sph_harm.txx 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615
  1. #include SCTL_INCLUDE(legendre_rule.hpp)
  2. // TODO: Replace work vectors with dynamic-arrays
  3. namespace SCTL_NAMESPACE {
  4. template <class Real> void SphericalHarmonics<Real>::Grid2SHC(const Vector<Real>& X, Long Nt, Long Np, Long p1, Vector<Real>& S, SHCArrange arrange){
  5. const auto& Mf = OpFourierInv(Np);
  6. assert(Mf.Dim(0) == Np);
  7. const std::vector<Matrix<Real>>& Ml = SphericalHarmonics<Real>::MatLegendreInv(Nt-1,p1);
  8. assert((Long)Ml.size() == p1+1);
  9. Long N = X.Dim() / (Np*Nt);
  10. assert(X.Dim() == N*Np*Nt);
  11. Vector<Real> B0((2*p1+1) * N*Nt);
  12. #pragma omp parallel
  13. { // B0 <-- Transpose(FFT(X))
  14. Integer tid=omp_get_thread_num();
  15. Integer omp_p=omp_get_num_threads();
  16. Long a=(tid+0)*N*Nt/omp_p;
  17. Long b=(tid+1)*N*Nt/omp_p;
  18. Vector<Real> buff(Mf.Dim(1));
  19. Long fft_coeff_len = std::min(buff.Dim(), 2*p1+2);
  20. Matrix<Real> B0_(2*p1+1, N*Nt, B0.begin(), false);
  21. const Matrix<Real> MX(N * Nt, Np, (Iterator<Real>)X.begin(), false);
  22. for (Long i = a; i < b; i++) {
  23. { // buff <-- FFT(Xi)
  24. const Vector<Real> Xi(Np, (Iterator<Real>)X.begin() + Np * i, false);
  25. Mf.Execute(Xi, buff);
  26. }
  27. { // B0 <-- Transpose(buff)
  28. B0_[0][i] = buff[0]; // skipping buff[1] == 0
  29. for (Long j = 2; j < fft_coeff_len; j++) B0_[j-1][i] = buff[j];
  30. for (Long j = fft_coeff_len; j < 2*p1+2; j++) B0_[j-1][i] = 0;
  31. }
  32. }
  33. }
  34. Vector<Real> B1(N*(p1+1)*(p1+1));
  35. #pragma omp parallel
  36. { // Evaluate Legendre polynomial
  37. Integer tid=omp_get_thread_num();
  38. Integer omp_p=omp_get_num_threads();
  39. Long offset0=0;
  40. Long offset1=0;
  41. for (Long i = 0; i < p1+1; i++) {
  42. Long N_ = (i==0 ? N : 2*N);
  43. Matrix<Real> Min (N_, Nt , B0.begin()+offset0, false);
  44. Matrix<Real> Mout(N_, p1+1-i, B1.begin()+offset1, false);
  45. { // Mout = Min * Ml[i] // split between threads
  46. Long a=(tid+0)*N_/omp_p;
  47. Long b=(tid+1)*N_/omp_p;
  48. if (a < b) {
  49. Matrix<Real> Min_ (b-a, Min .Dim(1), Min [a], false);
  50. Matrix<Real> Mout_(b-a, Mout.Dim(1), Mout[a], false);
  51. Matrix<Real>::GEMM(Mout_,Min_,Ml[i]);
  52. }
  53. }
  54. offset0+=Min .Dim(0)*Min .Dim(1);
  55. offset1+=Mout.Dim(0)*Mout.Dim(1);
  56. }
  57. assert(offset0 == B0.Dim());
  58. assert(offset1 == B1.Dim());
  59. }
  60. B1 *= 1 / sqrt<Real>(4 * const_pi<Real>() * Np); // Scaling to match Zydrunas Fortran code.
  61. if (arrange == SHCArrange::ALL) { // S <-- Rearrange(B1)
  62. Long M = 2*(p1+1)*(p1+1);
  63. if(S.Dim() != N * M) S.ReInit(N * M);
  64. #pragma omp parallel
  65. { // S <-- Rearrange(B1)
  66. Integer tid=omp_get_thread_num();
  67. Integer omp_p=omp_get_num_threads();
  68. Long a=(tid+0)*N/omp_p;
  69. Long b=(tid+1)*N/omp_p;
  70. for (Long i = a; i < b; i++) {
  71. Long offset = 0;
  72. for (Long j = 0; j < p1+1; j++) {
  73. Long len = p1+1 - j;
  74. if (1) { // Set Real(S_n^m) for m=j and n=j..p
  75. ConstIterator<Real> B_ = B1.begin() + i*len + N*offset;
  76. Iterator<Real> S_ = S .begin() + i*M + j*(p1+1)*2 + j*2 + 0;
  77. for (Long k = 0; k < len; k++) S_[k * (p1+1)*2] = B_[k];
  78. offset += len;
  79. }
  80. if (j) { // Set Imag(S_n^m) for m=j and n=j..p
  81. ConstIterator<Real> B_ = B1.begin() + i*len + N*offset;
  82. Iterator<Real> S_ = S .begin() + i*M + j*(p1+1)*2 + j*2 + 1;
  83. for (Long k = 0; k < len; k++) S_[k * (p1+1)*2] = B_[k];
  84. offset += len;
  85. } else {
  86. Iterator<Real> S_ = S .begin() + i*M + j*(p1+1)*2 + j*2 + 1;
  87. for (Long k = 0; k < len; k++) S_[k * (p1+1)*2] = 0;
  88. }
  89. }
  90. }
  91. }
  92. }
  93. if (arrange == SHCArrange::ROW_MAJOR) { // S <-- Rearrange(B1)
  94. Long M = (p1+1)*(p1+2);
  95. if(S.Dim() != N * M) S.ReInit(N * M);
  96. #pragma omp parallel
  97. { // S <-- Rearrange(B1)
  98. Integer tid=omp_get_thread_num();
  99. Integer omp_p=omp_get_num_threads();
  100. Long a=(tid+0)*N/omp_p;
  101. Long b=(tid+1)*N/omp_p;
  102. for (Long i = a; i < b; i++) {
  103. Long offset = 0;
  104. for (Long j = 0; j < p1+1; j++) {
  105. Long len = p1+1 - j;
  106. if (1) { // Set Real(S_n^m) for m=j and n=j..p
  107. ConstIterator<Real> B_ = B1.begin() + i*len + N*offset;
  108. Iterator<Real> S_ = S .begin() + i*M + 0;
  109. for (Long k=0;k<len;k++) S_[(j+k)*(j+k+1) + 2*j] = B_[k];
  110. offset += len;
  111. }
  112. if (j) { // Set Imag(S_n^m) for m=j and n=j..p
  113. ConstIterator<Real> B_ = B1.begin() + i*len + N*offset;
  114. Iterator<Real> S_ = S .begin() + i*M + 1;
  115. for (Long k=0;k<len;k++) S_[(j+k)*(j+k+1) + 2*j] = B_[k];
  116. offset += len;
  117. } else {
  118. Iterator<Real> S_ = S .begin() + i*M + 1;
  119. for (Long k=0;k<len;k++) S_[(j+k)*(j+k+1) + 2*j] = 0;
  120. }
  121. }
  122. }
  123. }
  124. }
  125. if (arrange == SHCArrange::COL_MAJOR_NONZERO) { // S <-- Rearrange(B1)
  126. Long M = (p1+1)*(p1+1);
  127. if(S.Dim() != N * M) S.ReInit(N * M);
  128. #pragma omp parallel
  129. { // S <-- Rearrange(B1)
  130. Integer tid=omp_get_thread_num();
  131. Integer omp_p=omp_get_num_threads();
  132. Long a=(tid+0)*N/omp_p;
  133. Long b=(tid+1)*N/omp_p;
  134. for (Long i = a; i < b; i++) {
  135. Long offset = 0;
  136. for (Long j = 0; j < p1+1; j++) {
  137. Long len = p1+1 - j;
  138. if (1) { // Set Real(S_n^m) for m=j and n=j..p
  139. ConstIterator<Real> B_ = B1.begin() + i*len + N*offset;
  140. Iterator<Real> S_ = S .begin() + i*M + offset;
  141. for (Long k = 0; k < len; k++) S_[k] = B_[k];
  142. offset += len;
  143. }
  144. if (j) { // Set Imag(S_n^m) for m=j and n=j..p
  145. ConstIterator<Real> B_ = B1.begin() + i*len + N*offset;
  146. Iterator<Real> S_ = S .begin() + i*M + offset;
  147. for (Long k = 0; k < len; k++) S_[k] = B_[k];
  148. offset += len;
  149. }
  150. }
  151. }
  152. }
  153. }
  154. }
  155. template <class Real> void SphericalHarmonics<Real>::SHC2Grid(const Vector<Real>& S, SHCArrange arrange, Long p0, Long Nt, Long Np, Vector<Real>* X, Vector<Real>* X_phi, Vector<Real>* X_theta){
  156. const auto& Mf = OpFourier(Np);
  157. assert(Mf.Dim(1) == Np);
  158. const std::vector<Matrix<Real>>& Ml =SphericalHarmonics<Real>::MatLegendre (p0,Nt-1);
  159. const std::vector<Matrix<Real>>& Mdl=SphericalHarmonics<Real>::MatLegendreGrad(p0,Nt-1);
  160. assert((Long)Ml .size() == p0+1);
  161. assert((Long)Mdl.size() == p0+1);
  162. Long M, N;
  163. { // Set M, N
  164. M = 0;
  165. if (arrange == SHCArrange::ALL) M = 2*(p0+1)*(p0+1);
  166. if (arrange == SHCArrange::ROW_MAJOR) M = (p0+1)*(p0+2);
  167. if (arrange == SHCArrange::COL_MAJOR_NONZERO) M = (p0+1)*(p0+1);
  168. if (M == 0) return;
  169. N = S.Dim() / M;
  170. assert(S.Dim() == N * M);
  171. }
  172. Vector<Real> B0(N*(p0+1)*(p0+1));
  173. if (arrange == SHCArrange::ALL) { // B0 <-- Rearrange(S)
  174. #pragma omp parallel
  175. { // B0 <-- Rearrange(S)
  176. Integer tid=omp_get_thread_num();
  177. Integer omp_p=omp_get_num_threads();
  178. Long a=(tid+0)*N/omp_p;
  179. Long b=(tid+1)*N/omp_p;
  180. for (Long i = a; i < b; i++) {
  181. Long offset = 0;
  182. for (Long j = 0; j < p0+1; j++) {
  183. Long len = p0+1 - j;
  184. if (1) { // Get Real(S_n^m) for m=j and n=j..p
  185. Iterator<Real> B_ = B0.begin() + i*len + N*offset;
  186. ConstIterator<Real> S_ = S .begin() + i*M + j*(p0+1)*2 + j*2 + 0;
  187. for (Long k = 0; k < len; k++) B_[k] = S_[k * (p0+1)*2];
  188. offset += len;
  189. }
  190. if (j) { // Get Imag(S_n^m) for m=j and n=j..p
  191. Iterator<Real> B_ = B0.begin() + i*len + N*offset;
  192. ConstIterator<Real> S_ = S .begin() + i*M + j*(p0+1)*2 + j*2 + 1;
  193. for (Long k = 0; k < len; k++) B_[k] = S_[k * (p0+1)*2];
  194. offset += len;
  195. }
  196. }
  197. }
  198. }
  199. }
  200. if (arrange == SHCArrange::ROW_MAJOR) { // B0 <-- Rearrange(S)
  201. #pragma omp parallel
  202. { // B0 <-- Rearrange(S)
  203. Integer tid=omp_get_thread_num();
  204. Integer omp_p=omp_get_num_threads();
  205. Long a=(tid+0)*N/omp_p;
  206. Long b=(tid+1)*N/omp_p;
  207. for (Long i = a; i < b; i++) {
  208. Long offset = 0;
  209. for (Long j = 0; j < p0+1; j++) {
  210. Long len = p0+1 - j;
  211. if (1) { // Get Real(S_n^m) for m=j and n=j..p
  212. Iterator<Real> B_ = B0.begin() + i*len + N*offset;
  213. ConstIterator<Real> S_ = S .begin() + i*M + 0;
  214. for (Long k=0;k<len;k++) B_[k] = S_[(j+k)*(j+k+1) + 2*j];
  215. offset += len;
  216. }
  217. if (j) { // Get Imag(S_n^m) for m=j and n=j..p
  218. Iterator<Real> B_ = B0.begin() + i*len + N*offset;
  219. ConstIterator<Real> S_ = S .begin() + i*M + 1;
  220. for (Long k=0;k<len;k++) B_[k] = S_[(j+k)*(j+k+1) + 2*j];
  221. offset += len;
  222. }
  223. }
  224. }
  225. }
  226. }
  227. if (arrange == SHCArrange::COL_MAJOR_NONZERO) { // B0 <-- Rearrange(S)
  228. #pragma omp parallel
  229. { // B0 <-- Rearrange(S)
  230. Integer tid=omp_get_thread_num();
  231. Integer omp_p=omp_get_num_threads();
  232. Long a=(tid+0)*N/omp_p;
  233. Long b=(tid+1)*N/omp_p;
  234. for (Long i = a; i < b; i++) {
  235. Long offset = 0;
  236. for (Long j = 0; j < p0+1; j++) {
  237. Long len = p0+1 - j;
  238. if (1) { // Get Real(S_n^m) for m=j and n=j..p
  239. Iterator<Real> B_ = B0.begin() + i*len + N*offset;
  240. ConstIterator<Real> S_ = S .begin() + i*M + offset;
  241. for (Long k = 0; k < len; k++) B_[k] = S_[k];
  242. offset += len;
  243. }
  244. if (j) { // Get Imag(S_n^m) for m=j and n=j..p
  245. Iterator<Real> B_ = B0.begin() + i*len + N*offset;
  246. ConstIterator<Real> S_ = S .begin() + i*M + offset;
  247. for (Long k = 0; k < len; k++) B_[k] = S_[k];
  248. offset += len;
  249. }
  250. }
  251. }
  252. }
  253. }
  254. B0 *= sqrt<Real>(4 * const_pi<Real>() * Np); // Scaling to match Zydrunas Fortran code.
  255. if(X && X ->Dim()!=N*Np*Nt) X ->ReInit(N*Np*Nt);
  256. if(X_theta && X_theta->Dim()!=N*Np*Nt) X_theta->ReInit(N*Np*Nt);
  257. if(X_phi && X_phi ->Dim()!=N*Np*Nt) X_phi ->ReInit(N*Np*Nt);
  258. Vector<Real> B1(N*(2*p0+1)*Nt);
  259. if(X || X_phi){
  260. #pragma omp parallel
  261. { // Evaluate Legendre polynomial
  262. Integer tid=omp_get_thread_num();
  263. Integer omp_p=omp_get_num_threads();
  264. Long offset0=0;
  265. Long offset1=0;
  266. for(Long i=0;i<p0+1;i++){
  267. Long N_ = (i==0 ? N : 2*N);
  268. Matrix<Real> Min (N_, p0+1-i, B0.begin()+offset0, false);
  269. Matrix<Real> Mout(N_, Nt , B1.begin()+offset1, false);
  270. { // Mout = Min * Ml[i] // split between threads
  271. Long a=(tid+0)*N_/omp_p;
  272. Long b=(tid+1)*N_/omp_p;
  273. if(a<b){
  274. Matrix<Real> Min_ (b-a, Min .Dim(1), Min [a], false);
  275. Matrix<Real> Mout_(b-a, Mout.Dim(1), Mout[a], false);
  276. Matrix<Real>::GEMM(Mout_,Min_,Ml[i]);
  277. }
  278. }
  279. offset0+=Min .Dim(0)*Min .Dim(1);
  280. offset1+=Mout.Dim(0)*Mout.Dim(1);
  281. }
  282. }
  283. #pragma omp parallel
  284. { // Transpose and evaluate Fourier
  285. Integer tid=omp_get_thread_num();
  286. Integer omp_p=omp_get_num_threads();
  287. Long a=(tid+0)*N*Nt/omp_p;
  288. Long b=(tid+1)*N*Nt/omp_p;
  289. Vector<Real> buff(Mf.Dim(0)); buff = 0;
  290. Long fft_coeff_len = std::min(buff.Dim(), 2*p0+2);
  291. Matrix<Real> B1_(2*p0+1, N*Nt, B1.begin(), false);
  292. for (Long i = a; i < b; i++) {
  293. { // buff <-- Transpose(B1)
  294. buff[0] = B1_[0][i];
  295. buff[1] = 0;
  296. for (Long j = 2; j < fft_coeff_len; j++) buff[j] = B1_[j-1][i];
  297. for (Long j = fft_coeff_len; j < buff.Dim(); j++) buff[j] = 0;
  298. }
  299. { // X <-- FFT(buff)
  300. Vector<Real> Xi(Np, X->begin() + Np * i, false);
  301. Mf.Execute(buff, Xi);
  302. }
  303. if(X_phi){ // Evaluate Fourier gradient
  304. { // buff <-- Transpose(B1)
  305. buff[0] = 0;
  306. buff[1] = 0;
  307. for (Long j = 2; j < fft_coeff_len; j++) buff[j] = B1_[j-1][i];
  308. for (Long j = fft_coeff_len; j < buff.Dim(); j++) buff[j] = 0;
  309. for (Long j = 1; j < buff.Dim()/2; j++) {
  310. Real x = buff[2*j+0];
  311. Real y = buff[2*j+1];
  312. buff[2*j+0] = -j*y;
  313. buff[2*j+1] = j*x;
  314. }
  315. }
  316. { // X_phi <-- FFT(buff)
  317. Vector<Real> Xi(Np, X_phi->begin() + Np * i, false);
  318. Mf.Execute(buff, Xi);
  319. }
  320. }
  321. }
  322. }
  323. }
  324. if(X_theta){
  325. #pragma omp parallel
  326. { // Evaluate Legendre gradient
  327. Integer tid=omp_get_thread_num();
  328. Integer omp_p=omp_get_num_threads();
  329. Long offset0=0;
  330. Long offset1=0;
  331. for(Long i=0;i<p0+1;i++){
  332. Long N_ = (i==0 ? N : 2*N);
  333. Matrix<Real> Min (N_, p0+1-i, B0.begin()+offset0, false);
  334. Matrix<Real> Mout(N_, Nt , B1.begin()+offset1, false);
  335. { // Mout = Min * Mdl[i] // split between threads
  336. Long a=(tid+0)*N_/omp_p;
  337. Long b=(tid+1)*N_/omp_p;
  338. if(a<b){
  339. Matrix<Real> Min_ (b-a, Min .Dim(1), Min [a], false);
  340. Matrix<Real> Mout_(b-a, Mout.Dim(1), Mout[a], false);
  341. Matrix<Real>::GEMM(Mout_,Min_,Mdl[i]);
  342. }
  343. }
  344. offset0+=Min .Dim(0)*Min .Dim(1);
  345. offset1+=Mout.Dim(0)*Mout.Dim(1);
  346. }
  347. }
  348. #pragma omp parallel
  349. { // Transpose and evaluate Fourier
  350. Integer tid=omp_get_thread_num();
  351. Integer omp_p=omp_get_num_threads();
  352. Long a=(tid+0)*N*Nt/omp_p;
  353. Long b=(tid+1)*N*Nt/omp_p;
  354. Vector<Real> buff(Mf.Dim(0)); buff = 0;
  355. Long fft_coeff_len = std::min(buff.Dim(), 2*p0+2);
  356. Matrix<Real> B1_(2*p0+1, N*Nt, B1.begin(), false);
  357. for (Long i = a; i < b; i++) {
  358. { // buff <-- Transpose(B1)
  359. buff[0] = B1_[0][i];
  360. buff[1] = 0;
  361. for (Long j = 2; j < fft_coeff_len; j++) buff[j] = B1_[j-1][i];
  362. for (Long j = fft_coeff_len; j < buff.Dim(); j++) buff[j] = 0;
  363. }
  364. { // Xi <-- FFT(buff)
  365. Vector<Real> Xi(Np, X_theta->begin() + Np * i, false);
  366. Mf.Execute(buff, Xi);
  367. }
  368. }
  369. }
  370. }
  371. }
  372. template <class Real> void SphericalHarmonics<Real>::SHC2Pole(const Vector<Real>& S, SHCArrange arrange, Long p0, Vector<Real>& P){
  373. Vector<Real> QP[2];
  374. { // Set QP // TODO: store these weights
  375. Vector<Real> x(1), alp;
  376. const Real SQRT2PI = sqrt<Real>(4 * const_pi<Real>());
  377. for (Long i = 0; i < 2; i++) {
  378. x = (i ? -1 : 1);
  379. LegPoly(alp, x, p0);
  380. QP[i].ReInit(p0 + 1, alp.begin());
  381. QP[i] *= SQRT2PI;
  382. }
  383. }
  384. Long M, N;
  385. { // Set M, N
  386. M = 0;
  387. if (arrange == SHCArrange::ALL) M = 2*(p0+1)*(p0+1);
  388. if (arrange == SHCArrange::ROW_MAJOR) M = (p0+1)*(p0+2);
  389. if (arrange == SHCArrange::COL_MAJOR_NONZERO) M = (p0+1)*(p0+1);
  390. if (M == 0) return;
  391. N = S.Dim() / M;
  392. assert(S.Dim() == N * M);
  393. }
  394. if(P.Dim() != N * 2) P.ReInit(N * 2);
  395. if (arrange == SHCArrange::ALL) {
  396. #pragma omp parallel
  397. { // Compute pole
  398. Integer tid = omp_get_thread_num();
  399. Integer omp_p = omp_get_num_threads();
  400. Long a = (tid + 0) * N / omp_p;
  401. Long b = (tid + 1) * N / omp_p;
  402. for (Long i = a; i < b; i++) {
  403. Real P_[2] = {0, 0};
  404. for (Long j = 0; j < p0 + 1; j++) {
  405. P_[0] += S[i*M + j*(p0+1)*2] * QP[0][j];
  406. P_[1] += S[i*M + j*(p0+1)*2] * QP[1][j];
  407. }
  408. P[2*i+0] = P_[0];
  409. P[2*i+1] = P_[1];
  410. }
  411. }
  412. }
  413. if (arrange == SHCArrange::ROW_MAJOR) {
  414. #pragma omp parallel
  415. { // Compute pole
  416. Integer tid = omp_get_thread_num();
  417. Integer omp_p = omp_get_num_threads();
  418. Long a = (tid + 0) * N / omp_p;
  419. Long b = (tid + 1) * N / omp_p;
  420. for (Long i = a; i < b; i++) {
  421. Long idx = 0;
  422. Real P_[2] = {0, 0};
  423. for (Long j = 0; j < p0 + 1; j++) {
  424. P_[0] += S[i*M+idx] * QP[0][j];
  425. P_[1] += S[i*M+idx] * QP[1][j];
  426. idx += 2*(j+1);
  427. }
  428. P[2*i+0] = P_[0];
  429. P[2*i+1] = P_[1];
  430. }
  431. }
  432. }
  433. if (arrange == SHCArrange::COL_MAJOR_NONZERO) {
  434. #pragma omp parallel
  435. { // Compute pole
  436. Integer tid = omp_get_thread_num();
  437. Integer omp_p = omp_get_num_threads();
  438. Long a = (tid + 0) * N / omp_p;
  439. Long b = (tid + 1) * N / omp_p;
  440. for (Long i = a; i < b; i++) {
  441. Real P_[2] = {0, 0};
  442. for (Long j = 0; j < p0 + 1; j++) {
  443. P_[0] += S[i*M+j] * QP[0][j];
  444. P_[1] += S[i*M+j] * QP[1][j];
  445. }
  446. P[2*i+0] = P_[0];
  447. P[2*i+1] = P_[1];
  448. }
  449. }
  450. }
  451. }
  452. template <class Real> void SphericalHarmonics<Real>::WriteVTK(const char* fname, const Vector<Real>* S, const Vector<Real>* v_ptr, SHCArrange arrange, Long p0, Long p1, Real period, const Comm& comm){
  453. typedef double VTKReal;
  454. Vector<Real> SS;
  455. if (S == nullptr) {
  456. Integer p = 2;
  457. Integer Ncoeff = (p + 1) * (p + 1);
  458. Vector<Real> SSS(COORD_DIM * Ncoeff), SSS_grid;
  459. SSS.SetZero();
  460. SSS[1+0*p+0*Ncoeff] = sqrt<Real>(2.0)/sqrt<Real>(3.0);
  461. SSS[1+1*p+1*Ncoeff] = 1/sqrt<Real>(3.0);
  462. SSS[1+2*p+2*Ncoeff] = 1/sqrt<Real>(3.0);
  463. SphericalHarmonics<Real>::SHC2Grid(SSS, SHCArrange::COL_MAJOR_NONZERO, p, p+1, 2*p+2, &SSS_grid);
  464. SphericalHarmonics<Real>::Grid2SHC(SSS_grid, p+1, 2*p+2, p0, SS, arrange);
  465. S = &SS;
  466. }
  467. Vector<Real> X, Xp, V, Vp;
  468. { // Upsample X
  469. const Vector<Real>& X0=*S;
  470. SphericalHarmonics<Real>::SHC2Grid(X0, arrange, p0, p1+1, 2*p1, &X);
  471. SphericalHarmonics<Real>::SHC2Pole(X0, arrange, p0, Xp);
  472. }
  473. if(v_ptr){ // Upsample V
  474. const Vector<Real>& X0=*v_ptr;
  475. SphericalHarmonics<Real>::SHC2Grid(X0, arrange, p0, p1+1, 2*p1, &V);
  476. SphericalHarmonics<Real>::SHC2Pole(X0, arrange, p0, Vp);
  477. }
  478. std::vector<VTKReal> point_coord;
  479. std::vector<VTKReal> point_value;
  480. std::vector<int32_t> poly_connect;
  481. std::vector<int32_t> poly_offset;
  482. { // Set point_coord, point_value, poly_connect
  483. Long N_ves = X.Dim()/(2*p1*(p1+1)*COORD_DIM); // Number of vesicles
  484. assert(Xp.Dim() == N_ves*2*COORD_DIM);
  485. for(Long k=0;k<N_ves;k++){ // Set point_coord
  486. Real C[COORD_DIM]={0,0,0};
  487. if(period>0){
  488. for(Integer l=0;l<COORD_DIM;l++) C[l]=0;
  489. for(Long i=0;i<p1+1;i++){
  490. for(Long j=0;j<2*p1;j++){
  491. for(Integer l=0;l<COORD_DIM;l++){
  492. C[l]+=X[j+2*p1*(i+(p1+1)*(l+k*COORD_DIM))];
  493. }
  494. }
  495. }
  496. for(Integer l=0;l<COORD_DIM;l++) C[l]+=Xp[0+2*(l+k*COORD_DIM)];
  497. for(Integer l=0;l<COORD_DIM;l++) C[l]+=Xp[1+2*(l+k*COORD_DIM)];
  498. for(Integer l=0;l<COORD_DIM;l++) C[l]/=2*p1*(p1+1)+2;
  499. for(Integer l=0;l<COORD_DIM;l++) C[l]=(round(C[l]/period))*period;
  500. }
  501. for(Long i=0;i<p1+1;i++){
  502. for(Long j=0;j<2*p1;j++){
  503. for(Integer l=0;l<COORD_DIM;l++){
  504. point_coord.push_back(X[j+2*p1*(i+(p1+1)*(l+k*COORD_DIM))]-C[l]);
  505. }
  506. }
  507. }
  508. for(Integer l=0;l<COORD_DIM;l++) point_coord.push_back(Xp[0+2*(l+k*COORD_DIM)]-C[l]);
  509. for(Integer l=0;l<COORD_DIM;l++) point_coord.push_back(Xp[1+2*(l+k*COORD_DIM)]-C[l]);
  510. }
  511. if(v_ptr) {
  512. Long data__dof = V.Dim() / (2*p1*(p1+1));
  513. for(Long k=0;k<N_ves;k++){ // Set point_value
  514. for(Long i=0;i<p1+1;i++){
  515. for(Long j=0;j<2*p1;j++){
  516. for(Long l=0;l<data__dof;l++){
  517. point_value.push_back(V[j+2*p1*(i+(p1+1)*(l+k*data__dof))]);
  518. }
  519. }
  520. }
  521. for(Long l=0;l<data__dof;l++) point_value.push_back(Vp[0+2*(l+k*data__dof)]);
  522. for(Long l=0;l<data__dof;l++) point_value.push_back(Vp[1+2*(l+k*data__dof)]);
  523. }
  524. }
  525. for(Long k=0;k<N_ves;k++){
  526. for(Long j=0;j<2*p1;j++){
  527. Long i0= 0;
  528. Long i1=p1;
  529. Long j0=((j+0) );
  530. Long j1=((j+1)%(2*p1));
  531. poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*(p1+1)+0);
  532. poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i0+j0);
  533. poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i0+j1);
  534. poly_offset.push_back(poly_connect.size());
  535. poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*(p1+1)+1);
  536. poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i1+j0);
  537. poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i1+j1);
  538. poly_offset.push_back(poly_connect.size());
  539. }
  540. for(Long i=0;i<p1;i++){
  541. for(Long j=0;j<2*p1;j++){
  542. Long i0=((i+0) );
  543. Long i1=((i+1) );
  544. Long j0=((j+0) );
  545. Long j1=((j+1)%(2*p1));
  546. poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i0+j0);
  547. poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i1+j0);
  548. poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i1+j1);
  549. poly_connect.push_back((2*p1*(p1+1)+2)*k + 2*p1*i0+j1);
  550. poly_offset.push_back(poly_connect.size());
  551. }
  552. }
  553. }
  554. }
  555. Integer np = comm.Size();
  556. Integer myrank = comm.Rank();
  557. std::vector<VTKReal>& coord=point_coord;
  558. std::vector<VTKReal>& value=point_value;
  559. std::vector<int32_t>& connect=poly_connect;
  560. std::vector<int32_t>& offset=poly_offset;
  561. Long pt_cnt=coord.size()/COORD_DIM;
  562. Long poly_cnt=poly_offset.size();
  563. // Open file for writing.
  564. std::stringstream vtufname;
  565. vtufname<<fname<<"_"<<std::setfill('0')<<std::setw(6)<<myrank<<".vtp";
  566. std::ofstream vtufile;
  567. vtufile.open(vtufname.str().c_str());
  568. if(vtufile.fail()) return;
  569. bool isLittleEndian;
  570. { // Set isLittleEndian
  571. uint16_t number = 0x1;
  572. uint8_t *numPtr = (uint8_t*)&number;
  573. isLittleEndian=(numPtr[0] == 1);
  574. }
  575. // Proceed to write to file.
  576. Long data_size=0;
  577. vtufile<<"<?xml version=\"1.0\"?>\n";
  578. if(isLittleEndian) vtufile<<"<VTKFile type=\"PolyData\" version=\"0.1\" byte_order=\"LittleEndian\">\n";
  579. else vtufile<<"<VTKFile type=\"PolyData\" version=\"0.1\" byte_order=\"BigEndian\">\n";
  580. //===========================================================================
  581. vtufile<<" <PolyData>\n";
  582. vtufile<<" <Piece NumberOfPoints=\""<<pt_cnt<<"\" NumberOfVerts=\"0\" NumberOfLines=\"0\" NumberOfStrips=\"0\" NumberOfPolys=\""<<poly_cnt<<"\">\n";
  583. //---------------------------------------------------------------------------
  584. vtufile<<" <Points>\n";
  585. vtufile<<" <DataArray type=\"Float"<<sizeof(VTKReal)*8<<"\" NumberOfComponents=\""<<COORD_DIM<<"\" Name=\"Position\" format=\"appended\" offset=\""<<data_size<<"\" />\n";
  586. data_size+=sizeof(uint32_t)+coord.size()*sizeof(VTKReal);
  587. vtufile<<" </Points>\n";
  588. //---------------------------------------------------------------------------
  589. if(value.size()){ // value
  590. vtufile<<" <PointData>\n";
  591. vtufile<<" <DataArray type=\"Float"<<sizeof(VTKReal)*8<<"\" NumberOfComponents=\""<<value.size()/pt_cnt<<"\" Name=\""<<"value"<<"\" format=\"appended\" offset=\""<<data_size<<"\" />\n";
  592. data_size+=sizeof(uint32_t)+value.size()*sizeof(VTKReal);
  593. vtufile<<" </PointData>\n";
  594. }
  595. //---------------------------------------------------------------------------
  596. vtufile<<" <Polys>\n";
  597. vtufile<<" <DataArray type=\"Int32\" Name=\"connectivity\" format=\"appended\" offset=\""<<data_size<<"\" />\n";
  598. data_size+=sizeof(uint32_t)+connect.size()*sizeof(int32_t);
  599. vtufile<<" <DataArray type=\"Int32\" Name=\"offsets\" format=\"appended\" offset=\""<<data_size<<"\" />\n";
  600. data_size+=sizeof(uint32_t)+offset.size() *sizeof(int32_t);
  601. vtufile<<" </Polys>\n";
  602. //---------------------------------------------------------------------------
  603. vtufile<<" </Piece>\n";
  604. vtufile<<" </PolyData>\n";
  605. //===========================================================================
  606. vtufile<<" <AppendedData encoding=\"raw\">\n";
  607. vtufile<<" _";
  608. int32_t block_size;
  609. block_size=coord.size()*sizeof(VTKReal); vtufile.write((char*)&block_size, sizeof(int32_t)); vtufile.write((char*)&coord [0], coord.size()*sizeof(VTKReal));
  610. if(value.size()){ // value
  611. block_size=value.size()*sizeof(VTKReal); vtufile.write((char*)&block_size, sizeof(int32_t)); vtufile.write((char*)&value [0], value.size()*sizeof(VTKReal));
  612. }
  613. block_size=connect.size()*sizeof(int32_t); vtufile.write((char*)&block_size, sizeof(int32_t)); vtufile.write((char*)&connect[0], connect.size()*sizeof(int32_t));
  614. block_size=offset .size()*sizeof(int32_t); vtufile.write((char*)&block_size, sizeof(int32_t)); vtufile.write((char*)&offset [0], offset .size()*sizeof(int32_t));
  615. vtufile<<"\n";
  616. vtufile<<" </AppendedData>\n";
  617. //===========================================================================
  618. vtufile<<"</VTKFile>\n";
  619. vtufile.close();
  620. if(myrank) return;
  621. std::stringstream pvtufname;
  622. pvtufname<<fname<<".pvtp";
  623. std::ofstream pvtufile;
  624. pvtufile.open(pvtufname.str().c_str());
  625. if(pvtufile.fail()) return;
  626. pvtufile<<"<?xml version=\"1.0\"?>\n";
  627. pvtufile<<"<VTKFile type=\"PPolyData\">\n";
  628. pvtufile<<" <PPolyData GhostLevel=\"0\">\n";
  629. pvtufile<<" <PPoints>\n";
  630. pvtufile<<" <PDataArray type=\"Float"<<sizeof(VTKReal)*8<<"\" NumberOfComponents=\""<<COORD_DIM<<"\" Name=\"Position\"/>\n";
  631. pvtufile<<" </PPoints>\n";
  632. if(value.size()){ // value
  633. pvtufile<<" <PPointData>\n";
  634. pvtufile<<" <PDataArray type=\"Float"<<sizeof(VTKReal)*8<<"\" NumberOfComponents=\""<<value.size()/pt_cnt<<"\" Name=\""<<"value"<<"\"/>\n";
  635. pvtufile<<" </PPointData>\n";
  636. }
  637. {
  638. // Extract filename from path.
  639. std::stringstream vtupath;
  640. vtupath<<'/'<<fname;
  641. std::string pathname = vtupath.str();
  642. auto found = pathname.find_last_of("/\\");
  643. std::string fname_ = pathname.substr(found+1);
  644. for(Integer i=0;i<np;i++) pvtufile<<" <Piece Source=\""<<fname_<<"_"<<std::setfill('0')<<std::setw(6)<<i<<".vtp\"/>\n";
  645. }
  646. pvtufile<<" </PPolyData>\n";
  647. pvtufile<<"</VTKFile>\n";
  648. pvtufile.close();
  649. }
  650. template <class Real> void SphericalHarmonics<Real>::LegPolyDeriv(Vector<Real>& poly_val, const Vector<Real>& X, Long degree){
  651. Long N = X.Dim();
  652. Long Npoly = (degree + 1) * (degree + 2) / 2;
  653. if (poly_val.Dim() != N * Npoly) {
  654. poly_val.ReInit(N * Npoly);
  655. }
  656. Vector<Real> leg_poly(Npoly * N);
  657. LegPoly(leg_poly, X, degree);
  658. for(Long m=0;m<=degree;m++){
  659. for(Long n=0;n<=degree;n++) if(m<=n){
  660. const Real* Pn =&leg_poly[0];
  661. const Real* Pn_=&leg_poly[0];
  662. if((m+0)<=(n+0)) Pn =&leg_poly[N*(((degree*2-abs(m+0)+1)*abs(m+0))/2+(n+0))];
  663. if((m+1)<=(n+0)) Pn_=&leg_poly[N*(((degree*2-abs(m+1)+1)*abs(m+1))/2+(n+0))];
  664. Real* Hn =&poly_val[N*(((degree*2-abs(m+0)+1)*abs(m+0))/2+(n+0))];
  665. Real c1=(abs(m+0)<=(n+0)?1.0:0)*m;
  666. Real c2=(abs(m+1)<=(n+0)?1.0:0)*sqrt(n+m+1)*sqrt(n>m?n-m:1);
  667. for(Long i=0;i<N;i++){
  668. Hn[i]=-(c1*X[i]*Pn[i]+c2*sqrt(1-X[i]*X[i])*Pn_[i])/sqrt(1-X[i]*X[i]);
  669. }
  670. }
  671. }
  672. }
  673. template <class Real> void SphericalHarmonics<Real>::LegPoly(Vector<Real>& poly_val, const Vector<Real>& X, Long degree){
  674. Long N = X.Dim();
  675. Long Npoly = (degree + 1) * (degree + 2) / 2;
  676. if (poly_val.Dim() != Npoly * N) {
  677. poly_val.ReInit(Npoly * N);
  678. }
  679. Real fact=1.0/(Real)sqrt(4*M_PI);
  680. std::vector<Real> u(N);
  681. for(Long n=0;n<N;n++){
  682. u[n]=sqrt(1-X[n]*X[n]);
  683. if(X[n]*X[n]>1.0) u[n]=0;
  684. poly_val[n]=fact;
  685. }
  686. Long idx = 0;
  687. Long idx_nxt = 0;
  688. for(Long i=1;i<=degree;i++){
  689. idx_nxt += N*(degree-i+2);
  690. Real c=(i==1?sqrt(3.0/2.0):1);
  691. if(i>1)c*=sqrt((Real)(2*i+1)/(2*i));
  692. for(Long n=0;n<N;n++){
  693. poly_val[idx_nxt+n]=-poly_val[idx+n]*u[n]*c;
  694. }
  695. idx = idx_nxt;
  696. }
  697. idx = 0;
  698. for(Long m=0;m<degree;m++){
  699. for(Long n=0;n<N;n++){
  700. Real pmm=0;
  701. Real pmmp1=poly_val[idx+n];
  702. Real pll;
  703. for(Long ll=m+1;ll<=degree;ll++){
  704. Real a=sqrt(((Real)(2*ll-1)*(2*ll+1))/((ll-m)*(ll+m)));
  705. Real b=sqrt(((Real)(2*ll+1)*(ll+m-1)*(ll-m-1))/((ll-m)*(ll+m)*(2*ll-3)));
  706. pll=X[n]*a*pmmp1-b*pmm;
  707. pmm=pmmp1;
  708. pmmp1=pll;
  709. poly_val[idx+N*(ll-m)+n]=pll;
  710. }
  711. }
  712. idx+=N*(degree-m+1);
  713. }
  714. }
  715. template <class Real> const Vector<Real>& SphericalHarmonics<Real>::LegendreNodes(Long p){
  716. assert(p<SCTL_SHMAXDEG);
  717. Vector<Real>& Qx=MatrixStore().Qx_[p];
  718. if(!Qx.Dim()){
  719. Vector<double> qx1(p+1);
  720. Vector<double> qw1(p+1);
  721. cgqf(p+1, 1, 0.0, 0.0, -1.0, 1.0, &qx1[0], &qw1[0]);
  722. assert(typeid(Real) == typeid(double) || typeid(Real) == typeid(float)); // TODO: works only for float and double
  723. if (Qx.Dim() != p+1) Qx.ReInit(p+1);
  724. for (Long i = 0; i < p + 1; i++) Qx[i] = -qx1[i];
  725. }
  726. return Qx;
  727. }
  728. template <class Real> const Vector<Real>& SphericalHarmonics<Real>::LegendreWeights(Long p){
  729. assert(p<SCTL_SHMAXDEG);
  730. Vector<Real>& Qw=MatrixStore().Qw_[p];
  731. if(!Qw.Dim()){
  732. Vector<double> qx1(p+1);
  733. Vector<double> qw1(p+1);
  734. cgqf(p+1, 1, 0.0, 0.0, -1.0, 1.0, &qx1[0], &qw1[0]);
  735. assert(typeid(Real) == typeid(double) || typeid(Real) == typeid(float)); // TODO: works only for float and double
  736. if (Qw.Dim() != p+1) Qw.ReInit(p+1);
  737. for (Long i = 0; i < p + 1; i++) Qw[i] = qw1[i];
  738. }
  739. return Qw;
  740. }
  741. template <class Real> const Vector<Real>& SphericalHarmonics<Real>::SingularWeights(Long p1){
  742. assert(p1<SCTL_SHMAXDEG);
  743. Vector<Real>& Sw=MatrixStore().Sw_[p1];
  744. if(!Sw.Dim()){
  745. const Vector<Real>& qx1 = LegendreNodes(p1);
  746. const Vector<Real>& qw1 = LegendreWeights(p1);
  747. std::vector<Real> Yf(p1+1,0);
  748. { // Set Yf
  749. Vector<Real> x0(1); x0=1.0;
  750. Vector<Real> alp0((p1+1)*(p1+2)/2);
  751. LegPoly(alp0, x0, p1);
  752. Vector<Real> alp((p1+1) * (p1+1)*(p1+2)/2);
  753. LegPoly(alp, qx1, p1);
  754. for(Long j=0;j<p1+1;j++){
  755. for(Long i=0;i<p1+1;i++){
  756. Yf[i]+=4*M_PI/(2*j+1) * alp0[j] * alp[j*(p1+1)+i];
  757. }
  758. }
  759. }
  760. Sw.ReInit(p1+1);
  761. for(Long i=0;i<p1+1;i++){
  762. Sw[i]=(qw1[i]*M_PI/p1)*Yf[i]/cos(acos(qx1[i])/2);
  763. }
  764. }
  765. return Sw;
  766. }
  767. template <class Real> const Matrix<Real>& SphericalHarmonics<Real>::MatFourier(Long p0, Long p1){
  768. assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
  769. Matrix<Real>& Mf =MatrixStore().Mf_ [p0*SCTL_SHMAXDEG+p1];
  770. if(!Mf.Dim(0)){
  771. const Real SQRT2PI=sqrt(2*M_PI);
  772. { // Set Mf
  773. Matrix<Real> M(2*p0,2*p1);
  774. for(Long j=0;j<2*p1;j++){
  775. M[0][j]=SQRT2PI*1.0;
  776. for(Long k=1;k<p0;k++){
  777. M[2*k-1][j]=SQRT2PI*cos(j*k*M_PI/p1);
  778. M[2*k-0][j]=SQRT2PI*sin(j*k*M_PI/p1);
  779. }
  780. M[2*p0-1][j]=SQRT2PI*cos(j*p0*M_PI/p1);
  781. }
  782. Mf=M;
  783. }
  784. }
  785. return Mf;
  786. }
  787. template <class Real> const Matrix<Real>& SphericalHarmonics<Real>::MatFourierInv(Long p0, Long p1){
  788. assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
  789. Matrix<Real>& Mf =MatrixStore().Mfinv_ [p0*SCTL_SHMAXDEG+p1];
  790. if(!Mf.Dim(0)){
  791. const Real INVSQRT2PI=1.0/sqrt(2*M_PI)/p0;
  792. { // Set Mf
  793. Matrix<Real> M(2*p0,2*p1);
  794. M.SetZero();
  795. if(p1>p0) p1=p0;
  796. for(Long j=0;j<2*p0;j++){
  797. M[j][0]=INVSQRT2PI*0.5;
  798. for(Long k=1;k<p1;k++){
  799. M[j][2*k-1]=INVSQRT2PI*cos(j*k*M_PI/p0);
  800. M[j][2*k-0]=INVSQRT2PI*sin(j*k*M_PI/p0);
  801. }
  802. M[j][2*p1-1]=INVSQRT2PI*cos(j*p1*M_PI/p0);
  803. }
  804. if(p1==p0) for(Long j=0;j<2*p0;j++) M[j][2*p1-1]*=0.5;
  805. Mf=M;
  806. }
  807. }
  808. return Mf;
  809. }
  810. template <class Real> const FFT<Real>& SphericalHarmonics<Real>::OpFourier(Long Np){
  811. assert(Np<SCTL_SHMAXDEG);
  812. auto& Mf =MatrixStore().Mfftinv_ [Np];
  813. #pragma omp critical (SCTL_FFT_PLAN0)
  814. if(!Mf.Dim(0)){
  815. StaticArray<Long,1> fft_dim = {Np};
  816. Mf.Setup(FFT_Type::C2R, 1, Vector<Long>(1,fft_dim,false));
  817. }
  818. return Mf;
  819. }
  820. template <class Real> const FFT<Real>& SphericalHarmonics<Real>::OpFourierInv(Long Np){
  821. assert(Np<SCTL_SHMAXDEG);
  822. auto& Mf =MatrixStore().Mfft_ [Np];
  823. #pragma omp critical (SCTL_FFT_PLAN1)
  824. if(!Mf.Dim(0)){
  825. StaticArray<Long,1> fft_dim = {Np};
  826. Mf.Setup(FFT_Type::R2C, 1, Vector<Long>(1,fft_dim,false));
  827. }
  828. return Mf;
  829. }
  830. template <class Real> const Matrix<Real>& SphericalHarmonics<Real>::MatFourierGrad(Long p0, Long p1){
  831. assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
  832. Matrix<Real>& Mdf=MatrixStore().Mdf_[p0*SCTL_SHMAXDEG+p1];
  833. if(!Mdf.Dim(0)){
  834. const Real SQRT2PI=sqrt(2*M_PI);
  835. { // Set Mdf_
  836. Matrix<Real> M(2*p0,2*p1);
  837. for(Long j=0;j<2*p1;j++){
  838. M[0][j]=SQRT2PI*0.0;
  839. for(Long k=1;k<p0;k++){
  840. M[2*k-1][j]=-SQRT2PI*k*sin(j*k*M_PI/p1);
  841. M[2*k-0][j]= SQRT2PI*k*cos(j*k*M_PI/p1);
  842. }
  843. M[2*p0-1][j]=-SQRT2PI*p0*sin(j*p0*M_PI/p1);
  844. }
  845. Mdf=M;
  846. }
  847. }
  848. return Mdf;
  849. }
  850. template <class Real> const std::vector<Matrix<Real>>& SphericalHarmonics<Real>::MatLegendre(Long p0, Long p1){
  851. assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
  852. std::vector<Matrix<Real>>& Ml =MatrixStore().Ml_ [p0*SCTL_SHMAXDEG+p1];
  853. if(!Ml.size()){
  854. const Vector<Real>& qx1 = LegendreNodes(p1);
  855. Vector<Real> alp(qx1.Dim()*(p0+1)*(p0+2)/2);
  856. LegPoly(alp, qx1, p0);
  857. Ml.resize(p0+1);
  858. auto ptr = alp.begin();
  859. for(Long i=0;i<=p0;i++){
  860. Ml[i].ReInit(p0+1-i, qx1.Dim(), ptr);
  861. ptr+=Ml[i].Dim(0)*Ml[i].Dim(1);
  862. }
  863. }
  864. return Ml;
  865. }
  866. template <class Real> const std::vector<Matrix<Real>>& SphericalHarmonics<Real>::MatLegendreInv(Long p0, Long p1){
  867. assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
  868. std::vector<Matrix<Real>>& Ml =MatrixStore().Mlinv_ [p0*SCTL_SHMAXDEG+p1];
  869. if(!Ml.size()){
  870. const Vector<Real>& qx1 = LegendreNodes(p0);
  871. const Vector<Real>& qw1 = LegendreWeights(p0);
  872. Vector<Real> alp(qx1.Dim()*(p1+1)*(p1+2)/2);
  873. LegPoly(alp, qx1, p1);
  874. Ml.resize(p1+1);
  875. auto ptr = alp.begin();
  876. for(Long i=0;i<=p1;i++){
  877. Ml[i].ReInit(qx1.Dim(), p1+1-i);
  878. Matrix<Real> M(p1+1-i, qx1.Dim(), ptr, false);
  879. for(Long j=0;j<p1+1-i;j++){ // Transpose and weights
  880. for(Long k=0;k<qx1.Dim();k++){
  881. Ml[i][k][j]=M[j][k]*qw1[k]*2*M_PI;
  882. }
  883. }
  884. ptr+=Ml[i].Dim(0)*Ml[i].Dim(1);
  885. }
  886. }
  887. return Ml;
  888. }
  889. template <class Real> const std::vector<Matrix<Real>>& SphericalHarmonics<Real>::MatLegendreGrad(Long p0, Long p1){
  890. assert(p0<SCTL_SHMAXDEG && p1<SCTL_SHMAXDEG);
  891. std::vector<Matrix<Real>>& Mdl=MatrixStore().Mdl_[p0*SCTL_SHMAXDEG+p1];
  892. if(!Mdl.size()){
  893. const Vector<Real>& qx1 = LegendreNodes(p1);
  894. Vector<Real> alp(qx1.Dim()*(p0+1)*(p0+2)/2);
  895. LegPolyDeriv(alp, qx1, p0);
  896. Mdl.resize(p0+1);
  897. auto ptr = alp.begin();
  898. for(Long i=0;i<=p0;i++){
  899. Mdl[i].ReInit(p0+1-i, qx1.Dim(), ptr);
  900. ptr+=Mdl[i].Dim(0)*Mdl[i].Dim(1);
  901. }
  902. }
  903. return Mdl;
  904. }
  905. template <class Real> const std::vector<Matrix<Real>>& SphericalHarmonics<Real>::MatRotate(Long p0){
  906. std::vector<std::vector<Long>> coeff_perm(p0+1);
  907. { // Set coeff_perm
  908. for(Long n=0;n<=p0;n++) coeff_perm[n].resize(std::min(2*n+1,2*p0));
  909. Long itr=0;
  910. for(Long i=0;i<2*p0;i++){
  911. Long m=(i+1)/2;
  912. for(Long n=m;n<=p0;n++){
  913. coeff_perm[n][i]=itr;
  914. itr++;
  915. }
  916. }
  917. }
  918. assert(p0<SCTL_SHMAXDEG);
  919. std::vector<Matrix<Real>>& Mr=MatrixStore().Mr_[p0];
  920. if(!Mr.size()){
  921. const Real SQRT2PI=sqrt(2*M_PI);
  922. Long Ncoef=p0*(p0+2);
  923. Long Ngrid=2*p0*(p0+1);
  924. Long Naleg=(p0+1)*(p0+2)/2;
  925. Matrix<Real> Mcoord0(3,Ngrid);
  926. const Vector<Real>& x=LegendreNodes(p0);
  927. for(Long i=0;i<p0+1;i++){ // Set Mcoord0
  928. for(Long j=0;j<2*p0;j++){
  929. Mcoord0[0][i*2*p0+j]=x[i];
  930. Mcoord0[1][i*2*p0+j]=sqrt(1-x[i]*x[i])*sin(M_PI*j/p0);
  931. Mcoord0[2][i*2*p0+j]=sqrt(1-x[i]*x[i])*cos(M_PI*j/p0);
  932. }
  933. }
  934. for(Long l=0;l<p0+1;l++){ // For each rotation angle
  935. Matrix<Real> Mcoord1;
  936. { // Rotate coordinates
  937. Matrix<Real> M(COORD_DIM, COORD_DIM);
  938. Real cos_=-x[l];
  939. Real sin_=-sqrt(1.0-x[l]*x[l]);
  940. M[0][0]= cos_; M[0][1]=0; M[0][2]=-sin_;
  941. M[1][0]= 0; M[1][1]=1; M[1][2]= 0;
  942. M[2][0]= sin_; M[2][1]=0; M[2][2]= cos_;
  943. Mcoord1=M*Mcoord0;
  944. }
  945. Matrix<Real> Mleg(Naleg, Ngrid);
  946. { // Set Mleg
  947. const Vector<Real> Vcoord1(Mcoord1.Dim(0)*Mcoord1.Dim(1), Mcoord1.begin(), false);
  948. Vector<Real> Vleg(Mleg.Dim(0)*Mleg.Dim(1), Mleg.begin(), false);
  949. LegPoly(Vleg, Vcoord1, p0);
  950. }
  951. Vector<Real> theta(Ngrid);
  952. for(Long i=0;i<theta.Dim();i++){ // Set theta
  953. theta[i]=atan2(Mcoord1[1][i],Mcoord1[2][i]);
  954. }
  955. Matrix<Real> Mcoef2grid(Ncoef, Ngrid);
  956. { // Build Mcoef2grid
  957. Long offset0=0;
  958. Long offset1=0;
  959. for(Long i=0;i<p0+1;i++){
  960. Long len=p0+1-i;
  961. { // P * cos
  962. for(Long j=0;j<len;j++){
  963. for(Long k=0;k<Ngrid;k++){
  964. Mcoef2grid[offset1+j][k]=SQRT2PI*Mleg[offset0+j][k]*cos(i*theta[k]);
  965. }
  966. }
  967. offset1+=len;
  968. }
  969. if(i!=0 && i!=p0){ // P * sin
  970. for(Long j=0;j<len;j++){
  971. for(Long k=0;k<Ngrid;k++){
  972. Mcoef2grid[offset1+j][k]=SQRT2PI*Mleg[offset0+j][k]*sin(i*theta[k]);
  973. }
  974. }
  975. offset1+=len;
  976. }
  977. offset0+=len;
  978. }
  979. assert(offset0==Naleg);
  980. assert(offset1==Ncoef);
  981. }
  982. Vector<Real> Vcoef2coef(Ncoef*Ncoef);
  983. Vector<Real> Vcoef2grid(Ncoef*Ngrid, Mcoef2grid[0], false);
  984. Grid2SHC(Vcoef2grid, p0+1, 2*p0, p0, Vcoef2coef, SHCArrange::COL_MAJOR_NONZERO);
  985. Matrix<Real> Mcoef2coef(Ncoef, Ncoef, Vcoef2coef.begin(), false);
  986. for(Long n=0;n<=p0;n++){ // Create matrices for fast rotation
  987. Matrix<Real> M(coeff_perm[n].size(),coeff_perm[n].size());
  988. for(Long i=0;i<(Long)coeff_perm[n].size();i++){
  989. for(Long j=0;j<(Long)coeff_perm[n].size();j++){
  990. M[i][j]=Mcoef2coef[coeff_perm[n][i]][coeff_perm[n][j]];
  991. }
  992. }
  993. Mr.push_back(M);
  994. }
  995. }
  996. }
  997. return Mr;
  998. }
  999. template <class Real> void SphericalHarmonics<Real>::SHC2GridTranspose(const Vector<Real>& X, Long p0, Long p1, Vector<Real>& S){
  1000. Matrix<Real> Mf =SphericalHarmonics<Real>::MatFourier(p1,p0).Transpose();
  1001. std::vector<Matrix<Real>> Ml =SphericalHarmonics<Real>::MatLegendre(p1,p0);
  1002. for(Long i=0;i<(Long)Ml.size();i++) Ml[i]=Ml[i].Transpose();
  1003. assert(p1==(Long)Ml.size()-1);
  1004. assert(p0==Mf.Dim(0)/2);
  1005. assert(p1==Mf.Dim(1)/2);
  1006. Long N=X.Dim()/(2*p0*(p0+1));
  1007. assert(N*2*p0*(p0+1)==X.Dim());
  1008. if(S.Dim()!=N*(p1*(p1+2))) S.ReInit(N*(p1*(p1+2)));
  1009. Vector<Real> B0, B1;
  1010. B0.ReInit(N* p1*(p1+2));
  1011. B1.ReInit(N*2*p1*(p0+1));
  1012. #pragma omp parallel
  1013. { // Evaluate Fourier and transpose
  1014. Integer tid=omp_get_thread_num();
  1015. Integer omp_p=omp_get_num_threads();
  1016. Long a=(tid+0)*N*(p0+1)/omp_p;
  1017. Long b=(tid+1)*N*(p0+1)/omp_p;
  1018. const Long block_size=16;
  1019. Matrix<Real> B2(block_size,2*p1);
  1020. for(Long i0=a;i0<b;i0+=block_size){
  1021. Long i1=std::min(b,i0+block_size);
  1022. const Matrix<Real> Min (i1-i0,2*p0, (Iterator<Real>)X.begin()+i0*2*p0, false);
  1023. Matrix<Real> Mout(i1-i0,2*p1, B2.begin(), false);
  1024. Matrix<Real>::GEMM(Mout, Min, Mf);
  1025. for(Long i=i0;i<i1;i++){
  1026. for(Long j=0;j<2*p1;j++){
  1027. B1[j*N*(p0+1)+i]=B2[i-i0][j];
  1028. }
  1029. }
  1030. }
  1031. }
  1032. #pragma omp parallel
  1033. { // Evaluate Legendre polynomial
  1034. Integer tid=omp_get_thread_num();
  1035. Integer omp_p=omp_get_num_threads();
  1036. Long offset0=0;
  1037. Long offset1=0;
  1038. for(Long i=0;i<p1+1;i++){
  1039. Long N0=2*N;
  1040. if(i==0 || i==p1) N0=N;
  1041. Matrix<Real> Min (N0, p0+1 , B1.begin()+offset0, false);
  1042. Matrix<Real> Mout(N0, p1+1-i, B0.begin()+offset1, false);
  1043. { // Mout = Min * Ml[i] // split between threads
  1044. Long a=(tid+0)*N0/omp_p;
  1045. Long b=(tid+1)*N0/omp_p;
  1046. if(a<b){
  1047. Matrix<Real> Min_ (b-a, Min .Dim(1), Min [a], false);
  1048. Matrix<Real> Mout_(b-a, Mout.Dim(1), Mout[a], false);
  1049. Matrix<Real>::GEMM(Mout_,Min_,Ml[i]);
  1050. }
  1051. }
  1052. offset0+=Min .Dim(0)*Min .Dim(1);
  1053. offset1+=Mout.Dim(0)*Mout.Dim(1);
  1054. }
  1055. }
  1056. #pragma omp parallel
  1057. { // S <-- Rearrange(B0)
  1058. Integer tid=omp_get_thread_num();
  1059. Integer omp_p=omp_get_num_threads();
  1060. Long a=(tid+0)*N/omp_p;
  1061. Long b=(tid+1)*N/omp_p;
  1062. for(Long i=a;i<b;i++){
  1063. Long offset=0;
  1064. for(Long j=0;j<2*p1;j++){
  1065. Long len=p1+1-(j+1)/2;
  1066. Real* B_=&B0[i*len+N*offset];
  1067. Real* S_=&S[i*p1*(p1+2)+offset];
  1068. for(Long k=0;k<len;k++) S_[k]=B_[k];
  1069. offset+=len;
  1070. }
  1071. }
  1072. }
  1073. }
  1074. template <class Real> void SphericalHarmonics<Real>::RotateAll(const Vector<Real>& S, Long p0, Long dof, Vector<Real>& S_){
  1075. const std::vector<Matrix<Real>>& Mr=MatRotate(p0);
  1076. std::vector<std::vector<Long>> coeff_perm(p0+1);
  1077. { // Set coeff_perm
  1078. for(Long n=0;n<=p0;n++) coeff_perm[n].resize(std::min(2*n+1,2*p0));
  1079. Long itr=0;
  1080. for(Long i=0;i<2*p0;i++){
  1081. Long m=(i+1)/2;
  1082. for(Long n=m;n<=p0;n++){
  1083. coeff_perm[n][i]=itr;
  1084. itr++;
  1085. }
  1086. }
  1087. }
  1088. Long Ncoef=p0*(p0+2);
  1089. Long N=S.Dim()/Ncoef/dof;
  1090. assert(N*Ncoef*dof==S.Dim());
  1091. if(S_.Dim()!=N*dof*Ncoef*p0*(p0+1)) S_.ReInit(N*dof*Ncoef*p0*(p0+1));
  1092. const Matrix<Real> S0(N*dof, Ncoef, (Iterator<Real>)S.begin(), false);
  1093. Matrix<Real> S1(N*dof*p0*(p0+1), Ncoef, S_.begin(), false);
  1094. #pragma omp parallel
  1095. { // Construct all p0*(p0+1) rotations
  1096. Integer tid=omp_get_thread_num();
  1097. Integer omp_p=omp_get_num_threads();
  1098. Matrix<Real> B0(dof*p0,Ncoef); // memory buffer
  1099. std::vector<Matrix<Real>> Bi(p0+1), Bo(p0+1); // memory buffers
  1100. for(Long i=0;i<=p0;i++){ // initialize Bi, Bo
  1101. Bi[i].ReInit(dof*p0,coeff_perm[i].size());
  1102. Bo[i].ReInit(dof*p0,coeff_perm[i].size());
  1103. }
  1104. Long a=(tid+0)*N/omp_p;
  1105. Long b=(tid+1)*N/omp_p;
  1106. for(Long i=a;i<b;i++){
  1107. for(Long d=0;d<dof;d++){
  1108. for(Long j=0;j<p0;j++){
  1109. Long offset=0;
  1110. for(Long k=0;k<p0+1;k++){
  1111. Real r[2]={cos(k*j*M_PI/p0),-sin(k*j*M_PI/p0)}; // exp(i*k*theta)
  1112. Long len=p0+1-k;
  1113. if(k!=0 && k!=p0){
  1114. for(Long l=0;l<len;l++){
  1115. Real x[2];
  1116. x[0]=S0[i*dof+d][offset+len*0+l];
  1117. x[1]=S0[i*dof+d][offset+len*1+l];
  1118. B0[j*dof+d][offset+len*0+l]=x[0]*r[0]-x[1]*r[1];
  1119. B0[j*dof+d][offset+len*1+l]=x[0]*r[1]+x[1]*r[0];
  1120. }
  1121. offset+=2*len;
  1122. }else{
  1123. for(Long l=0;l<len;l++){
  1124. B0[j*dof+d][offset+l]=S0[i*dof+d][offset+l];
  1125. }
  1126. offset+=len;
  1127. }
  1128. }
  1129. assert(offset==Ncoef);
  1130. }
  1131. }
  1132. { // Fast rotation
  1133. for(Long k=0;k<dof*p0;k++){ // forward permutation
  1134. for(Long l=0;l<=p0;l++){
  1135. for(Long j=0;j<(Long)coeff_perm[l].size();j++){
  1136. Bi[l][k][j]=B0[k][coeff_perm[l][j]];
  1137. }
  1138. }
  1139. }
  1140. for(Long t=0;t<=p0;t++){
  1141. for(Long l=0;l<=p0;l++){ // mat-vec
  1142. Matrix<Real>::GEMM(Bo[l],Bi[l],Mr[t*(p0+1)+l]);
  1143. }
  1144. Matrix<Real> Mout(dof*p0,Ncoef, S1[(i*(p0+1)+t)*dof*p0], false);
  1145. for(Long k=0;k<dof*p0;k++){ // reverse permutation
  1146. for(Long l=0;l<=p0;l++){
  1147. for(Long j=0;j<(Long)coeff_perm[l].size();j++){
  1148. Mout[k][coeff_perm[l][j]]=Bo[l][k][j];
  1149. }
  1150. }
  1151. }
  1152. }
  1153. }
  1154. }
  1155. }
  1156. }
  1157. template <class Real> void SphericalHarmonics<Real>::RotateTranspose(const Vector<Real>& S_, Long p0, Long dof, Vector<Real>& S){
  1158. std::vector<Matrix<Real>> Mr=MatRotate(p0);
  1159. for(Long i=0;i<(Long)Mr.size();i++) Mr[i]=Mr[i].Transpose();
  1160. std::vector<std::vector<Long>> coeff_perm(p0+1);
  1161. { // Set coeff_perm
  1162. for(Long n=0;n<=p0;n++) coeff_perm[n].resize(std::min(2*n+1,2*p0));
  1163. Long itr=0;
  1164. for(Long i=0;i<2*p0;i++){
  1165. Long m=(i+1)/2;
  1166. for(Long n=m;n<=p0;n++){
  1167. coeff_perm[n][i]=itr;
  1168. itr++;
  1169. }
  1170. }
  1171. }
  1172. Long Ncoef=p0*(p0+2);
  1173. Long N=S_.Dim()/Ncoef/dof/(p0*(p0+1));
  1174. assert(N*Ncoef*dof*(p0*(p0+1))==S_.Dim());
  1175. if(S.Dim()!=N*dof*Ncoef*p0*(p0+1)) S.ReInit(N*dof*Ncoef*p0*(p0+1));
  1176. Matrix<Real> S0(N*dof*p0*(p0+1), Ncoef, S.begin(), false);
  1177. const Matrix<Real> S1(N*dof*p0*(p0+1), Ncoef, (Iterator<Real>)S_.begin(), false);
  1178. #pragma omp parallel
  1179. { // Transpose all p0*(p0+1) rotations
  1180. Integer tid=omp_get_thread_num();
  1181. Integer omp_p=omp_get_num_threads();
  1182. Matrix<Real> B0(dof*p0,Ncoef); // memory buffer
  1183. std::vector<Matrix<Real>> Bi(p0+1), Bo(p0+1); // memory buffers
  1184. for(Long i=0;i<=p0;i++){ // initialize Bi, Bo
  1185. Bi[i].ReInit(dof*p0,coeff_perm[i].size());
  1186. Bo[i].ReInit(dof*p0,coeff_perm[i].size());
  1187. }
  1188. Long a=(tid+0)*N/omp_p;
  1189. Long b=(tid+1)*N/omp_p;
  1190. for(Long i=a;i<b;i++){
  1191. for(Long t=0;t<p0+1;t++){
  1192. Long idx0=(i*(p0+1)+t)*p0*dof;
  1193. { // Fast rotation
  1194. const Matrix<Real> Min(p0*dof, Ncoef, (Iterator<Real>)S1[idx0], false);
  1195. for(Long k=0;k<dof*p0;k++){ // forward permutation
  1196. for(Long l=0;l<=p0;l++){
  1197. for(Long j=0;j<(Long)coeff_perm[l].size();j++){
  1198. Bi[l][k][j]=Min[k][coeff_perm[l][j]];
  1199. }
  1200. }
  1201. }
  1202. for(Long l=0;l<=p0;l++){ // mat-vec
  1203. Matrix<Real>::GEMM(Bo[l],Bi[l],Mr[t*(p0+1)+l]);
  1204. }
  1205. for(Long k=0;k<dof*p0;k++){ // reverse permutation
  1206. for(Long l=0;l<=p0;l++){
  1207. for(Long j=0;j<(Long)coeff_perm[l].size();j++){
  1208. B0[k][coeff_perm[l][j]]=Bo[l][k][j];
  1209. }
  1210. }
  1211. }
  1212. }
  1213. for(Long j=0;j<p0;j++){
  1214. for(Long d=0;d<dof;d++){
  1215. Long idx1=idx0+j*dof+d;
  1216. Long offset=0;
  1217. for(Long k=0;k<p0+1;k++){
  1218. Real r[2]={cos(k*j*M_PI/p0),sin(k*j*M_PI/p0)}; // exp(i*k*theta)
  1219. Long len=p0+1-k;
  1220. if(k!=0 && k!=p0){
  1221. for(Long l=0;l<len;l++){
  1222. Real x[2];
  1223. x[0]=B0[j*dof+d][offset+len*0+l];
  1224. x[1]=B0[j*dof+d][offset+len*1+l];
  1225. S0[idx1][offset+len*0+l]=x[0]*r[0]-x[1]*r[1];
  1226. S0[idx1][offset+len*1+l]=x[0]*r[1]+x[1]*r[0];
  1227. }
  1228. offset+=2*len;
  1229. }else{
  1230. for(Long l=0;l<len;l++){
  1231. S0[idx1][offset+l]=B0[j*dof+d][offset+l];
  1232. }
  1233. offset+=len;
  1234. }
  1235. }
  1236. assert(offset==Ncoef);
  1237. }
  1238. }
  1239. }
  1240. }
  1241. }
  1242. }
  1243. template <class Real> void SphericalHarmonics<Real>::StokesSingularInteg(const Vector<Real>& S, Long p0, Long p1, Vector<Real>* SLMatrix, Vector<Real>* DLMatrix){
  1244. Long Ngrid=2*p0*(p0+1);
  1245. Long Ncoef= p0*(p0+2);
  1246. Long Nves=S.Dim()/(Ngrid*COORD_DIM);
  1247. if(SLMatrix) SLMatrix->ReInit(Nves*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM));
  1248. if(DLMatrix) DLMatrix->ReInit(Nves*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM));
  1249. Long BLOCK_SIZE=(Long)6e9/((3*2*p1*(p1+1))*(3*2*p0*(p0+1))*2*8); // Limit memory usage to 6GB
  1250. BLOCK_SIZE=std::min<Long>(BLOCK_SIZE,omp_get_max_threads());
  1251. BLOCK_SIZE=std::max<Long>(BLOCK_SIZE,1);
  1252. for(Long a=0;a<Nves;a+=BLOCK_SIZE){
  1253. Long b=std::min(a+BLOCK_SIZE, Nves);
  1254. Vector<Real> _SLMatrix, _DLMatrix;
  1255. if(SLMatrix) _SLMatrix.ReInit((b-a)*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM), SLMatrix->begin()+a*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM), false);
  1256. if(DLMatrix) _DLMatrix.ReInit((b-a)*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM), DLMatrix->begin()+a*(Ncoef*COORD_DIM)*(Ncoef*COORD_DIM), false);
  1257. const Vector<Real> _S ((b-a)*(Ngrid*COORD_DIM) , (Iterator<Real>)S.begin()+a*(Ngrid*COORD_DIM), false);
  1258. if(SLMatrix && DLMatrix) StokesSingularInteg_< true, true>(_S, p0, p1, _SLMatrix, _DLMatrix);
  1259. else if(SLMatrix) StokesSingularInteg_< true, false>(_S, p0, p1, _SLMatrix, _DLMatrix);
  1260. else if(DLMatrix) StokesSingularInteg_<false, true>(_S, p0, p1, _SLMatrix, _DLMatrix);
  1261. }
  1262. }
  1263. template <class Real> template <bool SLayer, bool DLayer> void SphericalHarmonics<Real>::StokesSingularInteg_(const Vector<Real>& X0, Long p0, Long p1, Vector<Real>& SL, Vector<Real>& DL){
  1264. Profile::Tic("Rotate");
  1265. Vector<Real> S0, S;
  1266. SphericalHarmonics<Real>::Grid2SHC(X0, p0+1, 2*p0, p0, S0, SHCArrange::COL_MAJOR_NONZERO);
  1267. SphericalHarmonics<Real>::RotateAll(S0, p0, COORD_DIM, S);
  1268. Profile::Toc();
  1269. Profile::Tic("Upsample");
  1270. Vector<Real> X, X_theta, X_phi, trg;
  1271. SphericalHarmonics<Real>::SHC2Grid(S, SHCArrange::COL_MAJOR_NONZERO, p0, p1+1, 2*p1, &X, &X_phi, &X_theta);
  1272. SphericalHarmonics<Real>::SHC2Pole(S, SHCArrange::COL_MAJOR_NONZERO, p0, trg);
  1273. Profile::Toc();
  1274. Profile::Tic("Stokes");
  1275. Vector<Real> SL0, DL0;
  1276. { // Stokes kernel
  1277. //Long M0=2*p0*(p0+1);
  1278. Long M1=2*p1*(p1+1);
  1279. Long N=trg.Dim()/(2*COORD_DIM);
  1280. assert(X.Dim()==M1*COORD_DIM*N);
  1281. if(SLayer && SL0.Dim()!=N*2*6*M1) SL0.ReInit(2*N*6*M1);
  1282. if(DLayer && DL0.Dim()!=N*2*6*M1) DL0.ReInit(2*N*6*M1);
  1283. const Vector<Real>& qw=SphericalHarmonics<Real>::SingularWeights(p1);
  1284. const Real scal_const_dl = 3.0/(4.0*M_PI);
  1285. const Real scal_const_sl = 1.0/(8.0*M_PI);
  1286. static Real eps=-1;
  1287. if(eps<0){
  1288. eps=1;
  1289. while(eps*(Real)0.5+(Real)1.0>1.0) eps*=0.5;
  1290. }
  1291. #pragma omp parallel
  1292. {
  1293. Integer tid=omp_get_thread_num();
  1294. Integer omp_p=omp_get_num_threads();
  1295. Long a=(tid+0)*N/omp_p;
  1296. Long b=(tid+1)*N/omp_p;
  1297. for(Long i=a;i<b;i++){
  1298. for(Long t=0;t<2;t++){
  1299. Real tx, ty, tz;
  1300. { // Read target coordinates
  1301. tx=trg[i*2*COORD_DIM+0*2+t];
  1302. ty=trg[i*2*COORD_DIM+1*2+t];
  1303. tz=trg[i*2*COORD_DIM+2*2+t];
  1304. }
  1305. for(Long j0=0;j0<p1+1;j0++){
  1306. for(Long j1=0;j1<2*p1;j1++){
  1307. Long s=2*p1*j0+j1;
  1308. Real dx, dy, dz;
  1309. { // Compute dx, dy, dz
  1310. dx=tx-X[(i*COORD_DIM+0)*M1+s];
  1311. dy=ty-X[(i*COORD_DIM+1)*M1+s];
  1312. dz=tz-X[(i*COORD_DIM+2)*M1+s];
  1313. }
  1314. Real nx, ny, nz;
  1315. { // Compute source normal
  1316. Real x_theta=X_phi[(i*COORD_DIM+0)*M1+s];
  1317. Real y_theta=X_phi[(i*COORD_DIM+1)*M1+s];
  1318. Real z_theta=X_phi[(i*COORD_DIM+2)*M1+s];
  1319. Real x_phi=X_theta[(i*COORD_DIM+0)*M1+s];
  1320. Real y_phi=X_theta[(i*COORD_DIM+1)*M1+s];
  1321. Real z_phi=X_theta[(i*COORD_DIM+2)*M1+s];
  1322. nx=(y_theta*z_phi-z_theta*y_phi);
  1323. ny=(z_theta*x_phi-x_theta*z_phi);
  1324. nz=(x_theta*y_phi-y_theta*x_phi);
  1325. }
  1326. Real area_elem=1.0;
  1327. if(SLayer){ // Compute area_elem
  1328. area_elem=sqrt(nx*nx+ny*ny+nz*nz);
  1329. }
  1330. Real rinv, rinv2;
  1331. { // Compute rinv, rinv2
  1332. Real r2=dx*dx+dy*dy+dz*dz;
  1333. rinv=1.0/sqrt(r2);
  1334. if(r2<=eps) rinv=0;
  1335. rinv2=rinv*rinv;
  1336. }
  1337. if(DLayer){
  1338. Real rinv5=rinv2*rinv2*rinv;
  1339. Real r_dot_n_rinv5=scal_const_dl*qw[j0*t+(p1-j0)*(1-t)] * (nx*dx+ny*dy+nz*dz)*rinv5;
  1340. DL0[((i*2+t)*6+0)*M1+s]=dx*dx*r_dot_n_rinv5;
  1341. DL0[((i*2+t)*6+1)*M1+s]=dx*dy*r_dot_n_rinv5;
  1342. DL0[((i*2+t)*6+2)*M1+s]=dx*dz*r_dot_n_rinv5;
  1343. DL0[((i*2+t)*6+3)*M1+s]=dy*dy*r_dot_n_rinv5;
  1344. DL0[((i*2+t)*6+4)*M1+s]=dy*dz*r_dot_n_rinv5;
  1345. DL0[((i*2+t)*6+5)*M1+s]=dz*dz*r_dot_n_rinv5;
  1346. }
  1347. if(SLayer){
  1348. Real area_rinv =scal_const_sl*qw[j0*t+(p1-j0)*(1-t)] * area_elem*rinv;
  1349. Real area_rinv2=area_rinv*rinv2;
  1350. SL0[((i*2+t)*6+0)*M1+s]=area_rinv+dx*dx*area_rinv2;
  1351. SL0[((i*2+t)*6+1)*M1+s]= dx*dy*area_rinv2;
  1352. SL0[((i*2+t)*6+2)*M1+s]= dx*dz*area_rinv2;
  1353. SL0[((i*2+t)*6+3)*M1+s]=area_rinv+dy*dy*area_rinv2;
  1354. SL0[((i*2+t)*6+4)*M1+s]= dy*dz*area_rinv2;
  1355. SL0[((i*2+t)*6+5)*M1+s]=area_rinv+dz*dz*area_rinv2;
  1356. }
  1357. }
  1358. }
  1359. }
  1360. }
  1361. }
  1362. Profile::Add_FLOP(20*(2*p1)*(p1+1)*2*N);
  1363. if(SLayer) Profile::Add_FLOP((19+6)*(2*p1)*(p1+1)*2*N);
  1364. if(DLayer) Profile::Add_FLOP( 22 *(2*p1)*(p1+1)*2*N);
  1365. }
  1366. Profile::Toc();
  1367. Profile::Tic("UpsampleTranspose");
  1368. Vector<Real> SL1, DL1;
  1369. SphericalHarmonics<Real>::SHC2GridTranspose(SL0, p1, p0, SL1);
  1370. SphericalHarmonics<Real>::SHC2GridTranspose(DL0, p1, p0, DL1);
  1371. Profile::Toc();
  1372. Profile::Tic("RotateTranspose");
  1373. Vector<Real> SL2, DL2;
  1374. SphericalHarmonics<Real>::RotateTranspose(SL1, p0, 2*6, SL2);
  1375. SphericalHarmonics<Real>::RotateTranspose(DL1, p0, 2*6, DL2);
  1376. Profile::Toc();
  1377. Profile::Tic("Rearrange");
  1378. Vector<Real> SL3, DL3;
  1379. { // Transpose
  1380. Long Ncoef=p0*(p0+2);
  1381. Long Ngrid=2*p0*(p0+1);
  1382. { // Transpose SL2
  1383. Long N=SL2.Dim()/(6*Ncoef*Ngrid);
  1384. SL3.ReInit(N*COORD_DIM*Ncoef*COORD_DIM*Ngrid);
  1385. #pragma omp parallel
  1386. {
  1387. Integer tid=omp_get_thread_num();
  1388. Integer omp_p=omp_get_num_threads();
  1389. Matrix<Real> B(COORD_DIM*Ncoef,Ngrid*COORD_DIM);
  1390. Long a=(tid+0)*N/omp_p;
  1391. Long b=(tid+1)*N/omp_p;
  1392. for(Long i=a;i<b;i++){
  1393. Matrix<Real> M0(Ngrid*6, Ncoef, SL2.begin()+i*Ngrid*6*Ncoef, false);
  1394. for(Long k=0;k<Ncoef;k++){ // Transpose
  1395. for(Long j=0;j<Ngrid;j++){ // TODO: needs blocking
  1396. B[k+Ncoef*0][j*COORD_DIM+0]=M0[j*6+0][k];
  1397. B[k+Ncoef*1][j*COORD_DIM+0]=M0[j*6+1][k];
  1398. B[k+Ncoef*2][j*COORD_DIM+0]=M0[j*6+2][k];
  1399. B[k+Ncoef*0][j*COORD_DIM+1]=M0[j*6+1][k];
  1400. B[k+Ncoef*1][j*COORD_DIM+1]=M0[j*6+3][k];
  1401. B[k+Ncoef*2][j*COORD_DIM+1]=M0[j*6+4][k];
  1402. B[k+Ncoef*0][j*COORD_DIM+2]=M0[j*6+2][k];
  1403. B[k+Ncoef*1][j*COORD_DIM+2]=M0[j*6+4][k];
  1404. B[k+Ncoef*2][j*COORD_DIM+2]=M0[j*6+5][k];
  1405. }
  1406. }
  1407. Matrix<Real> M1(Ncoef*COORD_DIM, COORD_DIM*Ngrid, SL3.begin()+i*COORD_DIM*Ncoef*COORD_DIM*Ngrid, false);
  1408. for(Long k=0;k<B.Dim(0);k++){ // Rearrange
  1409. for(Long j0=0;j0<COORD_DIM;j0++){
  1410. for(Long j1=0;j1<p0+1;j1++){
  1411. for(Long j2=0;j2<p0;j2++) M1[k][((j0*(p0+1)+ j1)*2+0)*p0+j2]=B[k][((j1*p0+j2)*2+0)*COORD_DIM+j0];
  1412. for(Long j2=0;j2<p0;j2++) M1[k][((j0*(p0+1)+p0-j1)*2+1)*p0+j2]=B[k][((j1*p0+j2)*2+1)*COORD_DIM+j0];
  1413. }
  1414. }
  1415. }
  1416. }
  1417. }
  1418. }
  1419. { // Transpose DL2
  1420. Long N=DL2.Dim()/(6*Ncoef*Ngrid);
  1421. DL3.ReInit(N*COORD_DIM*Ncoef*COORD_DIM*Ngrid);
  1422. #pragma omp parallel
  1423. {
  1424. Integer tid=omp_get_thread_num();
  1425. Integer omp_p=omp_get_num_threads();
  1426. Matrix<Real> B(COORD_DIM*Ncoef,Ngrid*COORD_DIM);
  1427. Long a=(tid+0)*N/omp_p;
  1428. Long b=(tid+1)*N/omp_p;
  1429. for(Long i=a;i<b;i++){
  1430. Matrix<Real> M0(Ngrid*6, Ncoef, DL2.begin()+i*Ngrid*6*Ncoef, false);
  1431. for(Long k=0;k<Ncoef;k++){ // Transpose
  1432. for(Long j=0;j<Ngrid;j++){ // TODO: needs blocking
  1433. B[k+Ncoef*0][j*COORD_DIM+0]=M0[j*6+0][k];
  1434. B[k+Ncoef*1][j*COORD_DIM+0]=M0[j*6+1][k];
  1435. B[k+Ncoef*2][j*COORD_DIM+0]=M0[j*6+2][k];
  1436. B[k+Ncoef*0][j*COORD_DIM+1]=M0[j*6+1][k];
  1437. B[k+Ncoef*1][j*COORD_DIM+1]=M0[j*6+3][k];
  1438. B[k+Ncoef*2][j*COORD_DIM+1]=M0[j*6+4][k];
  1439. B[k+Ncoef*0][j*COORD_DIM+2]=M0[j*6+2][k];
  1440. B[k+Ncoef*1][j*COORD_DIM+2]=M0[j*6+4][k];
  1441. B[k+Ncoef*2][j*COORD_DIM+2]=M0[j*6+5][k];
  1442. }
  1443. }
  1444. Matrix<Real> M1(Ncoef*COORD_DIM, COORD_DIM*Ngrid, DL3.begin()+i*COORD_DIM*Ncoef*COORD_DIM*Ngrid, false);
  1445. for(Long k=0;k<B.Dim(0);k++){ // Rearrange
  1446. for(Long j0=0;j0<COORD_DIM;j0++){
  1447. for(Long j1=0;j1<p0+1;j1++){
  1448. for(Long j2=0;j2<p0;j2++) M1[k][((j0*(p0+1)+ j1)*2+0)*p0+j2]=B[k][((j1*p0+j2)*2+0)*COORD_DIM+j0];
  1449. for(Long j2=0;j2<p0;j2++) M1[k][((j0*(p0+1)+p0-j1)*2+1)*p0+j2]=B[k][((j1*p0+j2)*2+1)*COORD_DIM+j0];
  1450. }
  1451. }
  1452. }
  1453. }
  1454. }
  1455. }
  1456. }
  1457. Profile::Toc();
  1458. Profile::Tic("Grid2SHC");
  1459. SphericalHarmonics<Real>::Grid2SHC(SL3, p0+1, 2*p0, p0, SL, SHCArrange::COL_MAJOR_NONZERO);
  1460. SphericalHarmonics<Real>::Grid2SHC(DL3, p0+1, 2*p0, p0, DL, SHCArrange::COL_MAJOR_NONZERO);
  1461. Profile::Toc();
  1462. }
  1463. } // end namespace