boundary_quadrature.hpp 257 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911
  1. #ifndef _SCTL_BOUNDARY_QUADRATURE_HPP_
  2. #define _SCTL_BOUNDARY_QUADRATURE_HPP_
  3. #include <mutex>
  4. #include <atomic>
  5. #include <tuple>
  6. namespace SCTL_NAMESPACE {
  7. template <class Real, Integer DIM, Integer ORDER> class Basis {
  8. public:
  9. using ValueType = Real;
  10. // class EvalOperator {
  11. // public:
  12. // };
  13. using EvalOpType = Matrix<ValueType>;
  14. static constexpr Long Dim() {
  15. return DIM;
  16. }
  17. static constexpr Long Size() {
  18. return pow<DIM,Long>(ORDER);
  19. }
  20. static const Matrix<ValueType>& Nodes() {
  21. static Matrix<ValueType> nodes_(DIM,Size());
  22. auto nodes_1d = [](Integer i) {
  23. return 0.5 - 0.5 * sctl::cos<ValueType>((2*i+1) * const_pi<ValueType>() / (2*ORDER));
  24. };
  25. { // Set nodes_
  26. static std::mutex mutex;
  27. static std::atomic<Integer> first_time(true);
  28. if (first_time.load(std::memory_order_relaxed)) {
  29. std::lock_guard<std::mutex> guard(mutex);
  30. if (first_time.load(std::memory_order_relaxed)) {
  31. Integer N = 1;
  32. for (Integer d = 0; d < DIM; d++) {
  33. for (Integer j = 0; j < ORDER; j++) {
  34. for (Integer i = 0; i < N; i++) {
  35. for (Integer k = 0; k < d; k++) {
  36. nodes_[k][j*N+i] = nodes_[k][i];
  37. }
  38. nodes_[d][j*N+i] = nodes_1d(j);
  39. }
  40. }
  41. N *= ORDER;
  42. }
  43. std::atomic_thread_fence(std::memory_order_seq_cst);
  44. first_time.store(false);
  45. }
  46. }
  47. }
  48. return nodes_;
  49. }
  50. static const Vector<ValueType>& QuadWts() {
  51. static Vector<ValueType> wts(Size());
  52. { // Set nodes_
  53. static std::mutex mutex;
  54. static std::atomic<Integer> first_time(true);
  55. if (first_time.load(std::memory_order_relaxed)) {
  56. std::lock_guard<std::mutex> guard(mutex);
  57. if (first_time.load(std::memory_order_relaxed)) {
  58. StaticArray<ValueType,ORDER> wts_1d;
  59. { // Set wts_1d
  60. Vector<ValueType> x_(ORDER);
  61. ChebBasis<ValueType>::template Nodes<1>(ORDER, x_);
  62. Vector<ValueType> V_cheb(ORDER * ORDER);
  63. { // Set V_cheb
  64. Vector<ValueType> I(ORDER*ORDER);
  65. I = 0;
  66. for (Long i = 0; i < ORDER; i++) I[i*ORDER+i] = 1;
  67. ChebBasis<ValueType>::template Approx<1>(ORDER, I, V_cheb);
  68. }
  69. Matrix<ValueType> M(ORDER, ORDER, V_cheb.begin());
  70. Vector<ValueType> w_sample(ORDER);
  71. for (Integer i = 0; i < ORDER; i++) {
  72. w_sample[i] = (i % 2 ? 0 : -(ORDER/(ValueType)(i*i-1)));
  73. }
  74. for (Integer j = 0; j < ORDER; j++) {
  75. wts_1d[j] = 0;
  76. for (Integer i = 0; i < ORDER; i++) {
  77. wts_1d[j] += M[j][i] * w_sample[i] / ORDER;
  78. }
  79. }
  80. }
  81. wts[0] = 1;
  82. Integer N = 1;
  83. for (Integer d = 0; d < DIM; d++) {
  84. for (Integer j = 1; j < ORDER; j++) {
  85. for (Integer i = 0; i < N; i++) {
  86. wts[j*N+i] = wts[i] * wts_1d[j];
  87. }
  88. }
  89. for (Integer i = 0; i < N; i++) {
  90. wts[i] *= wts_1d[0];
  91. }
  92. N *= ORDER;
  93. }
  94. std::atomic_thread_fence(std::memory_order_seq_cst);
  95. first_time.store(false);
  96. }
  97. }
  98. }
  99. return wts;
  100. }
  101. static void Grad(Vector<Basis>& dX, const Vector<Basis>& X) {
  102. static Matrix<ValueType> GradOp[DIM];
  103. static std::mutex mutex;
  104. static std::atomic<Integer> first_time(true);
  105. if (first_time.load(std::memory_order_relaxed)) {
  106. std::lock_guard<std::mutex> guard(mutex);
  107. if (first_time.load(std::memory_order_relaxed)) {
  108. { // Set GradOp
  109. auto nodes = Basis<ValueType,1,ORDER>::Nodes();
  110. SCTL_ASSERT(nodes.Dim(1) == ORDER);
  111. Matrix<ValueType> M(ORDER, ORDER);
  112. for (Integer i = 0; i < ORDER; i++) { // Set M
  113. Real x = nodes[0][i];
  114. for (Integer j = 0; j < ORDER; j++) {
  115. M[j][i] = 0;
  116. for (Integer l = 0; l < ORDER; l++) {
  117. if (l != j) {
  118. Real M_ = 1;
  119. for (Integer k = 0; k < ORDER; k++) {
  120. if (k != j && k != l) M_ *= (x - nodes[0][k]);
  121. if (k != j) M_ /= (nodes[0][j] - nodes[0][k]);
  122. }
  123. M[j][i] += M_;
  124. }
  125. }
  126. }
  127. }
  128. for (Integer d = 0; d < DIM; d++) {
  129. GradOp[d].ReInit(Size(), Size());
  130. GradOp[d] = 0;
  131. Integer stride0 = sctl::pow<Integer>(ORDER, d);
  132. Integer repeat0 = sctl::pow<Integer>(ORDER, d);
  133. Integer stride1 = sctl::pow<Integer>(ORDER, d+1);
  134. Integer repeat1 = sctl::pow<Integer>(ORDER, DIM-d-1);
  135. for (Integer k1 = 0; k1 < repeat1; k1++) {
  136. for (Integer i = 0; i < ORDER; i++) {
  137. for (Integer j = 0; j < ORDER; j++) {
  138. for (Integer k0 = 0; k0 < repeat0; k0++) {
  139. GradOp[d][k1*stride1 + i*stride0 + k0][k1*stride1 + j*stride0 + k0] = M[i][j];
  140. }
  141. }
  142. }
  143. }
  144. }
  145. }
  146. std::atomic_thread_fence(std::memory_order_seq_cst);
  147. first_time.store(false);
  148. }
  149. }
  150. if (dX.Dim() != X.Dim()*DIM) dX.ReInit(X.Dim()*DIM);
  151. for (Long i = 0; i < X.Dim(); i++) {
  152. const Matrix<ValueType> Vi(1, Size(), (Iterator<ValueType>)(ConstIterator<ValueType>)X[i].NodeValues_, false);
  153. for (Integer k = 0; k < DIM; k++) {
  154. Matrix<ValueType> Vo(1, Size(), dX[i*DIM+k].NodeValues_, false);
  155. Matrix<ValueType>::GEMM(Vo, Vi, GradOp[k]);
  156. }
  157. }
  158. }
  159. static EvalOpType SetupEval(const Matrix<ValueType>& X) {
  160. Long N = X.Dim(1);
  161. SCTL_ASSERT(X.Dim(0) == DIM);
  162. Matrix<ValueType> M(Size(), N);
  163. { // Set M
  164. auto nodes = Basis<ValueType,1,ORDER>::Nodes();
  165. Integer NN = Basis<ValueType,1,ORDER>::Size();
  166. Matrix<ValueType> M_(NN, DIM*N);
  167. for (Long i = 0; i < DIM*N; i++) {
  168. ValueType x = X[0][i];
  169. for (Integer j = 0; j < NN; j++) {
  170. ValueType y = 1;
  171. for (Integer k = 0; k < NN; k++) {
  172. y *= (j==k ? 1 : (nodes[0][k] - x) / (nodes[0][k] - nodes[0][j]));
  173. }
  174. M_[j][i] = y;
  175. }
  176. }
  177. if (DIM == 1) {
  178. SCTL_ASSERT(M.Dim(0) == M_.Dim(0));
  179. SCTL_ASSERT(M.Dim(1) == M_.Dim(1));
  180. M = M_;
  181. } else {
  182. Integer NNN = 1;
  183. M = 1;
  184. for (Integer d = 0; d < DIM; d++) {
  185. for (Integer k = 1; k < NN; k++) {
  186. for (Integer j = 0; j < NNN; j++) {
  187. for (Long i = 0; i < N; i++) {
  188. M[k*NNN+j][i] = M[j][i] * M_[k][d*N+i];
  189. }
  190. }
  191. }
  192. { // k = 0
  193. for (Integer j = 0; j < NNN; j++) {
  194. for (Long i = 0; i < N; i++) {
  195. M[j][i] *= M_[0][d*N+i];
  196. }
  197. }
  198. }
  199. NNN *= NN;
  200. }
  201. }
  202. }
  203. return M;
  204. }
  205. static void Eval(Matrix<ValueType>& Y, const Vector<Basis>& X, const EvalOpType& M) {
  206. Long N0 = X.Dim();
  207. Long N1 = M.Dim(1);
  208. SCTL_ASSERT(M.Dim(0) == Size());
  209. if (Y.Dim(0) != N0 || Y.Dim(1) != N1) Y.ReInit(N0, N1);
  210. for (Long i = 0; i < N0; i++) {
  211. const Matrix<ValueType> X_(1,Size(),(Iterator<ValueType>)(ConstIterator<ValueType>)X[i].NodeValues_,false);
  212. Matrix<ValueType> Y_(1,N1,Y[i],false);
  213. Matrix<ValueType>::GEMM(Y_,X_,M);
  214. }
  215. }
  216. Basis operator+(Basis X) const {
  217. for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] + X[i];
  218. return X;
  219. }
  220. Basis operator-(Basis X) const {
  221. for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] - X[i];
  222. return X;
  223. }
  224. Basis operator*(Basis X) const {
  225. for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] * X[i];
  226. return X;
  227. }
  228. Basis operator*(Real a) const {
  229. Basis X = (*this);
  230. for (Long i = 0; i < Size(); i++) X[i] *= a;
  231. return X;
  232. }
  233. Basis operator+(Real a) const {
  234. Basis X = (*this);
  235. for (Long i = 0; i < Size(); i++) X[i] += a;
  236. return X;
  237. }
  238. Basis& operator+=(const Basis& X) {
  239. for (Long i = 0; i < Size(); i++) (*this)[i] += X[i];
  240. return *this;
  241. }
  242. Basis& operator-=(const Basis& X) {
  243. for (Long i = 0; i < Size(); i++) (*this)[i] -= X[i];
  244. return *this;
  245. }
  246. Basis& operator*=(const Basis& X) {
  247. for (Long i = 0; i < Size(); i++) (*this)[i] *= X[i];
  248. return *this;
  249. }
  250. Basis& operator*=(Real a) {
  251. for (Long i = 0; i < Size(); i++) (*this)[i] *= a;
  252. return *this;
  253. }
  254. Basis& operator+=(Real a) {
  255. for (Long i = 0; i < Size(); i++) (*this)[i] += a;
  256. return *this;
  257. }
  258. Basis& operator=(Real a) {
  259. for (Long i = 0; i < Size(); i++) (*this)[i] = a;
  260. return *this;
  261. }
  262. const ValueType& operator[](Long i) const {
  263. SCTL_ASSERT(i < Size());
  264. return NodeValues_[i];
  265. }
  266. ValueType& operator[](Long i) {
  267. SCTL_ASSERT(i < Size());
  268. return NodeValues_[i];
  269. }
  270. private:
  271. StaticArray<ValueType,Size()> NodeValues_;
  272. };
  273. template <Integer COORD_DIM, class Basis> class ElemList {
  274. public:
  275. using CoordBasis = Basis;
  276. using CoordType = typename CoordBasis::ValueType;
  277. static constexpr Integer CoordDim() {
  278. return COORD_DIM;
  279. }
  280. static constexpr Integer ElemDim() {
  281. return CoordBasis::Dim();
  282. }
  283. ElemList(Long Nelem = 0) {
  284. ReInit(Nelem);
  285. }
  286. void ReInit(Long Nelem = 0) {
  287. Nelem_ = Nelem;
  288. X_.ReInit(Nelem_ * COORD_DIM);
  289. }
  290. void ReInit(const Vector<CoordBasis>& X) {
  291. Nelem_ = X.Dim() / COORD_DIM;
  292. SCTL_ASSERT(X.Dim() == Nelem_ * COORD_DIM);
  293. X_ = X;
  294. }
  295. Long NElem() const {
  296. return Nelem_;
  297. }
  298. CoordBasis& operator()(Long elem, Integer dim) {
  299. SCTL_ASSERT(elem >= 0 && elem < Nelem_);
  300. SCTL_ASSERT(dim >= 0 && dim < COORD_DIM);
  301. return X_[elem*COORD_DIM+dim];
  302. }
  303. const CoordBasis& operator()(Long elem, Integer dim) const {
  304. SCTL_ASSERT(elem >= 0 && elem < Nelem_);
  305. SCTL_ASSERT(dim >= 0 && dim < COORD_DIM);
  306. return X_[elem*COORD_DIM+dim];
  307. }
  308. const Vector<CoordBasis>& ElemVector() const {
  309. return X_;
  310. }
  311. private:
  312. static_assert(CoordBasis::Dim() <= CoordDim(), "Basis dimension can not be greater than COORD_DIM.");
  313. Vector<CoordBasis> X_;
  314. Long Nelem_;
  315. mutable Vector<CoordBasis> dX_;
  316. };
  317. template <class Real> class Quadrature {
  318. static Real machine_epsilon() {
  319. Real eps=1;
  320. while(eps*(Real)0.5+(Real)1.0>1.0) eps*=0.5;
  321. return eps;
  322. }
  323. template <Integer DIM> static void DuffyQuad(Matrix<Real>& nodes, Vector<Real>& weights, const Vector<Real>& coord, Integer order, Real adapt = -1.0) {
  324. SCTL_ASSERT(coord.Dim() == DIM);
  325. static Real eps = machine_epsilon()*16;
  326. Matrix<Real> qx;
  327. Vector<Real> qw;
  328. { // Set qx, qw
  329. Vector<Real> qx0, qw0;
  330. ChebBasis<Real>::quad_rule(order, qx0, qw0);
  331. Integer N = sctl::pow<DIM,Integer>(order);
  332. qx.ReInit(DIM,N);
  333. qw.ReInit(N);
  334. qw[0] = 1;
  335. Integer N_ = 1;
  336. for (Integer d = 0; d < DIM; d++) {
  337. for (Integer j = 0; j < order; j++) {
  338. for (Integer i = 0; i < N_; i++) {
  339. for (Integer k = 0; k < d; k++) {
  340. qx[k][j*N_+i] = qx[k][i];
  341. }
  342. qx[d][j*N_+i] = qx0[j];
  343. qw[j*N_+i] = qw[i];
  344. }
  345. }
  346. for (Integer j = 0; j < order; j++) {
  347. for (Integer i = 0; i < N_; i++) {
  348. qw[j*N_+i] *= qw0[j];
  349. }
  350. }
  351. N_ *= order;
  352. }
  353. }
  354. Vector<Real> X;
  355. { // Set X
  356. StaticArray<Real,2*DIM+2> X_;
  357. X_[0] = 0;
  358. X_[1] = adapt;
  359. for (Integer i = 0; i < DIM; i++) {
  360. X_[2*i+2] = sctl::fabs<Real>(coord[i]);
  361. X_[2*i+3] = sctl::fabs<Real>(coord[i]-1);
  362. }
  363. std::sort((Iterator<Real>)X_, (Iterator<Real>)X_+2*DIM+2);
  364. X.PushBack(std::max<Real>(0, X_[2*DIM]-1));
  365. for (Integer i = 0; i < 2*DIM+2; i++) {
  366. if (X[X.Dim()-1] < X_[i]) {
  367. if (X.Dim())
  368. X.PushBack(X_[i]);
  369. }
  370. }
  371. /////////////////////////////////////////////////////////////////////////////////////////////////
  372. Vector<Real> r(1);
  373. r[0] = X[0];
  374. for (Integer i = 1; i < X.Dim(); i++) {
  375. while (r[r.Dim() - 1] > 0.0 && (order*0.5) * r[r.Dim() - 1] < X[i]) r.PushBack((order*0.5) * r[r.Dim() - 1]); // TODO
  376. r.PushBack(X[i]);
  377. }
  378. X = r;
  379. /////////////////////////////////////////////////////////////////////////////////////////////////
  380. }
  381. Vector<Real> nds, wts;
  382. for (Integer k = 0; k < X.Dim()-1; k++) {
  383. for (Integer dd = 0; dd < 2*DIM; dd++) {
  384. Integer d0 = (dd>>1);
  385. StaticArray<Real,2*DIM> range0, range1;
  386. { // Set range0, range1
  387. Integer d1 = (dd%2?1:-1);
  388. for (Integer d = 0; d < DIM; d++) {
  389. range0[d*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d] - X[k] ));
  390. range0[d*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d] + X[k] ));
  391. range1[d*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d] - X[k+1]));
  392. range1[d*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d] + X[k+1]));
  393. }
  394. range0[d0*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+0]));
  395. range0[d0*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+0]));
  396. range1[d0*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+1]));
  397. range1[d0*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+1]));
  398. }
  399. { // if volume(range0, range1) == 0 then continue
  400. Real v0 = 1, v1 = 1;
  401. for (Integer d = 0; d < DIM; d++) {
  402. if (d == d0) {
  403. v0 *= sctl::fabs<Real>(range0[d*2+0]-range1[d*2+0]);
  404. v1 *= sctl::fabs<Real>(range0[d*2+0]-range1[d*2+0]);
  405. } else {
  406. v0 *= range0[d*2+1]-range0[d*2+0];
  407. v1 *= range1[d*2+1]-range1[d*2+0];
  408. }
  409. }
  410. if (v0 < eps && v1 < eps) continue;
  411. }
  412. for (Integer i = 0; i < qx.Dim(1); i++) { // Set nds, wts
  413. Real w = qw[i];
  414. Real z = qx[d0][i];
  415. for (Integer d = 0; d < DIM; d++) {
  416. Real y = qx[d][i];
  417. nds.PushBack((range0[d*2+0]*(1-y) + range0[d*2+1]*y)*(1-z) + (range1[d*2+0]*(1-y) + range1[d*2+1]*y)*z);
  418. if (d == d0) {
  419. w *= abs(range1[d*2+0] - range0[d*2+0]);
  420. } else {
  421. w *= (range0[d*2+1] - range0[d*2+0])*(1-z) + (range1[d*2+1] - range1[d*2+0])*z;
  422. }
  423. }
  424. wts.PushBack(w);
  425. }
  426. }
  427. }
  428. nodes = Matrix<Real>(nds.Dim()/DIM,DIM,nds.begin()).Transpose();
  429. weights = wts;
  430. }
  431. template <Integer DIM> static void TensorProductGaussQuad(Matrix<Real>& nodes, Vector<Real>& weights, Integer order) {
  432. Vector<Real> coord(DIM);
  433. coord = 0;
  434. coord[0] = -10;
  435. DuffyQuad<DIM>(nodes, weights, coord, order);
  436. }
  437. template <class DensityBasis, class ElemList, class Kernel> static void SetupSingular(Matrix<Real>& M_singular, const Matrix<Real>& trg_nds, const ElemList& elem_lst, const Kernel& kernel, Integer order_singular = 10, Integer order_direct = 10, Real Rqbx = 0) {
  438. using CoordBasis = typename ElemList::CoordBasis;
  439. using CoordEvalOpType = typename CoordBasis::EvalOpType;
  440. using DensityEvalOpType = typename DensityBasis::EvalOpType;
  441. constexpr Integer CoordDim = ElemList::CoordDim();
  442. constexpr Integer ElemDim = ElemList::ElemDim();
  443. constexpr Integer KDIM0 = Kernel::SrcDim();
  444. constexpr Integer KDIM1 = Kernel::TrgDim();
  445. const Long Nelem = elem_lst.NElem();
  446. const Integer Ntrg = trg_nds.Dim(1);
  447. SCTL_ASSERT(trg_nds.Dim(0) == ElemDim);
  448. const Vector<CoordBasis>& X = elem_lst.ElemVector();
  449. Vector<CoordBasis> dX;
  450. CoordBasis::Grad(dX, X);
  451. Vector<Real> Xt, Xnt;
  452. { // Set Xt, Xnt
  453. auto Meval = CoordBasis::SetupEval(trg_nds);
  454. eval_basis(Xt, X, CoordDim, trg_nds.Dim(1), Meval);
  455. Xnt = Xt;
  456. Vector<Real> dX_;
  457. eval_basis(dX_, dX, 2*CoordDim, trg_nds.Dim(1), Meval);
  458. for (Long i = 0; i < Ntrg; i++) {
  459. for (Long j = 0; j < Nelem; j++) {
  460. auto Xn = Xnt.begin() + (j*Ntrg+i)*CoordDim;
  461. auto dX0 = dX_.begin() + (j*Ntrg+i)*2*CoordDim;
  462. StaticArray<Real,CoordDim> normal;
  463. normal[0] = dX0[2]*dX0[5] - dX0[4]*dX0[3];
  464. normal[1] = dX0[4]*dX0[1] - dX0[0]*dX0[5];
  465. normal[2] = dX0[0]*dX0[3] - dX0[2]*dX0[1];
  466. Real Xa = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  467. Real invXa = 1/Xa;
  468. normal[0] *= invXa;
  469. normal[1] *= invXa;
  470. normal[2] *= invXa;
  471. Real sqrt_Xa = sqrt<Real>(Xa);
  472. Xn[0] = normal[0]*sqrt_Xa*Rqbx;
  473. Xn[1] = normal[1]*sqrt_Xa*Rqbx;
  474. Xn[2] = normal[2]*sqrt_Xa*Rqbx;
  475. }
  476. }
  477. }
  478. SCTL_ASSERT(Xt.Dim() == Nelem * Ntrg * CoordDim);
  479. auto& M = M_singular;
  480. M.ReInit(Nelem * KDIM0 * DensityBasis::Size(), KDIM1 * Ntrg);
  481. #pragma omp parallel for schedule(static)
  482. for (Long i = 0; i < Ntrg; i++) { // Set M (singular)
  483. Matrix<Real> quad_nds;
  484. Vector<Real> quad_wts;
  485. { // Set quad_nds, quad_wts
  486. StaticArray<Real,ElemDim> trg_node_;
  487. for (Integer k = 0; k < ElemDim; k++) {
  488. trg_node_[k] = trg_nds[k][i];
  489. }
  490. Vector<Real> trg_node(ElemDim, trg_node_, false);
  491. DuffyQuad<ElemDim>(quad_nds, quad_wts, trg_node, order_singular, fabs(Rqbx));
  492. }
  493. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  494. Integer Nnds = quad_wts.Dim();
  495. Vector<Real> X_, dX_, Xa_, Xn_;
  496. { // Set X_, dX_
  497. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  498. eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
  499. }
  500. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  501. Long N = Nelem*Nnds;
  502. Xa_.ReInit(N);
  503. Xn_.ReInit(N*CoordDim);
  504. for (Long j = 0; j < N; j++) {
  505. StaticArray<Real,CoordDim> normal;
  506. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  507. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  508. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  509. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  510. Real invXa = 1/Xa_[j];
  511. Xn_[j*3+0] = normal[0] * invXa;
  512. Xn_[j*3+1] = normal[1] * invXa;
  513. Xn_[j*3+2] = normal[2] * invXa;
  514. }
  515. }
  516. DensityEvalOpType DensityEvalOp;
  517. if (std::is_same<CoordBasis,DensityBasis>::value) {
  518. DensityEvalOp = CoordEvalOp;
  519. } else {
  520. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  521. }
  522. for (Long j = 0; j < Nelem; j++) {
  523. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  524. if (Rqbx == 0) { // Set kernel matrix M__
  525. const Vector<Real> X0_(CoordDim, Xt.begin() + (j * Ntrg + i) * CoordDim, false);
  526. const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
  527. const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
  528. kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
  529. } else {
  530. Vector<Real> X0_(CoordDim);
  531. constexpr Integer qbx_order = 6;
  532. StaticArray<Matrix<Real>,qbx_order> M___;
  533. for (Integer k = 0; k < qbx_order; k++) { // Set kernel matrix M___
  534. for (Integer kk = 0; kk < CoordDim; kk++) X0_[kk] = Xt[(j * Ntrg + i) * CoordDim + kk] + (k+1) * Xnt[(j * Ntrg + i) * CoordDim + kk];
  535. const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
  536. const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
  537. kernel.template KernelMatrix<Real>(M___[k], X0_, X__, Xn__);
  538. }
  539. for (Long k = 0; k < Nnds * KDIM0 * KDIM1; k++) {
  540. M__[0][k] = 0;
  541. M__[0][k] += 6*M___[0][0][k];
  542. M__[0][k] += -15*M___[1][0][k];
  543. M__[0][k] += 20*M___[2][0][k];
  544. M__[0][k] += -15*M___[3][0][k];
  545. M__[0][k] += 6*M___[4][0][k];
  546. M__[0][k] += -1*M___[5][0][k];
  547. }
  548. }
  549. for (Long k0 = 0; k0 < KDIM0; k0++) {
  550. for (Long k1 = 0; k1 < KDIM1; k1++) {
  551. for (Long l = 0; l < DensityBasis::Size(); l++) {
  552. Real M_lk = 0;
  553. for (Long n = 0; n < Nnds; n++) {
  554. Real quad_wt = Xa_[j * Nnds + n] * quad_wts[n];
  555. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  556. }
  557. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1 * Ntrg + i] = M_lk;
  558. }
  559. }
  560. }
  561. }
  562. }
  563. { // Set M (subtract direct)
  564. Matrix<Real> quad_nds;
  565. Vector<Real> quad_wts;
  566. TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
  567. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  568. Integer Nnds = quad_wts.Dim();
  569. Vector<Real> X_, dX_, Xa_, Xn_;
  570. { // Set X_, dX_
  571. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  572. eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
  573. }
  574. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  575. Long N = Nelem*Nnds;
  576. Xa_.ReInit(N);
  577. Xn_.ReInit(N*CoordDim);
  578. for (Long j = 0; j < N; j++) {
  579. StaticArray<Real,CoordDim> normal;
  580. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  581. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  582. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  583. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  584. Real invXa = 1/Xa_[j];
  585. Xn_[j*3+0] = normal[0] * invXa;
  586. Xn_[j*3+1] = normal[1] * invXa;
  587. Xn_[j*3+2] = normal[2] * invXa;
  588. }
  589. }
  590. DensityEvalOpType DensityEvalOp;
  591. if (std::is_same<CoordBasis,DensityBasis>::value) {
  592. DensityEvalOp = CoordEvalOp;
  593. } else {
  594. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  595. }
  596. #pragma omp parallel for schedule(static)
  597. for (Long i = 0; i < Ntrg; i++) { // Subtract direct contribution
  598. for (Long j = 0; j < Nelem; j++) {
  599. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  600. { // Set kernel matrix M__
  601. const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + (j * Ntrg + i) * CoordDim, false);
  602. const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
  603. const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
  604. kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
  605. }
  606. for (Long k0 = 0; k0 < KDIM0; k0++) {
  607. for (Long k1 = 0; k1 < KDIM1; k1++) {
  608. for (Long l = 0; l < DensityBasis::Size(); l++) {
  609. Real M_lk = 0;
  610. for (Long n = 0; n < Nnds; n++) {
  611. Real quad_wt = Xa_[j * Nnds + n] * quad_wts[n];
  612. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  613. }
  614. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1 * Ntrg + i] -= M_lk;
  615. }
  616. }
  617. }
  618. }
  619. }
  620. }
  621. }
  622. template <class DensityBasis> static void EvalSingular(Matrix<Real>& U, const Vector<DensityBasis>& density, const Matrix<Real>& M, Integer KDIM0_, Integer KDIM1_) {
  623. if (M.Dim(0) == 0 || M.Dim(1) == 0) {
  624. U.ReInit(0,0);
  625. return;
  626. }
  627. const Long Ntrg = M.Dim(1) / KDIM1_;
  628. SCTL_ASSERT(M.Dim(1) == KDIM1_ * Ntrg);
  629. const Long Nelem = M.Dim(0) / (KDIM0_ * DensityBasis::Size());
  630. SCTL_ASSERT(M.Dim(0) == Nelem * KDIM0_ * DensityBasis::Size());
  631. const Integer dof = density.Dim() / (Nelem * KDIM0_);
  632. SCTL_ASSERT(density.Dim() == Nelem * dof * KDIM0_);
  633. if (U.Dim(0) != Nelem * dof * KDIM1_ || U.Dim(1) != Ntrg) {
  634. U.ReInit(Nelem * dof * KDIM1_, Ntrg);
  635. U = 0;
  636. }
  637. for (Long j = 0; j < Nelem; j++) {
  638. const Matrix<Real> M_(KDIM0_ * DensityBasis::Size(), KDIM1_ * Ntrg, (Iterator<Real>)M[j * KDIM0_ * DensityBasis::Size()], false);
  639. Matrix<Real> U_(dof, KDIM1_ * Ntrg, U[j*dof*KDIM1_], false);
  640. Matrix<Real> F_(dof, KDIM0_ * DensityBasis::Size());
  641. for (Long i = 0; i < dof; i++) {
  642. for (Long k = 0; k < KDIM0_; k++) {
  643. for (Long l = 0; l < DensityBasis::Size(); l++) {
  644. F_[i][k * DensityBasis::Size() + l] = density[(j * dof + i) * KDIM0_ + k][l];
  645. }
  646. }
  647. }
  648. Matrix<Real>::GEMM(U_, F_, M_);
  649. }
  650. }
  651. template <Integer DIM> struct PointData {
  652. bool operator<(const PointData& p) const {
  653. return mid < p.mid;
  654. }
  655. Long rank;
  656. Long surf_rank;
  657. Morton<DIM> mid;
  658. StaticArray<Real,DIM> coord;
  659. Real radius2;
  660. };
  661. template <class T1, class T2> struct Pair {
  662. Pair() {}
  663. Pair(T1 x, T2 y) : first(x), second(y) {}
  664. bool operator<(const Pair& p) const {
  665. return (first < p.first) || (((first == p.first) && (second < p.second)));
  666. }
  667. T1 first;
  668. T2 second;
  669. };
  670. template <class ElemList> static void BuildNbrList(Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt, const Vector<Long>& trg_surf, const ElemList& elem_lst, Real distance_factor, Real period_length, const Comm& comm) {
  671. using CoordBasis = typename ElemList::CoordBasis;
  672. constexpr Integer CoordDim = ElemList::CoordDim();
  673. constexpr Integer ElemDim = ElemList::ElemDim();
  674. using PtData = PointData<CoordDim>;
  675. const Integer rank = comm.Rank();
  676. Real R0 = 0;
  677. StaticArray<Real,CoordDim> X0;
  678. { // Find bounding box
  679. Long N = Xt.Dim() / CoordDim;
  680. SCTL_ASSERT(Xt.Dim() == N * CoordDim);
  681. SCTL_ASSERT(N);
  682. StaticArray<Real,CoordDim*2> Xloc;
  683. StaticArray<Real,CoordDim*2> Xglb;
  684. for (Integer k = 0; k < CoordDim; k++) {
  685. Xloc[0*CoordDim+k] = Xt[k];
  686. Xloc[1*CoordDim+k] = Xt[k];
  687. }
  688. for (Long i = 0; i < N; i++) {
  689. for (Integer k = 0; k < CoordDim; k++) {
  690. Xloc[0*CoordDim+k] = std::min<Real>(Xloc[0*CoordDim+k], Xt[i*CoordDim+k]);
  691. Xloc[1*CoordDim+k] = std::max<Real>(Xloc[1*CoordDim+k], Xt[i*CoordDim+k]);
  692. }
  693. }
  694. comm.Allreduce((ConstIterator<Real>)Xloc+0*CoordDim, (Iterator<Real>)Xglb+0*CoordDim, CoordDim, Comm::CommOp::MIN);
  695. comm.Allreduce((ConstIterator<Real>)Xloc+1*CoordDim, (Iterator<Real>)Xglb+1*CoordDim, CoordDim, Comm::CommOp::MAX);
  696. for (Integer k = 0; k < CoordDim; k++) {
  697. R0 = std::max(R0, Xglb[1*CoordDim+k]-Xglb[0*CoordDim+k]);
  698. }
  699. R0 = R0 * 2.0;
  700. for (Integer k = 0; k < CoordDim; k++) {
  701. X0[k] = Xglb[k] - R0*0.25;
  702. }
  703. }
  704. if (period_length > 0) {
  705. R0 = period_length;
  706. }
  707. Vector<PtData> PtSrc, PtTrg;
  708. Integer order_upsample = (Integer)(const_pi<Real>() / distance_factor + 0.5);
  709. { // Set PtSrc
  710. const Vector<CoordBasis>& X_elem_lst = elem_lst.ElemVector();
  711. Vector<CoordBasis> dX_elem_lst;
  712. CoordBasis::Grad(dX_elem_lst, X_elem_lst);
  713. Matrix<Real> nds;
  714. Vector<Real> wts;
  715. TensorProductGaussQuad<ElemDim>(nds, wts, order_upsample);
  716. const Long Nnds = nds.Dim(1);
  717. Vector<Real> X, dX;
  718. const auto CoordEvalOp = CoordBasis::SetupEval(nds);
  719. eval_basis(X, X_elem_lst, CoordDim, Nnds, CoordEvalOp);
  720. eval_basis(dX, dX_elem_lst, CoordDim * ElemDim, Nnds, CoordEvalOp);
  721. const Long N = X.Dim() / CoordDim;
  722. const Long Nelem = elem_lst.NElem();
  723. SCTL_ASSERT(X.Dim() == N * CoordDim);
  724. SCTL_ASSERT(N == Nelem * Nnds);
  725. Long rank_offset, surf_rank_offset;
  726. { // Set rank_offset, surf_rank_offset
  727. comm.Scan(Ptr2ConstItr<Long>(&N,1), Ptr2Itr<Long>(&rank_offset,1), 1, Comm::CommOp::SUM);
  728. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&surf_rank_offset,1), 1, Comm::CommOp::SUM);
  729. surf_rank_offset -= Nelem;
  730. rank_offset -= N;
  731. }
  732. PtSrc.ReInit(N);
  733. const Real R0inv = 1.0 / R0;
  734. for (Long i = 0; i < N; i++) { // Set coord
  735. for (Integer k = 0; k < CoordDim; k++) {
  736. PtSrc[i].coord[k] = (X[i*CoordDim+k] - X0[k]) * R0inv;
  737. }
  738. }
  739. if (period_length > 0) { // Wrap-around coord
  740. for (Long i = 0; i < N; i++) {
  741. auto& x = PtSrc[i].coord;
  742. for (Integer k = 0; k < CoordDim; k++) {
  743. x[k] -= (Long)(x[k]);
  744. }
  745. }
  746. }
  747. for (Long i = 0; i < N; i++) { // Set radius2, mid, rank
  748. Integer depth = 0;
  749. { // Set radius2, depth
  750. Real radius2 = 0;
  751. for (Integer k0 = 0; k0 < ElemDim; k0++) {
  752. Real R2 = 0;
  753. for (Integer k1 = 0; k1 < CoordDim; k1++) {
  754. Real dX_ = dX[(i*CoordDim+k1)*ElemDim+k0];
  755. R2 += dX_*dX_;
  756. }
  757. radius2 = std::max(radius2, R2);
  758. }
  759. radius2 *= R0inv*R0inv * distance_factor*distance_factor;
  760. PtSrc[i].radius2 = radius2;
  761. Long Rinv = (Long)(1.0/radius2);
  762. while (Rinv > 0) {
  763. Rinv = (Rinv>>2);
  764. depth++;
  765. }
  766. }
  767. PtSrc[i].mid = Morton<CoordDim>((Iterator<Real>)PtSrc[i].coord, std::min(Morton<CoordDim>::MaxDepth(),depth));
  768. PtSrc[i].rank = rank_offset + i;
  769. }
  770. for (Long i = 0 ; i < Nelem; i++) { // Set surf_rank
  771. for (Long j = 0; j < Nnds; j++) {
  772. PtSrc[i*Nnds+j].surf_rank = surf_rank_offset + i;
  773. }
  774. }
  775. Vector<PtData> PtSrcSorted;
  776. comm.HyperQuickSort(PtSrc, PtSrcSorted);
  777. PtSrc.Swap(PtSrcSorted);
  778. }
  779. { // Set PtTrg
  780. const Long N = Xt.Dim() / CoordDim;
  781. SCTL_ASSERT(Xt.Dim() == N * CoordDim);
  782. Long rank_offset;
  783. { // Set rank_offset
  784. comm.Scan(Ptr2ConstItr<Long>(&N,1), Ptr2Itr<Long>(&rank_offset,1), 1, Comm::CommOp::SUM);
  785. rank_offset -= N;
  786. }
  787. PtTrg.ReInit(N);
  788. const Real R0inv = 1.0 / R0;
  789. for (Long i = 0; i < N; i++) { // Set coord
  790. for (Integer k = 0; k < CoordDim; k++) {
  791. PtTrg[i].coord[k] = (Xt[i*CoordDim+k] - X0[k]) * R0inv;
  792. }
  793. }
  794. if (period_length > 0) { // Wrap-around coord
  795. for (Long i = 0; i < N; i++) {
  796. auto& x = PtTrg[i].coord;
  797. for (Integer k = 0; k < CoordDim; k++) {
  798. x[k] -= (Long)(x[k]);
  799. }
  800. }
  801. }
  802. for (Long i = 0; i < N; i++) { // Set radius2, mid, rank
  803. PtTrg[i].radius2 = 0;
  804. PtTrg[i].mid = Morton<CoordDim>((Iterator<Real>)PtTrg[i].coord);
  805. PtTrg[i].rank = rank_offset + i;
  806. }
  807. if (trg_surf.Dim()) { // Set surf_rank
  808. SCTL_ASSERT(trg_surf.Dim() == N);
  809. for (Long i = 0; i < N; i++) {
  810. PtTrg[i].surf_rank = trg_surf[i];
  811. }
  812. } else {
  813. for (Long i = 0; i < N; i++) {
  814. PtTrg[i].surf_rank = -1;
  815. }
  816. }
  817. Vector<PtData> PtTrgSorted;
  818. comm.HyperQuickSort(PtTrg, PtTrgSorted);
  819. PtTrg.Swap(PtTrgSorted);
  820. }
  821. Tree<CoordDim> tree(comm);
  822. { // Init tree
  823. Vector<Real> Xall(PtSrc.Dim()+PtTrg.Dim());
  824. { // Set Xall
  825. Xall.ReInit((PtSrc.Dim()+PtTrg.Dim())*CoordDim);
  826. Long Nsrc = PtSrc.Dim();
  827. Long Ntrg = PtTrg.Dim();
  828. for (Long i = 0; i < Nsrc; i++) {
  829. for (Integer k = 0; k < CoordDim; k++) {
  830. Xall[i*CoordDim+k] = PtSrc[i].coord[k];
  831. }
  832. }
  833. for (Long i = 0; i < Ntrg; i++) {
  834. for (Integer k = 0; k < CoordDim; k++) {
  835. Xall[(Nsrc+i)*CoordDim+k] = PtTrg[i].coord[k];
  836. }
  837. }
  838. }
  839. tree.UpdateRefinement(Xall, 1000, true, period_length>0);
  840. }
  841. { // Repartition PtSrc, PtTrg
  842. PtData splitter;
  843. splitter.mid = tree.GetPartitionMID()[rank];
  844. comm.PartitionS(PtSrc, splitter);
  845. comm.PartitionS(PtTrg, splitter);
  846. }
  847. { // Add tree data PtSrc
  848. const auto& node_mid = tree.GetNodeMID();
  849. const Long N = node_mid.Dim();
  850. SCTL_ASSERT(N);
  851. Vector<Long> dsp(N), cnt(N);
  852. for (Long i = 0; i < N; i++) {
  853. PtData m0;
  854. m0.mid = node_mid[i];
  855. dsp[i] = std::lower_bound(PtSrc.begin(), PtSrc.end(), m0) - PtSrc.begin();
  856. }
  857. for (Long i = 0; i < N-1; i++) {
  858. cnt[i] = dsp[i+1] - dsp[i];
  859. }
  860. cnt[N-1] = PtSrc.Dim() - dsp[N-1];
  861. tree.AddData("PtSrc", PtSrc, cnt);
  862. }
  863. tree.template Broadcast<PtData>("PtSrc");
  864. { // Build pair_lst
  865. Vector<Long> cnt;
  866. Vector<PtData> PtSrc;
  867. tree.GetData(PtSrc, cnt, "PtSrc");
  868. const auto& node_mid = tree.GetNodeMID();
  869. const auto& node_attr = tree.GetNodeAttr();
  870. Vector<Morton<CoordDim>> nbr_mid_tmp;
  871. for (Long i = 0; i < node_mid.Dim(); i++) {
  872. if (node_attr[i].Leaf && !node_attr[i].Ghost) {
  873. Vector<Morton<CoordDim>> child_mid;
  874. node_mid[i].Children(child_mid);
  875. for (const auto& trg_mid : child_mid) {
  876. Integer d0 = trg_mid.Depth();
  877. Vector<PtData> Src, Trg;
  878. { // Set Trg
  879. PtData m0, m1;
  880. m0.mid = trg_mid;
  881. m1.mid = trg_mid.Next();
  882. Long a = std::lower_bound(PtTrg.begin(), PtTrg.end(), m0) - PtTrg.begin();
  883. Long b = std::lower_bound(PtTrg.begin(), PtTrg.end(), m1) - PtTrg.begin();
  884. Trg.ReInit(b-a, PtTrg.begin()+a, false);
  885. if (!Trg.Dim()) continue;
  886. }
  887. Vector<std::set<Long>> near_elem(Trg.Dim());
  888. for (Integer d = 0; d <= d0; d++) {
  889. trg_mid.NbrList(nbr_mid_tmp, d, period_length>0);
  890. for (const auto& src_mid : nbr_mid_tmp) { // Set Src
  891. PtData m0, m1;
  892. m0.mid = src_mid;
  893. m1.mid = (d==d0 ? src_mid.Next() : src_mid.Ancestor(d+1));
  894. Long a = std::lower_bound(PtSrc.begin(), PtSrc.end(), m0) - PtSrc.begin();
  895. Long b = std::lower_bound(PtSrc.begin(), PtSrc.end(), m1) - PtSrc.begin();
  896. Src.ReInit(b-a, PtSrc.begin()+a, false);
  897. if (!Src.Dim()) continue;
  898. for (Long t = 0; t < Trg.Dim(); t++) { // set near_elem[t] <-- {s : dist(s,t) < radius(s)}
  899. for (Long s = 0; s < Src.Dim(); s++) {
  900. if (Trg[t].surf_rank != Src[s].surf_rank) {
  901. Real R2 = 0;
  902. for (Integer k = 0; k < CoordDim; k++) {
  903. Real dx = (Src[s].coord[k] - Trg[t].coord[k]);
  904. R2 += dx * dx;
  905. }
  906. if (R2 < Src[s].radius2) {
  907. near_elem[t].insert(Src[s].surf_rank);
  908. }
  909. }
  910. }
  911. }
  912. }
  913. }
  914. for (Long t = 0; t < Trg.Dim(); t++) { // Set pair_lst
  915. for (Long elem_idx : near_elem[t]) {
  916. pair_lst.PushBack(Pair<Long,Long>(elem_idx,Trg[t].rank));
  917. }
  918. }
  919. }
  920. }
  921. }
  922. }
  923. { // Sort and repartition pair_lst
  924. Vector<Pair<Long,Long>> pair_lst_sorted;
  925. comm.HyperQuickSort(pair_lst, pair_lst_sorted);
  926. Long surf_rank_offset;
  927. const Long Nelem = elem_lst.NElem();
  928. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&surf_rank_offset,1), 1, Comm::CommOp::SUM);
  929. surf_rank_offset -= Nelem;
  930. comm.PartitionS(pair_lst_sorted, Pair<Long,Long>(surf_rank_offset,0));
  931. pair_lst.Swap(pair_lst_sorted);
  932. }
  933. }
  934. template <class ElemList> static void BuildNbrListDeprecated(Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt, const ElemList& elem_lst, const Matrix<Real>& surf_nds, Real distance_factor) {
  935. using CoordBasis = typename ElemList::CoordBasis;
  936. constexpr Integer CoordDim = ElemList::CoordDim();
  937. constexpr Integer ElemDim = ElemList::ElemDim();
  938. const Long Nelem = elem_lst.NElem();
  939. const Long Ntrg = Xt.Dim() / CoordDim;
  940. SCTL_ASSERT(Xt.Dim() == Ntrg * CoordDim);
  941. Long Nnds, Nsurf_nds;
  942. Vector<Real> X_surf, X, dX;
  943. Integer order_upsample = (Integer)(const_pi<Real>() / distance_factor + 0.5);
  944. { // Set X, dX
  945. const Vector<CoordBasis>& X_elem_lst = elem_lst.ElemVector();
  946. Vector<CoordBasis> dX_elem_lst;
  947. CoordBasis::Grad(dX_elem_lst, X_elem_lst);
  948. Matrix<Real> nds_upsample;
  949. Vector<Real> wts_upsample;
  950. TensorProductGaussQuad<ElemDim>(nds_upsample, wts_upsample, order_upsample);
  951. Nnds = nds_upsample.Dim(1);
  952. const auto CoordEvalOp = CoordBasis::SetupEval(nds_upsample);
  953. eval_basis(X, X_elem_lst, CoordDim, nds_upsample.Dim(1), CoordEvalOp);
  954. eval_basis(dX, dX_elem_lst, CoordDim * ElemDim, nds_upsample.Dim(1), CoordEvalOp);
  955. Nsurf_nds = surf_nds.Dim(1);
  956. const auto CoordEvalOp_surf = CoordBasis::SetupEval(surf_nds);
  957. eval_basis(X_surf, X_elem_lst, CoordDim, Nsurf_nds, CoordEvalOp_surf);
  958. }
  959. Real d2 = distance_factor * distance_factor;
  960. for (Long i = 0; i < Nelem; i++) {
  961. std::set<Long> near_pts;
  962. std::set<Long> self_pts;
  963. for (Long j = 0; j < Nnds; j++) {
  964. Real R2_max = 0;
  965. StaticArray<Real, CoordDim> X0;
  966. for (Integer k = 0; k < CoordDim; k++) {
  967. X0[k] = X[(i*Nnds+j)*CoordDim+k];
  968. }
  969. for (Integer k0 = 0; k0 < ElemDim; k0++) {
  970. Real R2 = 0;
  971. for (Integer k1 = 0; k1 < CoordDim; k1++) {
  972. Real dX_ = dX[((i*Nnds+j)*CoordDim+k1)*ElemDim+k0];
  973. R2 += dX_*dX_;
  974. }
  975. R2_max = std::max(R2_max, R2*d2);
  976. }
  977. for (Long k = 0; k < Ntrg; k++) {
  978. Real R2 = 0;
  979. for (Integer l = 0; l < CoordDim; l++) {
  980. Real dX = Xt[k*CoordDim+l]- X0[l];
  981. R2 += dX * dX;
  982. }
  983. if (R2 < R2_max) near_pts.insert(k);
  984. }
  985. }
  986. for (Long j = 0; j < Nsurf_nds; j++) {
  987. StaticArray<Real, CoordDim> X0;
  988. for (Integer k = 0; k < CoordDim; k++) {
  989. X0[k] = X_surf[(i*Nsurf_nds+j)*CoordDim+k];
  990. }
  991. for (Long k = 0; k < Ntrg; k++) {
  992. Real R2 = 0;
  993. for (Integer l = 0; l < CoordDim; l++) {
  994. Real dX = Xt[k*CoordDim+l]- X0[l];
  995. R2 += dX * dX;
  996. }
  997. if (R2 == 0) self_pts.insert(k);
  998. }
  999. }
  1000. for (Long trg_idx : self_pts) {
  1001. near_pts.erase(trg_idx);
  1002. }
  1003. for (Long trg_idx : near_pts) {
  1004. pair_lst.PushBack(Pair<Long,Long>(i,trg_idx));
  1005. }
  1006. }
  1007. }
  1008. template <class DensityBasis, class ElemList, class Kernel> static void SetupNearSingular(Matrix<Real>& M_near_singular, Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt_, const Vector<Long>& trg_surf, const ElemList& elem_lst, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) {
  1009. static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
  1010. static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
  1011. static_assert(DensityBasis::Dim() == ElemList::ElemDim());
  1012. using CoordBasis = typename ElemList::CoordBasis;
  1013. using CoordEvalOpType = typename CoordBasis::EvalOpType;
  1014. using DensityEvalOpType = typename DensityBasis::EvalOpType;
  1015. constexpr Integer CoordDim = ElemList::CoordDim();
  1016. constexpr Integer ElemDim = ElemList::ElemDim();
  1017. constexpr Integer KDIM0 = Kernel::SrcDim();
  1018. constexpr Integer KDIM1 = Kernel::TrgDim();
  1019. const Long Nelem = elem_lst.NElem();
  1020. BuildNbrList(pair_lst, Xt_, trg_surf, elem_lst, 2.5/order_direct, period_length, comm);
  1021. const Long Ninterac = pair_lst.Dim();
  1022. Vector<Real> Xt;
  1023. { // Set Xt
  1024. Integer rank = comm.Rank();
  1025. Integer np = comm.Size();
  1026. Vector<Long> splitter_ranks;
  1027. { // Set splitter_ranks
  1028. Vector<Long> cnt(np);
  1029. const Long N = Xt_.Dim() / CoordDim;
  1030. comm.Allgather(Ptr2ConstItr<Long>(&N,1), 1, cnt.begin(), 1);
  1031. scan(splitter_ranks, cnt);
  1032. }
  1033. Vector<Long> scatter_index, recv_index, recv_cnt(np), recv_dsp(np);
  1034. { // Set scatter_index, recv_index, recv_cnt, recv_dsp
  1035. { // Set scatter_index, recv_index
  1036. Vector<Pair<Long,Long>> scatter_pair(pair_lst.Dim());
  1037. for (Long i = 0; i < pair_lst.Dim(); i++) {
  1038. scatter_pair[i] = Pair<Long,Long>(pair_lst[i].second,i);
  1039. }
  1040. omp_par::merge_sort(scatter_pair.begin(), scatter_pair.end());
  1041. recv_index.ReInit(scatter_pair.Dim());
  1042. scatter_index.ReInit(scatter_pair.Dim());
  1043. for (Long i = 0; i < scatter_index.Dim(); i++) {
  1044. recv_index[i] = scatter_pair[i].first;
  1045. scatter_index[i] = scatter_pair[i].second;
  1046. }
  1047. }
  1048. for (Integer i = 0; i < np; i++) {
  1049. recv_dsp[i] = std::lower_bound(recv_index.begin(), recv_index.end(), splitter_ranks[i]) - recv_index.begin();
  1050. }
  1051. for (Integer i = 0; i < np-1; i++) {
  1052. recv_cnt[i] = recv_dsp[i+1] - recv_dsp[i];
  1053. }
  1054. recv_cnt[np-1] = recv_index.Dim() - recv_dsp[np-1];
  1055. }
  1056. Vector<Long> send_index, send_cnt(np), send_dsp(np);
  1057. { // Set send_index, send_cnt, send_dsp
  1058. comm.Alltoall(recv_cnt.begin(), 1, send_cnt.begin(), 1);
  1059. scan(send_dsp, send_cnt);
  1060. send_index.ReInit(send_cnt[np-1] + send_dsp[np-1]);
  1061. comm.Alltoallv(recv_index.begin(), recv_cnt.begin(), recv_dsp.begin(), send_index.begin(), send_cnt.begin(), send_dsp.begin());
  1062. }
  1063. Vector<Real> Xt_send(send_index.Dim() * CoordDim);
  1064. for (Long i = 0; i < send_index.Dim(); i++) { // Set Xt_send
  1065. Long idx = send_index[i] - splitter_ranks[rank];
  1066. for (Integer k = 0; k < CoordDim; k++) {
  1067. Xt_send[i*CoordDim+k] = Xt_[idx*CoordDim+k];
  1068. }
  1069. }
  1070. Vector<Real> Xt_recv(recv_index.Dim() * CoordDim);
  1071. { // Set Xt_recv
  1072. for (Long i = 0; i < np; i++) {
  1073. send_cnt[i] *= CoordDim;
  1074. send_dsp[i] *= CoordDim;
  1075. recv_cnt[i] *= CoordDim;
  1076. recv_dsp[i] *= CoordDim;
  1077. }
  1078. comm.Alltoallv(Xt_send.begin(), send_cnt.begin(), send_dsp.begin(), Xt_recv.begin(), recv_cnt.begin(), recv_dsp.begin());
  1079. }
  1080. Xt.ReInit(scatter_index.Dim() * CoordDim);
  1081. for (Long i = 0; i < scatter_index.Dim(); i++) { // Set Xt
  1082. Long idx = scatter_index[i];
  1083. for (Integer k = 0; k < CoordDim; k++) {
  1084. Xt[idx*CoordDim+k] = Xt_recv[i*CoordDim+k];
  1085. }
  1086. }
  1087. }
  1088. const Vector<CoordBasis>& X = elem_lst.ElemVector();
  1089. Vector<CoordBasis> dX;
  1090. CoordBasis::Grad(dX, X);
  1091. Long elem_rank_offset;
  1092. { // Set elem_rank_offset
  1093. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&elem_rank_offset,1), 1, Comm::CommOp::SUM);
  1094. elem_rank_offset -= Nelem;
  1095. }
  1096. auto& M = M_near_singular;
  1097. M.ReInit(Ninterac * KDIM0 * DensityBasis::Size(), KDIM1);
  1098. #pragma omp parallel for schedule(static)
  1099. for (Long j = 0; j < Ninterac; j++) { // Set M (near-singular)
  1100. const Long src_idx = pair_lst[j].first - elem_rank_offset;
  1101. Real adapt = -1.0;
  1102. Tensor<Real,true,ElemDim,1> u0;
  1103. { // Set u0 (project target point to the surface patch in parameter space)
  1104. ConstIterator<Real> Xt_ = Xt.begin() + j * CoordDim;
  1105. const auto& nodes = CoordBasis::Nodes();
  1106. Long min_idx = -1;
  1107. Real min_R2 = 1e10;
  1108. for (Long i = 0; i < CoordBasis::Size(); i++) {
  1109. Real R2 = 0;
  1110. for (Integer k = 0; k < CoordDim; k++) {
  1111. Real dX = X[src_idx * CoordDim + k][i] - Xt_[k];
  1112. R2 += dX * dX;
  1113. }
  1114. if (R2 < min_R2) {
  1115. min_R2 = R2;
  1116. min_idx = i;
  1117. }
  1118. }
  1119. SCTL_ASSERT(min_idx >= 0);
  1120. for (Integer k = 0; k < ElemDim; k++) {
  1121. u0(k,0) = nodes[k][min_idx];
  1122. }
  1123. for (Integer i = 0; i < 2; i++) { // iterate
  1124. Matrix<Real> X_, dX_;
  1125. for (Integer k = 0; k < ElemDim; k++) {
  1126. u0(k,0) = std::min<Real>(1.0, u0(k,0));
  1127. u0(k,0) = std::max<Real>(0.0, u0(k,0));
  1128. }
  1129. const auto eval_op = CoordBasis::SetupEval(Matrix<Real>(ElemDim,1,u0.begin(),false));
  1130. CoordBasis::Eval(X_, Vector<CoordBasis>(CoordDim,(Iterator<CoordBasis>)X.begin()+src_idx*CoordDim,false),eval_op);
  1131. CoordBasis::Eval(dX_, Vector<CoordBasis>(CoordDim*ElemDim,dX.begin()+src_idx*CoordDim*ElemDim,false),eval_op);
  1132. const Tensor<Real,false,CoordDim,1> x0((Iterator<Real>)Xt_);
  1133. const Tensor<Real,false,CoordDim,1> x(X_.begin());
  1134. const Tensor<Real,false,CoordDim,ElemDim> x_u(dX_.begin());
  1135. auto inv = [](const Tensor<Real,true,2,2>& M) {
  1136. Tensor<Real,true,2,2> Minv;
  1137. Real det_inv = 1.0 / (M(0,0)*M(1,1) - M(1,0)*M(0,1));
  1138. Minv(0,0) = M(1,1) * det_inv;
  1139. Minv(0,1) =-M(0,1) * det_inv;
  1140. Minv(1,0) =-M(1,0) * det_inv;
  1141. Minv(1,1) = M(0,0) * det_inv;
  1142. return Minv;
  1143. };
  1144. auto du = inv(x_u.RotateRight()*x_u) * x_u.RotateRight()*(x0-x);
  1145. u0 = u0 + du;
  1146. auto x_u_squared = x_u.RotateRight() * x_u;
  1147. adapt = sctl::sqrt<Real>( ((x0-x).RotateRight()*(x0-x))(0,0) / std::max<Real>(x_u_squared(0,0),x_u_squared(1,1)) );
  1148. }
  1149. }
  1150. Matrix<Real> quad_nds;
  1151. Vector<Real> quad_wts;
  1152. DuffyQuad<ElemDim>(quad_nds, quad_wts, Vector<Real>(ElemDim,u0.begin(),false), order_singular, adapt);
  1153. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  1154. Integer Nnds = quad_wts.Dim();
  1155. Vector<Real> X_, dX_, Xa_, Xn_;
  1156. { // Set X_, dX_
  1157. const Vector<CoordBasis> X__(CoordDim, (Iterator<CoordBasis>)X.begin() + src_idx * CoordDim, false);
  1158. const Vector<CoordBasis> dX__(CoordDim * ElemDim, (Iterator<CoordBasis>)dX.begin() + src_idx * CoordDim * ElemDim, false);
  1159. eval_basis(X_, X__, CoordDim, Nnds, CoordEvalOp);
  1160. eval_basis(dX_, dX__, CoordDim * ElemDim, Nnds, CoordEvalOp);
  1161. }
  1162. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  1163. Xa_.ReInit(Nnds);
  1164. Xn_.ReInit(Nnds*CoordDim);
  1165. for (Long j = 0; j < Nnds; j++) {
  1166. StaticArray<Real,CoordDim> normal;
  1167. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  1168. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  1169. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  1170. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  1171. Real invXa = 1/Xa_[j];
  1172. Xn_[j*3+0] = normal[0] * invXa;
  1173. Xn_[j*3+1] = normal[1] * invXa;
  1174. Xn_[j*3+2] = normal[2] * invXa;
  1175. }
  1176. }
  1177. DensityEvalOpType DensityEvalOp;
  1178. if (std::is_same<CoordBasis,DensityBasis>::value) {
  1179. DensityEvalOp = CoordEvalOp;
  1180. } else {
  1181. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  1182. }
  1183. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  1184. { // Set kernel matrix M__
  1185. const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + j * CoordDim, false);
  1186. kernel.template KernelMatrix<Real>(M__, X0_, X_, Xn_);
  1187. }
  1188. for (Long k0 = 0; k0 < KDIM0; k0++) {
  1189. for (Long k1 = 0; k1 < KDIM1; k1++) {
  1190. for (Long l = 0; l < DensityBasis::Size(); l++) {
  1191. Real M_lk = 0;
  1192. for (Long n = 0; n < Nnds; n++) {
  1193. Real quad_wt = Xa_[n] * quad_wts[n];
  1194. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  1195. }
  1196. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1] = M_lk;
  1197. }
  1198. }
  1199. }
  1200. }
  1201. { // Set M (subtract direct)
  1202. Matrix<Real> quad_nds;
  1203. Vector<Real> quad_wts;
  1204. TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
  1205. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  1206. Integer Nnds = quad_wts.Dim();
  1207. Vector<Real> X_, dX_, Xa_, Xn_;
  1208. { // Set X_, dX_
  1209. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  1210. eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
  1211. }
  1212. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  1213. Long N = Nelem*Nnds;
  1214. Xa_.ReInit(N);
  1215. Xn_.ReInit(N*CoordDim);
  1216. for (Long j = 0; j < N; j++) {
  1217. StaticArray<Real,CoordDim> normal;
  1218. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  1219. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  1220. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  1221. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  1222. Real invXa = 1/Xa_[j];
  1223. Xn_[j*3+0] = normal[0] * invXa;
  1224. Xn_[j*3+1] = normal[1] * invXa;
  1225. Xn_[j*3+2] = normal[2] * invXa;
  1226. }
  1227. }
  1228. DensityEvalOpType DensityEvalOp;
  1229. if (std::is_same<CoordBasis,DensityBasis>::value) {
  1230. DensityEvalOp = CoordEvalOp;
  1231. } else {
  1232. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  1233. }
  1234. #pragma omp parallel for schedule(static)
  1235. for (Long j = 0; j < Ninterac; j++) { // Subtract direct contribution
  1236. const Long src_idx = pair_lst[j].first - elem_rank_offset;
  1237. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  1238. { // Set kernel matrix M__
  1239. const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + j * CoordDim, false);
  1240. Vector<Real> X__(Nnds * CoordDim, X_.begin() + src_idx * Nnds * CoordDim, false);
  1241. Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + src_idx * Nnds * CoordDim, false);
  1242. kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
  1243. }
  1244. for (Long k0 = 0; k0 < KDIM0; k0++) {
  1245. for (Long k1 = 0; k1 < KDIM1; k1++) {
  1246. for (Long l = 0; l < DensityBasis::Size(); l++) {
  1247. Real M_lk = 0;
  1248. for (Long n = 0; n < Nnds; n++) {
  1249. Real quad_wt = Xa_[src_idx * Nnds + n] * quad_wts[n];
  1250. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  1251. }
  1252. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1] -= M_lk;
  1253. }
  1254. }
  1255. }
  1256. }
  1257. }
  1258. }
  1259. template <class DensityBasis> static void EvalNearSingular(Vector<Real>& U, const Vector<DensityBasis>& density, const Matrix<Real>& M, const Vector<Pair<Long,Long>>& pair_lst, Long Nelem_, Long Ntrg_, Integer KDIM0_, Integer KDIM1_, const Comm& comm) {
  1260. const Long Ninterac = pair_lst.Dim();
  1261. const Integer dof = density.Dim() / Nelem_ / KDIM0_;
  1262. SCTL_ASSERT(density.Dim() == Nelem_ * dof * KDIM0_);
  1263. Long elem_rank_offset;
  1264. { // Set elem_rank_offset
  1265. comm.Scan(Ptr2ConstItr<Long>(&Nelem_,1), Ptr2Itr<Long>(&elem_rank_offset,1), 1, Comm::CommOp::SUM);
  1266. elem_rank_offset -= Nelem_;
  1267. }
  1268. Vector<Real> U_loc(Ninterac*dof*KDIM1_);
  1269. for (Long j = 0; j < Ninterac; j++) {
  1270. const Long src_idx = pair_lst[j].first - elem_rank_offset;
  1271. const Matrix<Real> M_(KDIM0_ * DensityBasis::Size(), KDIM1_, (Iterator<Real>)M[j * KDIM0_ * DensityBasis::Size()], false);
  1272. Matrix<Real> U_(dof, KDIM1_, U_loc.begin() + j*dof*KDIM1_, false);
  1273. Matrix<Real> F_(dof, KDIM0_ * DensityBasis::Size());
  1274. for (Long i = 0; i < dof; i++) {
  1275. for (Long k = 0; k < KDIM0_; k++) {
  1276. for (Long l = 0; l < DensityBasis::Size(); l++) {
  1277. F_[i][k * DensityBasis::Size() + l] = density[(src_idx * dof + i) * KDIM0_ + k][l];
  1278. }
  1279. }
  1280. }
  1281. Matrix<Real>::GEMM(U_, F_, M_);
  1282. }
  1283. if (U.Dim() != Ntrg_ * dof * KDIM1_) {
  1284. U.ReInit(Ntrg_ * dof * KDIM1_);
  1285. U = 0;
  1286. }
  1287. { // Set U
  1288. Integer rank = comm.Rank();
  1289. Integer np = comm.Size();
  1290. Vector<Long> splitter_ranks;
  1291. { // Set splitter_ranks
  1292. Vector<Long> cnt(np);
  1293. comm.Allgather(Ptr2ConstItr<Long>(&Ntrg_,1), 1, cnt.begin(), 1);
  1294. scan(splitter_ranks, cnt);
  1295. }
  1296. Vector<Long> scatter_index, send_index, send_cnt(np), send_dsp(np);
  1297. { // Set scatter_index, send_index, send_cnt, send_dsp
  1298. { // Set scatter_index, send_index
  1299. Vector<Pair<Long,Long>> scatter_pair(pair_lst.Dim());
  1300. for (Long i = 0; i < pair_lst.Dim(); i++) {
  1301. scatter_pair[i] = Pair<Long,Long>(pair_lst[i].second,i);
  1302. }
  1303. omp_par::merge_sort(scatter_pair.begin(), scatter_pair.end());
  1304. send_index.ReInit(scatter_pair.Dim());
  1305. scatter_index.ReInit(scatter_pair.Dim());
  1306. for (Long i = 0; i < scatter_index.Dim(); i++) {
  1307. send_index[i] = scatter_pair[i].first;
  1308. scatter_index[i] = scatter_pair[i].second;
  1309. }
  1310. }
  1311. for (Integer i = 0; i < np; i++) {
  1312. send_dsp[i] = std::lower_bound(send_index.begin(), send_index.end(), splitter_ranks[i]) - send_index.begin();
  1313. }
  1314. for (Integer i = 0; i < np-1; i++) {
  1315. send_cnt[i] = send_dsp[i+1] - send_dsp[i];
  1316. }
  1317. send_cnt[np-1] = send_index.Dim() - send_dsp[np-1];
  1318. }
  1319. Vector<Long> recv_index, recv_cnt(np), recv_dsp(np);
  1320. { // Set recv_index, recv_cnt, recv_dsp
  1321. comm.Alltoall(send_cnt.begin(), 1, recv_cnt.begin(), 1);
  1322. scan(recv_dsp, recv_cnt);
  1323. recv_index.ReInit(recv_cnt[np-1] + recv_dsp[np-1]);
  1324. comm.Alltoallv(send_index.begin(), send_cnt.begin(), send_dsp.begin(), recv_index.begin(), recv_cnt.begin(), recv_dsp.begin());
  1325. }
  1326. Vector<Real> U_send(scatter_index.Dim() * dof * KDIM1_);
  1327. for (Long i = 0; i < scatter_index.Dim(); i++) {
  1328. Long idx = scatter_index[i]*dof*KDIM1_;
  1329. for (Long k = 0; k < dof * KDIM1_; k++) {
  1330. U_send[i*dof*KDIM1_ + k] = U_loc[idx + k];
  1331. }
  1332. }
  1333. Vector<Real> U_recv(recv_index.Dim() * dof * KDIM1_);
  1334. { // Set U_recv
  1335. for (Long i = 0; i < np; i++) {
  1336. send_cnt[i] *= dof * KDIM1_;
  1337. send_dsp[i] *= dof * KDIM1_;
  1338. recv_cnt[i] *= dof * KDIM1_;
  1339. recv_dsp[i] *= dof * KDIM1_;
  1340. }
  1341. comm.Alltoallv(U_send.begin(), send_cnt.begin(), send_dsp.begin(), U_recv.begin(), recv_cnt.begin(), recv_dsp.begin());
  1342. }
  1343. for (Long i = 0; i < recv_index.Dim(); i++) { // Set U
  1344. Long idx = (recv_index[i] - splitter_ranks[rank]) * dof * KDIM1_;
  1345. for (Integer k = 0; k < dof * KDIM1_; k++) {
  1346. U[idx + k] += U_recv[i*dof*KDIM1_ + k];
  1347. }
  1348. }
  1349. }
  1350. }
  1351. template <class ElemList, class DensityBasis, class Kernel> static void Direct(Vector<Real>& U, const Vector<Real>& Xt, const ElemList& elem_lst, const Vector<DensityBasis>& density, const Kernel& kernel, Integer order_direct, const Comm& comm) {
  1352. using CoordBasis = typename ElemList::CoordBasis;
  1353. using CoordEvalOpType = typename CoordBasis::EvalOpType;
  1354. using DensityEvalOpType = typename DensityBasis::EvalOpType;
  1355. constexpr Integer CoordDim = ElemList::CoordDim();
  1356. constexpr Integer ElemDim = ElemList::ElemDim();
  1357. constexpr Integer KDIM0 = Kernel::SrcDim();
  1358. constexpr Integer KDIM1 = Kernel::TrgDim();
  1359. const Long Nelem = elem_lst.NElem();
  1360. const Integer dof = density.Dim() / Nelem / KDIM0;
  1361. SCTL_ASSERT(density.Dim() == Nelem * dof * KDIM0);
  1362. Matrix<Real> quad_nds;
  1363. Vector<Real> quad_wts;
  1364. TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
  1365. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  1366. Integer Nnds = quad_wts.Dim();
  1367. const Vector<CoordBasis>& X = elem_lst.ElemVector();
  1368. Vector<CoordBasis> dX;
  1369. CoordBasis::Grad(dX, X);
  1370. Vector<Real> X_, dX_, Xa_, Xn_;
  1371. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  1372. eval_basis(dX_, dX, CoordDim*ElemDim, Nnds, CoordEvalOp);
  1373. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  1374. Long N = Nelem*Nnds;
  1375. Xa_.ReInit(N);
  1376. Xn_.ReInit(N*CoordDim);
  1377. for (Long j = 0; j < N; j++) {
  1378. StaticArray<Real,CoordDim> normal;
  1379. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  1380. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  1381. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  1382. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  1383. Real invXa = 1/Xa_[j];
  1384. Xn_[j*3+0] = normal[0] * invXa;
  1385. Xn_[j*3+1] = normal[1] * invXa;
  1386. Xn_[j*3+2] = normal[2] * invXa;
  1387. }
  1388. }
  1389. Vector<Real> Fa_;
  1390. { // Set Fa_
  1391. Vector<Real> F_;
  1392. if (std::is_same<CoordBasis,DensityBasis>::value) {
  1393. eval_basis(F_, density, dof * KDIM0, Nnds, CoordEvalOp);
  1394. } else {
  1395. const DensityEvalOpType EvalOp = DensityBasis::SetupEval(quad_nds);
  1396. eval_basis(F_, density, dof * KDIM0, Nnds, EvalOp);
  1397. }
  1398. Fa_.ReInit(F_.Dim());
  1399. const Integer DensityDOF = dof * KDIM0;
  1400. SCTL_ASSERT(F_.Dim() == Nelem * Nnds * DensityDOF);
  1401. for (Long j = 0; j < Nelem; j++) {
  1402. for (Integer k = 0; k < Nnds; k++) {
  1403. Long idx = j * Nnds + k;
  1404. Real quad_wt = Xa_[idx] * quad_wts[k];
  1405. for (Integer l = 0; l < DensityDOF; l++) {
  1406. Fa_[idx * DensityDOF + l] = F_[idx * DensityDOF + l] * quad_wt;
  1407. }
  1408. }
  1409. }
  1410. }
  1411. { // Evaluate potential
  1412. const Long Ntrg = Xt.Dim() / CoordDim;
  1413. SCTL_ASSERT(Xt.Dim() == Ntrg * CoordDim);
  1414. if (U.Dim() != Ntrg * dof * KDIM1) {
  1415. U.ReInit(Ntrg * dof * KDIM1);
  1416. U = 0;
  1417. }
  1418. ParticleFMM<Real,CoordDim>::Eval(U, Xt, X_, Xn_, Fa_, kernel, comm);
  1419. }
  1420. }
  1421. public:
  1422. template <class DensityBasis, class ElemList, class Kernel> void Setup(const ElemList& elem_lst, const Vector<Real>& Xt, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) {
  1423. Xt_.ReInit(0);
  1424. M_singular.ReInit(0,0);
  1425. M_near_singular.ReInit(0,0);
  1426. pair_lst.ReInit(0);
  1427. order_direct_ = order_direct;
  1428. period_length_ = period_length;
  1429. comm_ = comm;
  1430. Profile::Tic("Setup", &comm_);
  1431. static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
  1432. static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
  1433. static_assert(DensityBasis::Dim() == ElemList::ElemDim());
  1434. Xt_ = Xt;
  1435. M_singular.ReInit(0,0);
  1436. Profile::Tic("SetupNearSingular", &comm_);
  1437. SetupNearSingular<DensityBasis>(M_near_singular, pair_lst, Xt_, Vector<Long>(), elem_lst, kernel, order_singular, order_direct_, period_length_, comm_);
  1438. Profile::Toc();
  1439. Profile::Toc();
  1440. }
  1441. template <class DensityBasis, class PotentialBasis, class ElemList, class Kernel> void Setup(const ElemList& elem_lst, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm, Real Rqbx = 0) {
  1442. Xt_.ReInit(0);
  1443. M_singular.ReInit(0,0);
  1444. M_near_singular.ReInit(0,0);
  1445. pair_lst.ReInit(0);
  1446. order_direct_ = order_direct;
  1447. period_length_ = period_length;
  1448. comm_ = comm;
  1449. Profile::Tic("Setup", &comm_);
  1450. static_assert(std::is_same<Real,typename PotentialBasis::ValueType>::value);
  1451. static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
  1452. static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
  1453. static_assert(PotentialBasis::Dim() == ElemList::ElemDim());
  1454. static_assert(DensityBasis::Dim() == ElemList::ElemDim());
  1455. Vector<Long> trg_surf;
  1456. { // Set Xt_
  1457. using CoordBasis = typename ElemList::CoordBasis;
  1458. Matrix<Real> trg_nds = PotentialBasis::Nodes();
  1459. auto Meval = CoordBasis::SetupEval(trg_nds);
  1460. eval_basis(Xt_, elem_lst.ElemVector(), ElemList::CoordDim(), trg_nds.Dim(1), Meval);
  1461. { // Set trg_surf
  1462. const Long Nelem = elem_lst.NElem();
  1463. const Long Nnds = trg_nds.Dim(1);
  1464. Long elem_offset;
  1465. { // Set elem_offset
  1466. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&elem_offset,1), 1, Comm::CommOp::SUM);
  1467. elem_offset -= Nelem;
  1468. }
  1469. trg_surf.ReInit(elem_lst.NElem() * trg_nds.Dim(1));
  1470. for (Long i = 0; i < Nelem; i++) {
  1471. for (Long j = 0; j < Nnds; j++) {
  1472. trg_surf[i*Nnds+j] = elem_offset + i;
  1473. }
  1474. }
  1475. }
  1476. }
  1477. Profile::Tic("SetupSingular", &comm_);
  1478. SetupSingular<DensityBasis>(M_singular, PotentialBasis::Nodes(), elem_lst, kernel, order_singular, order_direct_, Rqbx);
  1479. Profile::Toc();
  1480. Profile::Tic("SetupNearSingular", &comm_);
  1481. SetupNearSingular<DensityBasis>(M_near_singular, pair_lst, Xt_, trg_surf, elem_lst, kernel, order_singular, order_direct_, period_length_, comm_);
  1482. Profile::Toc();
  1483. Profile::Toc();
  1484. }
  1485. template <class DensityBasis, class PotentialBasis, class ElemList, class Kernel> void Eval(Vector<PotentialBasis>& U, const ElemList& elements, const Vector<DensityBasis>& F, const Kernel& kernel) {
  1486. Profile::Tic("Eval", &comm_);
  1487. Matrix<Real> U_singular;
  1488. Vector<Real> U_direct, U_near_sing;
  1489. Profile::Tic("EvalDirect", &comm_);
  1490. Direct(U_direct, Xt_, elements, F, kernel, order_direct_, comm_);
  1491. Profile::Toc();
  1492. Profile::Tic("EvalSingular", &comm_);
  1493. EvalSingular(U_singular, F, M_singular, kernel.SrcDim(), kernel.TrgDim());
  1494. Profile::Toc();
  1495. Profile::Tic("EvalNearSingular", &comm_);
  1496. EvalNearSingular(U_near_sing, F, M_near_singular, pair_lst, elements.NElem(), Xt_.Dim() / ElemList::CoordDim(), kernel.SrcDim(), kernel.TrgDim(), comm_);
  1497. SCTL_ASSERT(U_near_sing.Dim() == U_direct.Dim());
  1498. Profile::Toc();
  1499. const Long dof = U_direct.Dim() / (elements.NElem() * PotentialBasis::Size() * kernel.TrgDim());
  1500. SCTL_ASSERT(U_direct .Dim() == elements.NElem() * PotentialBasis::Size() * dof * kernel.TrgDim());
  1501. SCTL_ASSERT(U_near_sing.Dim() == elements.NElem() * PotentialBasis::Size() * dof * kernel.TrgDim());
  1502. if (U.Dim() != elements.NElem() * dof * kernel.TrgDim()) {
  1503. U.ReInit(elements.NElem() * dof * kernel.TrgDim());
  1504. }
  1505. for (int i = 0; i < elements.NElem(); i++) {
  1506. for (int j = 0; j < PotentialBasis::Size(); j++) {
  1507. for (int k = 0; k < dof*kernel.TrgDim(); k++) {
  1508. Real& U_ = U[i*dof*kernel.TrgDim()+k][j];
  1509. U_ = 0;
  1510. U_ += U_direct [(i*PotentialBasis::Size()+j)*dof*kernel.TrgDim()+k];
  1511. U_ += U_near_sing[(i*PotentialBasis::Size()+j)*dof*kernel.TrgDim()+k];
  1512. U_ *= kernel.template ScaleFactor<Real>();
  1513. }
  1514. }
  1515. }
  1516. if (U_singular.Dim(1)) {
  1517. SCTL_ASSERT(U_singular.Dim(0) == elements.NElem() * dof * kernel.TrgDim());
  1518. SCTL_ASSERT(U_singular.Dim(1) == PotentialBasis::Size());
  1519. for (int i = 0; i < elements.NElem(); i++) {
  1520. for (int j = 0; j < PotentialBasis::Size(); j++) {
  1521. for (int k = 0; k < dof*kernel.TrgDim(); k++) {
  1522. U[i*dof*kernel.TrgDim()+k][j] += U_singular[i*dof*kernel.TrgDim()+k][j] * kernel.template ScaleFactor<Real>();
  1523. }
  1524. }
  1525. }
  1526. }
  1527. Profile::Toc();
  1528. }
  1529. template <class DensityBasis, class ElemList, class Kernel> void Eval(Vector<Real>& U, const ElemList& elements, const Vector<DensityBasis>& F, const Kernel& kernel) {
  1530. Profile::Tic("Eval", &comm_);
  1531. Matrix<Real> U_singular;
  1532. Vector<Real> U_direct, U_near_sing;
  1533. Profile::Tic("EvalDirect", &comm_);
  1534. Direct(U_direct, Xt_, elements, F, kernel, order_direct_, comm_);
  1535. Profile::Toc();
  1536. Profile::Tic("EvalSingular", &comm_);
  1537. EvalSingular(U_singular, F, M_singular, kernel.SrcDim(), kernel.TrgDim());
  1538. Profile::Toc();
  1539. Profile::Tic("EvalNearSingular", &comm_);
  1540. EvalNearSingular(U_near_sing, F, M_near_singular, pair_lst, elements.NElem(), Xt_.Dim() / ElemList::CoordDim(), kernel.SrcDim(), kernel.TrgDim(), comm_);
  1541. SCTL_ASSERT(U_near_sing.Dim() == U_direct.Dim());
  1542. Profile::Toc();
  1543. Long Nt = Xt_.Dim() / ElemList::CoordDim();
  1544. const Long dof = U_direct.Dim() / (Nt * kernel.TrgDim());
  1545. SCTL_ASSERT(U_direct.Dim() == Nt * dof * kernel.TrgDim());
  1546. if (U.Dim() != U_direct.Dim()) {
  1547. U.ReInit(U_direct.Dim());
  1548. }
  1549. for (int i = 0; i < U.Dim(); i++) {
  1550. U[i] = (U_direct[i] + U_near_sing[i]) * kernel.template ScaleFactor<Real>();
  1551. }
  1552. if (U_singular.Dim(1)) {
  1553. SCTL_ASSERT(U_singular.Dim(0) == elements.NElem() * dof * kernel.TrgDim());
  1554. const Long Nnodes = U_singular.Dim(1);
  1555. for (int i = 0; i < elements.NElem(); i++) {
  1556. for (int j = 0; j < Nnodes; j++) {
  1557. for (int k = 0; k < dof*kernel.TrgDim(); k++) {
  1558. Real& U_ = U[(i*Nnodes+j)*dof*kernel.TrgDim()+k];
  1559. U_ += U_singular[i*dof*kernel.TrgDim()+k][j] * kernel.template ScaleFactor<Real>();
  1560. }
  1561. }
  1562. }
  1563. }
  1564. Profile::Toc();
  1565. }
  1566. template <Integer ORDER = 5> static void test(Integer order_singular = 10, Integer order_direct = 5, const Comm& comm = Comm::World()) {
  1567. constexpr Integer COORD_DIM = 3;
  1568. constexpr Integer ELEM_DIM = COORD_DIM-1;
  1569. using ElemList = ElemList<COORD_DIM, Basis<Real, ELEM_DIM, ORDER>>;
  1570. using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
  1571. using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
  1572. int np = comm.Size();
  1573. int rank = comm.Rank();
  1574. auto build_torus = [rank,np](ElemList& elements, long Nt, long Np, Real Rmajor, Real Rminor){
  1575. auto nodes = ElemList::CoordBasis::Nodes();
  1576. auto torus = [](Real theta, Real phi, Real Rmajor, Real Rminor) {
  1577. Real R = Rmajor + Rminor * cos<Real>(phi);
  1578. Real X = R * cos<Real>(theta);
  1579. Real Y = R * sin<Real>(theta);
  1580. Real Z = Rminor * sin<Real>(phi);
  1581. return std::make_tuple(X,Y,Z);
  1582. };
  1583. long start = Nt*Np*(rank+0)/np;
  1584. long end = Nt*Np*(rank+1)/np;
  1585. elements.ReInit(end - start);
  1586. for (long ii = start; ii < end; ii++) {
  1587. long i = ii / Np;
  1588. long j = ii % Np;
  1589. for (int k = 0; k < ElemList::CoordBasis::Size(); k++) {
  1590. Real X, Y, Z;
  1591. Real theta = 2 * const_pi<Real>() * (i + nodes[0][k]) / Nt;
  1592. Real phi = 2 * const_pi<Real>() * (j + nodes[1][k]) / Np;
  1593. std::tie(X,Y,Z) = torus(theta, phi, Rmajor, Rminor);
  1594. elements(ii-start,0)[k] = X;
  1595. elements(ii-start,1)[k] = Y;
  1596. elements(ii-start,2)[k] = Z;
  1597. }
  1598. }
  1599. };
  1600. ElemList elements_src, elements_trg;
  1601. build_torus(elements_src, 28, 16, 2, 1.0);
  1602. build_torus(elements_trg, 29, 17, 2, 0.99);
  1603. Vector<Real> Xt;
  1604. Vector<PotentialBasis> U_onsurf, U_offsurf;
  1605. Vector<DensityBasis> density_sl, density_dl;
  1606. { // Set Xt, elements_src, elements_trg, density_sl, density_dl, U
  1607. Real X0[COORD_DIM] = {3,2,1};
  1608. std::function<void(Real*,Real*,Real*)> potential = [X0](Real* U, Real* X, Real* Xn) {
  1609. Real dX[COORD_DIM] = {X[0]-X0[0],X[1]-X0[1],X[2]-X0[2]};
  1610. Real Rinv = 1/sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dX[2]);
  1611. U[0] = Rinv;
  1612. };
  1613. std::function<void(Real*,Real*,Real*)> potential_normal_derivative = [X0](Real* U, Real* X, Real* Xn) {
  1614. Real dX[COORD_DIM] = {X[0]-X0[0],X[1]-X0[1],X[2]-X0[2]};
  1615. Real Rinv = 1/sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dX[2]);
  1616. Real RdotN = dX[0]*Xn[0]+dX[1]*Xn[1]+dX[2]*Xn[2];
  1617. U[0] = -RdotN * Rinv*Rinv*Rinv;
  1618. };
  1619. DiscretizeSurfaceFn<COORD_DIM,1>(density_sl, elements_src, potential_normal_derivative);
  1620. DiscretizeSurfaceFn<COORD_DIM,1>(density_dl, elements_src, potential);
  1621. DiscretizeSurfaceFn<COORD_DIM,1>(U_onsurf , elements_src, potential);
  1622. DiscretizeSurfaceFn<COORD_DIM,1>(U_offsurf , elements_trg, potential);
  1623. for (long i = 0; i < elements_trg.NElem(); i++) { // Set Xt
  1624. for (long j = 0; j < PotentialBasis::Size(); j++) {
  1625. for (int k = 0; k < COORD_DIM; k++) {
  1626. Xt.PushBack(elements_trg(i,k)[j]);
  1627. }
  1628. }
  1629. }
  1630. }
  1631. GenericKernel<Laplace3D_DxU> Laplace_DxU;
  1632. GenericKernel<Laplace3D_FxU> Laplace_FxU;
  1633. Profile::Enable(true);
  1634. if (1) { // Greeen's identity test (Laplace, on-surface)
  1635. Profile::Tic("OnSurface", &comm);
  1636. Quadrature<Real> quadrature_DxU, quadrature_FxU;
  1637. quadrature_FxU.Setup<DensityBasis, PotentialBasis>(elements_src, Laplace_FxU, order_singular, order_direct, -1.0, comm);
  1638. quadrature_DxU.Setup<DensityBasis, PotentialBasis>(elements_src, Laplace_DxU, order_singular, order_direct, -1.0, comm);
  1639. Vector<PotentialBasis> U_sl, U_dl;
  1640. quadrature_FxU.Eval(U_sl, elements_src, density_sl, Laplace_FxU);
  1641. quadrature_DxU.Eval(U_dl, elements_src, density_dl, Laplace_DxU);
  1642. Profile::Toc();
  1643. Real max_err = 0;
  1644. Vector<PotentialBasis> err(U_onsurf.Dim());
  1645. for (long i = 0; i < U_sl.Dim(); i++) {
  1646. for (long j = 0; j < PotentialBasis::Size(); j++) {
  1647. err[i][j] = 0.5*U_onsurf[i][j] - (U_sl[i][j] + U_dl[i][j]);
  1648. max_err = std::max<Real>(max_err, fabs(err[i][j]));
  1649. }
  1650. }
  1651. { // Print error
  1652. Real glb_err;
  1653. comm.Allreduce(Ptr2ConstItr<Real>(&max_err,1), Ptr2Itr<Real>(&glb_err,1), 1, Comm::CommOp::MAX);
  1654. if (!comm.Rank()) std::cout<<"Error = "<<glb_err<<'\n';
  1655. }
  1656. { // Write VTK output
  1657. VTUData vtu;
  1658. vtu.AddElems(elements_src, err, ORDER);
  1659. vtu.WriteVTK("err", comm);
  1660. }
  1661. { // Write VTK output
  1662. VTUData vtu;
  1663. vtu.AddElems(elements_src, U_onsurf, ORDER);
  1664. vtu.WriteVTK("U", comm);
  1665. }
  1666. }
  1667. if (1) { // Greeen's identity test (Laplace, off-surface)
  1668. Profile::Tic("OffSurface", &comm);
  1669. Quadrature<Real> quadrature_DxU, quadrature_FxU;
  1670. quadrature_FxU.Setup<DensityBasis>(elements_src, Xt, Laplace_FxU, order_singular, order_direct, -1.0, comm);
  1671. quadrature_DxU.Setup<DensityBasis>(elements_src, Xt, Laplace_DxU, order_singular, order_direct, -1.0, comm);
  1672. Vector<Real> U_sl, U_dl;
  1673. quadrature_FxU.Eval(U_sl, elements_src, density_sl, Laplace_FxU);
  1674. quadrature_DxU.Eval(U_dl, elements_src, density_dl, Laplace_DxU);
  1675. Profile::Toc();
  1676. Real max_err = 0;
  1677. Vector<PotentialBasis> err(elements_trg.NElem());
  1678. for (long i = 0; i < elements_trg.NElem(); i++) {
  1679. for (long j = 0; j < PotentialBasis::Size(); j++) {
  1680. err[i][j] = U_offsurf[i][j] - (U_sl[i*PotentialBasis::Size()+j] + U_dl[i*PotentialBasis::Size()+j]);
  1681. max_err = std::max<Real>(max_err, fabs(err[i][j]));
  1682. }
  1683. }
  1684. { // Print error
  1685. Real glb_err;
  1686. comm.Allreduce(Ptr2ConstItr<Real>(&max_err,1), Ptr2Itr<Real>(&glb_err,1), 1, Comm::CommOp::MAX);
  1687. if (!comm.Rank()) std::cout<<"Error = "<<glb_err<<'\n';
  1688. }
  1689. { // Write VTK output
  1690. VTUData vtu;
  1691. vtu.AddElems(elements_trg, err, ORDER);
  1692. vtu.WriteVTK("err", comm);
  1693. }
  1694. { // Write VTK output
  1695. VTUData vtu;
  1696. vtu.AddElems(elements_trg, U_offsurf, ORDER);
  1697. vtu.WriteVTK("U", comm);
  1698. }
  1699. }
  1700. Profile::print(&comm);
  1701. }
  1702. static void test1() {
  1703. const Comm& comm = Comm::World();
  1704. constexpr Integer ORDER = 15;
  1705. Integer order_singular = 20;
  1706. Integer order_direct = 20;
  1707. constexpr Integer COORD_DIM = 3;
  1708. constexpr Integer ELEM_DIM = COORD_DIM-1;
  1709. using ElemList = ElemList<COORD_DIM, Basis<Real, ELEM_DIM, ORDER>>;
  1710. using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
  1711. using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
  1712. int np = comm.Size();
  1713. int rank = comm.Rank();
  1714. auto build_sphere = [rank,np](ElemList& elements, Real X, Real Y, Real Z, Real R){
  1715. auto nodes = ElemList::CoordBasis::Nodes();
  1716. long start = 2*COORD_DIM*(rank+0)/np;
  1717. long end = 2*COORD_DIM*(rank+1)/np;
  1718. elements.ReInit(end - start);
  1719. for (long ii = start; ii < end; ii++) {
  1720. long i = ii / 2;
  1721. long j = ii % 2;
  1722. for (int k = 0; k < ElemList::CoordBasis::Size(); k++) {
  1723. Real coord[COORD_DIM];
  1724. coord[(i+0)%COORD_DIM] = (j ? -1.0 : 1.0);
  1725. coord[(i+1)%COORD_DIM] = 2.0 * nodes[j?1:0][k] - 1.0;
  1726. coord[(i+2)%COORD_DIM] = 2.0 * nodes[j?0:1][k] - 1.0;
  1727. Real R0 = sqrt<Real>(coord[0]*coord[0] + coord[1]*coord[1] + coord[2]*coord[2]);
  1728. elements(ii-start,0)[k] = X + R * coord[0] / R0;
  1729. elements(ii-start,1)[k] = Y + R * coord[1] / R0;
  1730. elements(ii-start,2)[k] = Z + R * coord[2] / R0;
  1731. }
  1732. }
  1733. };
  1734. ElemList elements;
  1735. build_sphere(elements, 0.0, 0.0, 0.0, 1.00);
  1736. Vector<DensityBasis> density_sl;
  1737. { // Set density_sl
  1738. std::function<void(Real*,Real*,Real*)> sigma = [](Real* U, Real* X, Real* Xn) {
  1739. Real R = sqrt(X[0]*X[0]+X[1]*X[1]+X[2]*X[2]);
  1740. Real sinp = sqrt(X[1]*X[1] + X[2]*X[2]) / R;
  1741. Real cosp = -X[0] / R;
  1742. U[0] = -1.5;
  1743. U[1] = 0;
  1744. U[2] = 0;
  1745. };
  1746. DiscretizeSurfaceFn<COORD_DIM,3>(density_sl, elements, sigma);
  1747. }
  1748. GenericKernel<Stokes3D_DxU> Stokes_DxU;
  1749. GenericKernel<Stokes3D_FxU> Stokes_FxU;
  1750. Profile::Enable(true);
  1751. if (1) {
  1752. Vector<PotentialBasis> U;
  1753. Quadrature<Real> quadrature_FxU;
  1754. quadrature_FxU.Setup<DensityBasis, PotentialBasis>(elements, Stokes_FxU, order_singular, order_direct, -1.0, comm);
  1755. quadrature_FxU.Eval(U, elements, density_sl, Stokes_FxU);
  1756. { // Write VTK output
  1757. VTUData vtu;
  1758. vtu.AddElems(elements, U, ORDER);
  1759. vtu.WriteVTK("U", comm);
  1760. }
  1761. { // Write VTK output
  1762. VTUData vtu;
  1763. vtu.AddElems(elements, density_sl, ORDER);
  1764. vtu.WriteVTK("sigma", comm);
  1765. }
  1766. }
  1767. Profile::print(&comm);
  1768. }
  1769. private:
  1770. static void scan(Vector<Long>& dsp, const Vector<Long>& cnt) {
  1771. dsp.ReInit(cnt.Dim());
  1772. if (cnt.Dim()) dsp[0] = 0;
  1773. omp_par::scan(cnt.begin(), dsp.begin(), cnt.Dim());
  1774. }
  1775. template <class Basis> static void eval_basis(Vector<Real>& value, const Vector<Basis> X, Integer dof, Integer Nnds, const typename Basis::EvalOpType& EvalOp) {
  1776. Long Nelem = X.Dim() / dof;
  1777. SCTL_ASSERT(X.Dim() == Nelem * dof);
  1778. value.ReInit(Nelem*Nnds*dof);
  1779. Matrix<Real> X_(Nelem*dof, Nnds, value.begin(),false);
  1780. Basis::Eval(X_, X, EvalOp);
  1781. for (Long j = 0; j < Nelem; j++) { // Rearrange data
  1782. Matrix<Real> X(Nnds, dof, X_[j*dof], false);
  1783. X = Matrix<Real>(dof, Nnds, X_[j*dof], false).Transpose();
  1784. }
  1785. }
  1786. template <int CoordDim, int FnDim, class FnBasis, class ElemList> static void DiscretizeSurfaceFn(Vector<FnBasis>& U, const ElemList& elements, std::function<void(Real*,Real*,Real*)> fn) {
  1787. using CoordBasis = typename ElemList::CoordBasis;
  1788. const long Nelem = elements.NElem();
  1789. U.ReInit(Nelem * FnDim);
  1790. Matrix<Real> X, X_grad;
  1791. { // Set X, X_grad
  1792. Vector<CoordBasis> coord = elements.ElemVector();
  1793. Vector<CoordBasis> coord_grad;
  1794. CoordBasis::Grad(coord_grad, coord);
  1795. const auto Meval = CoordBasis::SetupEval(FnBasis::Nodes());
  1796. CoordBasis::Eval(X, coord, Meval);
  1797. CoordBasis::Eval(X_grad, coord_grad, Meval);
  1798. }
  1799. for (long i = 0; i < Nelem; i++) {
  1800. for (long j = 0; j < FnBasis::Size(); j++) {
  1801. Real X_[CoordDim], Xn[CoordDim], U_[FnDim];
  1802. for (long k = 0; k < CoordDim; k++) {
  1803. X_[k] = X[i*CoordDim+k][j];
  1804. }
  1805. { // Set Xn
  1806. Real Xu[CoordDim], Xv[CoordDim];
  1807. for (long k = 0; k < CoordDim; k++) {
  1808. Xu[k] = X_grad[(i*CoordDim+k)*2+0][j];
  1809. Xv[k] = X_grad[(i*CoordDim+k)*2+1][j];
  1810. }
  1811. Real dA = 0;
  1812. for (long k = 0; k < CoordDim; k++) {
  1813. Xn[k] = Xu[(k+1)%CoordDim] * Xv[(k+2)%CoordDim];
  1814. Xn[k] -= Xv[(k+1)%CoordDim] * Xu[(k+2)%CoordDim];
  1815. dA += Xn[k] * Xn[k];
  1816. }
  1817. dA = sqrt(dA);
  1818. for (long k = 0; k < CoordDim; k++) {
  1819. Xn[k] /= dA;
  1820. }
  1821. }
  1822. fn(U_, X_, Xn);
  1823. for (long k = 0; k < FnDim; k++) {
  1824. U[i*FnDim+k][j] = U_[k];
  1825. }
  1826. }
  1827. }
  1828. }
  1829. Vector<Real> Xt_;
  1830. Matrix<Real> M_singular;
  1831. Matrix<Real> M_near_singular;
  1832. Vector<Pair<Long,Long>> pair_lst;
  1833. Integer order_direct_;
  1834. Real period_length_;
  1835. Comm comm_;
  1836. };
  1837. template <class Real, Integer ORDER=10> class Stellarator {
  1838. private:
  1839. static constexpr Integer COORD_DIM = 3;
  1840. static constexpr Integer ELEM_DIM = COORD_DIM-1;
  1841. using ElemBasis = Basis<Real, ELEM_DIM, ORDER>;
  1842. using ElemLst = ElemList<COORD_DIM, ElemBasis>;
  1843. struct Laplace3D_dUxF {
  1844. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1845. return 1 / (4 * const_pi<ValueType>());
  1846. }
  1847. template <class ValueType> static void Eval(ValueType (&u)[3][1], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1848. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1849. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1850. ValueType rinv3 = rinv * rinv * rinv;
  1851. u[0][0] = -r[0] * rinv3;
  1852. u[1][0] = -r[1] * rinv3;
  1853. u[2][0] = -r[2] * rinv3;
  1854. }
  1855. };
  1856. struct BiotSavart3D {
  1857. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1858. return 1 / (4 * const_pi<ValueType>());
  1859. }
  1860. template <class ValueType> static void Eval(ValueType (&u)[3][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1861. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1862. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1863. ValueType rinv3 = rinv * rinv * rinv;
  1864. u[0][0] = (0) * rinv3; u[0][1] = -r[2] * rinv3; u[0][2] = r[1] * rinv3;
  1865. u[1][0] = r[2] * rinv3; u[1][1] = (0) * rinv3; u[1][2] = -r[0] * rinv3;
  1866. u[2][0] = -r[1] * rinv3; u[2][1] = r[0] * rinv3; u[2][2] = (0) * rinv3;
  1867. }
  1868. };
  1869. struct Laplace3D_dUxD {
  1870. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1871. return 1 / (4 * const_pi<ValueType>());
  1872. }
  1873. template <class ValueType> static void Eval(ValueType (&u)[3][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1874. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1875. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1876. ValueType rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2];
  1877. ValueType rinv2 = rinv * rinv;
  1878. ValueType rinv3 = rinv * rinv2;
  1879. ValueType rinv5 = rinv3 * rinv2;
  1880. u[0][0] = -1 * rinv3 + 3 * r[0] * r[0] * rinv5;
  1881. u[0][1] = -0 * rinv3 + 3 * r[0] * r[1] * rinv5;
  1882. u[0][2] = -0 * rinv3 + 3 * r[0] * r[2] * rinv5;
  1883. u[1][0] = -0 * rinv3 + 3 * r[1] * r[0] * rinv5;
  1884. u[1][1] = -1 * rinv3 + 3 * r[1] * r[1] * rinv5;
  1885. u[1][2] = -0 * rinv3 + 3 * r[1] * r[2] * rinv5;
  1886. u[2][0] = -0 * rinv3 + 3 * r[2] * r[0] * rinv5;
  1887. u[2][1] = -0 * rinv3 + 3 * r[2] * r[1] * rinv5;
  1888. u[2][2] = -1 * rinv3 + 3 * r[2] * r[2] * rinv5;
  1889. }
  1890. };
  1891. struct Laplace3D_DxdU {
  1892. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1893. return 1 / (4 * const_pi<ValueType>());
  1894. }
  1895. template <class ValueType> static void Eval(ValueType (&u)[1][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1896. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1897. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1898. ValueType rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2];
  1899. ValueType rinv2 = rinv * rinv;
  1900. ValueType rinv3 = rinv * rinv2;
  1901. ValueType rinv5 = rinv3 * rinv2;
  1902. u[0][0] = -n[0] * rinv3 + 3*rdotn * r[0] * rinv5;
  1903. u[0][1] = -n[1] * rinv3 + 3*rdotn * r[1] * rinv5;
  1904. u[0][2] = -n[2] * rinv3 + 3*rdotn * r[2] * rinv5;
  1905. }
  1906. };
  1907. struct Laplace3D_Fxd2U {
  1908. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1909. return 1 / (4 * const_pi<ValueType>());
  1910. }
  1911. template <class ValueType> static void Eval(ValueType (&u)[1][9], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1912. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1913. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1914. ValueType rinv2 = rinv * rinv;
  1915. ValueType rinv3 = rinv * rinv2;
  1916. ValueType rinv5 = rinv3 * rinv2;
  1917. u[0][0+3*0] = -1 * rinv3 + 3 * r[0] * r[0] * rinv5;
  1918. u[0][1+3*0] = -0 * rinv3 + 3 * r[0] * r[1] * rinv5;
  1919. u[0][2+3*0] = -0 * rinv3 + 3 * r[0] * r[2] * rinv5;
  1920. u[0][0+3*1] = -0 * rinv3 + 3 * r[1] * r[0] * rinv5;
  1921. u[0][1+3*1] = -1 * rinv3 + 3 * r[1] * r[1] * rinv5;
  1922. u[0][2+3*1] = -0 * rinv3 + 3 * r[1] * r[2] * rinv5;
  1923. u[0][0+3*2] = -0 * rinv3 + 3 * r[2] * r[0] * rinv5;
  1924. u[0][1+3*2] = -0 * rinv3 + 3 * r[2] * r[1] * rinv5;
  1925. u[0][2+3*2] = -1 * rinv3 + 3 * r[2] * r[2] * rinv5;
  1926. }
  1927. };
  1928. public:
  1929. Stellarator(const Vector<Long>& NtNp = Vector<Long>()) {
  1930. NtNp_ = NtNp;
  1931. Long Nsurf = NtNp_.Dim() / 2;
  1932. SCTL_ASSERT(Nsurf*2 == NtNp_.Dim());
  1933. Long Nelem = 0;
  1934. elem_dsp.ReInit(Nsurf);
  1935. if (elem_dsp.Dim()) elem_dsp[0] = 0;
  1936. for (Long i = 0; i < Nsurf; i++) {
  1937. Nelem += NtNp_[i*2+0]*NtNp_[i*2+1];
  1938. if (i+1 < Nsurf) elem_dsp[i+1] = elem_dsp[i] + NtNp_[i*2+0]*NtNp_[i*2+1];
  1939. }
  1940. elements.ReInit(Nelem);
  1941. for (Long i = 0; i < Nsurf; i++) {
  1942. InitSurf(i);
  1943. }
  1944. }
  1945. Long ElemIdx(Long s, Long t, Long p) {
  1946. SCTL_ASSERT(0 <= s && s < elem_dsp.Dim());
  1947. SCTL_ASSERT(0 <= t && t < NtNp_[s*2+0]);
  1948. SCTL_ASSERT(0 <= p && p < NtNp_[s*2+1]);
  1949. return elem_dsp[s] + t*NtNp_[s*2+1] + p;
  1950. }
  1951. ElemBasis& Elem(Long elem, Integer dim) {
  1952. return elements(elem,dim);
  1953. }
  1954. const ElemBasis& Elem(Long elem, Integer dim) const {
  1955. return elements(elem,dim);
  1956. }
  1957. const ElemLst& GetElemList() {
  1958. return elements;
  1959. }
  1960. static void test_() {
  1961. constexpr Integer order_singular = 20;
  1962. constexpr Integer order_direct = 35;
  1963. Comm comm = Comm::World();
  1964. Profile::Enable(true);
  1965. Stellarator<Real,ORDER> S;
  1966. { // Set S
  1967. Vector<Real> X(COORD_DIM);
  1968. Vector<Real> R(1);
  1969. X = 0;
  1970. R = 1;
  1971. SCTL_ASSERT(X.Dim() == R.Dim() * COORD_DIM);
  1972. Long N = R.Dim();
  1973. S.elements.ReInit(2*COORD_DIM*N);
  1974. auto nodes = ElemLst::CoordBasis::Nodes();
  1975. for (Long l = 0; l < N; l++) {
  1976. for (Integer i = 0; i < COORD_DIM; i++) {
  1977. for (Integer j = 0; j < 2; j++) {
  1978. for (int k = 0; k < ElemLst::CoordBasis::Size(); k++) {
  1979. Real coord[COORD_DIM];
  1980. coord[(i+0)%COORD_DIM] = (j ? -1.0 : 1.0);
  1981. coord[(i+1)%COORD_DIM] = 2.0 * nodes[j?1:0][k] - 1.0;
  1982. coord[(i+2)%COORD_DIM] = 2.0 * nodes[j?0:1][k] - 1.0;
  1983. Real R0 = sqrt<Real>(coord[0]*coord[0] + coord[1]*coord[1] + coord[2]*coord[2]);
  1984. S.elements((l*COORD_DIM+i)*2+j,0)[k] = X[l*COORD_DIM+0] + R[l] * coord[0] / R0;
  1985. S.elements((l*COORD_DIM+i)*2+j,1)[k] = X[l*COORD_DIM+1] + R[l] * coord[1] / R0;
  1986. S.elements((l*COORD_DIM+i)*2+j,2)[k] = X[l*COORD_DIM+2] + R[l] * coord[2] / R0;
  1987. }
  1988. }
  1989. }
  1990. }
  1991. S.elem_dsp.ReInit(1);
  1992. S.elem_dsp = 0;
  1993. }
  1994. S.quadrature_Fxd2U.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_Fxd2U, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  1995. //S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  1996. { // test Fxd2U
  1997. Vector<ElemBasis> U, sigma(S.elements.NElem());
  1998. sigma = 1;
  1999. sigma[0] = 1;
  2000. S.quadrature_Fxd2U.Eval(U, S.GetElemList(), sigma, S.Laplace_Fxd2U);
  2001. //S.quadrature_FxdU.Eval(U, S.GetElemList(), sigma, S.Laplace_FxdU);
  2002. { // Write VTU
  2003. VTUData vtu;
  2004. vtu.AddElems(S.GetElemList(), U, ORDER);
  2005. vtu.WriteVTK("test", comm);
  2006. }
  2007. }
  2008. Profile::print(&comm);
  2009. }
  2010. static void test() {
  2011. constexpr Integer order_singular = 15;
  2012. constexpr Integer order_direct = 35;
  2013. Comm comm = Comm::World();
  2014. Profile::Enable(true);
  2015. Stellarator<Real,ORDER> S;
  2016. { // Init S
  2017. Vector<Long> NtNp;
  2018. NtNp.PushBack(20);
  2019. NtNp.PushBack(4);
  2020. S = Stellarator<Real,ORDER>(NtNp);
  2021. }
  2022. Vector<ElemBasis> normal, area_elem;
  2023. auto compute_dot_prod = [](const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  2024. const Long Nelem = A.Dim() / COORD_DIM;
  2025. const Long Nnodes = ElemBasis::Size();
  2026. SCTL_ASSERT(A.Dim() == Nelem * COORD_DIM);
  2027. SCTL_ASSERT(B.Dim() == Nelem * COORD_DIM);
  2028. Vector<ElemBasis> AdotB(Nelem);
  2029. for (Long i = 0; i < Nelem; i++) {
  2030. for (Long j = 0; j < Nnodes; j++) {
  2031. Real a_dot_b = 0;
  2032. a_dot_b += A[i*COORD_DIM+0][j]*B[i*COORD_DIM+0][j];
  2033. a_dot_b += A[i*COORD_DIM+1][j]*B[i*COORD_DIM+1][j];
  2034. a_dot_b += A[i*COORD_DIM+2][j]*B[i*COORD_DIM+2][j];
  2035. AdotB[i][j] = a_dot_b;
  2036. }
  2037. }
  2038. return AdotB;
  2039. };
  2040. auto compute_inner_prod = [&S, &area_elem](const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  2041. const auto& quad_wts = ElemBasis::QuadWts();
  2042. const Long Nelem = S.GetElemList().NElem();
  2043. const Long Nnodes = ElemBasis::Size();
  2044. const Long dof = B.Dim() / Nelem;
  2045. Real sum = 0;
  2046. for (Long i = 0; i < Nelem; i++) {
  2047. for (Long j = 0; j < Nnodes; j++) {
  2048. Real AdotB = 0;
  2049. for (Long k = 0; k < dof; k++) {
  2050. AdotB += A[i*dof+k][j] * B[i*dof+k][j];
  2051. }
  2052. sum += AdotB * area_elem[i][j] * quad_wts[j];
  2053. }
  2054. }
  2055. return sum;
  2056. };
  2057. auto compute_norm_area_elem = [&S](Vector<ElemBasis>& normal, Vector<ElemBasis>& area_elem){ // Set normal, area_elem
  2058. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  2059. const Long Nelem = S.GetElemList().NElem();
  2060. const Long Nnodes = ElemBasis::Size();
  2061. Vector<ElemBasis> dX;
  2062. ElemBasis::Grad(dX, X);
  2063. area_elem.ReInit(Nelem);
  2064. normal.ReInit(Nelem * COORD_DIM);
  2065. for (Long i = 0; i < Nelem; i++) {
  2066. for (Long j = 0; j < Nnodes; j++) {
  2067. Tensor<Real,true,COORD_DIM> x, n;
  2068. Tensor<Real,true,COORD_DIM,2> dx;
  2069. x(0) = X[i*COORD_DIM+0][j];
  2070. x(1) = X[i*COORD_DIM+1][j];
  2071. x(2) = X[i*COORD_DIM+2][j];
  2072. dx(0,0) = dX[i*COORD_DIM*2+0][j];
  2073. dx(0,1) = dX[i*COORD_DIM*2+1][j];
  2074. dx(1,0) = dX[i*COORD_DIM*2+2][j];
  2075. dx(1,1) = dX[i*COORD_DIM*2+3][j];
  2076. dx(2,0) = dX[i*COORD_DIM*2+4][j];
  2077. dx(2,1) = dX[i*COORD_DIM*2+5][j];
  2078. n(0) = dx(1,0) * dx(2,1) - dx(2,0) * dx(1,1);
  2079. n(1) = dx(2,0) * dx(0,1) - dx(0,0) * dx(2,1);
  2080. n(2) = dx(0,0) * dx(1,1) - dx(1,0) * dx(0,1);
  2081. Real area_elem_ = sqrt<Real>(n(0)*n(0) + n(1)*n(1) + n(2)*n(2));
  2082. Real ooae = 1 / area_elem_;
  2083. n(0) *= ooae;
  2084. n(1) *= ooae;
  2085. n(2) *= ooae;
  2086. normal[i*COORD_DIM+0][j] = n(0);
  2087. normal[i*COORD_DIM+1][j] = n(1);
  2088. normal[i*COORD_DIM+2][j] = n(2);
  2089. area_elem[i][j] = area_elem_;
  2090. }
  2091. }
  2092. };
  2093. compute_norm_area_elem(normal, area_elem);
  2094. S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  2095. S.quadrature_DxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_DxU , order_singular, order_direct, -1.0, comm);
  2096. S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  2097. S.quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
  2098. auto compute_poloidal_circulation = [&S] (const Vector<ElemBasis>& B) {
  2099. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  2100. const Long Nelem = S.GetElemList().NElem();
  2101. const Long Nnodes = ElemBasis::Size();
  2102. const auto& quad_wts = Basis<Real,1,ORDER>::QuadWts();
  2103. Vector<ElemBasis> dX;
  2104. ElemBasis::Grad(dX, X);
  2105. const Long Nt = 40;
  2106. const Long Np = 8;
  2107. for (Long t = 0; t < Nt; t++) {
  2108. for (Long j = 0; j < ORDER; j++) {
  2109. Real sum = 0;
  2110. for (Long p = 0; p < Np; p++) {
  2111. for (Long i = 0; i < ORDER; i++) {
  2112. Long elem_idx = t*Np+p;
  2113. Long node_idx = i*ORDER+j;
  2114. Tensor<Real,true,COORD_DIM,2> dx;
  2115. dx(0,0) = dX[elem_idx*COORD_DIM*2+0][node_idx];
  2116. dx(0,1) = dX[elem_idx*COORD_DIM*2+1][node_idx];
  2117. dx(1,0) = dX[elem_idx*COORD_DIM*2+2][node_idx];
  2118. dx(1,1) = dX[elem_idx*COORD_DIM*2+3][node_idx];
  2119. dx(2,0) = dX[elem_idx*COORD_DIM*2+4][node_idx];
  2120. dx(2,1) = dX[elem_idx*COORD_DIM*2+5][node_idx];
  2121. Tensor<Real,true,COORD_DIM> b;
  2122. b(0) = B[elem_idx*COORD_DIM+0][node_idx];
  2123. b(1) = B[elem_idx*COORD_DIM+1][node_idx];
  2124. b(2) = B[elem_idx*COORD_DIM+2][node_idx];
  2125. sum += (b(0)*dx(0,1) + b(1)*dx(1,1) + b(2)*dx(2,1)) * quad_wts[i];
  2126. }
  2127. }
  2128. std::cout<<sum<<' ';
  2129. }
  2130. }
  2131. std::cout<<'\n';
  2132. };
  2133. auto compute_toroidal_circulation = [&S] (const Vector<ElemBasis>& B) {
  2134. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  2135. const Long Nelem = S.GetElemList().NElem();
  2136. const Long Nnodes = ElemBasis::Size();
  2137. const auto& quad_wts = Basis<Real,1,ORDER>::QuadWts();
  2138. Vector<ElemBasis> dX;
  2139. ElemBasis::Grad(dX, X);
  2140. const Long Nt = 40;
  2141. const Long Np = 8;
  2142. for (Long p = 0; p < Np; p++) {
  2143. for (Long i = 0; i < ORDER; i++) {
  2144. Real sum = 0;
  2145. for (Long t = 0; t < Nt; t++) {
  2146. for (Long j = 0; j < ORDER; j++) {
  2147. Long elem_idx = t*Np+p;
  2148. Long node_idx = i*ORDER+j;
  2149. Tensor<Real,true,COORD_DIM,2> dx;
  2150. dx(0,0) = dX[elem_idx*COORD_DIM*2+0][node_idx];
  2151. dx(0,1) = dX[elem_idx*COORD_DIM*2+1][node_idx];
  2152. dx(1,0) = dX[elem_idx*COORD_DIM*2+2][node_idx];
  2153. dx(1,1) = dX[elem_idx*COORD_DIM*2+3][node_idx];
  2154. dx(2,0) = dX[elem_idx*COORD_DIM*2+4][node_idx];
  2155. dx(2,1) = dX[elem_idx*COORD_DIM*2+5][node_idx];
  2156. Tensor<Real,true,COORD_DIM> b;
  2157. b(0) = B[elem_idx*COORD_DIM+0][node_idx];
  2158. b(1) = B[elem_idx*COORD_DIM+1][node_idx];
  2159. b(2) = B[elem_idx*COORD_DIM+2][node_idx];
  2160. sum += (b(0)*dx(0,0) + b(1)*dx(1,0) + b(2)*dx(2,0)) * quad_wts[j];
  2161. }
  2162. }
  2163. std::cout<<sum<<' ';
  2164. }
  2165. }
  2166. std::cout<<'\n';
  2167. };
  2168. auto compute_poloidal_circulation_ = [&S,&area_elem] (const Vector<ElemBasis>& B) {
  2169. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  2170. const Long Nelem = S.GetElemList().NElem();
  2171. const Long Nnodes = ElemBasis::Size();
  2172. const auto& quad_wts = ElemBasis::QuadWts();
  2173. Vector<ElemBasis> dX;
  2174. ElemBasis::Grad(dX, X);
  2175. Real sum = 0;
  2176. for (Long i = 0; i < Nelem; i++) {
  2177. for (Long j = 0; j < Nnodes; j++) {
  2178. Tensor<Real,true,COORD_DIM,2> dx;
  2179. dx(0,0) = dX[i*COORD_DIM*2+0][j];
  2180. dx(0,1) = dX[i*COORD_DIM*2+1][j];
  2181. dx(1,0) = dX[i*COORD_DIM*2+2][j];
  2182. dx(1,1) = dX[i*COORD_DIM*2+3][j];
  2183. dx(2,0) = dX[i*COORD_DIM*2+4][j];
  2184. dx(2,1) = dX[i*COORD_DIM*2+5][j];
  2185. Tensor<Real,true,COORD_DIM> b;
  2186. b(0) = B[i*COORD_DIM+0][j];
  2187. b(1) = B[i*COORD_DIM+1][j];
  2188. b(2) = B[i*COORD_DIM+2][j];
  2189. Real s = 1/area_elem[i][j];
  2190. sum += (b(0)*dx(0,1) + b(1)*dx(1,1) + b(2)*dx(2,1)) * s * area_elem[i][j] * quad_wts[j];
  2191. }
  2192. }
  2193. return sum;
  2194. };
  2195. auto compute_toroidal_circulation_ = [&S,&area_elem] (const Vector<ElemBasis>& B) {
  2196. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  2197. const Long Nelem = S.GetElemList().NElem();
  2198. const Long Nnodes = ElemBasis::Size();
  2199. const auto& quad_wts = ElemBasis::QuadWts();
  2200. Vector<ElemBasis> dX;
  2201. ElemBasis::Grad(dX, X);
  2202. Real sum = 0;
  2203. for (Long i = 0; i < Nelem; i++) {
  2204. for (Long j = 0; j < Nnodes; j++) {
  2205. Tensor<Real,true,COORD_DIM,2> dx;
  2206. dx(0,0) = dX[i*COORD_DIM*2+0][j];
  2207. dx(0,1) = dX[i*COORD_DIM*2+1][j];
  2208. dx(1,0) = dX[i*COORD_DIM*2+2][j];
  2209. dx(1,1) = dX[i*COORD_DIM*2+3][j];
  2210. dx(2,0) = dX[i*COORD_DIM*2+4][j];
  2211. dx(2,1) = dX[i*COORD_DIM*2+5][j];
  2212. Tensor<Real,true,COORD_DIM> b;
  2213. b(0) = B[i*COORD_DIM+0][j];
  2214. b(1) = B[i*COORD_DIM+1][j];
  2215. b(2) = B[i*COORD_DIM+2][j];
  2216. Real s = 1/area_elem[i][j];
  2217. sum += (b(0)*dx(0,0) + b(1)*dx(1,0) + b(2)*dx(2,0)) * s * area_elem[i][j] * quad_wts[j];
  2218. }
  2219. }
  2220. return sum;
  2221. };
  2222. auto compute_grad_adj = [&S,&area_elem] (const Vector<ElemBasis>& V) {
  2223. const Long Nelem = S.GetElemList().NElem();
  2224. const Long Nnodes = ElemBasis::Size();
  2225. Vector<ElemBasis> du_dX(Nelem*COORD_DIM*2);
  2226. { // Set du_dX
  2227. Vector<ElemBasis> dX;
  2228. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2229. auto inv2x2 = [](Tensor<Real, true, 2, 2> M) {
  2230. Tensor<Real, true, 2, 2> Mout;
  2231. Real oodet = 1 / (M(0,0) * M(1,1) - M(0,1) * M(1,0));
  2232. Mout(0,0) = M(1,1) * oodet;
  2233. Mout(0,1) = -M(0,1) * oodet;
  2234. Mout(1,0) = -M(1,0) * oodet;
  2235. Mout(1,1) = M(0,0) * oodet;
  2236. return Mout;
  2237. };
  2238. for (Long i = 0; i < Nelem; i++) {
  2239. for (Long j = 0; j < Nnodes; j++) {
  2240. Tensor<Real, true, 3, 2> dX_du;
  2241. dX_du(0,0) = dX[(i*COORD_DIM+0)*2+0][j];
  2242. dX_du(1,0) = dX[(i*COORD_DIM+1)*2+0][j];
  2243. dX_du(2,0) = dX[(i*COORD_DIM+2)*2+0][j];
  2244. dX_du(0,1) = dX[(i*COORD_DIM+0)*2+1][j];
  2245. dX_du(1,1) = dX[(i*COORD_DIM+1)*2+1][j];
  2246. dX_du(2,1) = dX[(i*COORD_DIM+2)*2+1][j];
  2247. Tensor<Real, true, 2, 2> G; // = dX_du.Transpose() * dX_du;
  2248. G(0,0) = dX_du(0,0) * dX_du(0,0) + dX_du(1,0) * dX_du(1,0) + dX_du(2,0) * dX_du(2,0);
  2249. G(0,1) = dX_du(0,0) * dX_du(0,1) + dX_du(1,0) * dX_du(1,1) + dX_du(2,0) * dX_du(2,1);
  2250. G(1,0) = dX_du(0,1) * dX_du(0,0) + dX_du(1,1) * dX_du(1,0) + dX_du(2,1) * dX_du(2,0);
  2251. G(1,1) = dX_du(0,1) * dX_du(0,1) + dX_du(1,1) * dX_du(1,1) + dX_du(2,1) * dX_du(2,1);
  2252. Tensor<Real, true, 2, 2> Ginv = inv2x2(G);
  2253. du_dX[(i*COORD_DIM+0)*2+0][j] = Ginv(0,0) * dX_du(0,0) + Ginv(0,1) * dX_du(0,1);
  2254. du_dX[(i*COORD_DIM+1)*2+0][j] = Ginv(0,0) * dX_du(1,0) + Ginv(0,1) * dX_du(1,1);
  2255. du_dX[(i*COORD_DIM+2)*2+0][j] = Ginv(0,0) * dX_du(2,0) + Ginv(0,1) * dX_du(2,1);
  2256. du_dX[(i*COORD_DIM+0)*2+1][j] = Ginv(1,0) * dX_du(0,0) + Ginv(1,1) * dX_du(0,1);
  2257. du_dX[(i*COORD_DIM+1)*2+1][j] = Ginv(1,0) * dX_du(1,0) + Ginv(1,1) * dX_du(1,1);
  2258. du_dX[(i*COORD_DIM+2)*2+1][j] = Ginv(1,0) * dX_du(2,0) + Ginv(1,1) * dX_du(2,1);
  2259. }
  2260. }
  2261. }
  2262. Vector<ElemBasis> dudX_V(Nelem*2);
  2263. for (Long i = 0; i < Nelem; i++) {
  2264. for (Long j = 0; j < Nnodes; j++) {
  2265. dudX_V[i*2+0][j] = 0;
  2266. dudX_V[i*2+1][j] = 0;
  2267. dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+0)*2+0][j] * V[i*COORD_DIM+0][j] * area_elem[i][j];
  2268. dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+1)*2+0][j] * V[i*COORD_DIM+1][j] * area_elem[i][j];
  2269. dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+2)*2+0][j] * V[i*COORD_DIM+2][j] * area_elem[i][j];
  2270. dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+0)*2+1][j] * V[i*COORD_DIM+0][j] * area_elem[i][j];
  2271. dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+1)*2+1][j] * V[i*COORD_DIM+1][j] * area_elem[i][j];
  2272. dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+2)*2+1][j] * V[i*COORD_DIM+2][j] * area_elem[i][j];
  2273. }
  2274. }
  2275. Vector<ElemBasis> grad_dudX_V;
  2276. ElemBasis::Grad(grad_dudX_V, dudX_V);
  2277. Vector<ElemBasis> grad_adj_V(Nelem);
  2278. for (Long i = 0; i < Nelem; i++) {
  2279. for (Long j = 0; j < Nnodes; j++) {
  2280. grad_adj_V[i][j] = -(grad_dudX_V[(i*2+0)*2+0][j] + grad_dudX_V[(i*2+1)*2+1][j]) / area_elem[i][j];
  2281. }
  2282. }
  2283. return grad_adj_V;
  2284. };
  2285. auto compute_B0 = [&S](const Real alpha) { // alpha/|r| \hat{\theta}
  2286. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  2287. const Long Nelem = S.GetElemList().NElem();
  2288. const Long Nnodes = ElemBasis::Size();
  2289. Vector<ElemBasis> B0(Nelem * COORD_DIM);
  2290. for (Long i = 0; i < Nelem; i++) {
  2291. for (Long j = 0; j < Nnodes; j++) {
  2292. Tensor<Real,true,COORD_DIM> x, b0, axis;
  2293. x(0) = X[i*COORD_DIM+0][j];
  2294. x(1) = X[i*COORD_DIM+1][j];
  2295. x(2) = X[i*COORD_DIM+2][j];
  2296. axis(0) = 0;
  2297. axis(1) = 0;
  2298. axis(2) = 1;
  2299. b0(0) = axis(1) * x(2) - axis(2) * x(1);
  2300. b0(1) = axis(2) * x(0) - axis(0) * x(2);
  2301. b0(2) = axis(0) * x(1) - axis(1) * x(0);
  2302. Real scale = 1 / (b0(0)*b0(0) + b0(1)*b0(1) + b0(2)*b0(2));
  2303. b0(0) *= scale;
  2304. b0(1) *= scale;
  2305. b0(2) *= scale;
  2306. B0[i*COORD_DIM+0][j] = alpha * b0(0);
  2307. B0[i*COORD_DIM+1][j] = alpha * b0(1);
  2308. B0[i*COORD_DIM+2][j] = alpha * b0(2);
  2309. }
  2310. }
  2311. return B0;
  2312. };
  2313. auto compute_dB0 = [&S](const Real alpha) { // alpha/|r| \hat{\theta}
  2314. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  2315. const Long Nelem = S.GetElemList().NElem();
  2316. const Long Nnodes = ElemBasis::Size();
  2317. Vector<ElemBasis> dB0(Nelem * COORD_DIM * COORD_DIM);
  2318. for (Long i = 0; i < Nelem; i++) {
  2319. for (Long j = 0; j < Nnodes; j++) {
  2320. Tensor<Real,true,COORD_DIM> x;
  2321. x(0) = X[i*COORD_DIM+0][j];
  2322. x(1) = X[i*COORD_DIM+1][j];
  2323. x(2) = X[i*COORD_DIM+2][j];
  2324. Real R2inv = 1 / (x(0)*x(0) + x(1)*x(1));
  2325. dB0[(i*COORD_DIM+0)*COORD_DIM+0][j] = alpha * (2*x(0)*x(1) * R2inv*R2inv);
  2326. dB0[(i*COORD_DIM+0)*COORD_DIM+1][j] = alpha * (-R2inv + 2*x(1)*x(1) * R2inv*R2inv);
  2327. dB0[(i*COORD_DIM+0)*COORD_DIM+2][j] = 0;
  2328. dB0[(i*COORD_DIM+1)*COORD_DIM+0][j] = alpha * (R2inv - 2*x(0)*x(0) * R2inv*R2inv);
  2329. dB0[(i*COORD_DIM+1)*COORD_DIM+1][j] = alpha * (-2*x(0)*x(1) * R2inv*R2inv);
  2330. dB0[(i*COORD_DIM+1)*COORD_DIM+2][j] = 0;
  2331. dB0[(i*COORD_DIM+2)*COORD_DIM+0][j] = 0;
  2332. dB0[(i*COORD_DIM+2)*COORD_DIM+1][j] = 0;
  2333. dB0[(i*COORD_DIM+2)*COORD_DIM+2][j] = 0;
  2334. }
  2335. }
  2336. return dB0;
  2337. };
  2338. auto compute_half_n_plus_dG = [&S, &normal](const Vector<ElemBasis>& sigma) { // B = n sigma/2 + dG[sigma]
  2339. const Long Nelem = S.GetElemList().NElem();
  2340. const Long Nnodes = ElemBasis::Size();
  2341. Vector<ElemBasis> B;
  2342. S.quadrature_FxdU.Eval(B, S.GetElemList(), sigma, S.Laplace_FxdU);
  2343. for (Long i = 0; i < Nelem; i++) {
  2344. for (Long j = 0; j < Nnodes; j++) {
  2345. for (Long k = 0; k < COORD_DIM; k++) {
  2346. B[i*COORD_DIM+k][j] -= 0.5*sigma[i][j]*normal[i*COORD_DIM+k][j];
  2347. }
  2348. }
  2349. }
  2350. return B;
  2351. };
  2352. auto compute_A11 = [&S,&normal,&compute_half_n_plus_dG,&compute_dot_prod](Vector<Real>& B_dot_n, const Vector<Real>& sigma) {
  2353. const Long Nelem = S.GetElemList().NElem();
  2354. const Long Nnodes = ElemBasis::Size();
  2355. B_dot_n.ReInit(Nelem * Nnodes);
  2356. Vector<ElemBasis> sigma_(Nelem);
  2357. for (Long i = 0; i < Nelem; i++) {
  2358. for (Long j = 0; j < Nnodes; j++) {
  2359. sigma_[i][j] = sigma[i*Nnodes+j];
  2360. }
  2361. }
  2362. Vector<ElemBasis> B_dot_n_ = compute_dot_prod(normal, compute_half_n_plus_dG(sigma_));
  2363. for (Long i = 0; i < Nelem; i++) {
  2364. for (Long j = 0; j < Nnodes; j++) {
  2365. B_dot_n[i*Nnodes+j] = B_dot_n_[i][j];
  2366. }
  2367. }
  2368. };
  2369. auto compute_A12 = [&S,&normal,&compute_dot_prod,&compute_B0](Vector<Real>& B_dot_n, const Real alpha) {
  2370. const Long Nelem = S.GetElemList().NElem();
  2371. const Long Nnodes = ElemBasis::Size();
  2372. B_dot_n.ReInit(Nelem * Nnodes);
  2373. Vector<ElemBasis> B_dot_n_ = compute_dot_prod(normal, compute_B0(alpha));
  2374. for (Long i = 0; i < Nelem; i++) {
  2375. for (Long j = 0; j < Nnodes; j++) {
  2376. B_dot_n[i*Nnodes+j] = B_dot_n_[i][j];
  2377. }
  2378. }
  2379. };
  2380. auto compute_A21 = [&S,&normal,&compute_half_n_plus_dG,&compute_poloidal_circulation_](const Vector<Real>& sigma) {
  2381. const Long Nelem = S.GetElemList().NElem();
  2382. const Long Nnodes = ElemBasis::Size();
  2383. Vector<ElemBasis> sigma_(Nelem);
  2384. for (Long i = 0; i < Nelem; i++) {
  2385. for (Long j = 0; j < Nnodes; j++) {
  2386. sigma_[i][j] = sigma[i*Nnodes+j];
  2387. }
  2388. }
  2389. if (0) { // alternate implementation
  2390. //Vector<ElemBasis> A21_(Nelem);
  2391. //Vector<Real> A21(Nelem*Nnodes);
  2392. //compute_A21adj(A21, 1);
  2393. //for (Long i = 0; i < Nelem; i++) {
  2394. // for (Long j = 0; j < Nnodes; j++) {
  2395. // A21_[i][j] = A21[i*Nnodes+j];
  2396. // }
  2397. //}
  2398. //return compute_inner_prod(A21_, sigma_);
  2399. }
  2400. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma_);
  2401. Vector<ElemBasis> J(Nelem * COORD_DIM);
  2402. for (Long i = 0; i < Nelem; i++) { // Set J
  2403. for (Long j = 0; j < Nnodes; j++) {
  2404. Tensor<Real,true,COORD_DIM> b, n;
  2405. b(0) = B[i*COORD_DIM+0][j];
  2406. b(1) = B[i*COORD_DIM+1][j];
  2407. b(2) = B[i*COORD_DIM+2][j];
  2408. n(0) = normal[i*COORD_DIM+0][j];
  2409. n(1) = normal[i*COORD_DIM+1][j];
  2410. n(2) = normal[i*COORD_DIM+2][j];
  2411. J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
  2412. J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
  2413. J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
  2414. }
  2415. }
  2416. Vector<ElemBasis> A;
  2417. S.quadrature_FxU.Eval(A, S.GetElemList(), J, S.Laplace_FxU);
  2418. return compute_poloidal_circulation_(A)/S.NtNp_[0];
  2419. };
  2420. auto compute_A22 = [&S,&compute_B0,&normal,&compute_poloidal_circulation_](const Real alpha) {
  2421. const Long Nelem = S.GetElemList().NElem();
  2422. const Long Nnodes = ElemBasis::Size();
  2423. Vector<ElemBasis> B = compute_B0(alpha);
  2424. Vector<ElemBasis> J(Nelem * COORD_DIM);
  2425. for (Long i = 0; i < Nelem; i++) { // Set J
  2426. for (Long j = 0; j < Nnodes; j++) {
  2427. Tensor<Real,true,COORD_DIM> b, n;
  2428. b(0) = B[i*COORD_DIM+0][j];
  2429. b(1) = B[i*COORD_DIM+1][j];
  2430. b(2) = B[i*COORD_DIM+2][j];
  2431. n(0) = normal[i*COORD_DIM+0][j];
  2432. n(1) = normal[i*COORD_DIM+1][j];
  2433. n(2) = normal[i*COORD_DIM+2][j];
  2434. J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
  2435. J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
  2436. J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
  2437. }
  2438. }
  2439. Vector<ElemBasis> A;
  2440. S.quadrature_FxU.Eval(A, S.GetElemList(), J, S.Laplace_FxU);
  2441. return compute_poloidal_circulation_(A)/S.NtNp_[0];
  2442. };
  2443. auto compute_A = [&compute_A11,&compute_A12,&compute_A21,&compute_A22] (const Vector<Real>& x) {
  2444. const Vector<Real> sigma(x.Dim()-1,(Iterator<Real>)x.begin(),false);
  2445. const Real& alpha = x[x.Dim()-1];
  2446. Vector<Real> Ax;
  2447. Ax.ReInit(x.Dim());
  2448. Vector<Real> Bdotn(x.Dim()-1,Ax.begin(),false);
  2449. Real& flux = Ax[x.Dim()-1];
  2450. Vector<Real> Adotn_0, Adotn_1;
  2451. compute_A11(Adotn_0, sigma);
  2452. compute_A12(Adotn_1, alpha);
  2453. Bdotn = Adotn_0 + Adotn_1;
  2454. flux = compute_A21(sigma) + compute_A22(alpha);
  2455. return Ax;
  2456. };
  2457. auto compute_invA = [&S,&comm,&compute_A] (Vector<ElemBasis>& sigma, Real& alpha, Real flux) {
  2458. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&compute_A](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  2459. (*Ax) = compute_A(x);
  2460. };
  2461. const Long Nelem = S.GetElemList().NElem();
  2462. const Long Nnodes = ElemBasis::Size();
  2463. Vector<Real> rhs_(Nelem * Nnodes + 1);
  2464. rhs_ = 0;
  2465. rhs_[Nelem * Nnodes] = flux;
  2466. Vector<Real> x_(Nelem * Nnodes + 1);
  2467. x_ = 0;
  2468. ParallelSolver<Real> linear_solver(comm, true);
  2469. linear_solver(&x_, BIOp, rhs_, 1e-8, 50);
  2470. sigma.ReInit(Nelem);
  2471. for (Long i = 0; i < Nelem; i++) {
  2472. for (Long j = 0; j < Nnodes; j++) {
  2473. sigma[i][j] = x_[i*Nnodes+j];
  2474. }
  2475. }
  2476. alpha = x_[Nelem * Nnodes];
  2477. };
  2478. auto compute_invA_ = [&S,&comm,&compute_A] (Vector<Real>& b) {
  2479. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&compute_A](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  2480. (*Ax) = compute_A(x);
  2481. };
  2482. const Long Nelem = S.GetElemList().NElem();
  2483. const Long Nnodes = ElemBasis::Size();
  2484. Vector<Real> x(b.Dim());
  2485. x = 0;
  2486. ParallelSolver<Real> linear_solver(comm, true);
  2487. linear_solver(&x, BIOp, b, 1e-8, 50);
  2488. return x;
  2489. };
  2490. auto compute_A11adj = [&S](Vector<Real>& U, const Vector<Real>& sigma) { // A11adj = I/2 + D
  2491. const Long Nelem = S.GetElemList().NElem();
  2492. const Long Nnodes = ElemBasis::Size();
  2493. Vector<ElemBasis> sigma_(Nelem);
  2494. for (Long i = 0; i < Nelem; i++) {
  2495. for (Long j = 0; j < Nnodes; j++) {
  2496. sigma_[i][j] = sigma[i*Nnodes+j];
  2497. }
  2498. }
  2499. S.quadrature_DxU.Eval(U, S.GetElemList(), sigma_, S.Laplace_DxU);
  2500. U = sigma*(-0.5) + U;
  2501. };
  2502. auto compute_A12adj = [&S,&compute_A12,&compute_inner_prod](const Vector<Real>& sigma_) {
  2503. const Long Nelem = S.GetElemList().NElem();
  2504. const Long Nnodes = ElemBasis::Size();
  2505. Vector<Real> A12_sigma_;
  2506. compute_A12(A12_sigma_, 1);
  2507. Vector<ElemBasis> A12_sigma(Nelem), sigma(Nelem);
  2508. for (Long i = 0; i < Nelem; i++) {
  2509. for (Long j = 0; j < Nnodes; j++) {
  2510. sigma[i][j] = sigma_[i*Nnodes+j];
  2511. A12_sigma[i][j] = A12_sigma_[i*Nnodes+j];
  2512. }
  2513. }
  2514. return compute_inner_prod(A12_sigma, sigma);
  2515. };
  2516. auto compute_A21adj = [&S,&area_elem,&normal](Vector<Real>& A21adj_flux, Real flux) {
  2517. const Long Nelem = S.GetElemList().NElem();
  2518. const Long Nnodes = ElemBasis::Size();
  2519. Vector<ElemBasis> density(Nelem * COORD_DIM);
  2520. { // Set density
  2521. Vector<ElemBasis> dX;
  2522. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2523. for (Long i = 0; i < Nelem; i++) {
  2524. for (Long j = 0; j < Nnodes; j++) {
  2525. Tensor<Real,true,COORD_DIM,2> dx;
  2526. dx(0,0) = dX[i*COORD_DIM*2+0][j];
  2527. dx(0,1) = dX[i*COORD_DIM*2+1][j];
  2528. dx(1,0) = dX[i*COORD_DIM*2+2][j];
  2529. dx(1,1) = dX[i*COORD_DIM*2+3][j];
  2530. dx(2,0) = dX[i*COORD_DIM*2+4][j];
  2531. dx(2,1) = dX[i*COORD_DIM*2+5][j];
  2532. Real s = 1 / (area_elem[i][j] * S.NtNp_[0]);
  2533. for (Long k = 0; k < COORD_DIM; k++) {
  2534. density[i*COORD_DIM+k][j] = dx(k,1) * s;
  2535. }
  2536. }
  2537. }
  2538. }
  2539. Vector<ElemBasis> Gdensity;
  2540. S.quadrature_FxU.Eval(Gdensity, S.GetElemList(), density, S.Laplace_FxU);
  2541. Vector<ElemBasis> nxGdensity(Nelem * COORD_DIM);
  2542. for (Long i = 0; i < Nelem; i++) { // Set nxGdensity
  2543. for (Long j = 0; j < Nnodes; j++) {
  2544. Tensor<Real,true,COORD_DIM> Gdensity_, n;
  2545. Gdensity_(0) = Gdensity[i*COORD_DIM+0][j];
  2546. Gdensity_(1) = Gdensity[i*COORD_DIM+1][j];
  2547. Gdensity_(2) = Gdensity[i*COORD_DIM+2][j];
  2548. n(0) = normal[i*COORD_DIM+0][j];
  2549. n(1) = normal[i*COORD_DIM+1][j];
  2550. n(2) = normal[i*COORD_DIM+2][j];
  2551. nxGdensity[i*COORD_DIM+0][j] = n(1) * Gdensity_(2) - n(2) * Gdensity_(1);
  2552. nxGdensity[i*COORD_DIM+1][j] = n(2) * Gdensity_(0) - n(0) * Gdensity_(2);
  2553. nxGdensity[i*COORD_DIM+2][j] = n(0) * Gdensity_(1) - n(1) * Gdensity_(0);
  2554. }
  2555. }
  2556. S.quadrature_dUxF.Eval(A21adj_flux, S.GetElemList(), nxGdensity, S.Laplace_dUxF);
  2557. A21adj_flux *= flux;
  2558. };
  2559. auto compute_A22adj = [&compute_A22] (const Real alpha) {
  2560. return compute_A22(alpha);
  2561. };
  2562. auto compute_Aadj = [&compute_A11adj,&compute_A12adj,&compute_A21adj,&compute_A22adj] (const Vector<Real>& x) {
  2563. const Vector<Real> sigma(x.Dim()-1,(Iterator<Real>)x.begin(),false);
  2564. const Real& alpha = x[x.Dim()-1];
  2565. Vector<Real> Ax;
  2566. Ax.ReInit(x.Dim());
  2567. Vector<Real> Bdotn(x.Dim()-1,Ax.begin(),false);
  2568. Real& flux = Ax[x.Dim()-1];
  2569. Vector<Real> Adotn_0, Adotn_1;
  2570. compute_A11adj(Adotn_0, sigma);
  2571. compute_A21adj(Adotn_1, alpha);
  2572. Bdotn = Adotn_0 + Adotn_1;
  2573. flux = compute_A12adj(sigma) + compute_A22adj(alpha);
  2574. return Ax;
  2575. };
  2576. auto compute_invAadj = [&S,&comm,&compute_Aadj] (Vector<Real>& b) {
  2577. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&compute_Aadj](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  2578. (*Ax) = compute_Aadj(x);
  2579. };
  2580. const Long Nelem = S.GetElemList().NElem();
  2581. const Long Nnodes = ElemBasis::Size();
  2582. Vector<Real> x(b.Dim());
  2583. x = 0;
  2584. ParallelSolver<Real> linear_solver(comm, true);
  2585. linear_solver(&x, BIOp, b, 1e-8, 50);
  2586. return x;
  2587. };
  2588. auto compute_dg_dsigma = [&S, &normal, &compute_dot_prod](const Vector<ElemBasis>& B) { // dg_dsigma = \int 2 B \cdot (\nabla G + n/2)
  2589. Vector<ElemBasis> B_dot_gradG;
  2590. S.quadrature_dUxF.Eval(B_dot_gradG, S.GetElemList(), B, S.Laplace_dUxF);
  2591. return B_dot_gradG * (-2.0) + compute_dot_prod(B,normal);
  2592. };
  2593. auto compute_dg_dalpha = [&S,&compute_B0,&compute_inner_prod] (const Vector<ElemBasis>& B) {
  2594. auto dB_dalpha = compute_B0(1);
  2595. return 2*compute_inner_prod(B,dB_dalpha);
  2596. };
  2597. auto compute_dg_dnu = [&S,&comm,&normal,&compute_inner_prod,&area_elem,&compute_dB0](const Vector<ElemBasis>& sigma, Real alpha, const Vector<ElemBasis>& B) { // dg_dnu = (B*B) 2H - (2 B) \cdot (n \cdnot nabla) \nabla G[sigma] + (2 B) \alpha dB0_dnu \hat{\theta} + sigma (\nabla D)^T [2 B] + (2H) sigma (\nabla G)^T [2 B]
  2598. const Long Nelem = S.GetElemList().NElem();
  2599. const Long Nnodes = ElemBasis::Size();
  2600. Vector<ElemBasis> v = B * 2.0;
  2601. Vector<ElemBasis> dg_dnu0(Nelem), dg_dnu1(Nelem), dg_dnu2(Nelem), dg_dnu3(Nelem), dg_dnu4(Nelem);
  2602. dg_dnu0 = 0;
  2603. dg_dnu1 = 0;
  2604. dg_dnu2 = 0;
  2605. dg_dnu3 = 0;
  2606. dg_dnu4 = 0;
  2607. Vector<ElemBasis> H(Nelem);
  2608. { // Set mean curvature H
  2609. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  2610. Vector<ElemBasis> dX, d2X;
  2611. ElemBasis::Grad(dX, X);
  2612. ElemBasis::Grad(d2X, dX);
  2613. for (Long i = 0; i < Nelem; i++) {
  2614. for (Long j = 0; j < Nnodes; j++) {
  2615. Tensor<Real,true,2,2> I, invI, II;
  2616. for (Long k0 = 0; k0 < 2; k0++) {
  2617. for (Long k1 = 0; k1 < 2; k1++) {
  2618. I(k0,k1) = 0;
  2619. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  2620. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  2621. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  2622. II(k0,k1) = 0;
  2623. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  2624. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  2625. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  2626. }
  2627. }
  2628. { // Set invI
  2629. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  2630. invI(0,0) = I(1,1) / detI;
  2631. invI(0,1) = -I(0,1) / detI;
  2632. invI(1,0) = -I(1,0) / detI;
  2633. invI(1,1) = I(0,0) / detI;
  2634. }
  2635. { // Set H
  2636. H[i][j] = 0;
  2637. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  2638. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  2639. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  2640. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  2641. }
  2642. }
  2643. }
  2644. }
  2645. // dg_dnu0 = (B*B) 2H
  2646. for (Long i = 0; i < Nelem; i++) {
  2647. for (Long j = 0; j < Nnodes; j++) {
  2648. dg_dnu0[i][j] = 0;
  2649. dg_dnu0[i][j] += B[i*COORD_DIM+0][j] * B[i*COORD_DIM+0][j] * (2.0*H[i][j]);
  2650. dg_dnu0[i][j] += B[i*COORD_DIM+1][j] * B[i*COORD_DIM+1][j] * (2.0*H[i][j]);
  2651. dg_dnu0[i][j] += B[i*COORD_DIM+2][j] * B[i*COORD_DIM+2][j] * (2.0*H[i][j]);
  2652. }
  2653. }
  2654. // dg_dnu1 = (2 B) \cdot (n \cdnot \nabla) \nabla G[sigma]
  2655. Vector<ElemBasis> d2Gsigma;
  2656. Quadrature<Real> quadrature_Fxd2U;
  2657. quadrature_Fxd2U.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_Fxd2U, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  2658. quadrature_Fxd2U.Eval(d2Gsigma, S.GetElemList(), sigma, S.Laplace_Fxd2U);
  2659. for (Long i = 0; i < Nelem; i++) {
  2660. for (Long j = 0; j < Nnodes; j++) {
  2661. dg_dnu1[i][j] = 0;
  2662. dg_dnu1[i][j] -= d2Gsigma[i*9+0][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
  2663. dg_dnu1[i][j] -= d2Gsigma[i*9+1][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
  2664. dg_dnu1[i][j] -= d2Gsigma[i*9+2][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
  2665. dg_dnu1[i][j] -= d2Gsigma[i*9+3][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
  2666. dg_dnu1[i][j] -= d2Gsigma[i*9+4][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
  2667. dg_dnu1[i][j] -= d2Gsigma[i*9+5][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
  2668. dg_dnu1[i][j] -= d2Gsigma[i*9+6][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
  2669. dg_dnu1[i][j] -= d2Gsigma[i*9+7][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
  2670. dg_dnu1[i][j] -= d2Gsigma[i*9+8][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
  2671. }
  2672. }
  2673. // dg_dnu2 = (2 B) \alpha (n \cdot \nabla) \hat{\theta} / |r|
  2674. Vector<ElemBasis> dB0 = compute_dB0(alpha);
  2675. for (Long i = 0; i < Nelem; i++) {
  2676. for (Long j = 0; j < Nnodes; j++) {
  2677. dg_dnu2[i][j] = 0;
  2678. dg_dnu2[i][j] += dB0[i*9+0][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
  2679. dg_dnu2[i][j] += dB0[i*9+1][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
  2680. dg_dnu2[i][j] += dB0[i*9+2][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
  2681. dg_dnu2[i][j] += dB0[i*9+3][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
  2682. dg_dnu2[i][j] += dB0[i*9+4][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
  2683. dg_dnu2[i][j] += dB0[i*9+5][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
  2684. dg_dnu2[i][j] += dB0[i*9+6][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
  2685. dg_dnu2[i][j] += dB0[i*9+7][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
  2686. dg_dnu2[i][j] += dB0[i*9+8][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
  2687. }
  2688. }
  2689. // dg_dnu3 = (sigma (\nabla D)^T [2 B]
  2690. Vector<ElemBasis> nablaDtv;
  2691. Quadrature<Real> quadrature_dUxD;
  2692. quadrature_dUxD.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxD, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  2693. quadrature_dUxD.Eval(nablaDtv, S.GetElemList(), v, S.Laplace_dUxD);
  2694. for (Long i = 0; i < Nelem; i++) {
  2695. for (Long j = 0; j < Nnodes; j++) {
  2696. dg_dnu3[i][j] = 0;
  2697. dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  2698. dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  2699. dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  2700. }
  2701. }
  2702. // dg_dnu4 = (2H) sigma (\nabla G)^T [2 B]
  2703. Quadrature<Real> quadrature_dUxF;
  2704. quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  2705. quadrature_dUxF.Eval(dg_dnu4, S.GetElemList(), v, S.Laplace_dUxF);
  2706. for (Long i = 0; i < Nelem; i++) {
  2707. for (Long j = 0; j < Nnodes; j++) {
  2708. dg_dnu4[i][j] *= 2*H[i][j] * sigma[i][j];
  2709. }
  2710. }
  2711. return dg_dnu0 + dg_dnu1 + dg_dnu2 + dg_dnu3 - dg_dnu4;
  2712. };
  2713. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2714. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2715. Real flux = 1.0, alpha;
  2716. Vector<ElemBasis> sigma(S.GetElemList().NElem());
  2717. compute_invA(sigma, alpha, flux);
  2718. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma) + compute_B0(alpha);
  2719. Real g = compute_inner_prod(B, B);
  2720. std::cout<<"g = "<<g<<'\n';
  2721. { // Write VTU
  2722. VTUData vtu;
  2723. vtu.AddElems(S.GetElemList(), sigma, ORDER);
  2724. vtu.WriteVTK("sigma", comm);
  2725. }
  2726. { // Write VTU
  2727. VTUData vtu;
  2728. vtu.AddElems(S.GetElemList(), B, ORDER);
  2729. vtu.WriteVTK("B", comm);
  2730. }
  2731. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2732. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2733. if (0) { // test dg_dnu
  2734. auto compute_g = [&S,&comm,&normal,&area_elem,&sigma,&alpha,&compute_norm_area_elem,&compute_B0,&compute_inner_prod](const Vector<ElemBasis>& nu, Real eps) {
  2735. const Long Nelem = S.GetElemList().NElem();
  2736. const Long Nnodes = ElemBasis::Size();
  2737. Vector<ElemBasis> X_orig(Nelem*COORD_DIM);
  2738. for (Long i = 0; i < Nelem; i++) {
  2739. for (Long j = 0; j < Nnodes; j++) {
  2740. X_orig[i*COORD_DIM+0][j] = S.Elem(i,0)[j];
  2741. X_orig[i*COORD_DIM+1][j] = S.Elem(i,1)[j];
  2742. X_orig[i*COORD_DIM+2][j] = S.Elem(i,2)[j];
  2743. S.Elem(i,0)[j] += eps*nu[i][j] * normal[i*COORD_DIM+0][j];
  2744. S.Elem(i,1)[j] += eps*nu[i][j] * normal[i*COORD_DIM+1][j];
  2745. S.Elem(i,2)[j] += eps*nu[i][j] * normal[i*COORD_DIM+2][j];
  2746. }
  2747. }
  2748. compute_norm_area_elem(normal, area_elem);
  2749. Vector<Real> Xt(Nelem*Nnodes*COORD_DIM);
  2750. for (Long i = 0; i < Nelem; i++) {
  2751. for (Long j = 0; j < Nnodes; j++) {
  2752. for (Long k = 0; k < COORD_DIM; k++) {
  2753. Xt[(i*Nnodes+j)*COORD_DIM+k] = S.Elem(i,k)[j] - 1e-4*normal[i*COORD_DIM+k][j];// + eps*nu[i][j] * normal[i*COORD_DIM+k][j];
  2754. }
  2755. }
  2756. }
  2757. Vector<ElemBasis> B0 = compute_B0(alpha);
  2758. Vector<ElemBasis> B1;
  2759. Quadrature<Real> quadrature_FxdU;
  2760. quadrature_FxdU.template Setup<ElemBasis>(S.GetElemList(), Xt, S.Laplace_FxdU, order_singular, order_direct, -1, comm);
  2761. quadrature_FxdU.Eval(B1, S.GetElemList(), sigma, S.Laplace_FxdU);
  2762. Real g = compute_inner_prod(B0+B1, B0+B1);
  2763. for (Long i = 0; i < Nelem; i++) {
  2764. for (Long j = 0; j < Nnodes; j++) {
  2765. S.Elem(i,0)[j] = X_orig[i*COORD_DIM+0][j];
  2766. S.Elem(i,1)[j] = X_orig[i*COORD_DIM+1][j];
  2767. S.Elem(i,2)[j] = X_orig[i*COORD_DIM+2][j];
  2768. }
  2769. }
  2770. compute_norm_area_elem(normal, area_elem);
  2771. return g;
  2772. };
  2773. const Long Nelem = S.GetElemList().NElem();
  2774. const Long Nnodes = ElemBasis::Size();
  2775. Vector<ElemBasis> nu(Nelem);
  2776. nu = 1; //area_elem;
  2777. Vector<ElemBasis> dg_dnu = compute_dg_dnu(sigma, alpha, B);
  2778. std::cout<<compute_inner_prod(dg_dnu, nu)<<'\n';
  2779. { // Write VTU
  2780. VTUData vtu;
  2781. vtu.AddElems(S.GetElemList(), dg_dnu, ORDER);
  2782. vtu.WriteVTK("dg_dnu", comm);
  2783. }
  2784. Real eps = 1e-5;
  2785. Real g0 = compute_g(nu,-eps);
  2786. Real g1 = compute_g(nu,eps);
  2787. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  2788. }
  2789. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2790. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2791. if (0) { // test dg_dsigma
  2792. Vector<ElemBasis> dg_dsigma = compute_dg_dsigma(B);
  2793. { // Write VTU
  2794. VTUData vtu;
  2795. vtu.AddElems(S.GetElemList(), dg_dsigma, ORDER);
  2796. vtu.WriteVTK("dg_dsigma", comm);
  2797. }
  2798. Real dt = 1e-1;
  2799. const Long Nelem = S.GetElemList().NElem();
  2800. const auto& quad_wts = ElemBasis::QuadWts();
  2801. Vector<ElemBasis> dg_dsigma_(Nelem);
  2802. dg_dsigma_ = 0;
  2803. for (Long i = 0; i < Nelem; i++) { // Set dg_dsigma_
  2804. for (Long j = 0; j < ElemBasis::Size(); j++) {
  2805. auto sigma_0 = sigma;
  2806. auto sigma_1 = sigma;
  2807. sigma_0[i][j] -= 0.5*dt;
  2808. sigma_1[i][j] += 0.5*dt;
  2809. auto B_0 = compute_half_n_plus_dG(sigma_0) + compute_B0(alpha);
  2810. auto B_1 = compute_half_n_plus_dG(sigma_1) + compute_B0(alpha);
  2811. auto g_0 = compute_inner_prod(B_0, B_0);
  2812. auto g_1 = compute_inner_prod(B_1, B_1);
  2813. dg_dsigma_[i][j] = (g_1 - g_0) / dt;
  2814. dg_dsigma_[i][j] /= quad_wts[j] * area_elem[i][j];
  2815. std::cout<<dg_dsigma_[i][j]<<' '<<j<<' '<<ElemBasis::Size()<<'\n'; ////////////////
  2816. }
  2817. { // Write VTU
  2818. VTUData vtu;
  2819. vtu.AddElems(S.GetElemList(), dg_dsigma_, ORDER);
  2820. vtu.WriteVTK("dg_dsigma_", comm);
  2821. }
  2822. }
  2823. }
  2824. if (0) { // test dg_dalpha
  2825. Real dg_dalpha = compute_dg_dalpha(B);
  2826. Real dt = 1e-1;
  2827. auto B_0 = compute_half_n_plus_dG(sigma) + compute_B0(alpha - 0.5*dt);
  2828. auto B_1 = compute_half_n_plus_dG(sigma) + compute_B0(alpha + 0.5*dt);
  2829. auto g_0 = compute_inner_prod(B_0, B_0);
  2830. auto g_1 = compute_inner_prod(B_1, B_1);
  2831. Real dg_dalpha_ = (g_1 - g_0) / dt;
  2832. std::cout<<dg_dalpha<<' '<<dg_dalpha_<<'\n';
  2833. }
  2834. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2835. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2836. if (0) { // test compute_A21adj
  2837. const Long Nelem = S.GetElemList().NElem();
  2838. const Long Nnodes = ElemBasis::Size();
  2839. Vector<Real> A21adj_;
  2840. compute_A21adj(A21adj_, flux);
  2841. Vector<ElemBasis> A21adj(Nelem);
  2842. for (Long i = 0; i < Nelem; i++) {
  2843. for (Long j = 0; j < Nnodes; j++) {
  2844. A21adj[i][j] = A21adj_[i*Nnodes+j];
  2845. }
  2846. }
  2847. { // Write VTU
  2848. VTUData vtu;
  2849. vtu.AddElems(S.GetElemList(), A21adj, ORDER);
  2850. vtu.WriteVTK("A21adj", comm);
  2851. }
  2852. { // verify
  2853. Vector<Real> sigma_(Nelem*Nnodes);
  2854. for (Long i = 0; i < Nelem; i++) {
  2855. for (Long j = 0; j < Nnodes; j++) {
  2856. sigma_[i*Nnodes+j] = sigma[i][j];
  2857. }
  2858. }
  2859. Real flux = compute_inner_prod(A21adj, sigma);
  2860. std::cout<<"Error: "<<compute_A21(sigma_)-flux<<'\n';
  2861. }
  2862. { // compute finite-difference matrix
  2863. Real dt = 1e+1;
  2864. const Long Nelem = S.GetElemList().NElem();
  2865. const auto& quad_wts = ElemBasis::QuadWts();
  2866. Vector<ElemBasis> A21(Nelem);
  2867. A21 = 0;
  2868. for (Long i = 0; i < Nelem; i++) { // Set A21
  2869. for (Long j = 0; j < ElemBasis::Size(); j++) {
  2870. Vector<Real> sigma_0(Nelem*ElemBasis::Size());
  2871. Vector<Real> sigma_1(Nelem*ElemBasis::Size());
  2872. sigma_0 = 0;
  2873. sigma_1 = 0;
  2874. sigma_0[i*ElemBasis::Size()+j] -= 0.5*dt;
  2875. sigma_1[i*ElemBasis::Size()+j] += 0.5*dt;
  2876. auto flux_0 = compute_A21(sigma_0);
  2877. auto flux_1 = compute_A21(sigma_1);
  2878. A21[i][j] = (flux_1 - flux_0) / dt;
  2879. A21[i][j] /= quad_wts[j] * area_elem[i][j];
  2880. std::cout<<A21[i][j]<<' '<<j<<' '<<ElemBasis::Size()<<'\n'; ////////////////
  2881. }
  2882. { // Write VTU
  2883. VTUData vtu;
  2884. vtu.AddElems(S.GetElemList(), A21, ORDER);
  2885. vtu.WriteVTK("A21", comm);
  2886. }
  2887. }
  2888. }
  2889. }
  2890. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2891. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2892. auto compute_invA11 = [&S,&normal,&comm,&compute_A11](const Vector<ElemBasis>& rhs) { // Solver for sigma: sigma/2 + n.dG[sigma] = rhs
  2893. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&S,&normal,&compute_A11](sctl::Vector<Real>* A11_sigma, const sctl::Vector<Real>& sigma) {
  2894. compute_A11(*A11_sigma, sigma);
  2895. };
  2896. const Long Nelem = S.GetElemList().NElem();
  2897. const Long Nnodes = ElemBasis::Size();
  2898. Vector<ElemBasis> sigma(Nelem);
  2899. Vector<Real> rhs_(Nelem * Nnodes), sigma_(Nelem * Nnodes);
  2900. for (Long i = 0; i < Nelem; i++) {
  2901. for (Long j = 0; j < Nnodes; j++) {
  2902. rhs_[i*Nnodes+j] = rhs[i][j];
  2903. sigma_[i*Nnodes+j] = 0;
  2904. }
  2905. }
  2906. ParallelSolver<Real> linear_solver(comm, true);
  2907. linear_solver(&sigma_, BIOp, rhs_, 1e-8, 50);
  2908. for (Long i = 0; i < Nelem; i++) {
  2909. for (Long j = 0; j < Nnodes; j++) {
  2910. sigma[i][j] = sigma_[i*Nnodes+j];
  2911. }
  2912. }
  2913. return sigma;
  2914. };
  2915. auto compute_invA11adj = [&S,&normal,&comm,&compute_A11adj](const Vector<ElemBasis>& rhs) { // Solver for sigma: A11adj sigma = rhs
  2916. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&S,&compute_A11adj](sctl::Vector<Real>* A11adj_sigma, const sctl::Vector<Real>& sigma) {
  2917. compute_A11adj(*A11adj_sigma, sigma);
  2918. };
  2919. const Long Nelem = S.GetElemList().NElem();
  2920. const Long Nnodes = ElemBasis::Size();
  2921. Vector<ElemBasis> sigma(Nelem);
  2922. Vector<Real> rhs_(Nelem * Nnodes), sigma_(Nelem * Nnodes);
  2923. for (Long i = 0; i < Nelem; i++) {
  2924. for (Long j = 0; j < Nnodes; j++) {
  2925. rhs_[i*Nnodes+j] = rhs[i][j];
  2926. sigma_[i*Nnodes+j] = 0;
  2927. }
  2928. }
  2929. ParallelSolver<Real> linear_solver(comm, true);
  2930. linear_solver(&sigma_, BIOp, rhs_, 1e-8, 50);
  2931. for (Long i = 0; i < Nelem; i++) {
  2932. for (Long j = 0; j < Nnodes; j++) {
  2933. sigma[i][j] = sigma_[i*Nnodes+j];
  2934. }
  2935. }
  2936. return sigma;
  2937. };
  2938. if (0) { // Test invA11adj
  2939. Vector<ElemBasis> dg_dsigma = compute_dg_dsigma(B);
  2940. Real a = compute_inner_prod(dg_dsigma, compute_invA11(sigma));
  2941. Real b = compute_inner_prod(compute_invA11adj(dg_dsigma), sigma);
  2942. std::cout<<a<<' '<<b<<'\n';
  2943. }
  2944. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2945. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2946. // 0.168275 0.117983 -0.110446 -96.7293
  2947. // 0.603869 -1.901900 -1.229930 -245.5050
  2948. auto compute_u_dAdnu_v_00 = [&S,&normal,&comm,&compute_half_n_plus_dG,&compute_grad_adj] (const Vector<Real>& u_, const Vector<Real>& v_) {
  2949. const Long Nelem = S.GetElemList().NElem();
  2950. const Long Nnodes = ElemBasis::Size();
  2951. Vector<ElemBasis> u(Nelem), u_n(Nelem*COORD_DIM), v(Nelem);
  2952. for (Long i = 0; i < Nelem; i++) {
  2953. for (Long j = 0; j < Nnodes; j++) {
  2954. u[i][j] = u_[i*Nnodes+j];
  2955. v[i][j] = v_[i*Nnodes+j];
  2956. u_n[i*COORD_DIM+0][j] = u[i][j] * normal[i*COORD_DIM+0][j];
  2957. u_n[i*COORD_DIM+1][j] = u[i][j] * normal[i*COORD_DIM+1][j];
  2958. u_n[i*COORD_DIM+2][j] = u[i][j] * normal[i*COORD_DIM+2][j];
  2959. }
  2960. }
  2961. Vector<ElemBasis> dAdnu0(Nelem), dAdnu1(Nelem), dAdnu2(Nelem), dAdnu3(Nelem);
  2962. dAdnu0 = 0;
  2963. dAdnu1 = 0;
  2964. dAdnu2 = 0;
  2965. dAdnu3 = 0;
  2966. Vector<ElemBasis> H(Nelem);
  2967. { // Set mean curvature H
  2968. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  2969. Vector<ElemBasis> dX, d2X;
  2970. ElemBasis::Grad(dX, X);
  2971. ElemBasis::Grad(d2X, dX);
  2972. for (Long i = 0; i < Nelem; i++) {
  2973. for (Long j = 0; j < Nnodes; j++) {
  2974. Tensor<Real,true,2,2> I, invI, II;
  2975. for (Long k0 = 0; k0 < 2; k0++) {
  2976. for (Long k1 = 0; k1 < 2; k1++) {
  2977. I(k0,k1) = 0;
  2978. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  2979. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  2980. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  2981. II(k0,k1) = 0;
  2982. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  2983. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  2984. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  2985. }
  2986. }
  2987. { // Set invI
  2988. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  2989. invI(0,0) = I(1,1) / detI;
  2990. invI(0,1) = -I(0,1) / detI;
  2991. invI(1,0) = -I(1,0) / detI;
  2992. invI(1,1) = I(0,0) / detI;
  2993. }
  2994. { // Set H
  2995. H[i][j] = 0;
  2996. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  2997. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  2998. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  2999. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  3000. }
  3001. }
  3002. }
  3003. }
  3004. // dAdnu0 = u B \cdot grad_nu
  3005. Vector<ElemBasis> B = compute_half_n_plus_dG(v);
  3006. Vector<ElemBasis> u_B(Nelem*COORD_DIM);
  3007. for (Long i = 0; i < Nelem; i++) {
  3008. for (Long j = 0; j < Nnodes; j++) {
  3009. u_B[i*COORD_DIM+0][j] = u[i][j] * B[i*COORD_DIM+0][j];
  3010. u_B[i*COORD_DIM+1][j] = u[i][j] * B[i*COORD_DIM+1][j];
  3011. u_B[i*COORD_DIM+2][j] = u[i][j] * B[i*COORD_DIM+2][j];
  3012. }
  3013. }
  3014. dAdnu0 = compute_grad_adj(u_B)*(-1.0);
  3015. // dAdnu1 = (2H) v (I/2 + \nabla G)^T [u n]
  3016. Quadrature<Real> quadrature_dUxF;
  3017. quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  3018. quadrature_dUxF.Eval(dAdnu1, S.GetElemList(), u_n, S.Laplace_dUxF);
  3019. for (Long i = 0; i < Nelem; i++) {
  3020. for (Long j = 0; j < Nnodes; j++) {
  3021. dAdnu1[i][j] *= -2*H[i][j] * v[i][j];
  3022. }
  3023. }
  3024. // dAdnu2 = (u n) \cdot (n \cdnot \nabla) \nabla G[v]
  3025. Vector<ElemBasis> d2G_v;
  3026. Quadrature<Real> quadrature_Fxd2U;
  3027. quadrature_Fxd2U.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_Fxd2U, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3028. quadrature_Fxd2U.Eval(d2G_v, S.GetElemList(), v, S.Laplace_Fxd2U);
  3029. for (Long i = 0; i < Nelem; i++) {
  3030. for (Long j = 0; j < Nnodes; j++) {
  3031. dAdnu2[i][j] = 0;
  3032. dAdnu2[i][j] -= d2G_v[i*9+0][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+0][j];
  3033. dAdnu2[i][j] -= d2G_v[i*9+1][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+1][j];
  3034. dAdnu2[i][j] -= d2G_v[i*9+2][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+2][j];
  3035. dAdnu2[i][j] -= d2G_v[i*9+3][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+0][j];
  3036. dAdnu2[i][j] -= d2G_v[i*9+4][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+1][j];
  3037. dAdnu2[i][j] -= d2G_v[i*9+5][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+2][j];
  3038. dAdnu2[i][j] -= d2G_v[i*9+6][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+0][j];
  3039. dAdnu2[i][j] -= d2G_v[i*9+7][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+1][j];
  3040. dAdnu2[i][j] -= d2G_v[i*9+8][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+2][j];
  3041. }
  3042. }
  3043. // dAdnu3 = (v n \cdot \nabla D[u]
  3044. Vector<ElemBasis> nablaDt_u_n;
  3045. Quadrature<Real> quadrature_dUxD;
  3046. quadrature_dUxD.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxD, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  3047. quadrature_dUxD.Eval(nablaDt_u_n, S.GetElemList(), u_n, S.Laplace_dUxD);
  3048. for (Long i = 0; i < Nelem; i++) {
  3049. for (Long j = 0; j < Nnodes; j++) {
  3050. dAdnu3[i][j] = 0;
  3051. dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  3052. dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  3053. dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  3054. }
  3055. }
  3056. return dAdnu0 + dAdnu1 + dAdnu2 + dAdnu3;
  3057. };
  3058. auto compute_u_dAdnu_v_01 = [&S,&comm,&compute_dB0,&normal,&area_elem,&compute_B0,&compute_grad_adj] (const Vector<Real>& u, const Vector<Real>& v) {
  3059. const Long Nelem = S.GetElemList().NElem();
  3060. const Long Nnodes = ElemBasis::Size();
  3061. Vector<ElemBasis> dAdnu(Nelem);
  3062. Vector<ElemBasis> dB0 = compute_dB0(v[Nelem*Nnodes]);
  3063. for (Long i = 0; i < Nelem; i++) {
  3064. for (Long j = 0; j < Nnodes; j++) {
  3065. Real n_n_dB0 = 0;
  3066. n_n_dB0 += dB0[i*9+0][j] * normal[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  3067. n_n_dB0 += dB0[i*9+1][j] * normal[i*COORD_DIM+1][j] * normal[i*COORD_DIM+0][j];
  3068. n_n_dB0 += dB0[i*9+2][j] * normal[i*COORD_DIM+2][j] * normal[i*COORD_DIM+0][j];
  3069. n_n_dB0 += dB0[i*9+3][j] * normal[i*COORD_DIM+0][j] * normal[i*COORD_DIM+1][j];
  3070. n_n_dB0 += dB0[i*9+4][j] * normal[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  3071. n_n_dB0 += dB0[i*9+5][j] * normal[i*COORD_DIM+2][j] * normal[i*COORD_DIM+1][j];
  3072. n_n_dB0 += dB0[i*9+6][j] * normal[i*COORD_DIM+0][j] * normal[i*COORD_DIM+2][j];
  3073. n_n_dB0 += dB0[i*9+7][j] * normal[i*COORD_DIM+1][j] * normal[i*COORD_DIM+2][j];
  3074. n_n_dB0 += dB0[i*9+8][j] * normal[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  3075. dAdnu[i][j] = u[i*Nnodes+j] * n_n_dB0;
  3076. }
  3077. }
  3078. Vector<ElemBasis> B0 = compute_B0(v[Nelem*Nnodes]);
  3079. Vector<ElemBasis> u_B0(Nelem*COORD_DIM);
  3080. for (Long i = 0; i < Nelem; i++) {
  3081. for (Long j = 0; j < Nnodes; j++) {
  3082. u_B0[i*COORD_DIM+0][j] = u[i*Nnodes+j] * B0[i*COORD_DIM+0][j];
  3083. u_B0[i*COORD_DIM+1][j] = u[i*Nnodes+j] * B0[i*COORD_DIM+1][j];
  3084. u_B0[i*COORD_DIM+2][j] = u[i*Nnodes+j] * B0[i*COORD_DIM+2][j];
  3085. }
  3086. }
  3087. dAdnu -= compute_grad_adj(u_B0);
  3088. return dAdnu;
  3089. };
  3090. auto compute_u_dAdnu_v_10 = [&S,&comm,&area_elem,&normal,&compute_dot_prod,&compute_grad_adj,&compute_half_n_plus_dG] (const Vector<Real>& u, const Vector<Real>& v) {
  3091. const Long Nelem = S.GetElemList().NElem();
  3092. const Long Nnodes = ElemBasis::Size();
  3093. Vector<ElemBasis> sigma(Nelem);
  3094. for (Long i = 0; i < Nelem; i++) {
  3095. for (Long j = 0; j < Nnodes; j++) {
  3096. sigma[i][j] = v[i*Nnodes+j];
  3097. }
  3098. }
  3099. auto compute_v = [&S,&area_elem] () {
  3100. const Long Nelem = S.GetElemList().NElem();
  3101. const Long Nnodes = ElemBasis::Size();
  3102. Vector<ElemBasis> v(Nelem * COORD_DIM);
  3103. Vector<ElemBasis> dX;
  3104. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  3105. for (Long i = 0; i < Nelem; i++) {
  3106. for (Long j = 0; j < Nnodes; j++) {
  3107. Tensor<Real,true,COORD_DIM,2> dx;
  3108. dx(0,0) = dX[i*COORD_DIM*2+0][j];
  3109. dx(0,1) = dX[i*COORD_DIM*2+1][j];
  3110. dx(1,0) = dX[i*COORD_DIM*2+2][j];
  3111. dx(1,1) = dX[i*COORD_DIM*2+3][j];
  3112. dx(2,0) = dX[i*COORD_DIM*2+4][j];
  3113. dx(2,1) = dX[i*COORD_DIM*2+5][j];
  3114. Real s = 1 / (area_elem[i][j] * S.NtNp_[0]);
  3115. for (Long k = 0; k < COORD_DIM; k++) {
  3116. v[i*COORD_DIM+k][j] = dx(k,1) * s;
  3117. }
  3118. }
  3119. }
  3120. return v;
  3121. };
  3122. auto compute_AxB = [&S] (const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  3123. const Long Nelem = S.GetElemList().NElem();
  3124. const Long Nnodes = ElemBasis::Size();
  3125. Vector<ElemBasis> J(Nelem * COORD_DIM);
  3126. for (Long i = 0; i < Nelem; i++) { // Set J
  3127. for (Long j = 0; j < Nnodes; j++) {
  3128. Tensor<Real,true,COORD_DIM> a, b;
  3129. a(0) = A[i*COORD_DIM+0][j];
  3130. a(1) = A[i*COORD_DIM+1][j];
  3131. a(2) = A[i*COORD_DIM+2][j];
  3132. b(0) = B[i*COORD_DIM+0][j];
  3133. b(1) = B[i*COORD_DIM+1][j];
  3134. b(2) = B[i*COORD_DIM+2][j];
  3135. J[i*COORD_DIM+0][j] = a(1) * b(2) - a(2) * b(1);
  3136. J[i*COORD_DIM+1][j] = a(2) * b(0) - a(0) * b(2);
  3137. J[i*COORD_DIM+2][j] = a(0) * b(1) - a(1) * b(0);
  3138. }
  3139. }
  3140. return J;
  3141. };
  3142. auto compute_dphi_dnu0 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,compute_grad_adj,sigma] () {
  3143. const Long Nelem = S.GetElemList().NElem();
  3144. const Long Nnodes = ElemBasis::Size();
  3145. Vector<ElemBasis> Gv;
  3146. Vector<ElemBasis> v = compute_v();
  3147. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  3148. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  3149. Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
  3150. return compute_grad_adj(BxGv)*(-1.0);
  3151. };
  3152. auto compute_dphi_dnu1 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,&compute_dot_prod,sigma] () {
  3153. const Long Nelem = S.GetElemList().NElem();
  3154. const Long Nnodes = ElemBasis::Size();
  3155. Vector<ElemBasis> H(Nelem);
  3156. { // Set mean curvature H
  3157. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  3158. Vector<ElemBasis> dX, d2X;
  3159. ElemBasis::Grad(dX, X);
  3160. ElemBasis::Grad(d2X, dX);
  3161. for (Long i = 0; i < Nelem; i++) {
  3162. for (Long j = 0; j < Nnodes; j++) {
  3163. Tensor<Real,true,2,2> I, invI, II;
  3164. for (Long k0 = 0; k0 < 2; k0++) {
  3165. for (Long k1 = 0; k1 < 2; k1++) {
  3166. I(k0,k1) = 0;
  3167. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3168. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3169. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3170. II(k0,k1) = 0;
  3171. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3172. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3173. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3174. }
  3175. }
  3176. { // Set invI
  3177. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3178. invI(0,0) = I(1,1) / detI;
  3179. invI(0,1) = -I(0,1) / detI;
  3180. invI(1,0) = -I(1,0) / detI;
  3181. invI(1,1) = I(0,0) / detI;
  3182. }
  3183. { // Set H
  3184. H[i][j] = 0;
  3185. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  3186. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  3187. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  3188. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  3189. }
  3190. }
  3191. }
  3192. }
  3193. Vector<ElemBasis> Gv;
  3194. Vector<ElemBasis> v = compute_v();
  3195. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  3196. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  3197. Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
  3198. Vector<ElemBasis> n_dot_BxGv = compute_dot_prod(normal,BxGv);
  3199. Vector<ElemBasis> dphi_dnu(Nelem);
  3200. for (Long i = 0; i < Nelem; i++) {
  3201. for (Long j = 0; j < Nnodes; j++) {
  3202. dphi_dnu[i][j] = n_dot_BxGv[i][j] * 2*H[i][j];
  3203. }
  3204. }
  3205. return dphi_dnu;
  3206. };
  3207. auto compute_dphi_dnu2 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,&compute_dot_prod,sigma] () {
  3208. const Long Nelem = S.GetElemList().NElem();
  3209. const Long Nnodes = ElemBasis::Size();
  3210. Vector<ElemBasis> H(Nelem);
  3211. { // Set mean curvature H
  3212. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  3213. Vector<ElemBasis> dX, d2X;
  3214. ElemBasis::Grad(dX, X);
  3215. ElemBasis::Grad(d2X, dX);
  3216. for (Long i = 0; i < Nelem; i++) {
  3217. for (Long j = 0; j < Nnodes; j++) {
  3218. Tensor<Real,true,2,2> I, invI, II;
  3219. for (Long k0 = 0; k0 < 2; k0++) {
  3220. for (Long k1 = 0; k1 < 2; k1++) {
  3221. I(k0,k1) = 0;
  3222. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3223. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3224. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3225. II(k0,k1) = 0;
  3226. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3227. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3228. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3229. }
  3230. }
  3231. { // Set invI
  3232. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3233. invI(0,0) = I(1,1) / detI;
  3234. invI(0,1) = -I(0,1) / detI;
  3235. invI(1,0) = -I(1,0) / detI;
  3236. invI(1,1) = I(0,0) / detI;
  3237. }
  3238. { // Set H
  3239. H[i][j] = 0;
  3240. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  3241. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  3242. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  3243. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  3244. }
  3245. }
  3246. }
  3247. }
  3248. Vector<ElemBasis> GnxB;
  3249. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  3250. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3251. S.quadrature_FxU.Eval(GnxB, S.GetElemList(), nxB, S.Laplace_FxU);
  3252. Vector<ElemBasis> v = compute_v();
  3253. Vector<ElemBasis> v_dot_GnxB = compute_dot_prod(v,GnxB);
  3254. Vector<ElemBasis> dphi_dnu(Nelem);
  3255. for (Long i = 0; i < Nelem; i++) {
  3256. for (Long j = 0; j < Nnodes; j++) {
  3257. dphi_dnu[i][j] = v_dot_GnxB[i][j] * 2*H[i][j];
  3258. }
  3259. }
  3260. return dphi_dnu;
  3261. };
  3262. auto compute_dphi_dnu3 = [&S,&normal,&area_elem,&compute_AxB,&compute_half_n_plus_dG,sigma] () {
  3263. const Long Nelem = S.GetElemList().NElem();
  3264. const Long Nnodes = ElemBasis::Size();
  3265. Vector<ElemBasis> GnxB;
  3266. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  3267. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3268. S.quadrature_FxU.Eval(GnxB, S.GetElemList(), nxB, S.Laplace_FxU);
  3269. Vector<ElemBasis> H(Nelem);
  3270. { // Set mean curvature H
  3271. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  3272. Vector<ElemBasis> dX, d2X;
  3273. ElemBasis::Grad(dX, X);
  3274. ElemBasis::Grad(d2X, dX);
  3275. for (Long i = 0; i < Nelem; i++) {
  3276. for (Long j = 0; j < Nnodes; j++) {
  3277. Tensor<Real,true,2,2> I, invI, II;
  3278. for (Long k0 = 0; k0 < 2; k0++) {
  3279. for (Long k1 = 0; k1 < 2; k1++) {
  3280. I(k0,k1) = 0;
  3281. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3282. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3283. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3284. II(k0,k1) = 0;
  3285. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3286. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3287. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3288. }
  3289. }
  3290. { // Set invI
  3291. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3292. invI(0,0) = I(1,1) / detI;
  3293. invI(0,1) = -I(0,1) / detI;
  3294. invI(1,0) = -I(1,0) / detI;
  3295. invI(1,1) = I(0,0) / detI;
  3296. }
  3297. { // Set H
  3298. H[i][j] = 0;
  3299. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  3300. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  3301. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  3302. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  3303. }
  3304. }
  3305. }
  3306. }
  3307. Vector<ElemBasis> dv_dnu1(Nelem), dv_dnu2(Nelem);
  3308. { // Set dv_dnu1, dv_dnu2
  3309. Vector<ElemBasis> dX, dGnxB;
  3310. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  3311. ElemBasis::Grad(dGnxB, GnxB);
  3312. for (Long i = 0; i < Nelem; i++) {
  3313. for (Long j = 0; j < Nnodes; j++) {
  3314. dv_dnu1[i][j] = 0;
  3315. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+0][j] * dX[(i*COORD_DIM+0)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
  3316. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+1][j] * dX[(i*COORD_DIM+1)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
  3317. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+2][j] * dX[(i*COORD_DIM+2)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
  3318. dv_dnu2[i][j] = 0;
  3319. dv_dnu2[i][j] += -dGnxB[(i*COORD_DIM+0)*2+1][j] * normal[i*COORD_DIM+0][j] / (area_elem[i][j] * S.NtNp_[0]);
  3320. dv_dnu2[i][j] += -dGnxB[(i*COORD_DIM+1)*2+1][j] * normal[i*COORD_DIM+1][j] / (area_elem[i][j] * S.NtNp_[0]);
  3321. dv_dnu2[i][j] += -dGnxB[(i*COORD_DIM+2)*2+1][j] * normal[i*COORD_DIM+2][j] / (area_elem[i][j] * S.NtNp_[0]);
  3322. }
  3323. }
  3324. }
  3325. return dv_dnu1 + dv_dnu2;
  3326. };
  3327. auto compute_dphi_dnu4 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,sigma] () {
  3328. const Long Nelem = S.GetElemList().NElem();
  3329. const Long Nnodes = ElemBasis::Size();
  3330. Vector<ElemBasis> dGnxB;
  3331. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  3332. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3333. S.quadrature_FxdU.Eval(dGnxB, S.GetElemList(), nxB, S.Laplace_FxdU);
  3334. Vector<ElemBasis> v = compute_v();
  3335. Vector<ElemBasis> dphi_dnu(Nelem);
  3336. for (Long i = 0; i < Nelem; i++) {
  3337. for (Long j = 0; j < Nnodes; j++) {
  3338. Real dphi_dnu_ = 0;
  3339. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
  3340. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
  3341. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
  3342. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
  3343. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
  3344. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
  3345. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
  3346. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
  3347. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
  3348. dphi_dnu[i][j] = dphi_dnu_;
  3349. }
  3350. }
  3351. return dphi_dnu;
  3352. };
  3353. auto compute_dphi_dnu5 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,sigma] () {
  3354. const Long Nelem = S.GetElemList().NElem();
  3355. const Long Nnodes = ElemBasis::Size();
  3356. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  3357. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3358. Vector<ElemBasis> dGv;
  3359. Vector<ElemBasis> v = compute_v();
  3360. S.quadrature_FxdU.Eval(dGv, S.GetElemList(), v, S.Laplace_FxdU);
  3361. Vector<ElemBasis> dphi_dnu(Nelem);
  3362. for (Long i = 0; i < Nelem; i++) {
  3363. for (Long j = 0; j < Nnodes; j++) {
  3364. Real dphi_dnu_ = 0;
  3365. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+0][j] * nxB[i*COORD_DIM+0][j];
  3366. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+1][j] * nxB[i*COORD_DIM+0][j];
  3367. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+2][j] * nxB[i*COORD_DIM+0][j];
  3368. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+0][j] * nxB[i*COORD_DIM+1][j];
  3369. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+1][j] * nxB[i*COORD_DIM+1][j];
  3370. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+2][j] * nxB[i*COORD_DIM+1][j];
  3371. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+0][j] * nxB[i*COORD_DIM+2][j];
  3372. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+1][j] * nxB[i*COORD_DIM+2][j];
  3373. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+2][j] * nxB[i*COORD_DIM+2][j];
  3374. dphi_dnu[i][j] = dphi_dnu_;
  3375. }
  3376. }
  3377. return dphi_dnu;
  3378. };
  3379. auto compute_dphi_dnu6 = [&S,&normal,&compute_AxB,&compute_v,sigma,&comm] () {
  3380. const Long Nelem = S.GetElemList().NElem();
  3381. const Long Nnodes = ElemBasis::Size();
  3382. Vector<ElemBasis> Gv;
  3383. Vector<ElemBasis> v = compute_v();
  3384. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  3385. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3386. Vector<ElemBasis> gradB;
  3387. Quadrature<Real> quadrature_Fxd2U;
  3388. quadrature_Fxd2U.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_Fxd2U, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3389. quadrature_Fxd2U.Eval(gradB, S.GetElemList(), sigma, S.Laplace_Fxd2U);
  3390. Vector<ElemBasis> dphi_dnu(Nelem);
  3391. for (Long i = 0; i < Nelem; i++) {
  3392. for (Long j = 0; j < Nnodes; j++) {
  3393. Real dphi_dnu_ = 0;
  3394. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  3395. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+1][j] * normal[i*COORD_DIM+0][j];
  3396. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+2][j] * normal[i*COORD_DIM+0][j];
  3397. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+0][j] * normal[i*COORD_DIM+1][j];
  3398. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  3399. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+2][j] * normal[i*COORD_DIM+1][j];
  3400. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+0][j] * normal[i*COORD_DIM+2][j];
  3401. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+1][j] * normal[i*COORD_DIM+2][j];
  3402. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  3403. dphi_dnu[i][j] = dphi_dnu_;
  3404. }
  3405. }
  3406. return dphi_dnu;
  3407. };
  3408. auto compute_dphi_dnu7 = [&S,&normal,&compute_AxB,&compute_v,sigma,&comm] () {
  3409. const Long Nelem = S.GetElemList().NElem();
  3410. const Long Nnodes = ElemBasis::Size();
  3411. Vector<ElemBasis> H(Nelem);
  3412. { // Set mean curvature H
  3413. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  3414. Vector<ElemBasis> dX, d2X;
  3415. ElemBasis::Grad(dX, X);
  3416. ElemBasis::Grad(d2X, dX);
  3417. for (Long i = 0; i < Nelem; i++) {
  3418. for (Long j = 0; j < Nnodes; j++) {
  3419. Tensor<Real,true,2,2> I, invI, II;
  3420. for (Long k0 = 0; k0 < 2; k0++) {
  3421. for (Long k1 = 0; k1 < 2; k1++) {
  3422. I(k0,k1) = 0;
  3423. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3424. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3425. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3426. II(k0,k1) = 0;
  3427. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3428. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3429. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3430. }
  3431. }
  3432. { // Set invI
  3433. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3434. invI(0,0) = I(1,1) / detI;
  3435. invI(0,1) = -I(0,1) / detI;
  3436. invI(1,0) = -I(1,0) / detI;
  3437. invI(1,1) = I(0,0) / detI;
  3438. }
  3439. { // Set H
  3440. H[i][j] = 0;
  3441. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  3442. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  3443. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  3444. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  3445. }
  3446. }
  3447. }
  3448. }
  3449. Vector<ElemBasis> Gv;
  3450. Vector<ElemBasis> v = compute_v();
  3451. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  3452. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3453. Vector<ElemBasis> dphi_dnu(Nelem);
  3454. Quadrature<Real> quadrature_dUxF;
  3455. quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  3456. quadrature_dUxF.Eval(dphi_dnu, S.GetElemList(), nxGv, S.Laplace_dUxF);
  3457. for (Long i = 0; i < Nelem; i++) {
  3458. for (Long j = 0; j < Nnodes; j++) {
  3459. dphi_dnu[i][j] *= -2*H[i][j] * sigma[i][j];
  3460. }
  3461. }
  3462. return dphi_dnu;
  3463. };
  3464. auto compute_dphi_dnu8 = [&S,&normal,&compute_AxB,&compute_v,sigma,&comm] () {
  3465. const Long Nelem = S.GetElemList().NElem();
  3466. const Long Nnodes = ElemBasis::Size();
  3467. Vector<ElemBasis> H(Nelem);
  3468. { // Set mean curvature H
  3469. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  3470. Vector<ElemBasis> dX, d2X;
  3471. ElemBasis::Grad(dX, X);
  3472. ElemBasis::Grad(d2X, dX);
  3473. for (Long i = 0; i < Nelem; i++) {
  3474. for (Long j = 0; j < Nnodes; j++) {
  3475. Tensor<Real,true,2,2> I, invI, II;
  3476. for (Long k0 = 0; k0 < 2; k0++) {
  3477. for (Long k1 = 0; k1 < 2; k1++) {
  3478. I(k0,k1) = 0;
  3479. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3480. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3481. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3482. II(k0,k1) = 0;
  3483. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3484. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3485. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3486. }
  3487. }
  3488. { // Set invI
  3489. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3490. invI(0,0) = I(1,1) / detI;
  3491. invI(0,1) = -I(0,1) / detI;
  3492. invI(1,0) = -I(1,0) / detI;
  3493. invI(1,1) = I(0,0) / detI;
  3494. }
  3495. { // Set H
  3496. H[i][j] = 0;
  3497. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  3498. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  3499. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  3500. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  3501. }
  3502. }
  3503. }
  3504. }
  3505. Vector<ElemBasis> Gv;
  3506. Vector<ElemBasis> v = compute_v();
  3507. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  3508. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3509. Vector<ElemBasis> dphi_dnu(Nelem);
  3510. Vector<ElemBasis> nablaDt_nxGv;
  3511. Quadrature<Real> quadrature_dUxD;
  3512. quadrature_dUxD.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxD, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  3513. quadrature_dUxD.Eval(nablaDt_nxGv, S.GetElemList(), nxGv, S.Laplace_dUxD);
  3514. for (Long i = 0; i < Nelem; i++) {
  3515. for (Long j = 0; j < Nnodes; j++) {
  3516. dphi_dnu[i][j] = 0;
  3517. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  3518. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  3519. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  3520. }
  3521. }
  3522. return dphi_dnu;
  3523. };
  3524. auto dphi_dnu0 = compute_dphi_dnu0();
  3525. auto dphi_dnu1 = compute_dphi_dnu1();
  3526. auto dphi_dnu2 = compute_dphi_dnu2();
  3527. auto dphi_dnu3 = compute_dphi_dnu3();
  3528. auto dphi_dnu4 = compute_dphi_dnu4();
  3529. auto dphi_dnu5 = compute_dphi_dnu5();
  3530. auto dphi_dnu6 = compute_dphi_dnu6();
  3531. auto dphi_dnu7 = compute_dphi_dnu7();
  3532. auto dphi_dnu8 = compute_dphi_dnu8();
  3533. return (dphi_dnu0+dphi_dnu1+dphi_dnu2+dphi_dnu3+dphi_dnu4+dphi_dnu5+dphi_dnu6+dphi_dnu7+dphi_dnu8) * u[Nelem*Nnodes];
  3534. };
  3535. auto compute_u_dAdnu_v_11 = [&S,&comm,&area_elem,&normal,&compute_dot_prod,&compute_grad_adj,&compute_B0,&compute_dB0] (const Vector<Real>& u, const Vector<Real>& v) {
  3536. const Long Nelem = S.GetElemList().NElem();
  3537. const Long Nnodes = ElemBasis::Size();
  3538. auto compute_v = [&S,&area_elem] () {
  3539. const Long Nelem = S.GetElemList().NElem();
  3540. const Long Nnodes = ElemBasis::Size();
  3541. Vector<ElemBasis> v(Nelem * COORD_DIM);
  3542. Vector<ElemBasis> dX;
  3543. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  3544. for (Long i = 0; i < Nelem; i++) {
  3545. for (Long j = 0; j < Nnodes; j++) {
  3546. Tensor<Real,true,COORD_DIM,2> dx;
  3547. dx(0,0) = dX[i*COORD_DIM*2+0][j];
  3548. dx(0,1) = dX[i*COORD_DIM*2+1][j];
  3549. dx(1,0) = dX[i*COORD_DIM*2+2][j];
  3550. dx(1,1) = dX[i*COORD_DIM*2+3][j];
  3551. dx(2,0) = dX[i*COORD_DIM*2+4][j];
  3552. dx(2,1) = dX[i*COORD_DIM*2+5][j];
  3553. Real s = 1 / (area_elem[i][j] * S.NtNp_[0]);
  3554. for (Long k = 0; k < COORD_DIM; k++) {
  3555. v[i*COORD_DIM+k][j] = dx(k,1) * s;
  3556. }
  3557. }
  3558. }
  3559. return v;
  3560. };
  3561. auto compute_AxB = [&S] (const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  3562. const Long Nelem = S.GetElemList().NElem();
  3563. const Long Nnodes = ElemBasis::Size();
  3564. Vector<ElemBasis> J(Nelem * COORD_DIM);
  3565. for (Long i = 0; i < Nelem; i++) { // Set J
  3566. for (Long j = 0; j < Nnodes; j++) {
  3567. Tensor<Real,true,COORD_DIM> a, b;
  3568. a(0) = A[i*COORD_DIM+0][j];
  3569. a(1) = A[i*COORD_DIM+1][j];
  3570. a(2) = A[i*COORD_DIM+2][j];
  3571. b(0) = B[i*COORD_DIM+0][j];
  3572. b(1) = B[i*COORD_DIM+1][j];
  3573. b(2) = B[i*COORD_DIM+2][j];
  3574. J[i*COORD_DIM+0][j] = a(1) * b(2) - a(2) * b(1);
  3575. J[i*COORD_DIM+1][j] = a(2) * b(0) - a(0) * b(2);
  3576. J[i*COORD_DIM+2][j] = a(0) * b(1) - a(1) * b(0);
  3577. }
  3578. }
  3579. return J;
  3580. };
  3581. auto compute_dphi_dnu0 = [&S,&normal,&compute_AxB,&compute_v,&compute_dB0] () {
  3582. const Long Nelem = S.GetElemList().NElem();
  3583. const Long Nnodes = ElemBasis::Size();
  3584. Vector<ElemBasis> Gv;
  3585. Vector<ElemBasis> v = compute_v();
  3586. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  3587. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3588. Vector<ElemBasis> gradB = compute_dB0(1.0);
  3589. Vector<ElemBasis> dphi_dnu(Nelem);
  3590. for (Long i = 0; i < Nelem; i++) {
  3591. for (Long j = 0; j < Nnodes; j++) {
  3592. Real dphi_dnu_ = 0;
  3593. dphi_dnu_ += nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  3594. dphi_dnu_ += nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+1][j] * normal[i*COORD_DIM+0][j];
  3595. dphi_dnu_ += nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+2][j] * normal[i*COORD_DIM+0][j];
  3596. dphi_dnu_ += nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+0][j] * normal[i*COORD_DIM+1][j];
  3597. dphi_dnu_ += nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  3598. dphi_dnu_ += nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+2][j] * normal[i*COORD_DIM+1][j];
  3599. dphi_dnu_ += nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+0][j] * normal[i*COORD_DIM+2][j];
  3600. dphi_dnu_ += nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+1][j] * normal[i*COORD_DIM+2][j];
  3601. dphi_dnu_ += nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  3602. dphi_dnu[i][j] = dphi_dnu_;
  3603. }
  3604. }
  3605. return dphi_dnu;
  3606. };
  3607. auto compute_dphi_dnu1 = [&S,&normal,&compute_AxB,&compute_v,&compute_B0,compute_grad_adj] () {
  3608. const Long Nelem = S.GetElemList().NElem();
  3609. const Long Nnodes = ElemBasis::Size();
  3610. Vector<ElemBasis> Gv;
  3611. Vector<ElemBasis> v = compute_v();
  3612. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  3613. Vector<ElemBasis> B = compute_B0(1.0);
  3614. Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
  3615. return compute_grad_adj(BxGv)*(-1.0);
  3616. };
  3617. auto compute_dphi_dnu2 = [&S,&normal,&compute_AxB,&compute_v,&compute_B0,&compute_dot_prod] () {
  3618. const Long Nelem = S.GetElemList().NElem();
  3619. const Long Nnodes = ElemBasis::Size();
  3620. Vector<ElemBasis> H(Nelem);
  3621. { // Set mean curvature H
  3622. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  3623. Vector<ElemBasis> dX, d2X;
  3624. ElemBasis::Grad(dX, X);
  3625. ElemBasis::Grad(d2X, dX);
  3626. for (Long i = 0; i < Nelem; i++) {
  3627. for (Long j = 0; j < Nnodes; j++) {
  3628. Tensor<Real,true,2,2> I, invI, II;
  3629. for (Long k0 = 0; k0 < 2; k0++) {
  3630. for (Long k1 = 0; k1 < 2; k1++) {
  3631. I(k0,k1) = 0;
  3632. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3633. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3634. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3635. II(k0,k1) = 0;
  3636. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3637. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3638. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3639. }
  3640. }
  3641. { // Set invI
  3642. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3643. invI(0,0) = I(1,1) / detI;
  3644. invI(0,1) = -I(0,1) / detI;
  3645. invI(1,0) = -I(1,0) / detI;
  3646. invI(1,1) = I(0,0) / detI;
  3647. }
  3648. { // Set H
  3649. H[i][j] = 0;
  3650. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  3651. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  3652. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  3653. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  3654. }
  3655. }
  3656. }
  3657. }
  3658. Vector<ElemBasis> Gv;
  3659. Vector<ElemBasis> v = compute_v();
  3660. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  3661. Vector<ElemBasis> B = compute_B0(1.0);
  3662. Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
  3663. Vector<ElemBasis> n_dot_BxGv = compute_dot_prod(normal,BxGv);
  3664. Vector<ElemBasis> dphi_dnu(Nelem);
  3665. for (Long i = 0; i < Nelem; i++) {
  3666. for (Long j = 0; j < Nnodes; j++) {
  3667. dphi_dnu[i][j] = n_dot_BxGv[i][j] * 2*H[i][j];
  3668. }
  3669. }
  3670. return dphi_dnu;
  3671. };
  3672. auto compute_dphi_dnu3 = [&S,&normal,&compute_AxB,&compute_v,&compute_B0,&compute_dot_prod] () {
  3673. const Long Nelem = S.GetElemList().NElem();
  3674. const Long Nnodes = ElemBasis::Size();
  3675. Vector<ElemBasis> H(Nelem);
  3676. { // Set mean curvature H
  3677. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  3678. Vector<ElemBasis> dX, d2X;
  3679. ElemBasis::Grad(dX, X);
  3680. ElemBasis::Grad(d2X, dX);
  3681. for (Long i = 0; i < Nelem; i++) {
  3682. for (Long j = 0; j < Nnodes; j++) {
  3683. Tensor<Real,true,2,2> I, invI, II;
  3684. for (Long k0 = 0; k0 < 2; k0++) {
  3685. for (Long k1 = 0; k1 < 2; k1++) {
  3686. I(k0,k1) = 0;
  3687. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3688. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3689. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3690. II(k0,k1) = 0;
  3691. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3692. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3693. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3694. }
  3695. }
  3696. { // Set invI
  3697. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3698. invI(0,0) = I(1,1) / detI;
  3699. invI(0,1) = -I(0,1) / detI;
  3700. invI(1,0) = -I(1,0) / detI;
  3701. invI(1,1) = I(0,0) / detI;
  3702. }
  3703. { // Set H
  3704. H[i][j] = 0;
  3705. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  3706. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  3707. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  3708. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  3709. }
  3710. }
  3711. }
  3712. }
  3713. Vector<ElemBasis> GnxB;
  3714. Vector<ElemBasis> B = compute_B0(1.0);
  3715. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3716. S.quadrature_FxU.Eval(GnxB, S.GetElemList(), nxB, S.Laplace_FxU);
  3717. Vector<ElemBasis> v = compute_v();
  3718. Vector<ElemBasis> v_dot_GnxB = compute_dot_prod(v,GnxB);
  3719. Vector<ElemBasis> dphi_dnu(Nelem);
  3720. for (Long i = 0; i < Nelem; i++) {
  3721. for (Long j = 0; j < Nnodes; j++) {
  3722. dphi_dnu[i][j] = v_dot_GnxB[i][j] * 2*H[i][j];
  3723. }
  3724. }
  3725. return dphi_dnu;
  3726. };
  3727. auto compute_dphi_dnu4 = [&S,&normal,&area_elem,&compute_AxB,&compute_B0] () {
  3728. const Long Nelem = S.GetElemList().NElem();
  3729. const Long Nnodes = ElemBasis::Size();
  3730. Vector<ElemBasis> GnxB;
  3731. Vector<ElemBasis> B = compute_B0(1.0);
  3732. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3733. S.quadrature_FxU.Eval(GnxB, S.GetElemList(), nxB, S.Laplace_FxU);
  3734. Vector<ElemBasis> H(Nelem);
  3735. { // Set mean curvature H
  3736. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  3737. Vector<ElemBasis> dX, d2X;
  3738. ElemBasis::Grad(dX, X);
  3739. ElemBasis::Grad(d2X, dX);
  3740. for (Long i = 0; i < Nelem; i++) {
  3741. for (Long j = 0; j < Nnodes; j++) {
  3742. Tensor<Real,true,2,2> I, invI, II;
  3743. for (Long k0 = 0; k0 < 2; k0++) {
  3744. for (Long k1 = 0; k1 < 2; k1++) {
  3745. I(k0,k1) = 0;
  3746. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3747. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3748. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3749. II(k0,k1) = 0;
  3750. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3751. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3752. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3753. }
  3754. }
  3755. { // Set invI
  3756. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3757. invI(0,0) = I(1,1) / detI;
  3758. invI(0,1) = -I(0,1) / detI;
  3759. invI(1,0) = -I(1,0) / detI;
  3760. invI(1,1) = I(0,0) / detI;
  3761. }
  3762. { // Set H
  3763. H[i][j] = 0;
  3764. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  3765. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  3766. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  3767. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  3768. }
  3769. }
  3770. }
  3771. }
  3772. Vector<ElemBasis> dv_dnu1(Nelem), dv_dnu2(Nelem);
  3773. { // Set dv_dnu1, dv_dnu2
  3774. Vector<ElemBasis> dX, dGnxB;
  3775. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  3776. ElemBasis::Grad(dGnxB, GnxB);
  3777. for (Long i = 0; i < Nelem; i++) {
  3778. for (Long j = 0; j < Nnodes; j++) {
  3779. dv_dnu1[i][j] = 0;
  3780. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+0][j] * dX[(i*COORD_DIM+0)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
  3781. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+1][j] * dX[(i*COORD_DIM+1)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
  3782. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+2][j] * dX[(i*COORD_DIM+2)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
  3783. dv_dnu2[i][j] = 0;
  3784. dv_dnu2[i][j] += -dGnxB[(i*COORD_DIM+0)*2+1][j] * normal[i*COORD_DIM+0][j] / (area_elem[i][j] * S.NtNp_[0]);
  3785. dv_dnu2[i][j] += -dGnxB[(i*COORD_DIM+1)*2+1][j] * normal[i*COORD_DIM+1][j] / (area_elem[i][j] * S.NtNp_[0]);
  3786. dv_dnu2[i][j] += -dGnxB[(i*COORD_DIM+2)*2+1][j] * normal[i*COORD_DIM+2][j] / (area_elem[i][j] * S.NtNp_[0]);
  3787. }
  3788. }
  3789. }
  3790. return dv_dnu1 + dv_dnu2;
  3791. };
  3792. auto compute_dphi_dnu5 = [&S,&normal,&compute_AxB,&compute_v,&compute_B0] () {
  3793. const Long Nelem = S.GetElemList().NElem();
  3794. const Long Nnodes = ElemBasis::Size();
  3795. Vector<ElemBasis> dGnxB;
  3796. Vector<ElemBasis> B = compute_B0(1.0);
  3797. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3798. S.quadrature_FxdU.Eval(dGnxB, S.GetElemList(), nxB, S.Laplace_FxdU);
  3799. Vector<ElemBasis> v = compute_v();
  3800. Vector<ElemBasis> dphi_dnu(Nelem);
  3801. for (Long i = 0; i < Nelem; i++) {
  3802. for (Long j = 0; j < Nnodes; j++) {
  3803. Real dphi_dnu_ = 0;
  3804. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
  3805. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
  3806. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
  3807. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
  3808. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
  3809. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
  3810. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
  3811. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
  3812. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
  3813. dphi_dnu[i][j] = dphi_dnu_;
  3814. }
  3815. }
  3816. return dphi_dnu;
  3817. };
  3818. auto compute_dphi_dnu6 = [&S,&normal,&compute_AxB,&compute_v,&compute_B0] () {
  3819. const Long Nelem = S.GetElemList().NElem();
  3820. const Long Nnodes = ElemBasis::Size();
  3821. Vector<ElemBasis> B = compute_B0(1.0);
  3822. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3823. Vector<ElemBasis> dGv;
  3824. Vector<ElemBasis> v = compute_v();
  3825. S.quadrature_FxdU.Eval(dGv, S.GetElemList(), v, S.Laplace_FxdU);
  3826. Vector<ElemBasis> dphi_dnu(Nelem);
  3827. for (Long i = 0; i < Nelem; i++) {
  3828. for (Long j = 0; j < Nnodes; j++) {
  3829. Real dphi_dnu_ = 0;
  3830. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+0][j] * nxB[i*COORD_DIM+0][j];
  3831. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+1][j] * nxB[i*COORD_DIM+0][j];
  3832. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+2][j] * nxB[i*COORD_DIM+0][j];
  3833. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+0][j] * nxB[i*COORD_DIM+1][j];
  3834. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+1][j] * nxB[i*COORD_DIM+1][j];
  3835. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+2][j] * nxB[i*COORD_DIM+1][j];
  3836. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+0][j] * nxB[i*COORD_DIM+2][j];
  3837. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+1][j] * nxB[i*COORD_DIM+2][j];
  3838. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+2][j] * nxB[i*COORD_DIM+2][j];
  3839. dphi_dnu[i][j] = dphi_dnu_;
  3840. }
  3841. }
  3842. return dphi_dnu;
  3843. };
  3844. auto dphi_dnu0 = compute_dphi_dnu0();
  3845. auto dphi_dnu1 = compute_dphi_dnu1();
  3846. auto dphi_dnu2 = compute_dphi_dnu2();
  3847. auto dphi_dnu3 = compute_dphi_dnu3();
  3848. auto dphi_dnu4 = compute_dphi_dnu4();
  3849. auto dphi_dnu5 = compute_dphi_dnu5();
  3850. auto dphi_dnu6 = compute_dphi_dnu6();
  3851. return (dphi_dnu0+dphi_dnu1+dphi_dnu2+dphi_dnu3+dphi_dnu4+dphi_dnu5+dphi_dnu6) * (u[Nelem*Nnodes] * v[Nelem*Nnodes]);
  3852. };
  3853. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  3854. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  3855. if (0) {
  3856. const Long Nelem = S.GetElemList().NElem();
  3857. const Long Nnodes = ElemBasis::Size();
  3858. auto compute_v = [&S,&area_elem] () {
  3859. const Long Nelem = S.GetElemList().NElem();
  3860. const Long Nnodes = ElemBasis::Size();
  3861. Vector<ElemBasis> v(Nelem * COORD_DIM);
  3862. Vector<ElemBasis> dX;
  3863. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  3864. for (Long i = 0; i < Nelem; i++) {
  3865. for (Long j = 0; j < Nnodes; j++) {
  3866. Tensor<Real,true,COORD_DIM,2> dx;
  3867. dx(0,0) = dX[i*COORD_DIM*2+0][j];
  3868. dx(0,1) = dX[i*COORD_DIM*2+1][j];
  3869. dx(1,0) = dX[i*COORD_DIM*2+2][j];
  3870. dx(1,1) = dX[i*COORD_DIM*2+3][j];
  3871. dx(2,0) = dX[i*COORD_DIM*2+4][j];
  3872. dx(2,1) = dX[i*COORD_DIM*2+5][j];
  3873. Real s = 1 / (area_elem[i][j] * S.NtNp_[0]);
  3874. for (Long k = 0; k < COORD_DIM; k++) {
  3875. v[i*COORD_DIM+k][j] = dx(k,1) * s;
  3876. }
  3877. }
  3878. }
  3879. return v;
  3880. };
  3881. auto compute_AxB = [&S] (const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  3882. const Long Nelem = S.GetElemList().NElem();
  3883. const Long Nnodes = ElemBasis::Size();
  3884. Vector<ElemBasis> J(Nelem * COORD_DIM);
  3885. for (Long i = 0; i < Nelem; i++) { // Set J
  3886. for (Long j = 0; j < Nnodes; j++) {
  3887. Tensor<Real,true,COORD_DIM> a, b;
  3888. a(0) = A[i*COORD_DIM+0][j];
  3889. a(1) = A[i*COORD_DIM+1][j];
  3890. a(2) = A[i*COORD_DIM+2][j];
  3891. b(0) = B[i*COORD_DIM+0][j];
  3892. b(1) = B[i*COORD_DIM+1][j];
  3893. b(2) = B[i*COORD_DIM+2][j];
  3894. J[i*COORD_DIM+0][j] = a(1) * b(2) - a(2) * b(1);
  3895. J[i*COORD_DIM+1][j] = a(2) * b(0) - a(0) * b(2);
  3896. J[i*COORD_DIM+2][j] = a(0) * b(1) - a(1) * b(0);
  3897. }
  3898. }
  3899. return J;
  3900. };
  3901. auto compute_dphi_dnu0 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,compute_grad_adj,sigma] () {
  3902. const Long Nelem = S.GetElemList().NElem();
  3903. const Long Nnodes = ElemBasis::Size();
  3904. Vector<ElemBasis> Gv;
  3905. Vector<ElemBasis> v = compute_v();
  3906. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  3907. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  3908. Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
  3909. return compute_grad_adj(BxGv)*(-1.0);
  3910. };
  3911. auto compute_dphi_dnu1 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,&compute_dot_prod,sigma] () {
  3912. const Long Nelem = S.GetElemList().NElem();
  3913. const Long Nnodes = ElemBasis::Size();
  3914. Vector<ElemBasis> H(Nelem);
  3915. { // Set mean curvature H
  3916. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  3917. Vector<ElemBasis> dX, d2X;
  3918. ElemBasis::Grad(dX, X);
  3919. ElemBasis::Grad(d2X, dX);
  3920. for (Long i = 0; i < Nelem; i++) {
  3921. for (Long j = 0; j < Nnodes; j++) {
  3922. Tensor<Real,true,2,2> I, invI, II;
  3923. for (Long k0 = 0; k0 < 2; k0++) {
  3924. for (Long k1 = 0; k1 < 2; k1++) {
  3925. I(k0,k1) = 0;
  3926. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3927. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3928. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3929. II(k0,k1) = 0;
  3930. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3931. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3932. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3933. }
  3934. }
  3935. { // Set invI
  3936. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3937. invI(0,0) = I(1,1) / detI;
  3938. invI(0,1) = -I(0,1) / detI;
  3939. invI(1,0) = -I(1,0) / detI;
  3940. invI(1,1) = I(0,0) / detI;
  3941. }
  3942. { // Set H
  3943. H[i][j] = 0;
  3944. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  3945. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  3946. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  3947. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  3948. }
  3949. }
  3950. }
  3951. }
  3952. Vector<ElemBasis> Gv;
  3953. Vector<ElemBasis> v = compute_v();
  3954. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  3955. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  3956. Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
  3957. Vector<ElemBasis> n_dot_BxGv = compute_dot_prod(normal,BxGv);
  3958. Vector<ElemBasis> dphi_dnu(Nelem);
  3959. for (Long i = 0; i < Nelem; i++) {
  3960. for (Long j = 0; j < Nnodes; j++) {
  3961. dphi_dnu[i][j] = n_dot_BxGv[i][j] * 2*H[i][j];
  3962. }
  3963. }
  3964. return dphi_dnu;
  3965. };
  3966. auto compute_dphi_dnu2 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,&compute_dot_prod,sigma] () {
  3967. const Long Nelem = S.GetElemList().NElem();
  3968. const Long Nnodes = ElemBasis::Size();
  3969. Vector<ElemBasis> H(Nelem);
  3970. { // Set mean curvature H
  3971. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  3972. Vector<ElemBasis> dX, d2X;
  3973. ElemBasis::Grad(dX, X);
  3974. ElemBasis::Grad(d2X, dX);
  3975. for (Long i = 0; i < Nelem; i++) {
  3976. for (Long j = 0; j < Nnodes; j++) {
  3977. Tensor<Real,true,2,2> I, invI, II;
  3978. for (Long k0 = 0; k0 < 2; k0++) {
  3979. for (Long k1 = 0; k1 < 2; k1++) {
  3980. I(k0,k1) = 0;
  3981. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3982. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3983. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3984. II(k0,k1) = 0;
  3985. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3986. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3987. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3988. }
  3989. }
  3990. { // Set invI
  3991. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3992. invI(0,0) = I(1,1) / detI;
  3993. invI(0,1) = -I(0,1) / detI;
  3994. invI(1,0) = -I(1,0) / detI;
  3995. invI(1,1) = I(0,0) / detI;
  3996. }
  3997. { // Set H
  3998. H[i][j] = 0;
  3999. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  4000. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  4001. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  4002. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  4003. }
  4004. }
  4005. }
  4006. }
  4007. Vector<ElemBasis> GnxB;
  4008. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  4009. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  4010. S.quadrature_FxU.Eval(GnxB, S.GetElemList(), nxB, S.Laplace_FxU);
  4011. Vector<ElemBasis> v = compute_v();
  4012. Vector<ElemBasis> v_dot_GnxB = compute_dot_prod(v,GnxB);
  4013. Vector<ElemBasis> dphi_dnu(Nelem);
  4014. for (Long i = 0; i < Nelem; i++) {
  4015. for (Long j = 0; j < Nnodes; j++) {
  4016. dphi_dnu[i][j] = v_dot_GnxB[i][j] * 2*H[i][j];
  4017. }
  4018. }
  4019. return dphi_dnu;
  4020. };
  4021. auto compute_dphi_dnu3 = [&S,&normal,&area_elem,&compute_AxB,&compute_half_n_plus_dG,sigma] () {
  4022. const Long Nelem = S.GetElemList().NElem();
  4023. const Long Nnodes = ElemBasis::Size();
  4024. Vector<ElemBasis> GnxB;
  4025. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  4026. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  4027. S.quadrature_FxU.Eval(GnxB, S.GetElemList(), nxB, S.Laplace_FxU);
  4028. Vector<ElemBasis> H(Nelem);
  4029. { // Set mean curvature H
  4030. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  4031. Vector<ElemBasis> dX, d2X;
  4032. ElemBasis::Grad(dX, X);
  4033. ElemBasis::Grad(d2X, dX);
  4034. for (Long i = 0; i < Nelem; i++) {
  4035. for (Long j = 0; j < Nnodes; j++) {
  4036. Tensor<Real,true,2,2> I, invI, II;
  4037. for (Long k0 = 0; k0 < 2; k0++) {
  4038. for (Long k1 = 0; k1 < 2; k1++) {
  4039. I(k0,k1) = 0;
  4040. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  4041. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  4042. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  4043. II(k0,k1) = 0;
  4044. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  4045. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  4046. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  4047. }
  4048. }
  4049. { // Set invI
  4050. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  4051. invI(0,0) = I(1,1) / detI;
  4052. invI(0,1) = -I(0,1) / detI;
  4053. invI(1,0) = -I(1,0) / detI;
  4054. invI(1,1) = I(0,0) / detI;
  4055. }
  4056. { // Set H
  4057. H[i][j] = 0;
  4058. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  4059. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  4060. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  4061. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  4062. }
  4063. }
  4064. }
  4065. }
  4066. Vector<ElemBasis> dv_dnu1(Nelem), dv_dnu2(Nelem), dv_dnu3(Nelem);
  4067. { // Set dv_dnu1, dv_dnu2, dv_dnu3
  4068. Vector<ElemBasis> dX, dn, V_tmp(Nelem);
  4069. ElemBasis::Grad(dn, normal);
  4070. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  4071. for (Long i = 0; i < Nelem; i++) {
  4072. for (Long j = 0; j < Nnodes; j++) {
  4073. dv_dnu1[i][j] = 0;
  4074. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+0][j] * dX[(i*COORD_DIM+0)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
  4075. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+1][j] * dX[(i*COORD_DIM+1)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
  4076. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+2][j] * dX[(i*COORD_DIM+2)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
  4077. dv_dnu2[i][j] = 0;
  4078. dv_dnu2[i][j] += GnxB[i*COORD_DIM+0][j] * dn[(i*COORD_DIM+0)*2+1][j] / (area_elem[i][j] * S.NtNp_[0]);
  4079. dv_dnu2[i][j] += GnxB[i*COORD_DIM+1][j] * dn[(i*COORD_DIM+1)*2+1][j] / (area_elem[i][j] * S.NtNp_[0]);
  4080. dv_dnu2[i][j] += GnxB[i*COORD_DIM+2][j] * dn[(i*COORD_DIM+2)*2+1][j] / (area_elem[i][j] * S.NtNp_[0]);
  4081. V_tmp[i][j] = 0;
  4082. V_tmp[i][j] += GnxB[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j] / (area_elem[i][j] * S.NtNp_[0]); //dnu[i*2+1][j] *
  4083. V_tmp[i][j] += GnxB[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j] / (area_elem[i][j] * S.NtNp_[0]); //dnu[i*2+1][j] *
  4084. V_tmp[i][j] += GnxB[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j] / (area_elem[i][j] * S.NtNp_[0]); //dnu[i*2+1][j] *
  4085. }
  4086. }
  4087. { // dv_dnu3 <-- grad_adj V_tmp
  4088. Vector<ElemBasis> eye(Nnodes), Mgrad;
  4089. eye = 0;
  4090. for (Long i = 0; i < Nnodes; i++) eye[i][i] = 1;
  4091. ElemBasis::Grad(Mgrad, eye);
  4092. Vector<ElemBasis> grad_adj_V(Nelem);
  4093. const auto& quad_wts = ElemBasis::QuadWts();
  4094. for (Long i = 0; i < Nelem; i++) {
  4095. for (Long j = 0; j < Nnodes; j++) {
  4096. Real sum = 0;
  4097. for (Long k = 0; k < Nnodes; k++) {
  4098. sum += Mgrad[j*2+1][k] * V_tmp[i][k] * (area_elem[i][k] * quad_wts[k]) / (quad_wts[j] * area_elem[i][j]);
  4099. }
  4100. dv_dnu3[i][j] = sum;
  4101. }
  4102. }
  4103. }
  4104. }
  4105. return dv_dnu1+dv_dnu2+dv_dnu3;
  4106. };
  4107. auto compute_dphi_dnu4 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,sigma] () {
  4108. const Long Nelem = S.GetElemList().NElem();
  4109. const Long Nnodes = ElemBasis::Size();
  4110. Vector<ElemBasis> dGnxB;
  4111. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  4112. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  4113. S.quadrature_FxdU.Eval(dGnxB, S.GetElemList(), nxB, S.Laplace_FxdU);
  4114. Vector<ElemBasis> v = compute_v();
  4115. Vector<ElemBasis> dphi_dnu(Nelem);
  4116. for (Long i = 0; i < Nelem; i++) {
  4117. for (Long j = 0; j < Nnodes; j++) {
  4118. Real dphi_dnu_ = 0;
  4119. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
  4120. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
  4121. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
  4122. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
  4123. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
  4124. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
  4125. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
  4126. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
  4127. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
  4128. dphi_dnu[i][j] = dphi_dnu_;
  4129. }
  4130. }
  4131. return dphi_dnu;
  4132. };
  4133. auto compute_dphi_dnu5 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,sigma] () {
  4134. const Long Nelem = S.GetElemList().NElem();
  4135. const Long Nnodes = ElemBasis::Size();
  4136. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  4137. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  4138. Vector<ElemBasis> dGv;
  4139. Vector<ElemBasis> v = compute_v();
  4140. S.quadrature_FxdU.Eval(dGv, S.GetElemList(), v, S.Laplace_FxdU);
  4141. Vector<ElemBasis> dphi_dnu(Nelem);
  4142. for (Long i = 0; i < Nelem; i++) {
  4143. for (Long j = 0; j < Nnodes; j++) {
  4144. Real dphi_dnu_ = 0;
  4145. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+0][j] * nxB[i*COORD_DIM+0][j];
  4146. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+1][j] * nxB[i*COORD_DIM+0][j];
  4147. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+2][j] * nxB[i*COORD_DIM+0][j];
  4148. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+0][j] * nxB[i*COORD_DIM+1][j];
  4149. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+1][j] * nxB[i*COORD_DIM+1][j];
  4150. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+2][j] * nxB[i*COORD_DIM+1][j];
  4151. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+0][j] * nxB[i*COORD_DIM+2][j];
  4152. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+1][j] * nxB[i*COORD_DIM+2][j];
  4153. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+2][j] * nxB[i*COORD_DIM+2][j];
  4154. dphi_dnu[i][j] = dphi_dnu_;
  4155. }
  4156. }
  4157. return dphi_dnu;
  4158. };
  4159. auto compute_dphi_dnu6 = [&S,&normal,&compute_AxB,&compute_v,sigma,&comm] () {
  4160. const Long Nelem = S.GetElemList().NElem();
  4161. const Long Nnodes = ElemBasis::Size();
  4162. Vector<ElemBasis> Gv;
  4163. Vector<ElemBasis> v = compute_v();
  4164. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  4165. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  4166. Vector<ElemBasis> gradB;
  4167. Quadrature<Real> quadrature_Fxd2U;
  4168. quadrature_Fxd2U.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_Fxd2U, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  4169. quadrature_Fxd2U.Eval(gradB, S.GetElemList(), sigma, S.Laplace_Fxd2U);
  4170. Vector<ElemBasis> dphi_dnu(Nelem);
  4171. for (Long i = 0; i < Nelem; i++) {
  4172. for (Long j = 0; j < Nnodes; j++) {
  4173. Real dphi_dnu_ = 0;
  4174. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  4175. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+1][j] * normal[i*COORD_DIM+0][j];
  4176. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+2][j] * normal[i*COORD_DIM+0][j];
  4177. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+0][j] * normal[i*COORD_DIM+1][j];
  4178. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  4179. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+2][j] * normal[i*COORD_DIM+1][j];
  4180. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+0][j] * normal[i*COORD_DIM+2][j];
  4181. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+1][j] * normal[i*COORD_DIM+2][j];
  4182. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  4183. dphi_dnu[i][j] = dphi_dnu_;
  4184. }
  4185. }
  4186. return dphi_dnu;
  4187. };
  4188. auto compute_dphi_dnu7 = [&S,&normal,&compute_AxB,&compute_v,sigma,&comm] () {
  4189. const Long Nelem = S.GetElemList().NElem();
  4190. const Long Nnodes = ElemBasis::Size();
  4191. Vector<ElemBasis> H(Nelem);
  4192. { // Set mean curvature H
  4193. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  4194. Vector<ElemBasis> dX, d2X;
  4195. ElemBasis::Grad(dX, X);
  4196. ElemBasis::Grad(d2X, dX);
  4197. for (Long i = 0; i < Nelem; i++) {
  4198. for (Long j = 0; j < Nnodes; j++) {
  4199. Tensor<Real,true,2,2> I, invI, II;
  4200. for (Long k0 = 0; k0 < 2; k0++) {
  4201. for (Long k1 = 0; k1 < 2; k1++) {
  4202. I(k0,k1) = 0;
  4203. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  4204. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  4205. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  4206. II(k0,k1) = 0;
  4207. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  4208. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  4209. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  4210. }
  4211. }
  4212. { // Set invI
  4213. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  4214. invI(0,0) = I(1,1) / detI;
  4215. invI(0,1) = -I(0,1) / detI;
  4216. invI(1,0) = -I(1,0) / detI;
  4217. invI(1,1) = I(0,0) / detI;
  4218. }
  4219. { // Set H
  4220. H[i][j] = 0;
  4221. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  4222. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  4223. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  4224. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  4225. }
  4226. }
  4227. }
  4228. }
  4229. Vector<ElemBasis> Gv;
  4230. Vector<ElemBasis> v = compute_v();
  4231. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  4232. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  4233. Vector<ElemBasis> dphi_dnu(Nelem);
  4234. Quadrature<Real> quadrature_dUxF;
  4235. quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  4236. quadrature_dUxF.Eval(dphi_dnu, S.GetElemList(), nxGv, S.Laplace_dUxF);
  4237. for (Long i = 0; i < Nelem; i++) {
  4238. for (Long j = 0; j < Nnodes; j++) {
  4239. dphi_dnu[i][j] *= -2*H[i][j] * sigma[i][j];
  4240. }
  4241. }
  4242. return dphi_dnu;
  4243. };
  4244. auto compute_dphi_dnu8 = [&S,&normal,&compute_AxB,&compute_v,sigma,&comm] () {
  4245. const Long Nelem = S.GetElemList().NElem();
  4246. const Long Nnodes = ElemBasis::Size();
  4247. Vector<ElemBasis> H(Nelem);
  4248. { // Set mean curvature H
  4249. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  4250. Vector<ElemBasis> dX, d2X;
  4251. ElemBasis::Grad(dX, X);
  4252. ElemBasis::Grad(d2X, dX);
  4253. for (Long i = 0; i < Nelem; i++) {
  4254. for (Long j = 0; j < Nnodes; j++) {
  4255. Tensor<Real,true,2,2> I, invI, II;
  4256. for (Long k0 = 0; k0 < 2; k0++) {
  4257. for (Long k1 = 0; k1 < 2; k1++) {
  4258. I(k0,k1) = 0;
  4259. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  4260. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  4261. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  4262. II(k0,k1) = 0;
  4263. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  4264. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  4265. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  4266. }
  4267. }
  4268. { // Set invI
  4269. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  4270. invI(0,0) = I(1,1) / detI;
  4271. invI(0,1) = -I(0,1) / detI;
  4272. invI(1,0) = -I(1,0) / detI;
  4273. invI(1,1) = I(0,0) / detI;
  4274. }
  4275. { // Set H
  4276. H[i][j] = 0;
  4277. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  4278. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  4279. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  4280. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  4281. }
  4282. }
  4283. }
  4284. }
  4285. Vector<ElemBasis> Gv;
  4286. Vector<ElemBasis> v = compute_v();
  4287. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  4288. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  4289. Vector<ElemBasis> dphi_dnu(Nelem);
  4290. Vector<ElemBasis> nablaDt_nxGv;
  4291. Quadrature<Real> quadrature_dUxD;
  4292. quadrature_dUxD.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxD, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  4293. quadrature_dUxD.Eval(nablaDt_nxGv, S.GetElemList(), nxGv, S.Laplace_dUxD);
  4294. for (Long i = 0; i < Nelem; i++) {
  4295. for (Long j = 0; j < Nnodes; j++) {
  4296. dphi_dnu[i][j] = 0;
  4297. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  4298. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  4299. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  4300. }
  4301. }
  4302. return dphi_dnu;
  4303. };
  4304. Vector<ElemBasis> nu(Nelem);
  4305. nu = 1; //area_elem;
  4306. Real dphi_dnu0 = compute_inner_prod(nu, compute_dphi_dnu0());
  4307. Real dphi_dnu1 = compute_inner_prod(nu, compute_dphi_dnu1());
  4308. Real dphi_dnu2 = compute_inner_prod(nu, compute_dphi_dnu2());
  4309. Real dphi_dnu3 = compute_inner_prod(nu, compute_dphi_dnu3());
  4310. Real dphi_dnu4 = compute_inner_prod(nu, compute_dphi_dnu4());
  4311. Real dphi_dnu5 = compute_inner_prod(nu, compute_dphi_dnu5());
  4312. Real dphi_dnu6 = compute_inner_prod(nu, compute_dphi_dnu6());
  4313. Real dphi_dnu7 = compute_inner_prod(nu, compute_dphi_dnu7());
  4314. Real dphi_dnu8 = compute_inner_prod(nu, compute_dphi_dnu8());
  4315. std::cout<<dphi_dnu0<<' ';
  4316. std::cout<<dphi_dnu1<<' ';
  4317. std::cout<<dphi_dnu2<<' ';
  4318. std::cout<<dphi_dnu3<<' ';
  4319. std::cout<<dphi_dnu4<<' ';
  4320. std::cout<<dphi_dnu5<<' ';
  4321. std::cout<<dphi_dnu6<<' ';
  4322. std::cout<<dphi_dnu7<<' ';
  4323. std::cout<<dphi_dnu8<<' ';
  4324. std::cout<<'\n';
  4325. std::cout<<dphi_dnu0+dphi_dnu1+dphi_dnu2+dphi_dnu3+dphi_dnu4+dphi_dnu5+dphi_dnu6+dphi_dnu7+dphi_dnu8<<'\n';
  4326. auto compute_flux = [&S,&comm,&normal,&area_elem,&compute_norm_area_elem,&compute_AxB,&compute_v,&compute_inner_prod,&sigma,&compute_half_n_plus_dG] (const Vector<ElemBasis>& nu, Real eps) {
  4327. const Long Nelem = S.GetElemList().NElem();
  4328. const Long Nnodes = ElemBasis::Size();
  4329. Vector<ElemBasis> X_orig(Nelem*COORD_DIM);
  4330. for (Long i = 0; i < Nelem; i++) {
  4331. for (Long j = 0; j < Nnodes; j++) {
  4332. X_orig[i*COORD_DIM+0][j] = S.Elem(i,0)[j];
  4333. X_orig[i*COORD_DIM+1][j] = S.Elem(i,1)[j];
  4334. X_orig[i*COORD_DIM+2][j] = S.Elem(i,2)[j];
  4335. S.Elem(i,0)[j] += eps*nu[i][j] * normal[i*COORD_DIM+0][j];
  4336. S.Elem(i,1)[j] += eps*nu[i][j] * normal[i*COORD_DIM+1][j];
  4337. S.Elem(i,2)[j] += eps*nu[i][j] * normal[i*COORD_DIM+2][j];
  4338. }
  4339. }
  4340. compute_norm_area_elem(normal, area_elem);
  4341. S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  4342. S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  4343. Vector<ElemBasis> v = compute_v();
  4344. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  4345. Vector<ElemBasis> J = compute_AxB(normal,B);
  4346. Vector<ElemBasis> A;
  4347. S.quadrature_FxU.Eval(A, S.GetElemList(), J, S.Laplace_FxU);
  4348. Real flux = compute_inner_prod(v, A);
  4349. for (Long i = 0; i < Nelem; i++) {
  4350. for (Long j = 0; j < Nnodes; j++) {
  4351. S.Elem(i,0)[j] = X_orig[i*COORD_DIM+0][j];
  4352. S.Elem(i,1)[j] = X_orig[i*COORD_DIM+1][j];
  4353. S.Elem(i,2)[j] = X_orig[i*COORD_DIM+2][j];
  4354. }
  4355. }
  4356. compute_norm_area_elem(normal, area_elem);
  4357. S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  4358. S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  4359. return flux;
  4360. };
  4361. Real dphi_dnu = (compute_flux(nu,1e-3)-compute_flux(nu,-1e-3)) / 2e-3;
  4362. std::cout<<"dphi_dnu = "<<dphi_dnu<<'\n';
  4363. Real phi = compute_flux(nu,0);
  4364. std::cout<<"phi = "<<phi<<'\n';
  4365. }
  4366. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  4367. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  4368. auto compute_Av = [&S,&area_elem,&normal,&compute_norm_area_elem,&compute_A,&comm] (const Vector<Real>& v, const Vector<ElemBasis>& nu, Real eps) {
  4369. const Long Nelem = S.GetElemList().NElem();
  4370. const Long Nnodes = ElemBasis::Size();
  4371. Vector<ElemBasis> X_orig(Nelem*COORD_DIM);
  4372. for (Long i = 0; i < Nelem; i++) {
  4373. for (Long j = 0; j < Nnodes; j++) {
  4374. X_orig[i*COORD_DIM+0][j] = S.Elem(i,0)[j];
  4375. X_orig[i*COORD_DIM+1][j] = S.Elem(i,1)[j];
  4376. X_orig[i*COORD_DIM+2][j] = S.Elem(i,2)[j];
  4377. S.Elem(i,0)[j] += eps*nu[i][j] * normal[i*COORD_DIM+0][j];
  4378. S.Elem(i,1)[j] += eps*nu[i][j] * normal[i*COORD_DIM+1][j];
  4379. S.Elem(i,2)[j] += eps*nu[i][j] * normal[i*COORD_DIM+2][j];
  4380. }
  4381. }
  4382. compute_norm_area_elem(normal, area_elem);
  4383. S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  4384. S.quadrature_DxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_DxU , order_singular, order_direct, -1.0, comm);
  4385. S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  4386. S.quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
  4387. Vector<Real> Av = compute_A(v);
  4388. for (Long i = 0; i < Nelem; i++) {
  4389. for (Long j = 0; j < Nnodes; j++) {
  4390. S.Elem(i,0)[j] = X_orig[i*COORD_DIM+0][j];
  4391. S.Elem(i,1)[j] = X_orig[i*COORD_DIM+1][j];
  4392. S.Elem(i,2)[j] = X_orig[i*COORD_DIM+2][j];
  4393. }
  4394. }
  4395. compute_norm_area_elem(normal, area_elem);
  4396. S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  4397. S.quadrature_DxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_DxU , order_singular, order_direct, -1.0, comm);
  4398. S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  4399. S.quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
  4400. return Av;
  4401. };
  4402. auto compute_u_dAdnu_v = [&S,&compute_Av,&compute_inner_prod] (const Vector<Real>& u, const Vector<Real>& v, const Vector<ElemBasis>& nu) {
  4403. const Long Nelem = S.GetElemList().NElem();
  4404. const Long Nnodes = ElemBasis::Size();
  4405. Real eps = 1e-5;
  4406. Vector<Real> Av0 = compute_Av(v,nu,-eps);
  4407. Vector<Real> Av1 = compute_Av(v,nu,eps);
  4408. Vector<Real> dAdnu_v = (Av1-Av0)*(1/(2*eps));
  4409. Real u_dAdnu_v;
  4410. { // set u_dAdnu_v
  4411. Vector<ElemBasis> u_(Nelem), dAdnu_v_(Nelem);
  4412. for (Long i = 0; i < Nelem; i++) {
  4413. for (Long j = 0; j < Nnodes; j++) {
  4414. u_[i][j] = u[i*Nnodes+j];
  4415. dAdnu_v_[i][j] = dAdnu_v[i*Nnodes+j];
  4416. }
  4417. }
  4418. u_dAdnu_v = compute_inner_prod(u_, dAdnu_v_);
  4419. u_dAdnu_v += u[Nelem*Nnodes] * dAdnu_v[Nelem*Nnodes];
  4420. }
  4421. return u_dAdnu_v;
  4422. };
  4423. if (0) { // test dA_dnu
  4424. const Long Nelem = S.GetElemList().NElem();
  4425. const Long Nnodes = ElemBasis::Size();
  4426. Vector<ElemBasis> nu(Nelem);
  4427. Vector<Real> u(Nelem*Nnodes+1), v(Nelem*Nnodes+1);
  4428. for (Long i = 0; i < Nelem; i++) {
  4429. for (Long j = 0; j < Nnodes; j++) {
  4430. v[i*Nnodes+j] = sigma[i][j];
  4431. u[i*Nnodes+j] = sigma[i][j]*area_elem[i][j];
  4432. }
  4433. }
  4434. v[Nelem*Nnodes] = 0; //alpha;
  4435. u[Nelem*Nnodes] = 0;
  4436. nu = 1; //area_elem;
  4437. Real u_dAdnu_v = compute_u_dAdnu_v(u, v, nu);
  4438. std::cout<<"u_dAdnu_v = "<<u_dAdnu_v<<'\n';
  4439. }
  4440. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  4441. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  4442. auto compute_dsigma_dnu = [&S,&area_elem,&normal,&compute_norm_area_elem,&compute_invA,&comm] (const Vector<ElemBasis>& nu, Real eps) {
  4443. auto compute_sigma = [&S,&area_elem,&normal,&compute_norm_area_elem,&compute_invA,&comm] (const Vector<ElemBasis>& nu, Real eps) {
  4444. const Long Nelem = S.GetElemList().NElem();
  4445. const Long Nnodes = ElemBasis::Size();
  4446. Vector<ElemBasis> X_orig(Nelem*COORD_DIM);
  4447. for (Long i = 0; i < Nelem; i++) {
  4448. for (Long j = 0; j < Nnodes; j++) {
  4449. X_orig[i*COORD_DIM+0][j] = S.Elem(i,0)[j];
  4450. X_orig[i*COORD_DIM+1][j] = S.Elem(i,1)[j];
  4451. X_orig[i*COORD_DIM+2][j] = S.Elem(i,2)[j];
  4452. S.Elem(i,0)[j] += eps*nu[i][j] * normal[i*COORD_DIM+0][j];
  4453. S.Elem(i,1)[j] += eps*nu[i][j] * normal[i*COORD_DIM+1][j];
  4454. S.Elem(i,2)[j] += eps*nu[i][j] * normal[i*COORD_DIM+2][j];
  4455. }
  4456. }
  4457. compute_norm_area_elem(normal, area_elem);
  4458. S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  4459. S.quadrature_DxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_DxU , order_singular, order_direct, -1.0, comm);
  4460. S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  4461. S.quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
  4462. Real flux = 1.0, alpha;
  4463. Vector<ElemBasis> sigma;
  4464. compute_invA(sigma, alpha, flux);
  4465. Vector<Real> sigma_(Nelem*Nnodes+1);
  4466. for (Long i = 0; i < Nelem; i++) {
  4467. for (Long j = 0; j < Nnodes; j++) {
  4468. sigma_[i*Nnodes+j] = sigma[i][j];
  4469. }
  4470. }
  4471. sigma_[Nelem*Nnodes] = alpha;
  4472. for (Long i = 0; i < Nelem; i++) {
  4473. for (Long j = 0; j < Nnodes; j++) {
  4474. S.Elem(i,0)[j] = X_orig[i*COORD_DIM+0][j];
  4475. S.Elem(i,1)[j] = X_orig[i*COORD_DIM+1][j];
  4476. S.Elem(i,2)[j] = X_orig[i*COORD_DIM+2][j];
  4477. }
  4478. }
  4479. compute_norm_area_elem(normal, area_elem);
  4480. S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  4481. S.quadrature_DxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_DxU , order_singular, order_direct, -1.0, comm);
  4482. S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  4483. S.quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
  4484. return sigma_;
  4485. };
  4486. auto sigma0 = compute_sigma(nu,-eps);
  4487. auto sigma1 = compute_sigma(nu,eps);
  4488. return (sigma1-sigma0) * (1/(2*eps));
  4489. };
  4490. if (0) { // verify dA_dnu sigma + A dsigma_dnu = 0
  4491. const Long Nelem = S.GetElemList().NElem();
  4492. const Long Nnodes = ElemBasis::Size();
  4493. Vector<ElemBasis> nu(Nelem);
  4494. nu = 1; //area_elem;
  4495. Vector<Real> dA_dnu_sigma;
  4496. { // Set dA_dnu_simga
  4497. Vector<Real> sigma_(Nelem*Nnodes+1);
  4498. for (Long i = 0; i < Nelem; i++) {
  4499. for (Long j = 0; j < Nnodes; j++) {
  4500. sigma_[i*Nnodes+j] = sigma[i][j];
  4501. }
  4502. }
  4503. sigma_[Nelem*Nnodes] = alpha;
  4504. Real eps = 1e-3;
  4505. Vector<Real> Asigma0 = compute_Av(sigma_,nu,-eps);
  4506. Vector<Real> Asigma1 = compute_Av(sigma_,nu,eps);
  4507. dA_dnu_sigma = (Asigma1-Asigma0) * (1/(2*eps));
  4508. }
  4509. Vector<Real> A_dsigma_dnu;
  4510. { // Set A_dsigma_dnu
  4511. Vector<Real> dsigma_dnu = compute_dsigma_dnu(nu, 1e-3);
  4512. A_dsigma_dnu = compute_A(dsigma_dnu);
  4513. }
  4514. Vector<ElemBasis> dA_dnu_sigma_(Nelem);
  4515. Vector<ElemBasis> A_dsigma_dnu_(Nelem);
  4516. for (Long i = 0; i < Nelem; i++) {
  4517. for (Long j = 0; j < Nnodes; j++) {
  4518. dA_dnu_sigma_[i][j] = dA_dnu_sigma[i*Nnodes+j];
  4519. A_dsigma_dnu_[i][j] = A_dsigma_dnu[i*Nnodes+j];
  4520. }
  4521. }
  4522. std::cout<<dA_dnu_sigma[Nelem*Nnodes] + A_dsigma_dnu[Nelem*Nnodes]<<'\n';
  4523. { // Write VTU
  4524. VTUData vtu;
  4525. vtu.AddElems(S.GetElemList(), dA_dnu_sigma_ + A_dsigma_dnu_, ORDER);
  4526. vtu.WriteVTK("err", comm);
  4527. }
  4528. }
  4529. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  4530. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  4531. if (1) { // test grad_g
  4532. const Long Nelem = S.GetElemList().NElem();
  4533. const Long Nnodes = ElemBasis::Size();
  4534. Vector<ElemBasis> dg_dnu;
  4535. { // Compute dg_dnu
  4536. dg_dnu = compute_dg_dnu(sigma, alpha, B);
  4537. Vector<Real> dg_dsigma(Nelem*Nnodes+1);
  4538. { // Set dg_dsigma
  4539. Vector<ElemBasis> dg_dsigma_ = compute_dg_dsigma(B);
  4540. for (Long i = 0; i < Nelem; i++) {
  4541. for (Long j = 0; j < Nnodes; j++) {
  4542. dg_dsigma[i*Nnodes+j] = dg_dsigma_[i][j];
  4543. }
  4544. }
  4545. dg_dsigma[Nelem*Nnodes] = compute_dg_dalpha(B);
  4546. }
  4547. Vector<Real> dg_dsigma_invA = compute_invAadj(dg_dsigma);
  4548. { // Set dg_dnu = - dg_dsigma invA dA_dnu sigma
  4549. Vector<Real> sigma_(Nelem*Nnodes+1);
  4550. for (Long i = 0; i < Nelem; i++) {
  4551. for (Long j = 0; j < Nnodes; j++) {
  4552. sigma_[i*Nnodes+j] = sigma[i][j];
  4553. }
  4554. }
  4555. sigma_[Nelem*Nnodes] = alpha;
  4556. auto dg_dnu1 = compute_u_dAdnu_v_00(dg_dsigma_invA, sigma_)*(-1);
  4557. auto dg_dnu2 = compute_u_dAdnu_v_01(dg_dsigma_invA, sigma_)*(-1);
  4558. auto dg_dnu3 = compute_u_dAdnu_v_10(dg_dsigma_invA, sigma_)*(-1);
  4559. auto dg_dnu4 = compute_u_dAdnu_v_11(dg_dsigma_invA, sigma_)*(-1);
  4560. {
  4561. //Vector<ElemBasis> nu(Nelem);
  4562. //nu = area_elem;
  4563. //Real dg_dnu0_ = -compute_inner_prod(nu, dg_dnu);
  4564. //Real dg_dnu1_ = -compute_inner_prod(nu, dg_dnu1);
  4565. //Real dg_dnu2_ = -compute_inner_prod(nu, dg_dnu2);
  4566. //Real dg_dnu3_ = -compute_inner_prod(nu, dg_dnu3);
  4567. //Real dg_dnu4_ = -compute_inner_prod(nu, dg_dnu4);
  4568. //std::cout<<dg_dnu0_<<' '<<dg_dnu1_<<' '<<dg_dnu2_<<' '<<dg_dnu3_<<' '<<dg_dnu4_<<'\n';
  4569. }
  4570. dg_dnu += dg_dnu1;
  4571. dg_dnu += dg_dnu2;
  4572. dg_dnu += dg_dnu3;
  4573. dg_dnu += dg_dnu4;
  4574. }
  4575. if (0) { // Set dg_dnu = - dg_dsigma invA dA_dnu sigma
  4576. Vector<ElemBasis> nu(Nelem);
  4577. nu = dg_dnu; //1; //area_elem;
  4578. Vector<Real> dg_dsigma_invA = compute_invAadj(dg_dsigma);
  4579. Vector<Real> sigma_(Nelem*Nnodes+1);
  4580. for (Long i = 0; i < Nelem; i++) {
  4581. for (Long j = 0; j < Nnodes; j++) {
  4582. sigma_[i*Nnodes+j] = sigma[i][j];
  4583. }
  4584. }
  4585. sigma_[Nelem*Nnodes] = alpha;
  4586. Vector<Real> dg_dsigma_invA_0 = dg_dsigma_invA; dg_dsigma_invA_0[Nelem*Nnodes] = 0;
  4587. Vector<Real> dg_dsigma_invA_1(Nelem*Nnodes+1); dg_dsigma_invA_1 = 0; dg_dsigma_invA_1[Nelem*Nnodes] = dg_dsigma_invA[Nelem*Nnodes];
  4588. Vector<Real> sigma_0 = sigma_; sigma_0[Nelem*Nnodes] = 0;
  4589. Vector<Real> sigma_1(Nelem*Nnodes+1); sigma_1 = 0; sigma_1[Nelem*Nnodes] = sigma_[Nelem*Nnodes];
  4590. Real dg_dnu1 = -compute_u_dAdnu_v(dg_dsigma_invA_0, sigma_0, nu);
  4591. Real dg_dnu2 = -compute_u_dAdnu_v(dg_dsigma_invA_0, sigma_1, nu);
  4592. Real dg_dnu3 = -compute_u_dAdnu_v(dg_dsigma_invA_1, sigma_0, nu);
  4593. Real dg_dnu4 = -compute_u_dAdnu_v(dg_dsigma_invA_1, sigma_1, nu);
  4594. std::cout<<dg_dnu1<<' '<<dg_dnu2<<' '<<dg_dnu3<<' '<<dg_dnu4<<'\n';
  4595. }
  4596. if (0) { // Set dg_dnu = dg_dsigma dsigma_dnu
  4597. Vector<ElemBasis> nu(Nelem);
  4598. nu = dg_dnu; //1; //area_elem;
  4599. Vector<Real> dsigma_dnu = compute_dsigma_dnu(nu, 1e-3);
  4600. Vector<ElemBasis> dg_dsigma_(Nelem), dsigma_dnu_(Nelem);
  4601. for (Long i = 0; i < Nelem; i++) {
  4602. for (Long j = 0; j < Nnodes; j++) {
  4603. dg_dsigma_[i][j] = dg_dsigma[i*Nnodes+j];
  4604. dsigma_dnu_[i][j] = dsigma_dnu[i*Nnodes+j];
  4605. }
  4606. }
  4607. Real dg_dnu = compute_inner_prod(dg_dsigma_, dsigma_dnu_);
  4608. dg_dnu += dg_dsigma[Nelem*Nnodes] * dsigma_dnu[Nelem*Nnodes];
  4609. std::cout<<dg_dnu<<'\n';
  4610. }
  4611. }
  4612. { // Write VTU
  4613. VTUData vtu;
  4614. vtu.AddElems(S.GetElemList(), dg_dnu, ORDER);
  4615. vtu.WriteVTK("dg_dnu", comm);
  4616. }
  4617. { // Save data
  4618. Matrix<Real> M(S.NtNp_[0]*ORDER, S.NtNp_[1]*ORDER);
  4619. for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
  4620. for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
  4621. for (Long t = 0; t < ORDER; t++) {
  4622. for (Long p = 0; p < ORDER; p++) {
  4623. Long elem_idx = tt * S.NtNp_[1] + pp;
  4624. Long node_idx = p * ORDER + t;
  4625. M[tt*ORDER+t][pp*ORDER+p] = dg_dnu[elem_idx][node_idx];
  4626. }
  4627. }
  4628. }
  4629. }
  4630. M.Write("dg_dnu.mat");
  4631. }
  4632. if (0) { // filter dg_dnu and write VTU
  4633. const Long Nelem = S.GetElemList().NElem();
  4634. const Long Nnodes = ElemBasis::Size();
  4635. const Integer INTERP_ORDER = 12;
  4636. Long Nt = S.NtNp_[0]*ORDER/5, Np = S.NtNp_[1]*ORDER/5;
  4637. Matrix<Real> M(Nt, Np); M = 0;
  4638. const auto& quad_wts = ElemBasis::QuadWts();
  4639. const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
  4640. for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
  4641. for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
  4642. for (Long t = 0; t < ORDER; t++) {
  4643. for (Long p = 0; p < ORDER; p++) {
  4644. Real theta = (tt + Mnodes[0][t]) / S.NtNp_[0];
  4645. Real phi = (pp + Mnodes[0][p]) / S.NtNp_[1];
  4646. Long i = (Long)(theta * Nt);
  4647. Long j = (Long)(phi * Np);
  4648. Real x = theta * Nt - i;
  4649. Real y = phi * Np - j;
  4650. Long elem_idx = tt * S.NtNp_[1] + pp;
  4651. Long node_idx = p * ORDER + t;
  4652. Vector<Real> Interp0(INTERP_ORDER);
  4653. Vector<Real> Interp1(INTERP_ORDER);
  4654. { // Set Interp0, Interp1
  4655. auto node = [] (Long i) {
  4656. return (Real)i - (INTERP_ORDER-1)/2;
  4657. };
  4658. for (Long i = 0; i < INTERP_ORDER; i++) {
  4659. Real wt_x = 1, wt_y = 1;
  4660. for (Long j = 0; j < INTERP_ORDER; j++) {
  4661. if (j != i) {
  4662. wt_x *= (x - node(j)) / (node(i) - node(j));
  4663. wt_y *= (y - node(j)) / (node(i) - node(j));
  4664. }
  4665. Interp0[i] = wt_x;
  4666. Interp1[i] = wt_y;
  4667. }
  4668. }
  4669. }
  4670. for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  4671. for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  4672. Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  4673. Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  4674. M[idx_i][idx_j] += dg_dnu[elem_idx][node_idx] * quad_wts[node_idx] * Interp0[ii] * Interp1[jj] / (S.NtNp_[0] * S.NtNp_[1]) * (Nt * Np);
  4675. }
  4676. }
  4677. }
  4678. }
  4679. }
  4680. }
  4681. Vector<ElemBasis> f(Nelem);
  4682. for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
  4683. for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
  4684. for (Long t = 0; t < ORDER; t++) {
  4685. for (Long p = 0; p < ORDER; p++) {
  4686. Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
  4687. Real theta = (tt + Mnodes[0][t]) / S.NtNp_[0];
  4688. Real phi = (pp + Mnodes[0][p]) / S.NtNp_[1];
  4689. Long i = (Long)(theta * Nt);
  4690. Long j = (Long)(phi * Np);
  4691. Real x = theta * Nt - i;
  4692. Real y = phi * Np - j;
  4693. Vector<Real> Interp0(INTERP_ORDER);
  4694. Vector<Real> Interp1(INTERP_ORDER);
  4695. { // Set Interp0, Interp1
  4696. auto node = [] (Long i) {
  4697. return (Real)i - (INTERP_ORDER-1)/2;
  4698. };
  4699. for (Long i = 0; i < INTERP_ORDER; i++) {
  4700. Real wt_x = 1, wt_y = 1;
  4701. for (Long j = 0; j < INTERP_ORDER; j++) {
  4702. if (j != i) {
  4703. wt_x *= (x - node(j)) / (node(i) - node(j));
  4704. wt_y *= (y - node(j)) / (node(i) - node(j));
  4705. }
  4706. Interp0[i] = wt_x;
  4707. Interp1[i] = wt_y;
  4708. }
  4709. }
  4710. }
  4711. Real f0 = 0;
  4712. for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  4713. for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  4714. Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  4715. Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  4716. f0 += Interp0[ii] * Interp1[jj] * M[idx_i][idx_j];
  4717. }
  4718. }
  4719. Long elem_idx = tt * S.NtNp_[1] + pp;
  4720. Long node_idx = p * ORDER + t;
  4721. f[elem_idx][node_idx] = f0;
  4722. }
  4723. }
  4724. }
  4725. }
  4726. { // Write VTU
  4727. VTUData vtu;
  4728. vtu.AddElems(S.GetElemList(), f, ORDER);
  4729. vtu.WriteVTK("dg_dnu_filtered", comm);
  4730. }
  4731. dg_dnu = f;
  4732. }
  4733. auto compute_g = [&sigma,&alpha,&S,&area_elem,&normal,&compute_norm_area_elem,&compute_invA,&compute_half_n_plus_dG,&compute_B0,&compute_inner_prod,&comm] (const Vector<ElemBasis>& nu, Real eps) {
  4734. const Long Nelem = S.GetElemList().NElem();
  4735. const Long Nnodes = ElemBasis::Size();
  4736. Vector<ElemBasis> X_orig(Nelem*COORD_DIM);
  4737. for (Long i = 0; i < Nelem; i++) {
  4738. for (Long j = 0; j < Nnodes; j++) {
  4739. X_orig[i*COORD_DIM+0][j] = S.Elem(i,0)[j];
  4740. X_orig[i*COORD_DIM+1][j] = S.Elem(i,1)[j];
  4741. X_orig[i*COORD_DIM+2][j] = S.Elem(i,2)[j];
  4742. S.Elem(i,0)[j] += eps*nu[i][j] * normal[i*COORD_DIM+0][j];
  4743. S.Elem(i,1)[j] += eps*nu[i][j] * normal[i*COORD_DIM+1][j];
  4744. S.Elem(i,2)[j] += eps*nu[i][j] * normal[i*COORD_DIM+2][j];
  4745. }
  4746. }
  4747. compute_norm_area_elem(normal, area_elem);
  4748. S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  4749. S.quadrature_DxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_DxU , order_singular, order_direct, -1.0, comm);
  4750. S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  4751. S.quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
  4752. Real flux = 1.0, alpha;
  4753. Vector<ElemBasis> sigma;
  4754. compute_invA(sigma, alpha, flux);
  4755. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma) + compute_B0(alpha);
  4756. Real g = compute_inner_prod(B, B);
  4757. for (Long i = 0; i < Nelem; i++) {
  4758. for (Long j = 0; j < Nnodes; j++) {
  4759. S.Elem(i,0)[j] = X_orig[i*COORD_DIM+0][j];
  4760. S.Elem(i,1)[j] = X_orig[i*COORD_DIM+1][j];
  4761. S.Elem(i,2)[j] = X_orig[i*COORD_DIM+2][j];
  4762. }
  4763. }
  4764. compute_norm_area_elem(normal, area_elem);
  4765. S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  4766. S.quadrature_DxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_DxU , order_singular, order_direct, -1.0, comm);
  4767. S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  4768. S.quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
  4769. return g;
  4770. };
  4771. {
  4772. Vector<ElemBasis> nu(Nelem);
  4773. nu = area_elem;
  4774. Real eps = 1e-4;
  4775. Real g0 = compute_g(nu,-eps);
  4776. Real g1 = compute_g(nu,eps);
  4777. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  4778. std::cout<<"dg_dnu = "<<compute_inner_prod(nu, dg_dnu)<<'\n';
  4779. }
  4780. {
  4781. Vector<ElemBasis> nu(Nelem);
  4782. nu = 1;
  4783. Real eps = 1e-4;
  4784. Real g0 = compute_g(nu,-eps);
  4785. Real g1 = compute_g(nu,eps);
  4786. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  4787. std::cout<<"dg_dnu = "<<compute_inner_prod(nu, dg_dnu)<<'\n';
  4788. }
  4789. {
  4790. Vector<ElemBasis> nu(Nelem);
  4791. nu = dg_dnu;
  4792. Real eps = 1e-4;
  4793. Real g0 = compute_g(nu,-eps);
  4794. Real g1 = compute_g(nu,eps);
  4795. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  4796. std::cout<<"dg_dnu = "<<compute_inner_prod(nu, dg_dnu)<<'\n';
  4797. }
  4798. }
  4799. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  4800. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  4801. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  4802. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  4803. // dg_dnu
  4804. // dA_dnu_sigma
  4805. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  4806. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  4807. //Profile::print(&comm);
  4808. }
  4809. private:
  4810. void InitSurf(Long l) {
  4811. const auto& nodes = ElemBasis::Nodes();
  4812. const Long Nt = NtNp_[l*2+0];
  4813. const Long Np = NtNp_[l*2+1];
  4814. for (Long i = 0; i < Nt; i++) {
  4815. for (Long j = 0; j < Np; j++) {
  4816. for (Long k = 0; k < ElemBasis::Size(); k++) {
  4817. Real theta = (i + nodes[0][k]) * 2*const_pi<Real>()/Nt;
  4818. Real phi = (j + nodes[1][k]) * 2*const_pi<Real>()/Np;
  4819. Real X,Y,Z;
  4820. SurfGeom(X,Y,Z,theta,phi);
  4821. Elem(ElemIdx(l,i,j),0)[k] = X;
  4822. Elem(ElemIdx(l,i,j),1)[k] = Y;
  4823. Elem(ElemIdx(l,i,j),2)[k] = Z;
  4824. }
  4825. }
  4826. }
  4827. }
  4828. static void SurfGeom(Real& X, Real& Y, Real& Z, Real theta, Real phi) {
  4829. sctl::Integer Nperiod = 5;
  4830. #if 0
  4831. Real Aspect_ratio = 10.27932548522949;
  4832. Real coeffmat[21][21] = { 0.00000478813217, 0.00000000000000, 0.00000351611652, 0.00000135354389, 0.00000061357832, 0.00000220091101, 0.00000423862912, -0.00003000058678, 0.00000064187111, -0.00024228452821, 0.00003116775770, 0.00000176210710, 0.00000289141326, -0.00000150300525, 0.00000772853855, 0.00000098855242, 0.00000316606793, 0.00000002168364, 0.00000212047939, 0.00000299016097, 0.00000443224508,
  4833. 0.00000028202930, 0.00000000000000, -0.00000249222421, -0.00000203136278, 0.00000131104809, 0.00000011987446, -0.00000370760154, 0.00004553918916, -0.00007711342914, -0.00004685295062, 0.00011049838213, -0.00000197486270, 0.00000395827146, 0.00000615046474, 0.00000755337123, 0.00000700606006, 0.00000922725030, -0.00000043310337, 0.00000107416383, 0.00000449787694, 0.00000305137178,
  4834. 0.00001226376662, 0.00000000000000, 0.00000270820692, 0.00000208059305, 0.00000521478523, 0.00001779037302, 0.00000846544117, 0.00001120913385, -0.00065816845745, -0.00085107452469, -0.00013171190221, -0.00005540943675, -0.00001835885450, 0.00000101879823, 0.00000209222071, 0.00000091532502, -0.00000521515358, -0.00000209227142, -0.00000678545939, -0.00000034963549, -0.00000015111488,
  4835. 0.00001560274177, 0.00000000000000, 0.00000350691471, -0.00001160475040, -0.00001763036562, 0.00003487367940, -0.00002787247831, -0.00000910982726, 0.00008818832430, -0.00524408789352, 0.00009378376126, 0.00004184526188, 0.00002849263365, -0.00002757280527, 0.00003388467667, 0.00000706207265, 0.00000625263419, -0.00003315929280, -0.00001181772132, 0.00000311426015, 0.00001875682574,
  4836. -0.00000398287420, 0.00000000000000, -0.00001524541040, 0.00001724056165, 0.00002245173346, 0.00002806861812, -0.00000388776925, 0.00008143573359, -0.00005900909309, 0.00110496615525, 0.00134626252111, 0.00005128383054, -0.00001372421866, 0.00003612563887, 0.00002236580076, -0.00002728391883, 0.00001981237256, 0.00000655450458, 0.00000985319002, 0.00001347597299, 0.00000645987802,
  4837. 0.00003304968050, 0.00000000000000, -0.00000530822217, 0.00001324870937, -0.00003610889689, -0.00005478735329, -0.00005818806312, -0.00037112057908, -0.00017812002625, -0.00093204283621, 0.00115969858598, -0.00033559172880, -0.00010441876657, -0.00001617923044, -0.00000555065844, 0.00007343527250, -0.00004408047607, 0.00000403802142, 0.00001843931204, 0.00001694047933, 0.00001213414362,
  4838. -0.00000751115658, 0.00000000000000, 0.00005457974839, -0.00000334614515, 0.00005845565465, 0.00015000770509, 0.00021849104087, 0.00002724147635, 0.00167233624961, 0.00011666602222, 0.00276563479565, -0.00085952825611, -0.00030217235326, -0.00008841593808, 0.00000997664119, -0.00015285826521, 0.00002517224675, 0.00003009161810, 0.00001883217556, 0.00002146127554, 0.00001822445302,
  4839. -0.00004128706860, 0.00000000000000, -0.00003496417776, 0.00001088761655, -0.00000298955979, -0.00005359326315, -0.00019021633489, -0.00017992728681, -0.00347794801928, 0.00064632791327, 0.00449698418379, -0.00017710507382, 0.00006126180233, 0.00018059254216, 0.00002354096432, 0.00008189838991, -0.00010060678323, -0.00017183290038, 0.00019413756672, 0.00021334811754, 0.00011263617489,
  4840. 0.00000853522670, -0.00000000000000, -0.00006544789358, 0.00005424076880, -0.00000679056529, -0.00001249735487, -0.00053082982777, 0.00035396864405, -0.00115020677913, 0.05894451215863, 0.06573092192411, 0.01498018857092, 0.00278125284240, 0.00145188067108, 0.00033717858605, 0.00000800427370, -0.00009335305367, 0.00024286781263, -0.00023916347709, 0.00031213948387, 0.00018134393031,
  4841. -0.00002521496390, -0.00000000000000, -0.00054337945767, 0.00012690725271, 0.00053313979879, 0.00064233405283, -0.00047686311882, 0.00176536326762, 0.00074157933705, -0.02684566564858, 1.00000000000000, 0.07176169008017, 0.00837037432939, -0.00000381640211, 0.00088998704450, -0.00049218931235, -0.00024546548957, -0.00036608282244, 0.00049480766756, 0.00031158892671, 0.00006898906577,
  4842. 0.00021280418150, 0.00028127161204, -0.00070030166535, 0.00022237010126, -0.00028713891516, -0.00013800295710, 0.00005912094275, 0.00172126013786, -0.00618684850633, 0.03608432412148, Aspect_ratio , 0.49896776676178, 0.00091372377938, -0.00085712829605, -0.00124801427592, -0.00007427225501, -0.00005245858847, 0.00002841771493, 0.00020249813679, -0.00014303345233, 0.00001406490901,
  4843. 0.00023699452868, 0.00008661757602, 0.00025744654704, -0.00022715188970, -0.00076146807987, 0.00055185536621, -0.00012325309217, -0.00072356045712, -0.00160693109501, 0.00246682553552, -0.14175094664097, -0.36207047104836, -0.04089594259858, 0.00060774467420, 0.00088646943914, 0.00004865296432, -0.00041878610500, -0.00023025234987, -0.00009676301852, -0.00000000000000, 0.00008409228758,
  4844. 0.00011432896281, -0.00000707848403, 0.00004698805787, -0.00043642931269, 0.00081384339137, -0.00065635429928, -0.00011831733718, 0.00017413357273, 0.00224463525228, 0.00478497287259, 0.03294761106372, 0.01078986655921, 0.10731782764196, 0.00075034319889, -0.00009241879889, 0.00055023463210, 0.00006596000458, 0.00005045382932, 0.00014874986664, 0.00000000000000, -0.00015369028552,
  4845. 0.00001037383754, 0.00009250180301, 0.00026204055757, 0.00007424291834, -0.00047751804232, 0.00029184055165, 0.00050921301590, -0.00004825839278, -0.00029933769838, 0.00279659987427, 0.00210463814437, -0.00618590926751, -0.02400829829276, -0.02316811867058, -0.00086368201301, -0.00032258985448, -0.00018304496189, 0.00008438774967, -0.00008305341908, 0.00000000000000, 0.00013047417451,
  4846. -0.00001376930322, -0.00001723831701, -0.00011543079017, -0.00022646733851, 0.00013467084500, -0.00004661652201, -0.00008419520600, 0.00035772417323, -0.00011815709877, 0.00028718306567, 0.00092207465786, -0.00317224999890, 0.00061770365573, 0.01017294172198, 0.00294739892706, 0.00014669894881, 0.00015702951350, 0.00003432080121, -0.00008555022214, -0.00000000000000, 0.00000454909878,
  4847. -0.00000196001542, -0.00003198397462, -0.00004425687075, -0.00004129848094, -0.00003789070615, -0.00027583551127, 0.00025874207495, -0.00002334945384, -0.00007259396807, -0.00008295358566, 0.00011360697681, -0.00101968157105, 0.00046784928418, -0.00208410434425, -0.00313158822246, -0.00046005158219, -0.00010552268213, -0.00005850767775, 0.00003971093611, 0.00000000000000, -0.00005275657168,
  4848. -0.00001065901233, -0.00001934838656, -0.00001220186732, -0.00002060524639, -0.00000225423423, -0.00001894621164, -0.00001533334580, -0.00001791087379, 0.00008156246622, -0.00008441298269, 0.00021060956351, -0.00030303673702, 0.00075949780876, -0.00010539998038, 0.00109045265708, 0.00068949378328, 0.00009268362192, 0.00003471063246, 0.00001204656473, -0.00000000000000, 0.00001500743110,
  4849. 0.00000105878155, -0.00000910870767, -0.00000172467264, -0.00000722095228, 0.00000699280463, -0.00002061720625, -0.00000889817693, -0.00001993474507, 0.00000370749740, -0.00000090311920, 0.00002677819793, 0.00043428712524, 0.00210293265991, 0.00018200518389, -0.00009621794743, -0.00035250501242, -0.00012996385340, -0.00002185157609, -0.00001116586463, -0.00000000000000, -0.00000451994811,
  4850. 0.00000424055270, -0.00000463139304, 0.00000301006116, -0.00000123974939, 0.00000632465435, -0.00002090823000, 0.00001773388794, 0.00000121050368, 0.00001886057362, -0.00001043497195, -0.00002269273500, -0.00021979617304, -0.00001043962493, -0.00116343051195, -0.00004193381756, 0.00007944958634, 0.00007301353617, 0.00002082651736, -0.00000119863023, -0.00000000000000, -0.00001440504820,
  4851. -0.00000391270805, -0.00000490489265, -0.00000504441778, -0.00000904507579, -0.00000111389932, 0.00000597532107, 0.00000047090245, -0.00001553130096, -0.00001524566323, -0.00000522222899, -0.00007707672921, -0.00004165665086, 0.00015764687851, 0.00035649110214, 0.00038701237645, 0.00002386798405, -0.00001946414341, -0.00000913835174, -0.00000489907188, 0.00000000000000, 0.00000172327657,
  4852. -0.00000015388650, -0.00000603232729, -0.00000397650865, 0.00000280493782, 0.00000463132073, -0.00000788678426, -0.00000471605335, -0.00000283715985, -0.00000422824724, 0.00000366817630, -0.00001159603562, -0.00001625759251, 0.00049116823357, 0.00005048640014, -0.00020234247495, -0.00006341376866, -0.00000807822744, 0.00000070463199, 0.00000014041755, 0.00000000000000, -0.00000718306910};
  4853. #else
  4854. Real Aspect_ratio = 5;
  4855. Real coeffmat[21][21] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4856. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4857. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4858. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4859. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4860. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4861. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4862. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4863. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4864. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4865. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Aspect_ratio, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4866. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4867. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4868. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4869. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4870. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4871. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4872. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4873. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4874. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4875. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0};
  4876. #endif
  4877. Z = 0;
  4878. Real R = 0;
  4879. for (long i = -10; i <= 10; i++) {
  4880. for (long j = -10; j <= 10; j++) {
  4881. R += coeffmat[i+10][j+10] * sctl::cos(-i*phi + Nperiod*j*theta);
  4882. Z += coeffmat[i+10][j+10] * sctl::sin(-i*phi + Nperiod*j*theta);
  4883. }
  4884. }
  4885. X = R * sctl::cos(theta);
  4886. Y = R * sctl::sin(theta);
  4887. }
  4888. GenericKernel<BiotSavart3D > BiotSavart ;
  4889. GenericKernel<Laplace3D_FxU > Laplace_FxU ;
  4890. GenericKernel<Laplace3D_DxU > Laplace_DxU ;
  4891. GenericKernel<Laplace3D_FxdU> Laplace_FxdU;
  4892. GenericKernel<Laplace3D_dUxF> Laplace_dUxF;
  4893. GenericKernel<Laplace3D_Fxd2U> Laplace_Fxd2U;
  4894. GenericKernel<Laplace3D_dUxD> Laplace_dUxD;
  4895. GenericKernel<Laplace3D_DxdU> Laplace_DxdU;
  4896. Quadrature<Real> quadrature_FxU ;
  4897. Quadrature<Real> quadrature_DxU ;
  4898. Quadrature<Real> quadrature_FxdU;
  4899. Quadrature<Real> quadrature_dUxF;
  4900. Quadrature<Real> quadrature_Fxd2U;
  4901. Quadrature<Real> quadrature_dUxD;
  4902. ElemLst elements;
  4903. Vector<Long> NtNp_;
  4904. Vector<Long> elem_dsp;
  4905. };
  4906. template <class Real, Integer ORDER=5> class Spheres {
  4907. static constexpr Integer COORD_DIM = 3;
  4908. static constexpr Integer ELEM_DIM = COORD_DIM-1;
  4909. using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
  4910. using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
  4911. using CoordBasis = Basis<Real, ELEM_DIM, ORDER>;
  4912. using ElemLst = ElemList<COORD_DIM, CoordBasis>;
  4913. public:
  4914. Spheres(Long N = 0) {
  4915. Vector<Real> X(N*COORD_DIM);
  4916. Vector<Real> R(N);
  4917. X=0;
  4918. R=1;
  4919. for (Long i = 0; i < N; i++) X[i*COORD_DIM] = (i==0?-1.015:1.015); ///////////
  4920. InitSpheres(X,R);
  4921. }
  4922. const ElemLst& GetElem() const {
  4923. return elements;
  4924. }
  4925. static void test() {
  4926. constexpr Integer order_singular = 35;
  4927. constexpr Integer order_direct = 35;
  4928. Comm comm = Comm::World();
  4929. Profile::Enable(true);
  4930. Long Ns = 2;
  4931. Spheres S(Ns);
  4932. S.quadrature_FxT.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_FxT, order_singular, order_direct, -1.0, comm);
  4933. S.quadrature_FxU.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_FxU, order_singular, order_direct, -1.0, comm);
  4934. S.quadrature_DxU.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_DxU, order_singular, order_direct, -1.0, comm);
  4935. const auto SetMotion = [&S](Vector<DensityBasis>& density, const Vector<Real>& force_avg, const Vector<Real>& torque_avg) {
  4936. Long Nelem = S.GetElem().NElem();
  4937. Long Nsurf = S.elem_cnt.Dim();
  4938. const auto& X = S.GetElem().ElemVector();
  4939. Vector<Real> area, Xc;
  4940. Vector<DensityBasis> one(Nelem);
  4941. for (Long i = 0; i < Nelem; i++) {
  4942. for (Long j = 0; j < DensityBasis::Size(); j++) {
  4943. one[i][j] = 1;
  4944. }
  4945. }
  4946. S.SurfInteg(area, one);
  4947. S.SurfInteg(Xc, S.GetElem().ElemVector());
  4948. for (Long i = 0; i < Nsurf; i++) {
  4949. for (Long k = 0; k < COORD_DIM; k++) {
  4950. Xc[i*COORD_DIM+k] /= area[i];
  4951. }
  4952. }
  4953. if (density.Dim() != Nelem*COORD_DIM) density.ReInit(Nelem*COORD_DIM);
  4954. Long elem_itr = 0;
  4955. for (Long i = 0; i < Nsurf; i++) {
  4956. for (Long j = 0; j < S.elem_cnt[i]; j++) {
  4957. for (Long k = 0; k < DensityBasis::Size(); k++) {
  4958. StaticArray<Real,COORD_DIM> dX;
  4959. dX[0] = (X[elem_itr*COORD_DIM+0][k] - Xc[i*COORD_DIM+0]);
  4960. dX[1] = (X[elem_itr*COORD_DIM+1][k] - Xc[i*COORD_DIM+1]);
  4961. dX[2] = (X[elem_itr*COORD_DIM+2][k] - Xc[i*COORD_DIM+2]);
  4962. density[elem_itr*COORD_DIM+0][k] = force_avg[i*COORD_DIM+0]*(1/area[i]) + (torque_avg[i*COORD_DIM+1] * dX[2] - torque_avg[i*COORD_DIM+2] * dX[1]) / (2*area[i]/3);
  4963. density[elem_itr*COORD_DIM+1][k] = force_avg[i*COORD_DIM+1]*(1/area[i]) + (torque_avg[i*COORD_DIM+2] * dX[0] - torque_avg[i*COORD_DIM+0] * dX[2]) / (2*area[i]/3);
  4964. density[elem_itr*COORD_DIM+2][k] = force_avg[i*COORD_DIM+2]*(1/area[i]) + (torque_avg[i*COORD_DIM+0] * dX[1] - torque_avg[i*COORD_DIM+1] * dX[0]) / (2*area[i]/3);
  4965. }
  4966. elem_itr++;
  4967. }
  4968. }
  4969. };
  4970. const auto GetMotion = [&S](Vector<Real>& force_avg, Vector<Real>& torque_avg, const Vector<DensityBasis>& density) {
  4971. Long Nelem = S.GetElem().NElem();
  4972. Long Nsurf = S.elem_cnt.Dim();
  4973. const auto& X = S.GetElem().ElemVector();
  4974. S.SurfInteg(force_avg, density);
  4975. Vector<Real> area, Xc;
  4976. Vector<DensityBasis> one(Nelem);
  4977. for (Long i = 0; i < Nelem; i++) {
  4978. for (Long j = 0; j < DensityBasis::Size(); j++) {
  4979. one[i][j] = 1;
  4980. }
  4981. }
  4982. S.SurfInteg(area, one);
  4983. S.SurfInteg(Xc, S.GetElem().ElemVector());
  4984. for (Long i = 0; i < Nsurf; i++) {
  4985. for (Long k = 0; k < COORD_DIM; k++) {
  4986. Xc[i*COORD_DIM+k] /= area[i];
  4987. }
  4988. }
  4989. { // Set torque_avg
  4990. Long elem_itr = 0;
  4991. Vector<DensityBasis> torque(Nelem*COORD_DIM);
  4992. for (Long i = 0; i < Nsurf; i++) {
  4993. for (Long j = 0; j < S.elem_cnt[i]; j++) {
  4994. for (Long k = 0; k < DensityBasis::Size(); k++) {
  4995. StaticArray<Real,COORD_DIM> dX;
  4996. dX[0] = (X[elem_itr*COORD_DIM+0][k] - Xc[i*COORD_DIM+0]);
  4997. dX[1] = (X[elem_itr*COORD_DIM+1][k] - Xc[i*COORD_DIM+1]);
  4998. dX[2] = (X[elem_itr*COORD_DIM+2][k] - Xc[i*COORD_DIM+2]);
  4999. torque[elem_itr*COORD_DIM+0][k] = dX[1] * density[elem_itr*COORD_DIM+2][k] - dX[2] * density[elem_itr*COORD_DIM+1][k];
  5000. torque[elem_itr*COORD_DIM+1][k] = dX[2] * density[elem_itr*COORD_DIM+0][k] - dX[0] * density[elem_itr*COORD_DIM+2][k];
  5001. torque[elem_itr*COORD_DIM+2][k] = dX[0] * density[elem_itr*COORD_DIM+1][k] - dX[1] * density[elem_itr*COORD_DIM+0][k];
  5002. }
  5003. elem_itr++;
  5004. }
  5005. }
  5006. S.SurfInteg(torque_avg, torque);
  5007. }
  5008. };
  5009. const auto BIOpL = [&GetMotion,&SetMotion](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  5010. Vector<Real> force_avg, torque_avg;
  5011. GetMotion(force_avg, torque_avg, density);
  5012. SetMotion(potential, force_avg, torque_avg);
  5013. };
  5014. const auto BIOpK = [&S](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  5015. Vector<DensityBasis> traction;
  5016. S.quadrature_FxT.Eval(traction, S.GetElem(), density, S.Stokes_FxT);
  5017. Vector<CoordBasis> dX;
  5018. const auto X = S.GetElem().ElemVector();
  5019. CoordBasis::Grad(dX, X);
  5020. Long Nelem = S.GetElem().NElem();
  5021. Long Nnodes = CoordBasis::Size();
  5022. potential.ReInit(Nelem * COORD_DIM);
  5023. for (Long i = 0; i < Nelem; i++) {
  5024. for (Long j = 0; j < Nnodes; j++) {
  5025. StaticArray<Real,COORD_DIM> Xn;
  5026. Xn[0] = dX[i*COORD_DIM*2+2][j]*dX[i*COORD_DIM*2+5][j] - dX[i*COORD_DIM*2+4][j]*dX[i*COORD_DIM*2+3][j];
  5027. Xn[1] = dX[i*COORD_DIM*2+4][j]*dX[i*COORD_DIM*2+1][j] - dX[i*COORD_DIM*2+0][j]*dX[i*COORD_DIM*2+5][j];
  5028. Xn[2] = dX[i*COORD_DIM*2+0][j]*dX[i*COORD_DIM*2+3][j] - dX[i*COORD_DIM*2+2][j]*dX[i*COORD_DIM*2+1][j];
  5029. Real AreaElem = sqrt<Real>(Xn[0]*Xn[0] + Xn[1]*Xn[1] + Xn[2]*Xn[2]);
  5030. Real OOAreaElem = 1 / AreaElem;
  5031. Xn[0] *= OOAreaElem;
  5032. Xn[1] *= OOAreaElem;
  5033. Xn[2] *= OOAreaElem;
  5034. potential[i*COORD_DIM+0][j] = traction[i*COORD_DIM*COORD_DIM+0][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+1][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+2][j]*Xn[2];
  5035. potential[i*COORD_DIM+1][j] = traction[i*COORD_DIM*COORD_DIM+3][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+4][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+5][j]*Xn[2];
  5036. potential[i*COORD_DIM+2][j] = traction[i*COORD_DIM*COORD_DIM+6][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+7][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+8][j]*Xn[2];
  5037. }
  5038. }
  5039. };
  5040. const auto BIOp_half_K_L = [&S,&BIOpK,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  5041. Vector<DensityBasis> potential_K;
  5042. Vector<DensityBasis> potential_L;
  5043. BIOpK(potential_K, density);
  5044. BIOpL(potential_L, density);
  5045. if (potential.Dim() != potential_K.Dim()) {
  5046. potential.ReInit(potential_K.Dim());
  5047. }
  5048. for (Long i = 0; i < potential_K.Dim(); i++) {
  5049. for (Long k = 0; k < DensityBasis::Size(); k++) {
  5050. potential[i][k] = -0.5*density[i][k] + potential_K[i][k] + potential_L[i][k];
  5051. }
  5052. }
  5053. };
  5054. const auto BIOp_half_K = [&S,&BIOpK,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  5055. Vector<DensityBasis> potential_K;
  5056. BIOpK(potential_K, density);
  5057. if (potential.Dim() != potential_K.Dim()) {
  5058. potential.ReInit(potential_K.Dim());
  5059. }
  5060. for (Long i = 0; i < potential_K.Dim(); i++) {
  5061. for (Long k = 0; k < DensityBasis::Size(); k++) {
  5062. potential[i][k] = -0.5*density[i][k] + potential_K[i][k];
  5063. }
  5064. }
  5065. };
  5066. const auto BIOp_half_S_D = [&S,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  5067. Vector<DensityBasis> U;
  5068. S.quadrature_DxU.Eval(U, S.GetElem(), density, S.Stokes_DxU);
  5069. Vector<PotentialBasis> U1;
  5070. Vector<DensityBasis> sigma1;
  5071. BIOpL(sigma1,density);
  5072. S.quadrature_FxU.Eval(U1, S.GetElem(), sigma1, S.Stokes_FxU);
  5073. Long Nelem = S.GetElem().NElem();
  5074. Long Nnodes = CoordBasis::Size();
  5075. potential.ReInit(Nelem * COORD_DIM);
  5076. for (Long i = 0; i < Nelem; i++) {
  5077. for (Long j = 0; j < Nnodes; j++) {
  5078. potential[i*COORD_DIM+0][j] = 0.5*density[i*COORD_DIM+0][j] + U[i*COORD_DIM+0][j] + U1[i*COORD_DIM+0][j];
  5079. potential[i*COORD_DIM+1][j] = 0.5*density[i*COORD_DIM+1][j] + U[i*COORD_DIM+1][j] + U1[i*COORD_DIM+1][j];
  5080. potential[i*COORD_DIM+2][j] = 0.5*density[i*COORD_DIM+2][j] + U[i*COORD_DIM+2][j] + U1[i*COORD_DIM+2][j];
  5081. }
  5082. }
  5083. };
  5084. Vector<PotentialBasis> U;
  5085. { // Rachh
  5086. Vector<DensityBasis> sigma0;
  5087. { // Set sigma0
  5088. srand48(comm.Rank());
  5089. Vector<Real> force(Ns*COORD_DIM), torque(Ns*COORD_DIM);
  5090. //for (auto& x : force) x = drand48();
  5091. //for (auto& x : torque) x = drand48();
  5092. force = 0;
  5093. torque = 0;
  5094. force[0] = 1;
  5095. //force[4] = 1;
  5096. SetMotion(sigma0, force, torque);
  5097. }
  5098. Vector<DensityBasis> rhs;
  5099. BIOp_half_K(rhs, sigma0);
  5100. Vector<DensityBasis> sigma;
  5101. { // Set sigma
  5102. Long Nnode = DensityBasis::Size();
  5103. Long Nelem = S.GetElem().NElem();
  5104. typename sctl::ParallelSolver<Real>::ParallelOp A = [&S,&BIOp_half_K_L](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  5105. Long Nnode = DensityBasis::Size();
  5106. Long Nelem = S.GetElem().NElem();
  5107. Ax->ReInit(Nelem*COORD_DIM*Nnode);
  5108. Vector<DensityBasis> x_(Nelem*COORD_DIM), Ax_(Nelem*COORD_DIM);
  5109. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set x_
  5110. for (Long k = 0; k < Nnode; k++) {
  5111. x_[i][k] = x[i*Nnode+k];
  5112. }
  5113. }
  5114. BIOp_half_K_L(Ax_, x_);
  5115. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set Ax
  5116. for (Long k = 0; k < Nnode; k++) {
  5117. (*Ax)[i*Nnode+k] = Ax_[i][k];
  5118. }
  5119. }
  5120. };
  5121. Vector<Real> sigma_(Nelem*COORD_DIM*Nnode), rhs_(Nelem*COORD_DIM*Nnode);
  5122. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set rhs_
  5123. for (Long k = 0; k < Nnode; k++) {
  5124. rhs_[i*Nnode+k] = rhs[i][k];
  5125. }
  5126. }
  5127. sigma_ = 0;
  5128. ParallelSolver<Real> linear_solver(comm, true);
  5129. linear_solver(&sigma_, A, rhs_, 1e-6, 50);
  5130. sigma.ReInit(Nelem * COORD_DIM);
  5131. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set sigma
  5132. for (Long k = 0; k < Nnode; k++) {
  5133. sigma[i][k] = sigma_[i*Nnode+k] - sigma0[i][k];
  5134. }
  5135. }
  5136. }
  5137. S.quadrature_FxU.Eval(U, S.GetElem(), sigma, S.Stokes_FxU);
  5138. { // Write VTU
  5139. VTUData vtu_sigma;
  5140. vtu_sigma.AddElems(S.elements, sigma, ORDER);
  5141. vtu_sigma.WriteVTK("sphere-sigma0", comm);
  5142. VTUData vtu_U;
  5143. vtu_U.AddElems(S.elements, U, ORDER);
  5144. vtu_U.WriteVTK("sphere-U0", comm);
  5145. }
  5146. }
  5147. { // Tornberg
  5148. Vector<DensityBasis> rhs;
  5149. BIOpL(rhs, U);
  5150. Vector<DensityBasis> sigma;
  5151. { // Set sigma
  5152. Long Nnode = DensityBasis::Size();
  5153. Long Nelem = S.GetElem().NElem();
  5154. typename sctl::ParallelSolver<Real>::ParallelOp A = [&S,&BIOp_half_S_D](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  5155. Long Nnode = DensityBasis::Size();
  5156. Long Nelem = S.GetElem().NElem();
  5157. Ax->ReInit(Nelem*COORD_DIM*Nnode);
  5158. Vector<DensityBasis> x_(Nelem*COORD_DIM), Ax_(Nelem*COORD_DIM);
  5159. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set x_
  5160. for (Long k = 0; k < Nnode; k++) {
  5161. x_[i][k] = x[i*Nnode+k];
  5162. }
  5163. }
  5164. BIOp_half_S_D(Ax_, x_);
  5165. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set Ax
  5166. for (Long k = 0; k < Nnode; k++) {
  5167. (*Ax)[i*Nnode+k] = Ax_[i][k];
  5168. }
  5169. }
  5170. };
  5171. Vector<Real> sigma_(Nelem*COORD_DIM*Nnode), rhs_(Nelem*COORD_DIM*Nnode);
  5172. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set rhs_
  5173. for (Long k = 0; k < Nnode; k++) {
  5174. rhs_[i*Nnode+k] = rhs[i][k];
  5175. }
  5176. }
  5177. sigma_ = 0;
  5178. ParallelSolver<Real> linear_solver(comm, true);
  5179. linear_solver(&sigma_, A, rhs_, 1e-6, 50);
  5180. sigma.ReInit(Nelem * COORD_DIM);
  5181. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set sigma
  5182. for (Long k = 0; k < Nnode; k++) {
  5183. sigma[i][k] = sigma_[i*Nnode+k];
  5184. }
  5185. }
  5186. }
  5187. Vector<PotentialBasis> U1;
  5188. BIOp_half_S_D(U1, sigma);
  5189. { // Write VTU
  5190. VTUData vtu_sigma;
  5191. vtu_sigma.AddElems(S.elements, sigma, ORDER);
  5192. vtu_sigma.WriteVTK("sphere-sigma1", comm);
  5193. VTUData vtu_U;
  5194. vtu_U.AddElems(S.elements, U1, ORDER);
  5195. vtu_U.WriteVTK("sphere-U1", comm);
  5196. }
  5197. }
  5198. Profile::print(&comm);
  5199. }
  5200. private:
  5201. template <class FnBasis> void SurfInteg(Vector<Real>& I, const Vector<FnBasis>& f) {
  5202. static_assert(std::is_same<FnBasis,CoordBasis>::value, "FnBasis is different from CoordBasis");
  5203. const Long Nelem = elements.NElem();
  5204. const Long dof = f.Dim() / Nelem;
  5205. SCTL_ASSERT(f.Dim() == Nelem * dof);
  5206. auto nodes = FnBasis::Nodes();
  5207. auto quad_wts = FnBasis::QuadWts();
  5208. const Long Nnodes = FnBasis::Size();
  5209. auto EvalOp = CoordBasis::SetupEval(nodes);
  5210. Vector<CoordBasis> dX;
  5211. const auto& X = elements.ElemVector();
  5212. SCTL_ASSERT(X.Dim() == Nelem * COORD_DIM);
  5213. CoordBasis::Grad(dX, X);
  5214. Matrix<Real> I_(Nelem, dof);
  5215. for (Long i = 0; i < Nelem; i++) {
  5216. for (Long k = 0; k < dof; k++) {
  5217. I_[i][k] = 0;
  5218. }
  5219. for (Long j = 0; j < Nnodes; j++) {
  5220. Real dA = 0;
  5221. StaticArray<Real,COORD_DIM> Xn;
  5222. Xn[0] = dX[i*COORD_DIM*2+2][j] * dX[i*COORD_DIM*2+5][j] - dX[i*COORD_DIM*2+3][j] * dX[i*COORD_DIM*2+4][j];
  5223. Xn[1] = dX[i*COORD_DIM*2+4][j] * dX[i*COORD_DIM*2+1][j] - dX[i*COORD_DIM*2+5][j] * dX[i*COORD_DIM*2+0][j];
  5224. Xn[2] = dX[i*COORD_DIM*2+0][j] * dX[i*COORD_DIM*2+3][j] - dX[i*COORD_DIM*2+1][j] * dX[i*COORD_DIM*2+2][j];
  5225. dA += sqrt<Real>(Xn[0]*Xn[0] + Xn[1]*Xn[1] + Xn[2]*Xn[2]) * quad_wts[j];
  5226. for (Long k = 0; k < dof; k++) {
  5227. I_[i][k] += dA * f[i*dof+k][j];
  5228. }
  5229. }
  5230. }
  5231. Long Ns = elem_cnt.Dim();
  5232. if (I.Dim() != Ns * dof) I.ReInit(Ns * dof);
  5233. I = 0;
  5234. Long elem_itr = 0;
  5235. for (Long i = 0; i < Ns; i++) {
  5236. for (Long j = 0; j < elem_cnt[i]; j++) {
  5237. for (Long k = 0; k < dof; k++) {
  5238. I[i*dof+k] += I_[elem_itr][k];
  5239. }
  5240. elem_itr++;
  5241. }
  5242. }
  5243. }
  5244. void InitSpheres(const Vector<Real> X, const Vector<Real>& R){
  5245. SCTL_ASSERT(X.Dim() == R.Dim() * COORD_DIM);
  5246. Long N = R.Dim();
  5247. elements.ReInit(2*COORD_DIM*N);
  5248. auto nodes = ElemLst::CoordBasis::Nodes();
  5249. for (Long l = 0; l < N; l++) {
  5250. for (Integer i = 0; i < COORD_DIM; i++) {
  5251. for (Integer j = 0; j < 2; j++) {
  5252. for (int k = 0; k < ElemLst::CoordBasis::Size(); k++) {
  5253. Real coord[COORD_DIM];
  5254. coord[(i+0)%COORD_DIM] = (j ? -1.0 : 1.0);
  5255. coord[(i+1)%COORD_DIM] = 2.0 * nodes[j?1:0][k] - 1.0;
  5256. coord[(i+2)%COORD_DIM] = 2.0 * nodes[j?0:1][k] - 1.0;
  5257. Real R0 = sqrt<Real>(coord[0]*coord[0] + coord[1]*coord[1] + coord[2]*coord[2]);
  5258. elements((l*COORD_DIM+i)*2+j,0)[k] = X[l*COORD_DIM+0] + R[l] * coord[0] / R0;
  5259. elements((l*COORD_DIM+i)*2+j,1)[k] = X[l*COORD_DIM+1] + R[l] * coord[1] / R0;
  5260. elements((l*COORD_DIM+i)*2+j,2)[k] = X[l*COORD_DIM+2] + R[l] * coord[2] / R0;
  5261. }
  5262. }
  5263. }
  5264. }
  5265. elem_cnt.ReInit(N);
  5266. elem_cnt = 6;
  5267. }
  5268. GenericKernel<Stokes3D_DxU> Stokes_DxU;
  5269. GenericKernel<Stokes3D_FxU> Stokes_FxU;
  5270. GenericKernel<Stokes3D_FxT> Stokes_FxT;
  5271. Quadrature<Real> quadrature_DxU;
  5272. Quadrature<Real> quadrature_FxU;
  5273. Quadrature<Real> quadrature_FxT;
  5274. ElemLst elements;
  5275. Vector<Long> elem_cnt;
  5276. };
  5277. } // end namespace
  5278. #endif //_SCTL_BOUNDARY_QUADRATURE_HPP_