERT(M.Dim(1) == M_.Dim(1));
  181. M = M_;
  182. } else {
  183. Integer NNN = 1;
  184. M = 1;
  185. for (Integer d = 0; d < DIM; d++) {
  186. for (Integer k = 1; k < NN; k++) {
  187. for (Integer j = 0; j < NNN; j++) {
  188. for (Long i = 0; i < N; i++) {
  189. M[k*NNN+j][i] = M[j][i] * M_[k][d*N+i];
  190. }
  191. }
  192. }
  193. { // k = 0
  194. for (Integer j = 0; j < NNN; j++) {
  195. for (Long i = 0; i < N; i++) {
  196. M[j][i] *= M_[0][d*N+i];
  197. }
  198. }
  199. }
  200. NNN *= NN;
  201. }
  202. }
  203. }
  204. return M;
  205. }
  206. static void Eval(Matrix<ValueType>& Y, const Vector<Basis>& X, const EvalOpType& M) {
  207. Long N0 = X.Dim();
  208. Long N1 = M.Dim(1);
  209. SCTL_ASSERT(M.Dim(0) == Size());
  210. if (Y.Dim(0) != N0 || Y.Dim(1) != N1) Y.ReInit(N0, N1);
  211. for (Long i = 0; i < N0; i++) {
  212. const Matrix<ValueType> X_(1,Size(),(Iterator<ValueType>)(ConstIterator<ValueType>)X[i].NodeValues_,false);
  213. Matrix<ValueType> Y_(1,N1,Y[i],false);
  214. Matrix<ValueType>::GEMM(Y_,X_,M);
  215. }
  216. }
  217. Basis operator+(Basis X) const {
  218. for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] + X[i];
  219. return X;
  220. }
  221. Basis operator-(Basis X) const {
  222. for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] - X[i];
  223. return X;
  224. }
  225. Basis operator*(Basis X) const {
  226. for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] * X[i];
  227. return X;
  228. }
  229. Basis operator*(Real a) const {
  230. Basis X = (*this);
  231. for (Long i = 0; i < Size(); i++) X[i] *= a;
  232. return X;
  233. }
  234. Basis operator+(Real a) const {
  235. Basis X = (*this);
  236. for (Long i = 0; i < Size(); i++) X[i] += a;
  237. return X;
  238. }
  239. Basis& operator+=(const Basis& X) {
  240. for (Long i = 0; i < Size(); i++) (*this)[i] += X[i];
  241. return *this;
  242. }
  243. Basis& operator-=(const Basis& X) {
  244. for (Long i = 0; i < Size(); i++) (*this)[i] -= X[i];
  245. return *this;
  246. }
  247. Basis& operator*=(const Basis& X) {
  248. for (Long i = 0; i < Size(); i++) (*this)[i] *= X[i];
  249. return *this;
  250. }
  251. Basis& operator*=(Real a) {
  252. for (Long i = 0; i < Size(); i++) (*this)[i] *= a;
  253. return *this;
  254. }
  255. Basis& operator+=(Real a) {
  256. for (Long i = 0; i < Size(); i++) (*this)[i] += a;
  257. return *this;
  258. }
  259. Basis& operator=(Real a) {
  260. for (Long i = 0; i < Size(); i++) (*this)[i] = a;
  261. return *this;
  262. }
  263. const ValueType& operator[](Long i) const {
  264. SCTL_ASSERT(i < Size());
  265. return NodeValues_[i];
  266. }
  267. ValueType& operator[](Long i) {
  268. SCTL_ASSERT(i < Size());
  269. return NodeValues_[i];
  270. }
  271. private:
  272. StaticArray<ValueType,Size()> NodeValues_;
  273. };
  274. template <Integer COORD_DIM, class Basis> class ElemList {
  275. public:
  276. using CoordBasis = Basis;
  277. using CoordType = typename CoordBasis::ValueType;
  278. static constexpr Integer CoordDim() {
  279. return COORD_DIM;
  280. }
  281. static constexpr Integer ElemDim() {
  282. return CoordBasis::Dim();
  283. }
  284. ElemList(Long Nelem = 0) {
  285. ReInit(Nelem);
  286. }
  287. void ReInit(Long Nelem = 0) {
  288. Nelem_ = Nelem;
  289. X_.ReInit(Nelem_ * COORD_DIM);
  290. }
  291. void ReInit(const Vector<CoordBasis>& X) {
  292. Nelem_ = X.Dim() / COORD_DIM;
  293. SCTL_ASSERT(X.Dim() == Nelem_ * COORD_DIM);
  294. X_ = X;
  295. }
  296. Long NElem() const {
  297. return Nelem_;
  298. }
  299. CoordBasis& operator()(Long elem, Integer dim) {
  300. SCTL_ASSERT(elem >= 0 && elem < Nelem_);
  301. SCTL_ASSERT(dim >= 0 && dim < COORD_DIM);
  302. return X_[elem*COORD_DIM+dim];
  303. }
  304. const CoordBasis& operator()(Long elem, Integer dim) const {
  305. SCTL_ASSERT(elem >= 0 && elem < Nelem_);
  306. SCTL_ASSERT(dim >= 0 && dim < COORD_DIM);
  307. return X_[elem*COORD_DIM+dim];
  308. }
  309. const Vector<CoordBasis>& ElemVector() const {
  310. return X_;
  311. }
  312. private:
  313. static_assert(CoordBasis::Dim() <= CoordDim(), "Basis dimension can not be greater than COORD_DIM.");
  314. Vector<CoordBasis> X_;
  315. Long Nelem_;
  316. //mutable Vector<CoordBasis> dX_;
  317. };
  318. template <class Real> class Quadrature {
  319. static Real machine_epsilon() {
  320. Real eps=1;
  321. while(eps*(Real)0.5+(Real)1.0>1.0) eps*=0.5;
  322. return eps;
  323. }
  324. template <Integer DIM> static void DuffyQuad(Matrix<Real>& nodes, Vector<Real>& weights, const Vector<Real>& coord, Integer order, Real adapt = -1.0) {
  325. SCTL_ASSERT(coord.Dim() == DIM);
  326. static Real eps = machine_epsilon()*16;
  327. Matrix<Real> qx;
  328. Vector<Real> qw;
  329. { // Set qx, qw
  330. Vector<Real> qx0, qw0;
  331. ChebBasis<Real>::quad_rule(order, qx0, qw0);
  332. Integer N = sctl::pow<DIM,Integer>(order);
  333. qx.ReInit(DIM,N);
  334. qw.ReInit(N);
  335. qw[0] = 1;
  336. Integer N_ = 1;
  337. for (Integer d = 0; d < DIM; d++) {
  338. for (Integer j = 0; j < order; j++) {
  339. for (Integer i = 0; i < N_; i++) {
  340. for (Integer k = 0; k < d; k++) {
  341. qx[k][j*N_+i] = qx[k][i];
  342. }
  343. qx[d][j*N_+i] = qx0[j];
  344. qw[j*N_+i] = qw[i];
  345. }
  346. }
  347. for (Integer j = 0; j < order; j++) {
  348. for (Integer i = 0; i < N_; i++) {
  349. qw[j*N_+i] *= qw0[j];
  350. }
  351. }
  352. N_ *= order;
  353. }
  354. }
  355. Vector<Real> X;
  356. { // Set X
  357. StaticArray<Real,2*DIM+2> X_;
  358. X_[0] = 0;
  359. X_[1] = adapt;
  360. for (Integer i = 0; i < DIM; i++) {
  361. X_[2*i+2] = sctl::fabs<Real>(coord[i]);
  362. X_[2*i+3] = sctl::fabs<Real>(coord[i]-1);
  363. }
  364. std::sort((Iterator<Real>)X_, (Iterator<Real>)X_+2*DIM+2);
  365. X.PushBack(std::max<Real>(0, X_[2*DIM]-1));
  366. for (Integer i = 0; i < 2*DIM+2; i++) {
  367. if (X[X.Dim()-1] < X_[i]) {
  368. if (X.Dim())
  369. X.PushBack(X_[i]);
  370. }
  371. }
  372. /////////////////////////////////////////////////////////////////////////////////////////////////
  373. Vector<Real> r(1);
  374. r[0] = X[0];
  375. for (Integer i = 1; i < X.Dim(); i++) {
  376. while (r[r.Dim() - 1] > 0.0 && (order*0.5) * r[r.Dim() - 1] < X[i]) r.PushBack((order*0.5) * r[r.Dim() - 1]); // TODO
  377. r.PushBack(X[i]);
  378. }
  379. X = r;
  380. /////////////////////////////////////////////////////////////////////////////////////////////////
  381. }
  382. Vector<Real> nds, wts;
  383. for (Integer k = 0; k < X.Dim()-1; k++) {
  384. for (Integer dd = 0; dd < 2*DIM; dd++) {
  385. Integer d0 = (dd>>1);
  386. StaticArray<Real,2*DIM> range0, range1;
  387. { // Set range0, range1
  388. Integer d1 = (dd%2?1:-1);
  389. for (Integer d = 0; d < DIM; d++) {
  390. range0[d*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d] - X[k] ));
  391. range0[d*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d] + X[k] ));
  392. range1[d*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d] - X[k+1]));
  393. range1[d*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d] + X[k+1]));
  394. }
  395. range0[d0*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+0]));
  396. range0[d0*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+0]));
  397. range1[d0*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+1]));
  398. range1[d0*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+1]));
  399. }
  400. { // if volume(range0, range1) == 0 then continue
  401. Real v0 = 1, v1 = 1;
  402. for (Integer d = 0; d < DIM; d++) {
  403. if (d == d0) {
  404. v0 *= sctl::fabs<Real>(range0[d*2+0]-range1[d*2+0]);
  405. v1 *= sctl::fabs<Real>(range0[d*2+0]-range1[d*2+0]);
  406. } else {
  407. v0 *= range0[d*2+1]-range0[d*2+0];
  408. v1 *= range1[d*2+1]-range1[d*2+0];
  409. }
  410. }
  411. if (v0 < eps && v1 < eps) continue;
  412. }
  413. for (Integer i = 0; i < qx.Dim(1); i++) { // Set nds, wts
  414. Real w = qw[i];
  415. Real z = qx[d0][i];
  416. for (Integer d = 0; d < DIM; d++) {
  417. Real y = qx[d][i];
  418. nds.PushBack((range0[d*2+0]*(1-y) + range0[d*2+1]*y)*(1-z) + (range1[d*2+0]*(1-y) + range1[d*2+1]*y)*z);
  419. if (d == d0) {
  420. w *= abs(range1[d*2+0] - range0[d*2+0]);
  421. } else {
  422. w *= (range0[d*2+1] - range0[d*2+0])*(1-z) + (range1[d*2+1] - range1[d*2+0])*z;
  423. }
  424. }
  425. wts.PushBack(w);
  426. }
  427. }
  428. }
  429. nodes = Matrix<Real>(nds.Dim()/DIM,DIM,nds.begin()).Transpose();
  430. weights = wts;
  431. }
  432. template <Integer DIM> static void TensorProductGaussQuad(Matrix<Real>& nodes, Vector<Real>& weights, Integer order) {
  433. Vector<Real> coord(DIM);
  434. coord = 0;
  435. coord[0] = -10;
  436. DuffyQuad<DIM>(nodes, weights, coord, order);
  437. }
  438. template <class DensityBasis, class ElemList, class Kernel> static void SetupSingular(Matrix<Real>& M_singular, const Matrix<Real>& trg_nds, const ElemList& elem_lst, const Kernel& kernel, Integer order_singular = 10, Integer order_direct = 10, Real Rqbx = 0) {
  439. using CoordBasis = typename ElemList::CoordBasis;
  440. using CoordEvalOpType = typename CoordBasis::EvalOpType;
  441. using DensityEvalOpType = typename DensityBasis::EvalOpType;
  442. constexpr Integer CoordDim = ElemList::CoordDim();
  443. constexpr Integer ElemDim = ElemList::ElemDim();
  444. constexpr Integer KDIM0 = Kernel::SrcDim();
  445. constexpr Integer KDIM1 = Kernel::TrgDim();
  446. const Long Nelem = elem_lst.NElem();
  447. const Integer Ntrg = trg_nds.Dim(1);
  448. SCTL_ASSERT(trg_nds.Dim(0) == ElemDim);
  449. const Vector<CoordBasis>& X = elem_lst.ElemVector();
  450. Vector<CoordBasis> dX;
  451. CoordBasis::Grad(dX, X);
  452. Vector<Real> Xt, Xnt;
  453. { // Set Xt, Xnt
  454. auto Meval = CoordBasis::SetupEval(trg_nds);
  455. eval_basis(Xt, X, CoordDim, trg_nds.Dim(1), Meval);
  456. Xnt = Xt;
  457. Vector<Real> dX_;
  458. eval_basis(dX_, dX, 2*CoordDim, trg_nds.Dim(1), Meval);
  459. for (Long i = 0; i < Ntrg; i++) {
  460. for (Long j = 0; j < Nelem; j++) {
  461. auto Xn = Xnt.begin() + (j*Ntrg+i)*CoordDim;
  462. auto dX0 = dX_.begin() + (j*Ntrg+i)*2*CoordDim;
  463. StaticArray<Real,CoordDim> normal;
  464. normal[0] = dX0[2]*dX0[5] - dX0[4]*dX0[3];
  465. normal[1] = dX0[4]*dX0[1] - dX0[0]*dX0[5];
  466. normal[2] = dX0[0]*dX0[3] - dX0[2]*dX0[1];
  467. Real Xa = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  468. Real invXa = 1/Xa;
  469. normal[0] *= invXa;
  470. normal[1] *= invXa;
  471. normal[2] *= invXa;
  472. Real sqrt_Xa = sqrt<Real>(Xa);
  473. Xn[0] = normal[0]*sqrt_Xa*Rqbx;
  474. Xn[1] = normal[1]*sqrt_Xa*Rqbx;
  475. Xn[2] = normal[2]*sqrt_Xa*Rqbx;
  476. }
  477. }
  478. }
  479. SCTL_ASSERT(Xt.Dim() == Nelem * Ntrg * CoordDim);
  480. auto& M = M_singular;
  481. M.ReInit(Nelem * KDIM0 * DensityBasis::Size(), KDIM1 * Ntrg);
  482. #pragma omp parallel for schedule(static)
  483. for (Long i = 0; i < Ntrg; i++) { // Set M (singular)
  484. Matrix<Real> quad_nds;
  485. Vector<Real> quad_wts;
  486. { // Set quad_nds, quad_wts
  487. StaticArray<Real,ElemDim> trg_node_;
  488. for (Integer k = 0; k < ElemDim; k++) {
  489. trg_node_[k] = trg_nds[k][i];
  490. }
  491. Vector<Real> trg_node(ElemDim, trg_node_, false);
  492. DuffyQuad<ElemDim>(quad_nds, quad_wts, trg_node, order_singular, fabs(Rqbx));
  493. }
  494. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  495. Integer Nnds = quad_wts.Dim();
  496. Vector<Real> X_, dX_, Xa_, Xn_;
  497. { // Set X_, dX_
  498. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  499. eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
  500. }
  501. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  502. Long N = Nelem*Nnds;
  503. Xa_.ReInit(N);
  504. Xn_.ReInit(N*CoordDim);
  505. for (Long j = 0; j < N; j++) {
  506. StaticArray<Real,CoordDim> normal;
  507. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  508. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  509. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  510. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  511. Real invXa = 1/Xa_[j];
  512. Xn_[j*3+0] = normal[0] * invXa;
  513. Xn_[j*3+1] = normal[1] * invXa;
  514. Xn_[j*3+2] = normal[2] * invXa;
  515. }
  516. }
  517. DensityEvalOpType DensityEvalOp;
  518. if (std::is_same<CoordBasis,DensityBasis>::value) {
  519. DensityEvalOp = CoordEvalOp;
  520. } else {
  521. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  522. }
  523. for (Long j = 0; j < Nelem; j++) {
  524. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  525. if (Rqbx == 0) { // Set kernel matrix M__
  526. const Vector<Real> X0_(CoordDim, Xt.begin() + (j * Ntrg + i) * CoordDim, false);
  527. const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
  528. const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
  529. kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
  530. } else {
  531. Vector<Real> X0_(CoordDim);
  532. constexpr Integer qbx_order = 6;
  533. StaticArray<Matrix<Real>,qbx_order> M___;
  534. for (Integer k = 0; k < qbx_order; k++) { // Set kernel matrix M___
  535. for (Integer kk = 0; kk < CoordDim; kk++) X0_[kk] = Xt[(j * Ntrg + i) * CoordDim + kk] + (k+1) * Xnt[(j * Ntrg + i) * CoordDim + kk];
  536. const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
  537. const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
  538. kernel.template KernelMatrix<Real>(M___[k], X0_, X__, Xn__);
  539. }
  540. for (Long k = 0; k < Nnds * KDIM0 * KDIM1; k++) {
  541. M__[0][k] = 0;
  542. M__[0][k] += 6*M___[0][0][k];
  543. M__[0][k] += -15*M___[1][0][k];
  544. M__[0][k] += 20*M___[2][0][k];
  545. M__[0][k] += -15*M___[3][0][k];
  546. M__[0][k] += 6*M___[4][0][k];
  547. M__[0][k] += -1*M___[5][0][k];
  548. }
  549. }
  550. for (Long k0 = 0; k0 < KDIM0; k0++) {
  551. for (Long k1 = 0; k1 < KDIM1; k1++) {
  552. for (Long l = 0; l < DensityBasis::Size(); l++) {
  553. Real M_lk = 0;
  554. for (Long n = 0; n < Nnds; n++) {
  555. Real quad_wt = Xa_[j * Nnds + n] * quad_wts[n];
  556. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  557. }
  558. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1 * Ntrg + i] = M_lk;
  559. }
  560. }
  561. }
  562. }
  563. }
  564. { // Set M (subtract direct)
  565. Matrix<Real> quad_nds;
  566. Vector<Real> quad_wts;
  567. TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
  568. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  569. Integer Nnds = quad_wts.Dim();
  570. Vector<Real> X_, dX_, Xa_, Xn_;
  571. { // Set X_, dX_
  572. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  573. eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
  574. }
  575. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  576. Long N = Nelem*Nnds;
  577. Xa_.ReInit(N);
  578. Xn_.ReInit(N*CoordDim);
  579. for (Long j = 0; j < N; j++) {
  580. StaticArray<Real,CoordDim> normal;
  581. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  582. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  583. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  584. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  585. Real invXa = 1/Xa_[j];
  586. Xn_[j*3+0] = normal[0] * invXa;
  587. Xn_[j*3+1] = normal[1] * invXa;
  588. Xn_[j*3+2] = normal[2] * invXa;
  589. }
  590. }
  591. DensityEvalOpType DensityEvalOp;
  592. if (std::is_same<CoordBasis,DensityBasis>::value) {
  593. DensityEvalOp = CoordEvalOp;
  594. } else {
  595. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  596. }
  597. #pragma omp parallel for schedule(static)
  598. for (Long i = 0; i < Ntrg; i++) { // Subtract direct contribution
  599. for (Long j = 0; j < Nelem; j++) {
  600. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  601. { // Set kernel matrix M__
  602. const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + (j * Ntrg + i) * CoordDim, false);
  603. const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
  604. const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
  605. kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
  606. }
  607. for (Long k0 = 0; k0 < KDIM0; k0++) {
  608. for (Long k1 = 0; k1 < KDIM1; k1++) {
  609. for (Long l = 0; l < DensityBasis::Size(); l++) {
  610. Real M_lk = 0;
  611. for (Long n = 0; n < Nnds; n++) {
  612. Real quad_wt = Xa_[j * Nnds + n] * quad_wts[n];
  613. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  614. }
  615. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1 * Ntrg + i] -= M_lk;
  616. }
  617. }
  618. }
  619. }
  620. }
  621. }
  622. }
  623. template <class DensityBasis> static void EvalSingular(Matrix<Real>& U, const Vector<DensityBasis>& density, const Matrix<Real>& M, Integer KDIM0_, Integer KDIM1_) {
  624. if (M.Dim(0) == 0 || M.Dim(1) == 0) {
  625. U.ReInit(0,0);
  626. return;
  627. }
  628. const Long Ntrg = M.Dim(1) / KDIM1_;
  629. SCTL_ASSERT(M.Dim(1) == KDIM1_ * Ntrg);
  630. const Long Nelem = M.Dim(0) / (KDIM0_ * DensityBasis::Size());
  631. SCTL_ASSERT(M.Dim(0) == Nelem * KDIM0_ * DensityBasis::Size());
  632. const Integer dof = density.Dim() / (Nelem * KDIM0_);
  633. SCTL_ASSERT(density.Dim() == Nelem * dof * KDIM0_);
  634. if (U.Dim(0) != Nelem * dof * KDIM1_ || U.Dim(1) != Ntrg) {
  635. U.ReInit(Nelem * dof * KDIM1_, Ntrg);
  636. U = 0;
  637. }
  638. for (Long j = 0; j < Nelem; j++) {
  639. const Matrix<Real> M_(KDIM0_ * DensityBasis::Size(), KDIM1_ * Ntrg, (Iterator<Real>)M[j * KDIM0_ * DensityBasis::Size()], false);
  640. Matrix<Real> U_(dof, KDIM1_ * Ntrg, U[j*dof*KDIM1_], false);
  641. Matrix<Real> F_(dof, KDIM0_ * DensityBasis::Size());
  642. for (Long i = 0; i < dof; i++) {
  643. for (Long k = 0; k < KDIM0_; k++) {
  644. for (Long l = 0; l < DensityBasis::Size(); l++) {
  645. F_[i][k * DensityBasis::Size() + l] = density[(j * dof + i) * KDIM0_ + k][l];
  646. }
  647. }
  648. }
  649. Matrix<Real>::GEMM(U_, F_, M_);
  650. }
  651. }
  652. template <Integer DIM> struct PointData {
  653. bool operator<(const PointData& p) const {
  654. return mid < p.mid;
  655. }
  656. Long rank;
  657. Long surf_rank;
  658. Morton<DIM> mid;
  659. StaticArray<Real,DIM> coord;
  660. Real radius2;
  661. };
  662. template <class T1, class T2> struct Pair {
  663. Pair() {}
  664. Pair(T1 x, T2 y) : first(x), second(y) {}
  665. bool operator<(const Pair& p) const {
  666. return (first < p.first) || (((first == p.first) && (second < p.second)));
  667. }
  668. T1 first;
  669. T2 second;
  670. };
  671. template <class ElemList> static void BuildNbrList(Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt, const Vector<Long>& trg_surf, const ElemList& elem_lst, Real distance_factor, Real period_length, const Comm& comm) {
  672. using CoordBasis = typename ElemList::CoordBasis;
  673. constexpr Integer CoordDim = ElemList::CoordDim();
  674. constexpr Integer ElemDim = ElemList::ElemDim();
  675. using PtData = PointData<CoordDim>;
  676. const Integer rank = comm.Rank();
  677. Real R0 = 0;
  678. StaticArray<Real,CoordDim> X0;
  679. { // Find bounding box
  680. Long N = Xt.Dim() / CoordDim;
  681. SCTL_ASSERT(Xt.Dim() == N * CoordDim);
  682. SCTL_ASSERT(N);
  683. StaticArray<Real,CoordDim*2> Xloc;
  684. StaticArray<Real,CoordDim*2> Xglb;
  685. for (Integer k = 0; k < CoordDim; k++) {
  686. Xloc[0*CoordDim+k] = Xt[k];
  687. Xloc[1*CoordDim+k] = Xt[k];
  688. }
  689. for (Long i = 0; i < N; i++) {
  690. for (Integer k = 0; k < CoordDim; k++) {
  691. Xloc[0*CoordDim+k] = std::min<Real>(Xloc[0*CoordDim+k], Xt[i*CoordDim+k]);
  692. Xloc[1*CoordDim+k] = std::max<Real>(Xloc[1*CoordDim+k], Xt[i*CoordDim+k]);
  693. }
  694. }
  695. comm.Allreduce((ConstIterator<Real>)Xloc+0*CoordDim, (Iterator<Real>)Xglb+0*CoordDim, CoordDim, Comm::CommOp::MIN);
  696. comm.Allreduce((ConstIterator<Real>)Xloc+1*CoordDim, (Iterator<Real>)Xglb+1*CoordDim, CoordDim, Comm::CommOp::MAX);
  697. for (Integer k = 0; k < CoordDim; k++) {
  698. R0 = std::max(R0, Xglb[1*CoordDim+k]-Xglb[0*CoordDim+k]);
  699. }
  700. R0 = R0 * 2.0;
  701. for (Integer k = 0; k < CoordDim; k++) {
  702. X0[k] = Xglb[k] - R0*0.25;
  703. }
  704. }
  705. if (period_length > 0) {
  706. R0 = period_length;
  707. }
  708. Vector<PtData> PtSrc, PtTrg;
  709. Integer order_upsample = (Integer)(const_pi<Real>() / distance_factor + 0.5);
  710. { // Set PtSrc
  711. const Vector<CoordBasis>& X_elem_lst = elem_lst.ElemVector();
  712. Vector<CoordBasis> dX_elem_lst;
  713. CoordBasis::Grad(dX_elem_lst, X_elem_lst);
  714. Matrix<Real> nds;
  715. Vector<Real> wts;
  716. TensorProductGaussQuad<ElemDim>(nds, wts, order_upsample);
  717. const Long Nnds = nds.Dim(1);
  718. Vector<Real> X, dX;
  719. const auto CoordEvalOp = CoordBasis::SetupEval(nds);
  720. eval_basis(X, X_elem_lst, CoordDim, Nnds, CoordEvalOp);
  721. eval_basis(dX, dX_elem_lst, CoordDim * ElemDim, Nnds, CoordEvalOp);
  722. const Long N = X.Dim() / CoordDim;
  723. const Long Nelem = elem_lst.NElem();
  724. SCTL_ASSERT(X.Dim() == N * CoordDim);
  725. SCTL_ASSERT(N == Nelem * Nnds);
  726. Long rank_offset, surf_rank_offset;
  727. { // Set rank_offset, surf_rank_offset
  728. comm.Scan(Ptr2ConstItr<Long>(&N,1), Ptr2Itr<Long>(&rank_offset,1), 1, Comm::CommOp::SUM);
  729. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&surf_rank_offset,1), 1, Comm::CommOp::SUM);
  730. surf_rank_offset -= Nelem;
  731. rank_offset -= N;
  732. }
  733. PtSrc.ReInit(N);
  734. const Real R0inv = 1.0 / R0;
  735. for (Long i = 0; i < N; i++) { // Set coord
  736. for (Integer k = 0; k < CoordDim; k++) {
  737. PtSrc[i].coord[k] = (X[i*CoordDim+k] - X0[k]) * R0inv;
  738. }
  739. }
  740. if (period_length > 0) { // Wrap-around coord
  741. for (Long i = 0; i < N; i++) {
  742. auto& x = PtSrc[i].coord;
  743. for (Integer k = 0; k < CoordDim; k++) {
  744. x[k] -= (Long)(x[k]);
  745. }
  746. }
  747. }
  748. for (Long i = 0; i < N; i++) { // Set radius2, mid, rank
  749. Integer depth = 0;
  750. { // Set radius2, depth
  751. Real radius2 = 0;
  752. for (Integer k0 = 0; k0 < ElemDim; k0++) {
  753. Real R2 = 0;
  754. for (Integer k1 = 0; k1 < CoordDim; k1++) {
  755. Real dX_ = dX[(i*CoordDim+k1)*ElemDim+k0];
  756. R2 += dX_*dX_;
  757. }
  758. radius2 = std::max(radius2, R2);
  759. }
  760. radius2 *= R0inv*R0inv * distance_factor*distance_factor;
  761. PtSrc[i].radius2 = radius2;
  762. Long Rinv = (Long)(1.0/radius2);
  763. while (Rinv > 0) {
  764. Rinv = (Rinv>>2);
  765. depth++;
  766. }
  767. }
  768. PtSrc[i].mid = Morton<CoordDim>((Iterator<Real>)PtSrc[i].coord, std::min(Morton<CoordDim>::MaxDepth(),depth));
  769. PtSrc[i].rank = rank_offset + i;
  770. }
  771. for (Long i = 0 ; i < Nelem; i++) { // Set surf_rank
  772. for (Long j = 0; j < Nnds; j++) {
  773. PtSrc[i*Nnds+j].surf_rank = surf_rank_offset + i;
  774. }
  775. }
  776. Vector<PtData> PtSrcSorted;
  777. comm.HyperQuickSort(PtSrc, PtSrcSorted);
  778. PtSrc.Swap(PtSrcSorted);
  779. }
  780. { // Set PtTrg
  781. const Long N = Xt.Dim() / CoordDim;
  782. SCTL_ASSERT(Xt.Dim() == N * CoordDim);
  783. Long rank_offset;
  784. { // Set rank_offset
  785. comm.Scan(Ptr2ConstItr<Long>(&N,1), Ptr2Itr<Long>(&rank_offset,1), 1, Comm::CommOp::SUM);
  786. rank_offset -= N;
  787. }
  788. PtTrg.ReInit(N);
  789. const Real R0inv = 1.0 / R0;
  790. for (Long i = 0; i < N; i++) { // Set coord
  791. for (Integer k = 0; k < CoordDim; k++) {
  792. PtTrg[i].coord[k] = (Xt[i*CoordDim+k] - X0[k]) * R0inv;
  793. }
  794. }
  795. if (period_length > 0) { // Wrap-around coord
  796. for (Long i = 0; i < N; i++) {
  797. auto& x = PtTrg[i].coord;
  798. for (Integer k = 0; k < CoordDim; k++) {
  799. x[k] -= (Long)(x[k]);
  800. }
  801. }
  802. }
  803. for (Long i = 0; i < N; i++) { // Set radius2, mid, rank
  804. PtTrg[i].radius2 = 0;
  805. PtTrg[i].mid = Morton<CoordDim>((Iterator<Real>)PtTrg[i].coord);
  806. PtTrg[i].rank = rank_offset + i;
  807. }
  808. if (trg_surf.Dim()) { // Set surf_rank
  809. SCTL_ASSERT(trg_surf.Dim() == N);
  810. for (Long i = 0; i < N; i++) {
  811. PtTrg[i].surf_rank = trg_surf[i];
  812. }
  813. } else {
  814. for (Long i = 0; i < N; i++) {
  815. PtTrg[i].surf_rank = -1;
  816. }
  817. }
  818. Vector<PtData> PtTrgSorted;
  819. comm.HyperQuickSort(PtTrg, PtTrgSorted);
  820. PtTrg.Swap(PtTrgSorted);
  821. }
  822. Tree<CoordDim> tree(comm);
  823. { // Init tree
  824. Vector<Real> Xall(PtSrc.Dim()+PtTrg.Dim());
  825. { // Set Xall
  826. Xall.ReInit((PtSrc.Dim()+PtTrg.Dim())*CoordDim);
  827. Long Nsrc = PtSrc.Dim();
  828. Long Ntrg = PtTrg.Dim();
  829. for (Long i = 0; i < Nsrc; i++) {
  830. for (Integer k = 0; k < CoordDim; k++) {
  831. Xall[i*CoordDim+k] = PtSrc[i].coord[k];
  832. }
  833. }
  834. for (Long i = 0; i < Ntrg; i++) {
  835. for (Integer k = 0; k < CoordDim; k++) {
  836. Xall[(Nsrc+i)*CoordDim+k] = PtTrg[i].coord[k];
  837. }
  838. }
  839. }
  840. tree.UpdateRefinement(Xall, 1000, true, period_length>0);
  841. }
  842. { // Repartition PtSrc, PtTrg
  843. PtData splitter;
  844. splitter.mid = tree.GetPartitionMID()[rank];
  845. comm.PartitionS(PtSrc, splitter);
  846. comm.PartitionS(PtTrg, splitter);
  847. }
  848. { // Add tree data PtSrc
  849. const auto& node_mid = tree.GetNodeMID();
  850. const Long N = node_mid.Dim();
  851. SCTL_ASSERT(N);
  852. Vector<Long> dsp(N), cnt(N);
  853. for (Long i = 0; i < N; i++) {
  854. PtData m0;
  855. m0.mid = node_mid[i];
  856. dsp[i] = std::lower_bound(PtSrc.begin(), PtSrc.end(), m0) - PtSrc.begin();
  857. }
  858. for (Long i = 0; i < N-1; i++) {
  859. cnt[i] = dsp[i+1] - dsp[i];
  860. }
  861. cnt[N-1] = PtSrc.Dim() - dsp[N-1];
  862. tree.AddData("PtSrc", PtSrc, cnt);
  863. }
  864. tree.template Broadcast<PtData>("PtSrc");
  865. { // Build pair_lst
  866. Vector<Long> cnt;
  867. Vector<PtData> PtSrc;
  868. tree.GetData(PtSrc, cnt, "PtSrc");
  869. const auto& node_mid = tree.GetNodeMID();
  870. const auto& node_attr = tree.GetNodeAttr();
  871. Vector<Morton<CoordDim>> nbr_mid_tmp;
  872. for (Long i = 0; i < node_mid.Dim(); i++) {
  873. if (node_attr[i].Leaf && !node_attr[i].Ghost) {
  874. Vector<Morton<CoordDim>> child_mid;
  875. node_mid[i].Children(child_mid);
  876. for (const auto& trg_mid : child_mid) {
  877. Integer d0 = trg_mid.Depth();
  878. Vector<PtData> Src, Trg;
  879. { // Set Trg
  880. PtData m0, m1;
  881. m0.mid = trg_mid;
  882. m1.mid = trg_mid.Next();
  883. Long a = std::lower_bound(PtTrg.begin(), PtTrg.end(), m0) - PtTrg.begin();
  884. Long b = std::lower_bound(PtTrg.begin(), PtTrg.end(), m1) - PtTrg.begin();
  885. Trg.ReInit(b-a, PtTrg.begin()+a, false);
  886. if (!Trg.Dim()) continue;
  887. }
  888. Vector<std::set<Long>> near_elem(Trg.Dim());
  889. for (Integer d = 0; d <= d0; d++) {
  890. trg_mid.NbrList(nbr_mid_tmp, d, period_length>0);
  891. for (const auto& src_mid : nbr_mid_tmp) { // Set Src
  892. PtData m0, m1;
  893. m0.mid = src_mid;
  894. m1.mid = (d==d0 ? src_mid.Next() : src_mid.Ancestor(d+1));
  895. Long a = std::lower_bound(PtSrc.begin(), PtSrc.end(), m0) - PtSrc.begin();
  896. Long b = std::lower_bound(PtSrc.begin(), PtSrc.end(), m1) - PtSrc.begin();
  897. Src.ReInit(b-a, PtSrc.begin()+a, false);
  898. if (!Src.Dim()) continue;
  899. for (Long t = 0; t < Trg.Dim(); t++) { // set near_elem[t] <-- {s : dist(s,t) < radius(s)}
  900. for (Long s = 0; s < Src.Dim(); s++) {
  901. if (Trg[t].surf_rank != Src[s].surf_rank) {
  902. Real R2 = 0;
  903. for (Integer k = 0; k < CoordDim; k++) {
  904. Real dx = (Src[s].coord[k] - Trg[t].coord[k]);
  905. R2 += dx * dx;
  906. }
  907. if (R2 < Src[s].radius2) {
  908. near_elem[t].insert(Src[s].surf_rank);
  909. }
  910. }
  911. }
  912. }
  913. }
  914. }
  915. for (Long t = 0; t < Trg.Dim(); t++) { // Set pair_lst
  916. for (Long elem_idx : near_elem[t]) {
  917. pair_lst.PushBack(Pair<Long,Long>(elem_idx,Trg[t].rank));
  918. }
  919. }
  920. }
  921. }
  922. }
  923. }
  924. { // Sort and repartition pair_lst
  925. Vector<Pair<Long,Long>> pair_lst_sorted;
  926. comm.HyperQuickSort(pair_lst, pair_lst_sorted);
  927. Long surf_rank_offset;
  928. const Long Nelem = elem_lst.NElem();
  929. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&surf_rank_offset,1), 1, Comm::CommOp::SUM);
  930. surf_rank_offset -= Nelem;
  931. comm.PartitionS(pair_lst_sorted, Pair<Long,Long>(surf_rank_offset,0));
  932. pair_lst.Swap(pair_lst_sorted);
  933. }
  934. }
  935. template <class ElemList> static void BuildNbrListDeprecated(Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt, const ElemList& elem_lst, const Matrix<Real>& surf_nds, Real distance_factor) {
  936. using CoordBasis = typename ElemList::CoordBasis;
  937. constexpr Integer CoordDim = ElemList::CoordDim();
  938. constexpr Integer ElemDim = ElemList::ElemDim();
  939. const Long Nelem = elem_lst.NElem();
  940. const Long Ntrg = Xt.Dim() / CoordDim;
  941. SCTL_ASSERT(Xt.Dim() == Ntrg * CoordDim);
  942. Long Nnds, Nsurf_nds;
  943. Vector<Real> X_surf, X, dX;
  944. Integer order_upsample = (Integer)(const_pi<Real>() / distance_factor + 0.5);
  945. { // Set X, dX
  946. const Vector<CoordBasis>& X_elem_lst = elem_lst.ElemVector();
  947. Vector<CoordBasis> dX_elem_lst;
  948. CoordBasis::Grad(dX_elem_lst, X_elem_lst);
  949. Matrix<Real> nds_upsample;
  950. Vector<Real> wts_upsample;
  951. TensorProductGaussQuad<ElemDim>(nds_upsample, wts_upsample, order_upsample);
  952. Nnds = nds_upsample.Dim(1);
  953. const auto CoordEvalOp = CoordBasis::SetupEval(nds_upsample);
  954. eval_basis(X, X_elem_lst, CoordDim, nds_upsample.Dim(1), CoordEvalOp);
  955. eval_basis(dX, dX_elem_lst, CoordDim * ElemDim, nds_upsample.Dim(1), CoordEvalOp);
  956. Nsurf_nds = surf_nds.Dim(1);
  957. const auto CoordEvalOp_surf = CoordBasis::SetupEval(surf_nds);
  958. eval_basis(X_surf, X_elem_lst, CoordDim, Nsurf_nds, CoordEvalOp_surf);
  959. }
  960. Real d2 = distance_factor * distance_factor;
  961. for (Long i = 0; i < Nelem; i++) {
  962. std::set<Long> near_pts;
  963. std::set<Long> self_pts;
  964. for (Long j = 0; j < Nnds; j++) {
  965. Real R2_max = 0;
  966. StaticArray<Real, CoordDim> X0;
  967. for (Integer k = 0; k < CoordDim; k++) {
  968. X0[k] = X[(i*Nnds+j)*CoordDim+k];
  969. }
  970. for (Integer k0 = 0; k0 < ElemDim; k0++) {
  971. Real R2 = 0;
  972. for (Integer k1 = 0; k1 < CoordDim; k1++) {
  973. Real dX_ = dX[((i*Nnds+j)*CoordDim+k1)*ElemDim+k0];
  974. R2 += dX_*dX_;
  975. }
  976. R2_max = std::max(R2_max, R2*d2);
  977. }
  978. for (Long k = 0; k < Ntrg; k++) {
  979. Real R2 = 0;
  980. for (Integer l = 0; l < CoordDim; l++) {
  981. Real dX = Xt[k*CoordDim+l]- X0[l];
  982. R2 += dX * dX;
  983. }
  984. if (R2 < R2_max) near_pts.insert(k);
  985. }
  986. }
  987. for (Long j = 0; j < Nsurf_nds; j++) {
  988. StaticArray<Real, CoordDim> X0;
  989. for (Integer k = 0; k < CoordDim; k++) {
  990. X0[k] = X_surf[(i*Nsurf_nds+j)*CoordDim+k];
  991. }
  992. for (Long k = 0; k < Ntrg; k++) {
  993. Real R2 = 0;
  994. for (Integer l = 0; l < CoordDim; l++) {
  995. Real dX = Xt[k*CoordDim+l]- X0[l];
  996. R2 += dX * dX;
  997. }
  998. if (R2 == 0) self_pts.insert(k);
  999. }
  1000. }
  1001. for (Long trg_idx : self_pts) {
  1002. near_pts.erase(trg_idx);
  1003. }
  1004. for (Long trg_idx : near_pts) {
  1005. pair_lst.PushBack(Pair<Long,Long>(i,trg_idx));
  1006. }
  1007. }
  1008. }
  1009. template <class DensityBasis, class ElemList, class Kernel> static void SetupNearSingular(Matrix<Real>& M_near_singular, Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt_, const Vector<Long>& trg_surf, const ElemList& elem_lst, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) {
  1010. static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
  1011. static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
  1012. static_assert(DensityBasis::Dim() == ElemList::ElemDim());
  1013. using CoordBasis = typename ElemList::CoordBasis;
  1014. using CoordEvalOpType = typename CoordBasis::EvalOpType;
  1015. using DensityEvalOpType = typename DensityBasis::EvalOpType;
  1016. constexpr Integer CoordDim = ElemList::CoordDim();
  1017. constexpr Integer ElemDim = ElemList::ElemDim();
  1018. constexpr Integer KDIM0 = Kernel::SrcDim();
  1019. constexpr Integer KDIM1 = Kernel::TrgDim();
  1020. const Long Nelem = elem_lst.NElem();
  1021. BuildNbrList(pair_lst, Xt_, trg_surf, elem_lst, 2.5/order_direct, period_length, comm);
  1022. const Long Ninterac = pair_lst.Dim();
  1023. Vector<Real> Xt;
  1024. { // Set Xt
  1025. Integer rank = comm.Rank();
  1026. Integer np = comm.Size();
  1027. Vector<Long> splitter_ranks;
  1028. { // Set splitter_ranks
  1029. Vector<Long> cnt(np);
  1030. const Long N = Xt_.Dim() / CoordDim;
  1031. comm.Allgather(Ptr2ConstItr<Long>(&N,1), 1, cnt.begin(), 1);
  1032. scan(splitter_ranks, cnt);
  1033. }
  1034. Vector<Long> scatter_index, recv_index, recv_cnt(np), recv_dsp(np);
  1035. { // Set scatter_index, recv_index, recv_cnt, recv_dsp
  1036. { // Set scatter_index, recv_index
  1037. Vector<Pair<Long,Long>> scatter_pair(pair_lst.Dim());
  1038. for (Long i = 0; i < pair_lst.Dim(); i++) {
  1039. scatter_pair[i] = Pair<Long,Long>(pair_lst[i].second,i);
  1040. }
  1041. omp_par::merge_sort(scatter_pair.begin(), scatter_pair.end());
  1042. recv_index.ReInit(scatter_pair.Dim());
  1043. scatter_index.ReInit(scatter_pair.Dim());
  1044. for (Long i = 0; i < scatter_index.Dim(); i++) {
  1045. recv_index[i] = scatter_pair[i].first;
  1046. scatter_index[i] = scatter_pair[i].second;
  1047. }
  1048. }
  1049. for (Integer i = 0; i < np; i++) {
  1050. recv_dsp[i] = std::lower_bound(recv_index.begin(), recv_index.end(), splitter_ranks[i]) - recv_index.begin();
  1051. }
  1052. for (Integer i = 0; i < np-1; i++) {
  1053. recv_cnt[i] = recv_dsp[i+1] - recv_dsp[i];
  1054. }
  1055. recv_cnt[np-1] = recv_index.Dim() - recv_dsp[np-1];
  1056. }
  1057. Vector<Long> send_index, send_cnt(np), send_dsp(np);
  1058. { // Set send_index, send_cnt, send_dsp
  1059. comm.Alltoall(recv_cnt.begin(), 1, send_cnt.begin(), 1);
  1060. scan(send_dsp, send_cnt);
  1061. send_index.ReInit(send_cnt[np-1] + send_dsp[np-1]);
  1062. comm.Alltoallv(recv_index.begin(), recv_cnt.begin(), recv_dsp.begin(), send_index.begin(), send_cnt.begin(), send_dsp.begin());
  1063. }
  1064. Vector<Real> Xt_send(send_index.Dim() * CoordDim);
  1065. for (Long i = 0; i < send_index.Dim(); i++) { // Set Xt_send
  1066. Long idx = send_index[i] - splitter_ranks[rank];
  1067. for (Integer k = 0; k < CoordDim; k++) {
  1068. Xt_send[i*CoordDim+k] = Xt_[idx*CoordDim+k];
  1069. }
  1070. }
  1071. Vector<Real> Xt_recv(recv_index.Dim() * CoordDim);
  1072. { // Set Xt_recv
  1073. for (Long i = 0; i < np; i++) {
  1074. send_cnt[i] *= CoordDim;
  1075. send_dsp[i] *= CoordDim;
  1076. recv_cnt[i] *= CoordDim;
  1077. recv_dsp[i] *= CoordDim;
  1078. }
  1079. comm.Alltoallv(Xt_send.begin(), send_cnt.begin(), send_dsp.begin(), Xt_recv.begin(), recv_cnt.begin(), recv_dsp.begin());
  1080. }
  1081. Xt.ReInit(scatter_index.Dim() * CoordDim);
  1082. for (Long i = 0; i < scatter_index.Dim(); i++) { // Set Xt
  1083. Long idx = scatter_index[i];
  1084. for (Integer k = 0; k < CoordDim; k++) {
  1085. Xt[idx*CoordDim+k] = Xt_recv[i*CoordDim+k];
  1086. }
  1087. }
  1088. }
  1089. const Vector<CoordBasis>& X = elem_lst.ElemVector();
  1090. Vector<CoordBasis> dX;
  1091. CoordBasis::Grad(dX, X);
  1092. Long elem_rank_offset;
  1093. { // Set elem_rank_offset
  1094. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&elem_rank_offset,1), 1, Comm::CommOp::SUM);
  1095. elem_rank_offset -= Nelem;
  1096. }
  1097. auto& M = M_near_singular;
  1098. M.ReInit(Ninterac * KDIM0 * DensityBasis::Size(), KDIM1);
  1099. #pragma omp parallel for schedule(static)
  1100. for (Long j = 0; j < Ninterac; j++) { // Set M (near-singular)
  1101. const Long src_idx = pair_lst[j].first - elem_rank_offset;
  1102. Real adapt = -1.0;
  1103. Tensor<Real,true,ElemDim,1> u0;
  1104. { // Set u0 (project target point to the surface patch in parameter space)
  1105. ConstIterator<Real> Xt_ = Xt.begin() + j * CoordDim;
  1106. const auto& nodes = CoordBasis::Nodes();
  1107. Long min_idx = -1;
  1108. Real min_R2 = 1e10;
  1109. for (Long i = 0; i < CoordBasis::Size(); i++) {
  1110. Real R2 = 0;
  1111. for (Integer k = 0; k < CoordDim; k++) {
  1112. Real dX = X[src_idx * CoordDim + k][i] - Xt_[k];
  1113. R2 += dX * dX;
  1114. }
  1115. if (R2 < min_R2) {
  1116. min_R2 = R2;
  1117. min_idx = i;
  1118. }
  1119. }
  1120. SCTL_ASSERT(min_idx >= 0);
  1121. for (Integer k = 0; k < ElemDim; k++) {
  1122. u0(k,0) = nodes[k][min_idx];
  1123. }
  1124. for (Integer i = 0; i < 2; i++) { // iterate
  1125. Matrix<Real> X_, dX_;
  1126. for (Integer k = 0; k < ElemDim; k++) {
  1127. u0(k,0) = std::min<Real>(1.0, u0(k,0));
  1128. u0(k,0) = std::max<Real>(0.0, u0(k,0));
  1129. }
  1130. const auto eval_op = CoordBasis::SetupEval(Matrix<Real>(ElemDim,1,u0.begin(),false));
  1131. CoordBasis::Eval(X_, Vector<CoordBasis>(CoordDim,(Iterator<CoordBasis>)X.begin()+src_idx*CoordDim,false),eval_op);
  1132. CoordBasis::Eval(dX_, Vector<CoordBasis>(CoordDim*ElemDim,dX.begin()+src_idx*CoordDim*ElemDim,false),eval_op);
  1133. const Tensor<Real,false,CoordDim,1> x0((Iterator<Real>)Xt_);
  1134. const Tensor<Real,false,CoordDim,1> x(X_.begin());
  1135. const Tensor<Real,false,CoordDim,ElemDim> x_u(dX_.begin());
  1136. auto inv = [](const Tensor<Real,true,2,2>& M) {
  1137. Tensor<Real,true,2,2> Minv;
  1138. Real det_inv = 1.0 / (M(0,0)*M(1,1) - M(1,0)*M(0,1));
  1139. Minv(0,0) = M(1,1) * det_inv;
  1140. Minv(0,1) =-M(0,1) * det_inv;
  1141. Minv(1,0) =-M(1,0) * det_inv;
  1142. Minv(1,1) = M(0,0) * det_inv;
  1143. return Minv;
  1144. };
  1145. auto du = inv(x_u.RotateRight()*x_u) * x_u.RotateRight()*(x0-x);
  1146. u0 = u0 + du;
  1147. auto x_u_squared = x_u.RotateRight() * x_u;
  1148. adapt = sctl::sqrt<Real>( ((x0-x).RotateRight()*(x0-x))(0,0) / std::max<Real>(x_u_squared(0,0),x_u_squared(1,1)) );
  1149. }
  1150. }
  1151. Matrix<Real> quad_nds;
  1152. Vector<Real> quad_wts;
  1153. DuffyQuad<ElemDim>(quad_nds, quad_wts, Vector<Real>(ElemDim,u0.begin(),false), order_singular, adapt);
  1154. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  1155. Integer Nnds = quad_wts.Dim();
  1156. Vector<Real> X_, dX_, Xa_, Xn_;
  1157. { // Set X_, dX_
  1158. const Vector<CoordBasis> X__(CoordDim, (Iterator<CoordBasis>)X.begin() + src_idx * CoordDim, false);
  1159. const Vector<CoordBasis> dX__(CoordDim * ElemDim, (Iterator<CoordBasis>)dX.begin() + src_idx * CoordDim * ElemDim, false);
  1160. eval_basis(X_, X__, CoordDim, Nnds, CoordEvalOp);
  1161. eval_basis(dX_, dX__, CoordDim * ElemDim, Nnds, CoordEvalOp);
  1162. }
  1163. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  1164. Xa_.ReInit(Nnds);
  1165. Xn_.ReInit(Nnds*CoordDim);
  1166. for (Long j = 0; j < Nnds; j++) {
  1167. StaticArray<Real,CoordDim> normal;
  1168. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  1169. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  1170. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  1171. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  1172. Real invXa = 1/Xa_[j];
  1173. Xn_[j*3+0] = normal[0] * invXa;
  1174. Xn_[j*3+1] = normal[1] * invXa;
  1175. Xn_[j*3+2] = normal[2] * invXa;
  1176. }
  1177. }
  1178. DensityEvalOpType DensityEvalOp;
  1179. if (std::is_same<CoordBasis,DensityBasis>::value) {
  1180. DensityEvalOp = CoordEvalOp;
  1181. } else {
  1182. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  1183. }
  1184. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  1185. { // Set kernel matrix M__
  1186. const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + j * CoordDim, false);
  1187. kernel.template KernelMatrix<Real>(M__, X0_, X_, Xn_);
  1188. }
  1189. for (Long k0 = 0; k0 < KDIM0; k0++) {
  1190. for (Long k1 = 0; k1 < KDIM1; k1++) {
  1191. for (Long l = 0; l < DensityBasis::Size(); l++) {
  1192. Real M_lk = 0;
  1193. for (Long n = 0; n < Nnds; n++) {
  1194. Real quad_wt = Xa_[n] * quad_wts[n];
  1195. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  1196. }
  1197. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1] = M_lk;
  1198. }
  1199. }
  1200. }
  1201. }
  1202. { // Set M (subtract direct)
  1203. Matrix<Real> quad_nds;
  1204. Vector<Real> quad_wts;
  1205. TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
  1206. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  1207. Integer Nnds = quad_wts.Dim();
  1208. Vector<Real> X_, dX_, Xa_, Xn_;
  1209. { // Set X_, dX_
  1210. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  1211. eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
  1212. }
  1213. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  1214. Long N = Nelem*Nnds;
  1215. Xa_.ReInit(N);
  1216. Xn_.ReInit(N*CoordDim);
  1217. for (Long j = 0; j < N; j++) {
  1218. StaticArray<Real,CoordDim> normal;
  1219. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  1220. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  1221. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  1222. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  1223. Real invXa = 1/Xa_[j];
  1224. Xn_[j*3+0] = normal[0] * invXa;
  1225. Xn_[j*3+1] = normal[1] * invXa;
  1226. Xn_[j*3+2] = normal[2] * invXa;
  1227. }
  1228. }
  1229. DensityEvalOpType DensityEvalOp;
  1230. if (std::is_same<CoordBasis,DensityBasis>::value) {
  1231. DensityEvalOp = CoordEvalOp;
  1232. } else {
  1233. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  1234. }
  1235. #pragma omp parallel for schedule(static)
  1236. for (Long j = 0; j < Ninterac; j++) { // Subtract direct contribution
  1237. const Long src_idx = pair_lst[j].first - elem_rank_offset;
  1238. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  1239. { // Set kernel matrix M__
  1240. const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + j * CoordDim, false);
  1241. Vector<Real> X__(Nnds * CoordDim, X_.begin() + src_idx * Nnds * CoordDim, false);
  1242. Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + src_idx * Nnds * CoordDim, false);
  1243. kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
  1244. }
  1245. for (Long k0 = 0; k0 < KDIM0; k0++) {
  1246. for (Long k1 = 0; k1 < KDIM1; k1++) {
  1247. for (Long l = 0; l < DensityBasis::Size(); l++) {
  1248. Real M_lk = 0;
  1249. for (Long n = 0; n < Nnds; n++) {
  1250. Real quad_wt = Xa_[src_idx * Nnds + n] * quad_wts[n];
  1251. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  1252. }
  1253. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1] -= M_lk;
  1254. }
  1255. }
  1256. }
  1257. }
  1258. }
  1259. }
  1260. template <class DensityBasis> static void EvalNearSingular(Vector<Real>& U, const Vector<DensityBasis>& density, const Matrix<Real>& M, const Vector<Pair<Long,Long>>& pair_lst, Long Nelem_, Long Ntrg_, Integer KDIM0_, Integer KDIM1_, const Comm& comm) {
  1261. const Long Ninterac = pair_lst.Dim();
  1262. const Integer dof = density.Dim() / Nelem_ / KDIM0_;
  1263. SCTL_ASSERT(density.Dim() == Nelem_ * dof * KDIM0_);
  1264. Long elem_rank_offset;
  1265. { // Set elem_rank_offset
  1266. comm.Scan(Ptr2ConstItr<Long>(&Nelem_,1), Ptr2Itr<Long>(&elem_rank_offset,1), 1, Comm::CommOp::SUM);
  1267. elem_rank_offset -= Nelem_;
  1268. }
  1269. Vector<Real> U_loc(Ninterac*dof*KDIM1_);
  1270. for (Long j = 0; j < Ninterac; j++) {
  1271. const Long src_idx = pair_lst[j].first - elem_rank_offset;
  1272. const Matrix<Real> M_(KDIM0_ * DensityBasis::Size(), KDIM1_, (Iterator<Real>)M[j * KDIM0_ * DensityBasis::Size()], false);
  1273. Matrix<Real> U_(dof, KDIM1_, U_loc.begin() + j*dof*KDIM1_, false);
  1274. Matrix<Real> F_(dof, KDIM0_ * DensityBasis::Size());
  1275. for (Long i = 0; i < dof; i++) {
  1276. for (Long k = 0; k < KDIM0_; k++) {
  1277. for (Long l = 0; l < DensityBasis::Size(); l++) {
  1278. F_[i][k * DensityBasis::Size() + l] = density[(src_idx * dof + i) * KDIM0_ + k][l];
  1279. }
  1280. }
  1281. }
  1282. Matrix<Real>::GEMM(U_, F_, M_);
  1283. }
  1284. if (U.Dim() != Ntrg_ * dof * KDIM1_) {
  1285. U.ReInit(Ntrg_ * dof * KDIM1_);
  1286. U = 0;
  1287. }
  1288. { // Set U
  1289. Integer rank = comm.Rank();
  1290. Integer np = comm.Size();
  1291. Vector<Long> splitter_ranks;
  1292. { // Set splitter_ranks
  1293. Vector<Long> cnt(np);
  1294. comm.Allgather(Ptr2ConstItr<Long>(&Ntrg_,1), 1, cnt.begin(), 1);
  1295. scan(splitter_ranks, cnt);
  1296. }
  1297. Vector<Long> scatter_index, send_index, send_cnt(np), send_dsp(np);
  1298. { // Set scatter_index, send_index, send_cnt, send_dsp
  1299. { // Set scatter_index, send_index
  1300. Vector<Pair<Long,Long>> scatter_pair(pair_lst.Dim());
  1301. for (Long i = 0; i < pair_lst.Dim(); i++) {
  1302. scatter_pair[i] = Pair<Long,Long>(pair_lst[i].second,i);
  1303. }
  1304. omp_par::merge_sort(scatter_pair.begin(), scatter_pair.end());
  1305. send_index.ReInit(scatter_pair.Dim());
  1306. scatter_index.ReInit(scatter_pair.Dim());
  1307. for (Long i = 0; i < scatter_index.Dim(); i++) {
  1308. send_index[i] = scatter_pair[i].first;
  1309. scatter_index[i] = scatter_pair[i].second;
  1310. }
  1311. }
  1312. for (Integer i = 0; i < np; i++) {
  1313. send_dsp[i] = std::lower_bound(send_index.begin(), send_index.end(), splitter_ranks[i]) - send_index.begin();
  1314. }
  1315. for (Integer i = 0; i < np-1; i++) {
  1316. send_cnt[i] = send_dsp[i+1] - send_dsp[i];
  1317. }
  1318. send_cnt[np-1] = send_index.Dim() - send_dsp[np-1];
  1319. }
  1320. Vector<Long> recv_index, recv_cnt(np), recv_dsp(np);
  1321. { // Set recv_index, recv_cnt, recv_dsp
  1322. comm.Alltoall(send_cnt.begin(), 1, recv_cnt.begin(), 1);
  1323. scan(recv_dsp, recv_cnt);
  1324. recv_index.ReInit(recv_cnt[np-1] + recv_dsp[np-1]);
  1325. comm.Alltoallv(send_index.begin(), send_cnt.begin(), send_dsp.begin(), recv_index.begin(), recv_cnt.begin(), recv_dsp.begin());
  1326. }
  1327. Vector<Real> U_send(scatter_index.Dim() * dof * KDIM1_);
  1328. for (Long i = 0; i < scatter_index.Dim(); i++) {
  1329. Long idx = scatter_index[i]*dof*KDIM1_;
  1330. for (Long k = 0; k < dof * KDIM1_; k++) {
  1331. U_send[i*dof*KDIM1_ + k] = U_loc[idx + k];
  1332. }
  1333. }
  1334. Vector<Real> U_recv(recv_index.Dim() * dof * KDIM1_);
  1335. { // Set U_recv
  1336. for (Long i = 0; i < np; i++) {
  1337. send_cnt[i] *= dof * KDIM1_;
  1338. send_dsp[i] *= dof * KDIM1_;
  1339. recv_cnt[i] *= dof * KDIM1_;
  1340. recv_dsp[i] *= dof * KDIM1_;
  1341. }
  1342. comm.Alltoallv(U_send.begin(), send_cnt.begin(), send_dsp.begin(), U_recv.begin(), recv_cnt.begin(), recv_dsp.begin());
  1343. }
  1344. for (Long i = 0; i < recv_index.Dim(); i++) { // Set U
  1345. Long idx = (recv_index[i] - splitter_ranks[rank]) * dof * KDIM1_;
  1346. for (Integer k = 0; k < dof * KDIM1_; k++) {
  1347. U[idx + k] += U_recv[i*dof*KDIM1_ + k];
  1348. }
  1349. }
  1350. }
  1351. }
  1352. template <class ElemList, class DensityBasis, class Kernel> static void Direct(Vector<Real>& U, const Vector<Real>& Xt, const ElemList& elem_lst, const Vector<DensityBasis>& density, const Kernel& kernel, Integer order_direct, const Comm& comm) {
  1353. using CoordBasis = typename ElemList::CoordBasis;
  1354. using CoordEvalOpType = typename CoordBasis::EvalOpType;
  1355. using DensityEvalOpType = typename DensityBasis::EvalOpType;
  1356. constexpr Integer CoordDim = ElemList::CoordDim();
  1357. constexpr Integer ElemDim = ElemList::ElemDim();
  1358. constexpr Integer KDIM0 = Kernel::SrcDim();
  1359. constexpr Integer KDIM1 = Kernel::TrgDim();
  1360. const Long Nelem = elem_lst.NElem();
  1361. const Integer dof = density.Dim() / Nelem / KDIM0;
  1362. SCTL_ASSERT(density.Dim() == Nelem * dof * KDIM0);
  1363. Matrix<Real> quad_nds;
  1364. Vector<Real> quad_wts;
  1365. TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
  1366. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  1367. Integer Nnds = quad_wts.Dim();
  1368. const Vector<CoordBasis>& X = elem_lst.ElemVector();
  1369. Vector<CoordBasis> dX;
  1370. CoordBasis::Grad(dX, X);
  1371. Vector<Real> X_, dX_, Xa_, Xn_;
  1372. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  1373. eval_basis(dX_, dX, CoordDim*ElemDim, Nnds, CoordEvalOp);
  1374. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  1375. Long N = Nelem*Nnds;
  1376. Xa_.ReInit(N);
  1377. Xn_.ReInit(N*CoordDim);
  1378. for (Long j = 0; j < N; j++) {
  1379. StaticArray<Real,CoordDim> normal;
  1380. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  1381. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  1382. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  1383. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  1384. Real invXa = 1/Xa_[j];
  1385. Xn_[j*3+0] = normal[0] * invXa;
  1386. Xn_[j*3+1] = normal[1] * invXa;
  1387. Xn_[j*3+2] = normal[2] * invXa;
  1388. }
  1389. }
  1390. Vector<Real> Fa_;
  1391. { // Set Fa_
  1392. Vector<Real> F_;
  1393. if (std::is_same<CoordBasis,DensityBasis>::value) {
  1394. eval_basis(F_, density, dof * KDIM0, Nnds, CoordEvalOp);
  1395. } else {
  1396. const DensityEvalOpType EvalOp = DensityBasis::SetupEval(quad_nds);
  1397. eval_basis(F_, density, dof * KDIM0, Nnds, EvalOp);
  1398. }
  1399. Fa_.ReInit(F_.Dim());
  1400. const Integer DensityDOF = dof * KDIM0;
  1401. SCTL_ASSERT(F_.Dim() == Nelem * Nnds * DensityDOF);
  1402. for (Long j = 0; j < Nelem; j++) {
  1403. for (Integer k = 0; k < Nnds; k++) {
  1404. Long idx = j * Nnds + k;
  1405. Real quad_wt = Xa_[idx] * quad_wts[k];
  1406. for (Integer l = 0; l < DensityDOF; l++) {
  1407. Fa_[idx * DensityDOF + l] = F_[idx * DensityDOF + l] * quad_wt;
  1408. }
  1409. }
  1410. }
  1411. }
  1412. { // Evaluate potential
  1413. const Long Ntrg = Xt.Dim() / CoordDim;
  1414. SCTL_ASSERT(Xt.Dim() == Ntrg * CoordDim);
  1415. if (U.Dim() != Ntrg * dof * KDIM1) {
  1416. U.ReInit(Ntrg * dof * KDIM1);
  1417. U = 0;
  1418. }
  1419. ParticleFMM<Real,CoordDim>::Eval(U, Xt, X_, Xn_, Fa_, kernel, comm);
  1420. }
  1421. }
  1422. public:
  1423. template <class DensityBasis, class ElemList, class Kernel> void Setup(const ElemList& elem_lst, const Vector<Real>& Xt, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) {
  1424. Xt_.ReInit(0);
  1425. M_singular.ReInit(0,0);
  1426. M_near_singular.ReInit(0,0);
  1427. pair_lst.ReInit(0);
  1428. order_direct_ = order_direct;
  1429. period_length_ = period_length;
  1430. comm_ = comm;
  1431. Profile::Tic("Setup", &comm_);
  1432. static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
  1433. static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
  1434. static_assert(DensityBasis::Dim() == ElemList::ElemDim());
  1435. Xt_ = Xt;
  1436. M_singular.ReInit(0,0);
  1437. Profile::Tic("SetupNearSingular", &comm_);
  1438. SetupNearSingular<DensityBasis>(M_near_singular, pair_lst, Xt_, Vector<Long>(), elem_lst, kernel, order_singular, order_direct_, period_length_, comm_);
  1439. Profile::Toc();
  1440. Profile::Toc();
  1441. }
  1442. template <class DensityBasis, class PotentialBasis, class ElemList, class Kernel> void Setup(const ElemList& elem_lst, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm, Real Rqbx = 0) {
  1443. Xt_.ReInit(0);
  1444. M_singular.ReInit(0,0);
  1445. M_near_singular.ReInit(0,0);
  1446. pair_lst.ReInit(0);
  1447. order_direct_ = order_direct;
  1448. period_length_ = period_length;
  1449. comm_ = comm;
  1450. Profile::Tic("Setup", &comm_);
  1451. static_assert(std::is_same<Real,typename PotentialBasis::ValueType>::value);
  1452. static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
  1453. static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
  1454. static_assert(PotentialBasis::Dim() == ElemList::ElemDim());
  1455. static_assert(DensityBasis::Dim() == ElemList::ElemDim());
  1456. Vector<Long> trg_surf;
  1457. { // Set Xt_
  1458. using CoordBasis = typename ElemList::CoordBasis;
  1459. Matrix<Real> trg_nds = PotentialBasis::Nodes();
  1460. auto Meval = CoordBasis::SetupEval(trg_nds);
  1461. eval_basis(Xt_, elem_lst.ElemVector(), ElemList::CoordDim(), trg_nds.Dim(1), Meval);
  1462. { // Set trg_surf
  1463. const Long Nelem = elem_lst.NElem();
  1464. const Long Nnds = trg_nds.Dim(1);
  1465. Long elem_offset;
  1466. { // Set elem_offset
  1467. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&elem_offset,1), 1, Comm::CommOp::SUM);
  1468. elem_offset -= Nelem;
  1469. }
  1470. trg_surf.ReInit(elem_lst.NElem() * trg_nds.Dim(1));
  1471. for (Long i = 0; i < Nelem; i++) {
  1472. for (Long j = 0; j < Nnds; j++) {
  1473. trg_surf[i*Nnds+j] = elem_offset + i;
  1474. }
  1475. }
  1476. }
  1477. }
  1478. Profile::Tic("SetupSingular", &comm_);
  1479. SetupSingular<DensityBasis>(M_singular, PotentialBasis::Nodes(), elem_lst, kernel, order_singular, order_direct_, Rqbx);
  1480. Profile::Toc();
  1481. Profile::Tic("SetupNearSingular", &comm_);
  1482. SetupNearSingular<DensityBasis>(M_near_singular, pair_lst, Xt_, trg_surf, elem_lst, kernel, order_singular, order_direct_, period_length_, comm_);
  1483. Profile::Toc();
  1484. Profile::Toc();
  1485. }
  1486. template <class DensityBasis, class PotentialBasis, class ElemList, class Kernel> void Eval(Vector<PotentialBasis>& U, const ElemList& elements, const Vector<DensityBasis>& F, const Kernel& kernel) const {
  1487. Profile::Tic("Eval", &comm_);
  1488. Matrix<Real> U_singular;
  1489. Vector<Real> U_direct, U_near_sing;
  1490. Profile::Tic("EvalDirect", &comm_);
  1491. Direct(U_direct, Xt_, elements, F, kernel, order_direct_, comm_);
  1492. Profile::Toc();
  1493. Profile::Tic("EvalSingular", &comm_);
  1494. EvalSingular(U_singular, F, M_singular, kernel.SrcDim(), kernel.TrgDim());
  1495. Profile::Toc();
  1496. Profile::Tic("EvalNearSingular", &comm_);
  1497. EvalNearSingular(U_near_sing, F, M_near_singular, pair_lst, elements.NElem(), Xt_.Dim() / ElemList::CoordDim(), kernel.SrcDim(), kernel.TrgDim(), comm_);
  1498. SCTL_ASSERT(U_near_sing.Dim() == U_direct.Dim());
  1499. Profile::Toc();
  1500. const Long dof = U_direct.Dim() / (elements.NElem() * PotentialBasis::Size() * kernel.TrgDim());
  1501. SCTL_ASSERT(U_direct .Dim() == elements.NElem() * PotentialBasis::Size() * dof * kernel.TrgDim());
  1502. SCTL_ASSERT(U_near_sing.Dim() == elements.NElem() * PotentialBasis::Size() * dof * kernel.TrgDim());
  1503. if (U.Dim() != elements.NElem() * dof * kernel.TrgDim()) {
  1504. U.ReInit(elements.NElem() * dof * kernel.TrgDim());
  1505. }
  1506. for (int i = 0; i < elements.NElem(); i++) {
  1507. for (int j = 0; j < PotentialBasis::Size(); j++) {
  1508. for (int k = 0; k < dof*kernel.TrgDim(); k++) {
  1509. Real& U_ = U[i*dof*kernel.TrgDim()+k][j];
  1510. U_ = 0;
  1511. U_ += U_direct [(i*PotentialBasis::Size()+j)*dof*kernel.TrgDim()+k];
  1512. U_ += U_near_sing[(i*PotentialBasis::Size()+j)*dof*kernel.TrgDim()+k];
  1513. U_ *= kernel.template ScaleFactor<Real>();
  1514. }
  1515. }
  1516. }
  1517. if (U_singular.Dim(1)) {
  1518. SCTL_ASSERT(U_singular.Dim(0) == elements.NElem() * dof * kernel.TrgDim());
  1519. SCTL_ASSERT(U_singular.Dim(1) == PotentialBasis::Size());
  1520. for (int i = 0; i < elements.NElem(); i++) {
  1521. for (int j = 0; j < PotentialBasis::Size(); j++) {
  1522. for (int k = 0; k < dof*kernel.TrgDim(); k++) {
  1523. U[i*dof*kernel.TrgDim()+k][j] += U_singular[i*dof*kernel.TrgDim()+k][j] * kernel.template ScaleFactor<Real>();
  1524. }
  1525. }
  1526. }
  1527. }
  1528. Profile::Toc();
  1529. }
  1530. template <class DensityBasis, class ElemList, class Kernel> void Eval(Vector<Real>& U, const ElemList& elements, const Vector<DensityBasis>& F, const Kernel& kernel) const {
  1531. Profile::Tic("Eval", &comm_);
  1532. Matrix<Real> U_singular;
  1533. Vector<Real> U_direct, U_near_sing;
  1534. Profile::Tic("EvalDirect", &comm_);
  1535. Direct(U_direct, Xt_, elements, F, kernel, order_direct_, comm_);
  1536. Profile::Toc();
  1537. Profile::Tic("EvalSingular", &comm_);
  1538. EvalSingular(U_singular, F, M_singular, kernel.SrcDim(), kernel.TrgDim());
  1539. Profile::Toc();
  1540. Profile::Tic("EvalNearSingular", &comm_);
  1541. EvalNearSingular(U_near_sing, F, M_near_singular, pair_lst, elements.NElem(), Xt_.Dim() / ElemList::CoordDim(), kernel.SrcDim(), kernel.TrgDim(), comm_);
  1542. SCTL_ASSERT(U_near_sing.Dim() == U_direct.Dim());
  1543. Profile::Toc();
  1544. Long Nt = Xt_.Dim() / ElemList::CoordDim();
  1545. const Long dof = U_direct.Dim() / (Nt * kernel.TrgDim());
  1546. SCTL_ASSERT(U_direct.Dim() == Nt * dof * kernel.TrgDim());
  1547. if (U.Dim() != U_direct.Dim()) {
  1548. U.ReInit(U_direct.Dim());
  1549. }
  1550. for (int i = 0; i < U.Dim(); i++) {
  1551. U[i] = (U_direct[i] + U_near_sing[i]) * kernel.template ScaleFactor<Real>();
  1552. }
  1553. if (U_singular.Dim(1)) {
  1554. SCTL_ASSERT(U_singular.Dim(0) == elements.NElem() * dof * kernel.TrgDim());
  1555. const Long Nnodes = U_singular.Dim(1);
  1556. for (int i = 0; i < elements.NElem(); i++) {
  1557. for (int j = 0; j < Nnodes; j++) {
  1558. for (int k = 0; k < dof*kernel.TrgDim(); k++) {
  1559. Real& U_ = U[(i*Nnodes+j)*dof*kernel.TrgDim()+k];
  1560. U_ += U_singular[i*dof*kernel.TrgDim()+k][j] * kernel.template ScaleFactor<Real>();
  1561. }
  1562. }
  1563. }
  1564. }
  1565. Profile::Toc();
  1566. }
  1567. template <Integer ORDER = 5> static void test(Integer order_singular = 10, Integer order_direct = 5, const Comm& comm = Comm::World()) {
  1568. constexpr Integer COORD_DIM = 3;
  1569. constexpr Integer ELEM_DIM = COORD_DIM-1;
  1570. using ElemList = ElemList<COORD_DIM, Basis<Real, ELEM_DIM, ORDER>>;
  1571. using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
  1572. using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
  1573. int np = comm.Size();
  1574. int rank = comm.Rank();
  1575. auto build_torus = [rank,np](ElemList& elements, long Nt, long Np, Real Rmajor, Real Rminor){
  1576. auto nodes = ElemList::CoordBasis::Nodes();
  1577. auto torus = [](Real theta, Real phi, Real Rmajor, Real Rminor) {
  1578. Real R = Rmajor + Rminor * cos<Real>(phi);
  1579. Real X = R * cos<Real>(theta);
  1580. Real Y = R * sin<Real>(theta);
  1581. Real Z = Rminor * sin<Real>(phi);
  1582. return std::make_tuple(X,Y,Z);
  1583. };
  1584. long start = Nt*Np*(rank+0)/np;
  1585. long end = Nt*Np*(rank+1)/np;
  1586. elements.ReInit(end - start);
  1587. for (long ii = start; ii < end; ii++) {
  1588. long i = ii / Np;
  1589. long j = ii % Np;
  1590. for (int k = 0; k < ElemList::CoordBasis::Size(); k++) {
  1591. Real X, Y, Z;
  1592. Real theta = 2 * const_pi<Real>() * (i + nodes[0][k]) / Nt;
  1593. Real phi = 2 * const_pi<Real>() * (j + nodes[1][k]) / Np;
  1594. std::tie(X,Y,Z) = torus(theta, phi, Rmajor, Rminor);
  1595. elements(ii-start,0)[k] = X;
  1596. elements(ii-start,1)[k] = Y;
  1597. elements(ii-start,2)[k] = Z;
  1598. }
  1599. }
  1600. };
  1601. ElemList elements_src, elements_trg;
  1602. build_torus(elements_src, 28, 16, 2, 1.0);
  1603. build_torus(elements_trg, 29, 17, 2, 0.99);
  1604. Vector<Real> Xt;
  1605. Vector<PotentialBasis> U_onsurf, U_offsurf;
  1606. Vector<DensityBasis> density_sl, density_dl;
  1607. { // Set Xt, elements_src, elements_trg, density_sl, density_dl, U
  1608. Real X0[COORD_DIM] = {3,2,1};
  1609. std::function<void(Real*,Real*,Real*)> potential = [X0](Real* U, Real* X, Real* Xn) {
  1610. Real dX[COORD_DIM] = {X[0]-X0[0],X[1]-X0[1],X[2]-X0[2]};
  1611. Real Rinv = 1/sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dX[2]);
  1612. U[0] = Rinv;
  1613. };
  1614. std::function<void(Real*,Real*,Real*)> potential_normal_derivative = [X0](Real* U, Real* X, Real* Xn) {
  1615. Real dX[COORD_DIM] = {X[0]-X0[0],X[1]-X0[1],X[2]-X0[2]};
  1616. Real Rinv = 1/sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dX[2]);
  1617. Real RdotN = dX[0]*Xn[0]+dX[1]*Xn[1]+dX[2]*Xn[2];
  1618. U[0] = -RdotN * Rinv*Rinv*Rinv;
  1619. };
  1620. DiscretizeSurfaceFn<COORD_DIM,1>(density_sl, elements_src, potential_normal_derivative);
  1621. DiscretizeSurfaceFn<COORD_DIM,1>(density_dl, elements_src, potential);
  1622. DiscretizeSurfaceFn<COORD_DIM,1>(U_onsurf , elements_src, potential);
  1623. DiscretizeSurfaceFn<COORD_DIM,1>(U_offsurf , elements_trg, potential);
  1624. for (long i = 0; i < elements_trg.NElem(); i++) { // Set Xt
  1625. for (long j = 0; j < PotentialBasis::Size(); j++) {
  1626. for (int k = 0; k < COORD_DIM; k++) {
  1627. Xt.PushBack(elements_trg(i,k)[j]);
  1628. }
  1629. }
  1630. }
  1631. }
  1632. GenericKernel<Laplace3D_DxU> Laplace_DxU;
  1633. GenericKernel<Laplace3D_FxU> Laplace_FxU;
  1634. Profile::Enable(true);
  1635. if (1) { // Greeen's identity test (Laplace, on-surface)
  1636. Profile::Tic("OnSurface", &comm);
  1637. Quadrature<Real> quadrature_DxU, quadrature_FxU;
  1638. quadrature_FxU.Setup<DensityBasis, PotentialBasis>(elements_src, Laplace_FxU, order_singular, order_direct, -1.0, comm);
  1639. quadrature_DxU.Setup<DensityBasis, PotentialBasis>(elements_src, Laplace_DxU, order_singular, order_direct, -1.0, comm);
  1640. Vector<PotentialBasis> U_sl, U_dl;
  1641. quadrature_FxU.Eval(U_sl, elements_src, density_sl, Laplace_FxU);
  1642. quadrature_DxU.Eval(U_dl, elements_src, density_dl, Laplace_DxU);
  1643. Profile::Toc();
  1644. Real max_err = 0;
  1645. Vector<PotentialBasis> err(U_onsurf.Dim());
  1646. for (long i = 0; i < U_sl.Dim(); i++) {
  1647. for (long j = 0; j < PotentialBasis::Size(); j++) {
  1648. err[i][j] = 0.5*U_onsurf[i][j] - (U_sl[i][j] + U_dl[i][j]);
  1649. max_err = std::max<Real>(max_err, fabs(err[i][j]));
  1650. }
  1651. }
  1652. { // Print error
  1653. Real glb_err;
  1654. comm.Allreduce(Ptr2ConstItr<Real>(&max_err,1), Ptr2Itr<Real>(&glb_err,1), 1, Comm::CommOp::MAX);
  1655. if (!comm.Rank()) std::cout<<"Error = "<<glb_err<<'\n';
  1656. }
  1657. { // Write VTK output
  1658. VTUData vtu;
  1659. vtu.AddElems(elements_src, err, ORDER);
  1660. vtu.WriteVTK("err", comm);
  1661. }
  1662. { // Write VTK output
  1663. VTUData vtu;
  1664. vtu.AddElems(elements_src, U_onsurf, ORDER);
  1665. vtu.WriteVTK("U", comm);
  1666. }
  1667. }
  1668. if (1) { // Greeen's identity test (Laplace, off-surface)
  1669. Profile::Tic("OffSurface", &comm);
  1670. Quadrature<Real> quadrature_DxU, quadrature_FxU;
  1671. quadrature_FxU.Setup<DensityBasis>(elements_src, Xt, Laplace_FxU, order_singular, order_direct, -1.0, comm);
  1672. quadrature_DxU.Setup<DensityBasis>(elements_src, Xt, Laplace_DxU, order_singular, order_direct, -1.0, comm);
  1673. Vector<Real> U_sl, U_dl;
  1674. quadrature_FxU.Eval(U_sl, elements_src, density_sl, Laplace_FxU);
  1675. quadrature_DxU.Eval(U_dl, elements_src, density_dl, Laplace_DxU);
  1676. Profile::Toc();
  1677. Real max_err = 0;
  1678. Vector<PotentialBasis> err(elements_trg.NElem());
  1679. for (long i = 0; i < elements_trg.NElem(); i++) {
  1680. for (long j = 0; j < PotentialBasis::Size(); j++) {
  1681. err[i][j] = U_offsurf[i][j] - (U_sl[i*PotentialBasis::Size()+j] + U_dl[i*PotentialBasis::Size()+j]);
  1682. max_err = std::max<Real>(max_err, fabs(err[i][j]));
  1683. }
  1684. }
  1685. { // Print error
  1686. Real glb_err;
  1687. comm.Allreduce(Ptr2ConstItr<Real>(&max_err,1), Ptr2Itr<Real>(&glb_err,1), 1, Comm::CommOp::MAX);
  1688. if (!comm.Rank()) std::cout<<"Error = "<<glb_err<<'\n';
  1689. }
  1690. { // Write VTK output
  1691. VTUData vtu;
  1692. vtu.AddElems(elements_trg, err, ORDER);
  1693. vtu.WriteVTK("err", comm);
  1694. }
  1695. { // Write VTK output
  1696. VTUData vtu;
  1697. vtu.AddElems(elements_trg, U_offsurf, ORDER);
  1698. vtu.WriteVTK("U", comm);
  1699. }
  1700. }
  1701. Profile::print(&comm);
  1702. }
  1703. static void test1() {
  1704. const Comm& comm = Comm::World();
  1705. constexpr Integer ORDER = 15;
  1706. Integer order_singular = 20;
  1707. Integer order_direct = 20;
  1708. constexpr Integer COORD_DIM = 3;
  1709. constexpr Integer ELEM_DIM = COORD_DIM-1;
  1710. using ElemList = ElemList<COORD_DIM, Basis<Real, ELEM_DIM, ORDER>>;
  1711. using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
  1712. using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
  1713. int np = comm.Size();
  1714. int rank = comm.Rank();
  1715. auto build_sphere = [rank,np](ElemList& elements, Real X, Real Y, Real Z, Real R){
  1716. auto nodes = ElemList::CoordBasis::Nodes();
  1717. long start = 2*COORD_DIM*(rank+0)/np;
  1718. long end = 2*COORD_DIM*(rank+1)/np;
  1719. elements.ReInit(end - start);
  1720. for (long ii = start; ii < end; ii++) {
  1721. long i = ii / 2;
  1722. long j = ii % 2;
  1723. for (int k = 0; k < ElemList::CoordBasis::Size(); k++) {
  1724. Real coord[COORD_DIM];
  1725. coord[(i+0)%COORD_DIM] = (j ? -1.0 : 1.0);
  1726. coord[(i+1)%COORD_DIM] = 2.0 * nodes[j?1:0][k] - 1.0;
  1727. coord[(i+2)%COORD_DIM] = 2.0 * nodes[j?0:1][k] - 1.0;
  1728. Real R0 = sqrt<Real>(coord[0]*coord[0] + coord[1]*coord[1] + coord[2]*coord[2]);
  1729. elements(ii-start,0)[k] = X + R * coord[0] / R0;
  1730. elements(ii-start,1)[k] = Y + R * coord[1] / R0;
  1731. elements(ii-start,2)[k] = Z + R * coord[2] / R0;
  1732. }
  1733. }
  1734. };
  1735. ElemList elements;
  1736. build_sphere(elements, 0.0, 0.0, 0.0, 1.00);
  1737. Vector<DensityBasis> density_sl;
  1738. { // Set density_sl
  1739. std::function<void(Real*,Real*,Real*)> sigma = [](Real* U, Real* X, Real* Xn) {
  1740. Real R = sqrt(X[0]*X[0]+X[1]*X[1]+X[2]*X[2]);
  1741. Real sinp = sqrt(X[1]*X[1] + X[2]*X[2]) / R;
  1742. Real cosp = -X[0] / R;
  1743. U[0] = -1.5;
  1744. U[1] = 0;
  1745. U[2] = 0;
  1746. };
  1747. DiscretizeSurfaceFn<COORD_DIM,3>(density_sl, elements, sigma);
  1748. }
  1749. GenericKernel<Stokes3D_DxU> Stokes_DxU;
  1750. GenericKernel<Stokes3D_FxU> Stokes_FxU;
  1751. Profile::Enable(true);
  1752. if (1) {
  1753. Vector<PotentialBasis> U;
  1754. Quadrature<Real> quadrature_FxU;
  1755. quadrature_FxU.Setup<DensityBasis, PotentialBasis>(elements, Stokes_FxU, order_singular, order_direct, -1.0, comm);
  1756. quadrature_FxU.Eval(U, elements, density_sl, Stokes_FxU);
  1757. { // Write VTK output
  1758. VTUData vtu;
  1759. vtu.AddElems(elements, U, ORDER);
  1760. vtu.WriteVTK("U", comm);
  1761. }
  1762. { // Write VTK output
  1763. VTUData vtu;
  1764. vtu.AddElems(elements, density_sl, ORDER);
  1765. vtu.WriteVTK("sigma", comm);
  1766. }
  1767. }
  1768. Profile::print(&comm);
  1769. }
  1770. private:
  1771. static void scan(Vector<Long>& dsp, const Vector<Long>& cnt) {
  1772. dsp.ReInit(cnt.Dim());
  1773. if (cnt.Dim()) dsp[0] = 0;
  1774. omp_par::scan(cnt.begin(), dsp.begin(), cnt.Dim());
  1775. }
  1776. template <class Basis> static void eval_basis(Vector<Real>& value, const Vector<Basis> X, Integer dof, Integer Nnds, const typename Basis::EvalOpType& EvalOp) {
  1777. Long Nelem = X.Dim() / dof;
  1778. SCTL_ASSERT(X.Dim() == Nelem * dof);
  1779. value.ReInit(Nelem*Nnds*dof);
  1780. Matrix<Real> X_(Nelem*dof, Nnds, value.begin(),false);
  1781. Basis::Eval(X_, X, EvalOp);
  1782. for (Long j = 0; j < Nelem; j++) { // Rearrange data
  1783. Matrix<Real> X(Nnds, dof, X_[j*dof], false);
  1784. X = Matrix<Real>(dof, Nnds, X_[j*dof], false).Transpose();
  1785. }
  1786. }
  1787. template <int CoordDim, int FnDim, class FnBasis, class ElemList> static void DiscretizeSurfaceFn(Vector<FnBasis>& U, const ElemList& elements, std::function<void(Real*,Real*,Real*)> fn) {
  1788. using CoordBasis = typename ElemList::CoordBasis;
  1789. const long Nelem = elements.NElem();
  1790. U.ReInit(Nelem * FnDim);
  1791. Matrix<Real> X, X_grad;
  1792. { // Set X, X_grad
  1793. Vector<CoordBasis> coord = elements.ElemVector();
  1794. Vector<CoordBasis> coord_grad;
  1795. CoordBasis::Grad(coord_grad, coord);
  1796. const auto Meval = CoordBasis::SetupEval(FnBasis::Nodes());
  1797. CoordBasis::Eval(X, coord, Meval);
  1798. CoordBasis::Eval(X_grad, coord_grad, Meval);
  1799. }
  1800. for (long i = 0; i < Nelem; i++) {
  1801. for (long j = 0; j < FnBasis::Size(); j++) {
  1802. Real X_[CoordDim], Xn[CoordDim], U_[FnDim];
  1803. for (long k = 0; k < CoordDim; k++) {
  1804. X_[k] = X[i*CoordDim+k][j];
  1805. }
  1806. { // Set Xn
  1807. Real Xu[CoordDim], Xv[CoordDim];
  1808. for (long k = 0; k < CoordDim; k++) {
  1809. Xu[k] = X_grad[(i*CoordDim+k)*2+0][j];
  1810. Xv[k] = X_grad[(i*CoordDim+k)*2+1][j];
  1811. }
  1812. Real dA = 0;
  1813. for (long k = 0; k < CoordDim; k++) {
  1814. Xn[k] = Xu[(k+1)%CoordDim] * Xv[(k+2)%CoordDim];
  1815. Xn[k] -= Xv[(k+1)%CoordDim] * Xu[(k+2)%CoordDim];
  1816. dA += Xn[k] * Xn[k];
  1817. }
  1818. dA = sqrt(dA);
  1819. for (long k = 0; k < CoordDim; k++) {
  1820. Xn[k] /= dA;
  1821. }
  1822. }
  1823. fn(U_, X_, Xn);
  1824. for (long k = 0; k < FnDim; k++) {
  1825. U[i*FnDim+k][j] = U_[k];
  1826. }
  1827. }
  1828. }
  1829. }
  1830. Vector<Real> Xt_;
  1831. Matrix<Real> M_singular;
  1832. Matrix<Real> M_near_singular;
  1833. Vector<Pair<Long,Long>> pair_lst;
  1834. Integer order_direct_;
  1835. Real period_length_;
  1836. Comm comm_;
  1837. };
  1838. template <class Real, Integer ORDER=10> class Stellarator {
  1839. private:
  1840. static constexpr Integer COORD_DIM = 3;
  1841. static constexpr Integer ELEM_DIM = COORD_DIM-1;
  1842. using ElemBasis = Basis<Real, ELEM_DIM, ORDER>;
  1843. using ElemLst = ElemList<COORD_DIM, ElemBasis>;
  1844. struct Laplace3D_dUxF {
  1845. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1846. return 1 / (4 * const_pi<ValueType>());
  1847. }
  1848. template <class ValueType> static void Eval(ValueType (&u)[3][1], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1849. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1850. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1851. ValueType rinv3 = rinv * rinv * rinv;
  1852. u[0][0] = -r[0] * rinv3;
  1853. u[1][0] = -r[1] * rinv3;
  1854. u[2][0] = -r[2] * rinv3;
  1855. }
  1856. };
  1857. struct BiotSavart3D {
  1858. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1859. return 1 / (4 * const_pi<ValueType>());
  1860. }
  1861. template <class ValueType> static void Eval(ValueType (&u)[3][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1862. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1863. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1864. ValueType rinv3 = rinv * rinv * rinv;
  1865. u[0][0] = (0) * rinv3; u[1][0] = r[2] * rinv3; u[2][0] = -r[1] * rinv3;
  1866. u[0][1] = -r[2] * rinv3; u[1][1] = (0) * rinv3; u[2][1] = r[0] * rinv3;
  1867. u[0][2] = r[1] * rinv3; u[1][2] = -r[0] * rinv3; u[2][2] = (0) * rinv3;
  1868. }
  1869. };
  1870. struct BiotSavartGrad3D {
  1871. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1872. return 1 / (4 * const_pi<ValueType>());
  1873. }
  1874. template <class ValueType> static void Eval(ValueType (&u)[3][9], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1875. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1876. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1877. ValueType rinv2 = rinv * rinv;
  1878. ValueType rinv3 = rinv2 * rinv;
  1879. ValueType rinv5 = rinv2 * rinv3;
  1880. u[0][0] = 0; u[1][0] = - 3 * r[2] * r[0] * rinv5; u[2][0] = 3 * r[1] * r[0] * rinv5;
  1881. u[0][1] = 0; u[1][1] = - 3 * r[2] * r[1] * rinv5; u[2][1] = -(1) * rinv3 + 3 * r[1] * r[1] * rinv5;
  1882. u[0][2] = 0; u[1][2] = (1) * rinv3 - 3 * r[2] * r[2] * rinv5; u[2][2] = 3 * r[1] * r[2] * rinv5;
  1883. u[0][3] = 3 * r[2] * r[0] * rinv5; u[1][3] = 0; u[2][3] = (1) * rinv3 - 3 * r[0] * r[0] * rinv5;
  1884. u[0][4] = 3 * r[2] * r[1] * rinv5; u[1][4] = 0; u[2][4] = - 3 * r[0] * r[1] * rinv5;
  1885. u[0][5] = -(1) * rinv3 + 3 * r[2] * r[2] * rinv5; u[1][5] = 0; u[2][5] = - 3 * r[0] * r[2] * rinv5;
  1886. u[0][6] = - 3 * r[1] * r[0] * rinv5; u[1][6] = -(1) * rinv3 + 3 * r[0] * r[0] * rinv5; u[2][6] = 0;
  1887. u[0][7] = (1) * rinv3 - 3 * r[1] * r[1] * rinv5; u[1][7] = 3 * r[0] * r[1] * rinv5; u[2][7] = 0;
  1888. u[0][8] = - 3 * r[1] * r[2] * rinv5; u[1][8] = 3 * r[0] * r[2] * rinv5; u[2][8] = 0;
  1889. }
  1890. };
  1891. struct Laplace3D_dUxD {
  1892. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1893. return 1 / (4 * const_pi<ValueType>());
  1894. }
  1895. template <class ValueType> static void Eval(ValueType (&u)[3][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1896. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1897. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1898. ValueType rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2];
  1899. ValueType rinv2 = rinv * rinv;
  1900. ValueType rinv3 = rinv * rinv2;
  1901. ValueType rinv5 = rinv3 * rinv2;
  1902. u[0][0] = -1 * rinv3 + 3 * r[0] * r[0] * rinv5;
  1903. u[0][1] = -0 * rinv3 + 3 * r[0] * r[1] * rinv5;
  1904. u[0][2] = -0 * rinv3 + 3 * r[0] * r[2] * rinv5;
  1905. u[1][0] = -0 * rinv3 + 3 * r[1] * r[0] * rinv5;
  1906. u[1][1] = -1 * rinv3 + 3 * r[1] * r[1] * rinv5;
  1907. u[1][2] = -0 * rinv3 + 3 * r[1] * r[2] * rinv5;
  1908. u[2][0] = -0 * rinv3 + 3 * r[2] * r[0] * rinv5;
  1909. u[2][1] = -0 * rinv3 + 3 * r[2] * r[1] * rinv5;
  1910. u[2][2] = -1 * rinv3 + 3 * r[2] * r[2] * rinv5;
  1911. }
  1912. };
  1913. struct Laplace3D_DxdU {
  1914. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1915. return 1 / (4 * const_pi<ValueType>());
  1916. }
  1917. template <class ValueType> static void Eval(ValueType (&u)[1][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1918. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1919. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1920. ValueType rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2];
  1921. ValueType rinv2 = rinv * rinv;
  1922. ValueType rinv3 = rinv * rinv2;
  1923. ValueType rinv5 = rinv3 * rinv2;
  1924. u[0][0] = -n[0] * rinv3 + 3*rdotn * r[0] * rinv5;
  1925. u[0][1] = -n[1] * rinv3 + 3*rdotn * r[1] * rinv5;
  1926. u[0][2] = -n[2] * rinv3 + 3*rdotn * r[2] * rinv5;
  1927. }
  1928. };
  1929. struct Laplace3D_Fxd2U {
  1930. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1931. return 1 / (4 * const_pi<ValueType>());
  1932. }
  1933. template <class ValueType> static void Eval(ValueType (&u)[1][9], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1934. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1935. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1936. ValueType rinv2 = rinv * rinv;
  1937. ValueType rinv3 = rinv * rinv2;
  1938. ValueType rinv5 = rinv3 * rinv2;
  1939. u[0][0+3*0] = -1 * rinv3 + 3 * r[0] * r[0] * rinv5;
  1940. u[0][1+3*0] = -0 * rinv3 + 3 * r[0] * r[1] * rinv5;
  1941. u[0][2+3*0] = -0 * rinv3 + 3 * r[0] * r[2] * rinv5;
  1942. u[0][0+3*1] = -0 * rinv3 + 3 * r[1] * r[0] * rinv5;
  1943. u[0][1+3*1] = -1 * rinv3 + 3 * r[1] * r[1] * rinv5;
  1944. u[0][2+3*1] = -0 * rinv3 + 3 * r[1] * r[2] * rinv5;
  1945. u[0][0+3*2] = -0 * rinv3 + 3 * r[2] * r[0] * rinv5;
  1946. u[0][1+3*2] = -0 * rinv3 + 3 * r[2] * r[1] * rinv5;
  1947. u[0][2+3*2] = -1 * rinv3 + 3 * r[2] * r[2] * rinv5;
  1948. }
  1949. };
  1950. static Real max_norm(const sctl::Vector<Real>& x) {
  1951. Real err = 0;
  1952. for (const auto& a : x) err = std::max(err, sctl::fabs<Real>(a));
  1953. return err;
  1954. }
  1955. static Vector<ElemBasis> compute_dot_prod(const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  1956. const Long Nelem = A.Dim() / COORD_DIM;
  1957. const Long Nnodes = ElemBasis::Size();
  1958. SCTL_ASSERT(A.Dim() == Nelem * COORD_DIM);
  1959. SCTL_ASSERT(B.Dim() == Nelem * COORD_DIM);
  1960. Vector<ElemBasis> AdotB(Nelem);
  1961. for (Long i = 0; i < Nelem; i++) {
  1962. for (Long j = 0; j < Nnodes; j++) {
  1963. Real a_dot_b = 0;
  1964. a_dot_b += A[i*COORD_DIM+0][j]*B[i*COORD_DIM+0][j];
  1965. a_dot_b += A[i*COORD_DIM+1][j]*B[i*COORD_DIM+1][j];
  1966. a_dot_b += A[i*COORD_DIM+2][j]*B[i*COORD_DIM+2][j];
  1967. AdotB[i][j] = a_dot_b;
  1968. }
  1969. }
  1970. return AdotB;
  1971. }
  1972. static Real compute_inner_prod(const Vector<ElemBasis>& area_elem, const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  1973. const auto& quad_wts = ElemBasis::QuadWts();
  1974. const Long Nnodes = ElemBasis::Size();
  1975. const Long Nelem = area_elem.Dim();
  1976. const Long dof = B.Dim() / Nelem;
  1977. Real sum = 0;
  1978. for (Long i = 0; i < Nelem; i++) {
  1979. for (Long j = 0; j < Nnodes; j++) {
  1980. Real AdotB = 0;
  1981. for (Long k = 0; k < dof; k++) {
  1982. AdotB += A[i*dof+k][j] * B[i*dof+k][j];
  1983. }
  1984. sum += AdotB * area_elem[i][j] * quad_wts[j];
  1985. }
  1986. }
  1987. return sum;
  1988. }
  1989. static void compute_harmonic_vector_potentials(Vector<ElemBasis>& Jt, Vector<ElemBasis>& Jp, const Stellarator<Real,ORDER>& S) {
  1990. Comm comm = Comm::World();
  1991. Real gmres_tol = 1e-8;
  1992. Long max_iter = 100;
  1993. auto cheb2grid = [] (const Vector<ElemBasis>& X, Long Mt, Long Mp, Long Nt, Long Np) {
  1994. const Long dof = X.Dim() / (Mt * Mp);
  1995. SCTL_ASSERT(X.Dim() == Mt * Mp *dof);
  1996. Vector<Real> Xf(dof*Nt*Np); Xf = 0;
  1997. const Long Nnodes = ElemBasis::Size();
  1998. const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
  1999. for (Long t = 0; t < Nt; t++) {
  2000. for (Long p = 0; p < Np; p++) {
  2001. Real theta = t / (Real)Nt;
  2002. Real phi = p / (Real)Np;
  2003. Long i = (Long)(theta * Mt);
  2004. Long j = (Long)(phi * Mp);
  2005. Real x = theta * Mt - i;
  2006. Real y = phi * Mp - j;
  2007. Long elem_idx = i * Mp + j;
  2008. Vector<Real> Interp0(ORDER);
  2009. Vector<Real> Interp1(ORDER);
  2010. { // Set Interp0, Interp1
  2011. auto node = [&Mnodes] (Long i) {
  2012. return Mnodes[0][i];
  2013. };
  2014. for (Long i = 0; i < ORDER; i++) {
  2015. Real wt_x = 1, wt_y = 1;
  2016. for (Long j = 0; j < ORDER; j++) {
  2017. if (j != i) {
  2018. wt_x *= (x - node(j)) / (node(i) - node(j));
  2019. wt_y *= (y - node(j)) / (node(i) - node(j));
  2020. }
  2021. Interp0[i] = wt_x;
  2022. Interp1[i] = wt_y;
  2023. }
  2024. }
  2025. }
  2026. for (Long ii = 0; ii < ORDER; ii++) {
  2027. for (Long jj = 0; jj < ORDER; jj++) {
  2028. Long node_idx = jj * ORDER + ii;
  2029. for (Long k = 0; k < dof; k++) {
  2030. Xf[(k*Nt+t)*Np+p] += X[elem_idx*dof+k][node_idx] * Interp0[ii] * Interp1[jj];
  2031. }
  2032. }
  2033. }
  2034. }
  2035. }
  2036. return Xf;
  2037. };
  2038. auto grid2cheb = [] (const Vector<Real>& Xf, Long Nt, Long Np, Long Mt, Long Mp) {
  2039. Long dof = Xf.Dim() / (Nt*Np);
  2040. SCTL_ASSERT(Xf.Dim() == dof*Nt*Np);
  2041. Vector<ElemBasis> X(Mt*Mp*dof);
  2042. constexpr Integer INTERP_ORDER = 12;
  2043. for (Long tt = 0; tt < Mt; tt++) {
  2044. for (Long pp = 0; pp < Mp; pp++) {
  2045. for (Long t = 0; t < ORDER; t++) {
  2046. for (Long p = 0; p < ORDER; p++) {
  2047. Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
  2048. Real theta = (tt + Mnodes[0][t]) / Mt;
  2049. Real phi = (pp + Mnodes[0][p]) / Mp;
  2050. Long i = (Long)(theta * Nt);
  2051. Long j = (Long)(phi * Np);
  2052. Real x = theta * Nt - i;
  2053. Real y = phi * Np - j;
  2054. Vector<Real> Interp0(INTERP_ORDER);
  2055. Vector<Real> Interp1(INTERP_ORDER);
  2056. { // Set Interp0, Interp1
  2057. auto node = [] (Long i) {
  2058. return (Real)i - (INTERP_ORDER-1)/2;
  2059. };
  2060. for (Long i = 0; i < INTERP_ORDER; i++) {
  2061. Real wt_x = 1, wt_y = 1;
  2062. for (Long j = 0; j < INTERP_ORDER; j++) {
  2063. if (j != i) {
  2064. wt_x *= (x - node(j)) / (node(i) - node(j));
  2065. wt_y *= (y - node(j)) / (node(i) - node(j));
  2066. }
  2067. Interp0[i] = wt_x;
  2068. Interp1[i] = wt_y;
  2069. }
  2070. }
  2071. }
  2072. for (Long k = 0; k < dof; k++) {
  2073. Real X0 = 0;
  2074. for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  2075. for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  2076. Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  2077. Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  2078. X0 += Interp0[ii] * Interp1[jj] * Xf[(k*Nt+idx_i)*Np+idx_j];
  2079. }
  2080. }
  2081. Long elem_idx = tt * Mp + pp;
  2082. Long node_idx = p * ORDER + t;
  2083. X[elem_idx*dof+k][node_idx] = X0;
  2084. }
  2085. }
  2086. }
  2087. }
  2088. }
  2089. return X;
  2090. };
  2091. Long Nelem = S.NElem();
  2092. if (Jp.Dim() != Nelem * COORD_DIM) Jp.ReInit(Nelem * COORD_DIM);
  2093. if (Jt.Dim() != Nelem * COORD_DIM) Jt.ReInit(Nelem * COORD_DIM);
  2094. for (Long k = 0; k < S.Nsurf(); k++) {
  2095. Long Nt = S.NTor(k)*ORDER, Np = S.NPol(k)*ORDER;
  2096. const auto& X_ = S.GetElemList().ElemVector();
  2097. Vector<ElemBasis> X(S.NTor(k)*S.NPol(k)*COORD_DIM, (Iterator<ElemBasis>)X_.begin()+S.ElemDsp(k)*COORD_DIM, false);
  2098. biest::Surface<Real> SS(Nt, Np);
  2099. biest::SurfaceOp<Real> surf_op(comm, Nt, Np);
  2100. SS.Coord() = cheb2grid(X, S.NTor(k), S.NPol(k), Nt, Np);
  2101. Vector<Real> dX, d2X;
  2102. surf_op.Grad2D(dX, SS.Coord());
  2103. surf_op.Grad2D(d2X, dX);
  2104. sctl::Vector<Real> Jt_(COORD_DIM * Nt * Np);
  2105. sctl::Vector<Real> Jp_(COORD_DIM * Nt * Np);
  2106. { // Set Jt_, Jp_
  2107. Vector<Real> DivV, InvLapDivV, GradInvLapDivV;
  2108. for (sctl::Long i = 0; i < Nt*Np; i++) { // Set V
  2109. for (sctl::Long k =0; k < COORD_DIM; k++) {
  2110. Jt_[k * Nt*Np + i] = dX[(k*2+0) * Nt*Np + i];
  2111. Jp_[k * Nt*Np + i] = dX[(k*2+1) * Nt*Np + i];
  2112. }
  2113. }
  2114. surf_op.SurfDiv(DivV, dX, Jt_);
  2115. surf_op.GradInvSurfLap(GradInvLapDivV, dX, d2X, DivV, gmres_tol * max_norm(Jt_) / max_norm(DivV), max_iter, 1.5);
  2116. Jt_ = Jt_ - GradInvLapDivV;
  2117. surf_op.SurfDiv(DivV, dX, Jp_);
  2118. surf_op.GradInvSurfLap(GradInvLapDivV, dX, d2X, DivV, gmres_tol * max_norm(Jp_) / max_norm(DivV), max_iter, 1.5);
  2119. Jp_ = Jp_ - GradInvLapDivV;
  2120. }
  2121. Vector<ElemBasis> Jt__(S.NTor(k)*S.NPol(k)*COORD_DIM, (Iterator<ElemBasis>)Jt.begin()+S.ElemDsp(k)*COORD_DIM, false);
  2122. Vector<ElemBasis> Jp__(S.NTor(k)*S.NPol(k)*COORD_DIM, (Iterator<ElemBasis>)Jp.begin()+S.ElemDsp(k)*COORD_DIM, false);
  2123. Jt__ = grid2cheb(Jt_, Nt, Np, S.NTor(k), S.NPol(k));
  2124. Jp__ = grid2cheb(Jp_, Nt, Np, S.NTor(k), S.NPol(k));
  2125. }
  2126. }
  2127. static void compute_norm_area_elem(const Stellarator<Real,10>& S, Vector<ElemBasis>& normal, Vector<ElemBasis>& area_elem){ // Set normal, area_elem
  2128. const Vector<ElemBasis>& X = S.GetElemList().ElemVector();
  2129. const Long Nelem = X.Dim() / COORD_DIM;
  2130. const Long Nnodes = ElemBasis::Size();
  2131. Vector<ElemBasis> dX;
  2132. ElemBasis::Grad(dX, X);
  2133. area_elem.ReInit(Nelem);
  2134. normal.ReInit(Nelem * COORD_DIM);
  2135. for (Long i = 0; i < Nelem; i++) {
  2136. for (Long j = 0; j < Nnodes; j++) {
  2137. Tensor<Real,true,COORD_DIM> x, n;
  2138. Tensor<Real,true,COORD_DIM,2> dx;
  2139. x(0) = X[i*COORD_DIM+0][j];
  2140. x(1) = X[i*COORD_DIM+1][j];
  2141. x(2) = X[i*COORD_DIM+2][j];
  2142. dx(0,0) = dX[i*COORD_DIM*2+0][j];
  2143. dx(0,1) = dX[i*COORD_DIM*2+1][j];
  2144. dx(1,0) = dX[i*COORD_DIM*2+2][j];
  2145. dx(1,1) = dX[i*COORD_DIM*2+3][j];
  2146. dx(2,0) = dX[i*COORD_DIM*2+4][j];
  2147. dx(2,1) = dX[i*COORD_DIM*2+5][j];
  2148. n(0) = dx(1,0) * dx(2,1) - dx(2,0) * dx(1,1);
  2149. n(1) = dx(2,0) * dx(0,1) - dx(0,0) * dx(2,1);
  2150. n(2) = dx(0,0) * dx(1,1) - dx(1,0) * dx(0,1);
  2151. Real area_elem_ = sqrt<Real>(n(0)*n(0) + n(1)*n(1) + n(2)*n(2));
  2152. Real ooae = 1 / area_elem_;
  2153. n(0) *= ooae;
  2154. n(1) *= ooae;
  2155. n(2) *= ooae;
  2156. normal[i*COORD_DIM+0][j] = n(0);
  2157. normal[i*COORD_DIM+1][j] = n(1);
  2158. normal[i*COORD_DIM+2][j] = n(2);
  2159. area_elem[i][j] = area_elem_;
  2160. }
  2161. }
  2162. if (S.Nsurf() == 2) {
  2163. Long Nelem0 = S.NTor(0)*S.NPol(0);
  2164. for (Long i = 0; i < Nelem0*COORD_DIM; i++) {
  2165. for (Long j = 0; j < Nnodes; j++) {
  2166. normal[i][j] *= -1.0;
  2167. }
  2168. }
  2169. }
  2170. }
  2171. static Vector<ElemBasis> compute_gvec(const Stellarator<Real,ORDER> S, const Vector<ElemBasis>& B, const Vector<ElemBasis>& pressure) {
  2172. const Long Nelem = S.NElem();
  2173. const Long Nnodes = ElemBasis::Size();
  2174. SCTL_ASSERT(B.Dim() == Nelem * COORD_DIM);
  2175. SCTL_ASSERT(pressure.Dim() == Nelem);
  2176. Vector<ElemBasis> gvec(Nelem);
  2177. for (Long i = 0; i < Nelem; i++) {
  2178. for (Long j = 0; j < Nnodes; j++) {
  2179. Real B2 = 0;
  2180. B2 += B[i*COORD_DIM+0][j] * B[i*COORD_DIM+0][j];
  2181. B2 += B[i*COORD_DIM+1][j] * B[i*COORD_DIM+1][j];
  2182. B2 += B[i*COORD_DIM+2][j] * B[i*COORD_DIM+2][j];
  2183. gvec[i][j] = (B2*0.5 - pressure[i][j]) * (B2*0.5 - pressure[i][j]);
  2184. }
  2185. }
  2186. return gvec;
  2187. };
  2188. static Vector<ElemBasis> compute_dgdB(const Stellarator<Real,ORDER> S, const Vector<ElemBasis>& B, const Vector<ElemBasis>& pressure) {
  2189. const Long Nelem = S.NElem();
  2190. const Long Nnodes = ElemBasis::Size();
  2191. SCTL_ASSERT(B.Dim() == Nelem * COORD_DIM);
  2192. SCTL_ASSERT(pressure.Dim() == Nelem);
  2193. Vector<ElemBasis> dgdB(Nelem*COORD_DIM);
  2194. for (Long i = 0; i < Nelem; i++) {
  2195. for (Long j = 0; j < Nnodes; j++) {
  2196. Real B2 = 0;
  2197. B2 += B[i*COORD_DIM+0][j] * B[i*COORD_DIM+0][j];
  2198. B2 += B[i*COORD_DIM+1][j] * B[i*COORD_DIM+1][j];
  2199. B2 += B[i*COORD_DIM+2][j] * B[i*COORD_DIM+2][j];
  2200. dgdB[i*COORD_DIM+0][j] = 2 * (B2*0.5 - pressure[i][j]) * B[i*COORD_DIM+0][j];
  2201. dgdB[i*COORD_DIM+1][j] = 2 * (B2*0.5 - pressure[i][j]) * B[i*COORD_DIM+1][j];
  2202. dgdB[i*COORD_DIM+2][j] = 2 * (B2*0.5 - pressure[i][j]) * B[i*COORD_DIM+2][j];
  2203. }
  2204. }
  2205. return dgdB;
  2206. };
  2207. public:
  2208. Stellarator(const Vector<Long>& NtNp = Vector<Long>()) {
  2209. NtNp_ = NtNp;
  2210. Long Nsurf = NtNp_.Dim() / 2;
  2211. SCTL_ASSERT(Nsurf*2 == NtNp_.Dim());
  2212. Long Nelem = 0;
  2213. elem_dsp.ReInit(Nsurf);
  2214. if (elem_dsp.Dim()) elem_dsp[0] = 0;
  2215. for (Long i = 0; i < Nsurf; i++) {
  2216. Nelem += NtNp_[i*2+0]*NtNp_[i*2+1];
  2217. if (i+1 < Nsurf) elem_dsp[i+1] = Nelem;
  2218. }
  2219. elements.ReInit(Nelem);
  2220. for (Long i = 0; i < Nsurf; i++) {
  2221. InitSurf(i, this->Nsurf());
  2222. }
  2223. }
  2224. Long ElemIdx(Long s, Long t, Long p) {
  2225. SCTL_ASSERT(0 <= s && s < elem_dsp.Dim());
  2226. SCTL_ASSERT(0 <= t && t < NtNp_[s*2+0]);
  2227. SCTL_ASSERT(0 <= p && p < NtNp_[s*2+1]);
  2228. return elem_dsp[s] + t*NtNp_[s*2+1] + p;
  2229. }
  2230. ElemBasis& Elem(Long elem, Integer dim) {
  2231. return elements(elem,dim);
  2232. }
  2233. const ElemBasis& Elem(Long elem, Integer dim) const {
  2234. return elements(elem,dim);
  2235. }
  2236. const ElemLst& GetElemList() const {
  2237. return elements;
  2238. }
  2239. Long Nsurf() const {
  2240. return elem_dsp.Dim();
  2241. }
  2242. Long ElemDsp(Long s) const {
  2243. return elem_dsp[s];
  2244. }
  2245. Long NTor(Long s) const {
  2246. return NtNp_[s*2+0];
  2247. }
  2248. Long NPol(Long s) const {
  2249. return NtNp_[s*2+1];
  2250. }
  2251. Long NElem() const {
  2252. return elements.NElem();
  2253. }
  2254. static Vector<ElemBasis> compute_gradient(const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& pressure, Real flux_tor, Real flux_pol) {
  2255. constexpr Integer order_singular = 15;
  2256. constexpr Integer order_direct = 35;
  2257. Comm comm = Comm::World();
  2258. SetupQuadrature(S.quadrature_dBS , S, S.BiotSavartGrad, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  2259. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  2260. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  2261. SetupQuadrature(S.quadrature_FxdU , S, S.Laplace_FxdU , order_singular, order_direct, -1.0, comm);
  2262. SetupQuadrature(S.quadrature_dUxF , S, S.Laplace_dUxF , order_singular, order_direct, -1.0, comm);
  2263. SetupQuadrature(S.quadrature_dUxD , S, S.Laplace_dUxD , order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  2264. SetupQuadrature(S.quadrature_Fxd2U, S, S.Laplace_Fxd2U , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  2265. Vector<ElemBasis> Jt, Jp;
  2266. Vector<ElemBasis> Bt0, Bp0;
  2267. Vector<ElemBasis> dBt0, dBp0;
  2268. { // Set Bt0, Bp0
  2269. compute_harmonic_vector_potentials(Jt, Jp, S);
  2270. EvalQuadrature(Bt0, S.quadrature_BS, S, Jp, S.BiotSavart);
  2271. EvalQuadrature(Bp0, S.quadrature_BS, S, Jt, S.BiotSavart);
  2272. EvalQuadrature(dBt0, S.quadrature_dBS, S, Jp, S.BiotSavartGrad);
  2273. EvalQuadrature(dBp0, S.quadrature_dBS, S, Jt, S.BiotSavartGrad);
  2274. }
  2275. auto compute_B = [&S,&Bt0,&Bp0] (const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  2276. const Long Nelem = S.NElem();
  2277. Vector<ElemBasis> B(S.NElem() * COORD_DIM);
  2278. if (sigma.Dim()) {
  2279. const Long Nnodes = ElemBasis::Size();
  2280. Vector<ElemBasis> normal, area_elem;
  2281. compute_norm_area_elem(S, normal, area_elem);
  2282. EvalQuadrature(B, S.quadrature_FxdU, S, sigma, S.Laplace_FxdU);
  2283. for (Long i = 0; i < Nelem; i++) {
  2284. for (Long j = 0; j < Nnodes; j++) {
  2285. for (Long k = 0; k < COORD_DIM; k++) {
  2286. B[i*COORD_DIM+k][j] -= 0.5*sigma[i][j]*normal[i*COORD_DIM+k][j];
  2287. }
  2288. }
  2289. }
  2290. } else {
  2291. B = 0;
  2292. }
  2293. if (S.Nsurf() >= 1) B += Bt0*alpha;
  2294. if (S.Nsurf() >= 2) B += Bp0*beta;
  2295. return B;
  2296. };
  2297. auto compute_dB = [&S,&dBt0,&dBp0] (const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  2298. const Long Nelem = S.NElem();
  2299. Vector<ElemBasis> dB(S.NElem() * COORD_DIM * COORD_DIM);
  2300. if (sigma.Dim()) {
  2301. EvalQuadrature(dB, S.quadrature_Fxd2U, S, sigma, S.Laplace_Fxd2U);
  2302. } else {
  2303. dB = 0;
  2304. }
  2305. if (S.Nsurf() >= 1) dB += dBt0*alpha;
  2306. if (S.Nsurf() >= 2) dB += dBp0*beta;
  2307. return dB;
  2308. };
  2309. auto compute_flux = [&S] (Real& flux_tor, Real& flux_pol, const Vector<ElemBasis>& B, const Vector<ElemBasis>& normal) {
  2310. const Long Nelem = S.NElem();
  2311. const Long Nnodes = ElemBasis::Size();
  2312. SCTL_ASSERT(B.Dim() == Nelem*COORD_DIM);
  2313. SCTL_ASSERT(normal.Dim() == Nelem*COORD_DIM);
  2314. Vector<ElemBasis> J(Nelem * COORD_DIM);
  2315. for (Long i = 0; i < Nelem; i++) { // Set J
  2316. for (Long j = 0; j < Nnodes; j++) {
  2317. Tensor<Real,true,COORD_DIM> b, n;
  2318. b(0) = B[i*COORD_DIM+0][j];
  2319. b(1) = B[i*COORD_DIM+1][j];
  2320. b(2) = B[i*COORD_DIM+2][j];
  2321. n(0) = normal[i*COORD_DIM+0][j];
  2322. n(1) = normal[i*COORD_DIM+1][j];
  2323. n(2) = normal[i*COORD_DIM+2][j];
  2324. J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
  2325. J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
  2326. J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
  2327. }
  2328. }
  2329. Vector<ElemBasis> A;
  2330. EvalQuadrature(A, S.quadrature_FxU, S, J, S.Laplace_FxU);
  2331. Vector<Real> circ_pol(S.Nsurf()), circ_tor(S.Nsurf());
  2332. { // compute circ
  2333. Vector<ElemBasis> dX;
  2334. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2335. const auto& quad_wts = ElemBasis::QuadWts();
  2336. for (Long k = 0; k < S.Nsurf(); k++) {
  2337. circ_pol[k] = 0;
  2338. circ_tor[k] = 0;
  2339. Long Ndsp = S.ElemDsp(k);
  2340. for (Long i = 0; i < S.NTor(k)*S.NPol(k); i++) {
  2341. for (Long j = 0; j < Nnodes; j++) {
  2342. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+1][j] * quad_wts[j] / S.NTor(k);
  2343. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+3][j] * quad_wts[j] / S.NTor(k);
  2344. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+5][j] * quad_wts[j] / S.NTor(k);
  2345. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+0][j] * quad_wts[j] / S.NPol(k);
  2346. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+2][j] * quad_wts[j] / S.NPol(k);
  2347. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+4][j] * quad_wts[j] / S.NPol(k);
  2348. }
  2349. }
  2350. }
  2351. }
  2352. if (S.Nsurf() == 1) {
  2353. flux_tor = circ_pol[0];
  2354. flux_pol = 0;
  2355. } else if (S.Nsurf() == 2) {
  2356. flux_tor = circ_pol[1] - circ_pol[0];
  2357. flux_pol = circ_tor[0] - circ_tor[1];
  2358. } else {
  2359. SCTL_ASSERT(false);
  2360. }
  2361. };
  2362. auto compute_A = [&S,compute_B,&compute_flux] (const Vector<Real>& x) {
  2363. const Long Nelem = S.NElem();
  2364. const Long Nnodes = ElemBasis::Size();
  2365. SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
  2366. Vector<ElemBasis> normal, area_elem;
  2367. compute_norm_area_elem(S, normal, area_elem);
  2368. Vector<ElemBasis> sigma(Nelem);
  2369. for (Long i = 0; i < Nelem; i++) {
  2370. for (Long j = 0; j < Nnodes; j++) {
  2371. sigma[i][j] = x[i*Nnodes+j];
  2372. }
  2373. }
  2374. Real alpha = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
  2375. Real beta = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
  2376. Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
  2377. Vector<ElemBasis> BdotN = compute_dot_prod(B, normal);
  2378. Real flux_tor, flux_pol;
  2379. compute_flux(flux_tor, flux_pol, B, normal);
  2380. Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
  2381. for (Long i = 0; i < Nelem; i++) {
  2382. for (Long j = 0; j < Nnodes; j++) {
  2383. Ax[i*Nnodes+j] = BdotN[i][j];
  2384. }
  2385. }
  2386. if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = flux_tor;
  2387. if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = flux_pol;
  2388. return Ax;
  2389. };
  2390. auto compute_invA = [&S,&comm,&compute_A] (Vector<ElemBasis>& sigma, Real& alpha, Real& beta, Real flux_tor, Real flux_pol) {
  2391. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&compute_A](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  2392. (*Ax) = compute_A(x);
  2393. };
  2394. const Long Nelem = S.NElem();
  2395. const Long Nnodes = ElemBasis::Size();
  2396. Vector<Real> rhs_(Nelem * Nnodes + S.Nsurf());
  2397. rhs_ = 0;
  2398. if (S.Nsurf() >= 1) rhs_[Nelem * Nnodes + 0] = flux_tor;
  2399. if (S.Nsurf() >= 2) rhs_[Nelem * Nnodes + 1] = flux_pol;
  2400. Vector<Real> x_(Nelem * Nnodes + S.Nsurf());
  2401. x_ = 0;
  2402. ParallelSolver<Real> linear_solver(comm, true);
  2403. linear_solver(&x_, BIOp, rhs_, 1e-8, 100);
  2404. sigma.ReInit(Nelem);
  2405. for (Long i = 0; i < Nelem; i++) {
  2406. for (Long j = 0; j < Nnodes; j++) {
  2407. sigma[i][j] = x_[i*Nnodes+j];
  2408. }
  2409. }
  2410. alpha = (S.Nsurf() >= 1 ? x_[Nelem * Nnodes + 0] : 0);
  2411. beta = (S.Nsurf() >= 2 ? x_[Nelem * Nnodes + 1] : 0);
  2412. };
  2413. auto compute_Aadj = [&S,&Bt0,&Bp0,&compute_flux] (const Vector<Real>& x) {
  2414. const Long Nelem = S.NElem();
  2415. const Long Nnodes = ElemBasis::Size();
  2416. SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
  2417. Vector<ElemBasis> normal, area_elem;
  2418. compute_norm_area_elem(S, normal, area_elem);
  2419. Vector<ElemBasis> x0(Nelem);
  2420. for (Long i = 0; i < Nelem; i++) {
  2421. for (Long j = 0; j < Nnodes; j++) {
  2422. x0[i][j] = x[i*Nnodes+j];
  2423. }
  2424. }
  2425. Real x1 = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
  2426. Real x2 = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
  2427. Vector<ElemBasis> Ax0;
  2428. Real Ax1, Ax2;
  2429. { // Set Ax0, Ax1, Ax2
  2430. Vector<ElemBasis> x0_n(Nelem*COORD_DIM);
  2431. for (Long i = 0; i < Nelem; i++) {
  2432. for (Long j = 0; j < Nnodes; j++) {
  2433. x0_n[i*COORD_DIM+0][j] = x0[i][j] * normal[i*COORD_DIM+0][j];
  2434. x0_n[i*COORD_DIM+1][j] = x0[i][j] * normal[i*COORD_DIM+1][j];
  2435. x0_n[i*COORD_DIM+2][j] = x0[i][j] * normal[i*COORD_DIM+2][j];
  2436. }
  2437. }
  2438. EvalQuadrature(Ax0, S.quadrature_dUxF, S, x0_n, S.Laplace_dUxF);
  2439. Ax0 = x0*(-0.5) - Ax0;
  2440. Ax1 = (S.Nsurf() >= 1 ? compute_inner_prod(area_elem, compute_dot_prod(Bt0, normal), x0) : 0);
  2441. Ax2 = (S.Nsurf() >= 2 ? compute_inner_prod(area_elem, compute_dot_prod(Bp0, normal), x0) : 0);
  2442. }
  2443. auto compute_A21adj = [&S,&normal,&area_elem] (bool toroidal_flux) {
  2444. const Long Nelem = S.NElem();
  2445. const Long Nnodes = ElemBasis::Size();
  2446. Vector<ElemBasis> density(Nelem * COORD_DIM);
  2447. { // Set density
  2448. Real scal[2];
  2449. if (S.Nsurf() == 1) {
  2450. SCTL_ASSERT(toroidal_flux == true);
  2451. scal[0] = 1.0 / S.NTor(0);
  2452. scal[1] = 0;
  2453. } else if (S.Nsurf() == 2) {
  2454. if (toroidal_flux == true) {
  2455. scal[0] = -1.0 / S.NTor(0);
  2456. scal[1] = 1.0 / S.NTor(1);
  2457. } else {
  2458. scal[0] = 1.0 / S.NPol(0);
  2459. scal[1] = -1.0 / S.NPol(1);
  2460. }
  2461. } else {
  2462. SCTL_ASSERT(false);
  2463. }
  2464. Vector<ElemBasis> dX;
  2465. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2466. for (Long k = 0; k < S.Nsurf(); k++) {
  2467. for (Long i_ = 0; i_ < S.NTor(k)*S.NPol(k); i_++) {
  2468. Long i = S.ElemDsp(k) + i_;
  2469. for (Long j = 0; j < Nnodes; j++) {
  2470. Real s = scal[k] / area_elem[i][j];
  2471. density[i*COORD_DIM+0][j] = dX[i*COORD_DIM*2+0+(toroidal_flux?1:0)][j] * s;
  2472. density[i*COORD_DIM+1][j] = dX[i*COORD_DIM*2+2+(toroidal_flux?1:0)][j] * s;
  2473. density[i*COORD_DIM+2][j] = dX[i*COORD_DIM*2+4+(toroidal_flux?1:0)][j] * s;
  2474. }
  2475. }
  2476. }
  2477. }
  2478. Vector<ElemBasis> Gdensity, nxGdensity(Nelem * COORD_DIM), A21adj;
  2479. EvalQuadrature(Gdensity, S.quadrature_FxU, S, density, S.Laplace_FxU);
  2480. for (Long i = 0; i < Nelem; i++) { // Set nxGdensity
  2481. for (Long j = 0; j < Nnodes; j++) {
  2482. Tensor<Real,true,COORD_DIM> Gdensity_, n;
  2483. Gdensity_(0) = Gdensity[i*COORD_DIM+0][j];
  2484. Gdensity_(1) = Gdensity[i*COORD_DIM+1][j];
  2485. Gdensity_(2) = Gdensity[i*COORD_DIM+2][j];
  2486. n(0) = normal[i*COORD_DIM+0][j];
  2487. n(1) = normal[i*COORD_DIM+1][j];
  2488. n(2) = normal[i*COORD_DIM+2][j];
  2489. nxGdensity[i*COORD_DIM+0][j] = n(1) * Gdensity_(2) - n(2) * Gdensity_(1);
  2490. nxGdensity[i*COORD_DIM+1][j] = n(2) * Gdensity_(0) - n(0) * Gdensity_(2);
  2491. nxGdensity[i*COORD_DIM+2][j] = n(0) * Gdensity_(1) - n(1) * Gdensity_(0);
  2492. }
  2493. }
  2494. EvalQuadrature(A21adj, S.quadrature_dUxF, S, nxGdensity, S.Laplace_dUxF);
  2495. return A21adj;
  2496. };
  2497. if (S.Nsurf() >= 1) Ax0 += compute_A21adj( true) * x1;
  2498. if (S.Nsurf() >= 2) Ax0 += compute_A21adj(false) * x2;
  2499. if (S.Nsurf() == 1) { // Add flux part of Ax1, Ax2
  2500. Real flux_tor, flux_pol;
  2501. compute_flux(flux_tor, flux_pol, Bt0, normal);
  2502. Ax1 += flux_tor * x1;
  2503. Ax2 += 0;
  2504. } else if (S.Nsurf() == 2) {
  2505. Real flux_tor, flux_pol;
  2506. compute_flux(flux_tor, flux_pol, Bt0, normal);
  2507. Ax1 += flux_tor * x1 + flux_pol * x2;
  2508. compute_flux(flux_tor, flux_pol, Bp0, normal);
  2509. Ax2 += flux_tor * x1 + flux_pol * x2;
  2510. } else {
  2511. SCTL_ASSERT(false);
  2512. }
  2513. Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
  2514. for (Long i = 0; i < Nelem; i++) {
  2515. for (Long j = 0; j < Nnodes; j++) {
  2516. Ax[i*Nnodes+j] = Ax0[i][j];
  2517. }
  2518. }
  2519. if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = Ax1;
  2520. if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = Ax2;
  2521. return Ax;
  2522. };
  2523. auto compute_invAadj = [&S,&comm,&compute_Aadj] (Vector<Real>& b) {
  2524. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&compute_Aadj](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  2525. (*Ax) = compute_Aadj(x);
  2526. };
  2527. const Long Nelem = S.NElem();
  2528. const Long Nnodes = ElemBasis::Size();
  2529. Vector<Real> x(b.Dim());
  2530. x = 0;
  2531. ParallelSolver<Real> linear_solver(comm, true);
  2532. linear_solver(&x, BIOp, b, 1e-8, 100);
  2533. return x;
  2534. };
  2535. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2536. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2537. Real alpha, beta;
  2538. Vector<ElemBasis> sigma;
  2539. compute_invA(sigma, alpha, beta, flux_tor, flux_pol);
  2540. Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
  2541. { // Write VTU
  2542. VTUData vtu;
  2543. vtu.AddElems(S.GetElemList(), sigma, ORDER);
  2544. vtu.WriteVTK("sigma", comm);
  2545. }
  2546. { // Write VTU
  2547. VTUData vtu;
  2548. vtu.AddElems(S.GetElemList(), B, ORDER);
  2549. vtu.WriteVTK("B", comm);
  2550. }
  2551. { // Compute g
  2552. Vector<ElemBasis> normal, area_elem;
  2553. compute_norm_area_elem(S, normal, area_elem);
  2554. Real g = compute_inner_prod(area_elem, compute_gvec(S,B,pressure), area_elem*0+1);
  2555. std::cout<<"g = "<<g<<'\n';
  2556. }
  2557. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2558. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2559. auto compute_gradient = [&S, &sigma,&alpha,&beta,&Jt,&Jp,&B,&pressure, &compute_invAadj,&compute_B,&compute_dB] () {
  2560. const Long Nnodes = ElemBasis::Size();
  2561. const Long Nelem = S.NElem();
  2562. Vector<ElemBasis> normal, area_elem;
  2563. compute_norm_area_elem(S, normal, area_elem);
  2564. auto compute_H = [] (const ElemList<COORD_DIM,ElemBasis>& elem_lst, const Vector<ElemBasis>& normal) {
  2565. const Long Nnodes = ElemBasis::Size();
  2566. const Long Nelem = elem_lst.NElem();
  2567. const Vector<ElemBasis> X = elem_lst.ElemVector();
  2568. Vector<ElemBasis> dX, d2X, H(Nelem);
  2569. ElemBasis::Grad(dX, X);
  2570. ElemBasis::Grad(d2X, dX);
  2571. for (Long i = 0; i < Nelem; i++) {
  2572. for (Long j = 0; j < Nnodes; j++) {
  2573. Tensor<Real,true,2,2> I, invI, II;
  2574. for (Long k0 = 0; k0 < 2; k0++) {
  2575. for (Long k1 = 0; k1 < 2; k1++) {
  2576. I(k0,k1) = 0;
  2577. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  2578. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  2579. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  2580. II(k0,k1) = 0;
  2581. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  2582. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  2583. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  2584. }
  2585. }
  2586. { // Set invI
  2587. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  2588. invI(0,0) = I(1,1) / detI;
  2589. invI(0,1) = -I(0,1) / detI;
  2590. invI(1,0) = -I(1,0) / detI;
  2591. invI(1,1) = I(0,0) / detI;
  2592. }
  2593. { // Set H
  2594. H[i][j] = 0;
  2595. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  2596. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  2597. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  2598. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  2599. }
  2600. }
  2601. }
  2602. return H;
  2603. };
  2604. Vector<ElemBasis> H = compute_H(S.GetElemList(), normal);
  2605. auto compute_dg_dnu = [&S,&normal,&area_elem,&H,&compute_dB](const Vector<ElemBasis>& sigma, Real alpha, Real beta, const Vector<ElemBasis>& B, const Vector<ElemBasis>& pressure) { // dg_dnu = (B*B) 2H - (2 B) \cdot (n \cdnot nabla) \nabla G[sigma] + (2 B) \alpha dB0_dnu \hat{\theta} + sigma (\nabla D)^T [2 B] + (2H) sigma (\nabla G)^T [2 B]
  2606. const Long Nelem = S.NElem();
  2607. const Long Nnodes = ElemBasis::Size();
  2608. Vector<ElemBasis> gvec = compute_gvec(S,B,pressure);
  2609. Vector<ElemBasis> v = compute_dgdB(S,B,pressure);
  2610. Vector<ElemBasis> dg_dnu0(Nelem), dg_dnu1(Nelem), dg_dnu2(Nelem), dg_dnu3(Nelem), dg_dnu4(Nelem);
  2611. dg_dnu0 = 0;
  2612. dg_dnu1 = 0;
  2613. dg_dnu2 = 0;
  2614. dg_dnu3 = 0;
  2615. dg_dnu4 = 0;
  2616. // dg_dnu0 = (B*B) 2H
  2617. for (Long i = 0; i < Nelem; i++) {
  2618. for (Long j = 0; j < Nnodes; j++) {
  2619. dg_dnu0[i][j] = 0;
  2620. dg_dnu0[i][j] += gvec[i][j] * (2.0*H[i][j]);
  2621. }
  2622. }
  2623. // dg_dnu1 = (2 B) \cdot (n \cdnot \nabla) B
  2624. Vector<ElemBasis> dB = compute_dB(sigma, alpha, beta);
  2625. for (Long i = 0; i < Nelem; i++) {
  2626. for (Long j = 0; j < Nnodes; j++) {
  2627. dg_dnu1[i][j] = 0;
  2628. dg_dnu1[i][j] -= dB[i*9+0][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
  2629. dg_dnu1[i][j] -= dB[i*9+1][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
  2630. dg_dnu1[i][j] -= dB[i*9+2][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
  2631. dg_dnu1[i][j] -= dB[i*9+3][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
  2632. dg_dnu1[i][j] -= dB[i*9+4][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
  2633. dg_dnu1[i][j] -= dB[i*9+5][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
  2634. dg_dnu1[i][j] -= dB[i*9+6][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
  2635. dg_dnu1[i][j] -= dB[i*9+7][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
  2636. dg_dnu1[i][j] -= dB[i*9+8][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
  2637. }
  2638. }
  2639. // dg_dnu3 = (sigma (\nabla D)^T [2 B]
  2640. Vector<ElemBasis> nablaDtv;
  2641. EvalQuadrature(nablaDtv, S.quadrature_dUxD, S, v, S.Laplace_dUxD);
  2642. for (Long i = 0; i < Nelem; i++) {
  2643. for (Long j = 0; j < Nnodes; j++) {
  2644. dg_dnu3[i][j] = 0;
  2645. dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  2646. dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  2647. dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  2648. }
  2649. }
  2650. // dg_dnu4 = (2H) sigma (\nabla G)^T [2 B]
  2651. EvalQuadrature(dg_dnu4, S.quadrature_dUxF, S, v, S.Laplace_dUxF);
  2652. for (Long i = 0; i < Nelem; i++) {
  2653. for (Long j = 0; j < Nnodes; j++) {
  2654. dg_dnu4[i][j] += 0.5 * v[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  2655. dg_dnu4[i][j] += 0.5 * v[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  2656. dg_dnu4[i][j] += 0.5 * v[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  2657. dg_dnu4[i][j] *= 2*H[i][j] * sigma[i][j];
  2658. }
  2659. }
  2660. return dg_dnu0 + dg_dnu1 + dg_dnu3 - dg_dnu4;
  2661. };
  2662. Vector<ElemBasis> dg_dnu = compute_dg_dnu(sigma, alpha, beta, B, pressure);
  2663. auto compute_dg_dsigma = [&S,&normal,&area_elem,&compute_B] (const Vector<ElemBasis>& B, const Vector<ElemBasis>& pressure) {
  2664. const Long Nnodes = ElemBasis::Size();
  2665. const Long Nelem = S.NElem();
  2666. auto compute_dg_dsigma = [&S,&normal](const Vector<ElemBasis>& B, const Vector<ElemBasis>& pressure) { // dg_dsigma = \int 2 B \cdot (\nabla G + n/2)
  2667. Vector<ElemBasis> dgdB = compute_dgdB(S,B,pressure);
  2668. Vector<ElemBasis> B_dot_gradG;
  2669. EvalQuadrature(B_dot_gradG, S.quadrature_dUxF, S, dgdB, S.Laplace_dUxF);
  2670. return B_dot_gradG * (-1.0) + compute_dot_prod(dgdB,normal) * 0.5;
  2671. };
  2672. auto compute_dg_dalpha = [&S,&area_elem,&compute_B] (const Vector<ElemBasis>& B, const Vector<ElemBasis>& pressure) {
  2673. Vector<ElemBasis> dgdB = compute_dgdB(S,B,pressure);
  2674. auto dB_dalpha = compute_B(Vector<ElemBasis>(),1,0);
  2675. return compute_inner_prod(area_elem, dgdB,dB_dalpha);
  2676. };
  2677. auto compute_dg_dbeta = [&S,&area_elem,&compute_B] (const Vector<ElemBasis>& B, const Vector<ElemBasis>& pressure) {
  2678. Vector<ElemBasis> dgdB = compute_dgdB(S,B,pressure);
  2679. auto dB_dalpha = compute_B(Vector<ElemBasis>(),0,1);
  2680. return compute_inner_prod(area_elem, dgdB,dB_dalpha);
  2681. };
  2682. Vector<Real> dg_dsigma(Nelem*Nnodes+S.Nsurf());
  2683. Vector<ElemBasis> dg_dsigma_ = compute_dg_dsigma(B,pressure);
  2684. for (Long i = 0; i < Nelem; i++) {
  2685. for (Long j = 0; j < Nnodes; j++) {
  2686. dg_dsigma[i*Nnodes+j] = dg_dsigma_[i][j];
  2687. }
  2688. }
  2689. if (S.Nsurf() >= 1) dg_dsigma[Nelem*Nnodes+0] = compute_dg_dalpha(B,pressure);
  2690. if (S.Nsurf() >= 2) dg_dsigma[Nelem*Nnodes+1] = compute_dg_dbeta (B,pressure);
  2691. return dg_dsigma;
  2692. };
  2693. Vector<Real> dg_dsigma = compute_dg_dsigma(B, pressure);
  2694. Vector<Real> dg_dsigma_invA = compute_invAadj(dg_dsigma);
  2695. ///////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2696. ///////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2697. auto compute_grad_adj = [&S,&area_elem] (const Vector<ElemBasis>& V) {
  2698. const Long Nelem = S.NElem();
  2699. const Long Nnodes = ElemBasis::Size();
  2700. Vector<ElemBasis> du_dX(Nelem*COORD_DIM*2);
  2701. { // Set du_dX
  2702. Vector<ElemBasis> dX;
  2703. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2704. auto inv2x2 = [](Tensor<Real, true, 2, 2> M) {
  2705. Tensor<Real, true, 2, 2> Mout;
  2706. Real oodet = 1 / (M(0,0) * M(1,1) - M(0,1) * M(1,0));
  2707. Mout(0,0) = M(1,1) * oodet;
  2708. Mout(0,1) = -M(0,1) * oodet;
  2709. Mout(1,0) = -M(1,0) * oodet;
  2710. Mout(1,1) = M(0,0) * oodet;
  2711. return Mout;
  2712. };
  2713. for (Long i = 0; i < Nelem; i++) {
  2714. for (Long j = 0; j < Nnodes; j++) {
  2715. Tensor<Real, true, 3, 2> dX_du;
  2716. dX_du(0,0) = dX[(i*COORD_DIM+0)*2+0][j];
  2717. dX_du(1,0) = dX[(i*COORD_DIM+1)*2+0][j];
  2718. dX_du(2,0) = dX[(i*COORD_DIM+2)*2+0][j];
  2719. dX_du(0,1) = dX[(i*COORD_DIM+0)*2+1][j];
  2720. dX_du(1,1) = dX[(i*COORD_DIM+1)*2+1][j];
  2721. dX_du(2,1) = dX[(i*COORD_DIM+2)*2+1][j];
  2722. Tensor<Real, true, 2, 2> G; // = dX_du.Transpose() * dX_du;
  2723. G(0,0) = dX_du(0,0) * dX_du(0,0) + dX_du(1,0) * dX_du(1,0) + dX_du(2,0) * dX_du(2,0);
  2724. G(0,1) = dX_du(0,0) * dX_du(0,1) + dX_du(1,0) * dX_du(1,1) + dX_du(2,0) * dX_du(2,1);
  2725. G(1,0) = dX_du(0,1) * dX_du(0,0) + dX_du(1,1) * dX_du(1,0) + dX_du(2,1) * dX_du(2,0);
  2726. G(1,1) = dX_du(0,1) * dX_du(0,1) + dX_du(1,1) * dX_du(1,1) + dX_du(2,1) * dX_du(2,1);
  2727. Tensor<Real, true, 2, 2> Ginv = inv2x2(G);
  2728. du_dX[(i*COORD_DIM+0)*2+0][j] = Ginv(0,0) * dX_du(0,0) + Ginv(0,1) * dX_du(0,1);
  2729. du_dX[(i*COORD_DIM+1)*2+0][j] = Ginv(0,0) * dX_du(1,0) + Ginv(0,1) * dX_du(1,1);
  2730. du_dX[(i*COORD_DIM+2)*2+0][j] = Ginv(0,0) * dX_du(2,0) + Ginv(0,1) * dX_du(2,1);
  2731. du_dX[(i*COORD_DIM+0)*2+1][j] = Ginv(1,0) * dX_du(0,0) + Ginv(1,1) * dX_du(0,1);
  2732. du_dX[(i*COORD_DIM+1)*2+1][j] = Ginv(1,0) * dX_du(1,0) + Ginv(1,1) * dX_du(1,1);
  2733. du_dX[(i*COORD_DIM+2)*2+1][j] = Ginv(1,0) * dX_du(2,0) + Ginv(1,1) * dX_du(2,1);
  2734. }
  2735. }
  2736. }
  2737. Vector<ElemBasis> dudX_V(Nelem*2);
  2738. for (Long i = 0; i < Nelem; i++) {
  2739. for (Long j = 0; j < Nnodes; j++) {
  2740. dudX_V[i*2+0][j] = 0;
  2741. dudX_V[i*2+1][j] = 0;
  2742. dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+0)*2+0][j] * V[i*COORD_DIM+0][j] * area_elem[i][j];
  2743. dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+1)*2+0][j] * V[i*COORD_DIM+1][j] * area_elem[i][j];
  2744. dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+2)*2+0][j] * V[i*COORD_DIM+2][j] * area_elem[i][j];
  2745. dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+0)*2+1][j] * V[i*COORD_DIM+0][j] * area_elem[i][j];
  2746. dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+1)*2+1][j] * V[i*COORD_DIM+1][j] * area_elem[i][j];
  2747. dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+2)*2+1][j] * V[i*COORD_DIM+2][j] * area_elem[i][j];
  2748. }
  2749. }
  2750. Vector<ElemBasis> grad_dudX_V;
  2751. ElemBasis::Grad(grad_dudX_V, dudX_V);
  2752. Vector<ElemBasis> grad_adj_V(Nelem);
  2753. for (Long i = 0; i < Nelem; i++) {
  2754. for (Long j = 0; j < Nnodes; j++) {
  2755. grad_adj_V[i][j] = -(grad_dudX_V[(i*2+0)*2+0][j] + grad_dudX_V[(i*2+1)*2+1][j]) / area_elem[i][j];
  2756. }
  2757. }
  2758. return grad_adj_V;
  2759. };
  2760. auto compute_u_dAdnu_v_0 = [&S,&normal,&H,&compute_B,&compute_dB,&compute_grad_adj] (const Vector<Real>& u_, const Vector<ElemBasis>& v, Real alpha, Real beta) {
  2761. const Long Nnodes = ElemBasis::Size();
  2762. const Long Nelem = S.NElem();
  2763. Vector<ElemBasis> dAdnu0(Nelem), dAdnu1(Nelem), dAdnu2(Nelem), dAdnu3(Nelem);
  2764. Vector<ElemBasis> u(Nelem), u_n(Nelem*COORD_DIM);
  2765. for (Long i = 0; i < Nelem; i++) {
  2766. for (Long j = 0; j < Nnodes; j++) {
  2767. u[i][j] = u_[i*Nnodes+j];
  2768. u_n[i*COORD_DIM+0][j] = u[i][j] * normal[i*COORD_DIM+0][j];
  2769. u_n[i*COORD_DIM+1][j] = u[i][j] * normal[i*COORD_DIM+1][j];
  2770. u_n[i*COORD_DIM+2][j] = u[i][j] * normal[i*COORD_DIM+2][j];
  2771. }
  2772. }
  2773. // dAdnu0 = u B \cdot grad_nu
  2774. Vector<ElemBasis> B = compute_B(v, alpha, beta);
  2775. Vector<ElemBasis> u_B(Nelem*COORD_DIM);
  2776. for (Long i = 0; i < Nelem; i++) {
  2777. for (Long j = 0; j < Nnodes; j++) {
  2778. u_B[i*COORD_DIM+0][j] = u[i][j] * B[i*COORD_DIM+0][j];
  2779. u_B[i*COORD_DIM+1][j] = u[i][j] * B[i*COORD_DIM+1][j];
  2780. u_B[i*COORD_DIM+2][j] = u[i][j] * B[i*COORD_DIM+2][j];
  2781. }
  2782. }
  2783. dAdnu0 = compute_grad_adj(u_B)*(-1.0);
  2784. // dAdnu1 = (u n) \cdot (n \cdnot \nabla) B
  2785. Vector<ElemBasis> dB = compute_dB(v, alpha, beta);
  2786. for (Long i = 0; i < Nelem; i++) {
  2787. for (Long j = 0; j < Nnodes; j++) {
  2788. dAdnu1[i][j] = 0;
  2789. dAdnu1[i][j] -= dB[i*9+0][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+0][j];
  2790. dAdnu1[i][j] -= dB[i*9+1][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+1][j];
  2791. dAdnu1[i][j] -= dB[i*9+2][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+2][j];
  2792. dAdnu1[i][j] -= dB[i*9+3][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+0][j];
  2793. dAdnu1[i][j] -= dB[i*9+4][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+1][j];
  2794. dAdnu1[i][j] -= dB[i*9+5][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+2][j];
  2795. dAdnu1[i][j] -= dB[i*9+6][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+0][j];
  2796. dAdnu1[i][j] -= dB[i*9+7][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+1][j];
  2797. dAdnu1[i][j] -= dB[i*9+8][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+2][j];
  2798. }
  2799. }
  2800. // dAdnu2 = (2H) v (I/2 + \nabla G)^T [u n]
  2801. EvalQuadrature(dAdnu2, S.quadrature_dUxF, S, u_n, S.Laplace_dUxF);
  2802. for (Long i = 0; i < Nelem; i++) {
  2803. for (Long j = 0; j < Nnodes; j++) {
  2804. dAdnu2[i][j] += 0.5 * u_n[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  2805. dAdnu2[i][j] += 0.5 * u_n[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  2806. dAdnu2[i][j] += 0.5 * u_n[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  2807. dAdnu2[i][j] *= -2*H[i][j] * v[i][j];
  2808. }
  2809. }
  2810. // dAdnu3 = (v n \cdot \nabla D[u]
  2811. Vector<ElemBasis> nablaDt_u_n;
  2812. EvalQuadrature(nablaDt_u_n, S.quadrature_dUxD, S, u_n, S.Laplace_dUxD);
  2813. for (Long i = 0; i < Nelem; i++) {
  2814. for (Long j = 0; j < Nnodes; j++) {
  2815. dAdnu3[i][j] = 0;
  2816. dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  2817. dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  2818. dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  2819. }
  2820. }
  2821. return dAdnu0 + dAdnu1 + dAdnu2 + dAdnu3;
  2822. };
  2823. auto compute_u_dAdnu_v_1 = [&S,&area_elem,&normal,&H,&compute_grad_adj,&compute_B,&compute_dB] (const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  2824. const Long Nnodes = ElemBasis::Size();
  2825. const Long Nelem = S.NElem();
  2826. Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
  2827. Vector<ElemBasis> gradB = compute_dB(sigma, alpha, beta);
  2828. auto compute_v = [&S,&area_elem] () {
  2829. const Long Nelem = S.NElem();
  2830. const Long Nnodes = ElemBasis::Size();
  2831. Vector<ElemBasis> v(Nelem * COORD_DIM);
  2832. Vector<ElemBasis> dX;
  2833. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2834. for (Long i = 0; i < Nelem; i++) {
  2835. for (Long j = 0; j < Nnodes; j++) {
  2836. Tensor<Real,true,COORD_DIM,2> dx;
  2837. dx(0,0) = dX[i*COORD_DIM*2+0][j];
  2838. dx(0,1) = dX[i*COORD_DIM*2+1][j];
  2839. dx(1,0) = dX[i*COORD_DIM*2+2][j];
  2840. dx(1,1) = dX[i*COORD_DIM*2+3][j];
  2841. dx(2,0) = dX[i*COORD_DIM*2+4][j];
  2842. dx(2,1) = dX[i*COORD_DIM*2+5][j];
  2843. Real s = 1 / (area_elem[i][j] * S.NtNp_[0]);
  2844. for (Long k = 0; k < COORD_DIM; k++) {
  2845. v[i*COORD_DIM+k][j] = dx(k,1) * s;
  2846. }
  2847. }
  2848. }
  2849. return v;
  2850. };
  2851. auto compute_AxB = [&S] (const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  2852. const Long Nelem = S.NElem();
  2853. const Long Nnodes = ElemBasis::Size();
  2854. Vector<ElemBasis> J(Nelem * COORD_DIM);
  2855. for (Long i = 0; i < Nelem; i++) { // Set J
  2856. for (Long j = 0; j < Nnodes; j++) {
  2857. Tensor<Real,true,COORD_DIM> a, b;
  2858. a(0) = A[i*COORD_DIM+0][j];
  2859. a(1) = A[i*COORD_DIM+1][j];
  2860. a(2) = A[i*COORD_DIM+2][j];
  2861. b(0) = B[i*COORD_DIM+0][j];
  2862. b(1) = B[i*COORD_DIM+1][j];
  2863. b(2) = B[i*COORD_DIM+2][j];
  2864. J[i*COORD_DIM+0][j] = a(1) * b(2) - a(2) * b(1);
  2865. J[i*COORD_DIM+1][j] = a(2) * b(0) - a(0) * b(2);
  2866. J[i*COORD_DIM+2][j] = a(0) * b(1) - a(1) * b(0);
  2867. }
  2868. }
  2869. return J;
  2870. };
  2871. auto compute_dphi_dnu0 = [&S,&normal,&compute_AxB,&compute_v,&B,compute_grad_adj] () {
  2872. const Long Nelem = S.NElem();
  2873. const Long Nnodes = ElemBasis::Size();
  2874. Vector<ElemBasis> Gv;
  2875. Vector<ElemBasis> v = compute_v();
  2876. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  2877. Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
  2878. return compute_grad_adj(BxGv)*(-1.0);
  2879. };
  2880. auto compute_dphi_dnu1 = [&S,&normal,&H,&compute_AxB,&compute_v,&B] () {
  2881. const Long Nelem = S.NElem();
  2882. const Long Nnodes = ElemBasis::Size();
  2883. Vector<ElemBasis> Gv;
  2884. Vector<ElemBasis> v = compute_v();
  2885. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  2886. Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
  2887. Vector<ElemBasis> n_dot_BxGv = compute_dot_prod(normal,BxGv);
  2888. Vector<ElemBasis> dphi_dnu(Nelem);
  2889. for (Long i = 0; i < Nelem; i++) {
  2890. for (Long j = 0; j < Nnodes; j++) {
  2891. dphi_dnu[i][j] = n_dot_BxGv[i][j] * 2*H[i][j];
  2892. }
  2893. }
  2894. return dphi_dnu;
  2895. };
  2896. auto compute_dphi_dnu2 = [&S,&normal,&H,&compute_AxB,&compute_v,&B] () {
  2897. const Long Nelem = S.NElem();
  2898. const Long Nnodes = ElemBasis::Size();
  2899. Vector<ElemBasis> GnxB;
  2900. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  2901. EvalQuadrature(GnxB, S.quadrature_FxU, S, nxB, S.Laplace_FxU);
  2902. Vector<ElemBasis> v = compute_v();
  2903. Vector<ElemBasis> v_dot_GnxB = compute_dot_prod(v,GnxB);
  2904. Vector<ElemBasis> dphi_dnu(Nelem);
  2905. for (Long i = 0; i < Nelem; i++) {
  2906. for (Long j = 0; j < Nnodes; j++) {
  2907. dphi_dnu[i][j] = v_dot_GnxB[i][j] * 2*H[i][j];
  2908. }
  2909. }
  2910. return dphi_dnu;
  2911. };
  2912. auto compute_dphi_dnu3 = [&S,&normal,&area_elem,&H,&compute_AxB,&B] () {
  2913. const Long Nelem = S.NElem();
  2914. const Long Nnodes = ElemBasis::Size();
  2915. Vector<ElemBasis> GnxB;
  2916. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  2917. EvalQuadrature(GnxB, S.quadrature_FxU, S, nxB, S.Laplace_FxU);
  2918. Vector<ElemBasis> dv_dnu1(Nelem), dv_dnu2(Nelem);
  2919. { // Set dv_dnu1, dv_dnu2
  2920. Vector<ElemBasis> dX, dGnxB;
  2921. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2922. ElemBasis::Grad(dGnxB, GnxB);
  2923. for (Long i = 0; i < Nelem; i++) {
  2924. for (Long j = 0; j < Nnodes; j++) {
  2925. dv_dnu1[i][j] = 0;
  2926. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+0][j] * dX[(i*COORD_DIM+0)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
  2927. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+1][j] * dX[(i*COORD_DIM+1)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
  2928. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+2][j] * dX[(i*COORD_DIM+2)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
  2929. dv_dnu2[i][j] = 0;
  2930. dv_dnu2[i][j] += -dGnxB[(i*COORD_DIM+0)*2+1][j] * normal[i*COORD_DIM+0][j] / (area_elem[i][j] * S.NtNp_[0]);
  2931. dv_dnu2[i][j] += -dGnxB[(i*COORD_DIM+1)*2+1][j] * normal[i*COORD_DIM+1][j] / (area_elem[i][j] * S.NtNp_[0]);
  2932. dv_dnu2[i][j] += -dGnxB[(i*COORD_DIM+2)*2+1][j] * normal[i*COORD_DIM+2][j] / (area_elem[i][j] * S.NtNp_[0]);
  2933. }
  2934. }
  2935. }
  2936. return dv_dnu1 + dv_dnu2;
  2937. };
  2938. auto compute_dphi_dnu4 = [&S,&normal,&compute_AxB,&compute_v,&B] () {
  2939. const Long Nelem = S.NElem();
  2940. const Long Nnodes = ElemBasis::Size();
  2941. Vector<ElemBasis> dGnxB;
  2942. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  2943. EvalQuadrature(dGnxB, S.quadrature_FxdU, S, nxB, S.Laplace_FxdU);
  2944. Vector<ElemBasis> v = compute_v();
  2945. Vector<ElemBasis> dphi_dnu(Nelem);
  2946. for (Long i = 0; i < Nelem; i++) {
  2947. for (Long j = 0; j < Nnodes; j++) {
  2948. Real dphi_dnu_ = 0;
  2949. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
  2950. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
  2951. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
  2952. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
  2953. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
  2954. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
  2955. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
  2956. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
  2957. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
  2958. dphi_dnu[i][j] = dphi_dnu_;
  2959. }
  2960. }
  2961. return dphi_dnu;
  2962. };
  2963. auto compute_dphi_dnu5 = [&S,&normal,&compute_AxB,&compute_v,&B] () {
  2964. const Long Nelem = S.NElem();
  2965. const Long Nnodes = ElemBasis::Size();
  2966. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  2967. Vector<ElemBasis> dGv;
  2968. Vector<ElemBasis> v = compute_v();
  2969. EvalQuadrature(dGv, S.quadrature_FxdU, S, v, S.Laplace_FxdU);
  2970. Vector<ElemBasis> dphi_dnu(Nelem);
  2971. for (Long i = 0; i < Nelem; i++) {
  2972. for (Long j = 0; j < Nnodes; j++) {
  2973. Real dphi_dnu_ = 0;
  2974. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+0][j] * nxB[i*COORD_DIM+0][j];
  2975. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+1][j] * nxB[i*COORD_DIM+0][j];
  2976. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+2][j] * nxB[i*COORD_DIM+0][j];
  2977. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+0][j] * nxB[i*COORD_DIM+1][j];
  2978. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+1][j] * nxB[i*COORD_DIM+1][j];
  2979. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+2][j] * nxB[i*COORD_DIM+1][j];
  2980. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+0][j] * nxB[i*COORD_DIM+2][j];
  2981. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+1][j] * nxB[i*COORD_DIM+2][j];
  2982. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+2][j] * nxB[i*COORD_DIM+2][j];
  2983. dphi_dnu[i][j] = dphi_dnu_;
  2984. }
  2985. }
  2986. return dphi_dnu;
  2987. };
  2988. auto compute_dphi_dnu6 = [&S,&normal,&compute_AxB,&compute_v,&gradB] () {
  2989. const Long Nelem = S.NElem();
  2990. const Long Nnodes = ElemBasis::Size();
  2991. Vector<ElemBasis> Gv;
  2992. Vector<ElemBasis> v = compute_v();
  2993. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  2994. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  2995. Vector<ElemBasis> dphi_dnu(Nelem);
  2996. for (Long i = 0; i < Nelem; i++) {
  2997. for (Long j = 0; j < Nnodes; j++) {
  2998. Real dphi_dnu_ = 0;
  2999. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  3000. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+1][j] * normal[i*COORD_DIM+0][j];
  3001. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+2][j] * normal[i*COORD_DIM+0][j];
  3002. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+0][j] * normal[i*COORD_DIM+1][j];
  3003. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  3004. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+2][j] * normal[i*COORD_DIM+1][j];
  3005. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+0][j] * normal[i*COORD_DIM+2][j];
  3006. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+1][j] * normal[i*COORD_DIM+2][j];
  3007. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  3008. dphi_dnu[i][j] = dphi_dnu_;
  3009. }
  3010. }
  3011. return dphi_dnu;
  3012. };
  3013. auto compute_dphi_dnu7 = [&S,&normal,&H,&compute_AxB,&compute_v,&sigma] () {
  3014. const Long Nelem = S.NElem();
  3015. const Long Nnodes = ElemBasis::Size();
  3016. Vector<ElemBasis> Gv;
  3017. Vector<ElemBasis> v = compute_v();
  3018. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  3019. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3020. Vector<ElemBasis> dphi_dnu(Nelem);
  3021. EvalQuadrature(dphi_dnu, S.quadrature_dUxF, S, nxGv, S.Laplace_dUxF);
  3022. for (Long i = 0; i < Nelem; i++) {
  3023. for (Long j = 0; j < Nnodes; j++) {
  3024. dphi_dnu[i][j] *= -2*H[i][j] * sigma[i][j];
  3025. }
  3026. }
  3027. return dphi_dnu;
  3028. };
  3029. auto compute_dphi_dnu8 = [&S,&normal,&H,&compute_AxB,&compute_v,&sigma] () {
  3030. const Long Nelem = S.NElem();
  3031. const Long Nnodes = ElemBasis::Size();
  3032. Vector<ElemBasis> Gv;
  3033. Vector<ElemBasis> v = compute_v();
  3034. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  3035. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3036. Vector<ElemBasis> dphi_dnu(Nelem);
  3037. Vector<ElemBasis> nablaDt_nxGv;
  3038. EvalQuadrature(nablaDt_nxGv, S.quadrature_dUxD, S, nxGv, S.Laplace_dUxD);
  3039. for (Long i = 0; i < Nelem; i++) {
  3040. for (Long j = 0; j < Nnodes; j++) {
  3041. dphi_dnu[i][j] = 0;
  3042. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  3043. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  3044. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  3045. }
  3046. }
  3047. return dphi_dnu;
  3048. };
  3049. auto dphi_dnu0 = compute_dphi_dnu0();
  3050. auto dphi_dnu1 = compute_dphi_dnu1();
  3051. auto dphi_dnu2 = compute_dphi_dnu2();
  3052. auto dphi_dnu3 = compute_dphi_dnu3();
  3053. auto dphi_dnu4 = compute_dphi_dnu4();
  3054. auto dphi_dnu5 = compute_dphi_dnu5();
  3055. auto dphi_dnu6 = compute_dphi_dnu6();
  3056. auto dphi_dnu7 = compute_dphi_dnu7();
  3057. auto dphi_dnu8 = compute_dphi_dnu8();
  3058. return (dphi_dnu0+dphi_dnu1+dphi_dnu2+dphi_dnu3+dphi_dnu4+dphi_dnu5+dphi_dnu6+dphi_dnu7+dphi_dnu8);
  3059. };
  3060. { // Set dg_dnu -= dg_dsigma invA dA_dnu sigma
  3061. dg_dnu -= compute_u_dAdnu_v_0(dg_dsigma_invA, sigma, alpha, beta);
  3062. if (S.Nsurf() >= 1) dg_dnu -= compute_u_dAdnu_v_1(sigma, alpha, beta) * dg_dsigma_invA[Nelem*Nnodes+0];
  3063. // if (S.Nsurf() >= 2) dg_dnu -= compute_u_dAdnu_v_2(sigma, alpha, beta) * dg_dsigma_invA[Nelem*Nnodes+1];
  3064. }
  3065. return dg_dnu;
  3066. };
  3067. auto dg_dnu = compute_gradient();
  3068. return dg_dnu;
  3069. }
  3070. static void test() {
  3071. constexpr Integer order_singular = 15;
  3072. constexpr Integer order_direct = 35;
  3073. Comm comm = Comm::World();
  3074. Profile::Enable(true);
  3075. Real flux_tor = 1.0, flux_pol = 1.0;
  3076. Stellarator<Real,ORDER> S;
  3077. { // Init S
  3078. Vector<Long> NtNp;
  3079. NtNp.PushBack(20);
  3080. NtNp.PushBack(4);
  3081. S = Stellarator<Real,ORDER>(NtNp);
  3082. }
  3083. if (S.Nsurf() == 1) flux_pol = 0.0;
  3084. Vector<ElemBasis> pressure;
  3085. { // Set pressure
  3086. Vector<ElemBasis> normal, area_elem;
  3087. compute_norm_area_elem(S, normal, area_elem);
  3088. pressure = area_elem;
  3089. }
  3090. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  3091. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3092. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  3093. SetupQuadrature(S.quadrature_FxdU, S, S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  3094. SetupQuadrature(S.quadrature_dUxF, S, S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
  3095. Vector<ElemBasis> Bt0, Bp0;
  3096. { // Set Bt0, Bp0
  3097. Vector<ElemBasis> Jt, Jp;
  3098. compute_harmonic_vector_potentials(Jt, Jp, S);
  3099. EvalQuadrature(Bt0, S.quadrature_BS, S, Jp, S.BiotSavart);
  3100. EvalQuadrature(Bp0, S.quadrature_BS, S, Jt, S.BiotSavart);
  3101. }
  3102. auto compute_B = [&S,&Bt0,&Bp0] (const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  3103. const Long Nelem = S.NElem();
  3104. Vector<ElemBasis> B(S.NElem() * COORD_DIM);
  3105. if (sigma.Dim()) {
  3106. const Long Nnodes = ElemBasis::Size();
  3107. Vector<ElemBasis> normal, area_elem;
  3108. compute_norm_area_elem(S, normal, area_elem);
  3109. EvalQuadrature(B, S.quadrature_FxdU, S, sigma, S.Laplace_FxdU);
  3110. for (Long i = 0; i < Nelem; i++) {
  3111. for (Long j = 0; j < Nnodes; j++) {
  3112. for (Long k = 0; k < COORD_DIM; k++) {
  3113. B[i*COORD_DIM+k][j] -= 0.5*sigma[i][j]*normal[i*COORD_DIM+k][j];
  3114. }
  3115. }
  3116. }
  3117. } else {
  3118. B = 0;
  3119. }
  3120. if (S.Nsurf() >= 1) B += Bt0*alpha;
  3121. if (S.Nsurf() >= 2) B += Bp0*beta;
  3122. return B;
  3123. };
  3124. auto compute_flux = [&S] (Real& flux_tor, Real& flux_pol, const Vector<ElemBasis>& B, const Vector<ElemBasis>& normal) {
  3125. const Long Nelem = S.NElem();
  3126. const Long Nnodes = ElemBasis::Size();
  3127. SCTL_ASSERT(B.Dim() == Nelem*COORD_DIM);
  3128. SCTL_ASSERT(normal.Dim() == Nelem*COORD_DIM);
  3129. Vector<ElemBasis> J(Nelem * COORD_DIM);
  3130. for (Long i = 0; i < Nelem; i++) { // Set J
  3131. for (Long j = 0; j < Nnodes; j++) {
  3132. Tensor<Real,true,COORD_DIM> b, n;
  3133. b(0) = B[i*COORD_DIM+0][j];
  3134. b(1) = B[i*COORD_DIM+1][j];
  3135. b(2) = B[i*COORD_DIM+2][j];
  3136. n(0) = normal[i*COORD_DIM+0][j];
  3137. n(1) = normal[i*COORD_DIM+1][j];
  3138. n(2) = normal[i*COORD_DIM+2][j];
  3139. J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
  3140. J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
  3141. J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
  3142. }
  3143. }
  3144. Vector<ElemBasis> A;
  3145. EvalQuadrature(A, S.quadrature_FxU, S, J, S.Laplace_FxU);
  3146. Vector<Real> circ_pol(S.Nsurf()), circ_tor(S.Nsurf());
  3147. { // compute circ
  3148. Vector<ElemBasis> dX;
  3149. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  3150. const auto& quad_wts = ElemBasis::QuadWts();
  3151. for (Long k = 0; k < S.Nsurf(); k++) {
  3152. circ_pol[k] = 0;
  3153. circ_tor[k] = 0;
  3154. Long Ndsp = S.ElemDsp(k);
  3155. for (Long i = 0; i < S.NTor(k)*S.NPol(k); i++) {
  3156. for (Long j = 0; j < Nnodes; j++) {
  3157. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+1][j] * quad_wts[j] / S.NTor(k);
  3158. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+3][j] * quad_wts[j] / S.NTor(k);
  3159. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+5][j] * quad_wts[j] / S.NTor(k);
  3160. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+0][j] * quad_wts[j] / S.NPol(k);
  3161. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+2][j] * quad_wts[j] / S.NPol(k);
  3162. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+4][j] * quad_wts[j] / S.NPol(k);
  3163. }
  3164. }
  3165. }
  3166. }
  3167. if (S.Nsurf() == 1) {
  3168. flux_tor = circ_pol[0];
  3169. flux_pol = 0;
  3170. } else if (S.Nsurf() == 2) {
  3171. flux_tor = circ_pol[1] - circ_pol[0];
  3172. flux_pol = circ_tor[0] - circ_tor[1];
  3173. } else {
  3174. SCTL_ASSERT(false);
  3175. }
  3176. };
  3177. auto compute_A = [&S,compute_B,&compute_flux] (const Vector<Real>& x) {
  3178. const Long Nelem = S.NElem();
  3179. const Long Nnodes = ElemBasis::Size();
  3180. SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
  3181. Vector<ElemBasis> normal, area_elem;
  3182. compute_norm_area_elem(S, normal, area_elem);
  3183. Vector<ElemBasis> sigma(Nelem);
  3184. for (Long i = 0; i < Nelem; i++) {
  3185. for (Long j = 0; j < Nnodes; j++) {
  3186. sigma[i][j] = x[i*Nnodes+j];
  3187. }
  3188. }
  3189. Real alpha = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
  3190. Real beta = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
  3191. Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
  3192. Vector<ElemBasis> BdotN = compute_dot_prod(B, normal);
  3193. Real flux_tor, flux_pol;
  3194. compute_flux(flux_tor, flux_pol, B, normal);
  3195. Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
  3196. for (Long i = 0; i < Nelem; i++) {
  3197. for (Long j = 0; j < Nnodes; j++) {
  3198. Ax[i*Nnodes+j] = BdotN[i][j];
  3199. }
  3200. }
  3201. if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = flux_tor;
  3202. if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = flux_pol;
  3203. return Ax;
  3204. };
  3205. auto compute_invA = [&S,&comm,&compute_A] (Vector<ElemBasis>& sigma, Real& alpha, Real& beta, Real flux_tor, Real flux_pol) {
  3206. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&compute_A](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  3207. (*Ax) = compute_A(x);
  3208. };
  3209. const Long Nelem = S.NElem();
  3210. const Long Nnodes = ElemBasis::Size();
  3211. Vector<Real> rhs_(Nelem * Nnodes + S.Nsurf());
  3212. rhs_ = 0;
  3213. if (S.Nsurf() >= 1) rhs_[Nelem * Nnodes + 0] = flux_tor;
  3214. if (S.Nsurf() >= 2) rhs_[Nelem * Nnodes + 1] = flux_pol;
  3215. Vector<Real> x_(Nelem * Nnodes + S.Nsurf());
  3216. x_ = 0;
  3217. ParallelSolver<Real> linear_solver(comm, true);
  3218. linear_solver(&x_, BIOp, rhs_, 1e-8, 100);
  3219. sigma.ReInit(Nelem);
  3220. for (Long i = 0; i < Nelem; i++) {
  3221. for (Long j = 0; j < Nnodes; j++) {
  3222. sigma[i][j] = x_[i*Nnodes+j];
  3223. }
  3224. }
  3225. alpha = (S.Nsurf() >= 1 ? x_[Nelem * Nnodes + 0] : 0);
  3226. beta = (S.Nsurf() >= 2 ? x_[Nelem * Nnodes + 1] : 0);
  3227. };
  3228. auto compute_Aadj = [&S,&Bt0,&Bp0,&compute_flux] (const Vector<Real>& x) {
  3229. const Long Nelem = S.NElem();
  3230. const Long Nnodes = ElemBasis::Size();
  3231. SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
  3232. Vector<ElemBasis> normal, area_elem;
  3233. compute_norm_area_elem(S, normal, area_elem);
  3234. Vector<ElemBasis> x0(Nelem);
  3235. for (Long i = 0; i < Nelem; i++) {
  3236. for (Long j = 0; j < Nnodes; j++) {
  3237. x0[i][j] = x[i*Nnodes+j];
  3238. }
  3239. }
  3240. Real x1 = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
  3241. Real x2 = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
  3242. Vector<ElemBasis> Ax0;
  3243. Real Ax1, Ax2;
  3244. { // Set Ax0, Ax1, Ax2
  3245. Vector<ElemBasis> x0_n(Nelem*COORD_DIM);
  3246. for (Long i = 0; i < Nelem; i++) {
  3247. for (Long j = 0; j < Nnodes; j++) {
  3248. x0_n[i*COORD_DIM+0][j] = x0[i][j] * normal[i*COORD_DIM+0][j];
  3249. x0_n[i*COORD_DIM+1][j] = x0[i][j] * normal[i*COORD_DIM+1][j];
  3250. x0_n[i*COORD_DIM+2][j] = x0[i][j] * normal[i*COORD_DIM+2][j];
  3251. }
  3252. }
  3253. EvalQuadrature(Ax0, S.quadrature_dUxF, S, x0_n, S.Laplace_dUxF);
  3254. Ax0 = x0*(-0.5) - Ax0;
  3255. Ax1 = (S.Nsurf() >= 1 ? compute_inner_prod(area_elem, compute_dot_prod(Bt0, normal), x0) : 0);
  3256. Ax2 = (S.Nsurf() >= 2 ? compute_inner_prod(area_elem, compute_dot_prod(Bp0, normal), x0) : 0);
  3257. }
  3258. auto compute_A21adj = [&S,&normal,&area_elem] (bool toroidal_flux) {
  3259. const Long Nelem = S.NElem();
  3260. const Long Nnodes = ElemBasis::Size();
  3261. Vector<ElemBasis> density(Nelem * COORD_DIM);
  3262. { // Set density
  3263. Real scal[2];
  3264. if (S.Nsurf() == 1) {
  3265. SCTL_ASSERT(toroidal_flux == true);
  3266. scal[0] = 1.0 / S.NTor(0);
  3267. scal[1] = 0;
  3268. } else if (S.Nsurf() == 2) {
  3269. if (toroidal_flux == true) {
  3270. scal[0] = -1.0 / S.NTor(0);
  3271. scal[1] = 1.0 / S.NTor(1);
  3272. } else {
  3273. scal[0] = 1.0 / S.NPol(0);
  3274. scal[1] = -1.0 / S.NPol(1);
  3275. }
  3276. } else {
  3277. SCTL_ASSERT(false);
  3278. }
  3279. Vector<ElemBasis> dX;
  3280. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  3281. for (Long k = 0; k < S.Nsurf(); k++) {
  3282. for (Long i_ = 0; i_ < S.NTor(k)*S.NPol(k); i_++) {
  3283. Long i = S.ElemDsp(k) + i_;
  3284. for (Long j = 0; j < Nnodes; j++) {
  3285. Real s = scal[k] / area_elem[i][j];
  3286. density[i*COORD_DIM+0][j] = dX[i*COORD_DIM*2+0+(toroidal_flux?1:0)][j] * s;
  3287. density[i*COORD_DIM+1][j] = dX[i*COORD_DIM*2+2+(toroidal_flux?1:0)][j] * s;
  3288. density[i*COORD_DIM+2][j] = dX[i*COORD_DIM*2+4+(toroidal_flux?1:0)][j] * s;
  3289. }
  3290. }
  3291. }
  3292. }
  3293. Vector<ElemBasis> Gdensity, nxGdensity(Nelem * COORD_DIM), A21adj;
  3294. EvalQuadrature(Gdensity, S.quadrature_FxU, S, density, S.Laplace_FxU);
  3295. for (Long i = 0; i < Nelem; i++) { // Set nxGdensity
  3296. for (Long j = 0; j < Nnodes; j++) {
  3297. Tensor<Real,true,COORD_DIM> Gdensity_, n;
  3298. Gdensity_(0) = Gdensity[i*COORD_DIM+0][j];
  3299. Gdensity_(1) = Gdensity[i*COORD_DIM+1][j];
  3300. Gdensity_(2) = Gdensity[i*COORD_DIM+2][j];
  3301. n(0) = normal[i*COORD_DIM+0][j];
  3302. n(1) = normal[i*COORD_DIM+1][j];
  3303. n(2) = normal[i*COORD_DIM+2][j];
  3304. nxGdensity[i*COORD_DIM+0][j] = n(1) * Gdensity_(2) - n(2) * Gdensity_(1);
  3305. nxGdensity[i*COORD_DIM+1][j] = n(2) * Gdensity_(0) - n(0) * Gdensity_(2);
  3306. nxGdensity[i*COORD_DIM+2][j] = n(0) * Gdensity_(1) - n(1) * Gdensity_(0);
  3307. }
  3308. }
  3309. EvalQuadrature(A21adj, S.quadrature_dUxF, S, nxGdensity, S.Laplace_dUxF);
  3310. return A21adj;
  3311. };
  3312. if (S.Nsurf() >= 1) Ax0 += compute_A21adj( true) * x1;
  3313. if (S.Nsurf() >= 2) Ax0 += compute_A21adj(false) * x2;
  3314. if (S.Nsurf() == 1) { // Add flux part of Ax1, Ax2
  3315. Real flux_tor, flux_pol;
  3316. compute_flux(flux_tor, flux_pol, Bt0, normal);
  3317. Ax1 += flux_tor * x1;
  3318. Ax2 += 0;
  3319. } else if (S.Nsurf() == 2) {
  3320. Real flux_tor, flux_pol;
  3321. compute_flux(flux_tor, flux_pol, Bt0, normal);
  3322. Ax1 += flux_tor * x1 + flux_pol * x2;
  3323. compute_flux(flux_tor, flux_pol, Bp0, normal);
  3324. Ax2 += flux_tor * x1 + flux_pol * x2;
  3325. } else {
  3326. SCTL_ASSERT(false);
  3327. }
  3328. Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
  3329. for (Long i = 0; i < Nelem; i++) {
  3330. for (Long j = 0; j < Nnodes; j++) {
  3331. Ax[i*Nnodes+j] = Ax0[i][j];
  3332. }
  3333. }
  3334. if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = Ax1;
  3335. if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = Ax2;
  3336. return Ax;
  3337. };
  3338. auto compute_invAadj = [&S,&comm,&compute_Aadj] (Vector<Real>& b) {
  3339. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&compute_Aadj](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  3340. (*Ax) = compute_Aadj(x);
  3341. };
  3342. const Long Nelem = S.NElem();
  3343. const Long Nnodes = ElemBasis::Size();
  3344. Vector<Real> x(b.Dim());
  3345. x = 0;
  3346. ParallelSolver<Real> linear_solver(comm, true);
  3347. linear_solver(&x, BIOp, b, 1e-8, 100);
  3348. return x;
  3349. };
  3350. if (0) { // Check u_t A v == v_t Aadj u
  3351. auto pack = [&S](Vector<Real>& x, const Vector<ElemBasis>& x0, Real x1, Real x2) {
  3352. const Long Nelem = S.NElem();
  3353. const Long Nnodes = ElemBasis::Size();
  3354. x.ReInit(Nelem*Nnodes+S.Nsurf());
  3355. for (Long i = 0; i < Nelem; i++) {
  3356. for (Long j = 0; j < Nnodes; j++) {
  3357. x[i*Nnodes+j] = x0[i][j];
  3358. }
  3359. }
  3360. if (S.Nsurf() >= 1) x[Nelem*Nnodes+0] = x1;
  3361. if (S.Nsurf() >= 2) x[Nelem*Nnodes+1] = x2;
  3362. };
  3363. auto unpack = [&S](Vector<ElemBasis>& x0, Real& x1, Real& x2, const Vector<Real>& x) {
  3364. const Long Nelem = S.NElem();
  3365. const Long Nnodes = ElemBasis::Size();
  3366. x0.ReInit(Nelem);
  3367. for (Long i = 0; i < Nelem; i++) {
  3368. for (Long j = 0; j < Nnodes; j++) {
  3369. x0[i][j] = x[i*Nnodes+j];
  3370. }
  3371. }
  3372. if (S.Nsurf() >= 1) x1 = x[Nelem*Nnodes+0];
  3373. if (S.Nsurf() >= 2) x2 = x[Nelem*Nnodes+1];
  3374. };
  3375. const Long Nelem = S.NElem();
  3376. const Long Nnodes = ElemBasis::Size();
  3377. Vector<ElemBasis> normal, area_elem;
  3378. compute_norm_area_elem(S, normal, area_elem);
  3379. Vector<Real> u, v;
  3380. Vector<ElemBasis> u0 = area_elem*0; Real u1 = 3.141, u2 = 0.4142;
  3381. Vector<ElemBasis> v0 = area_elem*0; Real v1 = 1.645, v2 = 3.6055;
  3382. { // Set u0, v0
  3383. auto X = S.GetElemList().ElemVector();
  3384. for (Long i = 0; i < Nelem; i++) {
  3385. for (Long j = 0; j < Nnodes; j++) {
  3386. u0[i][j] = X[i*COORD_DIM+0][j] + X[i*COORD_DIM+1][j] + X[i*COORD_DIM+2][j];
  3387. v0[i][j] = X[i*COORD_DIM+0][j] + X[i*COORD_DIM+1][j] + X[i*COORD_DIM+2][j];
  3388. }
  3389. }
  3390. }
  3391. pack(u,u0,u1,u2);
  3392. pack(v,v0,v1,v2);
  3393. Vector<Real> Av = compute_A(v);
  3394. Vector<Real> uA = compute_Aadj(u);
  3395. Vector<ElemBasis> Av0; Real Av1, Av2;
  3396. Vector<ElemBasis> uA0; Real uA1, uA2;
  3397. unpack(Av0, Av1, Av2, Av);
  3398. unpack(uA0, uA1, uA2, uA);
  3399. std::cout << compute_inner_prod(area_elem, u0, Av0) + u1*Av1 + (S.Nsurf()>=2?u2*Av2:0) << '\n';
  3400. std::cout << compute_inner_prod(area_elem, uA0, v0) + uA1*v1 + (S.Nsurf()>=2?uA2*v2:0) << '\n';
  3401. exit(0);
  3402. }
  3403. Vector<ElemBasis> dg_dnu = compute_gradient(S, pressure, flux_tor, flux_pol);
  3404. { // Write VTU
  3405. VTUData vtu;
  3406. vtu.AddElems(S.GetElemList(), dg_dnu, ORDER);
  3407. vtu.WriteVTK("dg_dnu", comm);
  3408. }
  3409. if (1) { // test grad_g
  3410. auto compute_g = [&S,&Bt0,&Bp0,&compute_B,&compute_invA,&comm] (const Vector<ElemBasis>& nu, Real eps, Real flux_tor, Real flux_pol, const Vector<ElemBasis>& pressure) {
  3411. const Long Nelem = S.NElem();
  3412. const Long Nnodes = ElemBasis::Size();
  3413. Vector<ElemBasis> normal, area_elem;
  3414. compute_norm_area_elem(S, normal, area_elem);
  3415. Vector<ElemBasis> X_orig(Nelem*COORD_DIM);
  3416. for (Long i = 0; i < Nelem; i++) {
  3417. for (Long j = 0; j < Nnodes; j++) {
  3418. X_orig[i*COORD_DIM+0][j] = S.Elem(i,0)[j];
  3419. X_orig[i*COORD_DIM+1][j] = S.Elem(i,1)[j];
  3420. X_orig[i*COORD_DIM+2][j] = S.Elem(i,2)[j];
  3421. S.Elem(i,0)[j] += eps*nu[i][j] * normal[i*COORD_DIM+0][j];
  3422. S.Elem(i,1)[j] += eps*nu[i][j] * normal[i*COORD_DIM+1][j];
  3423. S.Elem(i,2)[j] += eps*nu[i][j] * normal[i*COORD_DIM+2][j];
  3424. }
  3425. }
  3426. /////////////////////////////////////////////////////////////////////////////////////////////////////////////
  3427. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3428. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  3429. SetupQuadrature(S.quadrature_FxdU, S, S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  3430. Vector<ElemBasis> Jt, Jp;
  3431. compute_harmonic_vector_potentials(Jt, Jp, S);
  3432. EvalQuadrature(Bt0, S.quadrature_BS, S, Jp, S.BiotSavart);
  3433. EvalQuadrature(Bp0, S.quadrature_BS, S, Jt, S.BiotSavart);
  3434. Real alpha, beta;
  3435. Vector<ElemBasis> sigma;
  3436. compute_invA(sigma, alpha, beta, flux_tor, flux_pol);
  3437. Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
  3438. compute_norm_area_elem(S, normal, area_elem);
  3439. Real g = compute_inner_prod(area_elem, compute_gvec(S,B,pressure), area_elem*0+1);
  3440. /////////////////////////////////////////////////////////////////////////////////////////////////////////////
  3441. for (Long i = 0; i < Nelem; i++) {
  3442. for (Long j = 0; j < Nnodes; j++) {
  3443. S.Elem(i,0)[j] = X_orig[i*COORD_DIM+0][j];
  3444. S.Elem(i,1)[j] = X_orig[i*COORD_DIM+1][j];
  3445. S.Elem(i,2)[j] = X_orig[i*COORD_DIM+2][j];
  3446. }
  3447. }
  3448. return g;
  3449. };
  3450. Vector<ElemBasis> normal, area_elem;
  3451. compute_norm_area_elem(S, normal, area_elem);
  3452. const Long Nelem = S.NElem();
  3453. {
  3454. Vector<ElemBasis> nu(Nelem);
  3455. nu = area_elem;
  3456. Real eps = 1e-4;
  3457. Real g0 = compute_g(nu,-eps, flux_tor, flux_pol, pressure);
  3458. Real g1 = compute_g(nu,eps, flux_tor, flux_pol, pressure);
  3459. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  3460. std::cout<<"dg_dnu = "<<compute_inner_prod(area_elem,nu, dg_dnu)<<'\n';
  3461. }
  3462. {
  3463. Vector<ElemBasis> nu(Nelem);
  3464. nu = 1;
  3465. Real eps = 1e-4;
  3466. Real g0 = compute_g(nu,-eps, flux_tor, flux_pol, pressure);
  3467. Real g1 = compute_g(nu,eps, flux_tor, flux_pol, pressure);
  3468. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  3469. std::cout<<"dg_dnu = "<<compute_inner_prod(area_elem,nu, dg_dnu)<<'\n';
  3470. }
  3471. {
  3472. Vector<ElemBasis> nu(Nelem);
  3473. nu = dg_dnu;
  3474. Real eps = 1e-4;
  3475. Real g0 = compute_g(nu,-eps, flux_tor, flux_pol, pressure);
  3476. Real g1 = compute_g(nu,eps, flux_tor, flux_pol, pressure);
  3477. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  3478. std::cout<<"dg_dnu = "<<compute_inner_prod(area_elem,nu, dg_dnu)<<'\n';
  3479. }
  3480. }
  3481. }
  3482. static void test_() {
  3483. constexpr Integer order_singular = 15;
  3484. constexpr Integer order_direct = 35;
  3485. Comm comm = Comm::World();
  3486. Profile::Enable(true);
  3487. Real flux_tor = 1.0, flux_pol = 1.0;
  3488. Stellarator<Real,ORDER> S;
  3489. { // Init S
  3490. Vector<Long> NtNp;
  3491. NtNp.PushBack(20);
  3492. NtNp.PushBack(4);
  3493. NtNp.PushBack(20);
  3494. NtNp.PushBack(4);
  3495. S = Stellarator<Real,ORDER>(NtNp);
  3496. }
  3497. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  3498. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3499. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  3500. SetupQuadrature(S.quadrature_FxdU, S, S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  3501. Vector<ElemBasis> Jt, Jp, Bt0, Bp0;
  3502. compute_harmonic_vector_potentials(Jt, Jp, S);
  3503. EvalQuadrature(Bt0, S.quadrature_BS, S, Jp, S.BiotSavart);
  3504. EvalQuadrature(Bp0, S.quadrature_BS, S, Jt, S.BiotSavart);
  3505. auto compute_B = [&S,&Bt0,&Bp0] (const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  3506. const Long Nelem = S.NElem();
  3507. Vector<ElemBasis> B(S.NElem() * COORD_DIM);
  3508. if (sigma.Dim()) {
  3509. const Long Nnodes = ElemBasis::Size();
  3510. Vector<ElemBasis> normal, area_elem;
  3511. compute_norm_area_elem(S, normal, area_elem);
  3512. EvalQuadrature(B, S.quadrature_FxdU, S, sigma, S.Laplace_FxdU);
  3513. for (Long i = 0; i < Nelem; i++) {
  3514. for (Long j = 0; j < Nnodes; j++) {
  3515. for (Long k = 0; k < COORD_DIM; k++) {
  3516. B[i*COORD_DIM+k][j] -= 0.5*sigma[i][j]*normal[i*COORD_DIM+k][j];
  3517. }
  3518. }
  3519. }
  3520. } else {
  3521. B = 0;
  3522. }
  3523. if (alpha != 0) B += Bt0*alpha;
  3524. if (beta != 0) B += Bp0*beta;
  3525. return B;
  3526. };
  3527. auto compute_A = [&S,compute_B] (const Vector<Real>& x) {
  3528. const Long Nelem = S.NElem();
  3529. const Long Nnodes = ElemBasis::Size();
  3530. SCTL_ASSERT(x.Dim() == Nelem*Nnodes+2);
  3531. Vector<ElemBasis> normal, area_elem;
  3532. compute_norm_area_elem(S, normal, area_elem);
  3533. Vector<ElemBasis> sigma(Nelem);
  3534. for (Long i = 0; i < Nelem; i++) {
  3535. for (Long j = 0; j < Nnodes; j++) {
  3536. sigma[i][j] = x[i*Nnodes+j];
  3537. }
  3538. }
  3539. Real alpha = x[Nelem*Nnodes + 0];
  3540. Real beta = x[Nelem*Nnodes + 1];
  3541. Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
  3542. Vector<ElemBasis> BdotN = compute_dot_prod(B, normal);
  3543. Real flux_tor, flux_pol;
  3544. { // Compute flux_tor, flux_pol
  3545. Vector<ElemBasis> J(Nelem * COORD_DIM);
  3546. for (Long i = 0; i < Nelem; i++) { // Set J
  3547. for (Long j = 0; j < Nnodes; j++) {
  3548. Tensor<Real,true,COORD_DIM> b, n;
  3549. b(0) = B[i*COORD_DIM+0][j];
  3550. b(1) = B[i*COORD_DIM+1][j];
  3551. b(2) = B[i*COORD_DIM+2][j];
  3552. n(0) = normal[i*COORD_DIM+0][j];
  3553. n(1) = normal[i*COORD_DIM+1][j];
  3554. n(2) = normal[i*COORD_DIM+2][j];
  3555. J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
  3556. J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
  3557. J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
  3558. }
  3559. }
  3560. Vector<ElemBasis> A;
  3561. EvalQuadrature(A, S.quadrature_FxU, S, J, S.Laplace_FxU);
  3562. Vector<Real> circ_pol(S.Nsurf()), circ_tor(S.Nsurf());
  3563. { // compute circ
  3564. Vector<ElemBasis> dX;
  3565. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  3566. const auto& quad_wts = ElemBasis::QuadWts();
  3567. for (Long k = 0; k < S.Nsurf(); k++) {
  3568. circ_pol[k] = 0;
  3569. circ_tor[k] = 0;
  3570. Long Ndsp = S.ElemDsp(k);
  3571. for (Long i = 0; i < S.NTor(k)*S.NPol(k); i++) {
  3572. for (Long j = 0; j < Nnodes; j++) {
  3573. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+1][j] * quad_wts[j] / S.NTor(k);
  3574. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+3][j] * quad_wts[j] / S.NTor(k);
  3575. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+5][j] * quad_wts[j] / S.NTor(k);
  3576. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+0][j] * quad_wts[j] / S.NPol(k);
  3577. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+2][j] * quad_wts[j] / S.NPol(k);
  3578. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+4][j] * quad_wts[j] / S.NPol(k);
  3579. }
  3580. }
  3581. }
  3582. }
  3583. if (S.Nsurf() == 1) {
  3584. flux_tor = circ_pol[0];
  3585. flux_pol = 0;
  3586. } else if (S.Nsurf() == 2) {
  3587. flux_tor = circ_pol[1] - circ_pol[0];
  3588. flux_pol = circ_tor[0] - circ_tor[1];
  3589. } else {
  3590. SCTL_ASSERT(false);
  3591. }
  3592. }
  3593. Vector<Real> Ax(Nelem*Nnodes+2);
  3594. for (Long i = 0; i < Nelem; i++) {
  3595. for (Long j = 0; j < Nnodes; j++) {
  3596. Ax[i*Nnodes+j] = BdotN[i][j];
  3597. }
  3598. }
  3599. Ax[Nelem*Nnodes + 0] = flux_tor;
  3600. Ax[Nelem*Nnodes + 1] = flux_pol;
  3601. return Ax;
  3602. };
  3603. auto compute_invA = [&S,&comm,&compute_A] (Vector<ElemBasis>& sigma, Real& alpha, Real& beta, Real flux_tor, Real flux_pol) {
  3604. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&compute_A](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  3605. (*Ax) = compute_A(x);
  3606. };
  3607. const Long Nelem = S.NElem();
  3608. const Long Nnodes = ElemBasis::Size();
  3609. Vector<Real> rhs_(Nelem * Nnodes + 2);
  3610. rhs_ = 0;
  3611. rhs_[Nelem * Nnodes + 0] = flux_tor;
  3612. rhs_[Nelem * Nnodes + 1] = flux_pol;
  3613. Vector<Real> x_(Nelem * Nnodes + 2);
  3614. x_ = 0;
  3615. ParallelSolver<Real> linear_solver(comm, true);
  3616. linear_solver(&x_, BIOp, rhs_, 1e-8, 100);
  3617. sigma.ReInit(Nelem);
  3618. for (Long i = 0; i < Nelem; i++) {
  3619. for (Long j = 0; j < Nnodes; j++) {
  3620. sigma[i][j] = x_[i*Nnodes+j];
  3621. }
  3622. }
  3623. alpha = x_[Nelem * Nnodes + 0];
  3624. beta = x_[Nelem * Nnodes + 1];
  3625. };
  3626. Real alpha = 0, beta = 0;
  3627. Vector<ElemBasis> sigma;
  3628. compute_invA(sigma, alpha, beta, flux_tor, flux_pol);
  3629. Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
  3630. { // Write VTU
  3631. VTUData vtu;
  3632. vtu.AddElems(S.GetElemList(), sigma, ORDER);
  3633. vtu.WriteVTK("sigma", comm);
  3634. }
  3635. { // Write VTU
  3636. VTUData vtu;
  3637. vtu.AddElems(S.GetElemList(), B, ORDER);
  3638. vtu.WriteVTK("B", comm);
  3639. }
  3640. }
  3641. private:
  3642. static void tmp() {
  3643. //if (0) { // Save data
  3644. // Matrix<Real> M(S.NtNp_[0]*ORDER, S.NtNp_[1]*ORDER);
  3645. // for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
  3646. // for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
  3647. // for (Long t = 0; t < ORDER; t++) {
  3648. // for (Long p = 0; p < ORDER; p++) {
  3649. // Long elem_idx = tt * S.NtNp_[1] + pp;
  3650. // Long node_idx = p * ORDER + t;
  3651. // M[tt*ORDER+t][pp*ORDER+p] = dg_dnu[elem_idx][node_idx];
  3652. // }
  3653. // }
  3654. // }
  3655. // }
  3656. // M.Write("dg_dnu.mat");
  3657. //}
  3658. //if (0) { // filter dg_dnu and write VTU
  3659. // const Long Nelem = S.NElem();
  3660. // const Long Nnodes = ElemBasis::Size();
  3661. // const Integer INTERP_ORDER = 12;
  3662. // Long Nt = S.NtNp_[0]*ORDER/5, Np = S.NtNp_[1]*ORDER/5;
  3663. // Matrix<Real> M(Nt, Np); M = 0;
  3664. // const auto& quad_wts = ElemBasis::QuadWts();
  3665. // const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
  3666. // for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
  3667. // for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
  3668. // for (Long t = 0; t < ORDER; t++) {
  3669. // for (Long p = 0; p < ORDER; p++) {
  3670. // Real theta = (tt + Mnodes[0][t]) / S.NtNp_[0];
  3671. // Real phi = (pp + Mnodes[0][p]) / S.NtNp_[1];
  3672. // Long i = (Long)(theta * Nt);
  3673. // Long j = (Long)(phi * Np);
  3674. // Real x = theta * Nt - i;
  3675. // Real y = phi * Np - j;
  3676. // Long elem_idx = tt * S.NtNp_[1] + pp;
  3677. // Long node_idx = p * ORDER + t;
  3678. // Vector<Real> Interp0(INTERP_ORDER);
  3679. // Vector<Real> Interp1(INTERP_ORDER);
  3680. // { // Set Interp0, Interp1
  3681. // auto node = [] (Long i) {
  3682. // return (Real)i - (INTERP_ORDER-1)/2;
  3683. // };
  3684. // for (Long i = 0; i < INTERP_ORDER; i++) {
  3685. // Real wt_x = 1, wt_y = 1;
  3686. // for (Long j = 0; j < INTERP_ORDER; j++) {
  3687. // if (j != i) {
  3688. // wt_x *= (x - node(j)) / (node(i) - node(j));
  3689. // wt_y *= (y - node(j)) / (node(i) - node(j));
  3690. // }
  3691. // Interp0[i] = wt_x;
  3692. // Interp1[i] = wt_y;
  3693. // }
  3694. // }
  3695. // }
  3696. // for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  3697. // for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  3698. // Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  3699. // Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  3700. // M[idx_i][idx_j] += dg_dnu[elem_idx][node_idx] * quad_wts[node_idx] * Interp0[ii] * Interp1[jj] / (S.NtNp_[0] * S.NtNp_[1]) * (Nt * Np);
  3701. // }
  3702. // }
  3703. // }
  3704. // }
  3705. // }
  3706. // }
  3707. // Vector<ElemBasis> f(Nelem);
  3708. // for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
  3709. // for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
  3710. // for (Long t = 0; t < ORDER; t++) {
  3711. // for (Long p = 0; p < ORDER; p++) {
  3712. // Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
  3713. // Real theta = (tt + Mnodes[0][t]) / S.NtNp_[0];
  3714. // Real phi = (pp + Mnodes[0][p]) / S.NtNp_[1];
  3715. // Long i = (Long)(theta * Nt);
  3716. // Long j = (Long)(phi * Np);
  3717. // Real x = theta * Nt - i;
  3718. // Real y = phi * Np - j;
  3719. // Vector<Real> Interp0(INTERP_ORDER);
  3720. // Vector<Real> Interp1(INTERP_ORDER);
  3721. // { // Set Interp0, Interp1
  3722. // auto node = [] (Long i) {
  3723. // return (Real)i - (INTERP_ORDER-1)/2;
  3724. // };
  3725. // for (Long i = 0; i < INTERP_ORDER; i++) {
  3726. // Real wt_x = 1, wt_y = 1;
  3727. // for (Long j = 0; j < INTERP_ORDER; j++) {
  3728. // if (j != i) {
  3729. // wt_x *= (x - node(j)) / (node(i) - node(j));
  3730. // wt_y *= (y - node(j)) / (node(i) - node(j));
  3731. // }
  3732. // Interp0[i] = wt_x;
  3733. // Interp1[i] = wt_y;
  3734. // }
  3735. // }
  3736. // }
  3737. // Real f0 = 0;
  3738. // for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  3739. // for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  3740. // Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  3741. // Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  3742. // f0 += Interp0[ii] * Interp1[jj] * M[idx_i][idx_j];
  3743. // }
  3744. // }
  3745. // Long elem_idx = tt * S.NtNp_[1] + pp;
  3746. // Long node_idx = p * ORDER + t;
  3747. // f[elem_idx][node_idx] = f0;
  3748. // }
  3749. // }
  3750. // }
  3751. // }
  3752. // { // Write VTU
  3753. // VTUData vtu;
  3754. // vtu.AddElems(S.GetElemList(), f, ORDER);
  3755. // vtu.WriteVTK("dg_dnu_filtered", comm);
  3756. // }
  3757. // dg_dnu = f;
  3758. //}
  3759. }
  3760. static void FlipNormal(Vector<ElemBasis>& v) {
  3761. for (Long i = 0; i < v.Dim(); i++) {
  3762. const auto elem = v[i];
  3763. for (Long j0 = 0; j0 < ORDER; j0++) {
  3764. for (Long j1 = 0; j1 < ORDER; j1++) {
  3765. v[i][j0*ORDER+j1] = elem[j0*ORDER+(ORDER-j1-1)];
  3766. }
  3767. }
  3768. }
  3769. }
  3770. template <class Kernel> static void SetupQuadrature(Quadrature<Real>& quadrature, const Stellarator<Real,ORDER>& S, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm, Real Rqbx = 0) {
  3771. if (S.Nsurf() == 2) {
  3772. Long Nelem0 = S.NTor(0)*S.NPol(0);
  3773. ElemList<COORD_DIM, ElemBasis> elem_lst = S.GetElemList();
  3774. { // Update elem_lst
  3775. Vector<ElemBasis> X = elem_lst.ElemVector();
  3776. Vector<ElemBasis> X0(Nelem0*COORD_DIM, X.begin(), false);
  3777. FlipNormal(X0);
  3778. elem_lst.ReInit(X);
  3779. }
  3780. quadrature.template Setup<ElemBasis, ElemBasis>(elem_lst, kernel, order_singular, order_direct, period_length, comm, Rqbx);
  3781. } else {
  3782. quadrature.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), kernel, order_singular, order_direct, period_length, comm, Rqbx);
  3783. }
  3784. }
  3785. template <class Kernel> static void EvalQuadrature(Vector<ElemBasis>& potential, const Quadrature<Real>& quadrature, const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& density, const Kernel& kernel) {
  3786. if (S.Nsurf() == 2) {
  3787. Long Nelem0 = S.NTor(0)*S.NPol(0);
  3788. Vector<ElemBasis> potential_, density_ = density;
  3789. ElemList<COORD_DIM, ElemBasis> elem_lst = S.GetElemList();
  3790. { // Update elem_lst
  3791. Vector<ElemBasis> X = elem_lst.ElemVector();
  3792. Vector<ElemBasis> X0(Nelem0*COORD_DIM, X.begin(), false);
  3793. FlipNormal(X0);
  3794. elem_lst.ReInit(X);
  3795. }
  3796. { // Update density_
  3797. Long dof = density_.Dim() / S.NElem();
  3798. Vector<ElemBasis> density0(Nelem0*dof, density_.begin(), false);
  3799. FlipNormal(density0);
  3800. }
  3801. quadrature.Eval(potential_, elem_lst, density_, kernel);
  3802. { // Update potential_
  3803. Long dof = potential_.Dim() / S.NElem();
  3804. Vector<ElemBasis> potential0(Nelem0*dof, potential_.begin(), false);
  3805. FlipNormal(potential0);
  3806. }
  3807. potential = potential_;
  3808. } else {
  3809. quadrature.Eval(potential, S.GetElemList(), density, kernel);
  3810. }
  3811. }
  3812. void InitSurf(Long l, Long Nsurf) {
  3813. const auto& nodes = ElemBasis::Nodes();
  3814. const Long Nt = NTor(l);
  3815. const Long Np = NPol(l);
  3816. for (Long i = 0; i < Nt; i++) {
  3817. for (Long j = 0; j < Np; j++) {
  3818. for (Long k = 0; k < ElemBasis::Size(); k++) {
  3819. Real theta = (i + nodes[0][k]) * 2*const_pi<Real>()/Nt;
  3820. Real phi = (j + nodes[1][k]) * 2*const_pi<Real>()/Np;
  3821. Real X,Y,Z;
  3822. SurfGeom(X,Y,Z,theta,phi, (2.0+l)/(1.0+Nsurf));
  3823. Elem(ElemIdx(l,i,j),0)[k] = X;
  3824. Elem(ElemIdx(l,i,j),1)[k] = Y;
  3825. Elem(ElemIdx(l,i,j),2)[k] = Z;
  3826. }
  3827. }
  3828. }
  3829. }
  3830. static void SurfGeom(Real& X, Real& Y, Real& Z, Real theta, Real phi, Real s) {
  3831. sctl::Integer Nperiod = 5;
  3832. #if 0
  3833. Real Aspect_ratio = 10.27932548522949;
  3834. Real coeffmat[21][21] = { 0.00000478813217, 0.00000000000000, 0.00000351611652, 0.00000135354389, 0.00000061357832, 0.00000220091101, 0.00000423862912, -0.00003000058678, 0.00000064187111, -0.00024228452821, 0.00003116775770, 0.00000176210710, 0.00000289141326, -0.00000150300525, 0.00000772853855, 0.00000098855242, 0.00000316606793, 0.00000002168364, 0.00000212047939, 0.00000299016097, 0.00000443224508,
  3835. 0.00000028202930, 0.00000000000000, -0.00000249222421, -0.00000203136278, 0.00000131104809, 0.00000011987446, -0.00000370760154, 0.00004553918916, -0.00007711342914, -0.00004685295062, 0.00011049838213, -0.00000197486270, 0.00000395827146, 0.00000615046474, 0.00000755337123, 0.00000700606006, 0.00000922725030, -0.00000043310337, 0.00000107416383, 0.00000449787694, 0.00000305137178,
  3836. 0.00001226376662, 0.00000000000000, 0.00000270820692, 0.00000208059305, 0.00000521478523, 0.00001779037302, 0.00000846544117, 0.00001120913385, -0.00065816845745, -0.00085107452469, -0.00013171190221, -0.00005540943675, -0.00001835885450, 0.00000101879823, 0.00000209222071, 0.00000091532502, -0.00000521515358, -0.00000209227142, -0.00000678545939, -0.00000034963549, -0.00000015111488,
  3837. 0.00001560274177, 0.00000000000000, 0.00000350691471, -0.00001160475040, -0.00001763036562, 0.00003487367940, -0.00002787247831, -0.00000910982726, 0.00008818832430, -0.00524408789352, 0.00009378376126, 0.00004184526188, 0.00002849263365, -0.00002757280527, 0.00003388467667, 0.00000706207265, 0.00000625263419, -0.00003315929280, -0.00001181772132, 0.00000311426015, 0.00001875682574,
  3838. -0.00000398287420, 0.00000000000000, -0.00001524541040, 0.00001724056165, 0.00002245173346, 0.00002806861812, -0.00000388776925, 0.00008143573359, -0.00005900909309, 0.00110496615525, 0.00134626252111, 0.00005128383054, -0.00001372421866, 0.00003612563887, 0.00002236580076, -0.00002728391883, 0.00001981237256, 0.00000655450458, 0.00000985319002, 0.00001347597299, 0.00000645987802,
  3839. 0.00003304968050, 0.00000000000000, -0.00000530822217, 0.00001324870937, -0.00003610889689, -0.00005478735329, -0.00005818806312, -0.00037112057908, -0.00017812002625, -0.00093204283621, 0.00115969858598, -0.00033559172880, -0.00010441876657, -0.00001617923044, -0.00000555065844, 0.00007343527250, -0.00004408047607, 0.00000403802142, 0.00001843931204, 0.00001694047933, 0.00001213414362,
  3840. -0.00000751115658, 0.00000000000000, 0.00005457974839, -0.00000334614515, 0.00005845565465, 0.00015000770509, 0.00021849104087, 0.00002724147635, 0.00167233624961, 0.00011666602222, 0.00276563479565, -0.00085952825611, -0.00030217235326, -0.00008841593808, 0.00000997664119, -0.00015285826521, 0.00002517224675, 0.00003009161810, 0.00001883217556, 0.00002146127554, 0.00001822445302,
  3841. -0.00004128706860, 0.00000000000000, -0.00003496417776, 0.00001088761655, -0.00000298955979, -0.00005359326315, -0.00019021633489, -0.00017992728681, -0.00347794801928, 0.00064632791327, 0.00449698418379, -0.00017710507382, 0.00006126180233, 0.00018059254216, 0.00002354096432, 0.00008189838991, -0.00010060678323, -0.00017183290038, 0.00019413756672, 0.00021334811754, 0.00011263617489,
  3842. 0.00000853522670, -0.00000000000000, -0.00006544789358, 0.00005424076880, -0.00000679056529, -0.00001249735487, -0.00053082982777, 0.00035396864405, -0.00115020677913, 0.05894451215863, 0.06573092192411, 0.01498018857092, 0.00278125284240, 0.00145188067108, 0.00033717858605, 0.00000800427370, -0.00009335305367, 0.00024286781263, -0.00023916347709, 0.00031213948387, 0.00018134393031,
  3843. -0.00002521496390, -0.00000000000000, -0.00054337945767, 0.00012690725271, 0.00053313979879, 0.00064233405283, -0.00047686311882, 0.00176536326762, 0.00074157933705, -0.02684566564858, 1.00000000000000, 0.07176169008017, 0.00837037432939, -0.00000381640211, 0.00088998704450, -0.00049218931235, -0.00024546548957, -0.00036608282244, 0.00049480766756, 0.00031158892671, 0.00006898906577,
  3844. 0.00021280418150, 0.00028127161204, -0.00070030166535, 0.00022237010126, -0.00028713891516, -0.00013800295710, 0.00005912094275, 0.00172126013786, -0.00618684850633, 0.03608432412148, Aspect_ratio , 0.49896776676178, 0.00091372377938, -0.00085712829605, -0.00124801427592, -0.00007427225501, -0.00005245858847, 0.00002841771493, 0.00020249813679, -0.00014303345233, 0.00001406490901,
  3845. 0.00023699452868, 0.00008661757602, 0.00025744654704, -0.00022715188970, -0.00076146807987, 0.00055185536621, -0.00012325309217, -0.00072356045712, -0.00160693109501, 0.00246682553552, -0.14175094664097, -0.36207047104836, -0.04089594259858, 0.00060774467420, 0.00088646943914, 0.00004865296432, -0.00041878610500, -0.00023025234987, -0.00009676301852, -0.00000000000000, 0.00008409228758,
  3846. 0.00011432896281, -0.00000707848403, 0.00004698805787, -0.00043642931269, 0.00081384339137, -0.00065635429928, -0.00011831733718, 0.00017413357273, 0.00224463525228, 0.00478497287259, 0.03294761106372, 0.01078986655921, 0.10731782764196, 0.00075034319889, -0.00009241879889, 0.00055023463210, 0.00006596000458, 0.00005045382932, 0.00014874986664, 0.00000000000000, -0.00015369028552,
  3847. 0.00001037383754, 0.00009250180301, 0.00026204055757, 0.00007424291834, -0.00047751804232, 0.00029184055165, 0.00050921301590, -0.00004825839278, -0.00029933769838, 0.00279659987427, 0.00210463814437, -0.00618590926751, -0.02400829829276, -0.02316811867058, -0.00086368201301, -0.00032258985448, -0.00018304496189, 0.00008438774967, -0.00008305341908, 0.00000000000000, 0.00013047417451,
  3848. -0.00001376930322, -0.00001723831701, -0.00011543079017, -0.00022646733851, 0.00013467084500, -0.00004661652201, -0.00008419520600, 0.00035772417323, -0.00011815709877, 0.00028718306567, 0.00092207465786, -0.00317224999890, 0.00061770365573, 0.01017294172198, 0.00294739892706, 0.00014669894881, 0.00015702951350, 0.00003432080121, -0.00008555022214, -0.00000000000000, 0.00000454909878,
  3849. -0.00000196001542, -0.00003198397462, -0.00004425687075, -0.00004129848094, -0.00003789070615, -0.00027583551127, 0.00025874207495, -0.00002334945384, -0.00007259396807, -0.00008295358566, 0.00011360697681, -0.00101968157105, 0.00046784928418, -0.00208410434425, -0.00313158822246, -0.00046005158219, -0.00010552268213, -0.00005850767775, 0.00003971093611, 0.00000000000000, -0.00005275657168,
  3850. -0.00001065901233, -0.00001934838656, -0.00001220186732, -0.00002060524639, -0.00000225423423, -0.00001894621164, -0.00001533334580, -0.00001791087379, 0.00008156246622, -0.00008441298269, 0.00021060956351, -0.00030303673702, 0.00075949780876, -0.00010539998038, 0.00109045265708, 0.00068949378328, 0.00009268362192, 0.00003471063246, 0.00001204656473, -0.00000000000000, 0.00001500743110,
  3851. 0.00000105878155, -0.00000910870767, -0.00000172467264, -0.00000722095228, 0.00000699280463, -0.00002061720625, -0.00000889817693, -0.00001993474507, 0.00000370749740, -0.00000090311920, 0.00002677819793, 0.00043428712524, 0.00210293265991, 0.00018200518389, -0.00009621794743, -0.00035250501242, -0.00012996385340, -0.00002185157609, -0.00001116586463, -0.00000000000000, -0.00000451994811,
  3852. 0.00000424055270, -0.00000463139304, 0.00000301006116, -0.00000123974939, 0.00000632465435, -0.00002090823000, 0.00001773388794, 0.00000121050368, 0.00001886057362, -0.00001043497195, -0.00002269273500, -0.00021979617304, -0.00001043962493, -0.00116343051195, -0.00004193381756, 0.00007944958634, 0.00007301353617, 0.00002082651736, -0.00000119863023, -0.00000000000000, -0.00001440504820,
  3853. -0.00000391270805, -0.00000490489265, -0.00000504441778, -0.00000904507579, -0.00000111389932, 0.00000597532107, 0.00000047090245, -0.00001553130096, -0.00001524566323, -0.00000522222899, -0.00007707672921, -0.00004165665086, 0.00015764687851, 0.00035649110214, 0.00038701237645, 0.00002386798405, -0.00001946414341, -0.00000913835174, -0.00000489907188, 0.00000000000000, 0.00000172327657,
  3854. -0.00000015388650, -0.00000603232729, -0.00000397650865, 0.00000280493782, 0.00000463132073, -0.00000788678426, -0.00000471605335, -0.00000283715985, -0.00000422824724, 0.00000366817630, -0.00001159603562, -0.00001625759251, 0.00049116823357, 0.00005048640014, -0.00020234247495, -0.00006341376866, -0.00000807822744, 0.00000070463199, 0.00000014041755, 0.00000000000000, -0.00000718306910};
  3855. #else
  3856. Real Aspect_ratio = 5;
  3857. Real coeffmat[21][21] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3858. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3859. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3860. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3861. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3862. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3863. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3864. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3865. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3866. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, s, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3867. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Aspect_ratio, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3868. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2*s, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3869. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3870. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3871. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3872. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3873. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3874. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3875. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3876. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3877. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0};
  3878. #endif
  3879. Z = 0;
  3880. Real R = 0;
  3881. for (long i = -10; i <= 10; i++) {
  3882. for (long j = -10; j <= 10; j++) {
  3883. R += coeffmat[i+10][j+10] * sctl::cos(-i*phi + Nperiod*j*theta);
  3884. Z += coeffmat[i+10][j+10] * sctl::sin(-i*phi + Nperiod*j*theta);
  3885. }
  3886. }
  3887. X = R * sctl::cos(theta);
  3888. Y = R * sctl::sin(theta);
  3889. }
  3890. GenericKernel<BiotSavart3D> BiotSavart ;
  3891. GenericKernel<BiotSavartGrad3D> BiotSavartGrad;
  3892. GenericKernel<Laplace3D_FxU > Laplace_FxU ;
  3893. GenericKernel<Laplace3D_FxdU> Laplace_FxdU;
  3894. GenericKernel<Laplace3D_dUxF> Laplace_dUxF;
  3895. GenericKernel<Laplace3D_dUxD> Laplace_dUxD;
  3896. GenericKernel<Laplace3D_Fxd2U> Laplace_Fxd2U;
  3897. mutable Quadrature<Real> quadrature_BS ;
  3898. mutable Quadrature<Real> quadrature_dBS ;
  3899. mutable Quadrature<Real> quadrature_FxU ;
  3900. mutable Quadrature<Real> quadrature_FxdU;
  3901. mutable Quadrature<Real> quadrature_dUxF;
  3902. mutable Quadrature<Real> quadrature_dUxD;
  3903. mutable Quadrature<Real> quadrature_Fxd2U;
  3904. ElemLst elements;
  3905. Vector<Long> NtNp_;
  3906. Vector<Long> elem_dsp;
  3907. };
  3908. template <class Real, Integer ORDER=5> class Spheres {
  3909. static constexpr Integer COORD_DIM = 3;
  3910. static constexpr Integer ELEM_DIM = COORD_DIM-1;
  3911. using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
  3912. using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
  3913. using CoordBasis = Basis<Real, ELEM_DIM, ORDER>;
  3914. using ElemLst = ElemList<COORD_DIM, CoordBasis>;
  3915. public:
  3916. Spheres(Long N = 0) {
  3917. Vector<Real> X(N*COORD_DIM);
  3918. Vector<Real> R(N);
  3919. X=0;
  3920. R=1;
  3921. for (Long i = 0; i < N; i++) X[i*COORD_DIM] = (i==0?-1.015:1.015); ///////////
  3922. InitSpheres(X,R);
  3923. }
  3924. const ElemLst& GetElem() const {
  3925. return elements;
  3926. }
  3927. static void test() {
  3928. constexpr Integer order_singular = 35;
  3929. constexpr Integer order_direct = 35;
  3930. Comm comm = Comm::World();
  3931. Profile::Enable(true);
  3932. Long Ns = 2;
  3933. Spheres S(Ns);
  3934. S.quadrature_FxT.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_FxT, order_singular, order_direct, -1.0, comm);
  3935. S.quadrature_FxU.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_FxU, order_singular, order_direct, -1.0, comm);
  3936. S.quadrature_DxU.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_DxU, order_singular, order_direct, -1.0, comm);
  3937. const auto SetMotion = [&S](Vector<DensityBasis>& density, const Vector<Real>& force_avg, const Vector<Real>& torque_avg) {
  3938. Long Nelem = S.GetElem().NElem();
  3939. Long Nsurf = S.elem_cnt.Dim();
  3940. const auto& X = S.GetElem().ElemVector();
  3941. Vector<Real> area, Xc;
  3942. Vector<DensityBasis> one(Nelem);
  3943. for (Long i = 0; i < Nelem; i++) {
  3944. for (Long j = 0; j < DensityBasis::Size(); j++) {
  3945. one[i][j] = 1;
  3946. }
  3947. }
  3948. S.SurfInteg(area, one);
  3949. S.SurfInteg(Xc, S.GetElem().ElemVector());
  3950. for (Long i = 0; i < Nsurf; i++) {
  3951. for (Long k = 0; k < COORD_DIM; k++) {
  3952. Xc[i*COORD_DIM+k] /= area[i];
  3953. }
  3954. }
  3955. if (density.Dim() != Nelem*COORD_DIM) density.ReInit(Nelem*COORD_DIM);
  3956. Long elem_itr = 0;
  3957. for (Long i = 0; i < Nsurf; i++) {
  3958. for (Long j = 0; j < S.elem_cnt[i]; j++) {
  3959. for (Long k = 0; k < DensityBasis::Size(); k++) {
  3960. StaticArray<Real,COORD_DIM> dX;
  3961. dX[0] = (X[elem_itr*COORD_DIM+0][k] - Xc[i*COORD_DIM+0]);
  3962. dX[1] = (X[elem_itr*COORD_DIM+1][k] - Xc[i*COORD_DIM+1]);
  3963. dX[2] = (X[elem_itr*COORD_DIM+2][k] - Xc[i*COORD_DIM+2]);
  3964. density[elem_itr*COORD_DIM+0][k] = force_avg[i*COORD_DIM+0]*(1/area[i]) + (torque_avg[i*COORD_DIM+1] * dX[2] - torque_avg[i*COORD_DIM+2] * dX[1]) / (2*area[i]/3);
  3965. density[elem_itr*COORD_DIM+1][k] = force_avg[i*COORD_DIM+1]*(1/area[i]) + (torque_avg[i*COORD_DIM+2] * dX[0] - torque_avg[i*COORD_DIM+0] * dX[2]) / (2*area[i]/3);
  3966. density[elem_itr*COORD_DIM+2][k] = force_avg[i*COORD_DIM+2]*(1/area[i]) + (torque_avg[i*COORD_DIM+0] * dX[1] - torque_avg[i*COORD_DIM+1] * dX[0]) / (2*area[i]/3);
  3967. }
  3968. elem_itr++;
  3969. }
  3970. }
  3971. };
  3972. const auto GetMotion = [&S](Vector<Real>& force_avg, Vector<Real>& torque_avg, const Vector<DensityBasis>& density) {
  3973. Long Nelem = S.GetElem().NElem();
  3974. Long Nsurf = S.elem_cnt.Dim();
  3975. const auto& X = S.GetElem().ElemVector();
  3976. S.SurfInteg(force_avg, density);
  3977. Vector<Real> area, Xc;
  3978. Vector<DensityBasis> one(Nelem);
  3979. for (Long i = 0; i < Nelem; i++) {
  3980. for (Long j = 0; j < DensityBasis::Size(); j++) {
  3981. one[i][j] = 1;
  3982. }
  3983. }
  3984. S.SurfInteg(area, one);
  3985. S.SurfInteg(Xc, S.GetElem().ElemVector());
  3986. for (Long i = 0; i < Nsurf; i++) {
  3987. for (Long k = 0; k < COORD_DIM; k++) {
  3988. Xc[i*COORD_DIM+k] /= area[i];
  3989. }
  3990. }
  3991. { // Set torque_avg
  3992. Long elem_itr = 0;
  3993. Vector<DensityBasis> torque(Nelem*COORD_DIM);
  3994. for (Long i = 0; i < Nsurf; i++) {
  3995. for (Long j = 0; j < S.elem_cnt[i]; j++) {
  3996. for (Long k = 0; k < DensityBasis::Size(); k++) {
  3997. StaticArray<Real,COORD_DIM> dX;
  3998. dX[0] = (X[elem_itr*COORD_DIM+0][k] - Xc[i*COORD_DIM+0]);
  3999. dX[1] = (X[elem_itr*COORD_DIM+1][k] - Xc[i*COORD_DIM+1]);
  4000. dX[2] = (X[elem_itr*COORD_DIM+2][k] - Xc[i*COORD_DIM+2]);
  4001. torque[elem_itr*COORD_DIM+0][k] = dX[1] * density[elem_itr*COORD_DIM+2][k] - dX[2] * density[elem_itr*COORD_DIM+1][k];
  4002. torque[elem_itr*COORD_DIM+1][k] = dX[2] * density[elem_itr*COORD_DIM+0][k] - dX[0] * density[elem_itr*COORD_DIM+2][k];
  4003. torque[elem_itr*COORD_DIM+2][k] = dX[0] * density[elem_itr*COORD_DIM+1][k] - dX[1] * density[elem_itr*COORD_DIM+0][k];
  4004. }
  4005. elem_itr++;
  4006. }
  4007. }
  4008. S.SurfInteg(torque_avg, torque);
  4009. }
  4010. };
  4011. const auto BIOpL = [&GetMotion,&SetMotion](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  4012. Vector<Real> force_avg, torque_avg;
  4013. GetMotion(force_avg, torque_avg, density);
  4014. SetMotion(potential, force_avg, torque_avg);
  4015. };
  4016. const auto BIOpK = [&S](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  4017. Vector<DensityBasis> traction;
  4018. S.quadrature_FxT.Eval(traction, S.GetElem(), density, S.Stokes_FxT);
  4019. Vector<CoordBasis> dX;
  4020. const auto X = S.GetElem().ElemVector();
  4021. CoordBasis::Grad(dX, X);
  4022. Long Nelem = S.GetElem().NElem();
  4023. Long Nnodes = CoordBasis::Size();
  4024. potential.ReInit(Nelem * COORD_DIM);
  4025. for (Long i = 0; i < Nelem; i++) {
  4026. for (Long j = 0; j < Nnodes; j++) {
  4027. StaticArray<Real,COORD_DIM> Xn;
  4028. Xn[0] = dX[i*COORD_DIM*2+2][j]*dX[i*COORD_DIM*2+5][j] - dX[i*COORD_DIM*2+4][j]*dX[i*COORD_DIM*2+3][j];
  4029. Xn[1] = dX[i*COORD_DIM*2+4][j]*dX[i*COORD_DIM*2+1][j] - dX[i*COORD_DIM*2+0][j]*dX[i*COORD_DIM*2+5][j];
  4030. Xn[2] = dX[i*COORD_DIM*2+0][j]*dX[i*COORD_DIM*2+3][j] - dX[i*COORD_DIM*2+2][j]*dX[i*COORD_DIM*2+1][j];
  4031. Real AreaElem = sqrt<Real>(Xn[0]*Xn[0] + Xn[1]*Xn[1] + Xn[2]*Xn[2]);
  4032. Real OOAreaElem = 1 / AreaElem;
  4033. Xn[0] *= OOAreaElem;
  4034. Xn[1] *= OOAreaElem;
  4035. Xn[2] *= OOAreaElem;
  4036. potential[i*COORD_DIM+0][j] = traction[i*COORD_DIM*COORD_DIM+0][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+1][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+2][j]*Xn[2];
  4037. potential[i*COORD_DIM+1][j] = traction[i*COORD_DIM*COORD_DIM+3][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+4][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+5][j]*Xn[2];
  4038. potential[i*COORD_DIM+2][j] = traction[i*COORD_DIM*COORD_DIM+6][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+7][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+8][j]*Xn[2];
  4039. }
  4040. }
  4041. };
  4042. const auto BIOp_half_K_L = [&S,&BIOpK,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  4043. Vector<DensityBasis> potential_K;
  4044. Vector<DensityBasis> potential_L;
  4045. BIOpK(potential_K, density);
  4046. BIOpL(potential_L, density);
  4047. if (potential.Dim() != potential_K.Dim()) {
  4048. potential.ReInit(potential_K.Dim());
  4049. }
  4050. for (Long i = 0; i < potential_K.Dim(); i++) {
  4051. for (Long k = 0; k < DensityBasis::Size(); k++) {
  4052. potential[i][k] = -0.5*density[i][k] + potential_K[i][k] + potential_L[i][k];
  4053. }
  4054. }
  4055. };
  4056. const auto BIOp_half_K = [&S,&BIOpK,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  4057. Vector<DensityBasis> potential_K;
  4058. BIOpK(potential_K, density);
  4059. if (potential.Dim() != potential_K.Dim()) {
  4060. potential.ReInit(potential_K.Dim());
  4061. }
  4062. for (Long i = 0; i < potential_K.Dim(); i++) {
  4063. for (Long k = 0; k < DensityBasis::Size(); k++) {
  4064. potential[i][k] = -0.5*density[i][k] + potential_K[i][k];
  4065. }
  4066. }
  4067. };
  4068. const auto BIOp_half_S_D = [&S,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  4069. Vector<DensityBasis> U;
  4070. S.quadrature_DxU.Eval(U, S.GetElem(), density, S.Stokes_DxU);
  4071. Vector<PotentialBasis> U1;
  4072. Vector<DensityBasis> sigma1;
  4073. BIOpL(sigma1,density);
  4074. S.quadrature_FxU.Eval(U1, S.GetElem(), sigma1, S.Stokes_FxU);
  4075. Long Nelem = S.GetElem().NElem();
  4076. Long Nnodes = CoordBasis::Size();
  4077. potential.ReInit(Nelem * COORD_DIM);
  4078. for (Long i = 0; i < Nelem; i++) {
  4079. for (Long j = 0; j < Nnodes; j++) {
  4080. potential[i*COORD_DIM+0][j] = 0.5*density[i*COORD_DIM+0][j] + U[i*COORD_DIM+0][j] + U1[i*COORD_DIM+0][j];
  4081. potential[i*COORD_DIM+1][j] = 0.5*density[i*COORD_DIM+1][j] + U[i*COORD_DIM+1][j] + U1[i*COORD_DIM+1][j];
  4082. potential[i*COORD_DIM+2][j] = 0.5*density[i*COORD_DIM+2][j] + U[i*COORD_DIM+2][j] + U1[i*COORD_DIM+2][j];
  4083. }
  4084. }
  4085. };
  4086. Vector<PotentialBasis> U;
  4087. { // Rachh
  4088. Vector<DensityBasis> sigma0;
  4089. { // Set sigma0
  4090. srand48(comm.Rank());
  4091. Vector<Real> force(Ns*COORD_DIM), torque(Ns*COORD_DIM);
  4092. //for (auto& x : force) x = drand48();
  4093. //for (auto& x : torque) x = drand48();
  4094. force = 0;
  4095. torque = 0;
  4096. force[0] = 1;
  4097. //force[4] = 1;
  4098. SetMotion(sigma0, force, torque);
  4099. }
  4100. Vector<DensityBasis> rhs;
  4101. BIOp_half_K(rhs, sigma0);
  4102. Vector<DensityBasis> sigma;
  4103. { // Set sigma
  4104. Long Nnode = DensityBasis::Size();
  4105. Long Nelem = S.GetElem().NElem();
  4106. typename sctl::ParallelSolver<Real>::ParallelOp A = [&S,&BIOp_half_K_L](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  4107. Long Nnode = DensityBasis::Size();
  4108. Long Nelem = S.GetElem().NElem();
  4109. Ax->ReInit(Nelem*COORD_DIM*Nnode);
  4110. Vector<DensityBasis> x_(Nelem*COORD_DIM), Ax_(Nelem*COORD_DIM);
  4111. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set x_
  4112. for (Long k = 0; k < Nnode; k++) {
  4113. x_[i][k] = x[i*Nnode+k];
  4114. }
  4115. }
  4116. BIOp_half_K_L(Ax_, x_);
  4117. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set Ax
  4118. for (Long k = 0; k < Nnode; k++) {
  4119. (*Ax)[i*Nnode+k] = Ax_[i][k];
  4120. }
  4121. }
  4122. };
  4123. Vector<Real> sigma_(Nelem*COORD_DIM*Nnode), rhs_(Nelem*COORD_DIM*Nnode);
  4124. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set rhs_
  4125. for (Long k = 0; k < Nnode; k++) {
  4126. rhs_[i*Nnode+k] = rhs[i][k];
  4127. }
  4128. }
  4129. sigma_ = 0;
  4130. ParallelSolver<Real> linear_solver(comm, true);
  4131. linear_solver(&sigma_, A, rhs_, 1e-6, 50);
  4132. sigma.ReInit(Nelem * COORD_DIM);
  4133. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set sigma
  4134. for (Long k = 0; k < Nnode; k++) {
  4135. sigma[i][k] = sigma_[i*Nnode+k] - sigma0[i][k];
  4136. }
  4137. }
  4138. }
  4139. S.quadrature_FxU.Eval(U, S.GetElem(), sigma, S.Stokes_FxU);
  4140. { // Write VTU
  4141. VTUData vtu_sigma;
  4142. vtu_sigma.AddElems(S.elements, sigma, ORDER);
  4143. vtu_sigma.WriteVTK("sphere-sigma0", comm);
  4144. VTUData vtu_U;
  4145. vtu_U.AddElems(S.elements, U, ORDER);
  4146. vtu_U.WriteVTK("sphere-U0", comm);
  4147. }
  4148. }
  4149. { // Tornberg
  4150. Vector<DensityBasis> rhs;
  4151. BIOpL(rhs, U);
  4152. Vector<DensityBasis> sigma;
  4153. { // Set sigma
  4154. Long Nnode = DensityBasis::Size();
  4155. Long Nelem = S.GetElem().NElem();
  4156. typename sctl::ParallelSolver<Real>::ParallelOp A = [&S,&BIOp_half_S_D](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  4157. Long Nnode = DensityBasis::Size();
  4158. Long Nelem = S.GetElem().NElem();
  4159. Ax->ReInit(Nelem*COORD_DIM*Nnode);
  4160. Vector<DensityBasis> x_(Nelem*COORD_DIM), Ax_(Nelem*COORD_DIM);
  4161. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set x_
  4162. for (Long k = 0; k < Nnode; k++) {
  4163. x_[i][k] = x[i*Nnode+k];
  4164. }
  4165. }
  4166. BIOp_half_S_D(Ax_, x_);
  4167. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set Ax
  4168. for (Long k = 0; k < Nnode; k++) {
  4169. (*Ax)[i*Nnode+k] = Ax_[i][k];
  4170. }
  4171. }
  4172. };
  4173. Vector<Real> sigma_(Nelem*COORD_DIM*Nnode), rhs_(Nelem*COORD_DIM*Nnode);
  4174. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set rhs_
  4175. for (Long k = 0; k < Nnode; k++) {
  4176. rhs_[i*Nnode+k] = rhs[i][k];
  4177. }
  4178. }
  4179. sigma_ = 0;
  4180. ParallelSolver<Real> linear_solver(comm, true);
  4181. linear_solver(&sigma_, A, rhs_, 1e-6, 50);
  4182. sigma.ReInit(Nelem * COORD_DIM);
  4183. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set sigma
  4184. for (Long k = 0; k < Nnode; k++) {
  4185. sigma[i][k] = sigma_[i*Nnode+k];
  4186. }
  4187. }
  4188. }
  4189. Vector<PotentialBasis> U1;
  4190. BIOp_half_S_D(U1, sigma);
  4191. { // Write VTU
  4192. VTUData vtu_sigma;
  4193. vtu_sigma.AddElems(S.elements, sigma, ORDER);
  4194. vtu_sigma.WriteVTK("sphere-sigma1", comm);
  4195. VTUData vtu_U;
  4196. vtu_U.AddElems(S.elements, U1, ORDER);
  4197. vtu_U.WriteVTK("sphere-U1", comm);
  4198. }
  4199. }
  4200. Profile::print(&comm);
  4201. }
  4202. private:
  4203. template <class FnBasis> void SurfInteg(Vector<Real>& I, const Vector<FnBasis>& f) {
  4204. static_assert(std::is_same<FnBasis,CoordBasis>::value, "FnBasis is different from CoordBasis");
  4205. const Long Nelem = elements.NElem();
  4206. const Long dof = f.Dim() / Nelem;
  4207. SCTL_ASSERT(f.Dim() == Nelem * dof);
  4208. auto nodes = FnBasis::Nodes();
  4209. auto quad_wts = FnBasis::QuadWts();
  4210. const Long Nnodes = FnBasis::Size();
  4211. auto EvalOp = CoordBasis::SetupEval(nodes);
  4212. Vector<CoordBasis> dX;
  4213. const auto& X = elements.ElemVector();
  4214. SCTL_ASSERT(X.Dim() == Nelem * COORD_DIM);
  4215. CoordBasis::Grad(dX, X);
  4216. Matrix<Real> I_(Nelem, dof);
  4217. for (Long i = 0; i < Nelem; i++) {
  4218. for (Long k = 0; k < dof; k++) {
  4219. I_[i][k] = 0;
  4220. }
  4221. for (Long j = 0; j < Nnodes; j++) {
  4222. Real dA = 0;
  4223. StaticArray<Real,COORD_DIM> Xn;
  4224. Xn[0] = dX[i*COORD_DIM*2+2][j] * dX[i*COORD_DIM*2+5][j] - dX[i*COORD_DIM*2+3][j] * dX[i*COORD_DIM*2+4][j];
  4225. Xn[1] = dX[i*COORD_DIM*2+4][j] * dX[i*COORD_DIM*2+1][j] - dX[i*COORD_DIM*2+5][j] * dX[i*COORD_DIM*2+0][j];
  4226. Xn[2] = dX[i*COORD_DIM*2+0][j] * dX[i*COORD_DIM*2+3][j] - dX[i*COORD_DIM*2+1][j] * dX[i*COORD_DIM*2+2][j];
  4227. dA += sqrt<Real>(Xn[0]*Xn[0] + Xn[1]*Xn[1] + Xn[2]*Xn[2]) * quad_wts[j];
  4228. for (Long k = 0; k < dof; k++) {
  4229. I_[i][k] += dA * f[i*dof+k][j];
  4230. }
  4231. }
  4232. }
  4233. Long Ns = elem_cnt.Dim();
  4234. if (I.Dim() != Ns * dof) I.ReInit(Ns * dof);
  4235. I = 0;
  4236. Long elem_itr = 0;
  4237. for (Long i = 0; i < Ns; i++) {
  4238. for (Long j = 0; j < elem_cnt[i]; j++) {
  4239. for (Long k = 0; k < dof; k++) {
  4240. I[i*dof+k] += I_[elem_itr][k];
  4241. }
  4242. elem_itr++;
  4243. }
  4244. }
  4245. }
  4246. void InitSpheres(const Vector<Real> X, const Vector<Real>& R){
  4247. SCTL_ASSERT(X.Dim() == R.Dim() * COORD_DIM);
  4248. Long N = R.Dim();
  4249. elements.ReInit(2*COORD_DIM*N);
  4250. auto nodes = ElemLst::CoordBasis::Nodes();
  4251. for (Long l = 0; l < N; l++) {
  4252. for (Integer i = 0; i < COORD_DIM; i++) {
  4253. for (Integer j = 0; j < 2; j++) {
  4254. for (int k = 0; k < ElemLst::CoordBasis::Size(); k++) {
  4255. Real coord[COORD_DIM];
  4256. coord[(i+0)%COORD_DIM] = (j ? -1.0 : 1.0);
  4257. coord[(i+1)%COORD_DIM] = 2.0 * nodes[j?1:0][k] - 1.0;
  4258. coord[(i+2)%COORD_DIM] = 2.0 * nodes[j?0:1][k] - 1.0;
  4259. Real R0 = sqrt<Real>(coord[0]*coord[0] + coord[1]*coord[1] + coord[2]*coord[2]);
  4260. elements((l*COORD_DIM+i)*2+j,0)[k] = X[l*COORD_DIM+0] + R[l] * coord[0] / R0;
  4261. elements((l*COORD_DIM+i)*2+j,1)[k] = X[l*COORD_DIM+1] + R[l] * coord[1] / R0;
  4262. elements((l*COORD_DIM+i)*2+j,2)[k] = X[l*COORD_DIM+2] + R[l] * coord[2] / R0;
  4263. }
  4264. }
  4265. }
  4266. }
  4267. elem_cnt.ReInit(N);
  4268. elem_cnt = 6;
  4269. }
  4270. GenericKernel<Stokes3D_DxU> Stokes_DxU;
  4271. GenericKernel<Stokes3D_FxU> Stokes_FxU;
  4272. GenericKernel<Stokes3D_FxT> Stokes_FxT;
  4273. Quadrature<Real> quadrature_DxU;
  4274. Quadrature<Real> quadrature_FxU;
  4275. Quadrature<Real> quadrature_FxT;
  4276. ElemLst elements;
  4277. Vector<Long> elem_cnt;
  4278. };
  4279. } // end namespace
  4280. #endif //_SCTL_BOUNDARY_QUADRATURE_HPP_