boundary_quadrature.hpp 220 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224
  1. #ifndef _SCTL_BOUNDARY_QUADRATURE_HPP_
  2. #define _SCTL_BOUNDARY_QUADRATURE_HPP_
  3. #include <biest.hpp>
  4. #include <mutex>
  5. #include <atomic>
  6. #include <tuple>
  7. namespace SCTL_NAMESPACE {
  8. template <class Real, Integer DIM, Integer ORDER> class Basis {
  9. public:
  10. using ValueType = Real;
  11. // class EvalOperator {
  12. // public:
  13. // };
  14. using EvalOpType = Matrix<ValueType>;
  15. static constexpr Long Dim() {
  16. return DIM;
  17. }
  18. static constexpr Long Size() {
  19. return pow<DIM,Long>(ORDER);
  20. }
  21. static const Matrix<ValueType>& Nodes() {
  22. static Matrix<ValueType> nodes_(DIM,Size());
  23. auto nodes_1d = [](Integer i) {
  24. return 0.5 - 0.5 * sctl::cos<ValueType>((2*i+1) * const_pi<ValueType>() / (2*ORDER));
  25. };
  26. { // Set nodes_
  27. static std::mutex mutex;
  28. static std::atomic<Integer> first_time(true);
  29. if (first_time.load(std::memory_order_relaxed)) {
  30. std::lock_guard<std::mutex> guard(mutex);
  31. if (first_time.load(std::memory_order_relaxed)) {
  32. Integer N = 1;
  33. for (Integer d = 0; d < DIM; d++) {
  34. for (Integer j = 0; j < ORDER; j++) {
  35. for (Integer i = 0; i < N; i++) {
  36. for (Integer k = 0; k < d; k++) {
  37. nodes_[k][j*N+i] = nodes_[k][i];
  38. }
  39. nodes_[d][j*N+i] = nodes_1d(j);
  40. }
  41. }
  42. N *= ORDER;
  43. }
  44. std::atomic_thread_fence(std::memory_order_seq_cst);
  45. first_time.store(false);
  46. }
  47. }
  48. }
  49. return nodes_;
  50. }
  51. static const Vector<ValueType>& QuadWts() {
  52. static Vector<ValueType> wts(Size());
  53. { // Set nodes_
  54. static std::mutex mutex;
  55. static std::atomic<Integer> first_time(true);
  56. if (first_time.load(std::memory_order_relaxed)) {
  57. std::lock_guard<std::mutex> guard(mutex);
  58. if (first_time.load(std::memory_order_relaxed)) {
  59. StaticArray<ValueType,ORDER> wts_1d;
  60. { // Set wts_1d
  61. Vector<ValueType> x_(ORDER);
  62. ChebBasis<ValueType>::template Nodes<1>(ORDER, x_);
  63. Vector<ValueType> V_cheb(ORDER * ORDER);
  64. { // Set V_cheb
  65. Vector<ValueType> I(ORDER*ORDER);
  66. I = 0;
  67. for (Long i = 0; i < ORDER; i++) I[i*ORDER+i] = 1;
  68. ChebBasis<ValueType>::template Approx<1>(ORDER, I, V_cheb);
  69. }
  70. Matrix<ValueType> M(ORDER, ORDER, V_cheb.begin());
  71. Vector<ValueType> w_sample(ORDER);
  72. for (Integer i = 0; i < ORDER; i++) {
  73. w_sample[i] = (i % 2 ? 0 : -(ORDER/(ValueType)(i*i-1)));
  74. }
  75. for (Integer j = 0; j < ORDER; j++) {
  76. wts_1d[j] = 0;
  77. for (Integer i = 0; i < ORDER; i++) {
  78. wts_1d[j] += M[j][i] * w_sample[i] / ORDER;
  79. }
  80. }
  81. }
  82. wts[0] = 1;
  83. Integer N = 1;
  84. for (Integer d = 0; d < DIM; d++) {
  85. for (Integer j = 1; j < ORDER; j++) {
  86. for (Integer i = 0; i < N; i++) {
  87. wts[j*N+i] = wts[i] * wts_1d[j];
  88. }
  89. }
  90. for (Integer i = 0; i < N; i++) {
  91. wts[i] *= wts_1d[0];
  92. }
  93. N *= ORDER;
  94. }
  95. std::atomic_thread_fence(std::memory_order_seq_cst);
  96. first_time.store(false);
  97. }
  98. }
  99. }
  100. return wts;
  101. }
  102. static void Grad(Vector<Basis>& dX, const Vector<Basis>& X) {
  103. static Matrix<ValueType> GradOp[DIM];
  104. static std::mutex mutex;
  105. static std::atomic<Integer> first_time(true);
  106. if (first_time.load(std::memory_order_relaxed)) {
  107. std::lock_guard<std::mutex> guard(mutex);
  108. if (first_time.load(std::memory_order_relaxed)) {
  109. { // Set GradOp
  110. auto nodes = Basis<ValueType,1,ORDER>::Nodes();
  111. SCTL_ASSERT(nodes.Dim(1) == ORDER);
  112. Matrix<ValueType> M(ORDER, ORDER);
  113. for (Integer i = 0; i < ORDER; i++) { // Set M
  114. Real x = nodes[0][i];
  115. for (Integer j = 0; j < ORDER; j++) {
  116. M[j][i] = 0;
  117. for (Integer l = 0; l < ORDER; l++) {
  118. if (l != j) {
  119. Real M_ = 1;
  120. for (Integer k = 0; k < ORDER; k++) {
  121. if (k != j && k != l) M_ *= (x - nodes[0][k]);
  122. if (k != j) M_ /= (nodes[0][j] - nodes[0][k]);
  123. }
  124. M[j][i] += M_;
  125. }
  126. }
  127. }
  128. }
  129. for (Integer d = 0; d < DIM; d++) {
  130. GradOp[d].ReInit(Size(), Size());
  131. GradOp[d] = 0;
  132. Integer stride0 = sctl::pow<Integer>(ORDER, d);
  133. Integer repeat0 = sctl::pow<Integer>(ORDER, d);
  134. Integer stride1 = sctl::pow<Integer>(ORDER, d+1);
  135. Integer repeat1 = sctl::pow<Integer>(ORDER, DIM-d-1);
  136. for (Integer k1 = 0; k1 < repeat1; k1++) {
  137. for (Integer i = 0; i < ORDER; i++) {
  138. for (Integer j = 0; j < ORDER; j++) {
  139. for (Integer k0 = 0; k0 < repeat0; k0++) {
  140. GradOp[d][k1*stride1 + i*stride0 + k0][k1*stride1 + j*stride0 + k0] = M[i][j];
  141. }
  142. }
  143. }
  144. }
  145. }
  146. }
  147. std::atomic_thread_fence(std::memory_order_seq_cst);
  148. first_time.store(false);
  149. }
  150. }
  151. if (dX.Dim() != X.Dim()*DIM) dX.ReInit(X.Dim()*DIM);
  152. for (Long i = 0; i < X.Dim(); i++) {
  153. const Matrix<ValueType> Vi(1, Size(), (Iterator<ValueType>)(ConstIterator<ValueType>)X[i].NodeValues_, false);
  154. for (Integer k = 0; k < DIM; k++) {
  155. Matrix<ValueType> Vo(1, Size(), dX[i*DIM+k].NodeValues_, false);
  156. Matrix<ValueType>::GEMM(Vo, Vi, GradOp[k]);
  157. }
  158. }
  159. }
  160. static EvalOpType SetupEval(const Matrix<ValueType>& X) {
  161. Long N = X.Dim(1);
  162. SCTL_ASSERT(X.Dim(0) == DIM);
  163. Matrix<ValueType> M(Size(), N);
  164. { // Set M
  165. auto nodes = Basis<ValueType,1,ORDER>::Nodes();
  166. Integer NN = Basis<ValueType,1,ORDER>::Size();
  167. Matrix<ValueType> M_(NN, DIM*N);
  168. for (Long i = 0; i < DIM*N; i++) {
  169. ValueType x = X[0][i];
  170. for (Integer j = 0; j < NN; j++) {
  171. ValueType y = 1;
  172. for (Integer k = 0; k < NN; k++) {
  173. y *= (j==k ? 1 : (nodes[0][k] - x) / (nodes[0][k] - nodes[0][j]));
  174. }
  175. M_[j][i] = y;
  176. }
  177. }
  178. if (DIM == 1) {
  179. SCTL_ASSERT(M.Dim(0) == M_.Dim(0));
  180. SCTL_ASSERT(M.Dim(1) == M_.Dim(1));
  181. M = M_;
  182. } else {
  183. Integer NNN = 1;
  184. M = 1;
  185. for (Integer d = 0; d < DIM; d++) {
  186. for (Integer k = 1; k < NN; k++) {
  187. for (Integer j = 0; j < NNN; j++) {
  188. for (Long i = 0; i < N; i++) {
  189. M[k*NNN+j][i] = M[j][i] * M_[k][d*N+i];
  190. }
  191. }
  192. }
  193. { // k = 0
  194. for (Integer j = 0; j < NNN; j++) {
  195. for (Long i = 0; i < N; i++) {
  196. M[j][i] *= M_[0][d*N+i];
  197. }
  198. }
  199. }
  200. NNN *= NN;
  201. }
  202. }
  203. }
  204. return M;
  205. }
  206. static void Eval(Matrix<ValueType>& Y, const Vector<Basis>& X, const EvalOpType& M) {
  207. Long N0 = X.Dim();
  208. Long N1 = M.Dim(1);
  209. SCTL_ASSERT(M.Dim(0) == Size());
  210. if (Y.Dim(0) != N0 || Y.Dim(1) != N1) Y.ReInit(N0, N1);
  211. for (Long i = 0; i < N0; i++) {
  212. const Matrix<ValueType> X_(1,Size(),(Iterator<ValueType>)(ConstIterator<ValueType>)X[i].NodeValues_,false);
  213. Matrix<ValueType> Y_(1,N1,Y[i],false);
  214. Matrix<ValueType>::GEMM(Y_,X_,M);
  215. }
  216. }
  217. Basis operator+(Basis X) const {
  218. for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] + X[i];
  219. return X;
  220. }
  221. Basis operator-(Basis X) const {
  222. for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] - X[i];
  223. return X;
  224. }
  225. Basis operator*(Basis X) const {
  226. for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] * X[i];
  227. return X;
  228. }
  229. Basis operator*(Real a) const {
  230. Basis X = (*this);
  231. for (Long i = 0; i < Size(); i++) X[i] *= a;
  232. return X;
  233. }
  234. Basis operator+(Real a) const {
  235. Basis X = (*this);
  236. for (Long i = 0; i < Size(); i++) X[i] += a;
  237. return X;
  238. }
  239. Basis& operator+=(const Basis& X) {
  240. for (Long i = 0; i < Size(); i++) (*this)[i] += X[i];
  241. return *this;
  242. }
  243. Basis& operator-=(const Basis& X) {
  244. for (Long i = 0; i < Size(); i++) (*this)[i] -= X[i];
  245. return *this;
  246. }
  247. Basis& operator*=(const Basis& X) {
  248. for (Long i = 0; i < Size(); i++) (*this)[i] *= X[i];
  249. return *this;
  250. }
  251. Basis& operator*=(Real a) {
  252. for (Long i = 0; i < Size(); i++) (*this)[i] *= a;
  253. return *this;
  254. }
  255. Basis& operator+=(Real a) {
  256. for (Long i = 0; i < Size(); i++) (*this)[i] += a;
  257. return *this;
  258. }
  259. Basis& operator=(Real a) {
  260. for (Long i = 0; i < Size(); i++) (*this)[i] = a;
  261. return *this;
  262. }
  263. const ValueType& operator[](Long i) const {
  264. SCTL_ASSERT(i < Size());
  265. return NodeValues_[i];
  266. }
  267. ValueType& operator[](Long i) {
  268. SCTL_ASSERT(i < Size());
  269. return NodeValues_[i];
  270. }
  271. private:
  272. StaticArray<ValueType,Size()> NodeValues_;
  273. };
  274. template <Integer COORD_DIM, class Basis> class ElemList {
  275. public:
  276. using CoordBasis = Basis;
  277. using CoordType = typename CoordBasis::ValueType;
  278. static constexpr Integer CoordDim() {
  279. return COORD_DIM;
  280. }
  281. static constexpr Integer ElemDim() {
  282. return CoordBasis::Dim();
  283. }
  284. ElemList(Long Nelem = 0) {
  285. ReInit(Nelem);
  286. }
  287. void ReInit(Long Nelem = 0) {
  288. Nelem_ = Nelem;
  289. X_.ReInit(Nelem_ * COORD_DIM);
  290. }
  291. void ReInit(const Vector<CoordBasis>& X) {
  292. Nelem_ = X.Dim() / COORD_DIM;
  293. SCTL_ASSERT(X.Dim() == Nelem_ * COORD_DIM);
  294. X_ = X;
  295. }
  296. Long NElem() const {
  297. return Nelem_;
  298. }
  299. CoordBasis& operator()(Long elem, Integer dim) {
  300. SCTL_ASSERT(elem >= 0 && elem < Nelem_);
  301. SCTL_ASSERT(dim >= 0 && dim < COORD_DIM);
  302. return X_[elem*COORD_DIM+dim];
  303. }
  304. const CoordBasis& operator()(Long elem, Integer dim) const {
  305. if (!(elem >= 0 && elem < Nelem_)) exit(0);
  306. SCTL_ASSERT(elem >= 0 && elem < Nelem_);
  307. SCTL_ASSERT(dim >= 0 && dim < COORD_DIM);
  308. return X_[elem*COORD_DIM+dim];
  309. }
  310. const Vector<CoordBasis>& ElemVector() const {
  311. return X_;
  312. }
  313. private:
  314. static_assert(CoordBasis::Dim() <= CoordDim(), "Basis dimension can not be greater than COORD_DIM.");
  315. Vector<CoordBasis> X_;
  316. Long Nelem_;
  317. //mutable Vector<CoordBasis> dX_;
  318. };
  319. template <class Real> class Quadrature {
  320. static Real machine_epsilon() {
  321. Real eps=1;
  322. while(eps*(Real)0.5+(Real)1.0>1.0) eps*=0.5;
  323. return eps;
  324. }
  325. template <Integer DIM> static void DuffyQuad(Matrix<Real>& nodes, Vector<Real>& weights, const Vector<Real>& coord, Integer order, Real adapt = -1.0) {
  326. SCTL_ASSERT(coord.Dim() == DIM);
  327. static Real eps = machine_epsilon()*16;
  328. Matrix<Real> qx;
  329. Vector<Real> qw;
  330. { // Set qx, qw
  331. Vector<Real> qx0, qw0;
  332. ChebBasis<Real>::quad_rule(order, qx0, qw0);
  333. Integer N = sctl::pow<DIM,Integer>(order);
  334. qx.ReInit(DIM,N);
  335. qw.ReInit(N);
  336. qw[0] = 1;
  337. Integer N_ = 1;
  338. for (Integer d = 0; d < DIM; d++) {
  339. for (Integer j = 0; j < order; j++) {
  340. for (Integer i = 0; i < N_; i++) {
  341. for (Integer k = 0; k < d; k++) {
  342. qx[k][j*N_+i] = qx[k][i];
  343. }
  344. qx[d][j*N_+i] = qx0[j];
  345. qw[j*N_+i] = qw[i];
  346. }
  347. }
  348. for (Integer j = 0; j < order; j++) {
  349. for (Integer i = 0; i < N_; i++) {
  350. qw[j*N_+i] *= qw0[j];
  351. }
  352. }
  353. N_ *= order;
  354. }
  355. }
  356. Vector<Real> X;
  357. { // Set X
  358. StaticArray<Real,2*DIM+2> X_;
  359. X_[0] = 0;
  360. X_[1] = adapt;
  361. for (Integer i = 0; i < DIM; i++) {
  362. X_[2*i+2] = sctl::fabs<Real>(coord[i]);
  363. X_[2*i+3] = sctl::fabs<Real>(coord[i]-1);
  364. }
  365. std::sort((Iterator<Real>)X_, (Iterator<Real>)X_+2*DIM+2);
  366. X.PushBack(std::max<Real>(0, X_[2*DIM]-1));
  367. for (Integer i = 0; i < 2*DIM+2; i++) {
  368. if (X[X.Dim()-1] < X_[i]) {
  369. if (X.Dim())
  370. X.PushBack(X_[i]);
  371. }
  372. }
  373. /////////////////////////////////////////////////////////////////////////////////////////////////
  374. Vector<Real> r(1);
  375. r[0] = X[0];
  376. for (Integer i = 1; i < X.Dim(); i++) {
  377. while (r[r.Dim() - 1] > 0.0 && (order*0.5) * r[r.Dim() - 1] < X[i]) r.PushBack((order*0.5) * r[r.Dim() - 1]); // TODO
  378. r.PushBack(X[i]);
  379. }
  380. X = r;
  381. /////////////////////////////////////////////////////////////////////////////////////////////////
  382. }
  383. Vector<Real> nds, wts;
  384. for (Integer k = 0; k < X.Dim()-1; k++) {
  385. for (Integer dd = 0; dd < 2*DIM; dd++) {
  386. Integer d0 = (dd>>1);
  387. StaticArray<Real,2*DIM> range0, range1;
  388. { // Set range0, range1
  389. Integer d1 = (dd%2?1:-1);
  390. for (Integer d = 0; d < DIM; d++) {
  391. range0[d*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d] - X[k] ));
  392. range0[d*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d] + X[k] ));
  393. range1[d*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d] - X[k+1]));
  394. range1[d*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d] + X[k+1]));
  395. }
  396. range0[d0*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+0]));
  397. range0[d0*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+0]));
  398. range1[d0*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+1]));
  399. range1[d0*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+1]));
  400. }
  401. { // if volume(range0, range1) == 0 then continue
  402. Real v0 = 1, v1 = 1;
  403. for (Integer d = 0; d < DIM; d++) {
  404. if (d == d0) {
  405. v0 *= sctl::fabs<Real>(range0[d*2+0]-range1[d*2+0]);
  406. v1 *= sctl::fabs<Real>(range0[d*2+0]-range1[d*2+0]);
  407. } else {
  408. v0 *= range0[d*2+1]-range0[d*2+0];
  409. v1 *= range1[d*2+1]-range1[d*2+0];
  410. }
  411. }
  412. if (v0 < eps && v1 < eps) continue;
  413. }
  414. for (Integer i = 0; i < qx.Dim(1); i++) { // Set nds, wts
  415. Real w = qw[i];
  416. Real z = qx[d0][i];
  417. for (Integer d = 0; d < DIM; d++) {
  418. Real y = qx[d][i];
  419. nds.PushBack((range0[d*2+0]*(1-y) + range0[d*2+1]*y)*(1-z) + (range1[d*2+0]*(1-y) + range1[d*2+1]*y)*z);
  420. if (d == d0) {
  421. w *= abs(range1[d*2+0] - range0[d*2+0]);
  422. } else {
  423. w *= (range0[d*2+1] - range0[d*2+0])*(1-z) + (range1[d*2+1] - range1[d*2+0])*z;
  424. }
  425. }
  426. wts.PushBack(w);
  427. }
  428. }
  429. }
  430. nodes = Matrix<Real>(nds.Dim()/DIM,DIM,nds.begin()).Transpose();
  431. weights = wts;
  432. }
  433. template <Integer DIM> static void TensorProductGaussQuad(Matrix<Real>& nodes, Vector<Real>& weights, Integer order) {
  434. Vector<Real> coord(DIM);
  435. coord = 0;
  436. coord[0] = -10;
  437. DuffyQuad<DIM>(nodes, weights, coord, order);
  438. }
  439. template <class DensityBasis, class ElemList, class Kernel> static void SetupSingular(Matrix<Real>& M_singular, const Matrix<Real>& trg_nds, const ElemList& elem_lst, const Kernel& kernel, Integer order_singular = 10, Integer order_direct = 10, Real Rqbx = 0) {
  440. using CoordBasis = typename ElemList::CoordBasis;
  441. using CoordEvalOpType = typename CoordBasis::EvalOpType;
  442. using DensityEvalOpType = typename DensityBasis::EvalOpType;
  443. constexpr Integer CoordDim = ElemList::CoordDim();
  444. constexpr Integer ElemDim = ElemList::ElemDim();
  445. constexpr Integer KDIM0 = Kernel::SrcDim();
  446. constexpr Integer KDIM1 = Kernel::TrgDim();
  447. const Long Nelem = elem_lst.NElem();
  448. const Integer Ntrg = trg_nds.Dim(1);
  449. SCTL_ASSERT(trg_nds.Dim(0) == ElemDim);
  450. const Vector<CoordBasis>& X = elem_lst.ElemVector();
  451. Vector<CoordBasis> dX;
  452. CoordBasis::Grad(dX, X);
  453. Vector<Real> Xt, Xnt;
  454. { // Set Xt, Xnt
  455. auto Meval = CoordBasis::SetupEval(trg_nds);
  456. eval_basis(Xt, X, CoordDim, trg_nds.Dim(1), Meval);
  457. Xnt = Xt;
  458. Vector<Real> dX_;
  459. eval_basis(dX_, dX, 2*CoordDim, trg_nds.Dim(1), Meval);
  460. for (Long i = 0; i < Ntrg; i++) {
  461. for (Long j = 0; j < Nelem; j++) {
  462. auto Xn = Xnt.begin() + (j*Ntrg+i)*CoordDim;
  463. auto dX0 = dX_.begin() + (j*Ntrg+i)*2*CoordDim;
  464. StaticArray<Real,CoordDim> normal;
  465. normal[0] = dX0[2]*dX0[5] - dX0[4]*dX0[3];
  466. normal[1] = dX0[4]*dX0[1] - dX0[0]*dX0[5];
  467. normal[2] = dX0[0]*dX0[3] - dX0[2]*dX0[1];
  468. Real Xa = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  469. Real invXa = 1/Xa;
  470. normal[0] *= invXa;
  471. normal[1] *= invXa;
  472. normal[2] *= invXa;
  473. Real sqrt_Xa = sqrt<Real>(Xa);
  474. Xn[0] = normal[0]*sqrt_Xa*Rqbx;
  475. Xn[1] = normal[1]*sqrt_Xa*Rqbx;
  476. Xn[2] = normal[2]*sqrt_Xa*Rqbx;
  477. }
  478. }
  479. }
  480. SCTL_ASSERT(Xt.Dim() == Nelem * Ntrg * CoordDim);
  481. auto& M = M_singular;
  482. M.ReInit(Nelem * KDIM0 * DensityBasis::Size(), KDIM1 * Ntrg);
  483. #pragma omp parallel for schedule(static)
  484. for (Long i = 0; i < Ntrg; i++) { // Set M (singular)
  485. Matrix<Real> quad_nds;
  486. Vector<Real> quad_wts;
  487. { // Set quad_nds, quad_wts
  488. StaticArray<Real,ElemDim> trg_node_;
  489. for (Integer k = 0; k < ElemDim; k++) {
  490. trg_node_[k] = trg_nds[k][i];
  491. }
  492. Vector<Real> trg_node(ElemDim, trg_node_, false);
  493. DuffyQuad<ElemDim>(quad_nds, quad_wts, trg_node, order_singular, fabs(Rqbx));
  494. }
  495. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  496. Integer Nnds = quad_wts.Dim();
  497. Vector<Real> X_, dX_, Xa_, Xn_;
  498. { // Set X_, dX_
  499. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  500. eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
  501. }
  502. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  503. Long N = Nelem*Nnds;
  504. Xa_.ReInit(N);
  505. Xn_.ReInit(N*CoordDim);
  506. for (Long j = 0; j < N; j++) {
  507. StaticArray<Real,CoordDim> normal;
  508. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  509. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  510. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  511. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  512. Real invXa = 1/Xa_[j];
  513. Xn_[j*3+0] = normal[0] * invXa;
  514. Xn_[j*3+1] = normal[1] * invXa;
  515. Xn_[j*3+2] = normal[2] * invXa;
  516. }
  517. }
  518. DensityEvalOpType DensityEvalOp;
  519. if (std::is_same<CoordBasis,DensityBasis>::value) {
  520. DensityEvalOp = CoordEvalOp;
  521. } else {
  522. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  523. }
  524. for (Long j = 0; j < Nelem; j++) {
  525. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  526. if (Rqbx == 0) { // Set kernel matrix M__
  527. const Vector<Real> X0_(CoordDim, Xt.begin() + (j * Ntrg + i) * CoordDim, false);
  528. const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
  529. const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
  530. kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
  531. } else {
  532. Vector<Real> X0_(CoordDim);
  533. constexpr Integer qbx_order = 6;
  534. StaticArray<Matrix<Real>,qbx_order> M___;
  535. for (Integer k = 0; k < qbx_order; k++) { // Set kernel matrix M___
  536. for (Integer kk = 0; kk < CoordDim; kk++) X0_[kk] = Xt[(j * Ntrg + i) * CoordDim + kk] + (k+1) * Xnt[(j * Ntrg + i) * CoordDim + kk];
  537. const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
  538. const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
  539. kernel.template KernelMatrix<Real>(M___[k], X0_, X__, Xn__);
  540. }
  541. for (Long k = 0; k < Nnds * KDIM0 * KDIM1; k++) {
  542. M__[0][k] = 0;
  543. M__[0][k] += 6*M___[0][0][k];
  544. M__[0][k] += -15*M___[1][0][k];
  545. M__[0][k] += 20*M___[2][0][k];
  546. M__[0][k] += -15*M___[3][0][k];
  547. M__[0][k] += 6*M___[4][0][k];
  548. M__[0][k] += -1*M___[5][0][k];
  549. }
  550. }
  551. for (Long k0 = 0; k0 < KDIM0; k0++) {
  552. for (Long k1 = 0; k1 < KDIM1; k1++) {
  553. for (Long l = 0; l < DensityBasis::Size(); l++) {
  554. Real M_lk = 0;
  555. for (Long n = 0; n < Nnds; n++) {
  556. Real quad_wt = Xa_[j * Nnds + n] * quad_wts[n];
  557. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  558. }
  559. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1 * Ntrg + i] = M_lk;
  560. }
  561. }
  562. }
  563. }
  564. }
  565. { // Set M (subtract direct)
  566. Matrix<Real> quad_nds;
  567. Vector<Real> quad_wts;
  568. TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
  569. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  570. Integer Nnds = quad_wts.Dim();
  571. Vector<Real> X_, dX_, Xa_, Xn_;
  572. { // Set X_, dX_
  573. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  574. eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
  575. }
  576. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  577. Long N = Nelem*Nnds;
  578. Xa_.ReInit(N);
  579. Xn_.ReInit(N*CoordDim);
  580. for (Long j = 0; j < N; j++) {
  581. StaticArray<Real,CoordDim> normal;
  582. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  583. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  584. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  585. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  586. Real invXa = 1/Xa_[j];
  587. Xn_[j*3+0] = normal[0] * invXa;
  588. Xn_[j*3+1] = normal[1] * invXa;
  589. Xn_[j*3+2] = normal[2] * invXa;
  590. }
  591. }
  592. DensityEvalOpType DensityEvalOp;
  593. if (std::is_same<CoordBasis,DensityBasis>::value) {
  594. DensityEvalOp = CoordEvalOp;
  595. } else {
  596. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  597. }
  598. #pragma omp parallel for schedule(static)
  599. for (Long i = 0; i < Ntrg; i++) { // Subtract direct contribution
  600. for (Long j = 0; j < Nelem; j++) {
  601. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  602. { // Set kernel matrix M__
  603. const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + (j * Ntrg + i) * CoordDim, false);
  604. const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
  605. const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
  606. kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
  607. }
  608. for (Long k0 = 0; k0 < KDIM0; k0++) {
  609. for (Long k1 = 0; k1 < KDIM1; k1++) {
  610. for (Long l = 0; l < DensityBasis::Size(); l++) {
  611. Real M_lk = 0;
  612. for (Long n = 0; n < Nnds; n++) {
  613. Real quad_wt = Xa_[j * Nnds + n] * quad_wts[n];
  614. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  615. }
  616. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1 * Ntrg + i] -= M_lk;
  617. }
  618. }
  619. }
  620. }
  621. }
  622. }
  623. }
  624. template <class DensityBasis> static void EvalSingular(Matrix<Real>& U, const Vector<DensityBasis>& density, const Matrix<Real>& M, Integer KDIM0_, Integer KDIM1_) {
  625. if (M.Dim(0) == 0 || M.Dim(1) == 0) {
  626. U.ReInit(0,0);
  627. return;
  628. }
  629. const Long Ntrg = M.Dim(1) / KDIM1_;
  630. SCTL_ASSERT(M.Dim(1) == KDIM1_ * Ntrg);
  631. const Long Nelem = M.Dim(0) / (KDIM0_ * DensityBasis::Size());
  632. SCTL_ASSERT(M.Dim(0) == Nelem * KDIM0_ * DensityBasis::Size());
  633. const Integer dof = density.Dim() / (Nelem * KDIM0_);
  634. SCTL_ASSERT(density.Dim() == Nelem * dof * KDIM0_);
  635. if (U.Dim(0) != Nelem * dof * KDIM1_ || U.Dim(1) != Ntrg) {
  636. U.ReInit(Nelem * dof * KDIM1_, Ntrg);
  637. U = 0;
  638. }
  639. for (Long j = 0; j < Nelem; j++) {
  640. const Matrix<Real> M_(KDIM0_ * DensityBasis::Size(), KDIM1_ * Ntrg, (Iterator<Real>)M[j * KDIM0_ * DensityBasis::Size()], false);
  641. Matrix<Real> U_(dof, KDIM1_ * Ntrg, U[j*dof*KDIM1_], false);
  642. Matrix<Real> F_(dof, KDIM0_ * DensityBasis::Size());
  643. for (Long i = 0; i < dof; i++) {
  644. for (Long k = 0; k < KDIM0_; k++) {
  645. for (Long l = 0; l < DensityBasis::Size(); l++) {
  646. F_[i][k * DensityBasis::Size() + l] = density[(j * dof + i) * KDIM0_ + k][l];
  647. }
  648. }
  649. }
  650. Matrix<Real>::GEMM(U_, F_, M_);
  651. }
  652. }
  653. template <Integer DIM> struct PointData {
  654. bool operator<(const PointData& p) const {
  655. return mid < p.mid;
  656. }
  657. Long rank;
  658. Long surf_rank;
  659. Morton<DIM> mid;
  660. StaticArray<Real,DIM> coord;
  661. Real radius2;
  662. };
  663. template <class T1, class T2> struct Pair {
  664. Pair() {}
  665. Pair(T1 x, T2 y) : first(x), second(y) {}
  666. bool operator<(const Pair& p) const {
  667. return (first < p.first) || (((first == p.first) && (second < p.second)));
  668. }
  669. T1 first;
  670. T2 second;
  671. };
  672. template <class ElemList> static void BuildNbrList(Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt, const Vector<Long>& trg_surf, const ElemList& elem_lst, Real distance_factor, Real period_length, const Comm& comm) {
  673. using CoordBasis = typename ElemList::CoordBasis;
  674. constexpr Integer CoordDim = ElemList::CoordDim();
  675. constexpr Integer ElemDim = ElemList::ElemDim();
  676. using PtData = PointData<CoordDim>;
  677. const Integer rank = comm.Rank();
  678. Real R0 = 0;
  679. StaticArray<Real,CoordDim> X0;
  680. { // Find bounding box
  681. Long N = Xt.Dim() / CoordDim;
  682. SCTL_ASSERT(Xt.Dim() == N * CoordDim);
  683. SCTL_ASSERT(N);
  684. StaticArray<Real,CoordDim*2> Xloc;
  685. StaticArray<Real,CoordDim*2> Xglb;
  686. for (Integer k = 0; k < CoordDim; k++) {
  687. Xloc[0*CoordDim+k] = Xt[k];
  688. Xloc[1*CoordDim+k] = Xt[k];
  689. }
  690. for (Long i = 0; i < N; i++) {
  691. for (Integer k = 0; k < CoordDim; k++) {
  692. Xloc[0*CoordDim+k] = std::min<Real>(Xloc[0*CoordDim+k], Xt[i*CoordDim+k]);
  693. Xloc[1*CoordDim+k] = std::max<Real>(Xloc[1*CoordDim+k], Xt[i*CoordDim+k]);
  694. }
  695. }
  696. comm.Allreduce((ConstIterator<Real>)Xloc+0*CoordDim, (Iterator<Real>)Xglb+0*CoordDim, CoordDim, Comm::CommOp::MIN);
  697. comm.Allreduce((ConstIterator<Real>)Xloc+1*CoordDim, (Iterator<Real>)Xglb+1*CoordDim, CoordDim, Comm::CommOp::MAX);
  698. for (Integer k = 0; k < CoordDim; k++) {
  699. R0 = std::max(R0, Xglb[1*CoordDim+k]-Xglb[0*CoordDim+k]);
  700. }
  701. R0 = R0 * 2.0;
  702. for (Integer k = 0; k < CoordDim; k++) {
  703. X0[k] = Xglb[k] - R0*0.25;
  704. }
  705. }
  706. if (period_length > 0) {
  707. R0 = period_length;
  708. }
  709. Vector<PtData> PtSrc, PtTrg;
  710. Integer order_upsample = (Integer)(const_pi<Real>() / distance_factor + 0.5);
  711. { // Set PtSrc
  712. const Vector<CoordBasis>& X_elem_lst = elem_lst.ElemVector();
  713. Vector<CoordBasis> dX_elem_lst;
  714. CoordBasis::Grad(dX_elem_lst, X_elem_lst);
  715. Matrix<Real> nds;
  716. Vector<Real> wts;
  717. TensorProductGaussQuad<ElemDim>(nds, wts, order_upsample);
  718. const Long Nnds = nds.Dim(1);
  719. Vector<Real> X, dX;
  720. const auto CoordEvalOp = CoordBasis::SetupEval(nds);
  721. eval_basis(X, X_elem_lst, CoordDim, Nnds, CoordEvalOp);
  722. eval_basis(dX, dX_elem_lst, CoordDim * ElemDim, Nnds, CoordEvalOp);
  723. const Long N = X.Dim() / CoordDim;
  724. const Long Nelem = elem_lst.NElem();
  725. SCTL_ASSERT(X.Dim() == N * CoordDim);
  726. SCTL_ASSERT(N == Nelem * Nnds);
  727. Long rank_offset, surf_rank_offset;
  728. { // Set rank_offset, surf_rank_offset
  729. comm.Scan(Ptr2ConstItr<Long>(&N,1), Ptr2Itr<Long>(&rank_offset,1), 1, Comm::CommOp::SUM);
  730. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&surf_rank_offset,1), 1, Comm::CommOp::SUM);
  731. surf_rank_offset -= Nelem;
  732. rank_offset -= N;
  733. }
  734. PtSrc.ReInit(N);
  735. const Real R0inv = 1.0 / R0;
  736. for (Long i = 0; i < N; i++) { // Set coord
  737. for (Integer k = 0; k < CoordDim; k++) {
  738. PtSrc[i].coord[k] = (X[i*CoordDim+k] - X0[k]) * R0inv;
  739. }
  740. }
  741. if (period_length > 0) { // Wrap-around coord
  742. for (Long i = 0; i < N; i++) {
  743. auto& x = PtSrc[i].coord;
  744. for (Integer k = 0; k < CoordDim; k++) {
  745. x[k] -= (Long)(x[k]);
  746. }
  747. }
  748. }
  749. for (Long i = 0; i < N; i++) { // Set radius2, mid, rank
  750. Integer depth = 0;
  751. { // Set radius2, depth
  752. Real radius2 = 0;
  753. for (Integer k0 = 0; k0 < ElemDim; k0++) {
  754. Real R2 = 0;
  755. for (Integer k1 = 0; k1 < CoordDim; k1++) {
  756. Real dX_ = dX[(i*CoordDim+k1)*ElemDim+k0];
  757. R2 += dX_*dX_;
  758. }
  759. radius2 = std::max(radius2, R2);
  760. }
  761. radius2 *= R0inv*R0inv * distance_factor*distance_factor;
  762. PtSrc[i].radius2 = radius2;
  763. Long Rinv = (Long)(1.0/radius2);
  764. while (Rinv > 0) {
  765. Rinv = (Rinv>>2);
  766. depth++;
  767. }
  768. }
  769. PtSrc[i].mid = Morton<CoordDim>((Iterator<Real>)PtSrc[i].coord, std::min(Morton<CoordDim>::MaxDepth(),depth));
  770. PtSrc[i].rank = rank_offset + i;
  771. }
  772. for (Long i = 0 ; i < Nelem; i++) { // Set surf_rank
  773. for (Long j = 0; j < Nnds; j++) {
  774. PtSrc[i*Nnds+j].surf_rank = surf_rank_offset + i;
  775. }
  776. }
  777. Vector<PtData> PtSrcSorted;
  778. comm.HyperQuickSort(PtSrc, PtSrcSorted);
  779. PtSrc.Swap(PtSrcSorted);
  780. }
  781. { // Set PtTrg
  782. const Long N = Xt.Dim() / CoordDim;
  783. SCTL_ASSERT(Xt.Dim() == N * CoordDim);
  784. Long rank_offset;
  785. { // Set rank_offset
  786. comm.Scan(Ptr2ConstItr<Long>(&N,1), Ptr2Itr<Long>(&rank_offset,1), 1, Comm::CommOp::SUM);
  787. rank_offset -= N;
  788. }
  789. PtTrg.ReInit(N);
  790. const Real R0inv = 1.0 / R0;
  791. for (Long i = 0; i < N; i++) { // Set coord
  792. for (Integer k = 0; k < CoordDim; k++) {
  793. PtTrg[i].coord[k] = (Xt[i*CoordDim+k] - X0[k]) * R0inv;
  794. }
  795. }
  796. if (period_length > 0) { // Wrap-around coord
  797. for (Long i = 0; i < N; i++) {
  798. auto& x = PtTrg[i].coord;
  799. for (Integer k = 0; k < CoordDim; k++) {
  800. x[k] -= (Long)(x[k]);
  801. }
  802. }
  803. }
  804. for (Long i = 0; i < N; i++) { // Set radius2, mid, rank
  805. PtTrg[i].radius2 = 0;
  806. PtTrg[i].mid = Morton<CoordDim>((Iterator<Real>)PtTrg[i].coord);
  807. PtTrg[i].rank = rank_offset + i;
  808. }
  809. if (trg_surf.Dim()) { // Set surf_rank
  810. SCTL_ASSERT(trg_surf.Dim() == N);
  811. for (Long i = 0; i < N; i++) {
  812. PtTrg[i].surf_rank = trg_surf[i];
  813. }
  814. } else {
  815. for (Long i = 0; i < N; i++) {
  816. PtTrg[i].surf_rank = -1;
  817. }
  818. }
  819. Vector<PtData> PtTrgSorted;
  820. comm.HyperQuickSort(PtTrg, PtTrgSorted);
  821. PtTrg.Swap(PtTrgSorted);
  822. }
  823. Tree<CoordDim> tree(comm);
  824. { // Init tree
  825. Vector<Real> Xall(PtSrc.Dim()+PtTrg.Dim());
  826. { // Set Xall
  827. Xall.ReInit((PtSrc.Dim()+PtTrg.Dim())*CoordDim);
  828. Long Nsrc = PtSrc.Dim();
  829. Long Ntrg = PtTrg.Dim();
  830. for (Long i = 0; i < Nsrc; i++) {
  831. for (Integer k = 0; k < CoordDim; k++) {
  832. Xall[i*CoordDim+k] = PtSrc[i].coord[k];
  833. }
  834. }
  835. for (Long i = 0; i < Ntrg; i++) {
  836. for (Integer k = 0; k < CoordDim; k++) {
  837. Xall[(Nsrc+i)*CoordDim+k] = PtTrg[i].coord[k];
  838. }
  839. }
  840. }
  841. tree.UpdateRefinement(Xall, 1000, true, period_length>0);
  842. }
  843. { // Repartition PtSrc, PtTrg
  844. PtData splitter;
  845. splitter.mid = tree.GetPartitionMID()[rank];
  846. comm.PartitionS(PtSrc, splitter);
  847. comm.PartitionS(PtTrg, splitter);
  848. }
  849. { // Add tree data PtSrc
  850. const auto& node_mid = tree.GetNodeMID();
  851. const Long N = node_mid.Dim();
  852. SCTL_ASSERT(N);
  853. Vector<Long> dsp(N), cnt(N);
  854. for (Long i = 0; i < N; i++) {
  855. PtData m0;
  856. m0.mid = node_mid[i];
  857. dsp[i] = std::lower_bound(PtSrc.begin(), PtSrc.end(), m0) - PtSrc.begin();
  858. }
  859. for (Long i = 0; i < N-1; i++) {
  860. cnt[i] = dsp[i+1] - dsp[i];
  861. }
  862. cnt[N-1] = PtSrc.Dim() - dsp[N-1];
  863. tree.AddData("PtSrc", PtSrc, cnt);
  864. }
  865. tree.template Broadcast<PtData>("PtSrc");
  866. { // Build pair_lst
  867. Vector<Long> cnt;
  868. Vector<PtData> PtSrc;
  869. tree.GetData(PtSrc, cnt, "PtSrc");
  870. const auto& node_mid = tree.GetNodeMID();
  871. const auto& node_attr = tree.GetNodeAttr();
  872. Vector<Morton<CoordDim>> nbr_mid_tmp;
  873. for (Long i = 0; i < node_mid.Dim(); i++) {
  874. if (node_attr[i].Leaf && !node_attr[i].Ghost) {
  875. Vector<Morton<CoordDim>> child_mid;
  876. node_mid[i].Children(child_mid);
  877. for (const auto& trg_mid : child_mid) {
  878. Integer d0 = trg_mid.Depth();
  879. Vector<PtData> Src, Trg;
  880. { // Set Trg
  881. PtData m0, m1;
  882. m0.mid = trg_mid;
  883. m1.mid = trg_mid.Next();
  884. Long a = std::lower_bound(PtTrg.begin(), PtTrg.end(), m0) - PtTrg.begin();
  885. Long b = std::lower_bound(PtTrg.begin(), PtTrg.end(), m1) - PtTrg.begin();
  886. Trg.ReInit(b-a, PtTrg.begin()+a, false);
  887. if (!Trg.Dim()) continue;
  888. }
  889. Vector<std::set<Long>> near_elem(Trg.Dim());
  890. for (Integer d = 0; d <= d0; d++) {
  891. trg_mid.NbrList(nbr_mid_tmp, d, period_length>0);
  892. for (const auto& src_mid : nbr_mid_tmp) { // Set Src
  893. PtData m0, m1;
  894. m0.mid = src_mid;
  895. m1.mid = (d==d0 ? src_mid.Next() : src_mid.Ancestor(d+1));
  896. Long a = std::lower_bound(PtSrc.begin(), PtSrc.end(), m0) - PtSrc.begin();
  897. Long b = std::lower_bound(PtSrc.begin(), PtSrc.end(), m1) - PtSrc.begin();
  898. Src.ReInit(b-a, PtSrc.begin()+a, false);
  899. if (!Src.Dim()) continue;
  900. for (Long t = 0; t < Trg.Dim(); t++) { // set near_elem[t] <-- {s : dist(s,t) < radius(s)}
  901. for (Long s = 0; s < Src.Dim(); s++) {
  902. if (Trg[t].surf_rank != Src[s].surf_rank) {
  903. Real R2 = 0;
  904. for (Integer k = 0; k < CoordDim; k++) {
  905. Real dx = (Src[s].coord[k] - Trg[t].coord[k]);
  906. R2 += dx * dx;
  907. }
  908. if (R2 < Src[s].radius2) {
  909. near_elem[t].insert(Src[s].surf_rank);
  910. }
  911. }
  912. }
  913. }
  914. }
  915. }
  916. for (Long t = 0; t < Trg.Dim(); t++) { // Set pair_lst
  917. for (Long elem_idx : near_elem[t]) {
  918. pair_lst.PushBack(Pair<Long,Long>(elem_idx,Trg[t].rank));
  919. }
  920. }
  921. }
  922. }
  923. }
  924. }
  925. { // Sort and repartition pair_lst
  926. Vector<Pair<Long,Long>> pair_lst_sorted;
  927. comm.HyperQuickSort(pair_lst, pair_lst_sorted);
  928. Long surf_rank_offset;
  929. const Long Nelem = elem_lst.NElem();
  930. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&surf_rank_offset,1), 1, Comm::CommOp::SUM);
  931. surf_rank_offset -= Nelem;
  932. comm.PartitionS(pair_lst_sorted, Pair<Long,Long>(surf_rank_offset,0));
  933. pair_lst.Swap(pair_lst_sorted);
  934. }
  935. }
  936. template <class ElemList> static void BuildNbrListDeprecated(Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt, const ElemList& elem_lst, const Matrix<Real>& surf_nds, Real distance_factor) {
  937. using CoordBasis = typename ElemList::CoordBasis;
  938. constexpr Integer CoordDim = ElemList::CoordDim();
  939. constexpr Integer ElemDim = ElemList::ElemDim();
  940. const Long Nelem = elem_lst.NElem();
  941. const Long Ntrg = Xt.Dim() / CoordDim;
  942. SCTL_ASSERT(Xt.Dim() == Ntrg * CoordDim);
  943. Long Nnds, Nsurf_nds;
  944. Vector<Real> X_surf, X, dX;
  945. Integer order_upsample = (Integer)(const_pi<Real>() / distance_factor + 0.5);
  946. { // Set X, dX
  947. const Vector<CoordBasis>& X_elem_lst = elem_lst.ElemVector();
  948. Vector<CoordBasis> dX_elem_lst;
  949. CoordBasis::Grad(dX_elem_lst, X_elem_lst);
  950. Matrix<Real> nds_upsample;
  951. Vector<Real> wts_upsample;
  952. TensorProductGaussQuad<ElemDim>(nds_upsample, wts_upsample, order_upsample);
  953. Nnds = nds_upsample.Dim(1);
  954. const auto CoordEvalOp = CoordBasis::SetupEval(nds_upsample);
  955. eval_basis(X, X_elem_lst, CoordDim, nds_upsample.Dim(1), CoordEvalOp);
  956. eval_basis(dX, dX_elem_lst, CoordDim * ElemDim, nds_upsample.Dim(1), CoordEvalOp);
  957. Nsurf_nds = surf_nds.Dim(1);
  958. const auto CoordEvalOp_surf = CoordBasis::SetupEval(surf_nds);
  959. eval_basis(X_surf, X_elem_lst, CoordDim, Nsurf_nds, CoordEvalOp_surf);
  960. }
  961. Real d2 = distance_factor * distance_factor;
  962. for (Long i = 0; i < Nelem; i++) {
  963. std::set<Long> near_pts;
  964. std::set<Long> self_pts;
  965. for (Long j = 0; j < Nnds; j++) {
  966. Real R2_max = 0;
  967. StaticArray<Real, CoordDim> X0;
  968. for (Integer k = 0; k < CoordDim; k++) {
  969. X0[k] = X[(i*Nnds+j)*CoordDim+k];
  970. }
  971. for (Integer k0 = 0; k0 < ElemDim; k0++) {
  972. Real R2 = 0;
  973. for (Integer k1 = 0; k1 < CoordDim; k1++) {
  974. Real dX_ = dX[((i*Nnds+j)*CoordDim+k1)*ElemDim+k0];
  975. R2 += dX_*dX_;
  976. }
  977. R2_max = std::max(R2_max, R2*d2);
  978. }
  979. for (Long k = 0; k < Ntrg; k++) {
  980. Real R2 = 0;
  981. for (Integer l = 0; l < CoordDim; l++) {
  982. Real dX = Xt[k*CoordDim+l]- X0[l];
  983. R2 += dX * dX;
  984. }
  985. if (R2 < R2_max) near_pts.insert(k);
  986. }
  987. }
  988. for (Long j = 0; j < Nsurf_nds; j++) {
  989. StaticArray<Real, CoordDim> X0;
  990. for (Integer k = 0; k < CoordDim; k++) {
  991. X0[k] = X_surf[(i*Nsurf_nds+j)*CoordDim+k];
  992. }
  993. for (Long k = 0; k < Ntrg; k++) {
  994. Real R2 = 0;
  995. for (Integer l = 0; l < CoordDim; l++) {
  996. Real dX = Xt[k*CoordDim+l]- X0[l];
  997. R2 += dX * dX;
  998. }
  999. if (R2 == 0) self_pts.insert(k);
  1000. }
  1001. }
  1002. for (Long trg_idx : self_pts) {
  1003. near_pts.erase(trg_idx);
  1004. }
  1005. for (Long trg_idx : near_pts) {
  1006. pair_lst.PushBack(Pair<Long,Long>(i,trg_idx));
  1007. }
  1008. }
  1009. }
  1010. template <class DensityBasis, class ElemList, class Kernel> static void SetupNearSingular(Matrix<Real>& M_near_singular, Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt_, const Vector<Long>& trg_surf, const ElemList& elem_lst, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) {
  1011. static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
  1012. static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
  1013. static_assert(DensityBasis::Dim() == ElemList::ElemDim());
  1014. using CoordBasis = typename ElemList::CoordBasis;
  1015. using CoordEvalOpType = typename CoordBasis::EvalOpType;
  1016. using DensityEvalOpType = typename DensityBasis::EvalOpType;
  1017. constexpr Integer CoordDim = ElemList::CoordDim();
  1018. constexpr Integer ElemDim = ElemList::ElemDim();
  1019. constexpr Integer KDIM0 = Kernel::SrcDim();
  1020. constexpr Integer KDIM1 = Kernel::TrgDim();
  1021. const Long Nelem = elem_lst.NElem();
  1022. BuildNbrList(pair_lst, Xt_, trg_surf, elem_lst, 2.5/order_direct, period_length, comm);
  1023. const Long Ninterac = pair_lst.Dim();
  1024. Vector<Real> Xt;
  1025. { // Set Xt
  1026. Integer rank = comm.Rank();
  1027. Integer np = comm.Size();
  1028. Vector<Long> splitter_ranks;
  1029. { // Set splitter_ranks
  1030. Vector<Long> cnt(np);
  1031. const Long N = Xt_.Dim() / CoordDim;
  1032. comm.Allgather(Ptr2ConstItr<Long>(&N,1), 1, cnt.begin(), 1);
  1033. scan(splitter_ranks, cnt);
  1034. }
  1035. Vector<Long> scatter_index, recv_index, recv_cnt(np), recv_dsp(np);
  1036. { // Set scatter_index, recv_index, recv_cnt, recv_dsp
  1037. { // Set scatter_index, recv_index
  1038. Vector<Pair<Long,Long>> scatter_pair(pair_lst.Dim());
  1039. for (Long i = 0; i < pair_lst.Dim(); i++) {
  1040. scatter_pair[i] = Pair<Long,Long>(pair_lst[i].second,i);
  1041. }
  1042. omp_par::merge_sort(scatter_pair.begin(), scatter_pair.end());
  1043. recv_index.ReInit(scatter_pair.Dim());
  1044. scatter_index.ReInit(scatter_pair.Dim());
  1045. for (Long i = 0; i < scatter_index.Dim(); i++) {
  1046. recv_index[i] = scatter_pair[i].first;
  1047. scatter_index[i] = scatter_pair[i].second;
  1048. }
  1049. }
  1050. for (Integer i = 0; i < np; i++) {
  1051. recv_dsp[i] = std::lower_bound(recv_index.begin(), recv_index.end(), splitter_ranks[i]) - recv_index.begin();
  1052. }
  1053. for (Integer i = 0; i < np-1; i++) {
  1054. recv_cnt[i] = recv_dsp[i+1] - recv_dsp[i];
  1055. }
  1056. recv_cnt[np-1] = recv_index.Dim() - recv_dsp[np-1];
  1057. }
  1058. Vector<Long> send_index, send_cnt(np), send_dsp(np);
  1059. { // Set send_index, send_cnt, send_dsp
  1060. comm.Alltoall(recv_cnt.begin(), 1, send_cnt.begin(), 1);
  1061. scan(send_dsp, send_cnt);
  1062. send_index.ReInit(send_cnt[np-1] + send_dsp[np-1]);
  1063. comm.Alltoallv(recv_index.begin(), recv_cnt.begin(), recv_dsp.begin(), send_index.begin(), send_cnt.begin(), send_dsp.begin());
  1064. }
  1065. Vector<Real> Xt_send(send_index.Dim() * CoordDim);
  1066. for (Long i = 0; i < send_index.Dim(); i++) { // Set Xt_send
  1067. Long idx = send_index[i] - splitter_ranks[rank];
  1068. for (Integer k = 0; k < CoordDim; k++) {
  1069. Xt_send[i*CoordDim+k] = Xt_[idx*CoordDim+k];
  1070. }
  1071. }
  1072. Vector<Real> Xt_recv(recv_index.Dim() * CoordDim);
  1073. { // Set Xt_recv
  1074. for (Long i = 0; i < np; i++) {
  1075. send_cnt[i] *= CoordDim;
  1076. send_dsp[i] *= CoordDim;
  1077. recv_cnt[i] *= CoordDim;
  1078. recv_dsp[i] *= CoordDim;
  1079. }
  1080. comm.Alltoallv(Xt_send.begin(), send_cnt.begin(), send_dsp.begin(), Xt_recv.begin(), recv_cnt.begin(), recv_dsp.begin());
  1081. }
  1082. Xt.ReInit(scatter_index.Dim() * CoordDim);
  1083. for (Long i = 0; i < scatter_index.Dim(); i++) { // Set Xt
  1084. Long idx = scatter_index[i];
  1085. for (Integer k = 0; k < CoordDim; k++) {
  1086. Xt[idx*CoordDim+k] = Xt_recv[i*CoordDim+k];
  1087. }
  1088. }
  1089. }
  1090. const Vector<CoordBasis>& X = elem_lst.ElemVector();
  1091. Vector<CoordBasis> dX;
  1092. CoordBasis::Grad(dX, X);
  1093. Long elem_rank_offset;
  1094. { // Set elem_rank_offset
  1095. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&elem_rank_offset,1), 1, Comm::CommOp::SUM);
  1096. elem_rank_offset -= Nelem;
  1097. }
  1098. auto& M = M_near_singular;
  1099. M.ReInit(Ninterac * KDIM0 * DensityBasis::Size(), KDIM1);
  1100. #pragma omp parallel for schedule(static)
  1101. for (Long j = 0; j < Ninterac; j++) { // Set M (near-singular)
  1102. const Long src_idx = pair_lst[j].first - elem_rank_offset;
  1103. Real adapt = -1.0;
  1104. Tensor<Real,true,ElemDim,1> u0;
  1105. { // Set u0 (project target point to the surface patch in parameter space)
  1106. ConstIterator<Real> Xt_ = Xt.begin() + j * CoordDim;
  1107. const auto& nodes = CoordBasis::Nodes();
  1108. Long min_idx = -1;
  1109. Real min_R2 = 1e10;
  1110. for (Long i = 0; i < CoordBasis::Size(); i++) {
  1111. Real R2 = 0;
  1112. for (Integer k = 0; k < CoordDim; k++) {
  1113. Real dX = X[src_idx * CoordDim + k][i] - Xt_[k];
  1114. R2 += dX * dX;
  1115. }
  1116. if (R2 < min_R2) {
  1117. min_R2 = R2;
  1118. min_idx = i;
  1119. }
  1120. }
  1121. SCTL_ASSERT(min_idx >= 0);
  1122. for (Integer k = 0; k < ElemDim; k++) {
  1123. u0(k,0) = nodes[k][min_idx];
  1124. }
  1125. for (Integer i = 0; i < 2; i++) { // iterate
  1126. Matrix<Real> X_, dX_;
  1127. for (Integer k = 0; k < ElemDim; k++) {
  1128. u0(k,0) = std::min<Real>(1.0, u0(k,0));
  1129. u0(k,0) = std::max<Real>(0.0, u0(k,0));
  1130. }
  1131. const auto eval_op = CoordBasis::SetupEval(Matrix<Real>(ElemDim,1,u0.begin(),false));
  1132. CoordBasis::Eval(X_, Vector<CoordBasis>(CoordDim,(Iterator<CoordBasis>)X.begin()+src_idx*CoordDim,false),eval_op);
  1133. CoordBasis::Eval(dX_, Vector<CoordBasis>(CoordDim*ElemDim,dX.begin()+src_idx*CoordDim*ElemDim,false),eval_op);
  1134. const Tensor<Real,false,CoordDim,1> x0((Iterator<Real>)Xt_);
  1135. const Tensor<Real,false,CoordDim,1> x(X_.begin());
  1136. const Tensor<Real,false,CoordDim,ElemDim> x_u(dX_.begin());
  1137. auto inv = [](const Tensor<Real,true,2,2>& M) {
  1138. Tensor<Real,true,2,2> Minv;
  1139. Real det_inv = 1.0 / (M(0,0)*M(1,1) - M(1,0)*M(0,1));
  1140. Minv(0,0) = M(1,1) * det_inv;
  1141. Minv(0,1) =-M(0,1) * det_inv;
  1142. Minv(1,0) =-M(1,0) * det_inv;
  1143. Minv(1,1) = M(0,0) * det_inv;
  1144. return Minv;
  1145. };
  1146. auto du = inv(x_u.RotateRight()*x_u) * x_u.RotateRight()*(x0-x);
  1147. u0 = u0 + du;
  1148. auto x_u_squared = x_u.RotateRight() * x_u;
  1149. adapt = sctl::sqrt<Real>( ((x0-x).RotateRight()*(x0-x))(0,0) / std::max<Real>(x_u_squared(0,0),x_u_squared(1,1)) );
  1150. }
  1151. }
  1152. Matrix<Real> quad_nds;
  1153. Vector<Real> quad_wts;
  1154. DuffyQuad<ElemDim>(quad_nds, quad_wts, Vector<Real>(ElemDim,u0.begin(),false), order_singular, adapt);
  1155. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  1156. Integer Nnds = quad_wts.Dim();
  1157. Vector<Real> X_, dX_, Xa_, Xn_;
  1158. { // Set X_, dX_
  1159. const Vector<CoordBasis> X__(CoordDim, (Iterator<CoordBasis>)X.begin() + src_idx * CoordDim, false);
  1160. const Vector<CoordBasis> dX__(CoordDim * ElemDim, (Iterator<CoordBasis>)dX.begin() + src_idx * CoordDim * ElemDim, false);
  1161. eval_basis(X_, X__, CoordDim, Nnds, CoordEvalOp);
  1162. eval_basis(dX_, dX__, CoordDim * ElemDim, Nnds, CoordEvalOp);
  1163. }
  1164. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  1165. Xa_.ReInit(Nnds);
  1166. Xn_.ReInit(Nnds*CoordDim);
  1167. for (Long j = 0; j < Nnds; j++) {
  1168. StaticArray<Real,CoordDim> normal;
  1169. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  1170. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  1171. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  1172. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  1173. Real invXa = 1/Xa_[j];
  1174. Xn_[j*3+0] = normal[0] * invXa;
  1175. Xn_[j*3+1] = normal[1] * invXa;
  1176. Xn_[j*3+2] = normal[2] * invXa;
  1177. }
  1178. }
  1179. DensityEvalOpType DensityEvalOp;
  1180. if (std::is_same<CoordBasis,DensityBasis>::value) {
  1181. DensityEvalOp = CoordEvalOp;
  1182. } else {
  1183. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  1184. }
  1185. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  1186. { // Set kernel matrix M__
  1187. const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + j * CoordDim, false);
  1188. kernel.template KernelMatrix<Real>(M__, X0_, X_, Xn_);
  1189. }
  1190. for (Long k0 = 0; k0 < KDIM0; k0++) {
  1191. for (Long k1 = 0; k1 < KDIM1; k1++) {
  1192. for (Long l = 0; l < DensityBasis::Size(); l++) {
  1193. Real M_lk = 0;
  1194. for (Long n = 0; n < Nnds; n++) {
  1195. Real quad_wt = Xa_[n] * quad_wts[n];
  1196. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  1197. }
  1198. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1] = M_lk;
  1199. }
  1200. }
  1201. }
  1202. }
  1203. { // Set M (subtract direct)
  1204. Matrix<Real> quad_nds;
  1205. Vector<Real> quad_wts;
  1206. TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
  1207. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  1208. Integer Nnds = quad_wts.Dim();
  1209. Vector<Real> X_, dX_, Xa_, Xn_;
  1210. { // Set X_, dX_
  1211. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  1212. eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
  1213. }
  1214. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  1215. Long N = Nelem*Nnds;
  1216. Xa_.ReInit(N);
  1217. Xn_.ReInit(N*CoordDim);
  1218. for (Long j = 0; j < N; j++) {
  1219. StaticArray<Real,CoordDim> normal;
  1220. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  1221. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  1222. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  1223. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  1224. Real invXa = 1/Xa_[j];
  1225. Xn_[j*3+0] = normal[0] * invXa;
  1226. Xn_[j*3+1] = normal[1] * invXa;
  1227. Xn_[j*3+2] = normal[2] * invXa;
  1228. }
  1229. }
  1230. DensityEvalOpType DensityEvalOp;
  1231. if (std::is_same<CoordBasis,DensityBasis>::value) {
  1232. DensityEvalOp = CoordEvalOp;
  1233. } else {
  1234. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  1235. }
  1236. #pragma omp parallel for schedule(static)
  1237. for (Long j = 0; j < Ninterac; j++) { // Subtract direct contribution
  1238. const Long src_idx = pair_lst[j].first - elem_rank_offset;
  1239. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  1240. { // Set kernel matrix M__
  1241. const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + j * CoordDim, false);
  1242. Vector<Real> X__(Nnds * CoordDim, X_.begin() + src_idx * Nnds * CoordDim, false);
  1243. Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + src_idx * Nnds * CoordDim, false);
  1244. kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
  1245. }
  1246. for (Long k0 = 0; k0 < KDIM0; k0++) {
  1247. for (Long k1 = 0; k1 < KDIM1; k1++) {
  1248. for (Long l = 0; l < DensityBasis::Size(); l++) {
  1249. Real M_lk = 0;
  1250. for (Long n = 0; n < Nnds; n++) {
  1251. Real quad_wt = Xa_[src_idx * Nnds + n] * quad_wts[n];
  1252. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  1253. }
  1254. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1] -= M_lk;
  1255. }
  1256. }
  1257. }
  1258. }
  1259. }
  1260. }
  1261. template <class DensityBasis> static void EvalNearSingular(Vector<Real>& U, const Vector<DensityBasis>& density, const Matrix<Real>& M, const Vector<Pair<Long,Long>>& pair_lst, Long Nelem_, Long Ntrg_, Integer KDIM0_, Integer KDIM1_, const Comm& comm) {
  1262. const Long Ninterac = pair_lst.Dim();
  1263. const Integer dof = density.Dim() / Nelem_ / KDIM0_;
  1264. SCTL_ASSERT(density.Dim() == Nelem_ * dof * KDIM0_);
  1265. Long elem_rank_offset;
  1266. { // Set elem_rank_offset
  1267. comm.Scan(Ptr2ConstItr<Long>(&Nelem_,1), Ptr2Itr<Long>(&elem_rank_offset,1), 1, Comm::CommOp::SUM);
  1268. elem_rank_offset -= Nelem_;
  1269. }
  1270. Vector<Real> U_loc(Ninterac*dof*KDIM1_);
  1271. for (Long j = 0; j < Ninterac; j++) {
  1272. const Long src_idx = pair_lst[j].first - elem_rank_offset;
  1273. const Matrix<Real> M_(KDIM0_ * DensityBasis::Size(), KDIM1_, (Iterator<Real>)M[j * KDIM0_ * DensityBasis::Size()], false);
  1274. Matrix<Real> U_(dof, KDIM1_, U_loc.begin() + j*dof*KDIM1_, false);
  1275. Matrix<Real> F_(dof, KDIM0_ * DensityBasis::Size());
  1276. for (Long i = 0; i < dof; i++) {
  1277. for (Long k = 0; k < KDIM0_; k++) {
  1278. for (Long l = 0; l < DensityBasis::Size(); l++) {
  1279. F_[i][k * DensityBasis::Size() + l] = density[(src_idx * dof + i) * KDIM0_ + k][l];
  1280. }
  1281. }
  1282. }
  1283. Matrix<Real>::GEMM(U_, F_, M_);
  1284. }
  1285. if (U.Dim() != Ntrg_ * dof * KDIM1_) {
  1286. U.ReInit(Ntrg_ * dof * KDIM1_);
  1287. U = 0;
  1288. }
  1289. { // Set U
  1290. Integer rank = comm.Rank();
  1291. Integer np = comm.Size();
  1292. Vector<Long> splitter_ranks;
  1293. { // Set splitter_ranks
  1294. Vector<Long> cnt(np);
  1295. comm.Allgather(Ptr2ConstItr<Long>(&Ntrg_,1), 1, cnt.begin(), 1);
  1296. scan(splitter_ranks, cnt);
  1297. }
  1298. Vector<Long> scatter_index, send_index, send_cnt(np), send_dsp(np);
  1299. { // Set scatter_index, send_index, send_cnt, send_dsp
  1300. { // Set scatter_index, send_index
  1301. Vector<Pair<Long,Long>> scatter_pair(pair_lst.Dim());
  1302. for (Long i = 0; i < pair_lst.Dim(); i++) {
  1303. scatter_pair[i] = Pair<Long,Long>(pair_lst[i].second,i);
  1304. }
  1305. omp_par::merge_sort(scatter_pair.begin(), scatter_pair.end());
  1306. send_index.ReInit(scatter_pair.Dim());
  1307. scatter_index.ReInit(scatter_pair.Dim());
  1308. for (Long i = 0; i < scatter_index.Dim(); i++) {
  1309. send_index[i] = scatter_pair[i].first;
  1310. scatter_index[i] = scatter_pair[i].second;
  1311. }
  1312. }
  1313. for (Integer i = 0; i < np; i++) {
  1314. send_dsp[i] = std::lower_bound(send_index.begin(), send_index.end(), splitter_ranks[i]) - send_index.begin();
  1315. }
  1316. for (Integer i = 0; i < np-1; i++) {
  1317. send_cnt[i] = send_dsp[i+1] - send_dsp[i];
  1318. }
  1319. send_cnt[np-1] = send_index.Dim() - send_dsp[np-1];
  1320. }
  1321. Vector<Long> recv_index, recv_cnt(np), recv_dsp(np);
  1322. { // Set recv_index, recv_cnt, recv_dsp
  1323. comm.Alltoall(send_cnt.begin(), 1, recv_cnt.begin(), 1);
  1324. scan(recv_dsp, recv_cnt);
  1325. recv_index.ReInit(recv_cnt[np-1] + recv_dsp[np-1]);
  1326. comm.Alltoallv(send_index.begin(), send_cnt.begin(), send_dsp.begin(), recv_index.begin(), recv_cnt.begin(), recv_dsp.begin());
  1327. }
  1328. Vector<Real> U_send(scatter_index.Dim() * dof * KDIM1_);
  1329. for (Long i = 0; i < scatter_index.Dim(); i++) {
  1330. Long idx = scatter_index[i]*dof*KDIM1_;
  1331. for (Long k = 0; k < dof * KDIM1_; k++) {
  1332. U_send[i*dof*KDIM1_ + k] = U_loc[idx + k];
  1333. }
  1334. }
  1335. Vector<Real> U_recv(recv_index.Dim() * dof * KDIM1_);
  1336. { // Set U_recv
  1337. for (Long i = 0; i < np; i++) {
  1338. send_cnt[i] *= dof * KDIM1_;
  1339. send_dsp[i] *= dof * KDIM1_;
  1340. recv_cnt[i] *= dof * KDIM1_;
  1341. recv_dsp[i] *= dof * KDIM1_;
  1342. }
  1343. comm.Alltoallv(U_send.begin(), send_cnt.begin(), send_dsp.begin(), U_recv.begin(), recv_cnt.begin(), recv_dsp.begin());
  1344. }
  1345. for (Long i = 0; i < recv_index.Dim(); i++) { // Set U
  1346. Long idx = (recv_index[i] - splitter_ranks[rank]) * dof * KDIM1_;
  1347. for (Integer k = 0; k < dof * KDIM1_; k++) {
  1348. U[idx + k] += U_recv[i*dof*KDIM1_ + k];
  1349. }
  1350. }
  1351. }
  1352. }
  1353. template <class ElemList, class DensityBasis, class Kernel> static void Direct(Vector<Real>& U, const Vector<Real>& Xt, const ElemList& elem_lst, const Vector<DensityBasis>& density, const Kernel& kernel, Integer order_direct, const Comm& comm) {
  1354. using CoordBasis = typename ElemList::CoordBasis;
  1355. using CoordEvalOpType = typename CoordBasis::EvalOpType;
  1356. using DensityEvalOpType = typename DensityBasis::EvalOpType;
  1357. constexpr Integer CoordDim = ElemList::CoordDim();
  1358. constexpr Integer ElemDim = ElemList::ElemDim();
  1359. constexpr Integer KDIM0 = Kernel::SrcDim();
  1360. constexpr Integer KDIM1 = Kernel::TrgDim();
  1361. const Long Nelem = elem_lst.NElem();
  1362. const Integer dof = density.Dim() / Nelem / KDIM0;
  1363. SCTL_ASSERT(density.Dim() == Nelem * dof * KDIM0);
  1364. Matrix<Real> quad_nds;
  1365. Vector<Real> quad_wts;
  1366. TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
  1367. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  1368. Integer Nnds = quad_wts.Dim();
  1369. const Vector<CoordBasis>& X = elem_lst.ElemVector();
  1370. Vector<CoordBasis> dX;
  1371. CoordBasis::Grad(dX, X);
  1372. Vector<Real> X_, dX_, Xa_, Xn_;
  1373. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  1374. eval_basis(dX_, dX, CoordDim*ElemDim, Nnds, CoordEvalOp);
  1375. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  1376. Long N = Nelem*Nnds;
  1377. Xa_.ReInit(N);
  1378. Xn_.ReInit(N*CoordDim);
  1379. for (Long j = 0; j < N; j++) {
  1380. StaticArray<Real,CoordDim> normal;
  1381. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  1382. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  1383. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  1384. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  1385. Real invXa = 1/Xa_[j];
  1386. Xn_[j*3+0] = normal[0] * invXa;
  1387. Xn_[j*3+1] = normal[1] * invXa;
  1388. Xn_[j*3+2] = normal[2] * invXa;
  1389. }
  1390. }
  1391. Vector<Real> Fa_;
  1392. { // Set Fa_
  1393. Vector<Real> F_;
  1394. if (std::is_same<CoordBasis,DensityBasis>::value) {
  1395. eval_basis(F_, density, dof * KDIM0, Nnds, CoordEvalOp);
  1396. } else {
  1397. const DensityEvalOpType EvalOp = DensityBasis::SetupEval(quad_nds);
  1398. eval_basis(F_, density, dof * KDIM0, Nnds, EvalOp);
  1399. }
  1400. Fa_.ReInit(F_.Dim());
  1401. const Integer DensityDOF = dof * KDIM0;
  1402. SCTL_ASSERT(F_.Dim() == Nelem * Nnds * DensityDOF);
  1403. for (Long j = 0; j < Nelem; j++) {
  1404. for (Integer k = 0; k < Nnds; k++) {
  1405. Long idx = j * Nnds + k;
  1406. Real quad_wt = Xa_[idx] * quad_wts[k];
  1407. for (Integer l = 0; l < DensityDOF; l++) {
  1408. Fa_[idx * DensityDOF + l] = F_[idx * DensityDOF + l] * quad_wt;
  1409. }
  1410. }
  1411. }
  1412. }
  1413. { // Evaluate potential
  1414. const Long Ntrg = Xt.Dim() / CoordDim;
  1415. SCTL_ASSERT(Xt.Dim() == Ntrg * CoordDim);
  1416. if (U.Dim() != Ntrg * dof * KDIM1) {
  1417. U.ReInit(Ntrg * dof * KDIM1);
  1418. U = 0;
  1419. }
  1420. ParticleFMM<Real,CoordDim>::Eval(U, Xt, X_, Xn_, Fa_, kernel, comm);
  1421. }
  1422. }
  1423. public:
  1424. template <class DensityBasis, class ElemList, class Kernel> void Setup(const ElemList& elem_lst, const Vector<Real>& Xt, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) {
  1425. Xt_.ReInit(0);
  1426. M_singular.ReInit(0,0);
  1427. M_near_singular.ReInit(0,0);
  1428. pair_lst.ReInit(0);
  1429. order_direct_ = order_direct;
  1430. period_length_ = period_length;
  1431. comm_ = comm;
  1432. Profile::Tic("Setup", &comm_);
  1433. static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
  1434. static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
  1435. static_assert(DensityBasis::Dim() == ElemList::ElemDim());
  1436. Xt_ = Xt;
  1437. M_singular.ReInit(0,0);
  1438. Profile::Tic("SetupNearSingular", &comm_);
  1439. SetupNearSingular<DensityBasis>(M_near_singular, pair_lst, Xt_, Vector<Long>(), elem_lst, kernel, order_singular, order_direct_, period_length_, comm_);
  1440. Profile::Toc();
  1441. Profile::Toc();
  1442. }
  1443. template <class DensityBasis, class PotentialBasis, class ElemList, class Kernel> void Setup(const ElemList& elem_lst, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm, Real Rqbx = 0) {
  1444. Xt_.ReInit(0);
  1445. M_singular.ReInit(0,0);
  1446. M_near_singular.ReInit(0,0);
  1447. pair_lst.ReInit(0);
  1448. order_direct_ = order_direct;
  1449. period_length_ = period_length;
  1450. comm_ = comm;
  1451. Profile::Tic("Setup", &comm_);
  1452. static_assert(std::is_same<Real,typename PotentialBasis::ValueType>::value);
  1453. static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
  1454. static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
  1455. static_assert(PotentialBasis::Dim() == ElemList::ElemDim());
  1456. static_assert(DensityBasis::Dim() == ElemList::ElemDim());
  1457. Vector<Long> trg_surf;
  1458. { // Set Xt_
  1459. using CoordBasis = typename ElemList::CoordBasis;
  1460. Matrix<Real> trg_nds = PotentialBasis::Nodes();
  1461. auto Meval = CoordBasis::SetupEval(trg_nds);
  1462. eval_basis(Xt_, elem_lst.ElemVector(), ElemList::CoordDim(), trg_nds.Dim(1), Meval);
  1463. { // Set trg_surf
  1464. const Long Nelem = elem_lst.NElem();
  1465. const Long Nnds = trg_nds.Dim(1);
  1466. Long elem_offset;
  1467. { // Set elem_offset
  1468. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&elem_offset,1), 1, Comm::CommOp::SUM);
  1469. elem_offset -= Nelem;
  1470. }
  1471. trg_surf.ReInit(elem_lst.NElem() * trg_nds.Dim(1));
  1472. for (Long i = 0; i < Nelem; i++) {
  1473. for (Long j = 0; j < Nnds; j++) {
  1474. trg_surf[i*Nnds+j] = elem_offset + i;
  1475. }
  1476. }
  1477. }
  1478. }
  1479. Profile::Tic("SetupSingular", &comm_);
  1480. SetupSingular<DensityBasis>(M_singular, PotentialBasis::Nodes(), elem_lst, kernel, order_singular, order_direct_, Rqbx);
  1481. Profile::Toc();
  1482. Profile::Tic("SetupNearSingular", &comm_);
  1483. SetupNearSingular<DensityBasis>(M_near_singular, pair_lst, Xt_, trg_surf, elem_lst, kernel, order_singular, order_direct_, period_length_, comm_);
  1484. Profile::Toc();
  1485. Profile::Toc();
  1486. }
  1487. template <class DensityBasis, class PotentialBasis, class ElemList, class Kernel> void Eval(Vector<PotentialBasis>& U, const ElemList& elements, const Vector<DensityBasis>& F, const Kernel& kernel) const {
  1488. Profile::Tic("Eval", &comm_);
  1489. Matrix<Real> U_singular;
  1490. Vector<Real> U_direct, U_near_sing;
  1491. Profile::Tic("EvalDirect", &comm_);
  1492. Direct(U_direct, Xt_, elements, F, kernel, order_direct_, comm_);
  1493. Profile::Toc();
  1494. Profile::Tic("EvalSingular", &comm_);
  1495. EvalSingular(U_singular, F, M_singular, kernel.SrcDim(), kernel.TrgDim());
  1496. Profile::Toc();
  1497. Profile::Tic("EvalNearSingular", &comm_);
  1498. EvalNearSingular(U_near_sing, F, M_near_singular, pair_lst, elements.NElem(), Xt_.Dim() / ElemList::CoordDim(), kernel.SrcDim(), kernel.TrgDim(), comm_);
  1499. SCTL_ASSERT(U_near_sing.Dim() == U_direct.Dim());
  1500. Profile::Toc();
  1501. const Long dof = U_direct.Dim() / (elements.NElem() * PotentialBasis::Size() * kernel.TrgDim());
  1502. SCTL_ASSERT(U_direct .Dim() == elements.NElem() * PotentialBasis::Size() * dof * kernel.TrgDim());
  1503. SCTL_ASSERT(U_near_sing.Dim() == elements.NElem() * PotentialBasis::Size() * dof * kernel.TrgDim());
  1504. if (U.Dim() != elements.NElem() * dof * kernel.TrgDim()) {
  1505. U.ReInit(elements.NElem() * dof * kernel.TrgDim());
  1506. }
  1507. for (int i = 0; i < elements.NElem(); i++) {
  1508. for (int j = 0; j < PotentialBasis::Size(); j++) {
  1509. for (int k = 0; k < dof*kernel.TrgDim(); k++) {
  1510. Real& U_ = U[i*dof*kernel.TrgDim()+k][j];
  1511. U_ = 0;
  1512. U_ += U_direct [(i*PotentialBasis::Size()+j)*dof*kernel.TrgDim()+k];
  1513. U_ += U_near_sing[(i*PotentialBasis::Size()+j)*dof*kernel.TrgDim()+k];
  1514. U_ *= kernel.template ScaleFactor<Real>();
  1515. }
  1516. }
  1517. }
  1518. if (U_singular.Dim(1)) {
  1519. SCTL_ASSERT(U_singular.Dim(0) == elements.NElem() * dof * kernel.TrgDim());
  1520. SCTL_ASSERT(U_singular.Dim(1) == PotentialBasis::Size());
  1521. for (int i = 0; i < elements.NElem(); i++) {
  1522. for (int j = 0; j < PotentialBasis::Size(); j++) {
  1523. for (int k = 0; k < dof*kernel.TrgDim(); k++) {
  1524. U[i*dof*kernel.TrgDim()+k][j] += U_singular[i*dof*kernel.TrgDim()+k][j] * kernel.template ScaleFactor<Real>();
  1525. }
  1526. }
  1527. }
  1528. }
  1529. Profile::Toc();
  1530. }
  1531. template <class DensityBasis, class ElemList, class Kernel> void Eval(Vector<Real>& U, const ElemList& elements, const Vector<DensityBasis>& F, const Kernel& kernel) const {
  1532. Profile::Tic("Eval", &comm_);
  1533. Matrix<Real> U_singular;
  1534. Vector<Real> U_direct, U_near_sing;
  1535. Profile::Tic("EvalDirect", &comm_);
  1536. Direct(U_direct, Xt_, elements, F, kernel, order_direct_, comm_);
  1537. Profile::Toc();
  1538. Profile::Tic("EvalSingular", &comm_);
  1539. EvalSingular(U_singular, F, M_singular, kernel.SrcDim(), kernel.TrgDim());
  1540. Profile::Toc();
  1541. Profile::Tic("EvalNearSingular", &comm_);
  1542. EvalNearSingular(U_near_sing, F, M_near_singular, pair_lst, elements.NElem(), Xt_.Dim() / ElemList::CoordDim(), kernel.SrcDim(), kernel.TrgDim(), comm_);
  1543. SCTL_ASSERT(U_near_sing.Dim() == U_direct.Dim());
  1544. Profile::Toc();
  1545. Long Nt = Xt_.Dim() / ElemList::CoordDim();
  1546. const Long dof = U_direct.Dim() / (Nt * kernel.TrgDim());
  1547. SCTL_ASSERT(U_direct.Dim() == Nt * dof * kernel.TrgDim());
  1548. if (U.Dim() != U_direct.Dim()) {
  1549. U.ReInit(U_direct.Dim());
  1550. }
  1551. for (int i = 0; i < U.Dim(); i++) {
  1552. U[i] = (U_direct[i] + U_near_sing[i]) * kernel.template ScaleFactor<Real>();
  1553. }
  1554. if (U_singular.Dim(1)) {
  1555. SCTL_ASSERT(U_singular.Dim(0) == elements.NElem() * dof * kernel.TrgDim());
  1556. const Long Nnodes = U_singular.Dim(1);
  1557. for (int i = 0; i < elements.NElem(); i++) {
  1558. for (int j = 0; j < Nnodes; j++) {
  1559. for (int k = 0; k < dof*kernel.TrgDim(); k++) {
  1560. Real& U_ = U[(i*Nnodes+j)*dof*kernel.TrgDim()+k];
  1561. U_ += U_singular[i*dof*kernel.TrgDim()+k][j] * kernel.template ScaleFactor<Real>();
  1562. }
  1563. }
  1564. }
  1565. }
  1566. Profile::Toc();
  1567. }
  1568. template <Integer ORDER = 5> static void test(Integer order_singular = 10, Integer order_direct = 5, const Comm& comm = Comm::World()) {
  1569. constexpr Integer COORD_DIM = 3;
  1570. constexpr Integer ELEM_DIM = COORD_DIM-1;
  1571. using ElemList = ElemList<COORD_DIM, Basis<Real, ELEM_DIM, ORDER>>;
  1572. using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
  1573. using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
  1574. int np = comm.Size();
  1575. int rank = comm.Rank();
  1576. auto build_torus = [rank,np](ElemList& elements, long Nt, long Np, Real Rmajor, Real Rminor){
  1577. auto nodes = ElemList::CoordBasis::Nodes();
  1578. auto torus = [](Real theta, Real phi, Real Rmajor, Real Rminor) {
  1579. Real R = Rmajor + Rminor * cos<Real>(phi);
  1580. Real X = R * cos<Real>(theta);
  1581. Real Y = R * sin<Real>(theta);
  1582. Real Z = Rminor * sin<Real>(phi);
  1583. return std::make_tuple(X,Y,Z);
  1584. };
  1585. long start = Nt*Np*(rank+0)/np;
  1586. long end = Nt*Np*(rank+1)/np;
  1587. elements.ReInit(end - start);
  1588. for (long ii = start; ii < end; ii++) {
  1589. long i = ii / Np;
  1590. long j = ii % Np;
  1591. for (int k = 0; k < ElemList::CoordBasis::Size(); k++) {
  1592. Real X, Y, Z;
  1593. Real theta = 2 * const_pi<Real>() * (i + nodes[0][k]) / Nt;
  1594. Real phi = 2 * const_pi<Real>() * (j + nodes[1][k]) / Np;
  1595. std::tie(X,Y,Z) = torus(theta, phi, Rmajor, Rminor);
  1596. elements(ii-start,0)[k] = X;
  1597. elements(ii-start,1)[k] = Y;
  1598. elements(ii-start,2)[k] = Z;
  1599. }
  1600. }
  1601. };
  1602. ElemList elements_src, elements_trg;
  1603. build_torus(elements_src, 28, 16, 2, 1.0);
  1604. build_torus(elements_trg, 29, 17, 2, 0.99);
  1605. Vector<Real> Xt;
  1606. Vector<PotentialBasis> U_onsurf, U_offsurf;
  1607. Vector<DensityBasis> density_sl, density_dl;
  1608. { // Set Xt, elements_src, elements_trg, density_sl, density_dl, U
  1609. Real X0[COORD_DIM] = {3,2,1};
  1610. std::function<void(Real*,Real*,Real*)> potential = [X0](Real* U, Real* X, Real* Xn) {
  1611. Real dX[COORD_DIM] = {X[0]-X0[0],X[1]-X0[1],X[2]-X0[2]};
  1612. Real Rinv = 1/sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dX[2]);
  1613. U[0] = Rinv;
  1614. };
  1615. std::function<void(Real*,Real*,Real*)> potential_normal_derivative = [X0](Real* U, Real* X, Real* Xn) {
  1616. Real dX[COORD_DIM] = {X[0]-X0[0],X[1]-X0[1],X[2]-X0[2]};
  1617. Real Rinv = 1/sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dX[2]);
  1618. Real RdotN = dX[0]*Xn[0]+dX[1]*Xn[1]+dX[2]*Xn[2];
  1619. U[0] = -RdotN * Rinv*Rinv*Rinv;
  1620. };
  1621. DiscretizeSurfaceFn<COORD_DIM,1>(density_sl, elements_src, potential_normal_derivative);
  1622. DiscretizeSurfaceFn<COORD_DIM,1>(density_dl, elements_src, potential);
  1623. DiscretizeSurfaceFn<COORD_DIM,1>(U_onsurf , elements_src, potential);
  1624. DiscretizeSurfaceFn<COORD_DIM,1>(U_offsurf , elements_trg, potential);
  1625. for (long i = 0; i < elements_trg.NElem(); i++) { // Set Xt
  1626. for (long j = 0; j < PotentialBasis::Size(); j++) {
  1627. for (int k = 0; k < COORD_DIM; k++) {
  1628. Xt.PushBack(elements_trg(i,k)[j]);
  1629. }
  1630. }
  1631. }
  1632. }
  1633. GenericKernel<Laplace3D_DxU> Laplace_DxU;
  1634. GenericKernel<Laplace3D_FxU> Laplace_FxU;
  1635. Profile::Enable(true);
  1636. if (1) { // Greeen's identity test (Laplace, on-surface)
  1637. Profile::Tic("OnSurface", &comm);
  1638. Quadrature<Real> quadrature_DxU, quadrature_FxU;
  1639. quadrature_FxU.Setup<DensityBasis, PotentialBasis>(elements_src, Laplace_FxU, order_singular, order_direct, -1.0, comm);
  1640. quadrature_DxU.Setup<DensityBasis, PotentialBasis>(elements_src, Laplace_DxU, order_singular, order_direct, -1.0, comm);
  1641. Vector<PotentialBasis> U_sl, U_dl;
  1642. quadrature_FxU.Eval(U_sl, elements_src, density_sl, Laplace_FxU);
  1643. quadrature_DxU.Eval(U_dl, elements_src, density_dl, Laplace_DxU);
  1644. Profile::Toc();
  1645. Real max_err = 0;
  1646. Vector<PotentialBasis> err(U_onsurf.Dim());
  1647. for (long i = 0; i < U_sl.Dim(); i++) {
  1648. for (long j = 0; j < PotentialBasis::Size(); j++) {
  1649. err[i][j] = 0.5*U_onsurf[i][j] - (U_sl[i][j] + U_dl[i][j]);
  1650. max_err = std::max<Real>(max_err, fabs(err[i][j]));
  1651. }
  1652. }
  1653. { // Print error
  1654. Real glb_err;
  1655. comm.Allreduce(Ptr2ConstItr<Real>(&max_err,1), Ptr2Itr<Real>(&glb_err,1), 1, Comm::CommOp::MAX);
  1656. if (!comm.Rank()) std::cout<<"Error = "<<glb_err<<'\n';
  1657. }
  1658. { // Write VTK output
  1659. VTUData vtu;
  1660. vtu.AddElems(elements_src, err, ORDER);
  1661. vtu.WriteVTK("err", comm);
  1662. }
  1663. { // Write VTK output
  1664. VTUData vtu;
  1665. vtu.AddElems(elements_src, U_onsurf, ORDER);
  1666. vtu.WriteVTK("U", comm);
  1667. }
  1668. }
  1669. if (1) { // Greeen's identity test (Laplace, off-surface)
  1670. Profile::Tic("OffSurface", &comm);
  1671. Quadrature<Real> quadrature_DxU, quadrature_FxU;
  1672. quadrature_FxU.Setup<DensityBasis>(elements_src, Xt, Laplace_FxU, order_singular, order_direct, -1.0, comm);
  1673. quadrature_DxU.Setup<DensityBasis>(elements_src, Xt, Laplace_DxU, order_singular, order_direct, -1.0, comm);
  1674. Vector<Real> U_sl, U_dl;
  1675. quadrature_FxU.Eval(U_sl, elements_src, density_sl, Laplace_FxU);
  1676. quadrature_DxU.Eval(U_dl, elements_src, density_dl, Laplace_DxU);
  1677. Profile::Toc();
  1678. Real max_err = 0;
  1679. Vector<PotentialBasis> err(elements_trg.NElem());
  1680. for (long i = 0; i < elements_trg.NElem(); i++) {
  1681. for (long j = 0; j < PotentialBasis::Size(); j++) {
  1682. err[i][j] = U_offsurf[i][j] - (U_sl[i*PotentialBasis::Size()+j] + U_dl[i*PotentialBasis::Size()+j]);
  1683. max_err = std::max<Real>(max_err, fabs(err[i][j]));
  1684. }
  1685. }
  1686. { // Print error
  1687. Real glb_err;
  1688. comm.Allreduce(Ptr2ConstItr<Real>(&max_err,1), Ptr2Itr<Real>(&glb_err,1), 1, Comm::CommOp::MAX);
  1689. if (!comm.Rank()) std::cout<<"Error = "<<glb_err<<'\n';
  1690. }
  1691. { // Write VTK output
  1692. VTUData vtu;
  1693. vtu.AddElems(elements_trg, err, ORDER);
  1694. vtu.WriteVTK("err", comm);
  1695. }
  1696. { // Write VTK output
  1697. VTUData vtu;
  1698. vtu.AddElems(elements_trg, U_offsurf, ORDER);
  1699. vtu.WriteVTK("U", comm);
  1700. }
  1701. }
  1702. Profile::print(&comm);
  1703. }
  1704. static void test1() {
  1705. const Comm& comm = Comm::World();
  1706. constexpr Integer ORDER = 15;
  1707. Integer order_singular = 20;
  1708. Integer order_direct = 20;
  1709. constexpr Integer COORD_DIM = 3;
  1710. constexpr Integer ELEM_DIM = COORD_DIM-1;
  1711. using ElemList = ElemList<COORD_DIM, Basis<Real, ELEM_DIM, ORDER>>;
  1712. using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
  1713. using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
  1714. int np = comm.Size();
  1715. int rank = comm.Rank();
  1716. auto build_sphere = [rank,np](ElemList& elements, Real X, Real Y, Real Z, Real R){
  1717. auto nodes = ElemList::CoordBasis::Nodes();
  1718. long start = 2*COORD_DIM*(rank+0)/np;
  1719. long end = 2*COORD_DIM*(rank+1)/np;
  1720. elements.ReInit(end - start);
  1721. for (long ii = start; ii < end; ii++) {
  1722. long i = ii / 2;
  1723. long j = ii % 2;
  1724. for (int k = 0; k < ElemList::CoordBasis::Size(); k++) {
  1725. Real coord[COORD_DIM];
  1726. coord[(i+0)%COORD_DIM] = (j ? -1.0 : 1.0);
  1727. coord[(i+1)%COORD_DIM] = 2.0 * nodes[j?1:0][k] - 1.0;
  1728. coord[(i+2)%COORD_DIM] = 2.0 * nodes[j?0:1][k] - 1.0;
  1729. Real R0 = sqrt<Real>(coord[0]*coord[0] + coord[1]*coord[1] + coord[2]*coord[2]);
  1730. elements(ii-start,0)[k] = X + R * coord[0] / R0;
  1731. elements(ii-start,1)[k] = Y + R * coord[1] / R0;
  1732. elements(ii-start,2)[k] = Z + R * coord[2] / R0;
  1733. }
  1734. }
  1735. };
  1736. ElemList elements;
  1737. build_sphere(elements, 0.0, 0.0, 0.0, 1.00);
  1738. Vector<DensityBasis> density_sl;
  1739. { // Set density_sl
  1740. std::function<void(Real*,Real*,Real*)> sigma = [](Real* U, Real* X, Real* Xn) {
  1741. Real R = sqrt(X[0]*X[0]+X[1]*X[1]+X[2]*X[2]);
  1742. Real sinp = sqrt(X[1]*X[1] + X[2]*X[2]) / R;
  1743. Real cosp = -X[0] / R;
  1744. U[0] = -1.5;
  1745. U[1] = 0;
  1746. U[2] = 0;
  1747. };
  1748. DiscretizeSurfaceFn<COORD_DIM,3>(density_sl, elements, sigma);
  1749. }
  1750. GenericKernel<Stokes3D_DxU> Stokes_DxU;
  1751. GenericKernel<Stokes3D_FxU> Stokes_FxU;
  1752. Profile::Enable(true);
  1753. if (1) {
  1754. Vector<PotentialBasis> U;
  1755. Quadrature<Real> quadrature_FxU;
  1756. quadrature_FxU.Setup<DensityBasis, PotentialBasis>(elements, Stokes_FxU, order_singular, order_direct, -1.0, comm);
  1757. quadrature_FxU.Eval(U, elements, density_sl, Stokes_FxU);
  1758. { // Write VTK output
  1759. VTUData vtu;
  1760. vtu.AddElems(elements, U, ORDER);
  1761. vtu.WriteVTK("U", comm);
  1762. }
  1763. { // Write VTK output
  1764. VTUData vtu;
  1765. vtu.AddElems(elements, density_sl, ORDER);
  1766. vtu.WriteVTK("sigma", comm);
  1767. }
  1768. }
  1769. Profile::print(&comm);
  1770. }
  1771. private:
  1772. static void scan(Vector<Long>& dsp, const Vector<Long>& cnt) {
  1773. dsp.ReInit(cnt.Dim());
  1774. if (cnt.Dim()) dsp[0] = 0;
  1775. omp_par::scan(cnt.begin(), dsp.begin(), cnt.Dim());
  1776. }
  1777. template <class Basis> static void eval_basis(Vector<Real>& value, const Vector<Basis> X, Integer dof, Integer Nnds, const typename Basis::EvalOpType& EvalOp) {
  1778. Long Nelem = X.Dim() / dof;
  1779. SCTL_ASSERT(X.Dim() == Nelem * dof);
  1780. value.ReInit(Nelem*Nnds*dof);
  1781. Matrix<Real> X_(Nelem*dof, Nnds, value.begin(),false);
  1782. Basis::Eval(X_, X, EvalOp);
  1783. for (Long j = 0; j < Nelem; j++) { // Rearrange data
  1784. Matrix<Real> X(Nnds, dof, X_[j*dof], false);
  1785. X = Matrix<Real>(dof, Nnds, X_[j*dof], false).Transpose();
  1786. }
  1787. }
  1788. template <int CoordDim, int FnDim, class FnBasis, class ElemList> static void DiscretizeSurfaceFn(Vector<FnBasis>& U, const ElemList& elements, std::function<void(Real*,Real*,Real*)> fn) {
  1789. using CoordBasis = typename ElemList::CoordBasis;
  1790. const long Nelem = elements.NElem();
  1791. U.ReInit(Nelem * FnDim);
  1792. Matrix<Real> X, X_grad;
  1793. { // Set X, X_grad
  1794. Vector<CoordBasis> coord = elements.ElemVector();
  1795. Vector<CoordBasis> coord_grad;
  1796. CoordBasis::Grad(coord_grad, coord);
  1797. const auto Meval = CoordBasis::SetupEval(FnBasis::Nodes());
  1798. CoordBasis::Eval(X, coord, Meval);
  1799. CoordBasis::Eval(X_grad, coord_grad, Meval);
  1800. }
  1801. for (long i = 0; i < Nelem; i++) {
  1802. for (long j = 0; j < FnBasis::Size(); j++) {
  1803. Real X_[CoordDim], Xn[CoordDim], U_[FnDim];
  1804. for (long k = 0; k < CoordDim; k++) {
  1805. X_[k] = X[i*CoordDim+k][j];
  1806. }
  1807. { // Set Xn
  1808. Real Xu[CoordDim], Xv[CoordDim];
  1809. for (long k = 0; k < CoordDim; k++) {
  1810. Xu[k] = X_grad[(i*CoordDim+k)*2+0][j];
  1811. Xv[k] = X_grad[(i*CoordDim+k)*2+1][j];
  1812. }
  1813. Real dA = 0;
  1814. for (long k = 0; k < CoordDim; k++) {
  1815. Xn[k] = Xu[(k+1)%CoordDim] * Xv[(k+2)%CoordDim];
  1816. Xn[k] -= Xv[(k+1)%CoordDim] * Xu[(k+2)%CoordDim];
  1817. dA += Xn[k] * Xn[k];
  1818. }
  1819. dA = sqrt(dA);
  1820. for (long k = 0; k < CoordDim; k++) {
  1821. Xn[k] /= dA;
  1822. }
  1823. }
  1824. fn(U_, X_, Xn);
  1825. for (long k = 0; k < FnDim; k++) {
  1826. U[i*FnDim+k][j] = U_[k];
  1827. }
  1828. }
  1829. }
  1830. }
  1831. Vector<Real> Xt_;
  1832. Matrix<Real> M_singular;
  1833. Matrix<Real> M_near_singular;
  1834. Vector<Pair<Long,Long>> pair_lst;
  1835. Integer order_direct_;
  1836. Real period_length_;
  1837. Comm comm_;
  1838. };
  1839. template <class Real, Integer ORDER=10> class Stellarator {
  1840. private:
  1841. static constexpr Integer COORD_DIM = 3;
  1842. static constexpr Integer ELEM_DIM = COORD_DIM-1;
  1843. using ElemBasis = Basis<Real, ELEM_DIM, ORDER>;
  1844. using ElemLst = ElemList<COORD_DIM, ElemBasis>;
  1845. struct Laplace3D_dUxF {
  1846. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1847. return 1 / (4 * const_pi<ValueType>());
  1848. }
  1849. template <class ValueType> static void Eval(ValueType (&u)[3][1], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1850. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1851. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1852. ValueType rinv3 = rinv * rinv * rinv;
  1853. u[0][0] = -r[0] * rinv3;
  1854. u[1][0] = -r[1] * rinv3;
  1855. u[2][0] = -r[2] * rinv3;
  1856. }
  1857. };
  1858. struct BiotSavart3D {
  1859. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1860. return 1 / (4 * const_pi<ValueType>());
  1861. }
  1862. template <class ValueType> static void Eval(ValueType (&u)[3][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1863. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1864. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1865. ValueType rinv3 = rinv * rinv * rinv;
  1866. u[0][0] = (0) * rinv3; u[1][0] = r[2] * rinv3; u[2][0] = -r[1] * rinv3;
  1867. u[0][1] = -r[2] * rinv3; u[1][1] = (0) * rinv3; u[2][1] = r[0] * rinv3;
  1868. u[0][2] = r[1] * rinv3; u[1][2] = -r[0] * rinv3; u[2][2] = (0) * rinv3;
  1869. }
  1870. };
  1871. struct BiotSavartGrad3D {
  1872. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1873. return 1 / (4 * const_pi<ValueType>());
  1874. }
  1875. template <class ValueType> static void Eval(ValueType (&u)[3][9], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1876. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1877. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1878. ValueType rinv2 = rinv * rinv;
  1879. ValueType rinv3 = rinv2 * rinv;
  1880. ValueType rinv5 = rinv2 * rinv3;
  1881. u[0][0] = 0; u[1][0] = - 3 * r[2] * r[0] * rinv5; u[2][0] = 3 * r[1] * r[0] * rinv5;
  1882. u[0][1] = 0; u[1][1] = - 3 * r[2] * r[1] * rinv5; u[2][1] = -(1) * rinv3 + 3 * r[1] * r[1] * rinv5;
  1883. u[0][2] = 0; u[1][2] = (1) * rinv3 - 3 * r[2] * r[2] * rinv5; u[2][2] = 3 * r[1] * r[2] * rinv5;
  1884. u[0][3] = 3 * r[2] * r[0] * rinv5; u[1][3] = 0; u[2][3] = (1) * rinv3 - 3 * r[0] * r[0] * rinv5;
  1885. u[0][4] = 3 * r[2] * r[1] * rinv5; u[1][4] = 0; u[2][4] = - 3 * r[0] * r[1] * rinv5;
  1886. u[0][5] = -(1) * rinv3 + 3 * r[2] * r[2] * rinv5; u[1][5] = 0; u[2][5] = - 3 * r[0] * r[2] * rinv5;
  1887. u[0][6] = - 3 * r[1] * r[0] * rinv5; u[1][6] = -(1) * rinv3 + 3 * r[0] * r[0] * rinv5; u[2][6] = 0;
  1888. u[0][7] = (1) * rinv3 - 3 * r[1] * r[1] * rinv5; u[1][7] = 3 * r[0] * r[1] * rinv5; u[2][7] = 0;
  1889. u[0][8] = - 3 * r[1] * r[2] * rinv5; u[1][8] = 3 * r[0] * r[2] * rinv5; u[2][8] = 0;
  1890. }
  1891. };
  1892. struct Laplace3D_dUxD {
  1893. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1894. return 1 / (4 * const_pi<ValueType>());
  1895. }
  1896. template <class ValueType> static void Eval(ValueType (&u)[3][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1897. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1898. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1899. ValueType rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2];
  1900. ValueType rinv2 = rinv * rinv;
  1901. ValueType rinv3 = rinv * rinv2;
  1902. ValueType rinv5 = rinv3 * rinv2;
  1903. u[0][0] = -1 * rinv3 + 3 * r[0] * r[0] * rinv5;
  1904. u[0][1] = -0 * rinv3 + 3 * r[0] * r[1] * rinv5;
  1905. u[0][2] = -0 * rinv3 + 3 * r[0] * r[2] * rinv5;
  1906. u[1][0] = -0 * rinv3 + 3 * r[1] * r[0] * rinv5;
  1907. u[1][1] = -1 * rinv3 + 3 * r[1] * r[1] * rinv5;
  1908. u[1][2] = -0 * rinv3 + 3 * r[1] * r[2] * rinv5;
  1909. u[2][0] = -0 * rinv3 + 3 * r[2] * r[0] * rinv5;
  1910. u[2][1] = -0 * rinv3 + 3 * r[2] * r[1] * rinv5;
  1911. u[2][2] = -1 * rinv3 + 3 * r[2] * r[2] * rinv5;
  1912. }
  1913. };
  1914. struct Laplace3D_DxdU {
  1915. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1916. return 1 / (4 * const_pi<ValueType>());
  1917. }
  1918. template <class ValueType> static void Eval(ValueType (&u)[1][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1919. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1920. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1921. ValueType rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2];
  1922. ValueType rinv2 = rinv * rinv;
  1923. ValueType rinv3 = rinv * rinv2;
  1924. ValueType rinv5 = rinv3 * rinv2;
  1925. u[0][0] = -n[0] * rinv3 + 3*rdotn * r[0] * rinv5;
  1926. u[0][1] = -n[1] * rinv3 + 3*rdotn * r[1] * rinv5;
  1927. u[0][2] = -n[2] * rinv3 + 3*rdotn * r[2] * rinv5;
  1928. }
  1929. };
  1930. struct Laplace3D_Fxd2U {
  1931. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1932. return 1 / (4 * const_pi<ValueType>());
  1933. }
  1934. template <class ValueType> static void Eval(ValueType (&u)[1][9], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1935. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1936. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1937. ValueType rinv2 = rinv * rinv;
  1938. ValueType rinv3 = rinv * rinv2;
  1939. ValueType rinv5 = rinv3 * rinv2;
  1940. u[0][0+3*0] = -1 * rinv3 + 3 * r[0] * r[0] * rinv5;
  1941. u[0][1+3*0] = -0 * rinv3 + 3 * r[0] * r[1] * rinv5;
  1942. u[0][2+3*0] = -0 * rinv3 + 3 * r[0] * r[2] * rinv5;
  1943. u[0][0+3*1] = -0 * rinv3 + 3 * r[1] * r[0] * rinv5;
  1944. u[0][1+3*1] = -1 * rinv3 + 3 * r[1] * r[1] * rinv5;
  1945. u[0][2+3*1] = -0 * rinv3 + 3 * r[1] * r[2] * rinv5;
  1946. u[0][0+3*2] = -0 * rinv3 + 3 * r[2] * r[0] * rinv5;
  1947. u[0][1+3*2] = -0 * rinv3 + 3 * r[2] * r[1] * rinv5;
  1948. u[0][2+3*2] = -1 * rinv3 + 3 * r[2] * r[2] * rinv5;
  1949. }
  1950. };
  1951. static Real max_norm(const sctl::Vector<Real>& x) {
  1952. Real err = 0;
  1953. for (const auto& a : x) err = std::max(err, sctl::fabs<Real>(a));
  1954. return err;
  1955. }
  1956. static Vector<ElemBasis> compute_dot_prod(const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  1957. const Long Nelem = A.Dim() / COORD_DIM;
  1958. const Long Nnodes = ElemBasis::Size();
  1959. SCTL_ASSERT(A.Dim() == Nelem * COORD_DIM);
  1960. SCTL_ASSERT(B.Dim() == Nelem * COORD_DIM);
  1961. Vector<ElemBasis> AdotB(Nelem);
  1962. for (Long i = 0; i < Nelem; i++) {
  1963. for (Long j = 0; j < Nnodes; j++) {
  1964. Real a_dot_b = 0;
  1965. a_dot_b += A[i*COORD_DIM+0][j]*B[i*COORD_DIM+0][j];
  1966. a_dot_b += A[i*COORD_DIM+1][j]*B[i*COORD_DIM+1][j];
  1967. a_dot_b += A[i*COORD_DIM+2][j]*B[i*COORD_DIM+2][j];
  1968. AdotB[i][j] = a_dot_b;
  1969. }
  1970. }
  1971. return AdotB;
  1972. }
  1973. static Real compute_inner_prod(const Vector<ElemBasis>& area_elem, const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  1974. const auto& quad_wts = ElemBasis::QuadWts();
  1975. const Long Nnodes = ElemBasis::Size();
  1976. const Long Nelem = area_elem.Dim();
  1977. const Long dof = B.Dim() / Nelem;
  1978. Real sum = 0;
  1979. for (Long i = 0; i < Nelem; i++) {
  1980. for (Long j = 0; j < Nnodes; j++) {
  1981. Real AdotB = 0;
  1982. for (Long k = 0; k < dof; k++) {
  1983. AdotB += A[i*dof+k][j] * B[i*dof+k][j];
  1984. }
  1985. sum += AdotB * area_elem[i][j] * quad_wts[j];
  1986. }
  1987. }
  1988. return sum;
  1989. }
  1990. static void compute_harmonic_vector_potentials(Vector<ElemBasis>& Jt, Vector<ElemBasis>& Jp, const Stellarator<Real,ORDER>& S) {
  1991. Comm comm = Comm::World();
  1992. Real gmres_tol = 1e-8;
  1993. Long max_iter = 100;
  1994. auto cheb2grid = [] (const Vector<ElemBasis>& X, Long Mt, Long Mp, Long Nt, Long Np) {
  1995. const Long dof = X.Dim() / (Mt * Mp);
  1996. SCTL_ASSERT(X.Dim() == Mt * Mp *dof);
  1997. Vector<Real> Xf(dof*Nt*Np); Xf = 0;
  1998. const Long Nnodes = ElemBasis::Size();
  1999. const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
  2000. for (Long t = 0; t < Nt; t++) {
  2001. for (Long p = 0; p < Np; p++) {
  2002. Real theta = t / (Real)Nt;
  2003. Real phi = p / (Real)Np;
  2004. Long i = (Long)(theta * Mt);
  2005. Long j = (Long)(phi * Mp);
  2006. Real x = theta * Mt - i;
  2007. Real y = phi * Mp - j;
  2008. Long elem_idx = i * Mp + j;
  2009. Vector<Real> Interp0(ORDER);
  2010. Vector<Real> Interp1(ORDER);
  2011. { // Set Interp0, Interp1
  2012. auto node = [&Mnodes] (Long i) {
  2013. return Mnodes[0][i];
  2014. };
  2015. for (Long i = 0; i < ORDER; i++) {
  2016. Real wt_x = 1, wt_y = 1;
  2017. for (Long j = 0; j < ORDER; j++) {
  2018. if (j != i) {
  2019. wt_x *= (x - node(j)) / (node(i) - node(j));
  2020. wt_y *= (y - node(j)) / (node(i) - node(j));
  2021. }
  2022. Interp0[i] = wt_x;
  2023. Interp1[i] = wt_y;
  2024. }
  2025. }
  2026. }
  2027. for (Long ii = 0; ii < ORDER; ii++) {
  2028. for (Long jj = 0; jj < ORDER; jj++) {
  2029. Long node_idx = jj * ORDER + ii;
  2030. for (Long k = 0; k < dof; k++) {
  2031. Xf[(k*Nt+t)*Np+p] += X[elem_idx*dof+k][node_idx] * Interp0[ii] * Interp1[jj];
  2032. }
  2033. }
  2034. }
  2035. }
  2036. }
  2037. return Xf;
  2038. };
  2039. auto grid2cheb = [] (const Vector<Real>& Xf, Long Nt, Long Np, Long Mt, Long Mp) {
  2040. Long dof = Xf.Dim() / (Nt*Np);
  2041. SCTL_ASSERT(Xf.Dim() == dof*Nt*Np);
  2042. Vector<ElemBasis> X(Mt*Mp*dof);
  2043. constexpr Integer INTERP_ORDER = 12;
  2044. for (Long tt = 0; tt < Mt; tt++) {
  2045. for (Long pp = 0; pp < Mp; pp++) {
  2046. for (Long t = 0; t < ORDER; t++) {
  2047. for (Long p = 0; p < ORDER; p++) {
  2048. Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
  2049. Real theta = (tt + Mnodes[0][t]) / Mt;
  2050. Real phi = (pp + Mnodes[0][p]) / Mp;
  2051. Long i = (Long)(theta * Nt);
  2052. Long j = (Long)(phi * Np);
  2053. Real x = theta * Nt - i;
  2054. Real y = phi * Np - j;
  2055. Vector<Real> Interp0(INTERP_ORDER);
  2056. Vector<Real> Interp1(INTERP_ORDER);
  2057. { // Set Interp0, Interp1
  2058. auto node = [] (Long i) {
  2059. return (Real)i - (INTERP_ORDER-1)/2;
  2060. };
  2061. for (Long i = 0; i < INTERP_ORDER; i++) {
  2062. Real wt_x = 1, wt_y = 1;
  2063. for (Long j = 0; j < INTERP_ORDER; j++) {
  2064. if (j != i) {
  2065. wt_x *= (x - node(j)) / (node(i) - node(j));
  2066. wt_y *= (y - node(j)) / (node(i) - node(j));
  2067. }
  2068. Interp0[i] = wt_x;
  2069. Interp1[i] = wt_y;
  2070. }
  2071. }
  2072. }
  2073. for (Long k = 0; k < dof; k++) {
  2074. Real X0 = 0;
  2075. for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  2076. for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  2077. Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  2078. Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  2079. X0 += Interp0[ii] * Interp1[jj] * Xf[(k*Nt+idx_i)*Np+idx_j];
  2080. }
  2081. }
  2082. Long elem_idx = tt * Mp + pp;
  2083. Long node_idx = p * ORDER + t;
  2084. X[elem_idx*dof+k][node_idx] = X0;
  2085. }
  2086. }
  2087. }
  2088. }
  2089. }
  2090. return X;
  2091. };
  2092. Long Nelem = S.NElem();
  2093. if (Jp.Dim() != Nelem * COORD_DIM) Jp.ReInit(Nelem * COORD_DIM);
  2094. if (Jt.Dim() != Nelem * COORD_DIM) Jt.ReInit(Nelem * COORD_DIM);
  2095. for (Long k = 0; k < S.Nsurf(); k++) {
  2096. Long Nt = S.NTor(k)*ORDER, Np = S.NPol(k)*ORDER;
  2097. const auto& X_ = S.GetElemList().ElemVector();
  2098. Vector<ElemBasis> X(S.NTor(k)*S.NPol(k)*COORD_DIM, (Iterator<ElemBasis>)X_.begin()+S.ElemDsp(k)*COORD_DIM, false);
  2099. biest::Surface<Real> SS(Nt, Np);
  2100. biest::SurfaceOp<Real> surf_op(comm, Nt, Np);
  2101. SS.Coord() = cheb2grid(X, S.NTor(k), S.NPol(k), Nt, Np);
  2102. Vector<Real> dX, d2X;
  2103. surf_op.Grad2D(dX, SS.Coord());
  2104. surf_op.Grad2D(d2X, dX);
  2105. sctl::Vector<Real> Jt_(COORD_DIM * Nt * Np);
  2106. sctl::Vector<Real> Jp_(COORD_DIM * Nt * Np);
  2107. { // Set Jt_, Jp_
  2108. Vector<Real> DivV, InvLapDivV, GradInvLapDivV;
  2109. for (sctl::Long i = 0; i < Nt*Np; i++) { // Set V
  2110. for (sctl::Long k =0; k < COORD_DIM; k++) {
  2111. Jt_[k * Nt*Np + i] = dX[(k*2+0) * Nt*Np + i];
  2112. Jp_[k * Nt*Np + i] = dX[(k*2+1) * Nt*Np + i];
  2113. }
  2114. }
  2115. surf_op.SurfDiv(DivV, dX, Jt_);
  2116. surf_op.GradInvSurfLap(GradInvLapDivV, dX, d2X, DivV, gmres_tol * max_norm(Jt_) / max_norm(DivV), max_iter, 1.5);
  2117. Jt_ = Jt_ - GradInvLapDivV;
  2118. surf_op.SurfDiv(DivV, dX, Jp_);
  2119. surf_op.GradInvSurfLap(GradInvLapDivV, dX, d2X, DivV, gmres_tol * max_norm(Jp_) / max_norm(DivV), max_iter, 1.5);
  2120. Jp_ = Jp_ - GradInvLapDivV;
  2121. }
  2122. Vector<ElemBasis> Jt__(S.NTor(k)*S.NPol(k)*COORD_DIM, (Iterator<ElemBasis>)Jt.begin()+S.ElemDsp(k)*COORD_DIM, false);
  2123. Vector<ElemBasis> Jp__(S.NTor(k)*S.NPol(k)*COORD_DIM, (Iterator<ElemBasis>)Jp.begin()+S.ElemDsp(k)*COORD_DIM, false);
  2124. Jt__ = grid2cheb(Jt_, Nt, Np, S.NTor(k), S.NPol(k));
  2125. Jp__ = grid2cheb(Jp_, Nt, Np, S.NTor(k), S.NPol(k));
  2126. }
  2127. }
  2128. static void compute_norm_area_elem(const Stellarator<Real,10>& S, Vector<ElemBasis>& normal, Vector<ElemBasis>& area_elem){ // Set normal, area_elem
  2129. const Vector<ElemBasis>& X = S.GetElemList().ElemVector();
  2130. const Long Nelem = X.Dim() / COORD_DIM;
  2131. const Long Nnodes = ElemBasis::Size();
  2132. Vector<ElemBasis> dX;
  2133. ElemBasis::Grad(dX, X);
  2134. area_elem.ReInit(Nelem);
  2135. normal.ReInit(Nelem * COORD_DIM);
  2136. for (Long i = 0; i < Nelem; i++) {
  2137. for (Long j = 0; j < Nnodes; j++) {
  2138. Tensor<Real,true,COORD_DIM> x, n;
  2139. Tensor<Real,true,COORD_DIM,2> dx;
  2140. x(0) = X[i*COORD_DIM+0][j];
  2141. x(1) = X[i*COORD_DIM+1][j];
  2142. x(2) = X[i*COORD_DIM+2][j];
  2143. dx(0,0) = dX[i*COORD_DIM*2+0][j];
  2144. dx(0,1) = dX[i*COORD_DIM*2+1][j];
  2145. dx(1,0) = dX[i*COORD_DIM*2+2][j];
  2146. dx(1,1) = dX[i*COORD_DIM*2+3][j];
  2147. dx(2,0) = dX[i*COORD_DIM*2+4][j];
  2148. dx(2,1) = dX[i*COORD_DIM*2+5][j];
  2149. n(0) = dx(1,0) * dx(2,1) - dx(2,0) * dx(1,1);
  2150. n(1) = dx(2,0) * dx(0,1) - dx(0,0) * dx(2,1);
  2151. n(2) = dx(0,0) * dx(1,1) - dx(1,0) * dx(0,1);
  2152. Real area_elem_ = sqrt<Real>(n(0)*n(0) + n(1)*n(1) + n(2)*n(2));
  2153. Real ooae = 1 / area_elem_;
  2154. n(0) *= ooae;
  2155. n(1) *= ooae;
  2156. n(2) *= ooae;
  2157. normal[i*COORD_DIM+0][j] = n(0);
  2158. normal[i*COORD_DIM+1][j] = n(1);
  2159. normal[i*COORD_DIM+2][j] = n(2);
  2160. area_elem[i][j] = area_elem_;
  2161. }
  2162. }
  2163. }
  2164. static Vector<ElemBasis> compute_B(const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  2165. const Long Nelem = S.NElem();
  2166. Vector<ElemBasis> B(S.NElem() * COORD_DIM);
  2167. if (sigma.Dim()) {
  2168. const Long Nnodes = ElemBasis::Size();
  2169. Vector<ElemBasis> normal, area_elem;
  2170. compute_norm_area_elem(S, normal, area_elem);
  2171. if (S.Nsurf() == 2) {
  2172. Long Nelem0 = S.NTor(0)*S.NPol(0);
  2173. for (Long i = 0; i < Nelem0*COORD_DIM; i++) {
  2174. for (Long j = 0; j < Nnodes; j++) {
  2175. normal[i][j] *= -1.0;
  2176. }
  2177. }
  2178. }
  2179. EvalQuadrature(B, S.quadrature_FxdU, S, sigma, S.Laplace_FxdU);
  2180. for (Long i = 0; i < Nelem; i++) {
  2181. for (Long j = 0; j < Nnodes; j++) {
  2182. for (Long k = 0; k < COORD_DIM; k++) {
  2183. B[i*COORD_DIM+k][j] -= 0.5*sigma[i][j]*normal[i*COORD_DIM+k][j];
  2184. }
  2185. }
  2186. }
  2187. } else {
  2188. B = 0;
  2189. }
  2190. if (S.Nsurf() >= 1) B += S.Bt0*alpha;
  2191. if (S.Nsurf() >= 2) B += S.Bp0*beta;
  2192. return B;
  2193. }
  2194. static Vector<ElemBasis> compute_dB(const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  2195. const Long Nelem = S.NElem();
  2196. Vector<ElemBasis> dB(S.NElem() * COORD_DIM * COORD_DIM);
  2197. if (sigma.Dim()) {
  2198. EvalQuadrature(dB, S.quadrature_Fxd2U, S, sigma, S.Laplace_Fxd2U);
  2199. } else {
  2200. dB = 0;
  2201. }
  2202. if (S.Nsurf() >= 1) dB += S.dBt0*alpha;
  2203. if (S.Nsurf() >= 2) dB += S.dBp0*beta;
  2204. return dB;
  2205. }
  2206. static void compute_flux(Real& flux_tor, Real& flux_pol, const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& B, const Vector<ElemBasis>& normal) {
  2207. const Long Nelem = S.NElem();
  2208. const Long Nnodes = ElemBasis::Size();
  2209. SCTL_ASSERT(B.Dim() == Nelem*COORD_DIM);
  2210. SCTL_ASSERT(normal.Dim() == Nelem*COORD_DIM);
  2211. Vector<ElemBasis> J(Nelem * COORD_DIM);
  2212. for (Long i = 0; i < Nelem; i++) { // Set J
  2213. for (Long j = 0; j < Nnodes; j++) {
  2214. Tensor<Real,true,COORD_DIM> b, n;
  2215. b(0) = B[i*COORD_DIM+0][j];
  2216. b(1) = B[i*COORD_DIM+1][j];
  2217. b(2) = B[i*COORD_DIM+2][j];
  2218. n(0) = normal[i*COORD_DIM+0][j];
  2219. n(1) = normal[i*COORD_DIM+1][j];
  2220. n(2) = normal[i*COORD_DIM+2][j];
  2221. J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
  2222. J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
  2223. J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
  2224. }
  2225. }
  2226. Vector<ElemBasis> A;
  2227. EvalQuadrature(A, S.quadrature_FxU, S, J, S.Laplace_FxU);
  2228. Vector<Real> circ_pol(S.Nsurf()), circ_tor(S.Nsurf());
  2229. { // compute circ
  2230. Vector<ElemBasis> dX;
  2231. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2232. const auto& quad_wts = ElemBasis::QuadWts();
  2233. for (Long k = 0; k < S.Nsurf(); k++) {
  2234. circ_pol[k] = 0;
  2235. circ_tor[k] = 0;
  2236. Long Ndsp = S.ElemDsp(k);
  2237. for (Long i = 0; i < S.NTor(k)*S.NPol(k); i++) {
  2238. for (Long j = 0; j < Nnodes; j++) {
  2239. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+1][j] * quad_wts[j] / S.NTor(k);
  2240. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+3][j] * quad_wts[j] / S.NTor(k);
  2241. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+5][j] * quad_wts[j] / S.NTor(k);
  2242. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+0][j] * quad_wts[j] / S.NPol(k);
  2243. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+2][j] * quad_wts[j] / S.NPol(k);
  2244. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+4][j] * quad_wts[j] / S.NPol(k);
  2245. }
  2246. }
  2247. }
  2248. }
  2249. if (S.Nsurf() == 1) {
  2250. flux_tor = circ_pol[0];
  2251. flux_pol = 0;
  2252. } else if (S.Nsurf() == 2) {
  2253. flux_tor = circ_pol[1] - circ_pol[0];
  2254. flux_pol = circ_tor[0] - circ_tor[1];
  2255. } else {
  2256. SCTL_ASSERT(false);
  2257. }
  2258. }
  2259. static Vector<Real> compute_A(const Stellarator<Real,ORDER>& S, const Vector<Real>& x) {
  2260. const Long Nelem = S.NElem();
  2261. const Long Nnodes = ElemBasis::Size();
  2262. SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
  2263. Vector<ElemBasis> normal, area_elem;
  2264. compute_norm_area_elem(S, normal, area_elem);
  2265. if (S.Nsurf() == 2) {
  2266. Long Nelem0 = S.NTor(0)*S.NPol(0);
  2267. for (Long i = 0; i < Nelem0*COORD_DIM; i++) {
  2268. for (Long j = 0; j < Nnodes; j++) {
  2269. normal[i][j] *= -1.0;
  2270. }
  2271. }
  2272. }
  2273. Vector<ElemBasis> sigma(Nelem);
  2274. for (Long i = 0; i < Nelem; i++) {
  2275. for (Long j = 0; j < Nnodes; j++) {
  2276. sigma[i][j] = x[i*Nnodes+j];
  2277. }
  2278. }
  2279. Real alpha = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
  2280. Real beta = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
  2281. Vector<ElemBasis> B = compute_B(S, sigma, alpha, beta);
  2282. Vector<ElemBasis> BdotN = compute_dot_prod(B, normal);
  2283. Real flux_tor, flux_pol;
  2284. compute_flux(flux_tor, flux_pol, S, B, normal);
  2285. Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
  2286. for (Long i = 0; i < Nelem; i++) {
  2287. for (Long j = 0; j < Nnodes; j++) {
  2288. Ax[i*Nnodes+j] = BdotN[i][j];
  2289. }
  2290. }
  2291. if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = flux_tor;
  2292. if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = flux_pol;
  2293. return Ax;
  2294. }
  2295. static void compute_invA(Vector<ElemBasis>& sigma, Real& alpha, Real& beta, const Stellarator<Real,ORDER>& S, Real flux_tor, Real flux_pol, const Comm& comm) {
  2296. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&S](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  2297. (*Ax) = compute_A(S, x);
  2298. };
  2299. const Long Nelem = S.NElem();
  2300. const Long Nnodes = ElemBasis::Size();
  2301. Vector<Real> rhs_(Nelem * Nnodes + S.Nsurf());
  2302. rhs_ = 0;
  2303. if (S.Nsurf() >= 1) rhs_[Nelem * Nnodes + 0] = flux_tor;
  2304. if (S.Nsurf() >= 2) rhs_[Nelem * Nnodes + 1] = flux_pol;
  2305. Vector<Real> x_(Nelem * Nnodes + S.Nsurf());
  2306. x_ = 0;
  2307. ParallelSolver<Real> linear_solver(comm, true);
  2308. linear_solver(&x_, BIOp, rhs_, 1e-8, 100);
  2309. sigma.ReInit(Nelem);
  2310. for (Long i = 0; i < Nelem; i++) {
  2311. for (Long j = 0; j < Nnodes; j++) {
  2312. sigma[i][j] = x_[i*Nnodes+j];
  2313. }
  2314. }
  2315. alpha = (S.Nsurf() >= 1 ? x_[Nelem * Nnodes + 0] : 0);
  2316. beta = (S.Nsurf() >= 2 ? x_[Nelem * Nnodes + 1] : 0);
  2317. }
  2318. static Vector<Real> compute_Aadj(const Stellarator<Real,ORDER>& S, const Vector<Real>& x) {
  2319. const Long Nelem = S.NElem();
  2320. const Long Nnodes = ElemBasis::Size();
  2321. SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
  2322. Vector<ElemBasis> normal, area_elem;
  2323. compute_norm_area_elem(S, normal, area_elem);
  2324. if (S.Nsurf() == 2) {
  2325. Long Nelem0 = S.NTor(0)*S.NPol(0);
  2326. for (Long i = 0; i < Nelem0*COORD_DIM; i++) {
  2327. for (Long j = 0; j < Nnodes; j++) {
  2328. normal[i][j] *= -1.0;
  2329. }
  2330. }
  2331. }
  2332. Vector<ElemBasis> x0(Nelem);
  2333. for (Long i = 0; i < Nelem; i++) {
  2334. for (Long j = 0; j < Nnodes; j++) {
  2335. x0[i][j] = x[i*Nnodes+j];
  2336. }
  2337. }
  2338. Real x1 = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
  2339. Real x2 = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
  2340. Vector<ElemBasis> Ax0;
  2341. Real Ax1, Ax2;
  2342. { // Set Ax0, Ax1, Ax2
  2343. Vector<ElemBasis> x0_n(Nelem*COORD_DIM);
  2344. for (Long i = 0; i < Nelem; i++) {
  2345. for (Long j = 0; j < Nnodes; j++) {
  2346. x0_n[i*COORD_DIM+0][j] = x0[i][j] * normal[i*COORD_DIM+0][j];
  2347. x0_n[i*COORD_DIM+1][j] = x0[i][j] * normal[i*COORD_DIM+1][j];
  2348. x0_n[i*COORD_DIM+2][j] = x0[i][j] * normal[i*COORD_DIM+2][j];
  2349. }
  2350. }
  2351. EvalQuadrature(Ax0, S.quadrature_dUxF, S, x0_n, S.Laplace_dUxF);
  2352. Ax0 = x0*(-0.5) - Ax0;
  2353. Ax1 = (S.Nsurf() >= 1 ? compute_inner_prod(area_elem, compute_dot_prod(S.Bt0, normal), x0) : 0);
  2354. Ax2 = (S.Nsurf() >= 2 ? compute_inner_prod(area_elem, compute_dot_prod(S.Bp0, normal), x0) : 0);
  2355. }
  2356. // TODO: precompute A21adj, A22adj
  2357. auto compute_A21adj = [&S,&normal,&area_elem] (bool toroidal_flux) {
  2358. const Long Nelem = S.NElem();
  2359. const Long Nnodes = ElemBasis::Size();
  2360. Vector<ElemBasis> density(Nelem * COORD_DIM);
  2361. { // Set density
  2362. Real scal[2];
  2363. if (S.Nsurf() == 1) {
  2364. SCTL_ASSERT(toroidal_flux == true);
  2365. scal[0] = 1.0 / S.NTor(0);
  2366. scal[1] = 0;
  2367. } else if (S.Nsurf() == 2) {
  2368. if (toroidal_flux == true) {
  2369. scal[0] = -1.0 / S.NTor(0);
  2370. scal[1] = 1.0 / S.NTor(1);
  2371. } else {
  2372. scal[0] = 1.0 / S.NPol(0);
  2373. scal[1] = -1.0 / S.NPol(1);
  2374. }
  2375. } else {
  2376. SCTL_ASSERT(false);
  2377. }
  2378. Vector<ElemBasis> dX;
  2379. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2380. for (Long k = 0; k < S.Nsurf(); k++) {
  2381. for (Long i_ = 0; i_ < S.NTor(k)*S.NPol(k); i_++) {
  2382. Long i = S.ElemDsp(k) + i_;
  2383. for (Long j = 0; j < Nnodes; j++) {
  2384. Real s = scal[k] / area_elem[i][j];
  2385. density[i*COORD_DIM+0][j] = dX[i*COORD_DIM*2+0+(toroidal_flux?1:0)][j] * s;
  2386. density[i*COORD_DIM+1][j] = dX[i*COORD_DIM*2+2+(toroidal_flux?1:0)][j] * s;
  2387. density[i*COORD_DIM+2][j] = dX[i*COORD_DIM*2+4+(toroidal_flux?1:0)][j] * s;
  2388. }
  2389. }
  2390. }
  2391. }
  2392. Vector<ElemBasis> Gdensity, nxGdensity(Nelem * COORD_DIM), A21adj;
  2393. EvalQuadrature(Gdensity, S.quadrature_FxU, S, density, S.Laplace_FxU);
  2394. for (Long i = 0; i < Nelem; i++) { // Set nxGdensity
  2395. for (Long j = 0; j < Nnodes; j++) {
  2396. Tensor<Real,true,COORD_DIM> Gdensity_, n;
  2397. Gdensity_(0) = Gdensity[i*COORD_DIM+0][j];
  2398. Gdensity_(1) = Gdensity[i*COORD_DIM+1][j];
  2399. Gdensity_(2) = Gdensity[i*COORD_DIM+2][j];
  2400. n(0) = normal[i*COORD_DIM+0][j];
  2401. n(1) = normal[i*COORD_DIM+1][j];
  2402. n(2) = normal[i*COORD_DIM+2][j];
  2403. nxGdensity[i*COORD_DIM+0][j] = n(1) * Gdensity_(2) - n(2) * Gdensity_(1);
  2404. nxGdensity[i*COORD_DIM+1][j] = n(2) * Gdensity_(0) - n(0) * Gdensity_(2);
  2405. nxGdensity[i*COORD_DIM+2][j] = n(0) * Gdensity_(1) - n(1) * Gdensity_(0);
  2406. }
  2407. }
  2408. EvalQuadrature(A21adj, S.quadrature_dUxF, S, nxGdensity, S.Laplace_dUxF);
  2409. return A21adj;
  2410. };
  2411. if (S.Nsurf() >= 1) Ax0 += compute_A21adj( true) * x1;
  2412. if (S.Nsurf() >= 2) Ax0 += compute_A21adj(false) * x2;
  2413. if (S.Nsurf() == 1) { // Add flux part of Ax1, Ax2
  2414. Real flux_tor, flux_pol;
  2415. compute_flux(flux_tor, flux_pol, S, S.Bt0, normal);
  2416. Ax1 += flux_tor * x1;
  2417. Ax2 += 0;
  2418. } else if (S.Nsurf() == 2) {
  2419. Real flux_tor, flux_pol;
  2420. compute_flux(flux_tor, flux_pol, S, S.Bt0, normal);
  2421. Ax1 += flux_tor * x1 + flux_pol * x2;
  2422. compute_flux(flux_tor, flux_pol, S, S.Bp0, normal);
  2423. Ax2 += flux_tor * x1 + flux_pol * x2;
  2424. } else {
  2425. SCTL_ASSERT(false);
  2426. }
  2427. Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
  2428. for (Long i = 0; i < Nelem; i++) {
  2429. for (Long j = 0; j < Nnodes; j++) {
  2430. Ax[i*Nnodes+j] = Ax0[i][j];
  2431. }
  2432. }
  2433. if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = Ax1;
  2434. if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = Ax2;
  2435. return Ax;
  2436. }
  2437. static Vector<Real> compute_invAadj(const Stellarator<Real,ORDER>& S, const Vector<Real>& b, const Comm& comm) {
  2438. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&S](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  2439. (*Ax) = compute_Aadj(S,x);
  2440. };
  2441. const Long Nelem = S.NElem();
  2442. const Long Nnodes = ElemBasis::Size();
  2443. Vector<Real> x(b.Dim());
  2444. x = 0;
  2445. ParallelSolver<Real> linear_solver(comm, true);
  2446. linear_solver(&x, BIOp, b, 1e-8, 100);
  2447. return x;
  2448. }
  2449. static Vector<ElemBasis> compute_pressure_jump(const Vector<Stellarator<Real,ORDER>>& Svec, const Vector<Real>& pressure) {
  2450. const Long Nnodes = ElemBasis::Size();
  2451. const Long Nsurf = Svec.Dim();
  2452. SCTL_ASSERT(pressure.Dim() == Nsurf);
  2453. Vector<Vector<ElemBasis>> total_pressure(Nsurf);
  2454. for (Long i = 0; i < Nsurf; i++) { // Set total_pressure
  2455. const Long Nelem = Svec[i].NElem();
  2456. const auto& B = Svec[i].B;
  2457. total_pressure[i].ReInit(Nelem);
  2458. for (Long j = 0; j < Nelem; j++) {
  2459. for (Long k = 0; k < Nnodes; k++) {
  2460. Real B2 = 0;
  2461. B2 += B[j*COORD_DIM+0][k] * B[j*COORD_DIM+0][k];
  2462. B2 += B[j*COORD_DIM+1][k] * B[j*COORD_DIM+1][k];
  2463. B2 += B[j*COORD_DIM+2][k] * B[j*COORD_DIM+2][k];
  2464. total_pressure[i][j][k] = 0.5 * B2 + pressure[i];
  2465. }
  2466. }
  2467. }
  2468. Vector<Long> elem_cnt, elem_dsp;
  2469. for (Long i = 0; i < Nsurf; i++) {
  2470. if (i == 0) {
  2471. elem_cnt.PushBack(Svec[i].NTor(0) * Svec[i].NPol(0));
  2472. elem_dsp.PushBack(0);
  2473. } else {
  2474. elem_cnt.PushBack(Svec[i].NTor(1) * Svec[i].NPol(1));
  2475. elem_dsp.PushBack(elem_dsp[i-1] + elem_cnt[i-1]);
  2476. }
  2477. }
  2478. Vector<ElemBasis> pressure_jump(elem_dsp[Nsurf-1] + elem_cnt[Nsurf-1]);
  2479. pressure_jump = 0;
  2480. for (Long i = 0; i < Nsurf-1; i++) { // Set pressure_jump
  2481. Long Nelem, offset;
  2482. if (i == 0) {
  2483. offset = 0;
  2484. Nelem = Svec[i].NTor(0) * Svec[i].NPol(0);
  2485. } else {
  2486. offset = Svec[i].NTor(0) * Svec[i].NPol(0);
  2487. Nelem = Svec[i].NTor(1) * Svec[i].NPol(1);
  2488. }
  2489. for (Long j = 0; j < Nelem; j++) {
  2490. for (Long k = 0; k < Nnodes; k++) {
  2491. Real T0 = total_pressure[i][offset+j][k];
  2492. Real T1 = (i+1<Nsurf ? total_pressure[i+1][j][k] : 0);
  2493. pressure_jump[elem_dsp[i]+j][k] = T1 - T0;
  2494. }
  2495. }
  2496. }
  2497. return pressure_jump;
  2498. }
  2499. static void compute_gvec(const Vector<Stellarator<Real,ORDER>>& Svec, const Vector<Real>& pressure) {
  2500. Vector<ElemBasis> pressure_jump = compute_pressure_jump(Svec, pressure);
  2501. const Long Nnodes = ElemBasis::Size();
  2502. const Long Nsurf = Svec.Dim();
  2503. Long elem_offset = 0;
  2504. for (Long i = 0; i < Nsurf; i++) { // Allocate
  2505. Svec[i].gvec.ReInit(Svec[i].NElem());
  2506. Svec[i].gvec = 0;
  2507. }
  2508. for (Long i = 0; i < Nsurf-1; i++) { // Set gvec
  2509. Long Nelem, offset;
  2510. if (i == 0) {
  2511. offset = 0;
  2512. Nelem = Svec[i].NTor(0) * Svec[i].NPol(0);
  2513. } else {
  2514. offset = Svec[i].NTor(0) * Svec[i].NPol(0);
  2515. Nelem = Svec[i].NTor(1) * Svec[i].NPol(1);
  2516. }
  2517. for (Long j = 0; j < Nelem; j++) {
  2518. for (Long k = 0; k < Nnodes; k++) {
  2519. Real jump = pressure_jump[elem_offset+j][k];
  2520. Svec[i].gvec[offset+j][k] = 0.5 * jump * jump;
  2521. if (i+1<Nsurf) Svec[i+1].gvec[j][k] = 0.5 * jump * jump;
  2522. }
  2523. }
  2524. elem_offset += Nelem;
  2525. }
  2526. }
  2527. static void compute_dgdB(const Vector<Stellarator<Real,ORDER>>& Svec, const Vector<Real>& pressure) {
  2528. Vector<ElemBasis> pressure_jump = compute_pressure_jump(Svec, pressure);
  2529. const Long Nnodes = ElemBasis::Size();
  2530. const Long Nsurf = Svec.Dim();
  2531. Long elem_offset = 0;
  2532. for (Long i = 0; i < Nsurf; i++) { // Allocate
  2533. Svec[i].dgdB.ReInit(Svec[i].NElem() * COORD_DIM);
  2534. Svec[i].dgdB = 0;
  2535. }
  2536. for (Long i = 0; i < Nsurf-1; i++) { // Set dgdB
  2537. Long Nelem, offset;
  2538. if (i == 0) {
  2539. offset = 0;
  2540. Nelem = Svec[i].NTor(0) * Svec[i].NPol(0);
  2541. } else {
  2542. offset = Svec[i].NTor(0) * Svec[i].NPol(0);
  2543. Nelem = Svec[i].NTor(1) * Svec[i].NPol(1);
  2544. }
  2545. for (Long j = 0; j < Nelem; j++) {
  2546. for (Long k = 0; k < Nnodes; k++) {
  2547. Real jump = pressure_jump[elem_offset+j][k];
  2548. Svec[i].dgdB[(offset+j)*COORD_DIM+0][k] = -jump * Svec[i].B[(offset+j)*COORD_DIM+0][k];
  2549. Svec[i].dgdB[(offset+j)*COORD_DIM+1][k] = -jump * Svec[i].B[(offset+j)*COORD_DIM+1][k];
  2550. Svec[i].dgdB[(offset+j)*COORD_DIM+2][k] = -jump * Svec[i].B[(offset+j)*COORD_DIM+2][k];
  2551. if (i+1<Nsurf) {
  2552. Svec[i+1].dgdB[j*COORD_DIM+0][k] = jump * Svec[i+1].B[j*COORD_DIM+0][k];
  2553. Svec[i+1].dgdB[j*COORD_DIM+1][k] = jump * Svec[i+1].B[j*COORD_DIM+1][k];
  2554. Svec[i+1].dgdB[j*COORD_DIM+2][k] = jump * Svec[i+1].B[j*COORD_DIM+2][k];
  2555. }
  2556. }
  2557. }
  2558. elem_offset += Nelem;
  2559. }
  2560. }
  2561. public:
  2562. Stellarator(const Vector<Long>& NtNp = Vector<Long>()) {
  2563. NtNp_ = NtNp;
  2564. Long Nsurf = NtNp_.Dim() / 2;
  2565. SCTL_ASSERT(Nsurf*2 == NtNp_.Dim());
  2566. Long Nelem = 0;
  2567. elem_dsp.ReInit(Nsurf+1);
  2568. elem_dsp[0] = 0;
  2569. for (Long i = 0; i < Nsurf; i++) {
  2570. Nelem += NtNp_[i*2+0]*NtNp_[i*2+1];
  2571. elem_dsp[i+1] = Nelem;
  2572. }
  2573. elements.ReInit(Nelem);
  2574. for (Long i = 0; i < Nsurf; i++) {
  2575. InitSurf(i, this->Nsurf());
  2576. }
  2577. }
  2578. Long ElemIdx(Long s, Long t, Long p) {
  2579. SCTL_ASSERT(0 <= s && s < Nsurf());
  2580. SCTL_ASSERT(0 <= t && t < NtNp_[s*2+0]);
  2581. SCTL_ASSERT(0 <= p && p < NtNp_[s*2+1]);
  2582. return elem_dsp[s] + t*NtNp_[s*2+1] + p;
  2583. }
  2584. ElemBasis& Elem(Long elem, Integer dim) {
  2585. return elements(elem,dim);
  2586. }
  2587. const ElemBasis& Elem(Long elem, Integer dim) const {
  2588. return elements(elem,dim);
  2589. }
  2590. const ElemLst& GetElemList() const {
  2591. return elements;
  2592. }
  2593. Long Nsurf() const {
  2594. return elem_dsp.Dim()-1;
  2595. }
  2596. Long ElemDsp(Long s) const {
  2597. return elem_dsp[s];
  2598. }
  2599. Long NTor(Long s) const {
  2600. return NtNp_[s*2+0];
  2601. }
  2602. Long NPol(Long s) const {
  2603. return NtNp_[s*2+1];
  2604. }
  2605. Long NElem() const {
  2606. return elements.NElem();
  2607. }
  2608. static Vector<ElemBasis> compute_gradient(const Stellarator<Real,ORDER>& S_, const Vector<Real>& pressure, const Vector<Real>& flux_tor_, const Vector<Real>& flux_pol_) {
  2609. constexpr Integer order_singular = 15;
  2610. constexpr Integer order_direct = 35;
  2611. Comm comm = Comm::World();
  2612. Vector<Stellarator<Real,ORDER>> Svec(S_.Nsurf());
  2613. for (Long i = 0; i < S_.Nsurf(); i++) { // Set Svec[i] (quadratures, B)
  2614. const Long elem_dsp = (i==0 ? 0 : S_.ElemDsp(i-1));
  2615. const Long Nnodes = ElemBasis::Size();
  2616. Stellarator<Real,ORDER>& S = Svec[i];
  2617. if (i == 0) { // Init S
  2618. Vector<Long> NtNp;
  2619. NtNp.PushBack(S_.NTor(i));
  2620. NtNp.PushBack(S_.NPol(i));
  2621. S = Stellarator<Real,ORDER>(NtNp);
  2622. } else {
  2623. Vector<Long> NtNp;
  2624. NtNp.PushBack(S_.NTor(i-1));
  2625. NtNp.PushBack(S_.NPol(i-1));
  2626. NtNp.PushBack(S_.NTor(i));
  2627. NtNp.PushBack(S_.NPol(i));
  2628. S = Stellarator<Real,ORDER>(NtNp);
  2629. }
  2630. for (Long j = 0; j < S.NElem(); j++) { // Set S coordinates
  2631. for (Long k = 0; k < Nnodes; k++) {
  2632. S.Elem(j,0)[k] = S_.Elem(elem_dsp+j,0)[k];
  2633. S.Elem(j,1)[k] = S_.Elem(elem_dsp+j,1)[k];
  2634. S.Elem(j,2)[k] = S_.Elem(elem_dsp+j,2)[k];
  2635. }
  2636. }
  2637. SetupQuadrature(S.quadrature_dBS , S, S.BiotSavartGrad, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  2638. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  2639. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  2640. SetupQuadrature(S.quadrature_FxdU , S, S.Laplace_FxdU , order_singular, order_direct, -1.0, comm);
  2641. SetupQuadrature(S.quadrature_dUxF , S, S.Laplace_dUxF , order_singular, order_direct, -1.0, comm);
  2642. SetupQuadrature(S.quadrature_dUxD , S, S.Laplace_dUxD , order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  2643. SetupQuadrature(S.quadrature_Fxd2U, S, S.Laplace_Fxd2U , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  2644. { // Set Bt0, Bp0, dBt0, dBp0
  2645. Vector<ElemBasis> Jt, Jp;
  2646. compute_harmonic_vector_potentials(Jt, Jp, S);
  2647. EvalQuadrature(S.Bt0 , S.quadrature_BS , S, Jp, S.BiotSavart);
  2648. EvalQuadrature(S.Bp0 , S.quadrature_BS , S, Jt, S.BiotSavart);
  2649. EvalQuadrature(S.dBt0, S.quadrature_dBS, S, Jp, S.BiotSavartGrad);
  2650. EvalQuadrature(S.dBp0, S.quadrature_dBS, S, Jt, S.BiotSavartGrad);
  2651. }
  2652. compute_invA(S.sigma, S.alpha, S.beta, S, flux_tor_[i], flux_pol_[i], comm);
  2653. S.B = compute_B(S, S.sigma, S.alpha, S.beta);
  2654. if (0) { // Write VTU
  2655. VTUData vtu;
  2656. vtu.AddElems(S.GetElemList(), S.sigma, ORDER);
  2657. vtu.WriteVTK("sigma"+std::to_string(i), comm);
  2658. }
  2659. if (0) { // Write VTU
  2660. VTUData vtu;
  2661. vtu.AddElems(S.GetElemList(), S.B, ORDER);
  2662. vtu.WriteVTK("B"+std::to_string(i), comm);
  2663. }
  2664. }
  2665. compute_gvec(Svec, pressure);
  2666. compute_dgdB(Svec, pressure);
  2667. auto compute_gradient = [&comm] (const Stellarator<Real,ORDER>& S) {
  2668. const Long Nnodes = ElemBasis::Size();
  2669. const Long Nelem = S.NElem();
  2670. const auto& sigma = S.sigma;
  2671. const auto& alpha = S.alpha;
  2672. const auto& beta = S.beta;
  2673. const auto& B = S.B;
  2674. Vector<ElemBasis> normal, area_elem;
  2675. compute_norm_area_elem(S, normal, area_elem);
  2676. if (S.Nsurf() == 2) {
  2677. Long Nelem0 = S.NTor(0)*S.NPol(0);
  2678. for (Long i = 0; i < Nelem0*COORD_DIM; i++) {
  2679. for (Long j = 0; j < Nnodes; j++) {
  2680. normal[i][j] *= -1.0;
  2681. }
  2682. }
  2683. }
  2684. auto compute_H = [] (const ElemList<COORD_DIM,ElemBasis>& elem_lst, const Vector<ElemBasis>& normal) {
  2685. const Long Nnodes = ElemBasis::Size();
  2686. const Long Nelem = elem_lst.NElem();
  2687. const Vector<ElemBasis> X = elem_lst.ElemVector();
  2688. Vector<ElemBasis> dX, d2X, H(Nelem);
  2689. ElemBasis::Grad(dX, X);
  2690. ElemBasis::Grad(d2X, dX);
  2691. for (Long i = 0; i < Nelem; i++) {
  2692. for (Long j = 0; j < Nnodes; j++) {
  2693. Tensor<Real,true,2,2> I, invI, II;
  2694. for (Long k0 = 0; k0 < 2; k0++) {
  2695. for (Long k1 = 0; k1 < 2; k1++) {
  2696. I(k0,k1) = 0;
  2697. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  2698. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  2699. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  2700. II(k0,k1) = 0;
  2701. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  2702. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  2703. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  2704. }
  2705. }
  2706. { // Set invI
  2707. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  2708. invI(0,0) = I(1,1) / detI;
  2709. invI(0,1) = -I(0,1) / detI;
  2710. invI(1,0) = -I(1,0) / detI;
  2711. invI(1,1) = I(0,0) / detI;
  2712. }
  2713. { // Set H
  2714. H[i][j] = 0;
  2715. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  2716. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  2717. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  2718. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  2719. }
  2720. }
  2721. }
  2722. return H;
  2723. };
  2724. Vector<ElemBasis> H = compute_H(S.GetElemList(), normal);
  2725. auto compute_dg_dnu = [&S,&normal,&area_elem,&H]() { // dg_dnu = (B*B) 2H - (2 B) \cdot (n \cdnot nabla) \nabla G[sigma] + (2 B) \alpha dB0_dnu \hat{\theta} + sigma (\nabla D)^T [2 B] + (2H) sigma (\nabla G)^T [2 B]
  2726. const Long Nelem = S.NElem();
  2727. const Long Nnodes = ElemBasis::Size();
  2728. const Vector<ElemBasis>& gvec = S.gvec;
  2729. const Vector<ElemBasis>& v = S.dgdB;
  2730. const auto& sigma = S.sigma;
  2731. const auto& alpha = S.alpha;
  2732. const auto& beta = S.beta;
  2733. const auto& B = S.B;
  2734. Vector<ElemBasis> dg_dnu0(Nelem), dg_dnu1(Nelem), dg_dnu2(Nelem), dg_dnu3(Nelem), dg_dnu4(Nelem);
  2735. dg_dnu0 = 0;
  2736. dg_dnu1 = 0;
  2737. dg_dnu2 = 0;
  2738. dg_dnu3 = 0;
  2739. dg_dnu4 = 0;
  2740. // dg_dnu0 = (B*B) 2H
  2741. for (Long i = 0; i < Nelem; i++) {
  2742. for (Long j = 0; j < Nnodes; j++) {
  2743. dg_dnu0[i][j] = gvec[i][j] * (2.0*H[i][j]) * 0.5;
  2744. // multiplicative factor 0.5 is there so that this term is not
  2745. // counted twice from shape derivative of regions on either side
  2746. // of the domain.
  2747. }
  2748. }
  2749. // dg_dnu1 = (2 B) \cdot (n \cdnot \nabla) B
  2750. Vector<ElemBasis> dB = compute_dB(S, sigma, alpha, beta);
  2751. for (Long i = 0; i < Nelem; i++) {
  2752. for (Long j = 0; j < Nnodes; j++) {
  2753. dg_dnu1[i][j] = 0;
  2754. dg_dnu1[i][j] -= dB[i*9+0][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
  2755. dg_dnu1[i][j] -= dB[i*9+1][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
  2756. dg_dnu1[i][j] -= dB[i*9+2][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
  2757. dg_dnu1[i][j] -= dB[i*9+3][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
  2758. dg_dnu1[i][j] -= dB[i*9+4][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
  2759. dg_dnu1[i][j] -= dB[i*9+5][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
  2760. dg_dnu1[i][j] -= dB[i*9+6][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
  2761. dg_dnu1[i][j] -= dB[i*9+7][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
  2762. dg_dnu1[i][j] -= dB[i*9+8][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
  2763. }
  2764. }
  2765. // dg_dnu3 = (sigma (\nabla D)^T [2 B]
  2766. Vector<ElemBasis> nablaDtv;
  2767. EvalQuadrature(nablaDtv, S.quadrature_dUxD, S, v, S.Laplace_dUxD);
  2768. for (Long i = 0; i < Nelem; i++) {
  2769. for (Long j = 0; j < Nnodes; j++) {
  2770. dg_dnu3[i][j] = 0;
  2771. dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  2772. dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  2773. dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  2774. }
  2775. }
  2776. // dg_dnu4 = (2H) sigma (\nabla G)^T [2 B]
  2777. EvalQuadrature(dg_dnu4, S.quadrature_dUxF, S, v, S.Laplace_dUxF);
  2778. for (Long i = 0; i < Nelem; i++) {
  2779. for (Long j = 0; j < Nnodes; j++) {
  2780. dg_dnu4[i][j] += 0.5 * v[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  2781. dg_dnu4[i][j] += 0.5 * v[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  2782. dg_dnu4[i][j] += 0.5 * v[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  2783. dg_dnu4[i][j] *= 2*H[i][j] * sigma[i][j];
  2784. }
  2785. }
  2786. return dg_dnu0 + dg_dnu1 + dg_dnu3 - dg_dnu4;
  2787. };
  2788. Vector<ElemBasis> dg_dnu = compute_dg_dnu();
  2789. auto compute_dg_dsigma = [&S,&normal,&area_elem] () {
  2790. const Long Nnodes = ElemBasis::Size();
  2791. const Long Nelem = S.NElem();
  2792. const auto& B = S.B;
  2793. const Vector<ElemBasis>& dgdB = S.dgdB;
  2794. auto compute_dg_dsigma = [&S,&B,&dgdB,&normal]() { // dg_dsigma = \int 2 B \cdot (\nabla G + n/2)
  2795. Vector<ElemBasis> B_dot_gradG;
  2796. EvalQuadrature(B_dot_gradG, S.quadrature_dUxF, S, dgdB, S.Laplace_dUxF);
  2797. return B_dot_gradG * (-1.0) + compute_dot_prod(dgdB,normal) * 0.5;
  2798. };
  2799. auto compute_dg_dalpha = [&S,&B,&dgdB,&area_elem] () {
  2800. auto dB_dalpha = compute_B(S, Vector<ElemBasis>(),1,0);
  2801. return compute_inner_prod(area_elem, dgdB,dB_dalpha);
  2802. };
  2803. auto compute_dg_dbeta = [&S,&B,&dgdB,&area_elem] () {
  2804. auto dB_dalpha = compute_B(S, Vector<ElemBasis>(),0,1);
  2805. return compute_inner_prod(area_elem, dgdB,dB_dalpha);
  2806. };
  2807. Vector<Real> dg_dsigma(Nelem*Nnodes+S.Nsurf());
  2808. Vector<ElemBasis> dg_dsigma_ = compute_dg_dsigma();
  2809. for (Long i = 0; i < Nelem; i++) {
  2810. for (Long j = 0; j < Nnodes; j++) {
  2811. dg_dsigma[i*Nnodes+j] = dg_dsigma_[i][j];
  2812. }
  2813. }
  2814. if (S.Nsurf() >= 1) dg_dsigma[Nelem*Nnodes+0] = compute_dg_dalpha();
  2815. if (S.Nsurf() >= 2) dg_dsigma[Nelem*Nnodes+1] = compute_dg_dbeta ();
  2816. return dg_dsigma;
  2817. };
  2818. Vector<Real> dg_dsigma = compute_dg_dsigma();
  2819. Vector<Real> dg_dsigma_invA = compute_invAadj(S, dg_dsigma, comm);
  2820. ///////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2821. ///////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2822. auto compute_grad_adj = [&S,&area_elem] (const Vector<ElemBasis>& V) {
  2823. const Long Nelem = S.NElem();
  2824. const Long Nnodes = ElemBasis::Size();
  2825. Vector<ElemBasis> du_dX(Nelem*COORD_DIM*2);
  2826. { // Set du_dX
  2827. Vector<ElemBasis> dX;
  2828. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2829. auto inv2x2 = [](Tensor<Real, true, 2, 2> M) {
  2830. Tensor<Real, true, 2, 2> Mout;
  2831. Real oodet = 1 / (M(0,0) * M(1,1) - M(0,1) * M(1,0));
  2832. Mout(0,0) = M(1,1) * oodet;
  2833. Mout(0,1) = -M(0,1) * oodet;
  2834. Mout(1,0) = -M(1,0) * oodet;
  2835. Mout(1,1) = M(0,0) * oodet;
  2836. return Mout;
  2837. };
  2838. for (Long i = 0; i < Nelem; i++) {
  2839. for (Long j = 0; j < Nnodes; j++) {
  2840. Tensor<Real, true, 3, 2> dX_du;
  2841. dX_du(0,0) = dX[(i*COORD_DIM+0)*2+0][j];
  2842. dX_du(1,0) = dX[(i*COORD_DIM+1)*2+0][j];
  2843. dX_du(2,0) = dX[(i*COORD_DIM+2)*2+0][j];
  2844. dX_du(0,1) = dX[(i*COORD_DIM+0)*2+1][j];
  2845. dX_du(1,1) = dX[(i*COORD_DIM+1)*2+1][j];
  2846. dX_du(2,1) = dX[(i*COORD_DIM+2)*2+1][j];
  2847. Tensor<Real, true, 2, 2> G; // = dX_du.Transpose() * dX_du;
  2848. G(0,0) = dX_du(0,0) * dX_du(0,0) + dX_du(1,0) * dX_du(1,0) + dX_du(2,0) * dX_du(2,0);
  2849. G(0,1) = dX_du(0,0) * dX_du(0,1) + dX_du(1,0) * dX_du(1,1) + dX_du(2,0) * dX_du(2,1);
  2850. G(1,0) = dX_du(0,1) * dX_du(0,0) + dX_du(1,1) * dX_du(1,0) + dX_du(2,1) * dX_du(2,0);
  2851. G(1,1) = dX_du(0,1) * dX_du(0,1) + dX_du(1,1) * dX_du(1,1) + dX_du(2,1) * dX_du(2,1);
  2852. Tensor<Real, true, 2, 2> Ginv = inv2x2(G);
  2853. du_dX[(i*COORD_DIM+0)*2+0][j] = Ginv(0,0) * dX_du(0,0) + Ginv(0,1) * dX_du(0,1);
  2854. du_dX[(i*COORD_DIM+1)*2+0][j] = Ginv(0,0) * dX_du(1,0) + Ginv(0,1) * dX_du(1,1);
  2855. du_dX[(i*COORD_DIM+2)*2+0][j] = Ginv(0,0) * dX_du(2,0) + Ginv(0,1) * dX_du(2,1);
  2856. du_dX[(i*COORD_DIM+0)*2+1][j] = Ginv(1,0) * dX_du(0,0) + Ginv(1,1) * dX_du(0,1);
  2857. du_dX[(i*COORD_DIM+1)*2+1][j] = Ginv(1,0) * dX_du(1,0) + Ginv(1,1) * dX_du(1,1);
  2858. du_dX[(i*COORD_DIM+2)*2+1][j] = Ginv(1,0) * dX_du(2,0) + Ginv(1,1) * dX_du(2,1);
  2859. }
  2860. }
  2861. }
  2862. Vector<ElemBasis> dudX_V(Nelem*2);
  2863. for (Long i = 0; i < Nelem; i++) {
  2864. for (Long j = 0; j < Nnodes; j++) {
  2865. dudX_V[i*2+0][j] = 0;
  2866. dudX_V[i*2+1][j] = 0;
  2867. dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+0)*2+0][j] * V[i*COORD_DIM+0][j] * area_elem[i][j];
  2868. dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+1)*2+0][j] * V[i*COORD_DIM+1][j] * area_elem[i][j];
  2869. dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+2)*2+0][j] * V[i*COORD_DIM+2][j] * area_elem[i][j];
  2870. dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+0)*2+1][j] * V[i*COORD_DIM+0][j] * area_elem[i][j];
  2871. dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+1)*2+1][j] * V[i*COORD_DIM+1][j] * area_elem[i][j];
  2872. dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+2)*2+1][j] * V[i*COORD_DIM+2][j] * area_elem[i][j];
  2873. }
  2874. }
  2875. Vector<ElemBasis> grad_dudX_V;
  2876. ElemBasis::Grad(grad_dudX_V, dudX_V);
  2877. Vector<ElemBasis> grad_adj_V(Nelem);
  2878. for (Long i = 0; i < Nelem; i++) {
  2879. for (Long j = 0; j < Nnodes; j++) {
  2880. grad_adj_V[i][j] = -(grad_dudX_V[(i*2+0)*2+0][j] + grad_dudX_V[(i*2+1)*2+1][j]) / area_elem[i][j];
  2881. }
  2882. }
  2883. return grad_adj_V;
  2884. };
  2885. auto compute_u_dAdnu_v_0 = [&S,&normal,&H,&compute_grad_adj] (const Vector<Real>& u_, const Vector<ElemBasis>& v, Real alpha, Real beta) {
  2886. const Long Nnodes = ElemBasis::Size();
  2887. const Long Nelem = S.NElem();
  2888. Vector<ElemBasis> dAdnu0(Nelem), dAdnu1(Nelem), dAdnu2(Nelem), dAdnu3(Nelem);
  2889. Vector<ElemBasis> u(Nelem), u_n(Nelem*COORD_DIM);
  2890. for (Long i = 0; i < Nelem; i++) {
  2891. for (Long j = 0; j < Nnodes; j++) {
  2892. u[i][j] = u_[i*Nnodes+j];
  2893. u_n[i*COORD_DIM+0][j] = u[i][j] * normal[i*COORD_DIM+0][j];
  2894. u_n[i*COORD_DIM+1][j] = u[i][j] * normal[i*COORD_DIM+1][j];
  2895. u_n[i*COORD_DIM+2][j] = u[i][j] * normal[i*COORD_DIM+2][j];
  2896. }
  2897. }
  2898. // dAdnu0 = u B \cdot grad_nu
  2899. Vector<ElemBasis> B = compute_B(S, v, alpha, beta);
  2900. Vector<ElemBasis> u_B(Nelem*COORD_DIM);
  2901. for (Long i = 0; i < Nelem; i++) {
  2902. for (Long j = 0; j < Nnodes; j++) {
  2903. u_B[i*COORD_DIM+0][j] = u[i][j] * B[i*COORD_DIM+0][j];
  2904. u_B[i*COORD_DIM+1][j] = u[i][j] * B[i*COORD_DIM+1][j];
  2905. u_B[i*COORD_DIM+2][j] = u[i][j] * B[i*COORD_DIM+2][j];
  2906. }
  2907. }
  2908. dAdnu0 = compute_grad_adj(u_B)*(-1.0);
  2909. // dAdnu1 = (u n) \cdot (n \cdnot \nabla) B
  2910. Vector<ElemBasis> dB = compute_dB(S, v, alpha, beta);
  2911. for (Long i = 0; i < Nelem; i++) {
  2912. for (Long j = 0; j < Nnodes; j++) {
  2913. dAdnu1[i][j] = 0;
  2914. dAdnu1[i][j] -= dB[i*9+0][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+0][j];
  2915. dAdnu1[i][j] -= dB[i*9+1][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+1][j];
  2916. dAdnu1[i][j] -= dB[i*9+2][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+2][j];
  2917. dAdnu1[i][j] -= dB[i*9+3][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+0][j];
  2918. dAdnu1[i][j] -= dB[i*9+4][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+1][j];
  2919. dAdnu1[i][j] -= dB[i*9+5][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+2][j];
  2920. dAdnu1[i][j] -= dB[i*9+6][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+0][j];
  2921. dAdnu1[i][j] -= dB[i*9+7][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+1][j];
  2922. dAdnu1[i][j] -= dB[i*9+8][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+2][j];
  2923. }
  2924. }
  2925. // dAdnu2 = (2H) v (I/2 + \nabla G)^T [u n]
  2926. EvalQuadrature(dAdnu2, S.quadrature_dUxF, S, u_n, S.Laplace_dUxF);
  2927. for (Long i = 0; i < Nelem; i++) {
  2928. for (Long j = 0; j < Nnodes; j++) {
  2929. dAdnu2[i][j] += 0.5 * u_n[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  2930. dAdnu2[i][j] += 0.5 * u_n[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  2931. dAdnu2[i][j] += 0.5 * u_n[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  2932. dAdnu2[i][j] *= -2*H[i][j] * v[i][j];
  2933. }
  2934. }
  2935. // dAdnu3 = (v n \cdot \nabla D[u]
  2936. Vector<ElemBasis> nablaDt_u_n;
  2937. EvalQuadrature(nablaDt_u_n, S.quadrature_dUxD, S, u_n, S.Laplace_dUxD);
  2938. for (Long i = 0; i < Nelem; i++) {
  2939. for (Long j = 0; j < Nnodes; j++) {
  2940. dAdnu3[i][j] = 0;
  2941. dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  2942. dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  2943. dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  2944. }
  2945. }
  2946. return dAdnu0 + dAdnu1 + dAdnu2 + dAdnu3;
  2947. };
  2948. auto compute_u_dAdnu_v_1 = [&S,&area_elem,&normal,&H,&compute_grad_adj] (const Vector<ElemBasis>& sigma, Real alpha, Real beta, bool toroidal_flux) {
  2949. const Long Nnodes = ElemBasis::Size();
  2950. const Long Nelem = S.NElem();
  2951. Vector<ElemBasis> B = compute_B(S, sigma, alpha, beta);
  2952. Vector<ElemBasis> gradB = compute_dB(S, sigma, alpha, beta);
  2953. auto compute_v = [&S,&area_elem,&toroidal_flux] (const Vector<ElemBasis>& X) {
  2954. const Long Nelem = S.NElem();
  2955. const Long Nnodes = ElemBasis::Size();
  2956. Real scal[2];
  2957. if (S.Nsurf() == 1) {
  2958. SCTL_ASSERT(toroidal_flux == true);
  2959. scal[0] = 1.0 / S.NTor(0);
  2960. scal[1] = 0;
  2961. } else if (S.Nsurf() == 2) {
  2962. if (toroidal_flux == true) {
  2963. scal[0] = -1.0 / S.NTor(0);
  2964. scal[1] = 1.0 / S.NTor(1);
  2965. } else {
  2966. scal[0] = 1.0 / S.NPol(0);
  2967. scal[1] = -1.0 / S.NPol(1);
  2968. }
  2969. } else {
  2970. SCTL_ASSERT(false);
  2971. }
  2972. Vector<ElemBasis> v(Nelem * COORD_DIM);
  2973. Vector<ElemBasis> dX;
  2974. ElemBasis::Grad(dX, X);
  2975. for (Long k = 0; k < S.Nsurf(); k++) {
  2976. for (Long i_ = 0; i_ < S.NTor(k)*S.NPol(k); i_++) {
  2977. Long i = S.ElemDsp(k) + i_;
  2978. for (Long j = 0; j < Nnodes; j++) {
  2979. Real s = scal[k] / area_elem[i][j];
  2980. v[i*COORD_DIM+0][j] = dX[i*COORD_DIM*2+0+(toroidal_flux?1:0)][j] * s;
  2981. v[i*COORD_DIM+1][j] = dX[i*COORD_DIM*2+2+(toroidal_flux?1:0)][j] * s;
  2982. v[i*COORD_DIM+2][j] = dX[i*COORD_DIM*2+4+(toroidal_flux?1:0)][j] * s;
  2983. }
  2984. }
  2985. }
  2986. return v;
  2987. };
  2988. auto compute_AxB = [&S] (const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  2989. const Long Nelem = S.NElem();
  2990. const Long Nnodes = ElemBasis::Size();
  2991. Vector<ElemBasis> J(Nelem * COORD_DIM);
  2992. for (Long i = 0; i < Nelem; i++) { // Set J
  2993. for (Long j = 0; j < Nnodes; j++) {
  2994. Tensor<Real,true,COORD_DIM> a, b;
  2995. a(0) = A[i*COORD_DIM+0][j];
  2996. a(1) = A[i*COORD_DIM+1][j];
  2997. a(2) = A[i*COORD_DIM+2][j];
  2998. b(0) = B[i*COORD_DIM+0][j];
  2999. b(1) = B[i*COORD_DIM+1][j];
  3000. b(2) = B[i*COORD_DIM+2][j];
  3001. J[i*COORD_DIM+0][j] = a(1) * b(2) - a(2) * b(1);
  3002. J[i*COORD_DIM+1][j] = a(2) * b(0) - a(0) * b(2);
  3003. J[i*COORD_DIM+2][j] = a(0) * b(1) - a(1) * b(0);
  3004. }
  3005. }
  3006. return J;
  3007. };
  3008. auto compute_dphi_dnu0 = [&S,&normal,&compute_AxB,&compute_v,&B,compute_grad_adj] () {
  3009. const Long Nelem = S.NElem();
  3010. const Long Nnodes = ElemBasis::Size();
  3011. Vector<ElemBasis> Gv;
  3012. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3013. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  3014. Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
  3015. return compute_grad_adj(BxGv)*(-1.0);
  3016. };
  3017. auto compute_dphi_dnu1 = [&S,&normal,&H,&compute_AxB,&compute_v,&B] () {
  3018. const Long Nelem = S.NElem();
  3019. const Long Nnodes = ElemBasis::Size();
  3020. Vector<ElemBasis> Gv;
  3021. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3022. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  3023. Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
  3024. Vector<ElemBasis> n_dot_BxGv = compute_dot_prod(normal,BxGv);
  3025. Vector<ElemBasis> dphi_dnu(Nelem);
  3026. for (Long i = 0; i < Nelem; i++) {
  3027. for (Long j = 0; j < Nnodes; j++) {
  3028. dphi_dnu[i][j] = n_dot_BxGv[i][j] * 2*H[i][j];
  3029. }
  3030. }
  3031. return dphi_dnu;
  3032. };
  3033. auto compute_dphi_dnu2 = [&S,&normal,&H,&compute_AxB,&compute_v,&B] () {
  3034. const Long Nelem = S.NElem();
  3035. const Long Nnodes = ElemBasis::Size();
  3036. Vector<ElemBasis> GnxB;
  3037. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3038. EvalQuadrature(GnxB, S.quadrature_FxU, S, nxB, S.Laplace_FxU);
  3039. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3040. Vector<ElemBasis> v_dot_GnxB = compute_dot_prod(v,GnxB);
  3041. Vector<ElemBasis> dphi_dnu(Nelem);
  3042. for (Long i = 0; i < Nelem; i++) {
  3043. for (Long j = 0; j < Nnodes; j++) {
  3044. dphi_dnu[i][j] = v_dot_GnxB[i][j] * 2*H[i][j];
  3045. }
  3046. }
  3047. return dphi_dnu;
  3048. };
  3049. auto compute_dphi_dnu3 = [&S,&normal,&area_elem,&H,&compute_AxB,&compute_v,&B] () {
  3050. const Long Nelem = S.NElem();
  3051. const Long Nnodes = ElemBasis::Size();
  3052. Vector<ElemBasis> GnxB;
  3053. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3054. EvalQuadrature(GnxB, S.quadrature_FxU, S, nxB, S.Laplace_FxU);
  3055. Vector<ElemBasis> dGnxB = compute_v(GnxB);
  3056. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3057. Vector<ElemBasis> dv_dnu1(Nelem), dv_dnu2(Nelem);
  3058. { // Set dv_dnu1, dv_dnu2
  3059. for (Long i = 0; i < Nelem; i++) {
  3060. for (Long j = 0; j < Nnodes; j++) {
  3061. dv_dnu1[i][j] = 0;
  3062. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+0][j] * v[i*COORD_DIM+0][j] * 2 * H[i][j];
  3063. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+1][j] * v[i*COORD_DIM+1][j] * 2 * H[i][j];
  3064. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+2][j] * v[i*COORD_DIM+2][j] * 2 * H[i][j];
  3065. dv_dnu2[i][j] = 0;
  3066. dv_dnu2[i][j] += -dGnxB[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  3067. dv_dnu2[i][j] += -dGnxB[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  3068. dv_dnu2[i][j] += -dGnxB[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  3069. }
  3070. }
  3071. }
  3072. return dv_dnu1 + dv_dnu2;
  3073. };
  3074. auto compute_dphi_dnu4 = [&S,&normal,&compute_AxB,&compute_v,&B] () {
  3075. const Long Nelem = S.NElem();
  3076. const Long Nnodes = ElemBasis::Size();
  3077. Vector<ElemBasis> dGnxB;
  3078. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3079. EvalQuadrature(dGnxB, S.quadrature_FxdU, S, nxB, S.Laplace_FxdU);
  3080. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3081. Vector<ElemBasis> dphi_dnu(Nelem);
  3082. for (Long i = 0; i < Nelem; i++) {
  3083. for (Long j = 0; j < Nnodes; j++) {
  3084. Real dphi_dnu_ = 0;
  3085. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
  3086. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
  3087. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
  3088. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
  3089. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
  3090. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
  3091. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
  3092. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
  3093. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
  3094. dphi_dnu[i][j] = dphi_dnu_;
  3095. }
  3096. }
  3097. return dphi_dnu;
  3098. };
  3099. auto compute_dphi_dnu5 = [&S,&normal,&compute_AxB,&compute_v,&B] () {
  3100. const Long Nelem = S.NElem();
  3101. const Long Nnodes = ElemBasis::Size();
  3102. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3103. Vector<ElemBasis> dGv;
  3104. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3105. EvalQuadrature(dGv, S.quadrature_FxdU, S, v, S.Laplace_FxdU);
  3106. Vector<ElemBasis> dphi_dnu(Nelem);
  3107. for (Long i = 0; i < Nelem; i++) {
  3108. for (Long j = 0; j < Nnodes; j++) {
  3109. Real dphi_dnu_ = 0;
  3110. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+0][j] * nxB[i*COORD_DIM+0][j];
  3111. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+1][j] * nxB[i*COORD_DIM+0][j];
  3112. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+2][j] * nxB[i*COORD_DIM+0][j];
  3113. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+0][j] * nxB[i*COORD_DIM+1][j];
  3114. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+1][j] * nxB[i*COORD_DIM+1][j];
  3115. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+2][j] * nxB[i*COORD_DIM+1][j];
  3116. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+0][j] * nxB[i*COORD_DIM+2][j];
  3117. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+1][j] * nxB[i*COORD_DIM+2][j];
  3118. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+2][j] * nxB[i*COORD_DIM+2][j];
  3119. dphi_dnu[i][j] = dphi_dnu_;
  3120. }
  3121. }
  3122. return dphi_dnu;
  3123. };
  3124. auto compute_dphi_dnu6 = [&S,&normal,&compute_AxB,&compute_v,&gradB] () {
  3125. const Long Nelem = S.NElem();
  3126. const Long Nnodes = ElemBasis::Size();
  3127. Vector<ElemBasis> Gv;
  3128. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3129. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  3130. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3131. Vector<ElemBasis> dphi_dnu(Nelem);
  3132. for (Long i = 0; i < Nelem; i++) {
  3133. for (Long j = 0; j < Nnodes; j++) {
  3134. Real dphi_dnu_ = 0;
  3135. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  3136. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+1][j] * normal[i*COORD_DIM+0][j];
  3137. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+2][j] * normal[i*COORD_DIM+0][j];
  3138. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+0][j] * normal[i*COORD_DIM+1][j];
  3139. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  3140. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+2][j] * normal[i*COORD_DIM+1][j];
  3141. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+0][j] * normal[i*COORD_DIM+2][j];
  3142. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+1][j] * normal[i*COORD_DIM+2][j];
  3143. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  3144. dphi_dnu[i][j] = dphi_dnu_;
  3145. }
  3146. }
  3147. return dphi_dnu;
  3148. };
  3149. auto compute_dphi_dnu7 = [&S,&normal,&H,&compute_AxB,&compute_v,&sigma] () {
  3150. const Long Nelem = S.NElem();
  3151. const Long Nnodes = ElemBasis::Size();
  3152. Vector<ElemBasis> Gv;
  3153. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3154. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  3155. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3156. Vector<ElemBasis> dphi_dnu(Nelem);
  3157. EvalQuadrature(dphi_dnu, S.quadrature_dUxF, S, nxGv, S.Laplace_dUxF);
  3158. for (Long i = 0; i < Nelem; i++) {
  3159. for (Long j = 0; j < Nnodes; j++) {
  3160. dphi_dnu[i][j] *= -2*H[i][j] * sigma[i][j];
  3161. }
  3162. }
  3163. return dphi_dnu;
  3164. };
  3165. auto compute_dphi_dnu8 = [&S,&normal,&H,&compute_AxB,&compute_v,&sigma] () {
  3166. const Long Nelem = S.NElem();
  3167. const Long Nnodes = ElemBasis::Size();
  3168. Vector<ElemBasis> Gv;
  3169. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3170. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  3171. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3172. Vector<ElemBasis> dphi_dnu(Nelem);
  3173. Vector<ElemBasis> nablaDt_nxGv;
  3174. EvalQuadrature(nablaDt_nxGv, S.quadrature_dUxD, S, nxGv, S.Laplace_dUxD);
  3175. for (Long i = 0; i < Nelem; i++) {
  3176. for (Long j = 0; j < Nnodes; j++) {
  3177. dphi_dnu[i][j] = 0;
  3178. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  3179. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  3180. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  3181. }
  3182. }
  3183. return dphi_dnu;
  3184. };
  3185. auto dphi_dnu0 = compute_dphi_dnu0();
  3186. auto dphi_dnu1 = compute_dphi_dnu1();
  3187. auto dphi_dnu2 = compute_dphi_dnu2();
  3188. auto dphi_dnu3 = compute_dphi_dnu3();
  3189. auto dphi_dnu4 = compute_dphi_dnu4();
  3190. auto dphi_dnu5 = compute_dphi_dnu5();
  3191. auto dphi_dnu6 = compute_dphi_dnu6();
  3192. auto dphi_dnu7 = compute_dphi_dnu7();
  3193. auto dphi_dnu8 = compute_dphi_dnu8();
  3194. return (dphi_dnu0+dphi_dnu1+dphi_dnu2+dphi_dnu3+dphi_dnu4+dphi_dnu5+dphi_dnu6+dphi_dnu7+dphi_dnu8);
  3195. };
  3196. { // Set dg_dnu -= dg_dsigma invA dA_dnu sigma
  3197. dg_dnu -= compute_u_dAdnu_v_0(dg_dsigma_invA, sigma, alpha, beta);
  3198. if (S.Nsurf() >= 1) dg_dnu -= compute_u_dAdnu_v_1(sigma, alpha, beta, true) * dg_dsigma_invA[Nelem*Nnodes+0];
  3199. if (S.Nsurf() >= 2) dg_dnu -= compute_u_dAdnu_v_1(sigma, alpha, beta, false) * dg_dsigma_invA[Nelem*Nnodes+1];
  3200. }
  3201. return dg_dnu;
  3202. };
  3203. Vector<ElemBasis> dgdnu;
  3204. { // Set dgdnu
  3205. dgdnu.ReInit(S_.NElem());
  3206. dgdnu = 0;
  3207. for (Long i = 0; i < S_.Nsurf(); i++) {
  3208. const Long elem_dsp = (i==0 ? 0 : S_.ElemDsp(i-1));
  3209. const Long Nnodes = ElemBasis::Size();
  3210. auto dgdnu_ = compute_gradient(Svec[i]);
  3211. if (0) { // Write VTU
  3212. VTUData vtu;
  3213. vtu.AddElems(Svec[i].GetElemList(), dgdnu_, ORDER);
  3214. vtu.WriteVTK("dgdnu-"+std::to_string(i), comm);
  3215. }
  3216. for (Long j = 0; j < (i==0?0:Svec[i].NTor(0)*Svec[i].NPol(0)); j++) {
  3217. for (Long k = 0; k < Nnodes; k++) {
  3218. dgdnu[elem_dsp+j][k] -= dgdnu_[j][k];
  3219. }
  3220. }
  3221. for (Long j = (i==0?0:Svec[i].NTor(0)*Svec[i].NPol(0)); j < dgdnu_.Dim(); j++) {
  3222. for (Long k = 0; k < Nnodes; k++) {
  3223. dgdnu[elem_dsp+j][k] += dgdnu_[j][k];
  3224. }
  3225. }
  3226. }
  3227. }
  3228. return dgdnu;
  3229. }
  3230. static Vector<ElemBasis> compute_pressure_jump(const Stellarator<Real,ORDER>& S_, const Vector<Real>& pressure, const Vector<Real>& flux_tor_, const Vector<Real>& flux_pol_) {
  3231. constexpr Integer order_singular = 15;
  3232. constexpr Integer order_direct = 35;
  3233. Comm comm = Comm::World();
  3234. Vector<Stellarator<Real,ORDER>> Svec(S_.Nsurf());
  3235. for (Long i = 0; i < S_.Nsurf(); i++) { // Set Svec[i] (quadratures, B)
  3236. const Long elem_dsp = (i==0 ? 0 : S_.ElemDsp(i-1));
  3237. const Long Nnodes = ElemBasis::Size();
  3238. Stellarator<Real,ORDER>& S = Svec[i];
  3239. if (i == 0) { // Init S
  3240. Vector<Long> NtNp;
  3241. NtNp.PushBack(S_.NTor(i));
  3242. NtNp.PushBack(S_.NPol(i));
  3243. S = Stellarator<Real,ORDER>(NtNp);
  3244. } else {
  3245. Vector<Long> NtNp;
  3246. NtNp.PushBack(S_.NTor(i-1));
  3247. NtNp.PushBack(S_.NPol(i-1));
  3248. NtNp.PushBack(S_.NTor(i));
  3249. NtNp.PushBack(S_.NPol(i));
  3250. S = Stellarator<Real,ORDER>(NtNp);
  3251. }
  3252. for (Long j = 0; j < S.NElem(); j++) { // Set S coordinates
  3253. for (Long k = 0; k < Nnodes; k++) {
  3254. S.Elem(j,0)[k] = S_.Elem(elem_dsp+j,0)[k];
  3255. S.Elem(j,1)[k] = S_.Elem(elem_dsp+j,1)[k];
  3256. S.Elem(j,2)[k] = S_.Elem(elem_dsp+j,2)[k];
  3257. }
  3258. }
  3259. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3260. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  3261. SetupQuadrature(S.quadrature_FxdU , S, S.Laplace_FxdU , order_singular, order_direct, -1.0, comm);
  3262. { // Set Bt0, Bp0, dBt0, dBp0
  3263. Vector<ElemBasis> Jt, Jp;
  3264. compute_harmonic_vector_potentials(Jt, Jp, S);
  3265. EvalQuadrature(S.Bt0 , S.quadrature_BS , S, Jp, S.BiotSavart);
  3266. EvalQuadrature(S.Bp0 , S.quadrature_BS , S, Jt, S.BiotSavart);
  3267. }
  3268. compute_invA(S.sigma, S.alpha, S.beta, S, flux_tor_[i], flux_pol_[i], comm);
  3269. S.B = compute_B(S, S.sigma, S.alpha, S.beta);
  3270. }
  3271. return compute_pressure_jump(Svec, pressure);
  3272. }
  3273. static Real compute_g(const Stellarator<Real,ORDER>& S_, const Vector<Real>& pressure, const Vector<Real>& flux_tor_, const Vector<Real>& flux_pol_) {
  3274. constexpr Integer order_singular = 15;
  3275. constexpr Integer order_direct = 35;
  3276. Comm comm = Comm::World();
  3277. Vector<Stellarator<Real,ORDER>> Svec(S_.Nsurf());
  3278. for (Long i = 0; i < S_.Nsurf(); i++) { // Set Svec[i] (quadratures, B)
  3279. const Long elem_dsp = (i==0 ? 0 : S_.ElemDsp(i-1));
  3280. const Long Nnodes = ElemBasis::Size();
  3281. Stellarator<Real,ORDER>& S = Svec[i];
  3282. if (i == 0) { // Init S
  3283. Vector<Long> NtNp;
  3284. NtNp.PushBack(S_.NTor(i));
  3285. NtNp.PushBack(S_.NPol(i));
  3286. S = Stellarator<Real,ORDER>(NtNp);
  3287. } else {
  3288. Vector<Long> NtNp;
  3289. NtNp.PushBack(S_.NTor(i-1));
  3290. NtNp.PushBack(S_.NPol(i-1));
  3291. NtNp.PushBack(S_.NTor(i));
  3292. NtNp.PushBack(S_.NPol(i));
  3293. S = Stellarator<Real,ORDER>(NtNp);
  3294. }
  3295. for (Long j = 0; j < S.NElem(); j++) { // Set S coordinates
  3296. for (Long k = 0; k < Nnodes; k++) {
  3297. S.Elem(j,0)[k] = S_.Elem(elem_dsp+j,0)[k];
  3298. S.Elem(j,1)[k] = S_.Elem(elem_dsp+j,1)[k];
  3299. S.Elem(j,2)[k] = S_.Elem(elem_dsp+j,2)[k];
  3300. }
  3301. }
  3302. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3303. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  3304. SetupQuadrature(S.quadrature_FxdU , S, S.Laplace_FxdU , order_singular, order_direct, -1.0, comm);
  3305. { // Set Bt0, Bp0, dBt0, dBp0
  3306. Vector<ElemBasis> Jt, Jp;
  3307. compute_harmonic_vector_potentials(Jt, Jp, S);
  3308. EvalQuadrature(S.Bt0 , S.quadrature_BS , S, Jp, S.BiotSavart);
  3309. EvalQuadrature(S.Bp0 , S.quadrature_BS , S, Jt, S.BiotSavart);
  3310. }
  3311. compute_invA(S.sigma, S.alpha, S.beta, S, flux_tor_[i], flux_pol_[i], comm);
  3312. S.B = compute_B(S, S.sigma, S.alpha, S.beta);
  3313. }
  3314. auto compute_g = [] (const Vector<Stellarator<Real,ORDER>>& Svec, const Vector<Real>& pressure) {
  3315. Real g = 0;
  3316. compute_gvec(Svec, pressure);
  3317. for (Long i = 0; i < Svec.Dim(); i++) { // Set gvec
  3318. Vector<ElemBasis> normal, area_elem, wt(Svec[i].NElem());
  3319. compute_norm_area_elem(Svec[i], normal, area_elem);
  3320. wt = 0.5;
  3321. if (i == Svec.Dim()-1) {
  3322. Long Nsurf = Svec[i].Nsurf();
  3323. Long Nelem = Svec[i].NTor(Nsurf-1) * Svec[i].NPol(Nsurf-1);
  3324. Long offset = Svec[i].ElemDsp(Nsurf-1);
  3325. for (Long j = 0; j < Nelem; j++) {
  3326. wt[offset + j] = 1.0;
  3327. }
  3328. }
  3329. g += compute_inner_prod(area_elem, Svec[i].gvec, wt);
  3330. }
  3331. return g;
  3332. };
  3333. return compute_g(Svec, pressure);
  3334. }
  3335. static void test() {
  3336. constexpr Integer order_singular = 15;
  3337. constexpr Integer order_direct = 35;
  3338. Comm comm = Comm::World();
  3339. Profile::Enable(true);
  3340. Long Nsurf = 2;
  3341. Stellarator<Real,ORDER> S;
  3342. Vector<Real> flux_tor(Nsurf), flux_pol(Nsurf), pressure(Nsurf);
  3343. { // Init S, flux_tor, flux_pol, pressure
  3344. Vector<Long> NtNp;
  3345. for (Long i = 0; i < Nsurf; i++) {
  3346. NtNp.PushBack(30);
  3347. NtNp.PushBack(4);
  3348. }
  3349. S = Stellarator<Real,ORDER>(NtNp);
  3350. flux_tor = 1;
  3351. flux_pol = 1;
  3352. pressure = 0;
  3353. //flux_tor[0] = 1; //0.791881512;
  3354. //flux_tor[1] = 1;
  3355. //flux_pol[0] = 0;
  3356. //flux_pol[1] = 0;
  3357. //pressure[0] = 0;
  3358. //pressure[1] = 0;
  3359. }
  3360. { // find equilibrium flux surfaces
  3361. const Long Nnodes = ElemBasis::Size();
  3362. const Long Nelem = S.NElem();
  3363. const Long Nsurf = S.Nsurf();
  3364. Long iter = 0;
  3365. Real dt = 0.1;
  3366. while (1) { // time-step
  3367. Vector<ElemBasis> normal, area_elem;
  3368. compute_norm_area_elem(S, normal, area_elem);
  3369. Vector<ElemBasis> dgdnu = compute_gradient(S, pressure, flux_tor, flux_pol)*(-1);
  3370. //Vector<ElemBasis> dgdnu = compute_pressure_jump(S, pressure, flux_tor, flux_pol)*(-1);
  3371. Vector<ElemBasis> dXdt(dgdnu.Dim()*COORD_DIM);
  3372. { // Set dXdt
  3373. dXdt = 0;
  3374. for (Long i = 0; i < S.ElemDsp(Nsurf-1); i++) {
  3375. for (Long j = 0; j < Nnodes; j++) {
  3376. dXdt[i*COORD_DIM+0][j] = normal[i*COORD_DIM+0][j] * dgdnu[i][j];
  3377. dXdt[i*COORD_DIM+1][j] = normal[i*COORD_DIM+1][j] * dgdnu[i][j];
  3378. dXdt[i*COORD_DIM+2][j] = normal[i*COORD_DIM+2][j] * dgdnu[i][j];
  3379. }
  3380. }
  3381. }
  3382. for (Long i = 0; i < S.Nsurf(); i++) { // filter dXdt
  3383. const Long Nt0 = S.NTor(i);
  3384. const Long Np0 = S.NPol(i);
  3385. const Long Nelem = Nt0 * Np0;
  3386. const Long offset = S.ElemDsp(i);
  3387. const Long Nnodes = ElemBasis::Size();
  3388. const Long INTERP_ORDER = 12;
  3389. const Long Nt = Nt0*ORDER/5;
  3390. const Long Np = Np0*ORDER/5;
  3391. for (Long k = 0; k < COORD_DIM; k++) {
  3392. Matrix<Real> M(Nt, Np); M = 0;
  3393. const auto& quad_wts = ElemBasis::QuadWts();
  3394. const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
  3395. for (Long tt = 0; tt < Nt0; tt++) { // Set M
  3396. for (Long pp = 0; pp < Np0; pp++) {
  3397. for (Long t = 0; t < ORDER; t++) {
  3398. for (Long p = 0; p < ORDER; p++) {
  3399. Real theta = (tt + Mnodes[0][t]) / Nt0;
  3400. Real phi = (pp + Mnodes[0][p]) / Np0;
  3401. Long i = (Long)(theta * Nt);
  3402. Long j = (Long)(phi * Np);
  3403. Real x = theta * Nt - i;
  3404. Real y = phi * Np - j;
  3405. Long elem_idx = tt * Np0 + pp;
  3406. Long node_idx = p * ORDER + t;
  3407. Vector<Real> Interp0(INTERP_ORDER);
  3408. Vector<Real> Interp1(INTERP_ORDER);
  3409. { // Set Interp0, Interp1
  3410. auto node = [] (Long i) {
  3411. return (Real)i - (INTERP_ORDER-1)/2;
  3412. };
  3413. for (Long i = 0; i < INTERP_ORDER; i++) {
  3414. Real wt_x = 1, wt_y = 1;
  3415. for (Long j = 0; j < INTERP_ORDER; j++) {
  3416. if (j != i) {
  3417. wt_x *= (x - node(j)) / (node(i) - node(j));
  3418. wt_y *= (y - node(j)) / (node(i) - node(j));
  3419. }
  3420. Interp0[i] = wt_x;
  3421. Interp1[i] = wt_y;
  3422. }
  3423. }
  3424. }
  3425. for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  3426. for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  3427. Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  3428. Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  3429. M[idx_i][idx_j] += dXdt[(offset+elem_idx)*COORD_DIM+k][node_idx] * quad_wts[node_idx] * Interp0[ii] * Interp1[jj] / (Nt0 * Np0) * (Nt * Np);
  3430. }
  3431. }
  3432. }
  3433. }
  3434. }
  3435. }
  3436. for (Long tt = 0; tt < Nt0; tt++) {
  3437. for (Long pp = 0; pp < Np0; pp++) {
  3438. for (Long t = 0; t < ORDER; t++) {
  3439. for (Long p = 0; p < ORDER; p++) {
  3440. Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
  3441. Real theta = (tt + Mnodes[0][t]) / Nt0;
  3442. Real phi = (pp + Mnodes[0][p]) / Np0;
  3443. Long i = (Long)(theta * Nt);
  3444. Long j = (Long)(phi * Np);
  3445. Real x = theta * Nt - i;
  3446. Real y = phi * Np - j;
  3447. Vector<Real> Interp0(INTERP_ORDER);
  3448. Vector<Real> Interp1(INTERP_ORDER);
  3449. { // Set Interp0, Interp1
  3450. auto node = [] (Long i) {
  3451. return (Real)i - (INTERP_ORDER-1)/2;
  3452. };
  3453. for (Long i = 0; i < INTERP_ORDER; i++) {
  3454. Real wt_x = 1, wt_y = 1;
  3455. for (Long j = 0; j < INTERP_ORDER; j++) {
  3456. if (j != i) {
  3457. wt_x *= (x - node(j)) / (node(i) - node(j));
  3458. wt_y *= (y - node(j)) / (node(i) - node(j));
  3459. }
  3460. Interp0[i] = wt_x;
  3461. Interp1[i] = wt_y;
  3462. }
  3463. }
  3464. }
  3465. Real f0 = 0;
  3466. for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  3467. for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  3468. Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  3469. Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  3470. f0 += Interp0[ii] * Interp1[jj] * M[idx_i][idx_j];
  3471. }
  3472. }
  3473. Long elem_idx = tt * Np0 + pp;
  3474. Long node_idx = p * ORDER + t;
  3475. dXdt[(offset+elem_idx)*COORD_DIM+k][node_idx] = f0;
  3476. }
  3477. }
  3478. }
  3479. }
  3480. }
  3481. }
  3482. { // Update S, dt
  3483. Stellarator<Real,ORDER> S0 = S, S1 = S, S2 = S;
  3484. for (Long i = 0; i < S.NElem(); i++) {
  3485. for (Long j = 0; j < Nnodes; j++) {
  3486. S0.Elem(i, 0)[j] += 0.0 * dt * dXdt[i*COORD_DIM+0][j];
  3487. S0.Elem(i, 1)[j] += 0.0 * dt * dXdt[i*COORD_DIM+1][j];
  3488. S0.Elem(i, 2)[j] += 0.0 * dt * dXdt[i*COORD_DIM+2][j];
  3489. S1.Elem(i, 0)[j] += 0.5 * dt * dXdt[i*COORD_DIM+0][j];
  3490. S1.Elem(i, 1)[j] += 0.5 * dt * dXdt[i*COORD_DIM+1][j];
  3491. S1.Elem(i, 2)[j] += 0.5 * dt * dXdt[i*COORD_DIM+2][j];
  3492. S2.Elem(i, 0)[j] += 1.0 * dt * dXdt[i*COORD_DIM+0][j];
  3493. S2.Elem(i, 1)[j] += 1.0 * dt * dXdt[i*COORD_DIM+1][j];
  3494. S2.Elem(i, 2)[j] += 1.0 * dt * dXdt[i*COORD_DIM+2][j];
  3495. }
  3496. }
  3497. Real g0 = compute_g(S0, pressure, flux_tor, flux_pol);
  3498. Real g1 = compute_g(S1, pressure, flux_tor, flux_pol);
  3499. Real g2 = compute_g(S2, pressure, flux_tor, flux_pol);
  3500. { // Calculate optimal step size dt
  3501. Real a = 2*g0 - 4*g1 + 2*g2;
  3502. Real b =-3*g0 + 4*g1 - g2;
  3503. Real c = g0;
  3504. Real s = -b/(2*a);
  3505. dt *= s;
  3506. Real g_ = a*s*s + b*s + c;
  3507. std::cout<<"g = "<<g_<<' ';
  3508. std::cout<<g0<<' ';
  3509. std::cout<<g1<<' ';
  3510. std::cout<<g2<<' ';
  3511. std::cout<<dt<<'\n';
  3512. }
  3513. for (Long i = 0; i < S.NElem(); i++) {
  3514. for (Long j = 0; j < Nnodes; j++) {
  3515. S.Elem(i, 0)[j] += dt * dXdt[i*COORD_DIM+0][j];
  3516. S.Elem(i, 1)[j] += dt * dXdt[i*COORD_DIM+1][j];
  3517. S.Elem(i, 2)[j] += dt * dXdt[i*COORD_DIM+2][j];
  3518. }
  3519. }
  3520. }
  3521. iter++;
  3522. Vector<ElemBasis> pressure_jump = compute_pressure_jump(S, pressure, flux_tor, flux_pol);
  3523. { // Write VTU
  3524. VTUData vtu;
  3525. vtu.AddElems(S.GetElemList(), dgdnu, ORDER);
  3526. vtu.WriteVTK("dgdnu"+std::to_string(iter), comm);
  3527. }
  3528. { // Write VTU
  3529. VTUData vtu;
  3530. vtu.AddElems(S.GetElemList(), pressure_jump, ORDER);
  3531. vtu.WriteVTK("pressure_jump"+std::to_string(iter), comm);
  3532. }
  3533. }
  3534. return;
  3535. }
  3536. { // Verify using finite difference approximation
  3537. Vector<ElemBasis> dgdnu = compute_gradient(S, pressure, flux_tor, flux_pol);
  3538. { // Write VTU
  3539. VTUData vtu;
  3540. vtu.AddElems(S.GetElemList(), dgdnu, ORDER);
  3541. vtu.WriteVTK("dgdnu", comm);
  3542. }
  3543. Real eps = 1e-4;
  3544. const Long Nnodes = ElemBasis::Size();
  3545. Vector<ElemBasis> normal, area_elem;
  3546. compute_norm_area_elem(S, normal, area_elem);
  3547. Vector<ElemBasis> nu = area_elem;
  3548. for (Long i = S.ElemDsp(S.Nsurf()-1); i < S.NElem(); i++) nu[i] = 0;
  3549. Stellarator<Real,ORDER> S0 = S, S1 = S;
  3550. for (Long i = 0; i < S.NElem(); i++) {
  3551. for (Long j = 0; j < Nnodes; j++) {
  3552. S0.Elem(i, 0)[j] -= 0.5 * eps * normal[i*COORD_DIM+0][j] * nu[i][j];
  3553. S0.Elem(i, 1)[j] -= 0.5 * eps * normal[i*COORD_DIM+1][j] * nu[i][j];
  3554. S0.Elem(i, 2)[j] -= 0.5 * eps * normal[i*COORD_DIM+2][j] * nu[i][j];
  3555. S1.Elem(i, 0)[j] += 0.5 * eps * normal[i*COORD_DIM+0][j] * nu[i][j];
  3556. S1.Elem(i, 1)[j] += 0.5 * eps * normal[i*COORD_DIM+1][j] * nu[i][j];
  3557. S1.Elem(i, 2)[j] += 0.5 * eps * normal[i*COORD_DIM+2][j] * nu[i][j];
  3558. }
  3559. }
  3560. Real g0 = compute_g(S0, pressure, flux_tor, flux_pol);
  3561. Real g1 = compute_g(S1, pressure, flux_tor, flux_pol);
  3562. std::cout<<"g0 = "<<g0<<"; g1 = "<<g1<<"; dgdnu_ = "<<(g1-g0)/eps<<'\n';
  3563. std::cout<<"dgdnu = "<<compute_inner_prod(area_elem, dgdnu, nu)<<'\n';
  3564. }
  3565. }
  3566. static void test_() {
  3567. constexpr Integer order_singular = 15;
  3568. constexpr Integer order_direct = 35;
  3569. Comm comm = Comm::World();
  3570. Profile::Enable(true);
  3571. Real flux_tor = 1.0, flux_pol = 1.0;
  3572. Stellarator<Real,ORDER> S;
  3573. { // Init S
  3574. Vector<Long> NtNp;
  3575. NtNp.PushBack(20);
  3576. NtNp.PushBack(4);
  3577. //NtNp.PushBack(20);
  3578. //NtNp.PushBack(4);
  3579. S = Stellarator<Real,ORDER>(NtNp);
  3580. }
  3581. if (S.Nsurf() == 1) flux_pol = 0.0;
  3582. Vector<ElemBasis> pressure;
  3583. { // Set pressure
  3584. Vector<ElemBasis> normal, area_elem;
  3585. compute_norm_area_elem(S, normal, area_elem);
  3586. pressure = area_elem*0;
  3587. }
  3588. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  3589. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3590. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  3591. SetupQuadrature(S.quadrature_FxdU, S, S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  3592. SetupQuadrature(S.quadrature_dUxF, S, S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
  3593. Vector<ElemBasis> Bt0, Bp0;
  3594. { // Set Bt0, Bp0
  3595. Vector<ElemBasis> Jt, Jp;
  3596. compute_harmonic_vector_potentials(Jt, Jp, S);
  3597. EvalQuadrature(Bt0, S.quadrature_BS, S, Jp, S.BiotSavart);
  3598. EvalQuadrature(Bp0, S.quadrature_BS, S, Jt, S.BiotSavart);
  3599. }
  3600. auto compute_B = [&S,&Bt0,&Bp0] (const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  3601. const Long Nelem = S.NElem();
  3602. Vector<ElemBasis> B(S.NElem() * COORD_DIM);
  3603. if (sigma.Dim()) {
  3604. const Long Nnodes = ElemBasis::Size();
  3605. Vector<ElemBasis> normal, area_elem;
  3606. compute_norm_area_elem(S, normal, area_elem);
  3607. EvalQuadrature(B, S.quadrature_FxdU, S, sigma, S.Laplace_FxdU);
  3608. for (Long i = 0; i < Nelem; i++) {
  3609. for (Long j = 0; j < Nnodes; j++) {
  3610. for (Long k = 0; k < COORD_DIM; k++) {
  3611. B[i*COORD_DIM+k][j] -= 0.5*sigma[i][j]*normal[i*COORD_DIM+k][j];
  3612. }
  3613. }
  3614. }
  3615. } else {
  3616. B = 0;
  3617. }
  3618. if (S.Nsurf() >= 1) B += Bt0*alpha;
  3619. if (S.Nsurf() >= 2) B += Bp0*beta;
  3620. return B;
  3621. };
  3622. auto compute_flux = [&S] (Real& flux_tor, Real& flux_pol, const Vector<ElemBasis>& B, const Vector<ElemBasis>& normal) {
  3623. const Long Nelem = S.NElem();
  3624. const Long Nnodes = ElemBasis::Size();
  3625. SCTL_ASSERT(B.Dim() == Nelem*COORD_DIM);
  3626. SCTL_ASSERT(normal.Dim() == Nelem*COORD_DIM);
  3627. Vector<ElemBasis> J(Nelem * COORD_DIM);
  3628. for (Long i = 0; i < Nelem; i++) { // Set J
  3629. for (Long j = 0; j < Nnodes; j++) {
  3630. Tensor<Real,true,COORD_DIM> b, n;
  3631. b(0) = B[i*COORD_DIM+0][j];
  3632. b(1) = B[i*COORD_DIM+1][j];
  3633. b(2) = B[i*COORD_DIM+2][j];
  3634. n(0) = normal[i*COORD_DIM+0][j];
  3635. n(1) = normal[i*COORD_DIM+1][j];
  3636. n(2) = normal[i*COORD_DIM+2][j];
  3637. J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
  3638. J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
  3639. J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
  3640. }
  3641. }
  3642. Vector<ElemBasis> A;
  3643. EvalQuadrature(A, S.quadrature_FxU, S, J, S.Laplace_FxU);
  3644. Vector<Real> circ_pol(S.Nsurf()), circ_tor(S.Nsurf());
  3645. { // compute circ
  3646. Vector<ElemBasis> dX;
  3647. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  3648. const auto& quad_wts = ElemBasis::QuadWts();
  3649. for (Long k = 0; k < S.Nsurf(); k++) {
  3650. circ_pol[k] = 0;
  3651. circ_tor[k] = 0;
  3652. Long Ndsp = S.ElemDsp(k);
  3653. for (Long i = 0; i < S.NTor(k)*S.NPol(k); i++) {
  3654. for (Long j = 0; j < Nnodes; j++) {
  3655. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+1][j] * quad_wts[j] / S.NTor(k);
  3656. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+3][j] * quad_wts[j] / S.NTor(k);
  3657. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+5][j] * quad_wts[j] / S.NTor(k);
  3658. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+0][j] * quad_wts[j] / S.NPol(k);
  3659. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+2][j] * quad_wts[j] / S.NPol(k);
  3660. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+4][j] * quad_wts[j] / S.NPol(k);
  3661. }
  3662. }
  3663. }
  3664. }
  3665. if (S.Nsurf() == 1) {
  3666. flux_tor = circ_pol[0];
  3667. flux_pol = 0;
  3668. } else if (S.Nsurf() == 2) {
  3669. flux_tor = circ_pol[1] - circ_pol[0];
  3670. flux_pol = circ_tor[0] - circ_tor[1];
  3671. } else {
  3672. SCTL_ASSERT(false);
  3673. }
  3674. };
  3675. auto compute_A = [&S,compute_B,&compute_flux] (const Vector<Real>& x) {
  3676. const Long Nelem = S.NElem();
  3677. const Long Nnodes = ElemBasis::Size();
  3678. SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
  3679. Vector<ElemBasis> normal, area_elem;
  3680. compute_norm_area_elem(S, normal, area_elem);
  3681. Vector<ElemBasis> sigma(Nelem);
  3682. for (Long i = 0; i < Nelem; i++) {
  3683. for (Long j = 0; j < Nnodes; j++) {
  3684. sigma[i][j] = x[i*Nnodes+j];
  3685. }
  3686. }
  3687. Real alpha = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
  3688. Real beta = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
  3689. Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
  3690. Vector<ElemBasis> BdotN = compute_dot_prod(B, normal);
  3691. Real flux_tor, flux_pol;
  3692. compute_flux(flux_tor, flux_pol, B, normal);
  3693. Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
  3694. for (Long i = 0; i < Nelem; i++) {
  3695. for (Long j = 0; j < Nnodes; j++) {
  3696. Ax[i*Nnodes+j] = BdotN[i][j];
  3697. }
  3698. }
  3699. if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = flux_tor;
  3700. if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = flux_pol;
  3701. return Ax;
  3702. };
  3703. auto compute_invA = [&S,&comm,&compute_A] (Vector<ElemBasis>& sigma, Real& alpha, Real& beta, Real flux_tor, Real flux_pol) {
  3704. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&compute_A](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  3705. (*Ax) = compute_A(x);
  3706. };
  3707. const Long Nelem = S.NElem();
  3708. const Long Nnodes = ElemBasis::Size();
  3709. Vector<Real> rhs_(Nelem * Nnodes + S.Nsurf());
  3710. rhs_ = 0;
  3711. if (S.Nsurf() >= 1) rhs_[Nelem * Nnodes + 0] = flux_tor;
  3712. if (S.Nsurf() >= 2) rhs_[Nelem * Nnodes + 1] = flux_pol;
  3713. Vector<Real> x_(Nelem * Nnodes + S.Nsurf());
  3714. x_ = 0;
  3715. ParallelSolver<Real> linear_solver(comm, true);
  3716. linear_solver(&x_, BIOp, rhs_, 1e-8, 100);
  3717. sigma.ReInit(Nelem);
  3718. for (Long i = 0; i < Nelem; i++) {
  3719. for (Long j = 0; j < Nnodes; j++) {
  3720. sigma[i][j] = x_[i*Nnodes+j];
  3721. }
  3722. }
  3723. alpha = (S.Nsurf() >= 1 ? x_[Nelem * Nnodes + 0] : 0);
  3724. beta = (S.Nsurf() >= 2 ? x_[Nelem * Nnodes + 1] : 0);
  3725. };
  3726. Vector<ElemBasis> dg_dnu = compute_gradient(S, pressure, flux_tor, flux_pol);
  3727. { // Write VTU
  3728. VTUData vtu;
  3729. vtu.AddElems(S.GetElemList(), dg_dnu, ORDER);
  3730. vtu.WriteVTK("dg_dnu", comm);
  3731. }
  3732. if (1) { // test grad_g
  3733. auto compute_g = [&S,&Bt0,&Bp0,&compute_B,&compute_invA,&comm] (const Vector<ElemBasis>& nu, Real eps, Real flux_tor, Real flux_pol, const Vector<ElemBasis>& pressure) {
  3734. const Long Nelem = S.NElem();
  3735. const Long Nnodes = ElemBasis::Size();
  3736. Vector<ElemBasis> normal, area_elem;
  3737. compute_norm_area_elem(S, normal, area_elem);
  3738. Vector<ElemBasis> X_orig(Nelem*COORD_DIM);
  3739. for (Long i = 0; i < Nelem; i++) {
  3740. for (Long j = 0; j < Nnodes; j++) {
  3741. X_orig[i*COORD_DIM+0][j] = S.Elem(i,0)[j];
  3742. X_orig[i*COORD_DIM+1][j] = S.Elem(i,1)[j];
  3743. X_orig[i*COORD_DIM+2][j] = S.Elem(i,2)[j];
  3744. S.Elem(i,0)[j] += eps*nu[i][j] * normal[i*COORD_DIM+0][j];
  3745. S.Elem(i,1)[j] += eps*nu[i][j] * normal[i*COORD_DIM+1][j];
  3746. S.Elem(i,2)[j] += eps*nu[i][j] * normal[i*COORD_DIM+2][j];
  3747. }
  3748. }
  3749. /////////////////////////////////////////////////////////////////////////////////////////////////////////////
  3750. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3751. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  3752. SetupQuadrature(S.quadrature_FxdU, S, S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  3753. Vector<ElemBasis> Jt, Jp;
  3754. compute_harmonic_vector_potentials(Jt, Jp, S);
  3755. EvalQuadrature(Bt0, S.quadrature_BS, S, Jp, S.BiotSavart);
  3756. EvalQuadrature(Bp0, S.quadrature_BS, S, Jt, S.BiotSavart);
  3757. Real alpha, beta;
  3758. Vector<ElemBasis> sigma;
  3759. compute_invA(sigma, alpha, beta, flux_tor, flux_pol);
  3760. Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
  3761. compute_norm_area_elem(S, normal, area_elem);
  3762. Real g = compute_inner_prod(area_elem, compute_gvec(S,B,pressure), area_elem*0+1);
  3763. /////////////////////////////////////////////////////////////////////////////////////////////////////////////
  3764. for (Long i = 0; i < Nelem; i++) {
  3765. for (Long j = 0; j < Nnodes; j++) {
  3766. S.Elem(i,0)[j] = X_orig[i*COORD_DIM+0][j];
  3767. S.Elem(i,1)[j] = X_orig[i*COORD_DIM+1][j];
  3768. S.Elem(i,2)[j] = X_orig[i*COORD_DIM+2][j];
  3769. }
  3770. }
  3771. return g;
  3772. };
  3773. Vector<ElemBasis> normal, area_elem;
  3774. compute_norm_area_elem(S, normal, area_elem);
  3775. const Long Nelem = S.NElem();
  3776. {
  3777. Vector<ElemBasis> nu(Nelem);
  3778. nu = area_elem;
  3779. Real eps = 1e-4;
  3780. Real g0 = compute_g(nu,-eps, flux_tor, flux_pol, pressure);
  3781. Real g1 = compute_g(nu,eps, flux_tor, flux_pol, pressure);
  3782. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  3783. std::cout<<"dg_dnu = "<<compute_inner_prod(area_elem,nu, dg_dnu)<<'\n';
  3784. }
  3785. {
  3786. Vector<ElemBasis> nu(Nelem);
  3787. nu = 1;
  3788. Real eps = 1e-4;
  3789. Real g0 = compute_g(nu,-eps, flux_tor, flux_pol, pressure);
  3790. Real g1 = compute_g(nu,eps, flux_tor, flux_pol, pressure);
  3791. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  3792. std::cout<<"dg_dnu = "<<compute_inner_prod(area_elem,nu, dg_dnu)<<'\n';
  3793. }
  3794. {
  3795. Vector<ElemBasis> nu(Nelem);
  3796. nu = dg_dnu;
  3797. Real eps = 1e-4;
  3798. Real g0 = compute_g(nu,-eps, flux_tor, flux_pol, pressure);
  3799. Real g1 = compute_g(nu,eps, flux_tor, flux_pol, pressure);
  3800. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  3801. std::cout<<"dg_dnu = "<<compute_inner_prod(area_elem,nu, dg_dnu)<<'\n';
  3802. }
  3803. }
  3804. }
  3805. static void test_askham() {
  3806. constexpr Integer order_singular = 15;
  3807. constexpr Integer order_direct = 35;
  3808. Comm comm = Comm::World();
  3809. Profile::Enable(true);
  3810. Real flux_tor = 1.0, flux_pol = 1.0;
  3811. Stellarator<Real,ORDER> S;
  3812. { // Init S
  3813. Vector<Long> NtNp;
  3814. NtNp.PushBack(20);
  3815. NtNp.PushBack(4);
  3816. S = Stellarator<Real,ORDER>(NtNp);
  3817. }
  3818. Vector<ElemBasis> pressure(S.NElem());
  3819. pressure = 0;
  3820. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  3821. if (S.Nsurf() == 1) flux_pol = 0.0;
  3822. SetupQuadrature(S.quadrature_dBS , S, S.BiotSavartGrad, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3823. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3824. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  3825. SetupQuadrature(S.quadrature_FxdU, S, S.Laplace_FxdU , order_singular, order_direct, -1.0, comm);
  3826. SetupQuadrature(S.quadrature_dUxF, S, S.Laplace_dUxF , order_singular, order_direct, -1.0, comm);
  3827. Vector<ElemBasis> Bt0, Bp0;
  3828. Vector<ElemBasis> dBt0, dBp0;
  3829. { // Set Bt0, Bp0
  3830. Vector<ElemBasis> Jt, Jp;
  3831. compute_harmonic_vector_potentials(Jt, Jp, S);
  3832. EvalQuadrature(Bt0, S.quadrature_BS, S, Jp, S.BiotSavart);
  3833. EvalQuadrature(Bp0, S.quadrature_BS, S, Jt, S.BiotSavart);
  3834. EvalQuadrature(dBt0, S.quadrature_dBS, S, Jp, S.BiotSavartGrad);
  3835. EvalQuadrature(dBp0, S.quadrature_dBS, S, Jt, S.BiotSavartGrad);
  3836. }
  3837. auto compute_B = [&S,&Bt0,&Bp0] (const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  3838. const Long Nelem = S.NElem();
  3839. Vector<ElemBasis> B(S.NElem() * COORD_DIM);
  3840. if (sigma.Dim()) {
  3841. const Long Nnodes = ElemBasis::Size();
  3842. Vector<ElemBasis> normal, area_elem;
  3843. compute_norm_area_elem(S, normal, area_elem);
  3844. EvalQuadrature(B, S.quadrature_FxdU, S, sigma, S.Laplace_FxdU);
  3845. for (Long i = 0; i < Nelem; i++) {
  3846. for (Long j = 0; j < Nnodes; j++) {
  3847. for (Long k = 0; k < COORD_DIM; k++) {
  3848. B[i*COORD_DIM+k][j] -= 0.5*sigma[i][j]*normal[i*COORD_DIM+k][j];
  3849. }
  3850. }
  3851. }
  3852. } else {
  3853. B = 0;
  3854. }
  3855. if (S.Nsurf() >= 1) B += Bt0*alpha;
  3856. if (S.Nsurf() >= 2) B += Bp0*beta;
  3857. return B;
  3858. };
  3859. auto compute_dB = [&S,&dBt0,&dBp0] (const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  3860. const Long Nelem = S.NElem();
  3861. Vector<ElemBasis> dB(S.NElem() * COORD_DIM * COORD_DIM);
  3862. if (sigma.Dim()) {
  3863. EvalQuadrature(dB, S.quadrature_Fxd2U, S, sigma, S.Laplace_Fxd2U);
  3864. } else {
  3865. dB = 0;
  3866. }
  3867. if (S.Nsurf() >= 1) dB += dBt0*alpha;
  3868. if (S.Nsurf() >= 2) dB += dBp0*beta;
  3869. return dB;
  3870. };
  3871. auto compute_flux = [&S] (Real& flux_tor, Real& flux_pol, const Vector<ElemBasis>& B, const Vector<ElemBasis>& normal) {
  3872. const Long Nelem = S.NElem();
  3873. const Long Nnodes = ElemBasis::Size();
  3874. SCTL_ASSERT(B.Dim() == Nelem*COORD_DIM);
  3875. SCTL_ASSERT(normal.Dim() == Nelem*COORD_DIM);
  3876. Vector<ElemBasis> J(Nelem * COORD_DIM);
  3877. for (Long i = 0; i < Nelem; i++) { // Set J
  3878. for (Long j = 0; j < Nnodes; j++) {
  3879. Tensor<Real,true,COORD_DIM> b, n;
  3880. b(0) = B[i*COORD_DIM+0][j];
  3881. b(1) = B[i*COORD_DIM+1][j];
  3882. b(2) = B[i*COORD_DIM+2][j];
  3883. n(0) = normal[i*COORD_DIM+0][j];
  3884. n(1) = normal[i*COORD_DIM+1][j];
  3885. n(2) = normal[i*COORD_DIM+2][j];
  3886. J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
  3887. J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
  3888. J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
  3889. }
  3890. }
  3891. Vector<ElemBasis> A;
  3892. EvalQuadrature(A, S.quadrature_FxU, S, J, S.Laplace_FxU);
  3893. Vector<Real> circ_pol(S.Nsurf()), circ_tor(S.Nsurf());
  3894. { // compute circ
  3895. Vector<ElemBasis> dX;
  3896. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  3897. const auto& quad_wts = ElemBasis::QuadWts();
  3898. for (Long k = 0; k < S.Nsurf(); k++) {
  3899. circ_pol[k] = 0;
  3900. circ_tor[k] = 0;
  3901. Long Ndsp = S.ElemDsp(k);
  3902. for (Long i = 0; i < S.NTor(k)*S.NPol(k); i++) {
  3903. for (Long j = 0; j < Nnodes; j++) {
  3904. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+1][j] * quad_wts[j] / S.NTor(k);
  3905. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+3][j] * quad_wts[j] / S.NTor(k);
  3906. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+5][j] * quad_wts[j] / S.NTor(k);
  3907. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+0][j] * quad_wts[j] / S.NPol(k);
  3908. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+2][j] * quad_wts[j] / S.NPol(k);
  3909. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+4][j] * quad_wts[j] / S.NPol(k);
  3910. }
  3911. }
  3912. }
  3913. }
  3914. if (S.Nsurf() == 1) {
  3915. flux_tor = circ_pol[0];
  3916. flux_pol = 0;
  3917. } else if (S.Nsurf() == 2) {
  3918. flux_tor = circ_pol[1] - circ_pol[0];
  3919. flux_pol = circ_tor[0] - circ_tor[1];
  3920. } else {
  3921. SCTL_ASSERT(false);
  3922. }
  3923. };
  3924. auto compute_A = [&S,compute_B,&compute_flux] (const Vector<Real>& x) {
  3925. const Long Nelem = S.NElem();
  3926. const Long Nnodes = ElemBasis::Size();
  3927. SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
  3928. Vector<ElemBasis> normal, area_elem;
  3929. compute_norm_area_elem(S, normal, area_elem);
  3930. Vector<ElemBasis> sigma(Nelem);
  3931. for (Long i = 0; i < Nelem; i++) {
  3932. for (Long j = 0; j < Nnodes; j++) {
  3933. sigma[i][j] = x[i*Nnodes+j];
  3934. }
  3935. }
  3936. Real alpha = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
  3937. Real beta = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
  3938. Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
  3939. Vector<ElemBasis> BdotN = compute_dot_prod(B, normal);
  3940. Real flux_tor, flux_pol;
  3941. compute_flux(flux_tor, flux_pol, B, normal);
  3942. Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
  3943. for (Long i = 0; i < Nelem; i++) {
  3944. for (Long j = 0; j < Nnodes; j++) {
  3945. Ax[i*Nnodes+j] = BdotN[i][j];
  3946. }
  3947. }
  3948. if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = flux_tor;
  3949. if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = flux_pol;
  3950. return Ax;
  3951. };
  3952. auto compute_invA = [&S,&comm,&compute_A] (Vector<ElemBasis>& sigma, Real& alpha, Real& beta, Real flux_tor, Real flux_pol) {
  3953. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&compute_A](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  3954. (*Ax) = compute_A(x);
  3955. };
  3956. const Long Nelem = S.NElem();
  3957. const Long Nnodes = ElemBasis::Size();
  3958. Vector<Real> rhs_(Nelem * Nnodes + S.Nsurf());
  3959. rhs_ = 0;
  3960. if (S.Nsurf() >= 1) rhs_[Nelem * Nnodes + 0] = flux_tor;
  3961. if (S.Nsurf() >= 2) rhs_[Nelem * Nnodes + 1] = flux_pol;
  3962. Vector<Real> x_(Nelem * Nnodes + S.Nsurf());
  3963. x_ = 0;
  3964. ParallelSolver<Real> linear_solver(comm, true);
  3965. linear_solver(&x_, BIOp, rhs_, 1e-8, 100);
  3966. sigma.ReInit(Nelem);
  3967. for (Long i = 0; i < Nelem; i++) {
  3968. for (Long j = 0; j < Nnodes; j++) {
  3969. sigma[i][j] = x_[i*Nnodes+j];
  3970. }
  3971. }
  3972. alpha = (S.Nsurf() >= 1 ? x_[Nelem * Nnodes + 0] : 0);
  3973. beta = (S.Nsurf() >= 2 ? x_[Nelem * Nnodes + 1] : 0);
  3974. };
  3975. auto compute_H = [] (const ElemList<COORD_DIM,ElemBasis>& elem_lst, const Vector<ElemBasis>& normal) {
  3976. const Long Nnodes = ElemBasis::Size();
  3977. const Long Nelem = elem_lst.NElem();
  3978. const Vector<ElemBasis> X = elem_lst.ElemVector();
  3979. Vector<ElemBasis> dX, d2X, H(Nelem);
  3980. ElemBasis::Grad(dX, X);
  3981. ElemBasis::Grad(d2X, dX);
  3982. for (Long i = 0; i < Nelem; i++) {
  3983. for (Long j = 0; j < Nnodes; j++) {
  3984. Tensor<Real,true,2,2> I, invI, II;
  3985. for (Long k0 = 0; k0 < 2; k0++) {
  3986. for (Long k1 = 0; k1 < 2; k1++) {
  3987. I(k0,k1) = 0;
  3988. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3989. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3990. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3991. II(k0,k1) = 0;
  3992. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3993. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3994. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3995. }
  3996. }
  3997. { // Set invI
  3998. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3999. invI(0,0) = I(1,1) / detI;
  4000. invI(0,1) = -I(0,1) / detI;
  4001. invI(1,0) = -I(1,0) / detI;
  4002. invI(1,1) = I(0,0) / detI;
  4003. }
  4004. { // Set H
  4005. H[i][j] = 0;
  4006. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  4007. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  4008. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  4009. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  4010. }
  4011. }
  4012. }
  4013. return H;
  4014. };
  4015. auto compute_grad = [&S,&compute_B,&compute_dB,&compute_invA,&compute_H](Vector<ElemBasis>& pressure, Real flux_tor, Real flux_pol) {
  4016. const Long Nelem = S.NElem();
  4017. const Long Nnodes = ElemBasis::Size();
  4018. Real alpha, beta;
  4019. Vector<ElemBasis> sigma;
  4020. compute_invA(sigma, alpha, beta, flux_tor, flux_pol);
  4021. Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
  4022. Vector<ElemBasis> dB = compute_dB(sigma, alpha, beta);
  4023. Vector<ElemBasis> normal, area_elem;
  4024. compute_norm_area_elem(S, normal, area_elem);
  4025. Vector<ElemBasis> gvec = compute_gvec(S, B, pressure);
  4026. Vector<ElemBasis> dgdB = compute_dgdB(S, B, pressure);
  4027. Vector<ElemBasis> H = compute_H(S.GetElemList(), normal);
  4028. Vector<ElemBasis> dgdnu(Nelem);
  4029. dgdnu = 0;
  4030. for (Long i = 0; i < Nelem; i++) {
  4031. for (Long j = 0; j < Nnodes; j++) {
  4032. Real dgdB_dot_dBdn = 0;
  4033. Real dBdn[COORD_DIM] = {0,0,0};
  4034. for (Long k = 0; k < COORD_DIM; k++) {
  4035. dBdn[0] += dB[(i*COORD_DIM+0)*COORD_DIM+k][j] * normal[i*COORD_DIM+k][j];
  4036. dBdn[1] += dB[(i*COORD_DIM+1)*COORD_DIM+k][j] * normal[i*COORD_DIM+k][j];
  4037. dBdn[2] += dB[(i*COORD_DIM+2)*COORD_DIM+k][j] * normal[i*COORD_DIM+k][j];
  4038. }
  4039. for (Long k = 0; k < COORD_DIM; k++) {
  4040. dgdB_dot_dBdn += dgdB[i*COORD_DIM+k][j] * dBdn[k];
  4041. }
  4042. dgdnu[i][j] = dgdB_dot_dBdn + 2*H[i][j]*gvec[i][j];
  4043. }
  4044. }
  4045. return dgdnu;
  4046. };
  4047. auto dg_dnu0 = compute_gradient(S, pressure, flux_tor, flux_pol);
  4048. auto dg_dnu1 = compute_grad ( pressure, flux_tor, flux_pol);
  4049. { // Write VTU
  4050. VTUData vtu;
  4051. vtu.AddElems(S.GetElemList(), dg_dnu0, ORDER);
  4052. vtu.WriteVTK("dg_dnu0", comm);
  4053. }
  4054. { // Write VTU
  4055. VTUData vtu;
  4056. vtu.AddElems(S.GetElemList(), dg_dnu1, ORDER);
  4057. vtu.WriteVTK("dg_dnu1", comm);
  4058. }
  4059. }
  4060. private:
  4061. static void tmp() {
  4062. //if (0) { // Save data
  4063. // Matrix<Real> M(S.NtNp_[0]*ORDER, S.NtNp_[1]*ORDER);
  4064. // for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
  4065. // for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
  4066. // for (Long t = 0; t < ORDER; t++) {
  4067. // for (Long p = 0; p < ORDER; p++) {
  4068. // Long elem_idx = tt * S.NtNp_[1] + pp;
  4069. // Long node_idx = p * ORDER + t;
  4070. // M[tt*ORDER+t][pp*ORDER+p] = dg_dnu[elem_idx][node_idx];
  4071. // }
  4072. // }
  4073. // }
  4074. // }
  4075. // M.Write("dg_dnu.mat");
  4076. //}
  4077. //if (0) { // filter dg_dnu and write VTU
  4078. // const Long Nelem = S.NElem();
  4079. // const Long Nnodes = ElemBasis::Size();
  4080. // const Integer INTERP_ORDER = 12;
  4081. // Long Nt = S.NtNp_[0]*ORDER/5, Np = S.NtNp_[1]*ORDER/5;
  4082. // Matrix<Real> M(Nt, Np); M = 0;
  4083. // const auto& quad_wts = ElemBasis::QuadWts();
  4084. // const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
  4085. // for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
  4086. // for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
  4087. // for (Long t = 0; t < ORDER; t++) {
  4088. // for (Long p = 0; p < ORDER; p++) {
  4089. // Real theta = (tt + Mnodes[0][t]) / S.NtNp_[0];
  4090. // Real phi = (pp + Mnodes[0][p]) / S.NtNp_[1];
  4091. // Long i = (Long)(theta * Nt);
  4092. // Long j = (Long)(phi * Np);
  4093. // Real x = theta * Nt - i;
  4094. // Real y = phi * Np - j;
  4095. // Long elem_idx = tt * S.NtNp_[1] + pp;
  4096. // Long node_idx = p * ORDER + t;
  4097. // Vector<Real> Interp0(INTERP_ORDER);
  4098. // Vector<Real> Interp1(INTERP_ORDER);
  4099. // { // Set Interp0, Interp1
  4100. // auto node = [] (Long i) {
  4101. // return (Real)i - (INTERP_ORDER-1)/2;
  4102. // };
  4103. // for (Long i = 0; i < INTERP_ORDER; i++) {
  4104. // Real wt_x = 1, wt_y = 1;
  4105. // for (Long j = 0; j < INTERP_ORDER; j++) {
  4106. // if (j != i) {
  4107. // wt_x *= (x - node(j)) / (node(i) - node(j));
  4108. // wt_y *= (y - node(j)) / (node(i) - node(j));
  4109. // }
  4110. // Interp0[i] = wt_x;
  4111. // Interp1[i] = wt_y;
  4112. // }
  4113. // }
  4114. // }
  4115. // for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  4116. // for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  4117. // Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  4118. // Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  4119. // M[idx_i][idx_j] += dg_dnu[elem_idx][node_idx] * quad_wts[node_idx] * Interp0[ii] * Interp1[jj] / (S.NtNp_[0] * S.NtNp_[1]) * (Nt * Np);
  4120. // }
  4121. // }
  4122. // }
  4123. // }
  4124. // }
  4125. // }
  4126. // Vector<ElemBasis> f(Nelem);
  4127. // for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
  4128. // for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
  4129. // for (Long t = 0; t < ORDER; t++) {
  4130. // for (Long p = 0; p < ORDER; p++) {
  4131. // Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
  4132. // Real theta = (tt + Mnodes[0][t]) / S.NtNp_[0];
  4133. // Real phi = (pp + Mnodes[0][p]) / S.NtNp_[1];
  4134. // Long i = (Long)(theta * Nt);
  4135. // Long j = (Long)(phi * Np);
  4136. // Real x = theta * Nt - i;
  4137. // Real y = phi * Np - j;
  4138. // Vector<Real> Interp0(INTERP_ORDER);
  4139. // Vector<Real> Interp1(INTERP_ORDER);
  4140. // { // Set Interp0, Interp1
  4141. // auto node = [] (Long i) {
  4142. // return (Real)i - (INTERP_ORDER-1)/2;
  4143. // };
  4144. // for (Long i = 0; i < INTERP_ORDER; i++) {
  4145. // Real wt_x = 1, wt_y = 1;
  4146. // for (Long j = 0; j < INTERP_ORDER; j++) {
  4147. // if (j != i) {
  4148. // wt_x *= (x - node(j)) / (node(i) - node(j));
  4149. // wt_y *= (y - node(j)) / (node(i) - node(j));
  4150. // }
  4151. // Interp0[i] = wt_x;
  4152. // Interp1[i] = wt_y;
  4153. // }
  4154. // }
  4155. // }
  4156. // Real f0 = 0;
  4157. // for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  4158. // for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  4159. // Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  4160. // Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  4161. // f0 += Interp0[ii] * Interp1[jj] * M[idx_i][idx_j];
  4162. // }
  4163. // }
  4164. // Long elem_idx = tt * S.NtNp_[1] + pp;
  4165. // Long node_idx = p * ORDER + t;
  4166. // f[elem_idx][node_idx] = f0;
  4167. // }
  4168. // }
  4169. // }
  4170. // }
  4171. // { // Write VTU
  4172. // VTUData vtu;
  4173. // vtu.AddElems(S.GetElemList(), f, ORDER);
  4174. // vtu.WriteVTK("dg_dnu_filtered", comm);
  4175. // }
  4176. // dg_dnu = f;
  4177. //}
  4178. }
  4179. static void FlipNormal(Vector<ElemBasis>& v) {
  4180. for (Long i = 0; i < v.Dim(); i++) {
  4181. const auto elem = v[i];
  4182. for (Long j0 = 0; j0 < ORDER; j0++) {
  4183. for (Long j1 = 0; j1 < ORDER; j1++) {
  4184. v[i][j0*ORDER+j1] = elem[j0*ORDER+(ORDER-j1-1)];
  4185. }
  4186. }
  4187. }
  4188. }
  4189. template <class Kernel> static void SetupQuadrature(Quadrature<Real>& quadrature, const Stellarator<Real,ORDER>& S, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm, Real Rqbx = 0) {
  4190. if (S.Nsurf() == 2) {
  4191. Long Nelem0 = S.NTor(0)*S.NPol(0);
  4192. ElemList<COORD_DIM, ElemBasis> elem_lst = S.GetElemList();
  4193. { // Update elem_lst
  4194. Vector<ElemBasis> X = elem_lst.ElemVector();
  4195. Vector<ElemBasis> X0(Nelem0*COORD_DIM, X.begin(), false);
  4196. FlipNormal(X0);
  4197. elem_lst.ReInit(X);
  4198. }
  4199. quadrature.template Setup<ElemBasis, ElemBasis>(elem_lst, kernel, order_singular, order_direct, period_length, comm, Rqbx);
  4200. } else {
  4201. quadrature.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), kernel, order_singular, order_direct, period_length, comm, Rqbx);
  4202. }
  4203. }
  4204. template <class Kernel> static void EvalQuadrature(Vector<ElemBasis>& potential, const Quadrature<Real>& quadrature, const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& density, const Kernel& kernel) {
  4205. if (S.Nsurf() == 2) {
  4206. Long Nelem0 = S.NTor(0)*S.NPol(0);
  4207. Vector<ElemBasis> potential_, density_ = density;
  4208. ElemList<COORD_DIM, ElemBasis> elem_lst = S.GetElemList();
  4209. { // Update elem_lst
  4210. Vector<ElemBasis> X = elem_lst.ElemVector();
  4211. Vector<ElemBasis> X0(Nelem0*COORD_DIM, X.begin(), false);
  4212. FlipNormal(X0);
  4213. elem_lst.ReInit(X);
  4214. }
  4215. { // Update density_
  4216. Long dof = density_.Dim() / S.NElem();
  4217. Vector<ElemBasis> density0(Nelem0*dof, density_.begin(), false);
  4218. FlipNormal(density0);
  4219. }
  4220. quadrature.Eval(potential_, elem_lst, density_, kernel);
  4221. { // Update potential_
  4222. Long dof = potential_.Dim() / S.NElem();
  4223. Vector<ElemBasis> potential0(Nelem0*dof, potential_.begin(), false);
  4224. FlipNormal(potential0);
  4225. }
  4226. potential = potential_;
  4227. } else {
  4228. quadrature.Eval(potential, S.GetElemList(), density, kernel);
  4229. }
  4230. }
  4231. void InitSurf(Long l, Long Nsurf) {
  4232. const auto& nodes = ElemBasis::Nodes();
  4233. const Long Nt = NTor(l);
  4234. const Long Np = NPol(l);
  4235. for (Long i = 0; i < Nt; i++) {
  4236. for (Long j = 0; j < Np; j++) {
  4237. for (Long k = 0; k < ElemBasis::Size(); k++) {
  4238. Real theta = (i + nodes[0][k]) * 2*const_pi<Real>()/Nt;
  4239. Real phi = (j + nodes[1][k]) * 2*const_pi<Real>()/Np;
  4240. Real X,Y,Z;
  4241. SurfGeom(X,Y,Z,theta,phi, (2.0+l)/(1.0+Nsurf));
  4242. Elem(ElemIdx(l,i,j),0)[k] = X;
  4243. Elem(ElemIdx(l,i,j),1)[k] = Y;
  4244. Elem(ElemIdx(l,i,j),2)[k] = Z;
  4245. }
  4246. }
  4247. }
  4248. }
  4249. static void SurfGeom(Real& X, Real& Y, Real& Z, Real theta, Real phi, Real s) {
  4250. sctl::Integer Nperiod = 5;
  4251. #if 0
  4252. Real Aspect_ratio = 10.27932548522949;
  4253. Real coeffmat[21][21] = { 0.00000478813217, 0.00000000000000, 0.00000351611652, 0.00000135354389, 0.00000061357832, 0.00000220091101, 0.00000423862912, -0.00003000058678, 0.00000064187111, -0.00024228452821, 0.00003116775770, 0.00000176210710, 0.00000289141326, -0.00000150300525, 0.00000772853855, 0.00000098855242, 0.00000316606793, 0.00000002168364, 0.00000212047939, 0.00000299016097, 0.00000443224508,
  4254. 0.00000028202930, 0.00000000000000, -0.00000249222421, -0.00000203136278, 0.00000131104809, 0.00000011987446, -0.00000370760154, 0.00004553918916, -0.00007711342914, -0.00004685295062, 0.00011049838213, -0.00000197486270, 0.00000395827146, 0.00000615046474, 0.00000755337123, 0.00000700606006, 0.00000922725030, -0.00000043310337, 0.00000107416383, 0.00000449787694, 0.00000305137178,
  4255. 0.00001226376662, 0.00000000000000, 0.00000270820692, 0.00000208059305, 0.00000521478523, 0.00001779037302, 0.00000846544117, 0.00001120913385, -0.00065816845745, -0.00085107452469, -0.00013171190221, -0.00005540943675, -0.00001835885450, 0.00000101879823, 0.00000209222071, 0.00000091532502, -0.00000521515358, -0.00000209227142, -0.00000678545939, -0.00000034963549, -0.00000015111488,
  4256. 0.00001560274177, 0.00000000000000, 0.00000350691471, -0.00001160475040, -0.00001763036562, 0.00003487367940, -0.00002787247831, -0.00000910982726, 0.00008818832430, -0.00524408789352, 0.00009378376126, 0.00004184526188, 0.00002849263365, -0.00002757280527, 0.00003388467667, 0.00000706207265, 0.00000625263419, -0.00003315929280, -0.00001181772132, 0.00000311426015, 0.00001875682574,
  4257. -0.00000398287420, 0.00000000000000, -0.00001524541040, 0.00001724056165, 0.00002245173346, 0.00002806861812, -0.00000388776925, 0.00008143573359, -0.00005900909309, 0.00110496615525, 0.00134626252111, 0.00005128383054, -0.00001372421866, 0.00003612563887, 0.00002236580076, -0.00002728391883, 0.00001981237256, 0.00000655450458, 0.00000985319002, 0.00001347597299, 0.00000645987802,
  4258. 0.00003304968050, 0.00000000000000, -0.00000530822217, 0.00001324870937, -0.00003610889689, -0.00005478735329, -0.00005818806312, -0.00037112057908, -0.00017812002625, -0.00093204283621, 0.00115969858598, -0.00033559172880, -0.00010441876657, -0.00001617923044, -0.00000555065844, 0.00007343527250, -0.00004408047607, 0.00000403802142, 0.00001843931204, 0.00001694047933, 0.00001213414362,
  4259. -0.00000751115658, 0.00000000000000, 0.00005457974839, -0.00000334614515, 0.00005845565465, 0.00015000770509, 0.00021849104087, 0.00002724147635, 0.00167233624961, 0.00011666602222, 0.00276563479565, -0.00085952825611, -0.00030217235326, -0.00008841593808, 0.00000997664119, -0.00015285826521, 0.00002517224675, 0.00003009161810, 0.00001883217556, 0.00002146127554, 0.00001822445302,
  4260. -0.00004128706860, 0.00000000000000, -0.00003496417776, 0.00001088761655, -0.00000298955979, -0.00005359326315, -0.00019021633489, -0.00017992728681, -0.00347794801928, 0.00064632791327, 0.00449698418379, -0.00017710507382, 0.00006126180233, 0.00018059254216, 0.00002354096432, 0.00008189838991, -0.00010060678323, -0.00017183290038, 0.00019413756672, 0.00021334811754, 0.00011263617489,
  4261. 0.00000853522670, -0.00000000000000, -0.00006544789358, 0.00005424076880, -0.00000679056529, -0.00001249735487, -0.00053082982777, 0.00035396864405, -0.00115020677913, 0.05894451215863, 0.06573092192411, 0.01498018857092, 0.00278125284240, 0.00145188067108, 0.00033717858605, 0.00000800427370, -0.00009335305367, 0.00024286781263, -0.00023916347709, 0.00031213948387, 0.00018134393031,
  4262. -0.00002521496390, -0.00000000000000, -0.00054337945767, 0.00012690725271, 0.00053313979879, 0.00064233405283, -0.00047686311882, 0.00176536326762, 0.00074157933705, -0.02684566564858, 1.00000000000000, 0.07176169008017, 0.00837037432939, -0.00000381640211, 0.00088998704450, -0.00049218931235, -0.00024546548957, -0.00036608282244, 0.00049480766756, 0.00031158892671, 0.00006898906577,
  4263. 0.00021280418150, 0.00028127161204, -0.00070030166535, 0.00022237010126, -0.00028713891516, -0.00013800295710, 0.00005912094275, 0.00172126013786, -0.00618684850633, 0.03608432412148, Aspect_ratio , 0.49896776676178, 0.00091372377938, -0.00085712829605, -0.00124801427592, -0.00007427225501, -0.00005245858847, 0.00002841771493, 0.00020249813679, -0.00014303345233, 0.00001406490901,
  4264. 0.00023699452868, 0.00008661757602, 0.00025744654704, -0.00022715188970, -0.00076146807987, 0.00055185536621, -0.00012325309217, -0.00072356045712, -0.00160693109501, 0.00246682553552, -0.14175094664097, -0.36207047104836, -0.04089594259858, 0.00060774467420, 0.00088646943914, 0.00004865296432, -0.00041878610500, -0.00023025234987, -0.00009676301852, -0.00000000000000, 0.00008409228758,
  4265. 0.00011432896281, -0.00000707848403, 0.00004698805787, -0.00043642931269, 0.00081384339137, -0.00065635429928, -0.00011831733718, 0.00017413357273, 0.00224463525228, 0.00478497287259, 0.03294761106372, 0.01078986655921, 0.10731782764196, 0.00075034319889, -0.00009241879889, 0.00055023463210, 0.00006596000458, 0.00005045382932, 0.00014874986664, 0.00000000000000, -0.00015369028552,
  4266. 0.00001037383754, 0.00009250180301, 0.00026204055757, 0.00007424291834, -0.00047751804232, 0.00029184055165, 0.00050921301590, -0.00004825839278, -0.00029933769838, 0.00279659987427, 0.00210463814437, -0.00618590926751, -0.02400829829276, -0.02316811867058, -0.00086368201301, -0.00032258985448, -0.00018304496189, 0.00008438774967, -0.00008305341908, 0.00000000000000, 0.00013047417451,
  4267. -0.00001376930322, -0.00001723831701, -0.00011543079017, -0.00022646733851, 0.00013467084500, -0.00004661652201, -0.00008419520600, 0.00035772417323, -0.00011815709877, 0.00028718306567, 0.00092207465786, -0.00317224999890, 0.00061770365573, 0.01017294172198, 0.00294739892706, 0.00014669894881, 0.00015702951350, 0.00003432080121, -0.00008555022214, -0.00000000000000, 0.00000454909878,
  4268. -0.00000196001542, -0.00003198397462, -0.00004425687075, -0.00004129848094, -0.00003789070615, -0.00027583551127, 0.00025874207495, -0.00002334945384, -0.00007259396807, -0.00008295358566, 0.00011360697681, -0.00101968157105, 0.00046784928418, -0.00208410434425, -0.00313158822246, -0.00046005158219, -0.00010552268213, -0.00005850767775, 0.00003971093611, 0.00000000000000, -0.00005275657168,
  4269. -0.00001065901233, -0.00001934838656, -0.00001220186732, -0.00002060524639, -0.00000225423423, -0.00001894621164, -0.00001533334580, -0.00001791087379, 0.00008156246622, -0.00008441298269, 0.00021060956351, -0.00030303673702, 0.00075949780876, -0.00010539998038, 0.00109045265708, 0.00068949378328, 0.00009268362192, 0.00003471063246, 0.00001204656473, -0.00000000000000, 0.00001500743110,
  4270. 0.00000105878155, -0.00000910870767, -0.00000172467264, -0.00000722095228, 0.00000699280463, -0.00002061720625, -0.00000889817693, -0.00001993474507, 0.00000370749740, -0.00000090311920, 0.00002677819793, 0.00043428712524, 0.00210293265991, 0.00018200518389, -0.00009621794743, -0.00035250501242, -0.00012996385340, -0.00002185157609, -0.00001116586463, -0.00000000000000, -0.00000451994811,
  4271. 0.00000424055270, -0.00000463139304, 0.00000301006116, -0.00000123974939, 0.00000632465435, -0.00002090823000, 0.00001773388794, 0.00000121050368, 0.00001886057362, -0.00001043497195, -0.00002269273500, -0.00021979617304, -0.00001043962493, -0.00116343051195, -0.00004193381756, 0.00007944958634, 0.00007301353617, 0.00002082651736, -0.00000119863023, -0.00000000000000, -0.00001440504820,
  4272. -0.00000391270805, -0.00000490489265, -0.00000504441778, -0.00000904507579, -0.00000111389932, 0.00000597532107, 0.00000047090245, -0.00001553130096, -0.00001524566323, -0.00000522222899, -0.00007707672921, -0.00004165665086, 0.00015764687851, 0.00035649110214, 0.00038701237645, 0.00002386798405, -0.00001946414341, -0.00000913835174, -0.00000489907188, 0.00000000000000, 0.00000172327657,
  4273. -0.00000015388650, -0.00000603232729, -0.00000397650865, 0.00000280493782, 0.00000463132073, -0.00000788678426, -0.00000471605335, -0.00000283715985, -0.00000422824724, 0.00000366817630, -0.00001159603562, -0.00001625759251, 0.00049116823357, 0.00005048640014, -0.00020234247495, -0.00006341376866, -0.00000807822744, 0.00000070463199, 0.00000014041755, 0.00000000000000, -0.00000718306910};
  4274. #else
  4275. Real Aspect_ratio = 5;
  4276. Real coeffmat[21][21] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4277. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4278. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4279. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4280. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4281. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4282. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4283. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4284. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4285. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, s, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4286. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Aspect_ratio, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4287. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2*s, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4288. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4289. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4290. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4291. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4292. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4293. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4294. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4295. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4296. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0};
  4297. #endif
  4298. Z = 0;
  4299. Real R = 0;
  4300. for (long i = -10; i <= 10; i++) {
  4301. for (long j = -10; j <= 10; j++) {
  4302. R += coeffmat[i+10][j+10] * sctl::cos(-i*phi + Nperiod*j*theta);
  4303. Z += coeffmat[i+10][j+10] * sctl::sin(-i*phi + Nperiod*j*theta);
  4304. }
  4305. }
  4306. X = R * sctl::cos(theta);
  4307. Y = R * sctl::sin(theta);
  4308. }
  4309. GenericKernel<BiotSavart3D> BiotSavart ;
  4310. GenericKernel<BiotSavartGrad3D> BiotSavartGrad;
  4311. GenericKernel<Laplace3D_FxU > Laplace_FxU ;
  4312. GenericKernel<Laplace3D_FxdU> Laplace_FxdU;
  4313. GenericKernel<Laplace3D_dUxF> Laplace_dUxF;
  4314. GenericKernel<Laplace3D_dUxD> Laplace_dUxD;
  4315. GenericKernel<Laplace3D_Fxd2U> Laplace_Fxd2U;
  4316. mutable Quadrature<Real> quadrature_BS ;
  4317. mutable Quadrature<Real> quadrature_dBS ;
  4318. mutable Quadrature<Real> quadrature_FxU ;
  4319. mutable Quadrature<Real> quadrature_FxdU;
  4320. mutable Quadrature<Real> quadrature_dUxF;
  4321. mutable Quadrature<Real> quadrature_dUxD;
  4322. mutable Quadrature<Real> quadrature_Fxd2U;
  4323. mutable Vector<ElemBasis> Bt0, Bp0, dBt0, dBp0;
  4324. mutable Vector<ElemBasis> sigma, B, gvec, dgdB;
  4325. mutable Real alpha, beta;
  4326. ElemLst elements;
  4327. Vector<Long> NtNp_;
  4328. Vector<Long> elem_dsp;
  4329. };
  4330. template <class Real, Integer ORDER=5> class Spheres {
  4331. static constexpr Integer COORD_DIM = 3;
  4332. static constexpr Integer ELEM_DIM = COORD_DIM-1;
  4333. using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
  4334. using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
  4335. using CoordBasis = Basis<Real, ELEM_DIM, ORDER>;
  4336. using ElemLst = ElemList<COORD_DIM, CoordBasis>;
  4337. public:
  4338. Spheres(Long N = 0) {
  4339. Vector<Real> X(N*COORD_DIM);
  4340. Vector<Real> R(N);
  4341. X=0;
  4342. R=1;
  4343. for (Long i = 0; i < N; i++) X[i*COORD_DIM] = (i==0?-1.015:1.015); ///////////
  4344. InitSpheres(X,R);
  4345. }
  4346. const ElemLst& GetElem() const {
  4347. return elements;
  4348. }
  4349. static void test() {
  4350. constexpr Integer order_singular = 35;
  4351. constexpr Integer order_direct = 35;
  4352. Comm comm = Comm::World();
  4353. Profile::Enable(true);
  4354. Long Ns = 2;
  4355. Spheres S(Ns);
  4356. S.quadrature_FxT.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_FxT, order_singular, order_direct, -1.0, comm);
  4357. S.quadrature_FxU.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_FxU, order_singular, order_direct, -1.0, comm);
  4358. S.quadrature_DxU.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_DxU, order_singular, order_direct, -1.0, comm);
  4359. const auto SetMotion = [&S](Vector<DensityBasis>& density, const Vector<Real>& force_avg, const Vector<Real>& torque_avg) {
  4360. Long Nelem = S.GetElem().NElem();
  4361. Long Nsurf = S.elem_cnt.Dim();
  4362. const auto& X = S.GetElem().ElemVector();
  4363. Vector<Real> area, Xc;
  4364. Vector<DensityBasis> one(Nelem);
  4365. for (Long i = 0; i < Nelem; i++) {
  4366. for (Long j = 0; j < DensityBasis::Size(); j++) {
  4367. one[i][j] = 1;
  4368. }
  4369. }
  4370. S.SurfInteg(area, one);
  4371. S.SurfInteg(Xc, S.GetElem().ElemVector());
  4372. for (Long i = 0; i < Nsurf; i++) {
  4373. for (Long k = 0; k < COORD_DIM; k++) {
  4374. Xc[i*COORD_DIM+k] /= area[i];
  4375. }
  4376. }
  4377. if (density.Dim() != Nelem*COORD_DIM) density.ReInit(Nelem*COORD_DIM);
  4378. Long elem_itr = 0;
  4379. for (Long i = 0; i < Nsurf; i++) {
  4380. for (Long j = 0; j < S.elem_cnt[i]; j++) {
  4381. for (Long k = 0; k < DensityBasis::Size(); k++) {
  4382. StaticArray<Real,COORD_DIM> dX;
  4383. dX[0] = (X[elem_itr*COORD_DIM+0][k] - Xc[i*COORD_DIM+0]);
  4384. dX[1] = (X[elem_itr*COORD_DIM+1][k] - Xc[i*COORD_DIM+1]);
  4385. dX[2] = (X[elem_itr*COORD_DIM+2][k] - Xc[i*COORD_DIM+2]);
  4386. density[elem_itr*COORD_DIM+0][k] = force_avg[i*COORD_DIM+0]*(1/area[i]) + (torque_avg[i*COORD_DIM+1] * dX[2] - torque_avg[i*COORD_DIM+2] * dX[1]) / (2*area[i]/3);
  4387. density[elem_itr*COORD_DIM+1][k] = force_avg[i*COORD_DIM+1]*(1/area[i]) + (torque_avg[i*COORD_DIM+2] * dX[0] - torque_avg[i*COORD_DIM+0] * dX[2]) / (2*area[i]/3);
  4388. density[elem_itr*COORD_DIM+2][k] = force_avg[i*COORD_DIM+2]*(1/area[i]) + (torque_avg[i*COORD_DIM+0] * dX[1] - torque_avg[i*COORD_DIM+1] * dX[0]) / (2*area[i]/3);
  4389. }
  4390. elem_itr++;
  4391. }
  4392. }
  4393. };
  4394. const auto GetMotion = [&S](Vector<Real>& force_avg, Vector<Real>& torque_avg, const Vector<DensityBasis>& density) {
  4395. Long Nelem = S.GetElem().NElem();
  4396. Long Nsurf = S.elem_cnt.Dim();
  4397. const auto& X = S.GetElem().ElemVector();
  4398. S.SurfInteg(force_avg, density);
  4399. Vector<Real> area, Xc;
  4400. Vector<DensityBasis> one(Nelem);
  4401. for (Long i = 0; i < Nelem; i++) {
  4402. for (Long j = 0; j < DensityBasis::Size(); j++) {
  4403. one[i][j] = 1;
  4404. }
  4405. }
  4406. S.SurfInteg(area, one);
  4407. S.SurfInteg(Xc, S.GetElem().ElemVector());
  4408. for (Long i = 0; i < Nsurf; i++) {
  4409. for (Long k = 0; k < COORD_DIM; k++) {
  4410. Xc[i*COORD_DIM+k] /= area[i];
  4411. }
  4412. }
  4413. { // Set torque_avg
  4414. Long elem_itr = 0;
  4415. Vector<DensityBasis> torque(Nelem*COORD_DIM);
  4416. for (Long i = 0; i < Nsurf; i++) {
  4417. for (Long j = 0; j < S.elem_cnt[i]; j++) {
  4418. for (Long k = 0; k < DensityBasis::Size(); k++) {
  4419. StaticArray<Real,COORD_DIM> dX;
  4420. dX[0] = (X[elem_itr*COORD_DIM+0][k] - Xc[i*COORD_DIM+0]);
  4421. dX[1] = (X[elem_itr*COORD_DIM+1][k] - Xc[i*COORD_DIM+1]);
  4422. dX[2] = (X[elem_itr*COORD_DIM+2][k] - Xc[i*COORD_DIM+2]);
  4423. torque[elem_itr*COORD_DIM+0][k] = dX[1] * density[elem_itr*COORD_DIM+2][k] - dX[2] * density[elem_itr*COORD_DIM+1][k];
  4424. torque[elem_itr*COORD_DIM+1][k] = dX[2] * density[elem_itr*COORD_DIM+0][k] - dX[0] * density[elem_itr*COORD_DIM+2][k];
  4425. torque[elem_itr*COORD_DIM+2][k] = dX[0] * density[elem_itr*COORD_DIM+1][k] - dX[1] * density[elem_itr*COORD_DIM+0][k];
  4426. }
  4427. elem_itr++;
  4428. }
  4429. }
  4430. S.SurfInteg(torque_avg, torque);
  4431. }
  4432. };
  4433. const auto BIOpL = [&GetMotion,&SetMotion](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  4434. Vector<Real> force_avg, torque_avg;
  4435. GetMotion(force_avg, torque_avg, density);
  4436. SetMotion(potential, force_avg, torque_avg);
  4437. };
  4438. const auto BIOpK = [&S](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  4439. Vector<DensityBasis> traction;
  4440. S.quadrature_FxT.Eval(traction, S.GetElem(), density, S.Stokes_FxT);
  4441. Vector<CoordBasis> dX;
  4442. const auto X = S.GetElem().ElemVector();
  4443. CoordBasis::Grad(dX, X);
  4444. Long Nelem = S.GetElem().NElem();
  4445. Long Nnodes = CoordBasis::Size();
  4446. potential.ReInit(Nelem * COORD_DIM);
  4447. for (Long i = 0; i < Nelem; i++) {
  4448. for (Long j = 0; j < Nnodes; j++) {
  4449. StaticArray<Real,COORD_DIM> Xn;
  4450. Xn[0] = dX[i*COORD_DIM*2+2][j]*dX[i*COORD_DIM*2+5][j] - dX[i*COORD_DIM*2+4][j]*dX[i*COORD_DIM*2+3][j];
  4451. Xn[1] = dX[i*COORD_DIM*2+4][j]*dX[i*COORD_DIM*2+1][j] - dX[i*COORD_DIM*2+0][j]*dX[i*COORD_DIM*2+5][j];
  4452. Xn[2] = dX[i*COORD_DIM*2+0][j]*dX[i*COORD_DIM*2+3][j] - dX[i*COORD_DIM*2+2][j]*dX[i*COORD_DIM*2+1][j];
  4453. Real AreaElem = sqrt<Real>(Xn[0]*Xn[0] + Xn[1]*Xn[1] + Xn[2]*Xn[2]);
  4454. Real OOAreaElem = 1 / AreaElem;
  4455. Xn[0] *= OOAreaElem;
  4456. Xn[1] *= OOAreaElem;
  4457. Xn[2] *= OOAreaElem;
  4458. potential[i*COORD_DIM+0][j] = traction[i*COORD_DIM*COORD_DIM+0][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+1][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+2][j]*Xn[2];
  4459. potential[i*COORD_DIM+1][j] = traction[i*COORD_DIM*COORD_DIM+3][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+4][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+5][j]*Xn[2];
  4460. potential[i*COORD_DIM+2][j] = traction[i*COORD_DIM*COORD_DIM+6][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+7][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+8][j]*Xn[2];
  4461. }
  4462. }
  4463. };
  4464. const auto BIOp_half_K_L = [&S,&BIOpK,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  4465. Vector<DensityBasis> potential_K;
  4466. Vector<DensityBasis> potential_L;
  4467. BIOpK(potential_K, density);
  4468. BIOpL(potential_L, density);
  4469. if (potential.Dim() != potential_K.Dim()) {
  4470. potential.ReInit(potential_K.Dim());
  4471. }
  4472. for (Long i = 0; i < potential_K.Dim(); i++) {
  4473. for (Long k = 0; k < DensityBasis::Size(); k++) {
  4474. potential[i][k] = -0.5*density[i][k] + potential_K[i][k] + potential_L[i][k];
  4475. }
  4476. }
  4477. };
  4478. const auto BIOp_half_K = [&S,&BIOpK,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  4479. Vector<DensityBasis> potential_K;
  4480. BIOpK(potential_K, density);
  4481. if (potential.Dim() != potential_K.Dim()) {
  4482. potential.ReInit(potential_K.Dim());
  4483. }
  4484. for (Long i = 0; i < potential_K.Dim(); i++) {
  4485. for (Long k = 0; k < DensityBasis::Size(); k++) {
  4486. potential[i][k] = -0.5*density[i][k] + potential_K[i][k];
  4487. }
  4488. }
  4489. };
  4490. const auto BIOp_half_S_D = [&S,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  4491. Vector<DensityBasis> U;
  4492. S.quadrature_DxU.Eval(U, S.GetElem(), density, S.Stokes_DxU);
  4493. Vector<PotentialBasis> U1;
  4494. Vector<DensityBasis> sigma1;
  4495. BIOpL(sigma1,density);
  4496. S.quadrature_FxU.Eval(U1, S.GetElem(), sigma1, S.Stokes_FxU);
  4497. Long Nelem = S.GetElem().NElem();
  4498. Long Nnodes = CoordBasis::Size();
  4499. potential.ReInit(Nelem * COORD_DIM);
  4500. for (Long i = 0; i < Nelem; i++) {
  4501. for (Long j = 0; j < Nnodes; j++) {
  4502. potential[i*COORD_DIM+0][j] = 0.5*density[i*COORD_DIM+0][j] + U[i*COORD_DIM+0][j] + U1[i*COORD_DIM+0][j];
  4503. potential[i*COORD_DIM+1][j] = 0.5*density[i*COORD_DIM+1][j] + U[i*COORD_DIM+1][j] + U1[i*COORD_DIM+1][j];
  4504. potential[i*COORD_DIM+2][j] = 0.5*density[i*COORD_DIM+2][j] + U[i*COORD_DIM+2][j] + U1[i*COORD_DIM+2][j];
  4505. }
  4506. }
  4507. };
  4508. Vector<PotentialBasis> U;
  4509. { // Rachh
  4510. Vector<DensityBasis> sigma0;
  4511. { // Set sigma0
  4512. srand48(comm.Rank());
  4513. Vector<Real> force(Ns*COORD_DIM), torque(Ns*COORD_DIM);
  4514. //for (auto& x : force) x = drand48();
  4515. //for (auto& x : torque) x = drand48();
  4516. force = 0;
  4517. torque = 0;
  4518. force[0] = 1;
  4519. //force[4] = 1;
  4520. SetMotion(sigma0, force, torque);
  4521. }
  4522. Vector<DensityBasis> rhs;
  4523. BIOp_half_K(rhs, sigma0);
  4524. Vector<DensityBasis> sigma;
  4525. { // Set sigma
  4526. Long Nnode = DensityBasis::Size();
  4527. Long Nelem = S.GetElem().NElem();
  4528. typename sctl::ParallelSolver<Real>::ParallelOp A = [&S,&BIOp_half_K_L](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  4529. Long Nnode = DensityBasis::Size();
  4530. Long Nelem = S.GetElem().NElem();
  4531. Ax->ReInit(Nelem*COORD_DIM*Nnode);
  4532. Vector<DensityBasis> x_(Nelem*COORD_DIM), Ax_(Nelem*COORD_DIM);
  4533. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set x_
  4534. for (Long k = 0; k < Nnode; k++) {
  4535. x_[i][k] = x[i*Nnode+k];
  4536. }
  4537. }
  4538. BIOp_half_K_L(Ax_, x_);
  4539. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set Ax
  4540. for (Long k = 0; k < Nnode; k++) {
  4541. (*Ax)[i*Nnode+k] = Ax_[i][k];
  4542. }
  4543. }
  4544. };
  4545. Vector<Real> sigma_(Nelem*COORD_DIM*Nnode), rhs_(Nelem*COORD_DIM*Nnode);
  4546. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set rhs_
  4547. for (Long k = 0; k < Nnode; k++) {
  4548. rhs_[i*Nnode+k] = rhs[i][k];
  4549. }
  4550. }
  4551. sigma_ = 0;
  4552. ParallelSolver<Real> linear_solver(comm, true);
  4553. linear_solver(&sigma_, A, rhs_, 1e-6, 50);
  4554. sigma.ReInit(Nelem * COORD_DIM);
  4555. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set sigma
  4556. for (Long k = 0; k < Nnode; k++) {
  4557. sigma[i][k] = sigma_[i*Nnode+k] - sigma0[i][k];
  4558. }
  4559. }
  4560. }
  4561. S.quadrature_FxU.Eval(U, S.GetElem(), sigma, S.Stokes_FxU);
  4562. { // Write VTU
  4563. VTUData vtu_sigma;
  4564. vtu_sigma.AddElems(S.elements, sigma, ORDER);
  4565. vtu_sigma.WriteVTK("sphere-sigma0", comm);
  4566. VTUData vtu_U;
  4567. vtu_U.AddElems(S.elements, U, ORDER);
  4568. vtu_U.WriteVTK("sphere-U0", comm);
  4569. }
  4570. }
  4571. { // Tornberg
  4572. Vector<DensityBasis> rhs;
  4573. BIOpL(rhs, U);
  4574. Vector<DensityBasis> sigma;
  4575. { // Set sigma
  4576. Long Nnode = DensityBasis::Size();
  4577. Long Nelem = S.GetElem().NElem();
  4578. typename sctl::ParallelSolver<Real>::ParallelOp A = [&S,&BIOp_half_S_D](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  4579. Long Nnode = DensityBasis::Size();
  4580. Long Nelem = S.GetElem().NElem();
  4581. Ax->ReInit(Nelem*COORD_DIM*Nnode);
  4582. Vector<DensityBasis> x_(Nelem*COORD_DIM), Ax_(Nelem*COORD_DIM);
  4583. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set x_
  4584. for (Long k = 0; k < Nnode; k++) {
  4585. x_[i][k] = x[i*Nnode+k];
  4586. }
  4587. }
  4588. BIOp_half_S_D(Ax_, x_);
  4589. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set Ax
  4590. for (Long k = 0; k < Nnode; k++) {
  4591. (*Ax)[i*Nnode+k] = Ax_[i][k];
  4592. }
  4593. }
  4594. };
  4595. Vector<Real> sigma_(Nelem*COORD_DIM*Nnode), rhs_(Nelem*COORD_DIM*Nnode);
  4596. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set rhs_
  4597. for (Long k = 0; k < Nnode; k++) {
  4598. rhs_[i*Nnode+k] = rhs[i][k];
  4599. }
  4600. }
  4601. sigma_ = 0;
  4602. ParallelSolver<Real> linear_solver(comm, true);
  4603. linear_solver(&sigma_, A, rhs_, 1e-6, 50);
  4604. sigma.ReInit(Nelem * COORD_DIM);
  4605. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set sigma
  4606. for (Long k = 0; k < Nnode; k++) {
  4607. sigma[i][k] = sigma_[i*Nnode+k];
  4608. }
  4609. }
  4610. }
  4611. Vector<PotentialBasis> U1;
  4612. BIOp_half_S_D(U1, sigma);
  4613. { // Write VTU
  4614. VTUData vtu_sigma;
  4615. vtu_sigma.AddElems(S.elements, sigma, ORDER);
  4616. vtu_sigma.WriteVTK("sphere-sigma1", comm);
  4617. VTUData vtu_U;
  4618. vtu_U.AddElems(S.elements, U1, ORDER);
  4619. vtu_U.WriteVTK("sphere-U1", comm);
  4620. }
  4621. }
  4622. Profile::print(&comm);
  4623. }
  4624. private:
  4625. template <class FnBasis> void SurfInteg(Vector<Real>& I, const Vector<FnBasis>& f) {
  4626. static_assert(std::is_same<FnBasis,CoordBasis>::value, "FnBasis is different from CoordBasis");
  4627. const Long Nelem = elements.NElem();
  4628. const Long dof = f.Dim() / Nelem;
  4629. SCTL_ASSERT(f.Dim() == Nelem * dof);
  4630. auto nodes = FnBasis::Nodes();
  4631. auto quad_wts = FnBasis::QuadWts();
  4632. const Long Nnodes = FnBasis::Size();
  4633. auto EvalOp = CoordBasis::SetupEval(nodes);
  4634. Vector<CoordBasis> dX;
  4635. const auto& X = elements.ElemVector();
  4636. SCTL_ASSERT(X.Dim() == Nelem * COORD_DIM);
  4637. CoordBasis::Grad(dX, X);
  4638. Matrix<Real> I_(Nelem, dof);
  4639. for (Long i = 0; i < Nelem; i++) {
  4640. for (Long k = 0; k < dof; k++) {
  4641. I_[i][k] = 0;
  4642. }
  4643. for (Long j = 0; j < Nnodes; j++) {
  4644. Real dA = 0;
  4645. StaticArray<Real,COORD_DIM> Xn;
  4646. Xn[0] = dX[i*COORD_DIM*2+2][j] * dX[i*COORD_DIM*2+5][j] - dX[i*COORD_DIM*2+3][j] * dX[i*COORD_DIM*2+4][j];
  4647. Xn[1] = dX[i*COORD_DIM*2+4][j] * dX[i*COORD_DIM*2+1][j] - dX[i*COORD_DIM*2+5][j] * dX[i*COORD_DIM*2+0][j];
  4648. Xn[2] = dX[i*COORD_DIM*2+0][j] * dX[i*COORD_DIM*2+3][j] - dX[i*COORD_DIM*2+1][j] * dX[i*COORD_DIM*2+2][j];
  4649. dA += sqrt<Real>(Xn[0]*Xn[0] + Xn[1]*Xn[1] + Xn[2]*Xn[2]) * quad_wts[j];
  4650. for (Long k = 0; k < dof; k++) {
  4651. I_[i][k] += dA * f[i*dof+k][j];
  4652. }
  4653. }
  4654. }
  4655. Long Ns = elem_cnt.Dim();
  4656. if (I.Dim() != Ns * dof) I.ReInit(Ns * dof);
  4657. I = 0;
  4658. Long elem_itr = 0;
  4659. for (Long i = 0; i < Ns; i++) {
  4660. for (Long j = 0; j < elem_cnt[i]; j++) {
  4661. for (Long k = 0; k < dof; k++) {
  4662. I[i*dof+k] += I_[elem_itr][k];
  4663. }
  4664. elem_itr++;
  4665. }
  4666. }
  4667. }
  4668. void InitSpheres(const Vector<Real> X, const Vector<Real>& R){
  4669. SCTL_ASSERT(X.Dim() == R.Dim() * COORD_DIM);
  4670. Long N = R.Dim();
  4671. elements.ReInit(2*COORD_DIM*N);
  4672. auto nodes = ElemLst::CoordBasis::Nodes();
  4673. for (Long l = 0; l < N; l++) {
  4674. for (Integer i = 0; i < COORD_DIM; i++) {
  4675. for (Integer j = 0; j < 2; j++) {
  4676. for (int k = 0; k < ElemLst::CoordBasis::Size(); k++) {
  4677. Real coord[COORD_DIM];
  4678. coord[(i+0)%COORD_DIM] = (j ? -1.0 : 1.0);
  4679. coord[(i+1)%COORD_DIM] = 2.0 * nodes[j?1:0][k] - 1.0;
  4680. coord[(i+2)%COORD_DIM] = 2.0 * nodes[j?0:1][k] - 1.0;
  4681. Real R0 = sqrt<Real>(coord[0]*coord[0] + coord[1]*coord[1] + coord[2]*coord[2]);
  4682. elements((l*COORD_DIM+i)*2+j,0)[k] = X[l*COORD_DIM+0] + R[l] * coord[0] / R0;
  4683. elements((l*COORD_DIM+i)*2+j,1)[k] = X[l*COORD_DIM+1] + R[l] * coord[1] / R0;
  4684. elements((l*COORD_DIM+i)*2+j,2)[k] = X[l*COORD_DIM+2] + R[l] * coord[2] / R0;
  4685. }
  4686. }
  4687. }
  4688. }
  4689. elem_cnt.ReInit(N);
  4690. elem_cnt = 6;
  4691. }
  4692. GenericKernel<Stokes3D_DxU> Stokes_DxU;
  4693. GenericKernel<Stokes3D_FxU> Stokes_FxU;
  4694. GenericKernel<Stokes3D_FxT> Stokes_FxT;
  4695. Quadrature<Real> quadrature_DxU;
  4696. Quadrature<Real> quadrature_FxU;
  4697. Quadrature<Real> quadrature_FxT;
  4698. ElemLst elements;
  4699. Vector<Long> elem_cnt;
  4700. };
  4701. } // end namespace
  4702. #endif //_SCTL_BOUNDARY_QUADRATURE_HPP_