boundary_quadrature.hpp 263 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297
  1. #ifndef _SCTL_BOUNDARY_QUADRATURE_HPP_
  2. #define _SCTL_BOUNDARY_QUADRATURE_HPP_
  3. #include <biest.hpp>
  4. #include <mutex>
  5. #include <atomic>
  6. #include <tuple>
  7. #include <Eigen/Core>
  8. #include <LBFGS.h>
  9. namespace SCTL_NAMESPACE {
  10. template <class Real, Integer DIM, Integer ORDER> class Basis {
  11. public:
  12. using ValueType = Real;
  13. // class EvalOperator {
  14. // public:
  15. // };
  16. using EvalOpType = Matrix<ValueType>;
  17. static constexpr Long Dim() {
  18. return DIM;
  19. }
  20. static constexpr Long Size() {
  21. return pow<DIM,Long>(ORDER);
  22. }
  23. static const Matrix<ValueType>& Nodes() {
  24. static Matrix<ValueType> nodes_(DIM,Size());
  25. auto nodes_1d = [](Integer i) {
  26. return 0.5 - 0.5 * sctl::cos<ValueType>((2*i+1) * const_pi<ValueType>() / (2*ORDER));
  27. };
  28. { // Set nodes_
  29. static std::mutex mutex;
  30. static std::atomic<Integer> first_time(true);
  31. if (first_time.load(std::memory_order_relaxed)) {
  32. std::lock_guard<std::mutex> guard(mutex);
  33. if (first_time.load(std::memory_order_relaxed)) {
  34. Integer N = 1;
  35. for (Integer d = 0; d < DIM; d++) {
  36. for (Integer j = 0; j < ORDER; j++) {
  37. for (Integer i = 0; i < N; i++) {
  38. for (Integer k = 0; k < d; k++) {
  39. nodes_[k][j*N+i] = nodes_[k][i];
  40. }
  41. nodes_[d][j*N+i] = nodes_1d(j);
  42. }
  43. }
  44. N *= ORDER;
  45. }
  46. std::atomic_thread_fence(std::memory_order_seq_cst);
  47. first_time.store(false);
  48. }
  49. }
  50. }
  51. return nodes_;
  52. }
  53. static const Vector<ValueType>& QuadWts() {
  54. static Vector<ValueType> wts(Size());
  55. { // Set nodes_
  56. static std::mutex mutex;
  57. static std::atomic<Integer> first_time(true);
  58. if (first_time.load(std::memory_order_relaxed)) {
  59. std::lock_guard<std::mutex> guard(mutex);
  60. if (first_time.load(std::memory_order_relaxed)) {
  61. StaticArray<ValueType,ORDER> wts_1d;
  62. { // Set wts_1d
  63. Vector<ValueType> x_(ORDER);
  64. ChebBasis<ValueType>::template Nodes<1>(ORDER, x_);
  65. Vector<ValueType> V_cheb(ORDER * ORDER);
  66. { // Set V_cheb
  67. Vector<ValueType> I(ORDER*ORDER);
  68. I = 0;
  69. for (Long i = 0; i < ORDER; i++) I[i*ORDER+i] = 1;
  70. ChebBasis<ValueType>::template Approx<1>(ORDER, I, V_cheb);
  71. }
  72. Matrix<ValueType> M(ORDER, ORDER, V_cheb.begin());
  73. Vector<ValueType> w_sample(ORDER);
  74. for (Integer i = 0; i < ORDER; i++) {
  75. w_sample[i] = (i % 2 ? 0 : -(ORDER/(ValueType)(i*i-1)));
  76. }
  77. for (Integer j = 0; j < ORDER; j++) {
  78. wts_1d[j] = 0;
  79. for (Integer i = 0; i < ORDER; i++) {
  80. wts_1d[j] += M[j][i] * w_sample[i] / ORDER;
  81. }
  82. }
  83. }
  84. wts[0] = 1;
  85. Integer N = 1;
  86. for (Integer d = 0; d < DIM; d++) {
  87. for (Integer j = 1; j < ORDER; j++) {
  88. for (Integer i = 0; i < N; i++) {
  89. wts[j*N+i] = wts[i] * wts_1d[j];
  90. }
  91. }
  92. for (Integer i = 0; i < N; i++) {
  93. wts[i] *= wts_1d[0];
  94. }
  95. N *= ORDER;
  96. }
  97. std::atomic_thread_fence(std::memory_order_seq_cst);
  98. first_time.store(false);
  99. }
  100. }
  101. }
  102. return wts;
  103. }
  104. static void Grad(Vector<Basis>& dX, const Vector<Basis>& X) {
  105. static Matrix<ValueType> GradOp[DIM];
  106. static std::mutex mutex;
  107. static std::atomic<Integer> first_time(true);
  108. if (first_time.load(std::memory_order_relaxed)) {
  109. std::lock_guard<std::mutex> guard(mutex);
  110. if (first_time.load(std::memory_order_relaxed)) {
  111. { // Set GradOp
  112. auto nodes = Basis<ValueType,1,ORDER>::Nodes();
  113. SCTL_ASSERT(nodes.Dim(1) == ORDER);
  114. Matrix<ValueType> M(ORDER, ORDER);
  115. for (Integer i = 0; i < ORDER; i++) { // Set M
  116. Real x = nodes[0][i];
  117. for (Integer j = 0; j < ORDER; j++) {
  118. M[j][i] = 0;
  119. for (Integer l = 0; l < ORDER; l++) {
  120. if (l != j) {
  121. Real M_ = 1;
  122. for (Integer k = 0; k < ORDER; k++) {
  123. if (k != j && k != l) M_ *= (x - nodes[0][k]);
  124. if (k != j) M_ /= (nodes[0][j] - nodes[0][k]);
  125. }
  126. M[j][i] += M_;
  127. }
  128. }
  129. }
  130. }
  131. for (Integer d = 0; d < DIM; d++) {
  132. GradOp[d].ReInit(Size(), Size());
  133. GradOp[d] = 0;
  134. Integer stride0 = sctl::pow<Integer>(ORDER, d);
  135. Integer repeat0 = sctl::pow<Integer>(ORDER, d);
  136. Integer stride1 = sctl::pow<Integer>(ORDER, d+1);
  137. Integer repeat1 = sctl::pow<Integer>(ORDER, DIM-d-1);
  138. for (Integer k1 = 0; k1 < repeat1; k1++) {
  139. for (Integer i = 0; i < ORDER; i++) {
  140. for (Integer j = 0; j < ORDER; j++) {
  141. for (Integer k0 = 0; k0 < repeat0; k0++) {
  142. GradOp[d][k1*stride1 + i*stride0 + k0][k1*stride1 + j*stride0 + k0] = M[i][j];
  143. }
  144. }
  145. }
  146. }
  147. }
  148. }
  149. std::atomic_thread_fence(std::memory_order_seq_cst);
  150. first_time.store(false);
  151. }
  152. }
  153. if (dX.Dim() != X.Dim()*DIM) dX.ReInit(X.Dim()*DIM);
  154. for (Long i = 0; i < X.Dim(); i++) {
  155. const Matrix<ValueType> Vi(1, Size(), (Iterator<ValueType>)(ConstIterator<ValueType>)X[i].NodeValues_, false);
  156. for (Integer k = 0; k < DIM; k++) {
  157. Matrix<ValueType> Vo(1, Size(), dX[i*DIM+k].NodeValues_, false);
  158. Matrix<ValueType>::GEMM(Vo, Vi, GradOp[k]);
  159. }
  160. }
  161. }
  162. static EvalOpType SetupEval(const Matrix<ValueType>& X) {
  163. Long N = X.Dim(1);
  164. SCTL_ASSERT(X.Dim(0) == DIM);
  165. Matrix<ValueType> M(Size(), N);
  166. { // Set M
  167. auto nodes = Basis<ValueType,1,ORDER>::Nodes();
  168. Integer NN = Basis<ValueType,1,ORDER>::Size();
  169. Matrix<ValueType> M_(NN, DIM*N);
  170. for (Long i = 0; i < DIM*N; i++) {
  171. ValueType x = X[0][i];
  172. for (Integer j = 0; j < NN; j++) {
  173. ValueType y = 1;
  174. for (Integer k = 0; k < NN; k++) {
  175. y *= (j==k ? 1 : (nodes[0][k] - x) / (nodes[0][k] - nodes[0][j]));
  176. }
  177. M_[j][i] = y;
  178. }
  179. }
  180. if (DIM == 1) {
  181. SCTL_ASSERT(M.Dim(0) == M_.Dim(0));
  182. SCTL_ASSERT(M.Dim(1) == M_.Dim(1));
  183. M = M_;
  184. } else {
  185. Integer NNN = 1;
  186. M = 1;
  187. for (Integer d = 0; d < DIM; d++) {
  188. for (Integer k = 1; k < NN; k++) {
  189. for (Integer j = 0; j < NNN; j++) {
  190. for (Long i = 0; i < N; i++) {
  191. M[k*NNN+j][i] = M[j][i] * M_[k][d*N+i];
  192. }
  193. }
  194. }
  195. { // k = 0
  196. for (Integer j = 0; j < NNN; j++) {
  197. for (Long i = 0; i < N; i++) {
  198. M[j][i] *= M_[0][d*N+i];
  199. }
  200. }
  201. }
  202. NNN *= NN;
  203. }
  204. }
  205. }
  206. return M;
  207. }
  208. static void Eval(Matrix<ValueType>& Y, const Vector<Basis>& X, const EvalOpType& M) {
  209. Long N0 = X.Dim();
  210. Long N1 = M.Dim(1);
  211. SCTL_ASSERT(M.Dim(0) == Size());
  212. if (Y.Dim(0) != N0 || Y.Dim(1) != N1) Y.ReInit(N0, N1);
  213. for (Long i = 0; i < N0; i++) {
  214. const Matrix<ValueType> X_(1,Size(),(Iterator<ValueType>)(ConstIterator<ValueType>)X[i].NodeValues_,false);
  215. Matrix<ValueType> Y_(1,N1,Y[i],false);
  216. Matrix<ValueType>::GEMM(Y_,X_,M);
  217. }
  218. }
  219. Basis operator+(Basis X) const {
  220. for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] + X[i];
  221. return X;
  222. }
  223. Basis operator-(Basis X) const {
  224. for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] - X[i];
  225. return X;
  226. }
  227. Basis operator*(Basis X) const {
  228. for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] * X[i];
  229. return X;
  230. }
  231. Basis operator*(Real a) const {
  232. Basis X = (*this);
  233. for (Long i = 0; i < Size(); i++) X[i] *= a;
  234. return X;
  235. }
  236. Basis operator+(Real a) const {
  237. Basis X = (*this);
  238. for (Long i = 0; i < Size(); i++) X[i] += a;
  239. return X;
  240. }
  241. Basis& operator+=(const Basis& X) {
  242. for (Long i = 0; i < Size(); i++) (*this)[i] += X[i];
  243. return *this;
  244. }
  245. Basis& operator-=(const Basis& X) {
  246. for (Long i = 0; i < Size(); i++) (*this)[i] -= X[i];
  247. return *this;
  248. }
  249. Basis& operator*=(const Basis& X) {
  250. for (Long i = 0; i < Size(); i++) (*this)[i] *= X[i];
  251. return *this;
  252. }
  253. Basis& operator*=(Real a) {
  254. for (Long i = 0; i < Size(); i++) (*this)[i] *= a;
  255. return *this;
  256. }
  257. Basis& operator+=(Real a) {
  258. for (Long i = 0; i < Size(); i++) (*this)[i] += a;
  259. return *this;
  260. }
  261. Basis& operator=(Real a) {
  262. for (Long i = 0; i < Size(); i++) (*this)[i] = a;
  263. return *this;
  264. }
  265. const ValueType& operator[](Long i) const {
  266. SCTL_ASSERT(i < Size());
  267. return NodeValues_[i];
  268. }
  269. ValueType& operator[](Long i) {
  270. SCTL_ASSERT(i < Size());
  271. return NodeValues_[i];
  272. }
  273. private:
  274. StaticArray<ValueType,Size()> NodeValues_;
  275. };
  276. template <Integer COORD_DIM, class Basis> class ElemList {
  277. public:
  278. using CoordBasis = Basis;
  279. using CoordType = typename CoordBasis::ValueType;
  280. static constexpr Integer CoordDim() {
  281. return COORD_DIM;
  282. }
  283. static constexpr Integer ElemDim() {
  284. return CoordBasis::Dim();
  285. }
  286. ElemList(Long Nelem = 0) {
  287. ReInit(Nelem);
  288. }
  289. void ReInit(Long Nelem = 0) {
  290. Nelem_ = Nelem;
  291. X_.ReInit(Nelem_ * COORD_DIM);
  292. }
  293. void ReInit(const Vector<CoordBasis>& X) {
  294. Nelem_ = X.Dim() / COORD_DIM;
  295. SCTL_ASSERT(X.Dim() == Nelem_ * COORD_DIM);
  296. X_ = X;
  297. }
  298. Long NElem() const {
  299. return Nelem_;
  300. }
  301. CoordBasis& operator()(Long elem, Integer dim) {
  302. SCTL_ASSERT(elem >= 0 && elem < Nelem_);
  303. SCTL_ASSERT(dim >= 0 && dim < COORD_DIM);
  304. return X_[elem*COORD_DIM+dim];
  305. }
  306. const CoordBasis& operator()(Long elem, Integer dim) const {
  307. if (!(elem >= 0 && elem < Nelem_)) exit(0);
  308. SCTL_ASSERT(elem >= 0 && elem < Nelem_);
  309. SCTL_ASSERT(dim >= 0 && dim < COORD_DIM);
  310. return X_[elem*COORD_DIM+dim];
  311. }
  312. const Vector<CoordBasis>& ElemVector() const {
  313. return X_;
  314. }
  315. private:
  316. static_assert(CoordBasis::Dim() <= CoordDim(), "Basis dimension can not be greater than COORD_DIM.");
  317. Vector<CoordBasis> X_;
  318. Long Nelem_;
  319. //mutable Vector<CoordBasis> dX_;
  320. };
  321. template <class Real> class Quadrature {
  322. static Real machine_epsilon() {
  323. Real eps=1;
  324. while(eps*(Real)0.5+(Real)1.0>1.0) eps*=0.5;
  325. return eps;
  326. }
  327. template <Integer DIM> static void DuffyQuad(Matrix<Real>& nodes, Vector<Real>& weights, const Vector<Real>& coord, Integer order, Real adapt = -1.0) {
  328. SCTL_ASSERT(coord.Dim() == DIM);
  329. static Real eps = machine_epsilon()*16;
  330. Matrix<Real> qx;
  331. Vector<Real> qw;
  332. { // Set qx, qw
  333. Vector<Real> qx0, qw0;
  334. ChebBasis<Real>::quad_rule(order, qx0, qw0);
  335. Integer N = sctl::pow<DIM,Integer>(order);
  336. qx.ReInit(DIM,N);
  337. qw.ReInit(N);
  338. qw[0] = 1;
  339. Integer N_ = 1;
  340. for (Integer d = 0; d < DIM; d++) {
  341. for (Integer j = 0; j < order; j++) {
  342. for (Integer i = 0; i < N_; i++) {
  343. for (Integer k = 0; k < d; k++) {
  344. qx[k][j*N_+i] = qx[k][i];
  345. }
  346. qx[d][j*N_+i] = qx0[j];
  347. qw[j*N_+i] = qw[i];
  348. }
  349. }
  350. for (Integer j = 0; j < order; j++) {
  351. for (Integer i = 0; i < N_; i++) {
  352. qw[j*N_+i] *= qw0[j];
  353. }
  354. }
  355. N_ *= order;
  356. }
  357. }
  358. Vector<Real> X;
  359. { // Set X
  360. StaticArray<Real,2*DIM+2> X_;
  361. X_[0] = 0;
  362. X_[1] = adapt;
  363. for (Integer i = 0; i < DIM; i++) {
  364. X_[2*i+2] = sctl::fabs<Real>(coord[i]);
  365. X_[2*i+3] = sctl::fabs<Real>(coord[i]-1);
  366. }
  367. std::sort((Iterator<Real>)X_, (Iterator<Real>)X_+2*DIM+2);
  368. X.PushBack(std::max<Real>(0, X_[2*DIM]-1));
  369. for (Integer i = 0; i < 2*DIM+2; i++) {
  370. if (X[X.Dim()-1] < X_[i]) {
  371. if (X.Dim())
  372. X.PushBack(X_[i]);
  373. }
  374. }
  375. /////////////////////////////////////////////////////////////////////////////////////////////////
  376. Vector<Real> r(1);
  377. r[0] = X[0];
  378. for (Integer i = 1; i < X.Dim(); i++) {
  379. while (r[r.Dim() - 1] > 0.0 && (order*0.5) * r[r.Dim() - 1] < X[i]) r.PushBack((order*0.5) * r[r.Dim() - 1]); // TODO
  380. r.PushBack(X[i]);
  381. }
  382. X = r;
  383. /////////////////////////////////////////////////////////////////////////////////////////////////
  384. }
  385. Vector<Real> nds, wts;
  386. for (Integer k = 0; k < X.Dim()-1; k++) {
  387. for (Integer dd = 0; dd < 2*DIM; dd++) {
  388. Integer d0 = (dd>>1);
  389. StaticArray<Real,2*DIM> range0, range1;
  390. { // Set range0, range1
  391. Integer d1 = (dd%2?1:-1);
  392. for (Integer d = 0; d < DIM; d++) {
  393. range0[d*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d] - X[k] ));
  394. range0[d*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d] + X[k] ));
  395. range1[d*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d] - X[k+1]));
  396. range1[d*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d] + X[k+1]));
  397. }
  398. range0[d0*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+0]));
  399. range0[d0*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+0]));
  400. range1[d0*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+1]));
  401. range1[d0*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+1]));
  402. }
  403. { // if volume(range0, range1) == 0 then continue
  404. Real v0 = 1, v1 = 1;
  405. for (Integer d = 0; d < DIM; d++) {
  406. if (d == d0) {
  407. v0 *= sctl::fabs<Real>(range0[d*2+0]-range1[d*2+0]);
  408. v1 *= sctl::fabs<Real>(range0[d*2+0]-range1[d*2+0]);
  409. } else {
  410. v0 *= range0[d*2+1]-range0[d*2+0];
  411. v1 *= range1[d*2+1]-range1[d*2+0];
  412. }
  413. }
  414. if (v0 < eps && v1 < eps) continue;
  415. }
  416. for (Integer i = 0; i < qx.Dim(1); i++) { // Set nds, wts
  417. Real w = qw[i];
  418. Real z = qx[d0][i];
  419. for (Integer d = 0; d < DIM; d++) {
  420. Real y = qx[d][i];
  421. nds.PushBack((range0[d*2+0]*(1-y) + range0[d*2+1]*y)*(1-z) + (range1[d*2+0]*(1-y) + range1[d*2+1]*y)*z);
  422. if (d == d0) {
  423. w *= abs(range1[d*2+0] - range0[d*2+0]);
  424. } else {
  425. w *= (range0[d*2+1] - range0[d*2+0])*(1-z) + (range1[d*2+1] - range1[d*2+0])*z;
  426. }
  427. }
  428. wts.PushBack(w);
  429. }
  430. }
  431. }
  432. nodes = Matrix<Real>(nds.Dim()/DIM,DIM,nds.begin()).Transpose();
  433. weights = wts;
  434. }
  435. template <Integer DIM> static void TensorProductGaussQuad(Matrix<Real>& nodes, Vector<Real>& weights, Integer order) {
  436. Vector<Real> coord(DIM);
  437. coord = 0;
  438. coord[0] = -10;
  439. DuffyQuad<DIM>(nodes, weights, coord, order);
  440. }
  441. template <class DensityBasis, class ElemList, class Kernel> static void SetupSingular(Matrix<Real>& M_singular, const Matrix<Real>& trg_nds, const ElemList& elem_lst, const Kernel& kernel, Integer order_singular = 10, Integer order_direct = 10, Real Rqbx = 0) {
  442. using CoordBasis = typename ElemList::CoordBasis;
  443. using CoordEvalOpType = typename CoordBasis::EvalOpType;
  444. using DensityEvalOpType = typename DensityBasis::EvalOpType;
  445. constexpr Integer CoordDim = ElemList::CoordDim();
  446. constexpr Integer ElemDim = ElemList::ElemDim();
  447. constexpr Integer KDIM0 = Kernel::SrcDim();
  448. constexpr Integer KDIM1 = Kernel::TrgDim();
  449. const Long Nelem = elem_lst.NElem();
  450. const Integer Ntrg = trg_nds.Dim(1);
  451. SCTL_ASSERT(trg_nds.Dim(0) == ElemDim);
  452. const Vector<CoordBasis>& X = elem_lst.ElemVector();
  453. Vector<CoordBasis> dX;
  454. CoordBasis::Grad(dX, X);
  455. Vector<Real> Xt, Xnt;
  456. { // Set Xt, Xnt
  457. auto Meval = CoordBasis::SetupEval(trg_nds);
  458. eval_basis(Xt, X, CoordDim, trg_nds.Dim(1), Meval);
  459. Xnt = Xt;
  460. Vector<Real> dX_;
  461. eval_basis(dX_, dX, 2*CoordDim, trg_nds.Dim(1), Meval);
  462. for (Long i = 0; i < Ntrg; i++) {
  463. for (Long j = 0; j < Nelem; j++) {
  464. auto Xn = Xnt.begin() + (j*Ntrg+i)*CoordDim;
  465. auto dX0 = dX_.begin() + (j*Ntrg+i)*2*CoordDim;
  466. StaticArray<Real,CoordDim> normal;
  467. normal[0] = dX0[2]*dX0[5] - dX0[4]*dX0[3];
  468. normal[1] = dX0[4]*dX0[1] - dX0[0]*dX0[5];
  469. normal[2] = dX0[0]*dX0[3] - dX0[2]*dX0[1];
  470. Real Xa = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  471. Real invXa = 1/Xa;
  472. normal[0] *= invXa;
  473. normal[1] *= invXa;
  474. normal[2] *= invXa;
  475. Real sqrt_Xa = sqrt<Real>(Xa);
  476. Xn[0] = normal[0]*sqrt_Xa*Rqbx;
  477. Xn[1] = normal[1]*sqrt_Xa*Rqbx;
  478. Xn[2] = normal[2]*sqrt_Xa*Rqbx;
  479. }
  480. }
  481. }
  482. SCTL_ASSERT(Xt.Dim() == Nelem * Ntrg * CoordDim);
  483. auto& M = M_singular;
  484. M.ReInit(Nelem * KDIM0 * DensityBasis::Size(), KDIM1 * Ntrg);
  485. #pragma omp parallel for schedule(static)
  486. for (Long i = 0; i < Ntrg; i++) { // Set M (singular)
  487. Matrix<Real> quad_nds;
  488. Vector<Real> quad_wts;
  489. { // Set quad_nds, quad_wts
  490. StaticArray<Real,ElemDim> trg_node_;
  491. for (Integer k = 0; k < ElemDim; k++) {
  492. trg_node_[k] = trg_nds[k][i];
  493. }
  494. Vector<Real> trg_node(ElemDim, trg_node_, false);
  495. DuffyQuad<ElemDim>(quad_nds, quad_wts, trg_node, order_singular, fabs(Rqbx));
  496. }
  497. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  498. Integer Nnds = quad_wts.Dim();
  499. Vector<Real> X_, dX_, Xa_, Xn_;
  500. { // Set X_, dX_
  501. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  502. eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
  503. }
  504. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  505. Long N = Nelem*Nnds;
  506. Xa_.ReInit(N);
  507. Xn_.ReInit(N*CoordDim);
  508. for (Long j = 0; j < N; j++) {
  509. StaticArray<Real,CoordDim> normal;
  510. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  511. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  512. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  513. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  514. Real invXa = 1/Xa_[j];
  515. Xn_[j*3+0] = normal[0] * invXa;
  516. Xn_[j*3+1] = normal[1] * invXa;
  517. Xn_[j*3+2] = normal[2] * invXa;
  518. }
  519. }
  520. DensityEvalOpType DensityEvalOp;
  521. if (std::is_same<CoordBasis,DensityBasis>::value) {
  522. DensityEvalOp = CoordEvalOp;
  523. } else {
  524. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  525. }
  526. for (Long j = 0; j < Nelem; j++) {
  527. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  528. if (Rqbx == 0) { // Set kernel matrix M__
  529. const Vector<Real> X0_(CoordDim, Xt.begin() + (j * Ntrg + i) * CoordDim, false);
  530. const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
  531. const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
  532. kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
  533. } else {
  534. Vector<Real> X0_(CoordDim);
  535. constexpr Integer qbx_order = 6;
  536. StaticArray<Matrix<Real>,qbx_order> M___;
  537. for (Integer k = 0; k < qbx_order; k++) { // Set kernel matrix M___
  538. for (Integer kk = 0; kk < CoordDim; kk++) X0_[kk] = Xt[(j * Ntrg + i) * CoordDim + kk] + (k+1) * Xnt[(j * Ntrg + i) * CoordDim + kk];
  539. const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
  540. const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
  541. kernel.template KernelMatrix<Real>(M___[k], X0_, X__, Xn__);
  542. }
  543. for (Long k = 0; k < Nnds * KDIM0 * KDIM1; k++) {
  544. M__[0][k] = 0;
  545. M__[0][k] += 6*M___[0][0][k];
  546. M__[0][k] += -15*M___[1][0][k];
  547. M__[0][k] += 20*M___[2][0][k];
  548. M__[0][k] += -15*M___[3][0][k];
  549. M__[0][k] += 6*M___[4][0][k];
  550. M__[0][k] += -1*M___[5][0][k];
  551. }
  552. }
  553. for (Long k0 = 0; k0 < KDIM0; k0++) {
  554. for (Long k1 = 0; k1 < KDIM1; k1++) {
  555. for (Long l = 0; l < DensityBasis::Size(); l++) {
  556. Real M_lk = 0;
  557. for (Long n = 0; n < Nnds; n++) {
  558. Real quad_wt = Xa_[j * Nnds + n] * quad_wts[n];
  559. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  560. }
  561. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1 * Ntrg + i] = M_lk;
  562. }
  563. }
  564. }
  565. }
  566. }
  567. { // Set M (subtract direct)
  568. Matrix<Real> quad_nds;
  569. Vector<Real> quad_wts;
  570. TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
  571. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  572. Integer Nnds = quad_wts.Dim();
  573. Vector<Real> X_, dX_, Xa_, Xn_;
  574. { // Set X_, dX_
  575. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  576. eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
  577. }
  578. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  579. Long N = Nelem*Nnds;
  580. Xa_.ReInit(N);
  581. Xn_.ReInit(N*CoordDim);
  582. for (Long j = 0; j < N; j++) {
  583. StaticArray<Real,CoordDim> normal;
  584. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  585. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  586. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  587. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  588. Real invXa = 1/Xa_[j];
  589. Xn_[j*3+0] = normal[0] * invXa;
  590. Xn_[j*3+1] = normal[1] * invXa;
  591. Xn_[j*3+2] = normal[2] * invXa;
  592. }
  593. }
  594. DensityEvalOpType DensityEvalOp;
  595. if (std::is_same<CoordBasis,DensityBasis>::value) {
  596. DensityEvalOp = CoordEvalOp;
  597. } else {
  598. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  599. }
  600. #pragma omp parallel for schedule(static)
  601. for (Long i = 0; i < Ntrg; i++) { // Subtract direct contribution
  602. for (Long j = 0; j < Nelem; j++) {
  603. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  604. { // Set kernel matrix M__
  605. const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + (j * Ntrg + i) * CoordDim, false);
  606. const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
  607. const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
  608. kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
  609. }
  610. for (Long k0 = 0; k0 < KDIM0; k0++) {
  611. for (Long k1 = 0; k1 < KDIM1; k1++) {
  612. for (Long l = 0; l < DensityBasis::Size(); l++) {
  613. Real M_lk = 0;
  614. for (Long n = 0; n < Nnds; n++) {
  615. Real quad_wt = Xa_[j * Nnds + n] * quad_wts[n];
  616. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  617. }
  618. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1 * Ntrg + i] -= M_lk;
  619. }
  620. }
  621. }
  622. }
  623. }
  624. }
  625. }
  626. template <class DensityBasis> static void EvalSingular(Matrix<Real>& U, const Vector<DensityBasis>& density, const Matrix<Real>& M, Integer KDIM0_, Integer KDIM1_) {
  627. if (M.Dim(0) == 0 || M.Dim(1) == 0) {
  628. U.ReInit(0,0);
  629. return;
  630. }
  631. const Long Ntrg = M.Dim(1) / KDIM1_;
  632. SCTL_ASSERT(M.Dim(1) == KDIM1_ * Ntrg);
  633. const Long Nelem = M.Dim(0) / (KDIM0_ * DensityBasis::Size());
  634. SCTL_ASSERT(M.Dim(0) == Nelem * KDIM0_ * DensityBasis::Size());
  635. const Integer dof = density.Dim() / (Nelem * KDIM0_);
  636. SCTL_ASSERT(density.Dim() == Nelem * dof * KDIM0_);
  637. if (U.Dim(0) != Nelem * dof * KDIM1_ || U.Dim(1) != Ntrg) {
  638. U.ReInit(Nelem * dof * KDIM1_, Ntrg);
  639. U = 0;
  640. }
  641. for (Long j = 0; j < Nelem; j++) {
  642. const Matrix<Real> M_(KDIM0_ * DensityBasis::Size(), KDIM1_ * Ntrg, (Iterator<Real>)M[j * KDIM0_ * DensityBasis::Size()], false);
  643. Matrix<Real> U_(dof, KDIM1_ * Ntrg, U[j*dof*KDIM1_], false);
  644. Matrix<Real> F_(dof, KDIM0_ * DensityBasis::Size());
  645. for (Long i = 0; i < dof; i++) {
  646. for (Long k = 0; k < KDIM0_; k++) {
  647. for (Long l = 0; l < DensityBasis::Size(); l++) {
  648. F_[i][k * DensityBasis::Size() + l] = density[(j * dof + i) * KDIM0_ + k][l];
  649. }
  650. }
  651. }
  652. Matrix<Real>::GEMM(U_, F_, M_);
  653. }
  654. }
  655. template <Integer DIM> struct PointData {
  656. bool operator<(const PointData& p) const {
  657. return mid < p.mid;
  658. }
  659. Long rank;
  660. Long surf_rank;
  661. Morton<DIM> mid;
  662. StaticArray<Real,DIM> coord;
  663. Real radius2;
  664. };
  665. template <class T1, class T2> struct Pair {
  666. Pair() {}
  667. Pair(T1 x, T2 y) : first(x), second(y) {}
  668. bool operator<(const Pair& p) const {
  669. return (first < p.first) || (((first == p.first) && (second < p.second)));
  670. }
  671. T1 first;
  672. T2 second;
  673. };
  674. template <class ElemList> static void BuildNbrList(Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt, const Vector<Long>& trg_surf, const ElemList& elem_lst, Real distance_factor, Real period_length, const Comm& comm) {
  675. using CoordBasis = typename ElemList::CoordBasis;
  676. constexpr Integer CoordDim = ElemList::CoordDim();
  677. constexpr Integer ElemDim = ElemList::ElemDim();
  678. using PtData = PointData<CoordDim>;
  679. const Integer rank = comm.Rank();
  680. Real R0 = 0;
  681. StaticArray<Real,CoordDim> X0;
  682. { // Find bounding box
  683. Long N = Xt.Dim() / CoordDim;
  684. SCTL_ASSERT(Xt.Dim() == N * CoordDim);
  685. SCTL_ASSERT(N);
  686. StaticArray<Real,CoordDim*2> Xloc;
  687. StaticArray<Real,CoordDim*2> Xglb;
  688. for (Integer k = 0; k < CoordDim; k++) {
  689. Xloc[0*CoordDim+k] = Xt[k];
  690. Xloc[1*CoordDim+k] = Xt[k];
  691. }
  692. for (Long i = 0; i < N; i++) {
  693. for (Integer k = 0; k < CoordDim; k++) {
  694. Xloc[0*CoordDim+k] = std::min<Real>(Xloc[0*CoordDim+k], Xt[i*CoordDim+k]);
  695. Xloc[1*CoordDim+k] = std::max<Real>(Xloc[1*CoordDim+k], Xt[i*CoordDim+k]);
  696. }
  697. }
  698. comm.Allreduce((ConstIterator<Real>)Xloc+0*CoordDim, (Iterator<Real>)Xglb+0*CoordDim, CoordDim, Comm::CommOp::MIN);
  699. comm.Allreduce((ConstIterator<Real>)Xloc+1*CoordDim, (Iterator<Real>)Xglb+1*CoordDim, CoordDim, Comm::CommOp::MAX);
  700. for (Integer k = 0; k < CoordDim; k++) {
  701. R0 = std::max(R0, Xglb[1*CoordDim+k]-Xglb[0*CoordDim+k]);
  702. }
  703. R0 = R0 * 2.0;
  704. for (Integer k = 0; k < CoordDim; k++) {
  705. X0[k] = Xglb[k] - R0*0.25;
  706. }
  707. }
  708. if (period_length > 0) {
  709. R0 = period_length;
  710. }
  711. Vector<PtData> PtSrc, PtTrg;
  712. Integer order_upsample = (Integer)(const_pi<Real>() / distance_factor + 0.5);
  713. { // Set PtSrc
  714. const Vector<CoordBasis>& X_elem_lst = elem_lst.ElemVector();
  715. Vector<CoordBasis> dX_elem_lst;
  716. CoordBasis::Grad(dX_elem_lst, X_elem_lst);
  717. Matrix<Real> nds;
  718. Vector<Real> wts;
  719. TensorProductGaussQuad<ElemDim>(nds, wts, order_upsample);
  720. const Long Nnds = nds.Dim(1);
  721. Vector<Real> X, dX;
  722. const auto CoordEvalOp = CoordBasis::SetupEval(nds);
  723. eval_basis(X, X_elem_lst, CoordDim, Nnds, CoordEvalOp);
  724. eval_basis(dX, dX_elem_lst, CoordDim * ElemDim, Nnds, CoordEvalOp);
  725. const Long N = X.Dim() / CoordDim;
  726. const Long Nelem = elem_lst.NElem();
  727. SCTL_ASSERT(X.Dim() == N * CoordDim);
  728. SCTL_ASSERT(N == Nelem * Nnds);
  729. Long rank_offset, surf_rank_offset;
  730. { // Set rank_offset, surf_rank_offset
  731. comm.Scan(Ptr2ConstItr<Long>(&N,1), Ptr2Itr<Long>(&rank_offset,1), 1, Comm::CommOp::SUM);
  732. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&surf_rank_offset,1), 1, Comm::CommOp::SUM);
  733. surf_rank_offset -= Nelem;
  734. rank_offset -= N;
  735. }
  736. PtSrc.ReInit(N);
  737. const Real R0inv = 1.0 / R0;
  738. for (Long i = 0; i < N; i++) { // Set coord
  739. for (Integer k = 0; k < CoordDim; k++) {
  740. PtSrc[i].coord[k] = (X[i*CoordDim+k] - X0[k]) * R0inv;
  741. }
  742. }
  743. if (period_length > 0) { // Wrap-around coord
  744. for (Long i = 0; i < N; i++) {
  745. auto& x = PtSrc[i].coord;
  746. for (Integer k = 0; k < CoordDim; k++) {
  747. x[k] -= (Long)(x[k]);
  748. }
  749. }
  750. }
  751. for (Long i = 0; i < N; i++) { // Set radius2, mid, rank
  752. Integer depth = 0;
  753. { // Set radius2, depth
  754. Real radius2 = 0;
  755. for (Integer k0 = 0; k0 < ElemDim; k0++) {
  756. Real R2 = 0;
  757. for (Integer k1 = 0; k1 < CoordDim; k1++) {
  758. Real dX_ = dX[(i*CoordDim+k1)*ElemDim+k0];
  759. R2 += dX_*dX_;
  760. }
  761. radius2 = std::max(radius2, R2);
  762. }
  763. radius2 *= R0inv*R0inv * distance_factor*distance_factor;
  764. PtSrc[i].radius2 = radius2;
  765. Long Rinv = (Long)(1.0/radius2);
  766. while (Rinv > 0) {
  767. Rinv = (Rinv>>2);
  768. depth++;
  769. }
  770. }
  771. PtSrc[i].mid = Morton<CoordDim>((Iterator<Real>)PtSrc[i].coord, std::min(Morton<CoordDim>::MaxDepth(),depth));
  772. PtSrc[i].rank = rank_offset + i;
  773. }
  774. for (Long i = 0 ; i < Nelem; i++) { // Set surf_rank
  775. for (Long j = 0; j < Nnds; j++) {
  776. PtSrc[i*Nnds+j].surf_rank = surf_rank_offset + i;
  777. }
  778. }
  779. Vector<PtData> PtSrcSorted;
  780. comm.HyperQuickSort(PtSrc, PtSrcSorted);
  781. PtSrc.Swap(PtSrcSorted);
  782. }
  783. { // Set PtTrg
  784. const Long N = Xt.Dim() / CoordDim;
  785. SCTL_ASSERT(Xt.Dim() == N * CoordDim);
  786. Long rank_offset;
  787. { // Set rank_offset
  788. comm.Scan(Ptr2ConstItr<Long>(&N,1), Ptr2Itr<Long>(&rank_offset,1), 1, Comm::CommOp::SUM);
  789. rank_offset -= N;
  790. }
  791. PtTrg.ReInit(N);
  792. const Real R0inv = 1.0 / R0;
  793. for (Long i = 0; i < N; i++) { // Set coord
  794. for (Integer k = 0; k < CoordDim; k++) {
  795. PtTrg[i].coord[k] = (Xt[i*CoordDim+k] - X0[k]) * R0inv;
  796. }
  797. }
  798. if (period_length > 0) { // Wrap-around coord
  799. for (Long i = 0; i < N; i++) {
  800. auto& x = PtTrg[i].coord;
  801. for (Integer k = 0; k < CoordDim; k++) {
  802. x[k] -= (Long)(x[k]);
  803. }
  804. }
  805. }
  806. for (Long i = 0; i < N; i++) { // Set radius2, mid, rank
  807. PtTrg[i].radius2 = 0;
  808. PtTrg[i].mid = Morton<CoordDim>((Iterator<Real>)PtTrg[i].coord);
  809. PtTrg[i].rank = rank_offset + i;
  810. }
  811. if (trg_surf.Dim()) { // Set surf_rank
  812. SCTL_ASSERT(trg_surf.Dim() == N);
  813. for (Long i = 0; i < N; i++) {
  814. PtTrg[i].surf_rank = trg_surf[i];
  815. }
  816. } else {
  817. for (Long i = 0; i < N; i++) {
  818. PtTrg[i].surf_rank = -1;
  819. }
  820. }
  821. Vector<PtData> PtTrgSorted;
  822. comm.HyperQuickSort(PtTrg, PtTrgSorted);
  823. PtTrg.Swap(PtTrgSorted);
  824. }
  825. Tree<CoordDim> tree(comm);
  826. { // Init tree
  827. Vector<Real> Xall(PtSrc.Dim()+PtTrg.Dim());
  828. { // Set Xall
  829. Xall.ReInit((PtSrc.Dim()+PtTrg.Dim())*CoordDim);
  830. Long Nsrc = PtSrc.Dim();
  831. Long Ntrg = PtTrg.Dim();
  832. for (Long i = 0; i < Nsrc; i++) {
  833. for (Integer k = 0; k < CoordDim; k++) {
  834. Xall[i*CoordDim+k] = PtSrc[i].coord[k];
  835. }
  836. }
  837. for (Long i = 0; i < Ntrg; i++) {
  838. for (Integer k = 0; k < CoordDim; k++) {
  839. Xall[(Nsrc+i)*CoordDim+k] = PtTrg[i].coord[k];
  840. }
  841. }
  842. }
  843. tree.UpdateRefinement(Xall, 1000, true, period_length>0);
  844. }
  845. { // Repartition PtSrc, PtTrg
  846. PtData splitter;
  847. splitter.mid = tree.GetPartitionMID()[rank];
  848. comm.PartitionS(PtSrc, splitter);
  849. comm.PartitionS(PtTrg, splitter);
  850. }
  851. { // Add tree data PtSrc
  852. const auto& node_mid = tree.GetNodeMID();
  853. const Long N = node_mid.Dim();
  854. SCTL_ASSERT(N);
  855. Vector<Long> dsp(N), cnt(N);
  856. for (Long i = 0; i < N; i++) {
  857. PtData m0;
  858. m0.mid = node_mid[i];
  859. dsp[i] = std::lower_bound(PtSrc.begin(), PtSrc.end(), m0) - PtSrc.begin();
  860. }
  861. for (Long i = 0; i < N-1; i++) {
  862. cnt[i] = dsp[i+1] - dsp[i];
  863. }
  864. cnt[N-1] = PtSrc.Dim() - dsp[N-1];
  865. tree.AddData("PtSrc", PtSrc, cnt);
  866. }
  867. tree.template Broadcast<PtData>("PtSrc");
  868. { // Build pair_lst
  869. Vector<Long> cnt;
  870. Vector<PtData> PtSrc;
  871. tree.GetData(PtSrc, cnt, "PtSrc");
  872. const auto& node_mid = tree.GetNodeMID();
  873. const auto& node_attr = tree.GetNodeAttr();
  874. Vector<Morton<CoordDim>> nbr_mid_tmp;
  875. for (Long i = 0; i < node_mid.Dim(); i++) {
  876. if (node_attr[i].Leaf && !node_attr[i].Ghost) {
  877. Vector<Morton<CoordDim>> child_mid;
  878. node_mid[i].Children(child_mid);
  879. for (const auto& trg_mid : child_mid) {
  880. Integer d0 = trg_mid.Depth();
  881. Vector<PtData> Src, Trg;
  882. { // Set Trg
  883. PtData m0, m1;
  884. m0.mid = trg_mid;
  885. m1.mid = trg_mid.Next();
  886. Long a = std::lower_bound(PtTrg.begin(), PtTrg.end(), m0) - PtTrg.begin();
  887. Long b = std::lower_bound(PtTrg.begin(), PtTrg.end(), m1) - PtTrg.begin();
  888. Trg.ReInit(b-a, PtTrg.begin()+a, false);
  889. if (!Trg.Dim()) continue;
  890. }
  891. Vector<std::set<Long>> near_elem(Trg.Dim());
  892. for (Integer d = 0; d <= d0; d++) {
  893. trg_mid.NbrList(nbr_mid_tmp, d, period_length>0);
  894. for (const auto& src_mid : nbr_mid_tmp) { // Set Src
  895. PtData m0, m1;
  896. m0.mid = src_mid;
  897. m1.mid = (d==d0 ? src_mid.Next() : src_mid.Ancestor(d+1));
  898. Long a = std::lower_bound(PtSrc.begin(), PtSrc.end(), m0) - PtSrc.begin();
  899. Long b = std::lower_bound(PtSrc.begin(), PtSrc.end(), m1) - PtSrc.begin();
  900. Src.ReInit(b-a, PtSrc.begin()+a, false);
  901. if (!Src.Dim()) continue;
  902. for (Long t = 0; t < Trg.Dim(); t++) { // set near_elem[t] <-- {s : dist(s,t) < radius(s)}
  903. for (Long s = 0; s < Src.Dim(); s++) {
  904. if (Trg[t].surf_rank != Src[s].surf_rank) {
  905. Real R2 = 0;
  906. for (Integer k = 0; k < CoordDim; k++) {
  907. Real dx = (Src[s].coord[k] - Trg[t].coord[k]);
  908. R2 += dx * dx;
  909. }
  910. if (R2 < Src[s].radius2) {
  911. near_elem[t].insert(Src[s].surf_rank);
  912. }
  913. }
  914. }
  915. }
  916. }
  917. }
  918. for (Long t = 0; t < Trg.Dim(); t++) { // Set pair_lst
  919. for (Long elem_idx : near_elem[t]) {
  920. pair_lst.PushBack(Pair<Long,Long>(elem_idx,Trg[t].rank));
  921. }
  922. }
  923. }
  924. }
  925. }
  926. }
  927. { // Sort and repartition pair_lst
  928. Vector<Pair<Long,Long>> pair_lst_sorted;
  929. comm.HyperQuickSort(pair_lst, pair_lst_sorted);
  930. Long surf_rank_offset;
  931. const Long Nelem = elem_lst.NElem();
  932. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&surf_rank_offset,1), 1, Comm::CommOp::SUM);
  933. surf_rank_offset -= Nelem;
  934. comm.PartitionS(pair_lst_sorted, Pair<Long,Long>(surf_rank_offset,0));
  935. pair_lst.Swap(pair_lst_sorted);
  936. }
  937. }
  938. template <class ElemList> static void BuildNbrListDeprecated(Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt, const ElemList& elem_lst, const Matrix<Real>& surf_nds, Real distance_factor) {
  939. using CoordBasis = typename ElemList::CoordBasis;
  940. constexpr Integer CoordDim = ElemList::CoordDim();
  941. constexpr Integer ElemDim = ElemList::ElemDim();
  942. const Long Nelem = elem_lst.NElem();
  943. const Long Ntrg = Xt.Dim() / CoordDim;
  944. SCTL_ASSERT(Xt.Dim() == Ntrg * CoordDim);
  945. Long Nnds, Nsurf_nds;
  946. Vector<Real> X_surf, X, dX;
  947. Integer order_upsample = (Integer)(const_pi<Real>() / distance_factor + 0.5);
  948. { // Set X, dX
  949. const Vector<CoordBasis>& X_elem_lst = elem_lst.ElemVector();
  950. Vector<CoordBasis> dX_elem_lst;
  951. CoordBasis::Grad(dX_elem_lst, X_elem_lst);
  952. Matrix<Real> nds_upsample;
  953. Vector<Real> wts_upsample;
  954. TensorProductGaussQuad<ElemDim>(nds_upsample, wts_upsample, order_upsample);
  955. Nnds = nds_upsample.Dim(1);
  956. const auto CoordEvalOp = CoordBasis::SetupEval(nds_upsample);
  957. eval_basis(X, X_elem_lst, CoordDim, nds_upsample.Dim(1), CoordEvalOp);
  958. eval_basis(dX, dX_elem_lst, CoordDim * ElemDim, nds_upsample.Dim(1), CoordEvalOp);
  959. Nsurf_nds = surf_nds.Dim(1);
  960. const auto CoordEvalOp_surf = CoordBasis::SetupEval(surf_nds);
  961. eval_basis(X_surf, X_elem_lst, CoordDim, Nsurf_nds, CoordEvalOp_surf);
  962. }
  963. Real d2 = distance_factor * distance_factor;
  964. for (Long i = 0; i < Nelem; i++) {
  965. std::set<Long> near_pts;
  966. std::set<Long> self_pts;
  967. for (Long j = 0; j < Nnds; j++) {
  968. Real R2_max = 0;
  969. StaticArray<Real, CoordDim> X0;
  970. for (Integer k = 0; k < CoordDim; k++) {
  971. X0[k] = X[(i*Nnds+j)*CoordDim+k];
  972. }
  973. for (Integer k0 = 0; k0 < ElemDim; k0++) {
  974. Real R2 = 0;
  975. for (Integer k1 = 0; k1 < CoordDim; k1++) {
  976. Real dX_ = dX[((i*Nnds+j)*CoordDim+k1)*ElemDim+k0];
  977. R2 += dX_*dX_;
  978. }
  979. R2_max = std::max(R2_max, R2*d2);
  980. }
  981. for (Long k = 0; k < Ntrg; k++) {
  982. Real R2 = 0;
  983. for (Integer l = 0; l < CoordDim; l++) {
  984. Real dX = Xt[k*CoordDim+l]- X0[l];
  985. R2 += dX * dX;
  986. }
  987. if (R2 < R2_max) near_pts.insert(k);
  988. }
  989. }
  990. for (Long j = 0; j < Nsurf_nds; j++) {
  991. StaticArray<Real, CoordDim> X0;
  992. for (Integer k = 0; k < CoordDim; k++) {
  993. X0[k] = X_surf[(i*Nsurf_nds+j)*CoordDim+k];
  994. }
  995. for (Long k = 0; k < Ntrg; k++) {
  996. Real R2 = 0;
  997. for (Integer l = 0; l < CoordDim; l++) {
  998. Real dX = Xt[k*CoordDim+l]- X0[l];
  999. R2 += dX * dX;
  1000. }
  1001. if (R2 == 0) self_pts.insert(k);
  1002. }
  1003. }
  1004. for (Long trg_idx : self_pts) {
  1005. near_pts.erase(trg_idx);
  1006. }
  1007. for (Long trg_idx : near_pts) {
  1008. pair_lst.PushBack(Pair<Long,Long>(i,trg_idx));
  1009. }
  1010. }
  1011. }
  1012. template <class DensityBasis, class ElemList, class Kernel> static void SetupNearSingular(Matrix<Real>& M_near_singular, Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt_, const Vector<Long>& trg_surf, const ElemList& elem_lst, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) {
  1013. static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
  1014. static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
  1015. static_assert(DensityBasis::Dim() == ElemList::ElemDim());
  1016. using CoordBasis = typename ElemList::CoordBasis;
  1017. using CoordEvalOpType = typename CoordBasis::EvalOpType;
  1018. using DensityEvalOpType = typename DensityBasis::EvalOpType;
  1019. constexpr Integer CoordDim = ElemList::CoordDim();
  1020. constexpr Integer ElemDim = ElemList::ElemDim();
  1021. constexpr Integer KDIM0 = Kernel::SrcDim();
  1022. constexpr Integer KDIM1 = Kernel::TrgDim();
  1023. const Long Nelem = elem_lst.NElem();
  1024. BuildNbrList(pair_lst, Xt_, trg_surf, elem_lst, 2.5/order_direct, period_length, comm);
  1025. const Long Ninterac = pair_lst.Dim();
  1026. Vector<Real> Xt;
  1027. { // Set Xt
  1028. Integer rank = comm.Rank();
  1029. Integer np = comm.Size();
  1030. Vector<Long> splitter_ranks;
  1031. { // Set splitter_ranks
  1032. Vector<Long> cnt(np);
  1033. const Long N = Xt_.Dim() / CoordDim;
  1034. comm.Allgather(Ptr2ConstItr<Long>(&N,1), 1, cnt.begin(), 1);
  1035. scan(splitter_ranks, cnt);
  1036. }
  1037. Vector<Long> scatter_index, recv_index, recv_cnt(np), recv_dsp(np);
  1038. { // Set scatter_index, recv_index, recv_cnt, recv_dsp
  1039. { // Set scatter_index, recv_index
  1040. Vector<Pair<Long,Long>> scatter_pair(pair_lst.Dim());
  1041. for (Long i = 0; i < pair_lst.Dim(); i++) {
  1042. scatter_pair[i] = Pair<Long,Long>(pair_lst[i].second,i);
  1043. }
  1044. omp_par::merge_sort(scatter_pair.begin(), scatter_pair.end());
  1045. recv_index.ReInit(scatter_pair.Dim());
  1046. scatter_index.ReInit(scatter_pair.Dim());
  1047. for (Long i = 0; i < scatter_index.Dim(); i++) {
  1048. recv_index[i] = scatter_pair[i].first;
  1049. scatter_index[i] = scatter_pair[i].second;
  1050. }
  1051. }
  1052. for (Integer i = 0; i < np; i++) {
  1053. recv_dsp[i] = std::lower_bound(recv_index.begin(), recv_index.end(), splitter_ranks[i]) - recv_index.begin();
  1054. }
  1055. for (Integer i = 0; i < np-1; i++) {
  1056. recv_cnt[i] = recv_dsp[i+1] - recv_dsp[i];
  1057. }
  1058. recv_cnt[np-1] = recv_index.Dim() - recv_dsp[np-1];
  1059. }
  1060. Vector<Long> send_index, send_cnt(np), send_dsp(np);
  1061. { // Set send_index, send_cnt, send_dsp
  1062. comm.Alltoall(recv_cnt.begin(), 1, send_cnt.begin(), 1);
  1063. scan(send_dsp, send_cnt);
  1064. send_index.ReInit(send_cnt[np-1] + send_dsp[np-1]);
  1065. comm.Alltoallv(recv_index.begin(), recv_cnt.begin(), recv_dsp.begin(), send_index.begin(), send_cnt.begin(), send_dsp.begin());
  1066. }
  1067. Vector<Real> Xt_send(send_index.Dim() * CoordDim);
  1068. for (Long i = 0; i < send_index.Dim(); i++) { // Set Xt_send
  1069. Long idx = send_index[i] - splitter_ranks[rank];
  1070. for (Integer k = 0; k < CoordDim; k++) {
  1071. Xt_send[i*CoordDim+k] = Xt_[idx*CoordDim+k];
  1072. }
  1073. }
  1074. Vector<Real> Xt_recv(recv_index.Dim() * CoordDim);
  1075. { // Set Xt_recv
  1076. for (Long i = 0; i < np; i++) {
  1077. send_cnt[i] *= CoordDim;
  1078. send_dsp[i] *= CoordDim;
  1079. recv_cnt[i] *= CoordDim;
  1080. recv_dsp[i] *= CoordDim;
  1081. }
  1082. comm.Alltoallv(Xt_send.begin(), send_cnt.begin(), send_dsp.begin(), Xt_recv.begin(), recv_cnt.begin(), recv_dsp.begin());
  1083. }
  1084. Xt.ReInit(scatter_index.Dim() * CoordDim);
  1085. for (Long i = 0; i < scatter_index.Dim(); i++) { // Set Xt
  1086. Long idx = scatter_index[i];
  1087. for (Integer k = 0; k < CoordDim; k++) {
  1088. Xt[idx*CoordDim+k] = Xt_recv[i*CoordDim+k];
  1089. }
  1090. }
  1091. }
  1092. const Vector<CoordBasis>& X = elem_lst.ElemVector();
  1093. Vector<CoordBasis> dX;
  1094. CoordBasis::Grad(dX, X);
  1095. Long elem_rank_offset;
  1096. { // Set elem_rank_offset
  1097. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&elem_rank_offset,1), 1, Comm::CommOp::SUM);
  1098. elem_rank_offset -= Nelem;
  1099. }
  1100. auto& M = M_near_singular;
  1101. M.ReInit(Ninterac * KDIM0 * DensityBasis::Size(), KDIM1);
  1102. #pragma omp parallel for schedule(static)
  1103. for (Long j = 0; j < Ninterac; j++) { // Set M (near-singular)
  1104. const Long src_idx = pair_lst[j].first - elem_rank_offset;
  1105. Real adapt = -1.0;
  1106. Tensor<Real,true,ElemDim,1> u0;
  1107. { // Set u0 (project target point to the surface patch in parameter space)
  1108. ConstIterator<Real> Xt_ = Xt.begin() + j * CoordDim;
  1109. const auto& nodes = CoordBasis::Nodes();
  1110. Long min_idx = -1;
  1111. Real min_R2 = 1e10;
  1112. for (Long i = 0; i < CoordBasis::Size(); i++) {
  1113. Real R2 = 0;
  1114. for (Integer k = 0; k < CoordDim; k++) {
  1115. Real dX = X[src_idx * CoordDim + k][i] - Xt_[k];
  1116. R2 += dX * dX;
  1117. }
  1118. if (R2 < min_R2) {
  1119. min_R2 = R2;
  1120. min_idx = i;
  1121. }
  1122. }
  1123. SCTL_ASSERT(min_idx >= 0);
  1124. for (Integer k = 0; k < ElemDim; k++) {
  1125. u0(k,0) = nodes[k][min_idx];
  1126. }
  1127. for (Integer i = 0; i < 2; i++) { // iterate
  1128. Matrix<Real> X_, dX_;
  1129. for (Integer k = 0; k < ElemDim; k++) {
  1130. u0(k,0) = std::min<Real>(1.0, u0(k,0));
  1131. u0(k,0) = std::max<Real>(0.0, u0(k,0));
  1132. }
  1133. const auto eval_op = CoordBasis::SetupEval(Matrix<Real>(ElemDim,1,u0.begin(),false));
  1134. CoordBasis::Eval(X_, Vector<CoordBasis>(CoordDim,(Iterator<CoordBasis>)X.begin()+src_idx*CoordDim,false),eval_op);
  1135. CoordBasis::Eval(dX_, Vector<CoordBasis>(CoordDim*ElemDim,dX.begin()+src_idx*CoordDim*ElemDim,false),eval_op);
  1136. const Tensor<Real,false,CoordDim,1> x0((Iterator<Real>)Xt_);
  1137. const Tensor<Real,false,CoordDim,1> x(X_.begin());
  1138. const Tensor<Real,false,CoordDim,ElemDim> x_u(dX_.begin());
  1139. auto inv = [](const Tensor<Real,true,2,2>& M) {
  1140. Tensor<Real,true,2,2> Minv;
  1141. Real det_inv = 1.0 / (M(0,0)*M(1,1) - M(1,0)*M(0,1));
  1142. Minv(0,0) = M(1,1) * det_inv;
  1143. Minv(0,1) =-M(0,1) * det_inv;
  1144. Minv(1,0) =-M(1,0) * det_inv;
  1145. Minv(1,1) = M(0,0) * det_inv;
  1146. return Minv;
  1147. };
  1148. auto du = inv(x_u.RotateRight()*x_u) * x_u.RotateRight()*(x0-x);
  1149. u0 = u0 + du;
  1150. auto x_u_squared = x_u.RotateRight() * x_u;
  1151. adapt = sctl::sqrt<Real>( ((x0-x).RotateRight()*(x0-x))(0,0) / std::max<Real>(x_u_squared(0,0),x_u_squared(1,1)) );
  1152. }
  1153. }
  1154. Matrix<Real> quad_nds;
  1155. Vector<Real> quad_wts;
  1156. DuffyQuad<ElemDim>(quad_nds, quad_wts, Vector<Real>(ElemDim,u0.begin(),false), order_singular, adapt);
  1157. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  1158. Integer Nnds = quad_wts.Dim();
  1159. Vector<Real> X_, dX_, Xa_, Xn_;
  1160. { // Set X_, dX_
  1161. const Vector<CoordBasis> X__(CoordDim, (Iterator<CoordBasis>)X.begin() + src_idx * CoordDim, false);
  1162. const Vector<CoordBasis> dX__(CoordDim * ElemDim, (Iterator<CoordBasis>)dX.begin() + src_idx * CoordDim * ElemDim, false);
  1163. eval_basis(X_, X__, CoordDim, Nnds, CoordEvalOp);
  1164. eval_basis(dX_, dX__, CoordDim * ElemDim, Nnds, CoordEvalOp);
  1165. }
  1166. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  1167. Xa_.ReInit(Nnds);
  1168. Xn_.ReInit(Nnds*CoordDim);
  1169. for (Long j = 0; j < Nnds; j++) {
  1170. StaticArray<Real,CoordDim> normal;
  1171. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  1172. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  1173. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  1174. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  1175. Real invXa = 1/Xa_[j];
  1176. Xn_[j*3+0] = normal[0] * invXa;
  1177. Xn_[j*3+1] = normal[1] * invXa;
  1178. Xn_[j*3+2] = normal[2] * invXa;
  1179. }
  1180. }
  1181. DensityEvalOpType DensityEvalOp;
  1182. if (std::is_same<CoordBasis,DensityBasis>::value) {
  1183. DensityEvalOp = CoordEvalOp;
  1184. } else {
  1185. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  1186. }
  1187. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  1188. { // Set kernel matrix M__
  1189. const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + j * CoordDim, false);
  1190. kernel.template KernelMatrix<Real>(M__, X0_, X_, Xn_);
  1191. }
  1192. for (Long k0 = 0; k0 < KDIM0; k0++) {
  1193. for (Long k1 = 0; k1 < KDIM1; k1++) {
  1194. for (Long l = 0; l < DensityBasis::Size(); l++) {
  1195. Real M_lk = 0;
  1196. for (Long n = 0; n < Nnds; n++) {
  1197. Real quad_wt = Xa_[n] * quad_wts[n];
  1198. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  1199. }
  1200. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1] = M_lk;
  1201. }
  1202. }
  1203. }
  1204. }
  1205. { // Set M (subtract direct)
  1206. Matrix<Real> quad_nds;
  1207. Vector<Real> quad_wts;
  1208. TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
  1209. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  1210. Integer Nnds = quad_wts.Dim();
  1211. Vector<Real> X_, dX_, Xa_, Xn_;
  1212. { // Set X_, dX_
  1213. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  1214. eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
  1215. }
  1216. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  1217. Long N = Nelem*Nnds;
  1218. Xa_.ReInit(N);
  1219. Xn_.ReInit(N*CoordDim);
  1220. for (Long j = 0; j < N; j++) {
  1221. StaticArray<Real,CoordDim> normal;
  1222. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  1223. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  1224. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  1225. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  1226. Real invXa = 1/Xa_[j];
  1227. Xn_[j*3+0] = normal[0] * invXa;
  1228. Xn_[j*3+1] = normal[1] * invXa;
  1229. Xn_[j*3+2] = normal[2] * invXa;
  1230. }
  1231. }
  1232. DensityEvalOpType DensityEvalOp;
  1233. if (std::is_same<CoordBasis,DensityBasis>::value) {
  1234. DensityEvalOp = CoordEvalOp;
  1235. } else {
  1236. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  1237. }
  1238. #pragma omp parallel for schedule(static)
  1239. for (Long j = 0; j < Ninterac; j++) { // Subtract direct contribution
  1240. const Long src_idx = pair_lst[j].first - elem_rank_offset;
  1241. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  1242. { // Set kernel matrix M__
  1243. const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + j * CoordDim, false);
  1244. Vector<Real> X__(Nnds * CoordDim, X_.begin() + src_idx * Nnds * CoordDim, false);
  1245. Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + src_idx * Nnds * CoordDim, false);
  1246. kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
  1247. }
  1248. for (Long k0 = 0; k0 < KDIM0; k0++) {
  1249. for (Long k1 = 0; k1 < KDIM1; k1++) {
  1250. for (Long l = 0; l < DensityBasis::Size(); l++) {
  1251. Real M_lk = 0;
  1252. for (Long n = 0; n < Nnds; n++) {
  1253. Real quad_wt = Xa_[src_idx * Nnds + n] * quad_wts[n];
  1254. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  1255. }
  1256. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1] -= M_lk;
  1257. }
  1258. }
  1259. }
  1260. }
  1261. }
  1262. }
  1263. template <class DensityBasis> static void EvalNearSingular(Vector<Real>& U, const Vector<DensityBasis>& density, const Matrix<Real>& M, const Vector<Pair<Long,Long>>& pair_lst, Long Nelem_, Long Ntrg_, Integer KDIM0_, Integer KDIM1_, const Comm& comm) {
  1264. const Long Ninterac = pair_lst.Dim();
  1265. const Integer dof = density.Dim() / Nelem_ / KDIM0_;
  1266. SCTL_ASSERT(density.Dim() == Nelem_ * dof * KDIM0_);
  1267. Long elem_rank_offset;
  1268. { // Set elem_rank_offset
  1269. comm.Scan(Ptr2ConstItr<Long>(&Nelem_,1), Ptr2Itr<Long>(&elem_rank_offset,1), 1, Comm::CommOp::SUM);
  1270. elem_rank_offset -= Nelem_;
  1271. }
  1272. Vector<Real> U_loc(Ninterac*dof*KDIM1_);
  1273. for (Long j = 0; j < Ninterac; j++) {
  1274. const Long src_idx = pair_lst[j].first - elem_rank_offset;
  1275. const Matrix<Real> M_(KDIM0_ * DensityBasis::Size(), KDIM1_, (Iterator<Real>)M[j * KDIM0_ * DensityBasis::Size()], false);
  1276. Matrix<Real> U_(dof, KDIM1_, U_loc.begin() + j*dof*KDIM1_, false);
  1277. Matrix<Real> F_(dof, KDIM0_ * DensityBasis::Size());
  1278. for (Long i = 0; i < dof; i++) {
  1279. for (Long k = 0; k < KDIM0_; k++) {
  1280. for (Long l = 0; l < DensityBasis::Size(); l++) {
  1281. F_[i][k * DensityBasis::Size() + l] = density[(src_idx * dof + i) * KDIM0_ + k][l];
  1282. }
  1283. }
  1284. }
  1285. Matrix<Real>::GEMM(U_, F_, M_);
  1286. }
  1287. if (U.Dim() != Ntrg_ * dof * KDIM1_) {
  1288. U.ReInit(Ntrg_ * dof * KDIM1_);
  1289. U = 0;
  1290. }
  1291. { // Set U
  1292. Integer rank = comm.Rank();
  1293. Integer np = comm.Size();
  1294. Vector<Long> splitter_ranks;
  1295. { // Set splitter_ranks
  1296. Vector<Long> cnt(np);
  1297. comm.Allgather(Ptr2ConstItr<Long>(&Ntrg_,1), 1, cnt.begin(), 1);
  1298. scan(splitter_ranks, cnt);
  1299. }
  1300. Vector<Long> scatter_index, send_index, send_cnt(np), send_dsp(np);
  1301. { // Set scatter_index, send_index, send_cnt, send_dsp
  1302. { // Set scatter_index, send_index
  1303. Vector<Pair<Long,Long>> scatter_pair(pair_lst.Dim());
  1304. for (Long i = 0; i < pair_lst.Dim(); i++) {
  1305. scatter_pair[i] = Pair<Long,Long>(pair_lst[i].second,i);
  1306. }
  1307. omp_par::merge_sort(scatter_pair.begin(), scatter_pair.end());
  1308. send_index.ReInit(scatter_pair.Dim());
  1309. scatter_index.ReInit(scatter_pair.Dim());
  1310. for (Long i = 0; i < scatter_index.Dim(); i++) {
  1311. send_index[i] = scatter_pair[i].first;
  1312. scatter_index[i] = scatter_pair[i].second;
  1313. }
  1314. }
  1315. for (Integer i = 0; i < np; i++) {
  1316. send_dsp[i] = std::lower_bound(send_index.begin(), send_index.end(), splitter_ranks[i]) - send_index.begin();
  1317. }
  1318. for (Integer i = 0; i < np-1; i++) {
  1319. send_cnt[i] = send_dsp[i+1] - send_dsp[i];
  1320. }
  1321. send_cnt[np-1] = send_index.Dim() - send_dsp[np-1];
  1322. }
  1323. Vector<Long> recv_index, recv_cnt(np), recv_dsp(np);
  1324. { // Set recv_index, recv_cnt, recv_dsp
  1325. comm.Alltoall(send_cnt.begin(), 1, recv_cnt.begin(), 1);
  1326. scan(recv_dsp, recv_cnt);
  1327. recv_index.ReInit(recv_cnt[np-1] + recv_dsp[np-1]);
  1328. comm.Alltoallv(send_index.begin(), send_cnt.begin(), send_dsp.begin(), recv_index.begin(), recv_cnt.begin(), recv_dsp.begin());
  1329. }
  1330. Vector<Real> U_send(scatter_index.Dim() * dof * KDIM1_);
  1331. for (Long i = 0; i < scatter_index.Dim(); i++) {
  1332. Long idx = scatter_index[i]*dof*KDIM1_;
  1333. for (Long k = 0; k < dof * KDIM1_; k++) {
  1334. U_send[i*dof*KDIM1_ + k] = U_loc[idx + k];
  1335. }
  1336. }
  1337. Vector<Real> U_recv(recv_index.Dim() * dof * KDIM1_);
  1338. { // Set U_recv
  1339. for (Long i = 0; i < np; i++) {
  1340. send_cnt[i] *= dof * KDIM1_;
  1341. send_dsp[i] *= dof * KDIM1_;
  1342. recv_cnt[i] *= dof * KDIM1_;
  1343. recv_dsp[i] *= dof * KDIM1_;
  1344. }
  1345. comm.Alltoallv(U_send.begin(), send_cnt.begin(), send_dsp.begin(), U_recv.begin(), recv_cnt.begin(), recv_dsp.begin());
  1346. }
  1347. for (Long i = 0; i < recv_index.Dim(); i++) { // Set U
  1348. Long idx = (recv_index[i] - splitter_ranks[rank]) * dof * KDIM1_;
  1349. for (Integer k = 0; k < dof * KDIM1_; k++) {
  1350. U[idx + k] += U_recv[i*dof*KDIM1_ + k];
  1351. }
  1352. }
  1353. }
  1354. }
  1355. template <class ElemList, class DensityBasis, class Kernel> static void Direct(Vector<Real>& U, const Vector<Real>& Xt, const ElemList& elem_lst, const Vector<DensityBasis>& density, const Kernel& kernel, Integer order_direct, const Comm& comm) {
  1356. using CoordBasis = typename ElemList::CoordBasis;
  1357. using CoordEvalOpType = typename CoordBasis::EvalOpType;
  1358. using DensityEvalOpType = typename DensityBasis::EvalOpType;
  1359. constexpr Integer CoordDim = ElemList::CoordDim();
  1360. constexpr Integer ElemDim = ElemList::ElemDim();
  1361. constexpr Integer KDIM0 = Kernel::SrcDim();
  1362. constexpr Integer KDIM1 = Kernel::TrgDim();
  1363. const Long Nelem = elem_lst.NElem();
  1364. const Integer dof = density.Dim() / Nelem / KDIM0;
  1365. SCTL_ASSERT(density.Dim() == Nelem * dof * KDIM0);
  1366. Matrix<Real> quad_nds;
  1367. Vector<Real> quad_wts;
  1368. TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
  1369. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  1370. Integer Nnds = quad_wts.Dim();
  1371. const Vector<CoordBasis>& X = elem_lst.ElemVector();
  1372. Vector<CoordBasis> dX;
  1373. CoordBasis::Grad(dX, X);
  1374. Vector<Real> X_, dX_, Xa_, Xn_;
  1375. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  1376. eval_basis(dX_, dX, CoordDim*ElemDim, Nnds, CoordEvalOp);
  1377. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  1378. Long N = Nelem*Nnds;
  1379. Xa_.ReInit(N);
  1380. Xn_.ReInit(N*CoordDim);
  1381. for (Long j = 0; j < N; j++) {
  1382. StaticArray<Real,CoordDim> normal;
  1383. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  1384. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  1385. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  1386. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  1387. Real invXa = 1/Xa_[j];
  1388. Xn_[j*3+0] = normal[0] * invXa;
  1389. Xn_[j*3+1] = normal[1] * invXa;
  1390. Xn_[j*3+2] = normal[2] * invXa;
  1391. }
  1392. }
  1393. Vector<Real> Fa_;
  1394. { // Set Fa_
  1395. Vector<Real> F_;
  1396. if (std::is_same<CoordBasis,DensityBasis>::value) {
  1397. eval_basis(F_, density, dof * KDIM0, Nnds, CoordEvalOp);
  1398. } else {
  1399. const DensityEvalOpType EvalOp = DensityBasis::SetupEval(quad_nds);
  1400. eval_basis(F_, density, dof * KDIM0, Nnds, EvalOp);
  1401. }
  1402. Fa_.ReInit(F_.Dim());
  1403. const Integer DensityDOF = dof * KDIM0;
  1404. SCTL_ASSERT(F_.Dim() == Nelem * Nnds * DensityDOF);
  1405. for (Long j = 0; j < Nelem; j++) {
  1406. for (Integer k = 0; k < Nnds; k++) {
  1407. Long idx = j * Nnds + k;
  1408. Real quad_wt = Xa_[idx] * quad_wts[k];
  1409. for (Integer l = 0; l < DensityDOF; l++) {
  1410. Fa_[idx * DensityDOF + l] = F_[idx * DensityDOF + l] * quad_wt;
  1411. }
  1412. }
  1413. }
  1414. }
  1415. { // Evaluate potential
  1416. const Long Ntrg = Xt.Dim() / CoordDim;
  1417. SCTL_ASSERT(Xt.Dim() == Ntrg * CoordDim);
  1418. if (U.Dim() != Ntrg * dof * KDIM1) {
  1419. U.ReInit(Ntrg * dof * KDIM1);
  1420. U = 0;
  1421. }
  1422. ParticleFMM<Real,CoordDim>::Eval(U, Xt, X_, Xn_, Fa_, kernel, comm);
  1423. }
  1424. }
  1425. public:
  1426. template <class DensityBasis, class ElemList, class Kernel> void Setup(const ElemList& elem_lst, const Vector<Real>& Xt, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) {
  1427. Xt_.ReInit(0);
  1428. M_singular.ReInit(0,0);
  1429. M_near_singular.ReInit(0,0);
  1430. pair_lst.ReInit(0);
  1431. order_direct_ = order_direct;
  1432. period_length_ = period_length;
  1433. comm_ = comm;
  1434. Profile::Tic("Setup", &comm_);
  1435. static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
  1436. static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
  1437. static_assert(DensityBasis::Dim() == ElemList::ElemDim());
  1438. Xt_ = Xt;
  1439. M_singular.ReInit(0,0);
  1440. Profile::Tic("SetupNearSingular", &comm_);
  1441. SetupNearSingular<DensityBasis>(M_near_singular, pair_lst, Xt_, Vector<Long>(), elem_lst, kernel, order_singular, order_direct_, period_length_, comm_);
  1442. Profile::Toc();
  1443. Profile::Toc();
  1444. }
  1445. template <class DensityBasis, class PotentialBasis, class ElemList, class Kernel> void Setup(const ElemList& elem_lst, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm, Real Rqbx = 0) {
  1446. Xt_.ReInit(0);
  1447. M_singular.ReInit(0,0);
  1448. M_near_singular.ReInit(0,0);
  1449. pair_lst.ReInit(0);
  1450. order_direct_ = order_direct;
  1451. period_length_ = period_length;
  1452. comm_ = comm;
  1453. Profile::Tic("Setup", &comm_);
  1454. static_assert(std::is_same<Real,typename PotentialBasis::ValueType>::value);
  1455. static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
  1456. static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
  1457. static_assert(PotentialBasis::Dim() == ElemList::ElemDim());
  1458. static_assert(DensityBasis::Dim() == ElemList::ElemDim());
  1459. Vector<Long> trg_surf;
  1460. { // Set Xt_
  1461. using CoordBasis = typename ElemList::CoordBasis;
  1462. Matrix<Real> trg_nds = PotentialBasis::Nodes();
  1463. auto Meval = CoordBasis::SetupEval(trg_nds);
  1464. eval_basis(Xt_, elem_lst.ElemVector(), ElemList::CoordDim(), trg_nds.Dim(1), Meval);
  1465. { // Set trg_surf
  1466. const Long Nelem = elem_lst.NElem();
  1467. const Long Nnds = trg_nds.Dim(1);
  1468. Long elem_offset;
  1469. { // Set elem_offset
  1470. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&elem_offset,1), 1, Comm::CommOp::SUM);
  1471. elem_offset -= Nelem;
  1472. }
  1473. trg_surf.ReInit(elem_lst.NElem() * trg_nds.Dim(1));
  1474. for (Long i = 0; i < Nelem; i++) {
  1475. for (Long j = 0; j < Nnds; j++) {
  1476. trg_surf[i*Nnds+j] = elem_offset + i;
  1477. }
  1478. }
  1479. }
  1480. }
  1481. Profile::Tic("SetupSingular", &comm_);
  1482. SetupSingular<DensityBasis>(M_singular, PotentialBasis::Nodes(), elem_lst, kernel, order_singular, order_direct_, Rqbx);
  1483. Profile::Toc();
  1484. Profile::Tic("SetupNearSingular", &comm_);
  1485. SetupNearSingular<DensityBasis>(M_near_singular, pair_lst, Xt_, trg_surf, elem_lst, kernel, order_singular, order_direct_, period_length_, comm_);
  1486. Profile::Toc();
  1487. Profile::Toc();
  1488. }
  1489. template <class DensityBasis, class PotentialBasis, class ElemList, class Kernel> void Eval(Vector<PotentialBasis>& U, const ElemList& elements, const Vector<DensityBasis>& F, const Kernel& kernel) const {
  1490. Profile::Tic("Eval", &comm_);
  1491. Matrix<Real> U_singular;
  1492. Vector<Real> U_direct, U_near_sing;
  1493. Profile::Tic("EvalDirect", &comm_);
  1494. Direct(U_direct, Xt_, elements, F, kernel, order_direct_, comm_);
  1495. Profile::Toc();
  1496. Profile::Tic("EvalSingular", &comm_);
  1497. EvalSingular(U_singular, F, M_singular, kernel.SrcDim(), kernel.TrgDim());
  1498. Profile::Toc();
  1499. Profile::Tic("EvalNearSingular", &comm_);
  1500. EvalNearSingular(U_near_sing, F, M_near_singular, pair_lst, elements.NElem(), Xt_.Dim() / ElemList::CoordDim(), kernel.SrcDim(), kernel.TrgDim(), comm_);
  1501. SCTL_ASSERT(U_near_sing.Dim() == U_direct.Dim());
  1502. Profile::Toc();
  1503. const Long dof = U_direct.Dim() / (elements.NElem() * PotentialBasis::Size() * kernel.TrgDim());
  1504. SCTL_ASSERT(U_direct .Dim() == elements.NElem() * PotentialBasis::Size() * dof * kernel.TrgDim());
  1505. SCTL_ASSERT(U_near_sing.Dim() == elements.NElem() * PotentialBasis::Size() * dof * kernel.TrgDim());
  1506. if (U.Dim() != elements.NElem() * dof * kernel.TrgDim()) {
  1507. U.ReInit(elements.NElem() * dof * kernel.TrgDim());
  1508. }
  1509. for (int i = 0; i < elements.NElem(); i++) {
  1510. for (int j = 0; j < PotentialBasis::Size(); j++) {
  1511. for (int k = 0; k < dof*kernel.TrgDim(); k++) {
  1512. Real& U_ = U[i*dof*kernel.TrgDim()+k][j];
  1513. U_ = 0;
  1514. U_ += U_direct [(i*PotentialBasis::Size()+j)*dof*kernel.TrgDim()+k];
  1515. U_ += U_near_sing[(i*PotentialBasis::Size()+j)*dof*kernel.TrgDim()+k];
  1516. U_ *= kernel.template ScaleFactor<Real>();
  1517. }
  1518. }
  1519. }
  1520. if (U_singular.Dim(1)) {
  1521. SCTL_ASSERT(U_singular.Dim(0) == elements.NElem() * dof * kernel.TrgDim());
  1522. SCTL_ASSERT(U_singular.Dim(1) == PotentialBasis::Size());
  1523. for (int i = 0; i < elements.NElem(); i++) {
  1524. for (int j = 0; j < PotentialBasis::Size(); j++) {
  1525. for (int k = 0; k < dof*kernel.TrgDim(); k++) {
  1526. U[i*dof*kernel.TrgDim()+k][j] += U_singular[i*dof*kernel.TrgDim()+k][j] * kernel.template ScaleFactor<Real>();
  1527. }
  1528. }
  1529. }
  1530. }
  1531. Profile::Toc();
  1532. }
  1533. template <class DensityBasis, class ElemList, class Kernel> void Eval(Vector<Real>& U, const ElemList& elements, const Vector<DensityBasis>& F, const Kernel& kernel) const {
  1534. Profile::Tic("Eval", &comm_);
  1535. Matrix<Real> U_singular;
  1536. Vector<Real> U_direct, U_near_sing;
  1537. Profile::Tic("EvalDirect", &comm_);
  1538. Direct(U_direct, Xt_, elements, F, kernel, order_direct_, comm_);
  1539. Profile::Toc();
  1540. Profile::Tic("EvalSingular", &comm_);
  1541. EvalSingular(U_singular, F, M_singular, kernel.SrcDim(), kernel.TrgDim());
  1542. Profile::Toc();
  1543. Profile::Tic("EvalNearSingular", &comm_);
  1544. EvalNearSingular(U_near_sing, F, M_near_singular, pair_lst, elements.NElem(), Xt_.Dim() / ElemList::CoordDim(), kernel.SrcDim(), kernel.TrgDim(), comm_);
  1545. SCTL_ASSERT(U_near_sing.Dim() == U_direct.Dim());
  1546. Profile::Toc();
  1547. Long Nt = Xt_.Dim() / ElemList::CoordDim();
  1548. const Long dof = U_direct.Dim() / (Nt * kernel.TrgDim());
  1549. SCTL_ASSERT(U_direct.Dim() == Nt * dof * kernel.TrgDim());
  1550. if (U.Dim() != U_direct.Dim()) {
  1551. U.ReInit(U_direct.Dim());
  1552. }
  1553. for (int i = 0; i < U.Dim(); i++) {
  1554. U[i] = (U_direct[i] + U_near_sing[i]) * kernel.template ScaleFactor<Real>();
  1555. }
  1556. if (U_singular.Dim(1)) {
  1557. SCTL_ASSERT(U_singular.Dim(0) == elements.NElem() * dof * kernel.TrgDim());
  1558. const Long Nnodes = U_singular.Dim(1);
  1559. for (int i = 0; i < elements.NElem(); i++) {
  1560. for (int j = 0; j < Nnodes; j++) {
  1561. for (int k = 0; k < dof*kernel.TrgDim(); k++) {
  1562. Real& U_ = U[(i*Nnodes+j)*dof*kernel.TrgDim()+k];
  1563. U_ += U_singular[i*dof*kernel.TrgDim()+k][j] * kernel.template ScaleFactor<Real>();
  1564. }
  1565. }
  1566. }
  1567. }
  1568. Profile::Toc();
  1569. }
  1570. template <Integer ORDER = 5> static void test(Integer order_singular = 10, Integer order_direct = 5, const Comm& comm = Comm::World()) {
  1571. constexpr Integer COORD_DIM = 3;
  1572. constexpr Integer ELEM_DIM = COORD_DIM-1;
  1573. using ElemList = ElemList<COORD_DIM, Basis<Real, ELEM_DIM, ORDER>>;
  1574. using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
  1575. using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
  1576. int np = comm.Size();
  1577. int rank = comm.Rank();
  1578. auto build_torus = [rank,np](ElemList& elements, long Nt, long Np, Real Rmajor, Real Rminor){
  1579. auto nodes = ElemList::CoordBasis::Nodes();
  1580. auto torus = [](Real theta, Real phi, Real Rmajor, Real Rminor) {
  1581. Real R = Rmajor + Rminor * cos<Real>(phi);
  1582. Real X = R * cos<Real>(theta);
  1583. Real Y = R * sin<Real>(theta);
  1584. Real Z = Rminor * sin<Real>(phi);
  1585. return std::make_tuple(X,Y,Z);
  1586. };
  1587. long start = Nt*Np*(rank+0)/np;
  1588. long end = Nt*Np*(rank+1)/np;
  1589. elements.ReInit(end - start);
  1590. for (long ii = start; ii < end; ii++) {
  1591. long i = ii / Np;
  1592. long j = ii % Np;
  1593. for (int k = 0; k < ElemList::CoordBasis::Size(); k++) {
  1594. Real X, Y, Z;
  1595. Real theta = 2 * const_pi<Real>() * (i + nodes[0][k]) / Nt;
  1596. Real phi = 2 * const_pi<Real>() * (j + nodes[1][k]) / Np;
  1597. std::tie(X,Y,Z) = torus(theta, phi, Rmajor, Rminor);
  1598. elements(ii-start,0)[k] = X;
  1599. elements(ii-start,1)[k] = Y;
  1600. elements(ii-start,2)[k] = Z;
  1601. }
  1602. }
  1603. };
  1604. ElemList elements_src, elements_trg;
  1605. build_torus(elements_src, 28, 16, 2, 1.0);
  1606. build_torus(elements_trg, 29, 17, 2, 0.99);
  1607. Vector<Real> Xt;
  1608. Vector<PotentialBasis> U_onsurf, U_offsurf;
  1609. Vector<DensityBasis> density_sl, density_dl;
  1610. { // Set Xt, elements_src, elements_trg, density_sl, density_dl, U
  1611. Real X0[COORD_DIM] = {3,2,1};
  1612. std::function<void(Real*,Real*,Real*)> potential = [X0](Real* U, Real* X, Real* Xn) {
  1613. Real dX[COORD_DIM] = {X[0]-X0[0],X[1]-X0[1],X[2]-X0[2]};
  1614. Real Rinv = 1/sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dX[2]);
  1615. U[0] = Rinv;
  1616. };
  1617. std::function<void(Real*,Real*,Real*)> potential_normal_derivative = [X0](Real* U, Real* X, Real* Xn) {
  1618. Real dX[COORD_DIM] = {X[0]-X0[0],X[1]-X0[1],X[2]-X0[2]};
  1619. Real Rinv = 1/sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dX[2]);
  1620. Real RdotN = dX[0]*Xn[0]+dX[1]*Xn[1]+dX[2]*Xn[2];
  1621. U[0] = -RdotN * Rinv*Rinv*Rinv;
  1622. };
  1623. DiscretizeSurfaceFn<COORD_DIM,1>(density_sl, elements_src, potential_normal_derivative);
  1624. DiscretizeSurfaceFn<COORD_DIM,1>(density_dl, elements_src, potential);
  1625. DiscretizeSurfaceFn<COORD_DIM,1>(U_onsurf , elements_src, potential);
  1626. DiscretizeSurfaceFn<COORD_DIM,1>(U_offsurf , elements_trg, potential);
  1627. for (long i = 0; i < elements_trg.NElem(); i++) { // Set Xt
  1628. for (long j = 0; j < PotentialBasis::Size(); j++) {
  1629. for (int k = 0; k < COORD_DIM; k++) {
  1630. Xt.PushBack(elements_trg(i,k)[j]);
  1631. }
  1632. }
  1633. }
  1634. }
  1635. GenericKernel<Laplace3D_DxU> Laplace_DxU;
  1636. GenericKernel<Laplace3D_FxU> Laplace_FxU;
  1637. Profile::Enable(true);
  1638. if (1) { // Greeen's identity test (Laplace, on-surface)
  1639. Profile::Tic("OnSurface", &comm);
  1640. Quadrature<Real> quadrature_DxU, quadrature_FxU;
  1641. quadrature_FxU.Setup<DensityBasis, PotentialBasis>(elements_src, Laplace_FxU, order_singular, order_direct, -1.0, comm);
  1642. quadrature_DxU.Setup<DensityBasis, PotentialBasis>(elements_src, Laplace_DxU, order_singular, order_direct, -1.0, comm);
  1643. Vector<PotentialBasis> U_sl, U_dl;
  1644. quadrature_FxU.Eval(U_sl, elements_src, density_sl, Laplace_FxU);
  1645. quadrature_DxU.Eval(U_dl, elements_src, density_dl, Laplace_DxU);
  1646. Profile::Toc();
  1647. Real max_err = 0;
  1648. Vector<PotentialBasis> err(U_onsurf.Dim());
  1649. for (long i = 0; i < U_sl.Dim(); i++) {
  1650. for (long j = 0; j < PotentialBasis::Size(); j++) {
  1651. err[i][j] = 0.5*U_onsurf[i][j] - (U_sl[i][j] + U_dl[i][j]);
  1652. max_err = std::max<Real>(max_err, fabs(err[i][j]));
  1653. }
  1654. }
  1655. { // Print error
  1656. Real glb_err;
  1657. comm.Allreduce(Ptr2ConstItr<Real>(&max_err,1), Ptr2Itr<Real>(&glb_err,1), 1, Comm::CommOp::MAX);
  1658. if (!comm.Rank()) std::cout<<"Error = "<<glb_err<<'\n';
  1659. }
  1660. { // Write VTK output
  1661. VTUData vtu;
  1662. vtu.AddElems(elements_src, err, ORDER);
  1663. vtu.WriteVTK("err", comm);
  1664. }
  1665. { // Write VTK output
  1666. VTUData vtu;
  1667. vtu.AddElems(elements_src, U_onsurf, ORDER);
  1668. vtu.WriteVTK("U", comm);
  1669. }
  1670. }
  1671. if (1) { // Greeen's identity test (Laplace, off-surface)
  1672. Profile::Tic("OffSurface", &comm);
  1673. Quadrature<Real> quadrature_DxU, quadrature_FxU;
  1674. quadrature_FxU.Setup<DensityBasis>(elements_src, Xt, Laplace_FxU, order_singular, order_direct, -1.0, comm);
  1675. quadrature_DxU.Setup<DensityBasis>(elements_src, Xt, Laplace_DxU, order_singular, order_direct, -1.0, comm);
  1676. Vector<Real> U_sl, U_dl;
  1677. quadrature_FxU.Eval(U_sl, elements_src, density_sl, Laplace_FxU);
  1678. quadrature_DxU.Eval(U_dl, elements_src, density_dl, Laplace_DxU);
  1679. Profile::Toc();
  1680. Real max_err = 0;
  1681. Vector<PotentialBasis> err(elements_trg.NElem());
  1682. for (long i = 0; i < elements_trg.NElem(); i++) {
  1683. for (long j = 0; j < PotentialBasis::Size(); j++) {
  1684. err[i][j] = U_offsurf[i][j] - (U_sl[i*PotentialBasis::Size()+j] + U_dl[i*PotentialBasis::Size()+j]);
  1685. max_err = std::max<Real>(max_err, fabs(err[i][j]));
  1686. }
  1687. }
  1688. { // Print error
  1689. Real glb_err;
  1690. comm.Allreduce(Ptr2ConstItr<Real>(&max_err,1), Ptr2Itr<Real>(&glb_err,1), 1, Comm::CommOp::MAX);
  1691. if (!comm.Rank()) std::cout<<"Error = "<<glb_err<<'\n';
  1692. }
  1693. { // Write VTK output
  1694. VTUData vtu;
  1695. vtu.AddElems(elements_trg, err, ORDER);
  1696. vtu.WriteVTK("err", comm);
  1697. }
  1698. { // Write VTK output
  1699. VTUData vtu;
  1700. vtu.AddElems(elements_trg, U_offsurf, ORDER);
  1701. vtu.WriteVTK("U", comm);
  1702. }
  1703. }
  1704. Profile::print(&comm);
  1705. }
  1706. static void test1() {
  1707. const Comm& comm = Comm::World();
  1708. constexpr Integer ORDER = 15;
  1709. Integer order_singular = 20;
  1710. Integer order_direct = 20;
  1711. constexpr Integer COORD_DIM = 3;
  1712. constexpr Integer ELEM_DIM = COORD_DIM-1;
  1713. using ElemList = ElemList<COORD_DIM, Basis<Real, ELEM_DIM, ORDER>>;
  1714. using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
  1715. using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
  1716. int np = comm.Size();
  1717. int rank = comm.Rank();
  1718. auto build_sphere = [rank,np](ElemList& elements, Real X, Real Y, Real Z, Real R){
  1719. auto nodes = ElemList::CoordBasis::Nodes();
  1720. long start = 2*COORD_DIM*(rank+0)/np;
  1721. long end = 2*COORD_DIM*(rank+1)/np;
  1722. elements.ReInit(end - start);
  1723. for (long ii = start; ii < end; ii++) {
  1724. long i = ii / 2;
  1725. long j = ii % 2;
  1726. for (int k = 0; k < ElemList::CoordBasis::Size(); k++) {
  1727. Real coord[COORD_DIM];
  1728. coord[(i+0)%COORD_DIM] = (j ? -1.0 : 1.0);
  1729. coord[(i+1)%COORD_DIM] = 2.0 * nodes[j?1:0][k] - 1.0;
  1730. coord[(i+2)%COORD_DIM] = 2.0 * nodes[j?0:1][k] - 1.0;
  1731. Real R0 = sqrt<Real>(coord[0]*coord[0] + coord[1]*coord[1] + coord[2]*coord[2]);
  1732. elements(ii-start,0)[k] = X + R * coord[0] / R0;
  1733. elements(ii-start,1)[k] = Y + R * coord[1] / R0;
  1734. elements(ii-start,2)[k] = Z + R * coord[2] / R0;
  1735. }
  1736. }
  1737. };
  1738. ElemList elements;
  1739. build_sphere(elements, 0.0, 0.0, 0.0, 1.00);
  1740. Vector<DensityBasis> density_sl;
  1741. { // Set density_sl
  1742. std::function<void(Real*,Real*,Real*)> sigma = [](Real* U, Real* X, Real* Xn) {
  1743. Real R = sqrt(X[0]*X[0]+X[1]*X[1]+X[2]*X[2]);
  1744. Real sinp = sqrt(X[1]*X[1] + X[2]*X[2]) / R;
  1745. Real cosp = -X[0] / R;
  1746. U[0] = -1.5;
  1747. U[1] = 0;
  1748. U[2] = 0;
  1749. };
  1750. DiscretizeSurfaceFn<COORD_DIM,3>(density_sl, elements, sigma);
  1751. }
  1752. GenericKernel<Stokes3D_DxU> Stokes_DxU;
  1753. GenericKernel<Stokes3D_FxU> Stokes_FxU;
  1754. Profile::Enable(true);
  1755. if (1) {
  1756. Vector<PotentialBasis> U;
  1757. Quadrature<Real> quadrature_FxU;
  1758. quadrature_FxU.Setup<DensityBasis, PotentialBasis>(elements, Stokes_FxU, order_singular, order_direct, -1.0, comm);
  1759. quadrature_FxU.Eval(U, elements, density_sl, Stokes_FxU);
  1760. { // Write VTK output
  1761. VTUData vtu;
  1762. vtu.AddElems(elements, U, ORDER);
  1763. vtu.WriteVTK("U", comm);
  1764. }
  1765. { // Write VTK output
  1766. VTUData vtu;
  1767. vtu.AddElems(elements, density_sl, ORDER);
  1768. vtu.WriteVTK("sigma", comm);
  1769. }
  1770. }
  1771. Profile::print(&comm);
  1772. }
  1773. private:
  1774. static void scan(Vector<Long>& dsp, const Vector<Long>& cnt) {
  1775. dsp.ReInit(cnt.Dim());
  1776. if (cnt.Dim()) dsp[0] = 0;
  1777. omp_par::scan(cnt.begin(), dsp.begin(), cnt.Dim());
  1778. }
  1779. template <class Basis> static void eval_basis(Vector<Real>& value, const Vector<Basis> X, Integer dof, Integer Nnds, const typename Basis::EvalOpType& EvalOp) {
  1780. Long Nelem = X.Dim() / dof;
  1781. SCTL_ASSERT(X.Dim() == Nelem * dof);
  1782. value.ReInit(Nelem*Nnds*dof);
  1783. Matrix<Real> X_(Nelem*dof, Nnds, value.begin(),false);
  1784. Basis::Eval(X_, X, EvalOp);
  1785. for (Long j = 0; j < Nelem; j++) { // Rearrange data
  1786. Matrix<Real> X(Nnds, dof, X_[j*dof], false);
  1787. X = Matrix<Real>(dof, Nnds, X_[j*dof], false).Transpose();
  1788. }
  1789. }
  1790. template <int CoordDim, int FnDim, class FnBasis, class ElemList> static void DiscretizeSurfaceFn(Vector<FnBasis>& U, const ElemList& elements, std::function<void(Real*,Real*,Real*)> fn) {
  1791. using CoordBasis = typename ElemList::CoordBasis;
  1792. const long Nelem = elements.NElem();
  1793. U.ReInit(Nelem * FnDim);
  1794. Matrix<Real> X, X_grad;
  1795. { // Set X, X_grad
  1796. Vector<CoordBasis> coord = elements.ElemVector();
  1797. Vector<CoordBasis> coord_grad;
  1798. CoordBasis::Grad(coord_grad, coord);
  1799. const auto Meval = CoordBasis::SetupEval(FnBasis::Nodes());
  1800. CoordBasis::Eval(X, coord, Meval);
  1801. CoordBasis::Eval(X_grad, coord_grad, Meval);
  1802. }
  1803. for (long i = 0; i < Nelem; i++) {
  1804. for (long j = 0; j < FnBasis::Size(); j++) {
  1805. Real X_[CoordDim], Xn[CoordDim], U_[FnDim];
  1806. for (long k = 0; k < CoordDim; k++) {
  1807. X_[k] = X[i*CoordDim+k][j];
  1808. }
  1809. { // Set Xn
  1810. Real Xu[CoordDim], Xv[CoordDim];
  1811. for (long k = 0; k < CoordDim; k++) {
  1812. Xu[k] = X_grad[(i*CoordDim+k)*2+0][j];
  1813. Xv[k] = X_grad[(i*CoordDim+k)*2+1][j];
  1814. }
  1815. Real dA = 0;
  1816. for (long k = 0; k < CoordDim; k++) {
  1817. Xn[k] = Xu[(k+1)%CoordDim] * Xv[(k+2)%CoordDim];
  1818. Xn[k] -= Xv[(k+1)%CoordDim] * Xu[(k+2)%CoordDim];
  1819. dA += Xn[k] * Xn[k];
  1820. }
  1821. dA = sqrt(dA);
  1822. for (long k = 0; k < CoordDim; k++) {
  1823. Xn[k] /= dA;
  1824. }
  1825. }
  1826. fn(U_, X_, Xn);
  1827. for (long k = 0; k < FnDim; k++) {
  1828. U[i*FnDim+k][j] = U_[k];
  1829. }
  1830. }
  1831. }
  1832. }
  1833. Vector<Real> Xt_;
  1834. Matrix<Real> M_singular;
  1835. Matrix<Real> M_near_singular;
  1836. Vector<Pair<Long,Long>> pair_lst;
  1837. Integer order_direct_;
  1838. Real period_length_;
  1839. Comm comm_;
  1840. };
  1841. template <class Real, Integer ORDER=10> class Stellarator {
  1842. private:
  1843. static constexpr Integer order_singular = 25;
  1844. static constexpr Integer order_direct = 35;
  1845. static constexpr Integer COORD_DIM = 3;
  1846. static constexpr Integer ELEM_DIM = COORD_DIM-1;
  1847. using ElemBasis = Basis<Real, ELEM_DIM, ORDER>;
  1848. using ElemLst = ElemList<COORD_DIM, ElemBasis>;
  1849. struct Laplace3D_dUxF {
  1850. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1851. return 1 / (4 * const_pi<ValueType>());
  1852. }
  1853. template <class ValueType> static void Eval(ValueType (&u)[3][1], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1854. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1855. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1856. ValueType rinv3 = rinv * rinv * rinv;
  1857. u[0][0] = -r[0] * rinv3;
  1858. u[1][0] = -r[1] * rinv3;
  1859. u[2][0] = -r[2] * rinv3;
  1860. }
  1861. };
  1862. struct BiotSavart3D {
  1863. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1864. return 1 / (4 * const_pi<ValueType>());
  1865. }
  1866. template <class ValueType> static void Eval(ValueType (&u)[3][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1867. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1868. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1869. ValueType rinv3 = rinv * rinv * rinv;
  1870. u[0][0] = (0) * rinv3; u[1][0] = r[2] * rinv3; u[2][0] = -r[1] * rinv3;
  1871. u[0][1] = -r[2] * rinv3; u[1][1] = (0) * rinv3; u[2][1] = r[0] * rinv3;
  1872. u[0][2] = r[1] * rinv3; u[1][2] = -r[0] * rinv3; u[2][2] = (0) * rinv3;
  1873. }
  1874. };
  1875. struct BiotSavartGrad3D {
  1876. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1877. return 1 / (4 * const_pi<ValueType>());
  1878. }
  1879. template <class ValueType> static void Eval(ValueType (&u)[3][9], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1880. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1881. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1882. ValueType rinv2 = rinv * rinv;
  1883. ValueType rinv3 = rinv2 * rinv;
  1884. ValueType rinv5 = rinv2 * rinv3;
  1885. u[0][0] = 0; u[1][0] = - 3 * r[2] * r[0] * rinv5; u[2][0] = 3 * r[1] * r[0] * rinv5;
  1886. u[0][1] = 0; u[1][1] = - 3 * r[2] * r[1] * rinv5; u[2][1] = -(1) * rinv3 + 3 * r[1] * r[1] * rinv5;
  1887. u[0][2] = 0; u[1][2] = (1) * rinv3 - 3 * r[2] * r[2] * rinv5; u[2][2] = 3 * r[1] * r[2] * rinv5;
  1888. u[0][3] = 3 * r[2] * r[0] * rinv5; u[1][3] = 0; u[2][3] = (1) * rinv3 - 3 * r[0] * r[0] * rinv5;
  1889. u[0][4] = 3 * r[2] * r[1] * rinv5; u[1][4] = 0; u[2][4] = - 3 * r[0] * r[1] * rinv5;
  1890. u[0][5] = -(1) * rinv3 + 3 * r[2] * r[2] * rinv5; u[1][5] = 0; u[2][5] = - 3 * r[0] * r[2] * rinv5;
  1891. u[0][6] = - 3 * r[1] * r[0] * rinv5; u[1][6] = -(1) * rinv3 + 3 * r[0] * r[0] * rinv5; u[2][6] = 0;
  1892. u[0][7] = (1) * rinv3 - 3 * r[1] * r[1] * rinv5; u[1][7] = 3 * r[0] * r[1] * rinv5; u[2][7] = 0;
  1893. u[0][8] = - 3 * r[1] * r[2] * rinv5; u[1][8] = 3 * r[0] * r[2] * rinv5; u[2][8] = 0;
  1894. }
  1895. };
  1896. struct Laplace3D_dUxD {
  1897. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1898. return 1 / (4 * const_pi<ValueType>());
  1899. }
  1900. template <class ValueType> static void Eval(ValueType (&u)[3][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1901. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1902. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1903. ValueType rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2];
  1904. ValueType rinv2 = rinv * rinv;
  1905. ValueType rinv3 = rinv * rinv2;
  1906. ValueType rinv5 = rinv3 * rinv2;
  1907. u[0][0] = -1 * rinv3 + 3 * r[0] * r[0] * rinv5;
  1908. u[0][1] = -0 * rinv3 + 3 * r[0] * r[1] * rinv5;
  1909. u[0][2] = -0 * rinv3 + 3 * r[0] * r[2] * rinv5;
  1910. u[1][0] = -0 * rinv3 + 3 * r[1] * r[0] * rinv5;
  1911. u[1][1] = -1 * rinv3 + 3 * r[1] * r[1] * rinv5;
  1912. u[1][2] = -0 * rinv3 + 3 * r[1] * r[2] * rinv5;
  1913. u[2][0] = -0 * rinv3 + 3 * r[2] * r[0] * rinv5;
  1914. u[2][1] = -0 * rinv3 + 3 * r[2] * r[1] * rinv5;
  1915. u[2][2] = -1 * rinv3 + 3 * r[2] * r[2] * rinv5;
  1916. }
  1917. };
  1918. struct Laplace3D_DxdU {
  1919. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1920. return 1 / (4 * const_pi<ValueType>());
  1921. }
  1922. template <class ValueType> static void Eval(ValueType (&u)[1][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1923. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1924. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1925. ValueType rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2];
  1926. ValueType rinv2 = rinv * rinv;
  1927. ValueType rinv3 = rinv * rinv2;
  1928. ValueType rinv5 = rinv3 * rinv2;
  1929. u[0][0] = -n[0] * rinv3 + 3*rdotn * r[0] * rinv5;
  1930. u[0][1] = -n[1] * rinv3 + 3*rdotn * r[1] * rinv5;
  1931. u[0][2] = -n[2] * rinv3 + 3*rdotn * r[2] * rinv5;
  1932. }
  1933. };
  1934. struct Laplace3D_Fxd2U {
  1935. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1936. return 1 / (4 * const_pi<ValueType>());
  1937. }
  1938. template <class ValueType> static void Eval(ValueType (&u)[1][9], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1939. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1940. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1941. ValueType rinv2 = rinv * rinv;
  1942. ValueType rinv3 = rinv * rinv2;
  1943. ValueType rinv5 = rinv3 * rinv2;
  1944. u[0][0+3*0] = -1 * rinv3 + 3 * r[0] * r[0] * rinv5;
  1945. u[0][1+3*0] = -0 * rinv3 + 3 * r[0] * r[1] * rinv5;
  1946. u[0][2+3*0] = -0 * rinv3 + 3 * r[0] * r[2] * rinv5;
  1947. u[0][0+3*1] = -0 * rinv3 + 3 * r[1] * r[0] * rinv5;
  1948. u[0][1+3*1] = -1 * rinv3 + 3 * r[1] * r[1] * rinv5;
  1949. u[0][2+3*1] = -0 * rinv3 + 3 * r[1] * r[2] * rinv5;
  1950. u[0][0+3*2] = -0 * rinv3 + 3 * r[2] * r[0] * rinv5;
  1951. u[0][1+3*2] = -0 * rinv3 + 3 * r[2] * r[1] * rinv5;
  1952. u[0][2+3*2] = -1 * rinv3 + 3 * r[2] * r[2] * rinv5;
  1953. }
  1954. };
  1955. static Real max_norm(const sctl::Vector<Real>& x) {
  1956. Real err = 0;
  1957. for (const auto& a : x) err = std::max(err, sctl::fabs<Real>(a));
  1958. return err;
  1959. }
  1960. public:
  1961. static Vector<ElemBasis> compute_dot_prod(const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  1962. const Long Nelem = A.Dim() / COORD_DIM;
  1963. const Long Nnodes = ElemBasis::Size();
  1964. SCTL_ASSERT(A.Dim() == Nelem * COORD_DIM);
  1965. SCTL_ASSERT(B.Dim() == Nelem * COORD_DIM);
  1966. Vector<ElemBasis> AdotB(Nelem);
  1967. for (Long i = 0; i < Nelem; i++) {
  1968. for (Long j = 0; j < Nnodes; j++) {
  1969. Real a_dot_b = 0;
  1970. a_dot_b += A[i*COORD_DIM+0][j]*B[i*COORD_DIM+0][j];
  1971. a_dot_b += A[i*COORD_DIM+1][j]*B[i*COORD_DIM+1][j];
  1972. a_dot_b += A[i*COORD_DIM+2][j]*B[i*COORD_DIM+2][j];
  1973. AdotB[i][j] = a_dot_b;
  1974. }
  1975. }
  1976. return AdotB;
  1977. }
  1978. static Real compute_inner_prod(const Vector<ElemBasis>& area_elem, const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  1979. const auto& quad_wts = ElemBasis::QuadWts();
  1980. const Long Nnodes = ElemBasis::Size();
  1981. const Long Nelem = area_elem.Dim();
  1982. const Long dof = B.Dim() / Nelem;
  1983. Real sum = 0;
  1984. for (Long i = 0; i < Nelem; i++) {
  1985. for (Long j = 0; j < Nnodes; j++) {
  1986. Real AdotB = 0;
  1987. for (Long k = 0; k < dof; k++) {
  1988. AdotB += A[i*dof+k][j] * B[i*dof+k][j];
  1989. }
  1990. sum += AdotB * area_elem[i][j] * quad_wts[j];
  1991. }
  1992. }
  1993. return sum;
  1994. }
  1995. static void compute_harmonic_vector_potentials(Vector<ElemBasis>& Jt, Vector<ElemBasis>& Jp, const Stellarator<Real,ORDER>& S) {
  1996. Comm comm = Comm::World();
  1997. Real gmres_tol = 1e-8;
  1998. Long max_iter = 100;
  1999. auto cheb2grid = [] (const Vector<ElemBasis>& X, Long Mt, Long Mp, Long Nt, Long Np) {
  2000. const Long dof = X.Dim() / (Mt * Mp);
  2001. SCTL_ASSERT(X.Dim() == Mt * Mp *dof);
  2002. Vector<Real> Xf(dof*Nt*Np); Xf = 0;
  2003. const Long Nnodes = ElemBasis::Size();
  2004. const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
  2005. for (Long t = 0; t < Nt; t++) {
  2006. for (Long p = 0; p < Np; p++) {
  2007. Real theta = t / (Real)Nt;
  2008. Real phi = p / (Real)Np;
  2009. Long i = (Long)(theta * Mt);
  2010. Long j = (Long)(phi * Mp);
  2011. Real x = theta * Mt - i;
  2012. Real y = phi * Mp - j;
  2013. Long elem_idx = i * Mp + j;
  2014. Vector<Real> Interp0(ORDER);
  2015. Vector<Real> Interp1(ORDER);
  2016. { // Set Interp0, Interp1
  2017. auto node = [&Mnodes] (Long i) {
  2018. return Mnodes[0][i];
  2019. };
  2020. for (Long i = 0; i < ORDER; i++) {
  2021. Real wt_x = 1, wt_y = 1;
  2022. for (Long j = 0; j < ORDER; j++) {
  2023. if (j != i) {
  2024. wt_x *= (x - node(j)) / (node(i) - node(j));
  2025. wt_y *= (y - node(j)) / (node(i) - node(j));
  2026. }
  2027. Interp0[i] = wt_x;
  2028. Interp1[i] = wt_y;
  2029. }
  2030. }
  2031. }
  2032. for (Long ii = 0; ii < ORDER; ii++) {
  2033. for (Long jj = 0; jj < ORDER; jj++) {
  2034. Long node_idx = jj * ORDER + ii;
  2035. for (Long k = 0; k < dof; k++) {
  2036. Xf[(k*Nt+t)*Np+p] += X[elem_idx*dof+k][node_idx] * Interp0[ii] * Interp1[jj];
  2037. }
  2038. }
  2039. }
  2040. }
  2041. }
  2042. return Xf;
  2043. };
  2044. auto grid2cheb = [] (const Vector<Real>& Xf, Long Nt, Long Np, Long Mt, Long Mp) {
  2045. Long dof = Xf.Dim() / (Nt*Np);
  2046. SCTL_ASSERT(Xf.Dim() == dof*Nt*Np);
  2047. Vector<ElemBasis> X(Mt*Mp*dof);
  2048. constexpr Integer INTERP_ORDER = 12;
  2049. for (Long tt = 0; tt < Mt; tt++) {
  2050. for (Long pp = 0; pp < Mp; pp++) {
  2051. for (Long t = 0; t < ORDER; t++) {
  2052. for (Long p = 0; p < ORDER; p++) {
  2053. Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
  2054. Real theta = (tt + Mnodes[0][t]) / Mt;
  2055. Real phi = (pp + Mnodes[0][p]) / Mp;
  2056. Long i = (Long)(theta * Nt);
  2057. Long j = (Long)(phi * Np);
  2058. Real x = theta * Nt - i;
  2059. Real y = phi * Np - j;
  2060. Vector<Real> Interp0(INTERP_ORDER);
  2061. Vector<Real> Interp1(INTERP_ORDER);
  2062. { // Set Interp0, Interp1
  2063. auto node = [] (Long i) {
  2064. return (Real)i - (INTERP_ORDER-1)/2;
  2065. };
  2066. for (Long i = 0; i < INTERP_ORDER; i++) {
  2067. Real wt_x = 1, wt_y = 1;
  2068. for (Long j = 0; j < INTERP_ORDER; j++) {
  2069. if (j != i) {
  2070. wt_x *= (x - node(j)) / (node(i) - node(j));
  2071. wt_y *= (y - node(j)) / (node(i) - node(j));
  2072. }
  2073. Interp0[i] = wt_x;
  2074. Interp1[i] = wt_y;
  2075. }
  2076. }
  2077. }
  2078. for (Long k = 0; k < dof; k++) {
  2079. Real X0 = 0;
  2080. for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  2081. for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  2082. Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  2083. Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  2084. X0 += Interp0[ii] * Interp1[jj] * Xf[(k*Nt+idx_i)*Np+idx_j];
  2085. }
  2086. }
  2087. Long elem_idx = tt * Mp + pp;
  2088. Long node_idx = p * ORDER + t;
  2089. X[elem_idx*dof+k][node_idx] = X0;
  2090. }
  2091. }
  2092. }
  2093. }
  2094. }
  2095. return X;
  2096. };
  2097. Long Nelem = S.NElem();
  2098. if (Jp.Dim() != Nelem * COORD_DIM) Jp.ReInit(Nelem * COORD_DIM);
  2099. if (Jt.Dim() != Nelem * COORD_DIM) Jt.ReInit(Nelem * COORD_DIM);
  2100. for (Long k = 0; k < S.Nsurf(); k++) {
  2101. Long Nt = S.NTor(k)*ORDER, Np = S.NPol(k)*ORDER;
  2102. const auto& X_ = S.GetElemList().ElemVector();
  2103. Vector<ElemBasis> X(S.NTor(k)*S.NPol(k)*COORD_DIM, (Iterator<ElemBasis>)X_.begin()+S.ElemDsp(k)*COORD_DIM, false);
  2104. biest::Surface<Real> SS(Nt, Np);
  2105. biest::SurfaceOp<Real> surf_op(comm, Nt, Np);
  2106. SS.Coord() = cheb2grid(X, S.NTor(k), S.NPol(k), Nt, Np);
  2107. Vector<Real> dX, d2X;
  2108. surf_op.Grad2D(dX, SS.Coord());
  2109. surf_op.Grad2D(d2X, dX);
  2110. sctl::Vector<Real> Jt_(COORD_DIM * Nt * Np);
  2111. sctl::Vector<Real> Jp_(COORD_DIM * Nt * Np);
  2112. { // Set Jt_, Jp_
  2113. Vector<Real> DivV, InvLapDivV, GradInvLapDivV;
  2114. for (sctl::Long i = 0; i < Nt*Np; i++) { // Set V
  2115. for (sctl::Long k =0; k < COORD_DIM; k++) {
  2116. Jt_[k * Nt*Np + i] = dX[(k*2+0) * Nt*Np + i];
  2117. Jp_[k * Nt*Np + i] = dX[(k*2+1) * Nt*Np + i];
  2118. }
  2119. }
  2120. surf_op.SurfDiv(DivV, dX, Jt_);
  2121. surf_op.GradInvSurfLap(GradInvLapDivV, dX, d2X, DivV, gmres_tol * max_norm(Jt_) / max_norm(DivV), max_iter, 1.5);
  2122. Jt_ = Jt_ - GradInvLapDivV;
  2123. surf_op.SurfDiv(DivV, dX, Jp_);
  2124. surf_op.GradInvSurfLap(GradInvLapDivV, dX, d2X, DivV, gmres_tol * max_norm(Jp_) / max_norm(DivV), max_iter, 1.5);
  2125. Jp_ = Jp_ - GradInvLapDivV;
  2126. }
  2127. Vector<ElemBasis> Jt__(S.NTor(k)*S.NPol(k)*COORD_DIM, (Iterator<ElemBasis>)Jt.begin()+S.ElemDsp(k)*COORD_DIM, false);
  2128. Vector<ElemBasis> Jp__(S.NTor(k)*S.NPol(k)*COORD_DIM, (Iterator<ElemBasis>)Jp.begin()+S.ElemDsp(k)*COORD_DIM, false);
  2129. Jt__ = grid2cheb(Jt_, Nt, Np, S.NTor(k), S.NPol(k));
  2130. Jp__ = grid2cheb(Jp_, Nt, Np, S.NTor(k), S.NPol(k));
  2131. }
  2132. }
  2133. static void compute_norm_area_elem(const Stellarator<Real,ORDER>& S, Vector<ElemBasis>& normal, Vector<ElemBasis>& area_elem){ // Set normal, area_elem
  2134. const Vector<ElemBasis>& X = S.GetElemList().ElemVector();
  2135. const Long Nelem = X.Dim() / COORD_DIM;
  2136. const Long Nnodes = ElemBasis::Size();
  2137. Vector<ElemBasis> dX;
  2138. ElemBasis::Grad(dX, X);
  2139. area_elem.ReInit(Nelem);
  2140. normal.ReInit(Nelem * COORD_DIM);
  2141. for (Long i = 0; i < Nelem; i++) {
  2142. for (Long j = 0; j < Nnodes; j++) {
  2143. Tensor<Real,true,COORD_DIM> x, n;
  2144. Tensor<Real,true,COORD_DIM,2> dx;
  2145. x(0) = X[i*COORD_DIM+0][j];
  2146. x(1) = X[i*COORD_DIM+1][j];
  2147. x(2) = X[i*COORD_DIM+2][j];
  2148. dx(0,0) = dX[i*COORD_DIM*2+0][j];
  2149. dx(0,1) = dX[i*COORD_DIM*2+1][j];
  2150. dx(1,0) = dX[i*COORD_DIM*2+2][j];
  2151. dx(1,1) = dX[i*COORD_DIM*2+3][j];
  2152. dx(2,0) = dX[i*COORD_DIM*2+4][j];
  2153. dx(2,1) = dX[i*COORD_DIM*2+5][j];
  2154. n(0) = dx(1,0) * dx(2,1) - dx(2,0) * dx(1,1);
  2155. n(1) = dx(2,0) * dx(0,1) - dx(0,0) * dx(2,1);
  2156. n(2) = dx(0,0) * dx(1,1) - dx(1,0) * dx(0,1);
  2157. Real area_elem_ = sqrt<Real>(n(0)*n(0) + n(1)*n(1) + n(2)*n(2));
  2158. Real ooae = 1 / area_elem_;
  2159. n(0) *= ooae;
  2160. n(1) *= ooae;
  2161. n(2) *= ooae;
  2162. normal[i*COORD_DIM+0][j] = n(0);
  2163. normal[i*COORD_DIM+1][j] = n(1);
  2164. normal[i*COORD_DIM+2][j] = n(2);
  2165. area_elem[i][j] = area_elem_;
  2166. }
  2167. }
  2168. }
  2169. static Vector<ElemBasis> compute_B(const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  2170. const Long Nelem = S.NElem();
  2171. Vector<ElemBasis> B(S.NElem() * COORD_DIM);
  2172. if (sigma.Dim()) {
  2173. const Long Nnodes = ElemBasis::Size();
  2174. Vector<ElemBasis> normal, area_elem;
  2175. compute_norm_area_elem(S, normal, area_elem);
  2176. if (S.Nsurf() == 2) {
  2177. Long Nelem0 = S.NTor(0)*S.NPol(0);
  2178. for (Long i = 0; i < Nelem0*COORD_DIM; i++) {
  2179. for (Long j = 0; j < Nnodes; j++) {
  2180. normal[i][j] *= -1.0;
  2181. }
  2182. }
  2183. }
  2184. EvalQuadrature(B, S.quadrature_FxdU, S, sigma, S.Laplace_FxdU);
  2185. for (Long i = 0; i < Nelem; i++) {
  2186. for (Long j = 0; j < Nnodes; j++) {
  2187. for (Long k = 0; k < COORD_DIM; k++) {
  2188. B[i*COORD_DIM+k][j] -= 0.5*sigma[i][j]*normal[i*COORD_DIM+k][j];
  2189. }
  2190. }
  2191. }
  2192. } else {
  2193. B = 0;
  2194. }
  2195. if (S.Nsurf() >= 1) B += S.Bt0*alpha;
  2196. if (S.Nsurf() >= 2) B += S.Bp0*beta;
  2197. return B;
  2198. }
  2199. static Vector<ElemBasis> compute_dB(const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  2200. const Long Nelem = S.NElem();
  2201. Vector<ElemBasis> dB(S.NElem() * COORD_DIM * COORD_DIM);
  2202. if (sigma.Dim()) {
  2203. EvalQuadrature(dB, S.quadrature_Fxd2U, S, sigma, S.Laplace_Fxd2U);
  2204. } else {
  2205. dB = 0;
  2206. }
  2207. if (S.Nsurf() >= 1) dB += S.dBt0*alpha;
  2208. if (S.Nsurf() >= 2) dB += S.dBp0*beta;
  2209. return dB;
  2210. }
  2211. static void compute_flux(Real& flux_tor, Real& flux_pol, const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& B, const Vector<ElemBasis>& normal) {
  2212. const Long Nelem = S.NElem();
  2213. const Long Nnodes = ElemBasis::Size();
  2214. SCTL_ASSERT(B.Dim() == Nelem*COORD_DIM);
  2215. SCTL_ASSERT(normal.Dim() == Nelem*COORD_DIM);
  2216. Vector<ElemBasis> J(Nelem * COORD_DIM);
  2217. for (Long i = 0; i < Nelem; i++) { // Set J
  2218. for (Long j = 0; j < Nnodes; j++) {
  2219. Tensor<Real,true,COORD_DIM> b, n;
  2220. b(0) = B[i*COORD_DIM+0][j];
  2221. b(1) = B[i*COORD_DIM+1][j];
  2222. b(2) = B[i*COORD_DIM+2][j];
  2223. n(0) = normal[i*COORD_DIM+0][j];
  2224. n(1) = normal[i*COORD_DIM+1][j];
  2225. n(2) = normal[i*COORD_DIM+2][j];
  2226. J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
  2227. J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
  2228. J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
  2229. }
  2230. }
  2231. Vector<ElemBasis> A;
  2232. EvalQuadrature(A, S.quadrature_FxU, S, J, S.Laplace_FxU);
  2233. Vector<Real> circ_pol(S.Nsurf()), circ_tor(S.Nsurf());
  2234. { // compute circ
  2235. Vector<ElemBasis> dX;
  2236. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2237. const auto& quad_wts = ElemBasis::QuadWts();
  2238. for (Long k = 0; k < S.Nsurf(); k++) {
  2239. circ_pol[k] = 0;
  2240. circ_tor[k] = 0;
  2241. Long Ndsp = S.ElemDsp(k);
  2242. for (Long i = 0; i < S.NTor(k)*S.NPol(k); i++) {
  2243. for (Long j = 0; j < Nnodes; j++) {
  2244. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+1][j] * quad_wts[j] / S.NTor(k);
  2245. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+3][j] * quad_wts[j] / S.NTor(k);
  2246. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+5][j] * quad_wts[j] / S.NTor(k);
  2247. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+0][j] * quad_wts[j] / S.NPol(k);
  2248. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+2][j] * quad_wts[j] / S.NPol(k);
  2249. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+4][j] * quad_wts[j] / S.NPol(k);
  2250. }
  2251. }
  2252. }
  2253. }
  2254. if (S.Nsurf() == 1) {
  2255. flux_tor = circ_pol[0];
  2256. flux_pol = 0;
  2257. } else if (S.Nsurf() == 2) {
  2258. flux_tor = circ_pol[1] - circ_pol[0];
  2259. flux_pol = circ_tor[0] - circ_tor[1];
  2260. } else {
  2261. SCTL_ASSERT(false);
  2262. }
  2263. }
  2264. static Vector<Real> compute_A(const Stellarator<Real,ORDER>& S, const Vector<Real>& x) {
  2265. const Long Nelem = S.NElem();
  2266. const Long Nnodes = ElemBasis::Size();
  2267. SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
  2268. Vector<ElemBasis> normal, area_elem;
  2269. compute_norm_area_elem(S, normal, area_elem);
  2270. if (S.Nsurf() == 2) {
  2271. Long Nelem0 = S.NTor(0)*S.NPol(0);
  2272. for (Long i = 0; i < Nelem0*COORD_DIM; i++) {
  2273. for (Long j = 0; j < Nnodes; j++) {
  2274. normal[i][j] *= -1.0;
  2275. }
  2276. }
  2277. }
  2278. Vector<ElemBasis> sigma(Nelem);
  2279. for (Long i = 0; i < Nelem; i++) {
  2280. for (Long j = 0; j < Nnodes; j++) {
  2281. sigma[i][j] = x[i*Nnodes+j];
  2282. }
  2283. }
  2284. Real alpha = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
  2285. Real beta = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
  2286. Vector<ElemBasis> B = compute_B(S, sigma, alpha, beta);
  2287. Vector<ElemBasis> BdotN = compute_dot_prod(B, normal);
  2288. Real flux_tor, flux_pol;
  2289. compute_flux(flux_tor, flux_pol, S, B, normal);
  2290. Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
  2291. for (Long i = 0; i < Nelem; i++) {
  2292. for (Long j = 0; j < Nnodes; j++) {
  2293. Ax[i*Nnodes+j] = BdotN[i][j];
  2294. }
  2295. }
  2296. if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = flux_tor;
  2297. if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = flux_pol;
  2298. return Ax;
  2299. }
  2300. static void compute_invA(Vector<ElemBasis>& sigma, Real& alpha, Real& beta, const Stellarator<Real,ORDER>& S, Vector<ElemBasis>& Bdotn, Real flux_tor, Real flux_pol, const Comm& comm) {
  2301. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&S](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  2302. (*Ax) = compute_A(S, x);
  2303. };
  2304. const Long Nelem = S.NElem();
  2305. const Long Nnodes = ElemBasis::Size();
  2306. Vector<Real> rhs_(Nelem * Nnodes + S.Nsurf());
  2307. for (Long i = 0; i < Nelem; i++) {
  2308. for (Long j = 0; j < Nnodes; j++) {
  2309. rhs_[i*Nnodes+j] = Bdotn[i][j];
  2310. }
  2311. }
  2312. if (S.Nsurf() >= 1) rhs_[Nelem * Nnodes + 0] = flux_tor;
  2313. if (S.Nsurf() >= 2) rhs_[Nelem * Nnodes + 1] = flux_pol;
  2314. Vector<Real> x_(Nelem * Nnodes + S.Nsurf());
  2315. x_ = 0;
  2316. ParallelSolver<Real> linear_solver(comm, true);
  2317. linear_solver(&x_, BIOp, rhs_, 1e-6, 100);
  2318. sigma.ReInit(Nelem);
  2319. for (Long i = 0; i < Nelem; i++) {
  2320. for (Long j = 0; j < Nnodes; j++) {
  2321. sigma[i][j] = x_[i*Nnodes+j];
  2322. }
  2323. }
  2324. alpha = (S.Nsurf() >= 1 ? x_[Nelem * Nnodes + 0] : 0);
  2325. beta = (S.Nsurf() >= 2 ? x_[Nelem * Nnodes + 1] : 0);
  2326. };
  2327. static void compute_invA(Vector<ElemBasis>& sigma, Real& alpha, Real& beta, const Stellarator<Real,ORDER>& S, Real flux_tor, Real flux_pol, const Comm& comm) {
  2328. Vector<ElemBasis> Bdotn(S.NElem());
  2329. Bdotn = 0;
  2330. compute_invA(sigma, alpha, beta, S, Bdotn, flux_tor, flux_pol, comm);
  2331. }
  2332. static Vector<Real> compute_Aadj(const Stellarator<Real,ORDER>& S, const Vector<Real>& x) {
  2333. const Long Nelem = S.NElem();
  2334. const Long Nnodes = ElemBasis::Size();
  2335. SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
  2336. Vector<ElemBasis> normal, area_elem;
  2337. compute_norm_area_elem(S, normal, area_elem);
  2338. if (S.Nsurf() == 2) {
  2339. Long Nelem0 = S.NTor(0)*S.NPol(0);
  2340. for (Long i = 0; i < Nelem0*COORD_DIM; i++) {
  2341. for (Long j = 0; j < Nnodes; j++) {
  2342. normal[i][j] *= -1.0;
  2343. }
  2344. }
  2345. }
  2346. Vector<ElemBasis> x0(Nelem);
  2347. for (Long i = 0; i < Nelem; i++) {
  2348. for (Long j = 0; j < Nnodes; j++) {
  2349. x0[i][j] = x[i*Nnodes+j];
  2350. }
  2351. }
  2352. Real x1 = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
  2353. Real x2 = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
  2354. Vector<ElemBasis> Ax0;
  2355. Real Ax1, Ax2;
  2356. { // Set Ax0, Ax1, Ax2
  2357. Vector<ElemBasis> x0_n(Nelem*COORD_DIM);
  2358. for (Long i = 0; i < Nelem; i++) {
  2359. for (Long j = 0; j < Nnodes; j++) {
  2360. x0_n[i*COORD_DIM+0][j] = x0[i][j] * normal[i*COORD_DIM+0][j];
  2361. x0_n[i*COORD_DIM+1][j] = x0[i][j] * normal[i*COORD_DIM+1][j];
  2362. x0_n[i*COORD_DIM+2][j] = x0[i][j] * normal[i*COORD_DIM+2][j];
  2363. }
  2364. }
  2365. EvalQuadrature(Ax0, S.quadrature_dUxF, S, x0_n, S.Laplace_dUxF);
  2366. Ax0 = x0*(-0.5) - Ax0;
  2367. Ax1 = (S.Nsurf() >= 1 ? compute_inner_prod(area_elem, compute_dot_prod(S.Bt0, normal), x0) : 0);
  2368. Ax2 = (S.Nsurf() >= 2 ? compute_inner_prod(area_elem, compute_dot_prod(S.Bp0, normal), x0) : 0);
  2369. }
  2370. // TODO: precompute A21adj, A22adj
  2371. auto compute_A21adj = [&S,&normal,&area_elem] (bool toroidal_flux) {
  2372. const Long Nelem = S.NElem();
  2373. const Long Nnodes = ElemBasis::Size();
  2374. Vector<ElemBasis> density(Nelem * COORD_DIM);
  2375. { // Set density
  2376. Real scal[2];
  2377. if (S.Nsurf() == 1) {
  2378. SCTL_ASSERT(toroidal_flux == true);
  2379. scal[0] = 1.0 / S.NTor(0);
  2380. scal[1] = 0;
  2381. } else if (S.Nsurf() == 2) {
  2382. if (toroidal_flux == true) {
  2383. scal[0] = -1.0 / S.NTor(0);
  2384. scal[1] = 1.0 / S.NTor(1);
  2385. } else {
  2386. scal[0] = 1.0 / S.NPol(0);
  2387. scal[1] = -1.0 / S.NPol(1);
  2388. }
  2389. } else {
  2390. SCTL_ASSERT(false);
  2391. }
  2392. Vector<ElemBasis> dX;
  2393. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2394. for (Long k = 0; k < S.Nsurf(); k++) {
  2395. for (Long i_ = 0; i_ < S.NTor(k)*S.NPol(k); i_++) {
  2396. Long i = S.ElemDsp(k) + i_;
  2397. for (Long j = 0; j < Nnodes; j++) {
  2398. Real s = scal[k] / area_elem[i][j];
  2399. density[i*COORD_DIM+0][j] = dX[i*COORD_DIM*2+0+(toroidal_flux?1:0)][j] * s;
  2400. density[i*COORD_DIM+1][j] = dX[i*COORD_DIM*2+2+(toroidal_flux?1:0)][j] * s;
  2401. density[i*COORD_DIM+2][j] = dX[i*COORD_DIM*2+4+(toroidal_flux?1:0)][j] * s;
  2402. }
  2403. }
  2404. }
  2405. }
  2406. Vector<ElemBasis> Gdensity, nxGdensity(Nelem * COORD_DIM), A21adj;
  2407. EvalQuadrature(Gdensity, S.quadrature_FxU, S, density, S.Laplace_FxU);
  2408. for (Long i = 0; i < Nelem; i++) { // Set nxGdensity
  2409. for (Long j = 0; j < Nnodes; j++) {
  2410. Tensor<Real,true,COORD_DIM> Gdensity_, n;
  2411. Gdensity_(0) = Gdensity[i*COORD_DIM+0][j];
  2412. Gdensity_(1) = Gdensity[i*COORD_DIM+1][j];
  2413. Gdensity_(2) = Gdensity[i*COORD_DIM+2][j];
  2414. n(0) = normal[i*COORD_DIM+0][j];
  2415. n(1) = normal[i*COORD_DIM+1][j];
  2416. n(2) = normal[i*COORD_DIM+2][j];
  2417. nxGdensity[i*COORD_DIM+0][j] = n(1) * Gdensity_(2) - n(2) * Gdensity_(1);
  2418. nxGdensity[i*COORD_DIM+1][j] = n(2) * Gdensity_(0) - n(0) * Gdensity_(2);
  2419. nxGdensity[i*COORD_DIM+2][j] = n(0) * Gdensity_(1) - n(1) * Gdensity_(0);
  2420. }
  2421. }
  2422. EvalQuadrature(A21adj, S.quadrature_dUxF, S, nxGdensity, S.Laplace_dUxF);
  2423. return A21adj;
  2424. };
  2425. if (S.Nsurf() >= 1) Ax0 += compute_A21adj( true) * x1;
  2426. if (S.Nsurf() >= 2) Ax0 += compute_A21adj(false) * x2;
  2427. if (S.Nsurf() == 1) { // Add flux part of Ax1, Ax2
  2428. Real flux_tor, flux_pol;
  2429. compute_flux(flux_tor, flux_pol, S, S.Bt0, normal);
  2430. Ax1 += flux_tor * x1;
  2431. Ax2 += 0;
  2432. } else if (S.Nsurf() == 2) {
  2433. Real flux_tor, flux_pol;
  2434. compute_flux(flux_tor, flux_pol, S, S.Bt0, normal);
  2435. Ax1 += flux_tor * x1 + flux_pol * x2;
  2436. compute_flux(flux_tor, flux_pol, S, S.Bp0, normal);
  2437. Ax2 += flux_tor * x1 + flux_pol * x2;
  2438. } else {
  2439. SCTL_ASSERT(false);
  2440. }
  2441. Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
  2442. for (Long i = 0; i < Nelem; i++) {
  2443. for (Long j = 0; j < Nnodes; j++) {
  2444. Ax[i*Nnodes+j] = Ax0[i][j];
  2445. }
  2446. }
  2447. if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = Ax1;
  2448. if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = Ax2;
  2449. return Ax;
  2450. }
  2451. static Vector<Real> compute_invAadj(const Stellarator<Real,ORDER>& S, const Vector<Real>& b, const Comm& comm) {
  2452. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&S](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  2453. (*Ax) = compute_Aadj(S,x);
  2454. };
  2455. const Long Nelem = S.NElem();
  2456. const Long Nnodes = ElemBasis::Size();
  2457. Vector<Real> x(b.Dim());
  2458. x = 0;
  2459. ParallelSolver<Real> linear_solver(comm, true);
  2460. linear_solver(&x, BIOp, b, 1e-6, 100);
  2461. return x;
  2462. }
  2463. static Vector<ElemBasis> compute_pressure_jump(const Vector<Stellarator<Real,ORDER>>& Svec, const Vector<Real>& pressure) {
  2464. const Long Nnodes = ElemBasis::Size();
  2465. const Long Nsurf = Svec.Dim();
  2466. SCTL_ASSERT(pressure.Dim() == Nsurf);
  2467. Vector<Vector<ElemBasis>> total_pressure(Nsurf);
  2468. for (Long i = 0; i < Nsurf; i++) { // Set total_pressure
  2469. const Long Nelem = Svec[i].NElem();
  2470. const auto& B = Svec[i].B;
  2471. total_pressure[i].ReInit(Nelem);
  2472. for (Long j = 0; j < Nelem; j++) {
  2473. for (Long k = 0; k < Nnodes; k++) {
  2474. Real B2 = 0;
  2475. B2 += B[j*COORD_DIM+0][k] * B[j*COORD_DIM+0][k];
  2476. B2 += B[j*COORD_DIM+1][k] * B[j*COORD_DIM+1][k];
  2477. B2 += B[j*COORD_DIM+2][k] * B[j*COORD_DIM+2][k];
  2478. total_pressure[i][j][k] = 0.5 * B2 + pressure[i];
  2479. }
  2480. }
  2481. }
  2482. Vector<Long> elem_cnt, elem_dsp;
  2483. for (Long i = 0; i < Nsurf; i++) {
  2484. if (i == 0) {
  2485. elem_cnt.PushBack(Svec[i].NTor(0) * Svec[i].NPol(0));
  2486. elem_dsp.PushBack(0);
  2487. } else {
  2488. elem_cnt.PushBack(Svec[i].NTor(1) * Svec[i].NPol(1));
  2489. elem_dsp.PushBack(elem_dsp[i-1] + elem_cnt[i-1]);
  2490. }
  2491. }
  2492. Vector<ElemBasis> pressure_jump(elem_dsp[Nsurf-1] + elem_cnt[Nsurf-1]);
  2493. pressure_jump = 0;
  2494. for (Long i = 0; i < Nsurf-1; i++) { // Set pressure_jump
  2495. Long Nelem, offset;
  2496. if (i == 0) {
  2497. offset = 0;
  2498. Nelem = Svec[i].NTor(0) * Svec[i].NPol(0);
  2499. } else {
  2500. offset = Svec[i].NTor(0) * Svec[i].NPol(0);
  2501. Nelem = Svec[i].NTor(1) * Svec[i].NPol(1);
  2502. }
  2503. for (Long j = 0; j < Nelem; j++) {
  2504. for (Long k = 0; k < Nnodes; k++) {
  2505. Real T0 = total_pressure[i][offset+j][k];
  2506. Real T1 = (i+1<Nsurf ? total_pressure[i+1][j][k] : 0);
  2507. pressure_jump[elem_dsp[i]+j][k] = T1 - T0;
  2508. }
  2509. }
  2510. }
  2511. return pressure_jump;
  2512. }
  2513. static void compute_gvec(const Vector<Stellarator<Real,ORDER>>& Svec, const Vector<Real>& pressure) {
  2514. Vector<ElemBasis> pressure_jump = compute_pressure_jump(Svec, pressure);
  2515. const Long Nnodes = ElemBasis::Size();
  2516. const Long Nsurf = Svec.Dim();
  2517. Long elem_offset = 0;
  2518. for (Long i = 0; i < Nsurf; i++) { // Allocate
  2519. Svec[i].gvec.ReInit(Svec[i].NElem());
  2520. Svec[i].gvec = 0;
  2521. }
  2522. for (Long i = 0; i < Nsurf-1; i++) { // Set gvec
  2523. Long Nelem, offset;
  2524. if (i == 0) {
  2525. offset = 0;
  2526. Nelem = Svec[i].NTor(0) * Svec[i].NPol(0);
  2527. } else {
  2528. offset = Svec[i].NTor(0) * Svec[i].NPol(0);
  2529. Nelem = Svec[i].NTor(1) * Svec[i].NPol(1);
  2530. }
  2531. for (Long j = 0; j < Nelem; j++) {
  2532. for (Long k = 0; k < Nnodes; k++) {
  2533. Real jump = pressure_jump[elem_offset+j][k];
  2534. Svec[i].gvec[offset+j][k] = 0.5 * jump * jump;
  2535. if (i+1<Nsurf) Svec[i+1].gvec[j][k] = 0.5 * jump * jump;
  2536. }
  2537. }
  2538. elem_offset += Nelem;
  2539. }
  2540. }
  2541. static void compute_dgdB(const Vector<Stellarator<Real,ORDER>>& Svec, const Vector<Real>& pressure) {
  2542. Vector<ElemBasis> pressure_jump = compute_pressure_jump(Svec, pressure);
  2543. const Long Nnodes = ElemBasis::Size();
  2544. const Long Nsurf = Svec.Dim();
  2545. Long elem_offset = 0;
  2546. for (Long i = 0; i < Nsurf; i++) { // Allocate
  2547. Svec[i].dgdB.ReInit(Svec[i].NElem() * COORD_DIM);
  2548. Svec[i].dgdB = 0;
  2549. }
  2550. for (Long i = 0; i < Nsurf-1; i++) { // Set dgdB
  2551. Long Nelem, offset;
  2552. if (i == 0) {
  2553. offset = 0;
  2554. Nelem = Svec[i].NTor(0) * Svec[i].NPol(0);
  2555. } else {
  2556. offset = Svec[i].NTor(0) * Svec[i].NPol(0);
  2557. Nelem = Svec[i].NTor(1) * Svec[i].NPol(1);
  2558. }
  2559. for (Long j = 0; j < Nelem; j++) {
  2560. for (Long k = 0; k < Nnodes; k++) {
  2561. Real jump = pressure_jump[elem_offset+j][k];
  2562. Svec[i].dgdB[(offset+j)*COORD_DIM+0][k] = -jump * Svec[i].B[(offset+j)*COORD_DIM+0][k];
  2563. Svec[i].dgdB[(offset+j)*COORD_DIM+1][k] = -jump * Svec[i].B[(offset+j)*COORD_DIM+1][k];
  2564. Svec[i].dgdB[(offset+j)*COORD_DIM+2][k] = -jump * Svec[i].B[(offset+j)*COORD_DIM+2][k];
  2565. if (i+1<Nsurf) {
  2566. Svec[i+1].dgdB[j*COORD_DIM+0][k] = jump * Svec[i+1].B[j*COORD_DIM+0][k];
  2567. Svec[i+1].dgdB[j*COORD_DIM+1][k] = jump * Svec[i+1].B[j*COORD_DIM+1][k];
  2568. Svec[i+1].dgdB[j*COORD_DIM+2][k] = jump * Svec[i+1].B[j*COORD_DIM+2][k];
  2569. }
  2570. }
  2571. }
  2572. elem_offset += Nelem;
  2573. }
  2574. }
  2575. static Real compute_g(const Vector<Stellarator<Real,ORDER>>& Svec, const Vector<Real>& pressure) {
  2576. Real g = 0;
  2577. compute_gvec(Svec, pressure);
  2578. for (Long i = 0; i < Svec.Dim(); i++) { // Set gvec
  2579. Vector<ElemBasis> normal, area_elem, wt(Svec[i].NElem());
  2580. compute_norm_area_elem(Svec[i], normal, area_elem);
  2581. wt = 0.5;
  2582. if (i == Svec.Dim()-1) {
  2583. Long Nsurf = Svec[i].Nsurf();
  2584. Long Nelem = Svec[i].NTor(Nsurf-1) * Svec[i].NPol(Nsurf-1);
  2585. Long offset = Svec[i].ElemDsp(Nsurf-1);
  2586. for (Long j = 0; j < Nelem; j++) {
  2587. wt[offset + j] = 1.0;
  2588. }
  2589. }
  2590. g += compute_inner_prod(area_elem, Svec[i].gvec, wt);
  2591. }
  2592. return g;
  2593. }
  2594. Stellarator(const Vector<Long>& NtNp = Vector<Long>()) {
  2595. NtNp_ = NtNp;
  2596. Long Nsurf = NtNp_.Dim() / 2;
  2597. SCTL_ASSERT(Nsurf*2 == NtNp_.Dim());
  2598. Long Nelem = 0;
  2599. elem_dsp.ReInit(Nsurf+1);
  2600. elem_dsp[0] = 0;
  2601. for (Long i = 0; i < Nsurf; i++) {
  2602. Nelem += NtNp_[i*2+0]*NtNp_[i*2+1];
  2603. elem_dsp[i+1] = Nelem;
  2604. }
  2605. elements.ReInit(Nelem);
  2606. for (Long i = 0; i < Nsurf; i++) {
  2607. InitSurf(i, this->Nsurf());
  2608. }
  2609. }
  2610. Long ElemIdx(Long s, Long t, Long p) {
  2611. SCTL_ASSERT(0 <= s && s < Nsurf());
  2612. SCTL_ASSERT(0 <= t && t < NtNp_[s*2+0]);
  2613. SCTL_ASSERT(0 <= p && p < NtNp_[s*2+1]);
  2614. return elem_dsp[s] + t*NtNp_[s*2+1] + p;
  2615. }
  2616. ElemBasis& Elem(Long elem, Integer dim) {
  2617. return elements(elem,dim);
  2618. }
  2619. const ElemBasis& Elem(Long elem, Integer dim) const {
  2620. return elements(elem,dim);
  2621. }
  2622. const ElemLst& GetElemList() const {
  2623. return elements;
  2624. }
  2625. Long Nsurf() const {
  2626. return elem_dsp.Dim()-1;
  2627. }
  2628. Long ElemDsp(Long s) const {
  2629. return elem_dsp[s];
  2630. }
  2631. Long NTor(Long s) const {
  2632. return NtNp_[s*2+0];
  2633. }
  2634. Long NPol(Long s) const {
  2635. return NtNp_[s*2+1];
  2636. }
  2637. Long NElem() const {
  2638. return elements.NElem();
  2639. }
  2640. static Vector<ElemBasis> compute_gradient(const Stellarator<Real,ORDER>& S_, const Vector<Real>& pressure, const Vector<Real>& flux_tor_, const Vector<Real>& flux_pol_, Real* g_ptr = nullptr) {
  2641. Comm comm = Comm::World();
  2642. Vector<Stellarator<Real,ORDER>> Svec(S_.Nsurf());
  2643. for (Long i = 0; i < S_.Nsurf(); i++) { // Set Svec[i] (quadratures, B)
  2644. const Long elem_dsp = (i==0 ? 0 : S_.ElemDsp(i-1));
  2645. const Long Nnodes = ElemBasis::Size();
  2646. Stellarator<Real,ORDER>& S = Svec[i];
  2647. if (i == 0) { // Init S
  2648. Vector<Long> NtNp;
  2649. NtNp.PushBack(S_.NTor(i));
  2650. NtNp.PushBack(S_.NPol(i));
  2651. S = Stellarator<Real,ORDER>(NtNp);
  2652. } else {
  2653. Vector<Long> NtNp;
  2654. NtNp.PushBack(S_.NTor(i-1));
  2655. NtNp.PushBack(S_.NPol(i-1));
  2656. NtNp.PushBack(S_.NTor(i));
  2657. NtNp.PushBack(S_.NPol(i));
  2658. S = Stellarator<Real,ORDER>(NtNp);
  2659. }
  2660. for (Long j = 0; j < S.NElem(); j++) { // Set S coordinates
  2661. for (Long k = 0; k < Nnodes; k++) {
  2662. S.Elem(j,0)[k] = S_.Elem(elem_dsp+j,0)[k];
  2663. S.Elem(j,1)[k] = S_.Elem(elem_dsp+j,1)[k];
  2664. S.Elem(j,2)[k] = S_.Elem(elem_dsp+j,2)[k];
  2665. }
  2666. }
  2667. SetupQuadrature(S.quadrature_dBS , S, S.BiotSavartGrad, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  2668. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  2669. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  2670. SetupQuadrature(S.quadrature_FxdU , S, S.Laplace_FxdU , order_singular, order_direct, -1.0, comm);
  2671. SetupQuadrature(S.quadrature_dUxF , S, S.Laplace_dUxF , order_singular, order_direct, -1.0, comm);
  2672. SetupQuadrature(S.quadrature_dUxD , S, S.Laplace_dUxD , order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  2673. SetupQuadrature(S.quadrature_Fxd2U, S, S.Laplace_Fxd2U , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  2674. { // Set Bt0, Bp0, dBt0, dBp0
  2675. Vector<ElemBasis> Jt, Jp;
  2676. compute_harmonic_vector_potentials(Jt, Jp, S);
  2677. EvalQuadrature(S.Bt0 , S.quadrature_BS , S, Jp, S.BiotSavart);
  2678. EvalQuadrature(S.Bp0 , S.quadrature_BS , S, Jt, S.BiotSavart);
  2679. EvalQuadrature(S.dBt0, S.quadrature_dBS, S, Jp, S.BiotSavartGrad);
  2680. EvalQuadrature(S.dBp0, S.quadrature_dBS, S, Jt, S.BiotSavartGrad);
  2681. }
  2682. compute_invA(S.sigma, S.alpha, S.beta, S, flux_tor_[i], flux_pol_[i], comm);
  2683. S.B = compute_B(S, S.sigma, S.alpha, S.beta);
  2684. if (0) { // Write VTU
  2685. VTUData vtu;
  2686. vtu.AddElems(S.GetElemList(), S.sigma, ORDER);
  2687. vtu.WriteVTK("sigma"+std::to_string(i), comm);
  2688. }
  2689. if (0) { // Write VTU
  2690. VTUData vtu;
  2691. vtu.AddElems(S.GetElemList(), S.B, ORDER);
  2692. vtu.WriteVTK("B"+std::to_string(i), comm);
  2693. }
  2694. }
  2695. compute_gvec(Svec, pressure);
  2696. compute_dgdB(Svec, pressure);
  2697. if (g_ptr != nullptr) g_ptr[0] = compute_g(Svec, pressure);
  2698. auto compute_gradient = [&comm] (const Stellarator<Real,ORDER>& S) {
  2699. const Long Nnodes = ElemBasis::Size();
  2700. const Long Nelem = S.NElem();
  2701. const auto& sigma = S.sigma;
  2702. const auto& alpha = S.alpha;
  2703. const auto& beta = S.beta;
  2704. const auto& B = S.B;
  2705. Vector<ElemBasis> normal, area_elem;
  2706. compute_norm_area_elem(S, normal, area_elem);
  2707. if (S.Nsurf() == 2) {
  2708. Long Nelem0 = S.NTor(0)*S.NPol(0);
  2709. for (Long i = 0; i < Nelem0*COORD_DIM; i++) {
  2710. for (Long j = 0; j < Nnodes; j++) {
  2711. normal[i][j] *= -1.0;
  2712. }
  2713. }
  2714. }
  2715. auto compute_H = [] (const ElemList<COORD_DIM,ElemBasis>& elem_lst, const Vector<ElemBasis>& normal) {
  2716. const Long Nnodes = ElemBasis::Size();
  2717. const Long Nelem = elem_lst.NElem();
  2718. const Vector<ElemBasis> X = elem_lst.ElemVector();
  2719. Vector<ElemBasis> dX, d2X, H(Nelem);
  2720. ElemBasis::Grad(dX, X);
  2721. ElemBasis::Grad(d2X, dX);
  2722. for (Long i = 0; i < Nelem; i++) {
  2723. for (Long j = 0; j < Nnodes; j++) {
  2724. Tensor<Real,true,2,2> I, invI, II;
  2725. for (Long k0 = 0; k0 < 2; k0++) {
  2726. for (Long k1 = 0; k1 < 2; k1++) {
  2727. I(k0,k1) = 0;
  2728. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  2729. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  2730. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  2731. II(k0,k1) = 0;
  2732. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  2733. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  2734. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  2735. }
  2736. }
  2737. { // Set invI
  2738. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  2739. invI(0,0) = I(1,1) / detI;
  2740. invI(0,1) = -I(0,1) / detI;
  2741. invI(1,0) = -I(1,0) / detI;
  2742. invI(1,1) = I(0,0) / detI;
  2743. }
  2744. { // Set H
  2745. H[i][j] = 0;
  2746. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  2747. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  2748. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  2749. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  2750. }
  2751. }
  2752. }
  2753. return H;
  2754. };
  2755. Vector<ElemBasis> H = compute_H(S.GetElemList(), normal);
  2756. auto compute_dg_dnu = [&S,&normal,&area_elem,&H]() { // dg_dnu = (B*B) 2H - (2 B) \cdot (n \cdnot nabla) \nabla G[sigma] + (2 B) \alpha dB0_dnu \hat{\theta} + sigma (\nabla D)^T [2 B] + (2H) sigma (\nabla G)^T [2 B]
  2757. const Long Nelem = S.NElem();
  2758. const Long Nnodes = ElemBasis::Size();
  2759. const Vector<ElemBasis>& gvec = S.gvec;
  2760. const Vector<ElemBasis>& v = S.dgdB;
  2761. const auto& sigma = S.sigma;
  2762. const auto& alpha = S.alpha;
  2763. const auto& beta = S.beta;
  2764. const auto& B = S.B;
  2765. Vector<ElemBasis> dg_dnu0(Nelem), dg_dnu1(Nelem), dg_dnu2(Nelem), dg_dnu3(Nelem), dg_dnu4(Nelem);
  2766. dg_dnu0 = 0;
  2767. dg_dnu1 = 0;
  2768. dg_dnu2 = 0;
  2769. dg_dnu3 = 0;
  2770. dg_dnu4 = 0;
  2771. // dg_dnu0 = (B*B) 2H
  2772. for (Long i = 0; i < Nelem; i++) {
  2773. for (Long j = 0; j < Nnodes; j++) {
  2774. dg_dnu0[i][j] = gvec[i][j] * (2.0*H[i][j]) * 0.5;
  2775. // multiplicative factor 0.5 is there so that this term is not
  2776. // counted twice from shape derivative of regions on either side
  2777. // of the domain.
  2778. }
  2779. }
  2780. // dg_dnu1 = (2 B) \cdot (n \cdnot \nabla) B
  2781. Vector<ElemBasis> dB = compute_dB(S, sigma, alpha, beta);
  2782. for (Long i = 0; i < Nelem; i++) {
  2783. for (Long j = 0; j < Nnodes; j++) {
  2784. dg_dnu1[i][j] = 0;
  2785. dg_dnu1[i][j] -= dB[i*9+0][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
  2786. dg_dnu1[i][j] -= dB[i*9+1][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
  2787. dg_dnu1[i][j] -= dB[i*9+2][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
  2788. dg_dnu1[i][j] -= dB[i*9+3][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
  2789. dg_dnu1[i][j] -= dB[i*9+4][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
  2790. dg_dnu1[i][j] -= dB[i*9+5][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
  2791. dg_dnu1[i][j] -= dB[i*9+6][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
  2792. dg_dnu1[i][j] -= dB[i*9+7][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
  2793. dg_dnu1[i][j] -= dB[i*9+8][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
  2794. }
  2795. }
  2796. // dg_dnu3 = (sigma (\nabla D)^T [2 B]
  2797. Vector<ElemBasis> nablaDtv;
  2798. EvalQuadrature(nablaDtv, S.quadrature_dUxD, S, v, S.Laplace_dUxD);
  2799. for (Long i = 0; i < Nelem; i++) {
  2800. for (Long j = 0; j < Nnodes; j++) {
  2801. dg_dnu3[i][j] = 0;
  2802. dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  2803. dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  2804. dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  2805. }
  2806. }
  2807. // dg_dnu4 = (2H) sigma (\nabla G)^T [2 B]
  2808. EvalQuadrature(dg_dnu4, S.quadrature_dUxF, S, v, S.Laplace_dUxF);
  2809. for (Long i = 0; i < Nelem; i++) {
  2810. for (Long j = 0; j < Nnodes; j++) {
  2811. dg_dnu4[i][j] += 0.5 * v[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  2812. dg_dnu4[i][j] += 0.5 * v[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  2813. dg_dnu4[i][j] += 0.5 * v[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  2814. dg_dnu4[i][j] *= 2*H[i][j] * sigma[i][j];
  2815. }
  2816. }
  2817. return dg_dnu0 + dg_dnu1 + dg_dnu3 - dg_dnu4;
  2818. };
  2819. Vector<ElemBasis> dg_dnu = compute_dg_dnu();
  2820. auto compute_dg_dsigma = [&S,&normal,&area_elem] () {
  2821. const Long Nnodes = ElemBasis::Size();
  2822. const Long Nelem = S.NElem();
  2823. const auto& B = S.B;
  2824. const Vector<ElemBasis>& dgdB = S.dgdB;
  2825. auto compute_dg_dsigma = [&S,&B,&dgdB,&normal]() { // dg_dsigma = \int 2 B \cdot (\nabla G + n/2)
  2826. Vector<ElemBasis> B_dot_gradG;
  2827. EvalQuadrature(B_dot_gradG, S.quadrature_dUxF, S, dgdB, S.Laplace_dUxF);
  2828. return B_dot_gradG * (-1.0) + compute_dot_prod(dgdB,normal) * 0.5;
  2829. };
  2830. auto compute_dg_dalpha = [&S,&B,&dgdB,&area_elem] () {
  2831. auto dB_dalpha = compute_B(S, Vector<ElemBasis>(),1,0);
  2832. return compute_inner_prod(area_elem, dgdB,dB_dalpha);
  2833. };
  2834. auto compute_dg_dbeta = [&S,&B,&dgdB,&area_elem] () {
  2835. auto dB_dalpha = compute_B(S, Vector<ElemBasis>(),0,1);
  2836. return compute_inner_prod(area_elem, dgdB,dB_dalpha);
  2837. };
  2838. Vector<Real> dg_dsigma(Nelem*Nnodes+S.Nsurf());
  2839. Vector<ElemBasis> dg_dsigma_ = compute_dg_dsigma();
  2840. for (Long i = 0; i < Nelem; i++) {
  2841. for (Long j = 0; j < Nnodes; j++) {
  2842. dg_dsigma[i*Nnodes+j] = dg_dsigma_[i][j];
  2843. }
  2844. }
  2845. if (S.Nsurf() >= 1) dg_dsigma[Nelem*Nnodes+0] = compute_dg_dalpha();
  2846. if (S.Nsurf() >= 2) dg_dsigma[Nelem*Nnodes+1] = compute_dg_dbeta ();
  2847. return dg_dsigma;
  2848. };
  2849. Vector<Real> dg_dsigma = compute_dg_dsigma();
  2850. Vector<Real> dg_dsigma_invA = compute_invAadj(S, dg_dsigma, comm);
  2851. ///////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2852. ///////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2853. auto compute_grad_adj = [&S,&area_elem] (const Vector<ElemBasis>& V) {
  2854. const Long Nelem = S.NElem();
  2855. const Long Nnodes = ElemBasis::Size();
  2856. Vector<ElemBasis> du_dX(Nelem*COORD_DIM*2);
  2857. { // Set du_dX
  2858. Vector<ElemBasis> dX;
  2859. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2860. auto inv2x2 = [](Tensor<Real, true, 2, 2> M) {
  2861. Tensor<Real, true, 2, 2> Mout;
  2862. Real oodet = 1 / (M(0,0) * M(1,1) - M(0,1) * M(1,0));
  2863. Mout(0,0) = M(1,1) * oodet;
  2864. Mout(0,1) = -M(0,1) * oodet;
  2865. Mout(1,0) = -M(1,0) * oodet;
  2866. Mout(1,1) = M(0,0) * oodet;
  2867. return Mout;
  2868. };
  2869. for (Long i = 0; i < Nelem; i++) {
  2870. for (Long j = 0; j < Nnodes; j++) {
  2871. Tensor<Real, true, 3, 2> dX_du;
  2872. dX_du(0,0) = dX[(i*COORD_DIM+0)*2+0][j];
  2873. dX_du(1,0) = dX[(i*COORD_DIM+1)*2+0][j];
  2874. dX_du(2,0) = dX[(i*COORD_DIM+2)*2+0][j];
  2875. dX_du(0,1) = dX[(i*COORD_DIM+0)*2+1][j];
  2876. dX_du(1,1) = dX[(i*COORD_DIM+1)*2+1][j];
  2877. dX_du(2,1) = dX[(i*COORD_DIM+2)*2+1][j];
  2878. Tensor<Real, true, 2, 2> G; // = dX_du.Transpose() * dX_du;
  2879. G(0,0) = dX_du(0,0) * dX_du(0,0) + dX_du(1,0) * dX_du(1,0) + dX_du(2,0) * dX_du(2,0);
  2880. G(0,1) = dX_du(0,0) * dX_du(0,1) + dX_du(1,0) * dX_du(1,1) + dX_du(2,0) * dX_du(2,1);
  2881. G(1,0) = dX_du(0,1) * dX_du(0,0) + dX_du(1,1) * dX_du(1,0) + dX_du(2,1) * dX_du(2,0);
  2882. G(1,1) = dX_du(0,1) * dX_du(0,1) + dX_du(1,1) * dX_du(1,1) + dX_du(2,1) * dX_du(2,1);
  2883. Tensor<Real, true, 2, 2> Ginv = inv2x2(G);
  2884. du_dX[(i*COORD_DIM+0)*2+0][j] = Ginv(0,0) * dX_du(0,0) + Ginv(0,1) * dX_du(0,1);
  2885. du_dX[(i*COORD_DIM+1)*2+0][j] = Ginv(0,0) * dX_du(1,0) + Ginv(0,1) * dX_du(1,1);
  2886. du_dX[(i*COORD_DIM+2)*2+0][j] = Ginv(0,0) * dX_du(2,0) + Ginv(0,1) * dX_du(2,1);
  2887. du_dX[(i*COORD_DIM+0)*2+1][j] = Ginv(1,0) * dX_du(0,0) + Ginv(1,1) * dX_du(0,1);
  2888. du_dX[(i*COORD_DIM+1)*2+1][j] = Ginv(1,0) * dX_du(1,0) + Ginv(1,1) * dX_du(1,1);
  2889. du_dX[(i*COORD_DIM+2)*2+1][j] = Ginv(1,0) * dX_du(2,0) + Ginv(1,1) * dX_du(2,1);
  2890. }
  2891. }
  2892. }
  2893. Vector<ElemBasis> dudX_V(Nelem*2);
  2894. for (Long i = 0; i < Nelem; i++) {
  2895. for (Long j = 0; j < Nnodes; j++) {
  2896. dudX_V[i*2+0][j] = 0;
  2897. dudX_V[i*2+1][j] = 0;
  2898. dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+0)*2+0][j] * V[i*COORD_DIM+0][j] * area_elem[i][j];
  2899. dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+1)*2+0][j] * V[i*COORD_DIM+1][j] * area_elem[i][j];
  2900. dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+2)*2+0][j] * V[i*COORD_DIM+2][j] * area_elem[i][j];
  2901. dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+0)*2+1][j] * V[i*COORD_DIM+0][j] * area_elem[i][j];
  2902. dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+1)*2+1][j] * V[i*COORD_DIM+1][j] * area_elem[i][j];
  2903. dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+2)*2+1][j] * V[i*COORD_DIM+2][j] * area_elem[i][j];
  2904. }
  2905. }
  2906. Vector<ElemBasis> grad_dudX_V;
  2907. ElemBasis::Grad(grad_dudX_V, dudX_V);
  2908. Vector<ElemBasis> grad_adj_V(Nelem);
  2909. for (Long i = 0; i < Nelem; i++) {
  2910. for (Long j = 0; j < Nnodes; j++) {
  2911. grad_adj_V[i][j] = -(grad_dudX_V[(i*2+0)*2+0][j] + grad_dudX_V[(i*2+1)*2+1][j]) / area_elem[i][j];
  2912. }
  2913. }
  2914. return grad_adj_V;
  2915. };
  2916. auto compute_u_dAdnu_v_0 = [&S,&normal,&H,&compute_grad_adj] (const Vector<Real>& u_, const Vector<ElemBasis>& v, Real alpha, Real beta) {
  2917. const Long Nnodes = ElemBasis::Size();
  2918. const Long Nelem = S.NElem();
  2919. Vector<ElemBasis> dAdnu0(Nelem), dAdnu1(Nelem), dAdnu2(Nelem), dAdnu3(Nelem);
  2920. Vector<ElemBasis> u(Nelem), u_n(Nelem*COORD_DIM);
  2921. for (Long i = 0; i < Nelem; i++) {
  2922. for (Long j = 0; j < Nnodes; j++) {
  2923. u[i][j] = u_[i*Nnodes+j];
  2924. u_n[i*COORD_DIM+0][j] = u[i][j] * normal[i*COORD_DIM+0][j];
  2925. u_n[i*COORD_DIM+1][j] = u[i][j] * normal[i*COORD_DIM+1][j];
  2926. u_n[i*COORD_DIM+2][j] = u[i][j] * normal[i*COORD_DIM+2][j];
  2927. }
  2928. }
  2929. // dAdnu0 = u B \cdot grad_nu
  2930. Vector<ElemBasis> B = compute_B(S, v, alpha, beta);
  2931. Vector<ElemBasis> u_B(Nelem*COORD_DIM);
  2932. for (Long i = 0; i < Nelem; i++) {
  2933. for (Long j = 0; j < Nnodes; j++) {
  2934. u_B[i*COORD_DIM+0][j] = u[i][j] * B[i*COORD_DIM+0][j];
  2935. u_B[i*COORD_DIM+1][j] = u[i][j] * B[i*COORD_DIM+1][j];
  2936. u_B[i*COORD_DIM+2][j] = u[i][j] * B[i*COORD_DIM+2][j];
  2937. }
  2938. }
  2939. dAdnu0 = compute_grad_adj(u_B)*(-1.0);
  2940. // dAdnu1 = (u n) \cdot (n \cdnot \nabla) B
  2941. Vector<ElemBasis> dB = compute_dB(S, v, alpha, beta);
  2942. for (Long i = 0; i < Nelem; i++) {
  2943. for (Long j = 0; j < Nnodes; j++) {
  2944. dAdnu1[i][j] = 0;
  2945. dAdnu1[i][j] -= dB[i*9+0][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+0][j];
  2946. dAdnu1[i][j] -= dB[i*9+1][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+1][j];
  2947. dAdnu1[i][j] -= dB[i*9+2][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+2][j];
  2948. dAdnu1[i][j] -= dB[i*9+3][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+0][j];
  2949. dAdnu1[i][j] -= dB[i*9+4][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+1][j];
  2950. dAdnu1[i][j] -= dB[i*9+5][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+2][j];
  2951. dAdnu1[i][j] -= dB[i*9+6][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+0][j];
  2952. dAdnu1[i][j] -= dB[i*9+7][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+1][j];
  2953. dAdnu1[i][j] -= dB[i*9+8][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+2][j];
  2954. }
  2955. }
  2956. // dAdnu2 = (2H) v (I/2 + \nabla G)^T [u n]
  2957. EvalQuadrature(dAdnu2, S.quadrature_dUxF, S, u_n, S.Laplace_dUxF);
  2958. for (Long i = 0; i < Nelem; i++) {
  2959. for (Long j = 0; j < Nnodes; j++) {
  2960. dAdnu2[i][j] += 0.5 * u_n[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  2961. dAdnu2[i][j] += 0.5 * u_n[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  2962. dAdnu2[i][j] += 0.5 * u_n[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  2963. dAdnu2[i][j] *= -2*H[i][j] * v[i][j];
  2964. }
  2965. }
  2966. // dAdnu3 = (v n \cdot \nabla D[u]
  2967. Vector<ElemBasis> nablaDt_u_n;
  2968. EvalQuadrature(nablaDt_u_n, S.quadrature_dUxD, S, u_n, S.Laplace_dUxD);
  2969. for (Long i = 0; i < Nelem; i++) {
  2970. for (Long j = 0; j < Nnodes; j++) {
  2971. dAdnu3[i][j] = 0;
  2972. dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  2973. dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  2974. dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  2975. }
  2976. }
  2977. return dAdnu0 + dAdnu1 + dAdnu2 + dAdnu3;
  2978. };
  2979. auto compute_u_dAdnu_v_1 = [&S,&area_elem,&normal,&H,&compute_grad_adj] (const Vector<ElemBasis>& sigma, Real alpha, Real beta, bool toroidal_flux) {
  2980. const Long Nnodes = ElemBasis::Size();
  2981. const Long Nelem = S.NElem();
  2982. Vector<ElemBasis> B = compute_B(S, sigma, alpha, beta);
  2983. Vector<ElemBasis> gradB = compute_dB(S, sigma, alpha, beta);
  2984. auto compute_v = [&S,&area_elem,&toroidal_flux] (const Vector<ElemBasis>& X) {
  2985. const Long Nelem = S.NElem();
  2986. const Long Nnodes = ElemBasis::Size();
  2987. Real scal[2];
  2988. if (S.Nsurf() == 1) {
  2989. SCTL_ASSERT(toroidal_flux == true);
  2990. scal[0] = 1.0 / S.NTor(0);
  2991. scal[1] = 0;
  2992. } else if (S.Nsurf() == 2) {
  2993. if (toroidal_flux == true) {
  2994. scal[0] = -1.0 / S.NTor(0);
  2995. scal[1] = 1.0 / S.NTor(1);
  2996. } else {
  2997. scal[0] = 1.0 / S.NPol(0);
  2998. scal[1] = -1.0 / S.NPol(1);
  2999. }
  3000. } else {
  3001. SCTL_ASSERT(false);
  3002. }
  3003. Vector<ElemBasis> v(Nelem * COORD_DIM);
  3004. Vector<ElemBasis> dX;
  3005. ElemBasis::Grad(dX, X);
  3006. for (Long k = 0; k < S.Nsurf(); k++) {
  3007. for (Long i_ = 0; i_ < S.NTor(k)*S.NPol(k); i_++) {
  3008. Long i = S.ElemDsp(k) + i_;
  3009. for (Long j = 0; j < Nnodes; j++) {
  3010. Real s = scal[k] / area_elem[i][j];
  3011. v[i*COORD_DIM+0][j] = dX[i*COORD_DIM*2+0+(toroidal_flux?1:0)][j] * s;
  3012. v[i*COORD_DIM+1][j] = dX[i*COORD_DIM*2+2+(toroidal_flux?1:0)][j] * s;
  3013. v[i*COORD_DIM+2][j] = dX[i*COORD_DIM*2+4+(toroidal_flux?1:0)][j] * s;
  3014. }
  3015. }
  3016. }
  3017. return v;
  3018. };
  3019. auto compute_AxB = [&S] (const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  3020. const Long Nelem = S.NElem();
  3021. const Long Nnodes = ElemBasis::Size();
  3022. Vector<ElemBasis> J(Nelem * COORD_DIM);
  3023. for (Long i = 0; i < Nelem; i++) { // Set J
  3024. for (Long j = 0; j < Nnodes; j++) {
  3025. Tensor<Real,true,COORD_DIM> a, b;
  3026. a(0) = A[i*COORD_DIM+0][j];
  3027. a(1) = A[i*COORD_DIM+1][j];
  3028. a(2) = A[i*COORD_DIM+2][j];
  3029. b(0) = B[i*COORD_DIM+0][j];
  3030. b(1) = B[i*COORD_DIM+1][j];
  3031. b(2) = B[i*COORD_DIM+2][j];
  3032. J[i*COORD_DIM+0][j] = a(1) * b(2) - a(2) * b(1);
  3033. J[i*COORD_DIM+1][j] = a(2) * b(0) - a(0) * b(2);
  3034. J[i*COORD_DIM+2][j] = a(0) * b(1) - a(1) * b(0);
  3035. }
  3036. }
  3037. return J;
  3038. };
  3039. auto compute_dphi_dnu0 = [&S,&normal,&compute_AxB,&compute_v,&B,compute_grad_adj] () {
  3040. const Long Nelem = S.NElem();
  3041. const Long Nnodes = ElemBasis::Size();
  3042. Vector<ElemBasis> Gv;
  3043. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3044. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  3045. Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
  3046. return compute_grad_adj(BxGv)*(-1.0);
  3047. };
  3048. auto compute_dphi_dnu1 = [&S,&normal,&H,&compute_AxB,&compute_v,&B] () {
  3049. const Long Nelem = S.NElem();
  3050. const Long Nnodes = ElemBasis::Size();
  3051. Vector<ElemBasis> Gv;
  3052. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3053. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  3054. Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
  3055. Vector<ElemBasis> n_dot_BxGv = compute_dot_prod(normal,BxGv);
  3056. Vector<ElemBasis> dphi_dnu(Nelem);
  3057. for (Long i = 0; i < Nelem; i++) {
  3058. for (Long j = 0; j < Nnodes; j++) {
  3059. dphi_dnu[i][j] = n_dot_BxGv[i][j] * 2*H[i][j];
  3060. }
  3061. }
  3062. return dphi_dnu;
  3063. };
  3064. auto compute_dphi_dnu2 = [&S,&normal,&H,&compute_AxB,&compute_v,&B] () {
  3065. const Long Nelem = S.NElem();
  3066. const Long Nnodes = ElemBasis::Size();
  3067. Vector<ElemBasis> GnxB;
  3068. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3069. EvalQuadrature(GnxB, S.quadrature_FxU, S, nxB, S.Laplace_FxU);
  3070. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3071. Vector<ElemBasis> v_dot_GnxB = compute_dot_prod(v,GnxB);
  3072. Vector<ElemBasis> dphi_dnu(Nelem);
  3073. for (Long i = 0; i < Nelem; i++) {
  3074. for (Long j = 0; j < Nnodes; j++) {
  3075. dphi_dnu[i][j] = v_dot_GnxB[i][j] * 2*H[i][j];
  3076. }
  3077. }
  3078. return dphi_dnu;
  3079. };
  3080. auto compute_dphi_dnu3 = [&S,&normal,&area_elem,&H,&compute_AxB,&compute_v,&B] () {
  3081. const Long Nelem = S.NElem();
  3082. const Long Nnodes = ElemBasis::Size();
  3083. Vector<ElemBasis> GnxB;
  3084. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3085. EvalQuadrature(GnxB, S.quadrature_FxU, S, nxB, S.Laplace_FxU);
  3086. Vector<ElemBasis> dGnxB = compute_v(GnxB);
  3087. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3088. Vector<ElemBasis> dv_dnu1(Nelem), dv_dnu2(Nelem);
  3089. { // Set dv_dnu1, dv_dnu2
  3090. for (Long i = 0; i < Nelem; i++) {
  3091. for (Long j = 0; j < Nnodes; j++) {
  3092. dv_dnu1[i][j] = 0;
  3093. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+0][j] * v[i*COORD_DIM+0][j] * 2 * H[i][j];
  3094. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+1][j] * v[i*COORD_DIM+1][j] * 2 * H[i][j];
  3095. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+2][j] * v[i*COORD_DIM+2][j] * 2 * H[i][j];
  3096. dv_dnu2[i][j] = 0;
  3097. dv_dnu2[i][j] += -dGnxB[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  3098. dv_dnu2[i][j] += -dGnxB[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  3099. dv_dnu2[i][j] += -dGnxB[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  3100. }
  3101. }
  3102. }
  3103. return dv_dnu1 + dv_dnu2;
  3104. };
  3105. auto compute_dphi_dnu4 = [&S,&normal,&compute_AxB,&compute_v,&B] () {
  3106. const Long Nelem = S.NElem();
  3107. const Long Nnodes = ElemBasis::Size();
  3108. Vector<ElemBasis> dGnxB;
  3109. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3110. EvalQuadrature(dGnxB, S.quadrature_FxdU, S, nxB, S.Laplace_FxdU);
  3111. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3112. Vector<ElemBasis> dphi_dnu(Nelem);
  3113. for (Long i = 0; i < Nelem; i++) {
  3114. for (Long j = 0; j < Nnodes; j++) {
  3115. Real dphi_dnu_ = 0;
  3116. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
  3117. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
  3118. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
  3119. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
  3120. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
  3121. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
  3122. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
  3123. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
  3124. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
  3125. dphi_dnu[i][j] = dphi_dnu_;
  3126. }
  3127. }
  3128. return dphi_dnu;
  3129. };
  3130. auto compute_dphi_dnu5 = [&S,&normal,&compute_AxB,&compute_v,&B] () {
  3131. const Long Nelem = S.NElem();
  3132. const Long Nnodes = ElemBasis::Size();
  3133. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3134. Vector<ElemBasis> dGv;
  3135. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3136. EvalQuadrature(dGv, S.quadrature_FxdU, S, v, S.Laplace_FxdU);
  3137. Vector<ElemBasis> dphi_dnu(Nelem);
  3138. for (Long i = 0; i < Nelem; i++) {
  3139. for (Long j = 0; j < Nnodes; j++) {
  3140. Real dphi_dnu_ = 0;
  3141. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+0][j] * nxB[i*COORD_DIM+0][j];
  3142. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+1][j] * nxB[i*COORD_DIM+0][j];
  3143. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+2][j] * nxB[i*COORD_DIM+0][j];
  3144. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+0][j] * nxB[i*COORD_DIM+1][j];
  3145. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+1][j] * nxB[i*COORD_DIM+1][j];
  3146. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+2][j] * nxB[i*COORD_DIM+1][j];
  3147. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+0][j] * nxB[i*COORD_DIM+2][j];
  3148. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+1][j] * nxB[i*COORD_DIM+2][j];
  3149. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+2][j] * nxB[i*COORD_DIM+2][j];
  3150. dphi_dnu[i][j] = dphi_dnu_;
  3151. }
  3152. }
  3153. return dphi_dnu;
  3154. };
  3155. auto compute_dphi_dnu6 = [&S,&normal,&compute_AxB,&compute_v,&gradB] () {
  3156. const Long Nelem = S.NElem();
  3157. const Long Nnodes = ElemBasis::Size();
  3158. Vector<ElemBasis> Gv;
  3159. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3160. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  3161. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3162. Vector<ElemBasis> dphi_dnu(Nelem);
  3163. for (Long i = 0; i < Nelem; i++) {
  3164. for (Long j = 0; j < Nnodes; j++) {
  3165. Real dphi_dnu_ = 0;
  3166. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  3167. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+1][j] * normal[i*COORD_DIM+0][j];
  3168. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+2][j] * normal[i*COORD_DIM+0][j];
  3169. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+0][j] * normal[i*COORD_DIM+1][j];
  3170. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  3171. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+2][j] * normal[i*COORD_DIM+1][j];
  3172. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+0][j] * normal[i*COORD_DIM+2][j];
  3173. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+1][j] * normal[i*COORD_DIM+2][j];
  3174. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  3175. dphi_dnu[i][j] = dphi_dnu_;
  3176. }
  3177. }
  3178. return dphi_dnu;
  3179. };
  3180. auto compute_dphi_dnu7 = [&S,&normal,&H,&compute_AxB,&compute_v,&sigma] () {
  3181. const Long Nelem = S.NElem();
  3182. const Long Nnodes = ElemBasis::Size();
  3183. Vector<ElemBasis> Gv;
  3184. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3185. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  3186. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3187. Vector<ElemBasis> dphi_dnu(Nelem);
  3188. EvalQuadrature(dphi_dnu, S.quadrature_dUxF, S, nxGv, S.Laplace_dUxF);
  3189. for (Long i = 0; i < Nelem; i++) {
  3190. for (Long j = 0; j < Nnodes; j++) {
  3191. dphi_dnu[i][j] *= -2*H[i][j] * sigma[i][j];
  3192. }
  3193. }
  3194. return dphi_dnu;
  3195. };
  3196. auto compute_dphi_dnu8 = [&S,&normal,&H,&compute_AxB,&compute_v,&sigma] () {
  3197. const Long Nelem = S.NElem();
  3198. const Long Nnodes = ElemBasis::Size();
  3199. Vector<ElemBasis> Gv;
  3200. Vector<ElemBasis> v = compute_v(S.GetElemList().ElemVector());
  3201. EvalQuadrature(Gv, S.quadrature_FxU, S, v, S.Laplace_FxU);
  3202. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3203. Vector<ElemBasis> dphi_dnu(Nelem);
  3204. Vector<ElemBasis> nablaDt_nxGv;
  3205. EvalQuadrature(nablaDt_nxGv, S.quadrature_dUxD, S, nxGv, S.Laplace_dUxD);
  3206. for (Long i = 0; i < Nelem; i++) {
  3207. for (Long j = 0; j < Nnodes; j++) {
  3208. dphi_dnu[i][j] = 0;
  3209. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  3210. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  3211. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  3212. }
  3213. }
  3214. return dphi_dnu;
  3215. };
  3216. auto dphi_dnu0 = compute_dphi_dnu0();
  3217. auto dphi_dnu1 = compute_dphi_dnu1();
  3218. auto dphi_dnu2 = compute_dphi_dnu2();
  3219. auto dphi_dnu3 = compute_dphi_dnu3();
  3220. auto dphi_dnu4 = compute_dphi_dnu4();
  3221. auto dphi_dnu5 = compute_dphi_dnu5();
  3222. auto dphi_dnu6 = compute_dphi_dnu6();
  3223. auto dphi_dnu7 = compute_dphi_dnu7();
  3224. auto dphi_dnu8 = compute_dphi_dnu8();
  3225. return (dphi_dnu0+dphi_dnu1+dphi_dnu2+dphi_dnu3+dphi_dnu4+dphi_dnu5+dphi_dnu6+dphi_dnu7+dphi_dnu8);
  3226. };
  3227. { // Set dg_dnu -= dg_dsigma invA dA_dnu sigma
  3228. dg_dnu -= compute_u_dAdnu_v_0(dg_dsigma_invA, sigma, alpha, beta);
  3229. if (S.Nsurf() >= 1) dg_dnu -= compute_u_dAdnu_v_1(sigma, alpha, beta, true) * dg_dsigma_invA[Nelem*Nnodes+0];
  3230. if (S.Nsurf() >= 2) dg_dnu -= compute_u_dAdnu_v_1(sigma, alpha, beta, false) * dg_dsigma_invA[Nelem*Nnodes+1];
  3231. }
  3232. return dg_dnu;
  3233. };
  3234. Vector<ElemBasis> dgdnu;
  3235. { // Set dgdnu
  3236. dgdnu.ReInit(S_.NElem());
  3237. dgdnu = 0;
  3238. for (Long i = 0; i < S_.Nsurf(); i++) {
  3239. const Long elem_dsp = (i==0 ? 0 : S_.ElemDsp(i-1));
  3240. const Long Nnodes = ElemBasis::Size();
  3241. auto dgdnu_ = compute_gradient(Svec[i]);
  3242. if (0) { // Write VTU
  3243. VTUData vtu;
  3244. vtu.AddElems(Svec[i].GetElemList(), dgdnu_, ORDER);
  3245. vtu.WriteVTK("dgdnu-"+std::to_string(i), comm);
  3246. }
  3247. for (Long j = 0; j < (i==0?0:Svec[i].NTor(0)*Svec[i].NPol(0)); j++) {
  3248. for (Long k = 0; k < Nnodes; k++) {
  3249. dgdnu[elem_dsp+j][k] -= dgdnu_[j][k];
  3250. }
  3251. }
  3252. for (Long j = (i==0?0:Svec[i].NTor(0)*Svec[i].NPol(0)); j < dgdnu_.Dim(); j++) {
  3253. for (Long k = 0; k < Nnodes; k++) {
  3254. dgdnu[elem_dsp+j][k] += dgdnu_[j][k];
  3255. }
  3256. }
  3257. }
  3258. }
  3259. return dgdnu;
  3260. }
  3261. static Vector<ElemBasis> compute_pressure_jump(const Stellarator<Real,ORDER>& S_, const Vector<Real>& pressure, const Vector<Real>& flux_tor_, const Vector<Real>& flux_pol_, Real* g_ptr = nullptr) {
  3262. Comm comm = Comm::World();
  3263. Vector<Stellarator<Real,ORDER>> Svec(S_.Nsurf());
  3264. for (Long i = 0; i < S_.Nsurf(); i++) { // Set Svec[i] (quadratures, B)
  3265. const Long elem_dsp = (i==0 ? 0 : S_.ElemDsp(i-1));
  3266. const Long Nnodes = ElemBasis::Size();
  3267. Stellarator<Real,ORDER>& S = Svec[i];
  3268. if (i == 0) { // Init S
  3269. Vector<Long> NtNp;
  3270. NtNp.PushBack(S_.NTor(i));
  3271. NtNp.PushBack(S_.NPol(i));
  3272. S = Stellarator<Real,ORDER>(NtNp);
  3273. } else {
  3274. Vector<Long> NtNp;
  3275. NtNp.PushBack(S_.NTor(i-1));
  3276. NtNp.PushBack(S_.NPol(i-1));
  3277. NtNp.PushBack(S_.NTor(i));
  3278. NtNp.PushBack(S_.NPol(i));
  3279. S = Stellarator<Real,ORDER>(NtNp);
  3280. }
  3281. for (Long j = 0; j < S.NElem(); j++) { // Set S coordinates
  3282. for (Long k = 0; k < Nnodes; k++) {
  3283. S.Elem(j,0)[k] = S_.Elem(elem_dsp+j,0)[k];
  3284. S.Elem(j,1)[k] = S_.Elem(elem_dsp+j,1)[k];
  3285. S.Elem(j,2)[k] = S_.Elem(elem_dsp+j,2)[k];
  3286. }
  3287. }
  3288. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3289. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  3290. SetupQuadrature(S.quadrature_FxdU , S, S.Laplace_FxdU , order_singular, order_direct, -1.0, comm);
  3291. { // Set Bt0, Bp0, dBt0, dBp0
  3292. Vector<ElemBasis> Jt, Jp;
  3293. compute_harmonic_vector_potentials(Jt, Jp, S);
  3294. EvalQuadrature(S.Bt0 , S.quadrature_BS , S, Jp, S.BiotSavart);
  3295. EvalQuadrature(S.Bp0 , S.quadrature_BS , S, Jt, S.BiotSavart);
  3296. }
  3297. compute_invA(S.sigma, S.alpha, S.beta, S, flux_tor_[i], flux_pol_[i], comm);
  3298. S.B = compute_B(S, S.sigma, S.alpha, S.beta);
  3299. }
  3300. if (g_ptr != nullptr) g_ptr[0] = compute_g(Svec, pressure);
  3301. return compute_pressure_jump(Svec, pressure);
  3302. }
  3303. static void test() {
  3304. Comm comm = Comm::World();
  3305. Profile::Enable(true);
  3306. Long Nsurf = 2;
  3307. Stellarator<Real,ORDER> S;
  3308. Vector<Real> flux_tor(Nsurf), flux_pol(Nsurf), pressure(Nsurf);
  3309. { // Init S, flux_tor, flux_pol, pressure
  3310. Vector<Long> NtNp;
  3311. for (Long i = 0; i < Nsurf; i++) {
  3312. NtNp.PushBack(30);
  3313. NtNp.PushBack(4);
  3314. }
  3315. S = Stellarator<Real,ORDER>(NtNp);
  3316. flux_tor = 1;
  3317. flux_pol = 1;
  3318. pressure = 0;
  3319. //flux_tor[0] = 1; //0.791881512;
  3320. //flux_tor[1] = 1;
  3321. //flux_pol[0] = 0;
  3322. //flux_pol[1] = 0;
  3323. //pressure[0] = 0;
  3324. //pressure[1] = 0;
  3325. }
  3326. { // find equilibrium flux surfaces
  3327. {
  3328. //auto filter = [](const Stellarator<Real,ORDER>& S, Vector<ElemBasis>& f) {
  3329. // auto cheb2grid = [] (const Vector<ElemBasis>& X, Long Mt, Long Mp, Long Nt, Long Np) {
  3330. // const Long dof = X.Dim() / (Mt * Mp);
  3331. // SCTL_ASSERT(X.Dim() == Mt * Mp *dof);
  3332. // Vector<Real> Xf(dof*Nt*Np); Xf = 0;
  3333. // const Long Nnodes = ElemBasis::Size();
  3334. // const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
  3335. // for (Long t = 0; t < Nt; t++) {
  3336. // for (Long p = 0; p < Np; p++) {
  3337. // Real theta = t / (Real)Nt;
  3338. // Real phi = p / (Real)Np;
  3339. // Long i = (Long)(theta * Mt);
  3340. // Long j = (Long)(phi * Mp);
  3341. // Real x = theta * Mt - i;
  3342. // Real y = phi * Mp - j;
  3343. // Long elem_idx = i * Mp + j;
  3344. // Vector<Real> Interp0(ORDER);
  3345. // Vector<Real> Interp1(ORDER);
  3346. // { // Set Interp0, Interp1
  3347. // auto node = [&Mnodes] (Long i) {
  3348. // return Mnodes[0][i];
  3349. // };
  3350. // for (Long i = 0; i < ORDER; i++) {
  3351. // Real wt_x = 1, wt_y = 1;
  3352. // for (Long j = 0; j < ORDER; j++) {
  3353. // if (j != i) {
  3354. // wt_x *= (x - node(j)) / (node(i) - node(j));
  3355. // wt_y *= (y - node(j)) / (node(i) - node(j));
  3356. // }
  3357. // Interp0[i] = wt_x;
  3358. // Interp1[i] = wt_y;
  3359. // }
  3360. // }
  3361. // }
  3362. // for (Long ii = 0; ii < ORDER; ii++) {
  3363. // for (Long jj = 0; jj < ORDER; jj++) {
  3364. // Long node_idx = jj * ORDER + ii;
  3365. // for (Long k = 0; k < dof; k++) {
  3366. // Xf[(k*Nt+t)*Np+p] += X[elem_idx*dof+k][node_idx] * Interp0[ii] * Interp1[jj];
  3367. // }
  3368. // }
  3369. // }
  3370. // }
  3371. // }
  3372. // return Xf;
  3373. // };
  3374. // auto grid2cheb = [] (const Vector<Real>& Xf, Long Nt, Long Np, Long Mt, Long Mp) {
  3375. // Long dof = Xf.Dim() / (Nt*Np);
  3376. // SCTL_ASSERT(Xf.Dim() == dof*Nt*Np);
  3377. // Vector<ElemBasis> X(Mt*Mp*dof);
  3378. // constexpr Integer INTERP_ORDER = 12;
  3379. // for (Long tt = 0; tt < Mt; tt++) {
  3380. // for (Long pp = 0; pp < Mp; pp++) {
  3381. // for (Long t = 0; t < ORDER; t++) {
  3382. // for (Long p = 0; p < ORDER; p++) {
  3383. // Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
  3384. // Real theta = (tt + Mnodes[0][t]) / Mt;
  3385. // Real phi = (pp + Mnodes[0][p]) / Mp;
  3386. // Long i = (Long)(theta * Nt);
  3387. // Long j = (Long)(phi * Np);
  3388. // Real x = theta * Nt - i;
  3389. // Real y = phi * Np - j;
  3390. // Vector<Real> Interp0(INTERP_ORDER);
  3391. // Vector<Real> Interp1(INTERP_ORDER);
  3392. // { // Set Interp0, Interp1
  3393. // auto node = [] (Long i) {
  3394. // return (Real)i - (INTERP_ORDER-1)/2;
  3395. // };
  3396. // for (Long i = 0; i < INTERP_ORDER; i++) {
  3397. // Real wt_x = 1, wt_y = 1;
  3398. // for (Long j = 0; j < INTERP_ORDER; j++) {
  3399. // if (j != i) {
  3400. // wt_x *= (x - node(j)) / (node(i) - node(j));
  3401. // wt_y *= (y - node(j)) / (node(i) - node(j));
  3402. // }
  3403. // Interp0[i] = wt_x;
  3404. // Interp1[i] = wt_y;
  3405. // }
  3406. // }
  3407. // }
  3408. // for (Long k = 0; k < dof; k++) {
  3409. // Real X0 = 0;
  3410. // for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  3411. // for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  3412. // Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  3413. // Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  3414. // X0 += Interp0[ii] * Interp1[jj] * Xf[(k*Nt+idx_i)*Np+idx_j];
  3415. // }
  3416. // }
  3417. // Long elem_idx = tt * Mp + pp;
  3418. // Long node_idx = p * ORDER + t;
  3419. // X[elem_idx*dof+k][node_idx] = X0;
  3420. // }
  3421. // }
  3422. // }
  3423. // }
  3424. // }
  3425. // return X;
  3426. // };
  3427. // Long dof = f.Dim() / S.NElem();
  3428. // SCTL_ASSERT(f.Dim() == S.NElem() * dof);
  3429. // for (Long i = 0; i < S.Nsurf(); i++) {
  3430. // const Long Mt = S.NTor(i);
  3431. // const Long Mp = S.NPol(i);
  3432. // const Long Nelem = Mt * Mp;
  3433. // const Long offset = S.ElemDsp(i);
  3434. // const Long Nt = Mt * ORDER / 5;
  3435. // const Long Np = Mp * ORDER / 5;
  3436. // Vector<ElemBasis> f_(Nelem*dof, f.begin() + offset*dof, false);
  3437. // Vector<Real> f_fourier = cheb2grid(f_, Mt, Mp, Nt, Np);
  3438. // f_ = grid2cheb(f_fourier, Nt, Np, Mt, Mp);
  3439. // }
  3440. //};
  3441. }
  3442. auto filter = [](const Stellarator<Real,ORDER>& S, const Comm& comm, Vector<ElemBasis>& f, Real sigma) {
  3443. auto cheb2grid = [] (const Vector<ElemBasis>& X, Long Mt, Long Mp, Long Nt, Long Np) {
  3444. const Long dof = X.Dim() / (Mt * Mp);
  3445. SCTL_ASSERT(X.Dim() == Mt * Mp *dof);
  3446. Vector<Real> Xf(dof*Nt*Np); Xf = 0;
  3447. const Long Nnodes = ElemBasis::Size();
  3448. const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
  3449. for (Long t = 0; t < Nt; t++) {
  3450. for (Long p = 0; p < Np; p++) {
  3451. Real theta = t / (Real)Nt;
  3452. Real phi = p / (Real)Np;
  3453. Long i = (Long)(theta * Mt);
  3454. Long j = (Long)(phi * Mp);
  3455. Real x = theta * Mt - i;
  3456. Real y = phi * Mp - j;
  3457. Long elem_idx = i * Mp + j;
  3458. Vector<Real> Interp0(ORDER);
  3459. Vector<Real> Interp1(ORDER);
  3460. { // Set Interp0, Interp1
  3461. auto node = [&Mnodes] (Long i) {
  3462. return Mnodes[0][i];
  3463. };
  3464. for (Long i = 0; i < ORDER; i++) {
  3465. Real wt_x = 1, wt_y = 1;
  3466. for (Long j = 0; j < ORDER; j++) {
  3467. if (j != i) {
  3468. wt_x *= (x - node(j)) / (node(i) - node(j));
  3469. wt_y *= (y - node(j)) / (node(i) - node(j));
  3470. }
  3471. Interp0[i] = wt_x;
  3472. Interp1[i] = wt_y;
  3473. }
  3474. }
  3475. }
  3476. for (Long ii = 0; ii < ORDER; ii++) {
  3477. for (Long jj = 0; jj < ORDER; jj++) {
  3478. Long node_idx = jj * ORDER + ii;
  3479. for (Long k = 0; k < dof; k++) {
  3480. Xf[(k*Nt+t)*Np+p] += X[elem_idx*dof+k][node_idx] * Interp0[ii] * Interp1[jj];
  3481. }
  3482. }
  3483. }
  3484. }
  3485. }
  3486. return Xf;
  3487. };
  3488. auto grid2cheb = [] (const Vector<Real>& Xf, Long Nt, Long Np, Long Mt, Long Mp) {
  3489. Long dof = Xf.Dim() / (Nt*Np);
  3490. SCTL_ASSERT(Xf.Dim() == dof*Nt*Np);
  3491. Vector<ElemBasis> X(Mt*Mp*dof);
  3492. constexpr Integer INTERP_ORDER = 12;
  3493. for (Long tt = 0; tt < Mt; tt++) {
  3494. for (Long pp = 0; pp < Mp; pp++) {
  3495. for (Long t = 0; t < ORDER; t++) {
  3496. for (Long p = 0; p < ORDER; p++) {
  3497. Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
  3498. Real theta = (tt + Mnodes[0][t]) / Mt;
  3499. Real phi = (pp + Mnodes[0][p]) / Mp;
  3500. Long i = (Long)(theta * Nt);
  3501. Long j = (Long)(phi * Np);
  3502. Real x = theta * Nt - i;
  3503. Real y = phi * Np - j;
  3504. Vector<Real> Interp0(INTERP_ORDER);
  3505. Vector<Real> Interp1(INTERP_ORDER);
  3506. { // Set Interp0, Interp1
  3507. auto node = [] (Long i) {
  3508. return (Real)i - (INTERP_ORDER-1)/2;
  3509. };
  3510. for (Long i = 0; i < INTERP_ORDER; i++) {
  3511. Real wt_x = 1, wt_y = 1;
  3512. for (Long j = 0; j < INTERP_ORDER; j++) {
  3513. if (j != i) {
  3514. wt_x *= (x - node(j)) / (node(i) - node(j));
  3515. wt_y *= (y - node(j)) / (node(i) - node(j));
  3516. }
  3517. Interp0[i] = wt_x;
  3518. Interp1[i] = wt_y;
  3519. }
  3520. }
  3521. }
  3522. for (Long k = 0; k < dof; k++) {
  3523. Real X0 = 0;
  3524. for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  3525. for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  3526. Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  3527. Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  3528. X0 += Interp0[ii] * Interp1[jj] * Xf[(k*Nt+idx_i)*Np+idx_j];
  3529. }
  3530. }
  3531. Long elem_idx = tt * Mp + pp;
  3532. Long node_idx = p * ORDER + t;
  3533. X[elem_idx*dof+k][node_idx] = X0;
  3534. }
  3535. }
  3536. }
  3537. }
  3538. }
  3539. return X;
  3540. };
  3541. auto fourier_filter = [](sctl::Vector<Real>& X, long Nt_, long Np_, Real sigma, const Comm& comm) {
  3542. long dof = X.Dim() / (Nt_ * Np_);
  3543. SCTL_ASSERT(X.Dim() == dof * Nt_ * Np_);
  3544. sctl::FFT<Real> fft_r2c, fft_c2r;
  3545. sctl::StaticArray<sctl::Long, 2> fft_dim = {Nt_, Np_};
  3546. fft_r2c.Setup(sctl::FFT_Type::R2C, 1, sctl::Vector<sctl::Long>(2, fft_dim, false), omp_get_max_threads());
  3547. fft_c2r.Setup(sctl::FFT_Type::C2R, 1, sctl::Vector<sctl::Long>(2, fft_dim, false), omp_get_max_threads());
  3548. long Nt = Nt_;
  3549. long Np = fft_r2c.Dim(1) / (Nt * 2);
  3550. SCTL_ASSERT(fft_r2c.Dim(1) == Nt * Np * 2);
  3551. //auto filter_fn = [](Real x2, Real sigma) {return exp(-x2/(2*sigma*sigma));};
  3552. auto filter_fn = [](Real x2, Real sigma) {return (x2<sigma*sigma?1.0:0.0);};
  3553. sctl::Vector<Real> normal, gradX;
  3554. biest::SurfaceOp<Real> op(comm, Nt_, Np_);
  3555. sctl::Vector<Real> coeff(fft_r2c.Dim(1));
  3556. for (long k = 0; k < dof; k++) {
  3557. sctl::Vector<Real> X_(Nt_*Np_, X.begin() + k*Nt_*Np_, false);
  3558. fft_r2c.Execute(X_, coeff);
  3559. for (long t = 0; t < Nt; t++) {
  3560. for (long p = 0; p < Np; p++) {
  3561. Real tt = (t - (t > Nt / 2 ? Nt : 0)) / (Real)(Nt / 2);
  3562. Real pp = p / (Real)Np;
  3563. Real f = filter_fn(tt*tt+pp*pp, sigma);
  3564. coeff[(t * Np + p) * 2 + 0] *= f;
  3565. coeff[(t * Np + p) * 2 + 1] *= f;
  3566. }
  3567. }
  3568. fft_c2r.Execute(coeff, X_);
  3569. }
  3570. };
  3571. Long dof = f.Dim() / S.NElem();
  3572. SCTL_ASSERT(f.Dim() == S.NElem() * dof);
  3573. for (Long i = 0; i < S.Nsurf(); i++) {
  3574. const Long Mt = S.NTor(i);
  3575. const Long Mp = S.NPol(i);
  3576. const Long Nelem = Mt * Mp;
  3577. const Long offset = S.ElemDsp(i);
  3578. const Long Nt = Mt * ORDER * 4;
  3579. const Long Np = Mp * ORDER * 4;
  3580. Vector<ElemBasis> f_(Nelem*dof, f.begin() + offset*dof, false);
  3581. Vector<Real> f_fourier = cheb2grid(f_, Mt, Mp, Nt, Np);
  3582. fourier_filter(f_fourier, Nt, Np, 0.25 * sigma, comm);
  3583. f_ = grid2cheb(f_fourier, Nt, Np, Mt, Mp);
  3584. }
  3585. };
  3586. Long iter = 0;
  3587. Real dt = 0.1;
  3588. while (1) { // time-step
  3589. Vector<ElemBasis> dgdnu = compute_gradient(S, pressure, flux_tor, flux_pol)*(-1);
  3590. //Vector<ElemBasis> dgdnu = compute_pressure_jump(S, pressure, flux_tor, flux_pol)*(-1);
  3591. Vector<ElemBasis> dXdt(dgdnu.Dim()*COORD_DIM);
  3592. { // Set dXdt
  3593. dXdt = 0;
  3594. const Long Nnodes = ElemBasis::Size();
  3595. Vector<ElemBasis> normal, area_elem;
  3596. compute_norm_area_elem(S, normal, area_elem);
  3597. for (Long i = 0; i < S.ElemDsp(S.Nsurf()-1); i++) {
  3598. for (Long j = 0; j < Nnodes; j++) {
  3599. dXdt[i*COORD_DIM+0][j] = normal[i*COORD_DIM+0][j] * dgdnu[i][j];
  3600. dXdt[i*COORD_DIM+1][j] = normal[i*COORD_DIM+1][j] * dgdnu[i][j];
  3601. dXdt[i*COORD_DIM+2][j] = normal[i*COORD_DIM+2][j] * dgdnu[i][j];
  3602. }
  3603. }
  3604. filter(S, comm, dXdt, 0.1);
  3605. }
  3606. { // Update dt
  3607. const Long Nelem = S.NElem();
  3608. Stellarator<Real,ORDER> S0 = S, S1 = S, S2 = S;
  3609. for (Long i = 0; i < S.NElem(); i++) {
  3610. S0.Elem(i, 0) += dXdt[i*COORD_DIM+0] * 0.0 * dt;
  3611. S0.Elem(i, 1) += dXdt[i*COORD_DIM+1] * 0.0 * dt;
  3612. S0.Elem(i, 2) += dXdt[i*COORD_DIM+2] * 0.0 * dt;
  3613. S1.Elem(i, 0) += dXdt[i*COORD_DIM+0] * 0.5 * dt;
  3614. S1.Elem(i, 1) += dXdt[i*COORD_DIM+1] * 0.5 * dt;
  3615. S1.Elem(i, 2) += dXdt[i*COORD_DIM+2] * 0.5 * dt;
  3616. S2.Elem(i, 0) += dXdt[i*COORD_DIM+0] * 1.0 * dt;
  3617. S2.Elem(i, 1) += dXdt[i*COORD_DIM+1] * 1.0 * dt;
  3618. S2.Elem(i, 2) += dXdt[i*COORD_DIM+2] * 1.0 * dt;
  3619. }
  3620. Real g0, g1, g2;
  3621. compute_pressure_jump(S0, pressure, flux_tor, flux_pol, &g0);
  3622. compute_pressure_jump(S1, pressure, flux_tor, flux_pol, &g1);
  3623. compute_pressure_jump(S2, pressure, flux_tor, flux_pol, &g2);
  3624. { // Calculate optimal step size dt
  3625. Real a = 2*g0 - 4*g1 + 2*g2;
  3626. Real b =-3*g0 + 4*g1 - g2;
  3627. Real c = g0;
  3628. Real s = -b/(2*a);
  3629. dt *= s;
  3630. Real g_ = a*s*s + b*s + c;
  3631. std::cout<<"g = "<<g_<<' ';
  3632. std::cout<<g0<<' ';
  3633. std::cout<<g1<<' ';
  3634. std::cout<<g2<<' ';
  3635. std::cout<<dt<<'\n';
  3636. }
  3637. }
  3638. { // Write VTU
  3639. VTUData vtu;
  3640. vtu.AddElems(S.GetElemList(), dgdnu*dt, ORDER);
  3641. vtu.WriteVTK("dgdnu"+std::to_string(iter), comm);
  3642. }
  3643. { // Write VTU
  3644. VTUData vtu;
  3645. vtu.AddElems(S.GetElemList(), dXdt*dt, ORDER);
  3646. vtu.WriteVTK("dXdt"+std::to_string(iter), comm);
  3647. }
  3648. { // Write VTU
  3649. Vector<ElemBasis> pressure_jump = compute_pressure_jump(S, pressure, flux_tor, flux_pol);
  3650. VTUData vtu;
  3651. vtu.AddElems(S.GetElemList(), pressure_jump, ORDER);
  3652. vtu.WriteVTK("pressure_jump"+std::to_string(iter), comm);
  3653. }
  3654. { // Update S <-- filter(S + dXdt * dt)
  3655. const Long Nelem = S.NElem();
  3656. Vector<ElemBasis> X(Nelem*COORD_DIM);
  3657. for (Long i = 0; i < S.NElem(); i++) {
  3658. X[i*COORD_DIM+0] = S.Elem(i, 0) + dXdt[i*COORD_DIM+0] * dt;
  3659. X[i*COORD_DIM+1] = S.Elem(i, 1) + dXdt[i*COORD_DIM+1] * dt;
  3660. X[i*COORD_DIM+2] = S.Elem(i, 2) + dXdt[i*COORD_DIM+2] * dt;
  3661. }
  3662. filter(S, comm, X, 0.3);
  3663. for (Long i = 0; i < S.NElem(); i++) {
  3664. S.Elem(i, 0) = X[i*COORD_DIM+0];
  3665. S.Elem(i, 1) = X[i*COORD_DIM+1];
  3666. S.Elem(i, 2) = X[i*COORD_DIM+2];
  3667. }
  3668. }
  3669. iter++;
  3670. }
  3671. return;
  3672. }
  3673. { // Verify using finite difference approximation
  3674. Vector<ElemBasis> dgdnu = compute_gradient(S, pressure, flux_tor, flux_pol);
  3675. { // Write VTU
  3676. VTUData vtu;
  3677. vtu.AddElems(S.GetElemList(), dgdnu, ORDER);
  3678. vtu.WriteVTK("dgdnu", comm);
  3679. }
  3680. Real eps = 1e-4;
  3681. const Long Nnodes = ElemBasis::Size();
  3682. Vector<ElemBasis> normal, area_elem;
  3683. compute_norm_area_elem(S, normal, area_elem);
  3684. Vector<ElemBasis> nu = area_elem;
  3685. for (Long i = S.ElemDsp(S.Nsurf()-1); i < S.NElem(); i++) nu[i] = 0;
  3686. Stellarator<Real,ORDER> S0 = S, S1 = S;
  3687. for (Long i = 0; i < S.NElem(); i++) {
  3688. for (Long j = 0; j < Nnodes; j++) {
  3689. S0.Elem(i, 0)[j] -= 0.5 * eps * normal[i*COORD_DIM+0][j] * nu[i][j];
  3690. S0.Elem(i, 1)[j] -= 0.5 * eps * normal[i*COORD_DIM+1][j] * nu[i][j];
  3691. S0.Elem(i, 2)[j] -= 0.5 * eps * normal[i*COORD_DIM+2][j] * nu[i][j];
  3692. S1.Elem(i, 0)[j] += 0.5 * eps * normal[i*COORD_DIM+0][j] * nu[i][j];
  3693. S1.Elem(i, 1)[j] += 0.5 * eps * normal[i*COORD_DIM+1][j] * nu[i][j];
  3694. S1.Elem(i, 2)[j] += 0.5 * eps * normal[i*COORD_DIM+2][j] * nu[i][j];
  3695. }
  3696. }
  3697. Real g0, g1;
  3698. compute_pressure_jump(S0, pressure, flux_tor, flux_pol, &g0);
  3699. compute_pressure_jump(S1, pressure, flux_tor, flux_pol, &g1);
  3700. std::cout<<"g0 = "<<g0<<"; g1 = "<<g1<<"; dgdnu_ = "<<(g1-g0)/eps<<'\n';
  3701. std::cout<<"dgdnu = "<<compute_inner_prod(area_elem, dgdnu, nu)<<'\n';
  3702. }
  3703. }
  3704. static void test_() {
  3705. Comm comm = Comm::World();
  3706. Profile::Enable(true);
  3707. Real flux_tor = 1.0, flux_pol = 1.0;
  3708. Stellarator<Real,ORDER> S;
  3709. { // Init S
  3710. Vector<Long> NtNp;
  3711. NtNp.PushBack(20);
  3712. NtNp.PushBack(4);
  3713. //NtNp.PushBack(20);
  3714. //NtNp.PushBack(4);
  3715. S = Stellarator<Real,ORDER>(NtNp);
  3716. }
  3717. if (S.Nsurf() == 1) flux_pol = 0.0;
  3718. Vector<ElemBasis> pressure;
  3719. { // Set pressure
  3720. Vector<ElemBasis> normal, area_elem;
  3721. compute_norm_area_elem(S, normal, area_elem);
  3722. pressure = area_elem*0;
  3723. }
  3724. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  3725. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3726. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  3727. SetupQuadrature(S.quadrature_FxdU, S, S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  3728. SetupQuadrature(S.quadrature_dUxF, S, S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
  3729. Vector<ElemBasis> Bt0, Bp0;
  3730. { // Set Bt0, Bp0
  3731. Vector<ElemBasis> Jt, Jp;
  3732. compute_harmonic_vector_potentials(Jt, Jp, S);
  3733. EvalQuadrature(Bt0, S.quadrature_BS, S, Jp, S.BiotSavart);
  3734. EvalQuadrature(Bp0, S.quadrature_BS, S, Jt, S.BiotSavart);
  3735. }
  3736. auto compute_B = [&S,&Bt0,&Bp0] (const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  3737. const Long Nelem = S.NElem();
  3738. Vector<ElemBasis> B(S.NElem() * COORD_DIM);
  3739. if (sigma.Dim()) {
  3740. const Long Nnodes = ElemBasis::Size();
  3741. Vector<ElemBasis> normal, area_elem;
  3742. compute_norm_area_elem(S, normal, area_elem);
  3743. EvalQuadrature(B, S.quadrature_FxdU, S, sigma, S.Laplace_FxdU);
  3744. for (Long i = 0; i < Nelem; i++) {
  3745. for (Long j = 0; j < Nnodes; j++) {
  3746. for (Long k = 0; k < COORD_DIM; k++) {
  3747. B[i*COORD_DIM+k][j] -= 0.5*sigma[i][j]*normal[i*COORD_DIM+k][j];
  3748. }
  3749. }
  3750. }
  3751. } else {
  3752. B = 0;
  3753. }
  3754. if (S.Nsurf() >= 1) B += Bt0*alpha;
  3755. if (S.Nsurf() >= 2) B += Bp0*beta;
  3756. return B;
  3757. };
  3758. auto compute_flux = [&S] (Real& flux_tor, Real& flux_pol, const Vector<ElemBasis>& B, const Vector<ElemBasis>& normal) {
  3759. const Long Nelem = S.NElem();
  3760. const Long Nnodes = ElemBasis::Size();
  3761. SCTL_ASSERT(B.Dim() == Nelem*COORD_DIM);
  3762. SCTL_ASSERT(normal.Dim() == Nelem*COORD_DIM);
  3763. Vector<ElemBasis> J(Nelem * COORD_DIM);
  3764. for (Long i = 0; i < Nelem; i++) { // Set J
  3765. for (Long j = 0; j < Nnodes; j++) {
  3766. Tensor<Real,true,COORD_DIM> b, n;
  3767. b(0) = B[i*COORD_DIM+0][j];
  3768. b(1) = B[i*COORD_DIM+1][j];
  3769. b(2) = B[i*COORD_DIM+2][j];
  3770. n(0) = normal[i*COORD_DIM+0][j];
  3771. n(1) = normal[i*COORD_DIM+1][j];
  3772. n(2) = normal[i*COORD_DIM+2][j];
  3773. J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
  3774. J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
  3775. J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
  3776. }
  3777. }
  3778. Vector<ElemBasis> A;
  3779. EvalQuadrature(A, S.quadrature_FxU, S, J, S.Laplace_FxU);
  3780. Vector<Real> circ_pol(S.Nsurf()), circ_tor(S.Nsurf());
  3781. { // compute circ
  3782. Vector<ElemBasis> dX;
  3783. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  3784. const auto& quad_wts = ElemBasis::QuadWts();
  3785. for (Long k = 0; k < S.Nsurf(); k++) {
  3786. circ_pol[k] = 0;
  3787. circ_tor[k] = 0;
  3788. Long Ndsp = S.ElemDsp(k);
  3789. for (Long i = 0; i < S.NTor(k)*S.NPol(k); i++) {
  3790. for (Long j = 0; j < Nnodes; j++) {
  3791. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+1][j] * quad_wts[j] / S.NTor(k);
  3792. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+3][j] * quad_wts[j] / S.NTor(k);
  3793. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+5][j] * quad_wts[j] / S.NTor(k);
  3794. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+0][j] * quad_wts[j] / S.NPol(k);
  3795. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+2][j] * quad_wts[j] / S.NPol(k);
  3796. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+4][j] * quad_wts[j] / S.NPol(k);
  3797. }
  3798. }
  3799. }
  3800. }
  3801. if (S.Nsurf() == 1) {
  3802. flux_tor = circ_pol[0];
  3803. flux_pol = 0;
  3804. } else if (S.Nsurf() == 2) {
  3805. flux_tor = circ_pol[1] - circ_pol[0];
  3806. flux_pol = circ_tor[0] - circ_tor[1];
  3807. } else {
  3808. SCTL_ASSERT(false);
  3809. }
  3810. };
  3811. auto compute_A = [&S,compute_B,&compute_flux] (const Vector<Real>& x) {
  3812. const Long Nelem = S.NElem();
  3813. const Long Nnodes = ElemBasis::Size();
  3814. SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
  3815. Vector<ElemBasis> normal, area_elem;
  3816. compute_norm_area_elem(S, normal, area_elem);
  3817. Vector<ElemBasis> sigma(Nelem);
  3818. for (Long i = 0; i < Nelem; i++) {
  3819. for (Long j = 0; j < Nnodes; j++) {
  3820. sigma[i][j] = x[i*Nnodes+j];
  3821. }
  3822. }
  3823. Real alpha = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
  3824. Real beta = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
  3825. Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
  3826. Vector<ElemBasis> BdotN = compute_dot_prod(B, normal);
  3827. Real flux_tor, flux_pol;
  3828. compute_flux(flux_tor, flux_pol, B, normal);
  3829. Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
  3830. for (Long i = 0; i < Nelem; i++) {
  3831. for (Long j = 0; j < Nnodes; j++) {
  3832. Ax[i*Nnodes+j] = BdotN[i][j];
  3833. }
  3834. }
  3835. if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = flux_tor;
  3836. if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = flux_pol;
  3837. return Ax;
  3838. };
  3839. auto compute_invA = [&S,&comm,&compute_A] (Vector<ElemBasis>& sigma, Real& alpha, Real& beta, Real flux_tor, Real flux_pol) {
  3840. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&compute_A](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  3841. (*Ax) = compute_A(x);
  3842. };
  3843. const Long Nelem = S.NElem();
  3844. const Long Nnodes = ElemBasis::Size();
  3845. Vector<Real> rhs_(Nelem * Nnodes + S.Nsurf());
  3846. rhs_ = 0;
  3847. if (S.Nsurf() >= 1) rhs_[Nelem * Nnodes + 0] = flux_tor;
  3848. if (S.Nsurf() >= 2) rhs_[Nelem * Nnodes + 1] = flux_pol;
  3849. Vector<Real> x_(Nelem * Nnodes + S.Nsurf());
  3850. x_ = 0;
  3851. ParallelSolver<Real> linear_solver(comm, true);
  3852. linear_solver(&x_, BIOp, rhs_, 1e-8, 100);
  3853. sigma.ReInit(Nelem);
  3854. for (Long i = 0; i < Nelem; i++) {
  3855. for (Long j = 0; j < Nnodes; j++) {
  3856. sigma[i][j] = x_[i*Nnodes+j];
  3857. }
  3858. }
  3859. alpha = (S.Nsurf() >= 1 ? x_[Nelem * Nnodes + 0] : 0);
  3860. beta = (S.Nsurf() >= 2 ? x_[Nelem * Nnodes + 1] : 0);
  3861. };
  3862. Vector<ElemBasis> dg_dnu = compute_gradient(S, pressure, flux_tor, flux_pol);
  3863. { // Write VTU
  3864. VTUData vtu;
  3865. vtu.AddElems(S.GetElemList(), dg_dnu, ORDER);
  3866. vtu.WriteVTK("dg_dnu", comm);
  3867. }
  3868. if (1) { // test grad_g
  3869. auto compute_g = [&S,&Bt0,&Bp0,&compute_B,&compute_invA,&comm] (const Vector<ElemBasis>& nu, Real eps, Real flux_tor, Real flux_pol, const Vector<ElemBasis>& pressure) {
  3870. const Long Nelem = S.NElem();
  3871. const Long Nnodes = ElemBasis::Size();
  3872. Vector<ElemBasis> normal, area_elem;
  3873. compute_norm_area_elem(S, normal, area_elem);
  3874. Vector<ElemBasis> X_orig(Nelem*COORD_DIM);
  3875. for (Long i = 0; i < Nelem; i++) {
  3876. for (Long j = 0; j < Nnodes; j++) {
  3877. X_orig[i*COORD_DIM+0][j] = S.Elem(i,0)[j];
  3878. X_orig[i*COORD_DIM+1][j] = S.Elem(i,1)[j];
  3879. X_orig[i*COORD_DIM+2][j] = S.Elem(i,2)[j];
  3880. S.Elem(i,0)[j] += eps*nu[i][j] * normal[i*COORD_DIM+0][j];
  3881. S.Elem(i,1)[j] += eps*nu[i][j] * normal[i*COORD_DIM+1][j];
  3882. S.Elem(i,2)[j] += eps*nu[i][j] * normal[i*COORD_DIM+2][j];
  3883. }
  3884. }
  3885. /////////////////////////////////////////////////////////////////////////////////////////////////////////////
  3886. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3887. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  3888. SetupQuadrature(S.quadrature_FxdU, S, S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  3889. Vector<ElemBasis> Jt, Jp;
  3890. compute_harmonic_vector_potentials(Jt, Jp, S);
  3891. EvalQuadrature(Bt0, S.quadrature_BS, S, Jp, S.BiotSavart);
  3892. EvalQuadrature(Bp0, S.quadrature_BS, S, Jt, S.BiotSavart);
  3893. Real alpha, beta;
  3894. Vector<ElemBasis> sigma;
  3895. compute_invA(sigma, alpha, beta, flux_tor, flux_pol);
  3896. Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
  3897. compute_norm_area_elem(S, normal, area_elem);
  3898. Real g = compute_inner_prod(area_elem, compute_gvec(S,B,pressure), area_elem*0+1);
  3899. /////////////////////////////////////////////////////////////////////////////////////////////////////////////
  3900. for (Long i = 0; i < Nelem; i++) {
  3901. for (Long j = 0; j < Nnodes; j++) {
  3902. S.Elem(i,0)[j] = X_orig[i*COORD_DIM+0][j];
  3903. S.Elem(i,1)[j] = X_orig[i*COORD_DIM+1][j];
  3904. S.Elem(i,2)[j] = X_orig[i*COORD_DIM+2][j];
  3905. }
  3906. }
  3907. return g;
  3908. };
  3909. Vector<ElemBasis> normal, area_elem;
  3910. compute_norm_area_elem(S, normal, area_elem);
  3911. const Long Nelem = S.NElem();
  3912. {
  3913. Vector<ElemBasis> nu(Nelem);
  3914. nu = area_elem;
  3915. Real eps = 1e-4;
  3916. Real g0 = compute_g(nu,-eps, flux_tor, flux_pol, pressure);
  3917. Real g1 = compute_g(nu,eps, flux_tor, flux_pol, pressure);
  3918. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  3919. std::cout<<"dg_dnu = "<<compute_inner_prod(area_elem,nu, dg_dnu)<<'\n';
  3920. }
  3921. {
  3922. Vector<ElemBasis> nu(Nelem);
  3923. nu = 1;
  3924. Real eps = 1e-4;
  3925. Real g0 = compute_g(nu,-eps, flux_tor, flux_pol, pressure);
  3926. Real g1 = compute_g(nu,eps, flux_tor, flux_pol, pressure);
  3927. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  3928. std::cout<<"dg_dnu = "<<compute_inner_prod(area_elem,nu, dg_dnu)<<'\n';
  3929. }
  3930. {
  3931. Vector<ElemBasis> nu(Nelem);
  3932. nu = dg_dnu;
  3933. Real eps = 1e-4;
  3934. Real g0 = compute_g(nu,-eps, flux_tor, flux_pol, pressure);
  3935. Real g1 = compute_g(nu,eps, flux_tor, flux_pol, pressure);
  3936. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  3937. std::cout<<"dg_dnu = "<<compute_inner_prod(area_elem,nu, dg_dnu)<<'\n';
  3938. }
  3939. }
  3940. }
  3941. static void test_askham() {
  3942. auto Setup = [] (Stellarator<Real,ORDER>& S, const Comm& comm) { // Set quadratures, Bt0, Bp0, ...
  3943. SetupQuadrature(S.quadrature_dBS , S, S.BiotSavartGrad, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3944. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3945. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  3946. SetupQuadrature(S.quadrature_FxdU , S, S.Laplace_FxdU , order_singular, order_direct, -1.0, comm);
  3947. SetupQuadrature(S.quadrature_dUxF , S, S.Laplace_dUxF , order_singular, order_direct, -1.0, comm);
  3948. SetupQuadrature(S.quadrature_dUxD , S, S.Laplace_dUxD , order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  3949. SetupQuadrature(S.quadrature_Fxd2U, S, S.Laplace_Fxd2U , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3950. { // Set Bt0, Bp0, dBt0, dBp0
  3951. Vector<ElemBasis> Jt, Jp;
  3952. compute_harmonic_vector_potentials(Jt, Jp, S);
  3953. EvalQuadrature(S.Bt0 , S.quadrature_BS , S, Jp, S.BiotSavart);
  3954. EvalQuadrature(S.Bp0 , S.quadrature_BS , S, Jt, S.BiotSavart);
  3955. EvalQuadrature(S.dBt0, S.quadrature_dBS, S, Jp, S.BiotSavartGrad);
  3956. EvalQuadrature(S.dBp0, S.quadrature_dBS, S, Jt, S.BiotSavartGrad);
  3957. }
  3958. };
  3959. auto compute_grad = [] (const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& V) {
  3960. const Long Nelem = S.GetElemList().NElem();
  3961. const Long Nnodes = ElemBasis::Size();
  3962. const Long dof = V.Dim() / Nelem;
  3963. SCTL_ASSERT(Nelem * dof == V.Dim());
  3964. Vector<ElemBasis> du_dX(Nelem*COORD_DIM*2);
  3965. { // Set du_dX
  3966. Vector<ElemBasis> dX;
  3967. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  3968. auto inv2x2 = [](Tensor<Real, true, 2, 2> M) {
  3969. Tensor<Real, true, 2, 2> Mout;
  3970. Real oodet = 1 / (M(0,0) * M(1,1) - M(0,1) * M(1,0));
  3971. Mout(0,0) = M(1,1) * oodet;
  3972. Mout(0,1) = -M(0,1) * oodet;
  3973. Mout(1,0) = -M(1,0) * oodet;
  3974. Mout(1,1) = M(0,0) * oodet;
  3975. return Mout;
  3976. };
  3977. for (Long i = 0; i < Nelem; i++) {
  3978. for (Long j = 0; j < Nnodes; j++) {
  3979. Tensor<Real, true, 3, 2> dX_du;
  3980. dX_du(0,0) = dX[(i*COORD_DIM+0)*2+0][j];
  3981. dX_du(1,0) = dX[(i*COORD_DIM+1)*2+0][j];
  3982. dX_du(2,0) = dX[(i*COORD_DIM+2)*2+0][j];
  3983. dX_du(0,1) = dX[(i*COORD_DIM+0)*2+1][j];
  3984. dX_du(1,1) = dX[(i*COORD_DIM+1)*2+1][j];
  3985. dX_du(2,1) = dX[(i*COORD_DIM+2)*2+1][j];
  3986. Tensor<Real, true, 2, 2> G; // = dX_du.Transpose() * dX_du;
  3987. G(0,0) = dX_du(0,0) * dX_du(0,0) + dX_du(1,0) * dX_du(1,0) + dX_du(2,0) * dX_du(2,0);
  3988. G(0,1) = dX_du(0,0) * dX_du(0,1) + dX_du(1,0) * dX_du(1,1) + dX_du(2,0) * dX_du(2,1);
  3989. G(1,0) = dX_du(0,1) * dX_du(0,0) + dX_du(1,1) * dX_du(1,0) + dX_du(2,1) * dX_du(2,0);
  3990. G(1,1) = dX_du(0,1) * dX_du(0,1) + dX_du(1,1) * dX_du(1,1) + dX_du(2,1) * dX_du(2,1);
  3991. Tensor<Real, true, 2, 2> Ginv = inv2x2(G);
  3992. du_dX[(i*COORD_DIM+0)*2+0][j] = Ginv(0,0) * dX_du(0,0) + Ginv(0,1) * dX_du(0,1);
  3993. du_dX[(i*COORD_DIM+1)*2+0][j] = Ginv(0,0) * dX_du(1,0) + Ginv(0,1) * dX_du(1,1);
  3994. du_dX[(i*COORD_DIM+2)*2+0][j] = Ginv(0,0) * dX_du(2,0) + Ginv(0,1) * dX_du(2,1);
  3995. du_dX[(i*COORD_DIM+0)*2+1][j] = Ginv(1,0) * dX_du(0,0) + Ginv(1,1) * dX_du(0,1);
  3996. du_dX[(i*COORD_DIM+1)*2+1][j] = Ginv(1,0) * dX_du(1,0) + Ginv(1,1) * dX_du(1,1);
  3997. du_dX[(i*COORD_DIM+2)*2+1][j] = Ginv(1,0) * dX_du(2,0) + Ginv(1,1) * dX_du(2,1);
  3998. }
  3999. }
  4000. }
  4001. Vector<ElemBasis> dV;
  4002. ElemBasis::Grad(dV, V);
  4003. Vector<ElemBasis> gradV(Nelem*dof*COORD_DIM);
  4004. for (Long i = 0; i < Nelem; i++) {
  4005. for (Long j = 0; j < Nnodes; j++) {
  4006. for (Long k = 0; k < dof; k++) {
  4007. gradV[(i*dof+k)*COORD_DIM+0][j] = dV[(i*dof+k)*2+0][j] * du_dX[(i*COORD_DIM+0)*2+0][j] + dV[(i*dof+k)*2+1][j] * du_dX[(i*COORD_DIM+0)*2+1][j];
  4008. gradV[(i*dof+k)*COORD_DIM+1][j] = dV[(i*dof+k)*2+0][j] * du_dX[(i*COORD_DIM+1)*2+0][j] + dV[(i*dof+k)*2+1][j] * du_dX[(i*COORD_DIM+1)*2+1][j];
  4009. gradV[(i*dof+k)*COORD_DIM+2][j] = dV[(i*dof+k)*2+0][j] * du_dX[(i*COORD_DIM+2)*2+0][j] + dV[(i*dof+k)*2+1][j] * du_dX[(i*COORD_DIM+2)*2+1][j];
  4010. }
  4011. }
  4012. }
  4013. return gradV;
  4014. };
  4015. auto compute_surfdiv = [&compute_grad] (const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& V) {
  4016. const Long Nelem = S.GetElemList().NElem();
  4017. const Long Nnodes = ElemBasis::Size();
  4018. SCTL_ASSERT(V.Dim() == Nelem* COORD_DIM);
  4019. Vector<ElemBasis> gradV = compute_grad(S, V);
  4020. Vector<ElemBasis> divV(Nelem);
  4021. for (Long i = 0; i < Nelem; i++) {
  4022. for (Long j = 0; j < Nnodes; j++) {
  4023. divV[i][j] = gradV[(i*COORD_DIM+0)*COORD_DIM+0][j] + gradV[(i*COORD_DIM+1)*COORD_DIM+1][j] + gradV[(i*COORD_DIM+2)*COORD_DIM+2][j];
  4024. }
  4025. }
  4026. return divV;
  4027. };
  4028. auto compute_g = [](const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& B) {
  4029. const Long Nelem = S.NElem();
  4030. const Long Nnodes = ElemBasis::Size();
  4031. Vector<ElemBasis> normal, area_elem;
  4032. compute_norm_area_elem(S, normal, area_elem);
  4033. Vector<ElemBasis> B2(Nelem);
  4034. for (Long i = 0; i < Nelem; i++) {
  4035. for (Long j = 0; j < Nnodes; j++) {
  4036. B2[i][j] = 0;
  4037. B2[i][j] += B[i*COORD_DIM+0][j] * B[i*COORD_DIM+0][j];
  4038. B2[i][j] += B[i*COORD_DIM+1][j] * B[i*COORD_DIM+1][j];
  4039. B2[i][j] += B[i*COORD_DIM+2][j] * B[i*COORD_DIM+2][j];
  4040. }
  4041. }
  4042. return compute_inner_prod(area_elem,B2, B2) * 0.25;
  4043. };
  4044. auto compute_H = [] (const ElemList<COORD_DIM,ElemBasis>& elem_lst, const Vector<ElemBasis>& normal) {
  4045. const Long Nnodes = ElemBasis::Size();
  4046. const Long Nelem = elem_lst.NElem();
  4047. const Vector<ElemBasis> X = elem_lst.ElemVector();
  4048. Vector<ElemBasis> dX, d2X, H(Nelem);
  4049. ElemBasis::Grad(dX, X);
  4050. ElemBasis::Grad(d2X, dX);
  4051. for (Long i = 0; i < Nelem; i++) {
  4052. for (Long j = 0; j < Nnodes; j++) {
  4053. Tensor<Real,true,2,2> I, invI, II;
  4054. for (Long k0 = 0; k0 < 2; k0++) {
  4055. for (Long k1 = 0; k1 < 2; k1++) {
  4056. I(k0,k1) = 0;
  4057. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  4058. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  4059. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  4060. II(k0,k1) = 0;
  4061. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  4062. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  4063. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  4064. }
  4065. }
  4066. { // Set invI
  4067. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  4068. invI(0,0) = I(1,1) / detI;
  4069. invI(0,1) = -I(0,1) / detI;
  4070. invI(1,0) = -I(1,0) / detI;
  4071. invI(1,1) = I(0,0) / detI;
  4072. }
  4073. { // Set H
  4074. H[i][j] = 0;
  4075. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  4076. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  4077. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  4078. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  4079. }
  4080. }
  4081. }
  4082. return H;
  4083. };
  4084. auto compute_A_ = [](const Stellarator<Real,ORDER>& S, const Vector<Real>& x) {
  4085. const Long Nelem = S.NElem();
  4086. const Long Nnodes = ElemBasis::Size();
  4087. SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
  4088. Vector<ElemBasis> normal, area_elem;
  4089. compute_norm_area_elem(S, normal, area_elem);
  4090. if (S.Nsurf() == 2) {
  4091. Long Nelem0 = S.NTor(0)*S.NPol(0);
  4092. for (Long i = 0; i < Nelem0*COORD_DIM; i++) {
  4093. for (Long j = 0; j < Nnodes; j++) {
  4094. normal[i][j] *= -1.0;
  4095. }
  4096. }
  4097. }
  4098. Vector<ElemBasis> sigma(Nelem);
  4099. for (Long i = 0; i < Nelem; i++) {
  4100. for (Long j = 0; j < Nnodes; j++) {
  4101. sigma[i][j] = x[i*Nnodes+j];
  4102. }
  4103. }
  4104. Real alpha = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
  4105. Real beta = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
  4106. Vector<ElemBasis> B = compute_B(S, sigma, alpha, beta);
  4107. Vector<ElemBasis> BdotN = compute_dot_prod(B, normal);
  4108. Real flux_tor, flux_pol;
  4109. compute_flux(flux_tor, flux_pol, S, B, normal);
  4110. { // update flux_tor
  4111. Vector<ElemBasis> G_BdotN(Nelem), phi_dot_N_over_R(Nelem);
  4112. EvalQuadrature(G_BdotN, S.quadrature_FxU, S, BdotN, S.Laplace_FxU);
  4113. for (Long i = 0; i < Nelem; i++) {
  4114. for (Long j = 0; j < Nnodes; j++) {
  4115. Tensor<Real,true,COORD_DIM> x, b0, axis;
  4116. x(0) = S.Elem(i,0)[j];
  4117. x(1) = S.Elem(i,1)[j];
  4118. x(2) = S.Elem(i,2)[j];
  4119. axis(0) = 0;
  4120. axis(1) = 0;
  4121. axis(2) = 1;
  4122. b0(0) = axis(1) * x(2) - axis(2) * x(1);
  4123. b0(1) = axis(2) * x(0) - axis(0) * x(2);
  4124. b0(2) = axis(0) * x(1) - axis(1) * x(0);
  4125. Real scale = 1 / (b0(0)*b0(0) + b0(1)*b0(1) + b0(2)*b0(2));
  4126. b0(0) *= scale;
  4127. b0(1) *= scale;
  4128. b0(2) *= scale;
  4129. phi_dot_N_over_R[i][j] = 0;
  4130. phi_dot_N_over_R[i][j] += normal[i*COORD_DIM+0][j] * b0(0);
  4131. phi_dot_N_over_R[i][j] += normal[i*COORD_DIM+1][j] * b0(1);
  4132. phi_dot_N_over_R[i][j] += normal[i*COORD_DIM+2][j] * b0(2);
  4133. }
  4134. }
  4135. flux_tor += compute_inner_prod(area_elem, phi_dot_N_over_R, G_BdotN)/(2*const_pi<Real>());
  4136. }
  4137. Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
  4138. for (Long i = 0; i < Nelem; i++) {
  4139. for (Long j = 0; j < Nnodes; j++) {
  4140. Ax[i*Nnodes+j] = BdotN[i][j];
  4141. }
  4142. }
  4143. if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = flux_tor;
  4144. if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = flux_pol;
  4145. return Ax;
  4146. };
  4147. auto compute_invA_ = [&compute_A_](Vector<ElemBasis>& sigma, Real& alpha, Real& beta, const Stellarator<Real,ORDER>& S, Vector<ElemBasis>& Bdotn, Real flux_tor, Real flux_pol, const Comm& comm) {
  4148. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&S,&compute_A_](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  4149. (*Ax) = compute_A_(S, x);
  4150. };
  4151. const Long Nelem = S.NElem();
  4152. const Long Nnodes = ElemBasis::Size();
  4153. Vector<Real> rhs_(Nelem * Nnodes + S.Nsurf());
  4154. for (Long i = 0; i < Nelem; i++) {
  4155. for (Long j = 0; j < Nnodes; j++) {
  4156. rhs_[i*Nnodes+j] = Bdotn[i][j];
  4157. }
  4158. }
  4159. if (S.Nsurf() >= 1) rhs_[Nelem * Nnodes + 0] = flux_tor;
  4160. if (S.Nsurf() >= 2) rhs_[Nelem * Nnodes + 1] = flux_pol;
  4161. Vector<Real> x_(Nelem * Nnodes + S.Nsurf());
  4162. x_ = 0;
  4163. ParallelSolver<Real> linear_solver(comm, true);
  4164. linear_solver(&x_, BIOp, rhs_, 1e-6, 100);
  4165. sigma.ReInit(Nelem);
  4166. for (Long i = 0; i < Nelem; i++) {
  4167. for (Long j = 0; j < Nnodes; j++) {
  4168. sigma[i][j] = x_[i*Nnodes+j];
  4169. }
  4170. }
  4171. alpha = (S.Nsurf() >= 1 ? x_[Nelem * Nnodes + 0] : 0);
  4172. beta = (S.Nsurf() >= 2 ? x_[Nelem * Nnodes + 1] : 0);
  4173. };
  4174. Comm comm = Comm::World();
  4175. Profile::Enable(true);
  4176. Long Nsurf = 1;
  4177. Stellarator<Real,ORDER> S;
  4178. Vector<Real> flux_tor(Nsurf), flux_pol(Nsurf);
  4179. { // Init S, flux_tor, flux_pol, pressure
  4180. Vector<Long> NtNp;
  4181. NtNp.PushBack(30);
  4182. NtNp.PushBack(4);
  4183. S = Stellarator<Real,ORDER>(NtNp);
  4184. flux_tor = 1;
  4185. flux_pol = 1;
  4186. }
  4187. Setup(S, comm);
  4188. const Long Nelem = S.NElem();
  4189. const Long Nnodes = ElemBasis::Size();
  4190. Vector<ElemBasis> normal, area_elem;
  4191. compute_norm_area_elem(S, normal, area_elem);
  4192. Vector<ElemBasis> nu(Nelem);
  4193. { // Set nu
  4194. nu = area_elem;
  4195. //nu = 1;
  4196. //for (Long i = 0; i < Nelem; i++) {
  4197. // for (Long j = 0; j < Nnodes; j++) {
  4198. // Tensor<Real,true,COORD_DIM> x;
  4199. // x(0) = S.Elem(i,0)[j];
  4200. // x(1) = S.Elem(i,1)[j];
  4201. // x(2) = S.Elem(i,2)[j];
  4202. // nu[i][j] = x(2);
  4203. // }
  4204. //}
  4205. }
  4206. nu = nu * (1.0/sqrt(compute_inner_prod(area_elem, nu, nu)));
  4207. Vector<ElemBasis> B, nu_dBdn, nu_n_dot_dBdn;
  4208. { // Set B, nu_dBdn, nu_n_dot_dBdn
  4209. Real alpha, beta;
  4210. Vector<ElemBasis> sigma;
  4211. compute_invA(sigma, alpha, beta, S, flux_tor[0], flux_pol[0], comm);
  4212. B = compute_B(S, sigma, alpha, beta);
  4213. Vector<ElemBasis> dB = compute_dB(S, sigma, alpha, beta);
  4214. nu_dBdn.ReInit(Nelem * COORD_DIM);
  4215. nu_n_dot_dBdn.ReInit(Nelem);
  4216. for (Long i = 0; i < Nelem; i++) {
  4217. for (Long j = 0; j < Nnodes; j++) {
  4218. Real nu_dBdn_[COORD_DIM] = {0,0,0};
  4219. nu_dBdn_[0] -= dB[(i*COORD_DIM+0)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j] * nu[i][j];
  4220. nu_dBdn_[0] -= dB[(i*COORD_DIM+0)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j] * nu[i][j];
  4221. nu_dBdn_[0] -= dB[(i*COORD_DIM+0)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j] * nu[i][j];
  4222. nu_dBdn_[1] -= dB[(i*COORD_DIM+1)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j] * nu[i][j];
  4223. nu_dBdn_[1] -= dB[(i*COORD_DIM+1)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j] * nu[i][j];
  4224. nu_dBdn_[1] -= dB[(i*COORD_DIM+1)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j] * nu[i][j];
  4225. nu_dBdn_[2] -= dB[(i*COORD_DIM+2)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j] * nu[i][j];
  4226. nu_dBdn_[2] -= dB[(i*COORD_DIM+2)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j] * nu[i][j];
  4227. nu_dBdn_[2] -= dB[(i*COORD_DIM+2)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j] * nu[i][j];
  4228. nu_dBdn[i*COORD_DIM+0][j] = nu_dBdn_[0];
  4229. nu_dBdn[i*COORD_DIM+1][j] = nu_dBdn_[1];
  4230. nu_dBdn[i*COORD_DIM+2][j] = nu_dBdn_[2];
  4231. Real nu_n_dot_dBdn_ = 0;
  4232. nu_n_dot_dBdn_ += nu_dBdn_[0] * normal[i*COORD_DIM+0][j];
  4233. nu_n_dot_dBdn_ += nu_dBdn_[1] * normal[i*COORD_DIM+1][j];
  4234. nu_n_dot_dBdn_ += nu_dBdn_[2] * normal[i*COORD_DIM+2][j];
  4235. nu_n_dot_dBdn[i][j] = nu_n_dot_dBdn_;
  4236. }
  4237. }
  4238. }
  4239. { // Write VTU
  4240. VTUData vtu;
  4241. vtu.AddElems(S.GetElemList(), B, ORDER);
  4242. vtu.WriteVTK("B", comm);
  4243. }
  4244. Real dgdnu;
  4245. Vector<ElemBasis> dBdnu, n_dot_dBdnu;
  4246. { // Set dBdnu, n_dot_dBdnu, dgdnu (finite-difference approximation)
  4247. Real eps = 1e-3;
  4248. Stellarator<Real,ORDER> S0 = S, S1 = S;
  4249. for (Long i = 0; i < Nelem; i++) {
  4250. for (Long j = 0; j < Nnodes; j++) {
  4251. S0.Elem(i, 0)[j] -= 0.5 * eps * normal[i*COORD_DIM+0][j] * nu[i][j];
  4252. S0.Elem(i, 1)[j] -= 0.5 * eps * normal[i*COORD_DIM+1][j] * nu[i][j];
  4253. S0.Elem(i, 2)[j] -= 0.5 * eps * normal[i*COORD_DIM+2][j] * nu[i][j];
  4254. S1.Elem(i, 0)[j] += 0.5 * eps * normal[i*COORD_DIM+0][j] * nu[i][j];
  4255. S1.Elem(i, 1)[j] += 0.5 * eps * normal[i*COORD_DIM+1][j] * nu[i][j];
  4256. S1.Elem(i, 2)[j] += 0.5 * eps * normal[i*COORD_DIM+2][j] * nu[i][j];
  4257. }
  4258. }
  4259. Setup(S0, comm);
  4260. Setup(S1, comm);
  4261. Real alpha0, alpha1, beta0, beta1;
  4262. Vector<ElemBasis> sigma0, sigma1;
  4263. compute_invA(sigma0, alpha0, beta0, S0, flux_tor[0], flux_pol[0], comm);
  4264. compute_invA(sigma1, alpha1, beta1, S1, flux_tor[0], flux_pol[0], comm);
  4265. Vector<ElemBasis> B0 = compute_B(S0, sigma0, alpha0, beta0);
  4266. Vector<ElemBasis> B1 = compute_B(S1, sigma1, alpha1, beta1);
  4267. dBdnu = (B1 - B0) * (1/eps);
  4268. dgdnu = (compute_g(S1,B1) - compute_g(S0,B0)) * (1/eps);
  4269. n_dot_dBdnu.ReInit(Nelem);
  4270. for (Long i = 0; i < Nelem; i++) {
  4271. for (Long j = 0; j < Nnodes; j++) {
  4272. Real n_dot_dBdnu_ = 0;
  4273. n_dot_dBdnu_ += normal[i*COORD_DIM+0][j] * dBdnu[i*COORD_DIM+0][j];
  4274. n_dot_dBdnu_ += normal[i*COORD_DIM+1][j] * dBdnu[i*COORD_DIM+1][j];
  4275. n_dot_dBdnu_ += normal[i*COORD_DIM+2][j] * dBdnu[i*COORD_DIM+2][j];
  4276. n_dot_dBdnu[i][j] = n_dot_dBdnu_;
  4277. }
  4278. }
  4279. }
  4280. Vector<ElemBasis> B_dot_gradnu, nu_surfdivB, surfdivBnu;
  4281. { // Set B_dot_gradnu
  4282. Vector<ElemBasis> gradnu = compute_grad(S, nu);
  4283. B_dot_gradnu.ReInit(Nelem);
  4284. for (Long i = 0; i < Nelem; i++) {
  4285. for (Long j = 0; j < Nnodes; j++) {
  4286. Real B_dot_gradnu_ = 0;
  4287. B_dot_gradnu_ += B[i*COORD_DIM+0][j] * gradnu[i*COORD_DIM+0][j];
  4288. B_dot_gradnu_ += B[i*COORD_DIM+1][j] * gradnu[i*COORD_DIM+1][j];
  4289. B_dot_gradnu_ += B[i*COORD_DIM+2][j] * gradnu[i*COORD_DIM+2][j];
  4290. B_dot_gradnu[i][j] = B_dot_gradnu_;
  4291. }
  4292. }
  4293. }
  4294. { // Set nu_surfdivB
  4295. Vector<ElemBasis> surfdivB = compute_surfdiv(S, B);
  4296. nu_surfdivB.ReInit(Nelem);
  4297. for (Long i = 0; i < Nelem; i++) {
  4298. for (Long j = 0; j < Nnodes; j++) {
  4299. nu_surfdivB[i][j] = nu[i][j] * surfdivB[i][j];
  4300. }
  4301. }
  4302. }
  4303. { // Set surfdivBnu
  4304. Vector<ElemBasis> Bnu(Nelem*COORD_DIM);
  4305. for (Long i = 0; i < Nelem; i++) {
  4306. for (Long j = 0; j < Nnodes; j++) {
  4307. Bnu[i*COORD_DIM+0][j] = B[i*COORD_DIM+0][j] * nu[i][j];
  4308. Bnu[i*COORD_DIM+1][j] = B[i*COORD_DIM+1][j] * nu[i][j];
  4309. Bnu[i*COORD_DIM+2][j] = B[i*COORD_DIM+2][j] * nu[i][j];
  4310. }
  4311. }
  4312. surfdivBnu = compute_surfdiv(S, Bnu);
  4313. }
  4314. // nu_surfdivB == -nu_n_dot_dBdn
  4315. // B_dot_gradnu == n_dot_dBdnu
  4316. // surfdivBnu == B_dot_gradnu - nu_n_dot_dBdn
  4317. Vector<ElemBasis> dBdnu_;
  4318. { // Compute dBdnu_
  4319. Real alpha, beta;
  4320. Real flux_tor, flux_pol;
  4321. { // Set flux_tor, flux_pol
  4322. Vector<ElemBasis> nxB_nu(Nelem * COORD_DIM);
  4323. for (Long i = 0; i < Nelem; i++) {
  4324. for (Long j = 0; j < Nnodes; j++) {
  4325. nxB_nu[i*COORD_DIM+0][j] = (B[i*COORD_DIM+1][j] * normal[i*COORD_DIM+2][j] - B[i*COORD_DIM+2][j] * normal[i*COORD_DIM+1][j]) * nu[i][j];
  4326. nxB_nu[i*COORD_DIM+1][j] = (B[i*COORD_DIM+2][j] * normal[i*COORD_DIM+0][j] - B[i*COORD_DIM+0][j] * normal[i*COORD_DIM+2][j]) * nu[i][j];
  4327. nxB_nu[i*COORD_DIM+2][j] = (B[i*COORD_DIM+0][j] * normal[i*COORD_DIM+1][j] - B[i*COORD_DIM+1][j] * normal[i*COORD_DIM+0][j]) * nu[i][j];
  4328. }
  4329. }
  4330. Vector<Real> circ_pol(S.Nsurf()), circ_tor(S.Nsurf());
  4331. { // compute circ
  4332. Vector<ElemBasis> dX;
  4333. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  4334. const auto& quad_wts = ElemBasis::QuadWts();
  4335. for (Long k = 0; k < S.Nsurf(); k++) {
  4336. circ_pol[k] = 0;
  4337. circ_tor[k] = 0;
  4338. Long Ndsp = S.ElemDsp(k);
  4339. for (Long i = 0; i < S.NTor(k)*S.NPol(k); i++) {
  4340. for (Long j = 0; j < Nnodes; j++) {
  4341. circ_pol[k] += nxB_nu[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+1][j] * quad_wts[j] / S.NTor(k);
  4342. circ_pol[k] += nxB_nu[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+3][j] * quad_wts[j] / S.NTor(k);
  4343. circ_pol[k] += nxB_nu[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+5][j] * quad_wts[j] / S.NTor(k);
  4344. circ_tor[k] += nxB_nu[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+0][j] * quad_wts[j] / S.NPol(k);
  4345. circ_tor[k] += nxB_nu[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+2][j] * quad_wts[j] / S.NPol(k);
  4346. circ_tor[k] += nxB_nu[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+4][j] * quad_wts[j] / S.NPol(k);
  4347. }
  4348. }
  4349. }
  4350. }
  4351. if (S.Nsurf() == 1) {
  4352. flux_tor = circ_pol[0];
  4353. flux_pol = 0;
  4354. } else if (S.Nsurf() == 2) {
  4355. flux_tor = circ_pol[1] - circ_pol[0];
  4356. flux_pol = circ_tor[0] - circ_tor[1];
  4357. } else {
  4358. SCTL_ASSERT(false);
  4359. }
  4360. }
  4361. Vector<ElemBasis> sigma, Bdotn = B_dot_gradnu - nu_n_dot_dBdn;
  4362. compute_invA_(sigma, alpha, beta, S, Bdotn, flux_tor, flux_pol, comm);
  4363. dBdnu_ = compute_B(S, sigma, alpha, beta) + nu_dBdn;
  4364. }
  4365. { // Write VTU
  4366. VTUData vtu;
  4367. vtu.AddElems(S.GetElemList(), dBdnu, ORDER);
  4368. vtu.WriteVTK("dBdnu", comm);
  4369. }
  4370. { // Write VTU
  4371. VTUData vtu;
  4372. vtu.AddElems(S.GetElemList(), dBdnu_, ORDER);
  4373. vtu.WriteVTK("dBdnu_", comm);
  4374. }
  4375. { // Write VTU
  4376. VTUData vtu;
  4377. vtu.AddElems(S.GetElemList(), dBdnu_ - dBdnu, ORDER);
  4378. vtu.WriteVTK("err", comm);
  4379. }
  4380. Real dgdnu0, dgdnu1, dgdnu2;
  4381. { // Set dgdnu0 = \int_{Gamma} (B^2 - p) B . B'
  4382. Vector<ElemBasis> dB = dBdnu - nu_dBdn;
  4383. Vector<ElemBasis> B2_p(Nelem), B_dot_dB(Nelem);
  4384. for (Long i = 0; i < Nelem; i++) {
  4385. for (Long j = 0; j < Nnodes; j++) {
  4386. B2_p[i][j] = 0;
  4387. B2_p[i][j] += B[i*COORD_DIM+0][j]*B[i*COORD_DIM+0][j];
  4388. B2_p[i][j] += B[i*COORD_DIM+1][j]*B[i*COORD_DIM+1][j];
  4389. B2_p[i][j] += B[i*COORD_DIM+2][j]*B[i*COORD_DIM+2][j];
  4390. B_dot_dB[i][j] = 0;
  4391. B_dot_dB[i][j] += B[i*COORD_DIM+0][j] * dB[i*COORD_DIM+0][j];
  4392. B_dot_dB[i][j] += B[i*COORD_DIM+1][j] * dB[i*COORD_DIM+1][j];
  4393. B_dot_dB[i][j] += B[i*COORD_DIM+2][j] * dB[i*COORD_DIM+2][j];
  4394. }
  4395. }
  4396. dgdnu0 = compute_inner_prod(area_elem, B2_p, B_dot_dB);
  4397. }
  4398. { // Set dgdnu1 = \int_{Gamma} (B^2-p) B . nu_dBdn
  4399. Vector<ElemBasis> dB = nu_dBdn;
  4400. Vector<ElemBasis> B2_p(Nelem), B_dot_dB(Nelem);
  4401. for (Long i = 0; i < Nelem; i++) {
  4402. for (Long j = 0; j < Nnodes; j++) {
  4403. B2_p[i][j] = 0;
  4404. B2_p[i][j] += B[i*COORD_DIM+0][j]*B[i*COORD_DIM+0][j];
  4405. B2_p[i][j] += B[i*COORD_DIM+1][j]*B[i*COORD_DIM+1][j];
  4406. B2_p[i][j] += B[i*COORD_DIM+2][j]*B[i*COORD_DIM+2][j];
  4407. B_dot_dB[i][j] = 0;
  4408. B_dot_dB[i][j] += B[i*COORD_DIM+0][j] * dB[i*COORD_DIM+0][j];
  4409. B_dot_dB[i][j] += B[i*COORD_DIM+1][j] * dB[i*COORD_DIM+1][j];
  4410. B_dot_dB[i][j] += B[i*COORD_DIM+2][j] * dB[i*COORD_DIM+2][j];
  4411. }
  4412. }
  4413. dgdnu1 = compute_inner_prod(area_elem, B2_p, B_dot_dB);
  4414. }
  4415. { // Set dgdnu2 = \int_{Gamma} 2H(B^2-p)^2 \nu
  4416. Vector<ElemBasis> H = compute_H(S.GetElemList(), normal);
  4417. Vector<ElemBasis> H_B2_p_2(Nelem);
  4418. for (Long i = 0; i < Nelem; i++) {
  4419. for (Long j = 0; j < Nnodes; j++) {
  4420. Real B2_p = 0;
  4421. B2_p += B[i*COORD_DIM+0][j]*B[i*COORD_DIM+0][j];
  4422. B2_p += B[i*COORD_DIM+1][j]*B[i*COORD_DIM+1][j];
  4423. B2_p += B[i*COORD_DIM+2][j]*B[i*COORD_DIM+2][j];
  4424. H_B2_p_2[i][j] = H[i][j] * B2_p*B2_p;
  4425. }
  4426. }
  4427. dgdnu2 = 0.5 * compute_inner_prod(area_elem,H_B2_p_2, nu);
  4428. }
  4429. std::cout<<dgdnu0<<' '<<dgdnu1<<' '<<dgdnu2<<' '<<dgdnu0+dgdnu1+dgdnu2<<'\n';
  4430. std::cout<<dgdnu<<'\n';
  4431. #if 0
  4432. Comm comm = Comm::World();
  4433. Profile::Enable(true);
  4434. Real flux_tor = 1.0, flux_pol = 1.0;
  4435. Stellarator<Real,ORDER> S;
  4436. { // Init S
  4437. Vector<Long> NtNp;
  4438. NtNp.PushBack(20);
  4439. NtNp.PushBack(4);
  4440. S = Stellarator<Real,ORDER>(NtNp);
  4441. }
  4442. Vector<ElemBasis> pressure(S.NElem());
  4443. pressure = 0;
  4444. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  4445. if (S.Nsurf() == 1) flux_pol = 0.0;
  4446. SetupQuadrature(S.quadrature_dBS , S, S.BiotSavartGrad, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  4447. SetupQuadrature(S.quadrature_BS , S, S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  4448. SetupQuadrature(S.quadrature_FxU , S, S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  4449. SetupQuadrature(S.quadrature_FxdU, S, S.Laplace_FxdU , order_singular, order_direct, -1.0, comm);
  4450. SetupQuadrature(S.quadrature_dUxF, S, S.Laplace_dUxF , order_singular, order_direct, -1.0, comm);
  4451. Vector<ElemBasis> Bt0, Bp0;
  4452. Vector<ElemBasis> dBt0, dBp0;
  4453. { // Set Bt0, Bp0
  4454. Vector<ElemBasis> Jt, Jp;
  4455. compute_harmonic_vector_potentials(Jt, Jp, S);
  4456. EvalQuadrature(Bt0, S.quadrature_BS, S, Jp, S.BiotSavart);
  4457. EvalQuadrature(Bp0, S.quadrature_BS, S, Jt, S.BiotSavart);
  4458. EvalQuadrature(dBt0, S.quadrature_dBS, S, Jp, S.BiotSavartGrad);
  4459. EvalQuadrature(dBp0, S.quadrature_dBS, S, Jt, S.BiotSavartGrad);
  4460. }
  4461. auto compute_B = [&S,&Bt0,&Bp0] (const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  4462. const Long Nelem = S.NElem();
  4463. Vector<ElemBasis> B(S.NElem() * COORD_DIM);
  4464. if (sigma.Dim()) {
  4465. const Long Nnodes = ElemBasis::Size();
  4466. Vector<ElemBasis> normal, area_elem;
  4467. compute_norm_area_elem(S, normal, area_elem);
  4468. EvalQuadrature(B, S.quadrature_FxdU, S, sigma, S.Laplace_FxdU);
  4469. for (Long i = 0; i < Nelem; i++) {
  4470. for (Long j = 0; j < Nnodes; j++) {
  4471. for (Long k = 0; k < COORD_DIM; k++) {
  4472. B[i*COORD_DIM+k][j] -= 0.5*sigma[i][j]*normal[i*COORD_DIM+k][j];
  4473. }
  4474. }
  4475. }
  4476. } else {
  4477. B = 0;
  4478. }
  4479. if (S.Nsurf() >= 1) B += Bt0*alpha;
  4480. if (S.Nsurf() >= 2) B += Bp0*beta;
  4481. return B;
  4482. };
  4483. auto compute_dB = [&S,&dBt0,&dBp0] (const Vector<ElemBasis>& sigma, Real alpha, Real beta) {
  4484. const Long Nelem = S.NElem();
  4485. Vector<ElemBasis> dB(S.NElem() * COORD_DIM * COORD_DIM);
  4486. if (sigma.Dim()) {
  4487. EvalQuadrature(dB, S.quadrature_Fxd2U, S, sigma, S.Laplace_Fxd2U);
  4488. } else {
  4489. dB = 0;
  4490. }
  4491. if (S.Nsurf() >= 1) dB += dBt0*alpha;
  4492. if (S.Nsurf() >= 2) dB += dBp0*beta;
  4493. return dB;
  4494. };
  4495. auto compute_flux = [&S] (Real& flux_tor, Real& flux_pol, const Vector<ElemBasis>& B, const Vector<ElemBasis>& normal) {
  4496. const Long Nelem = S.NElem();
  4497. const Long Nnodes = ElemBasis::Size();
  4498. SCTL_ASSERT(B.Dim() == Nelem*COORD_DIM);
  4499. SCTL_ASSERT(normal.Dim() == Nelem*COORD_DIM);
  4500. Vector<ElemBasis> J(Nelem * COORD_DIM);
  4501. for (Long i = 0; i < Nelem; i++) { // Set J
  4502. for (Long j = 0; j < Nnodes; j++) {
  4503. Tensor<Real,true,COORD_DIM> b, n;
  4504. b(0) = B[i*COORD_DIM+0][j];
  4505. b(1) = B[i*COORD_DIM+1][j];
  4506. b(2) = B[i*COORD_DIM+2][j];
  4507. n(0) = normal[i*COORD_DIM+0][j];
  4508. n(1) = normal[i*COORD_DIM+1][j];
  4509. n(2) = normal[i*COORD_DIM+2][j];
  4510. J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
  4511. J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
  4512. J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
  4513. }
  4514. }
  4515. Vector<ElemBasis> A;
  4516. EvalQuadrature(A, S.quadrature_FxU, S, J, S.Laplace_FxU);
  4517. Vector<Real> circ_pol(S.Nsurf()), circ_tor(S.Nsurf());
  4518. { // compute circ
  4519. Vector<ElemBasis> dX;
  4520. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  4521. const auto& quad_wts = ElemBasis::QuadWts();
  4522. for (Long k = 0; k < S.Nsurf(); k++) {
  4523. circ_pol[k] = 0;
  4524. circ_tor[k] = 0;
  4525. Long Ndsp = S.ElemDsp(k);
  4526. for (Long i = 0; i < S.NTor(k)*S.NPol(k); i++) {
  4527. for (Long j = 0; j < Nnodes; j++) {
  4528. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+1][j] * quad_wts[j] / S.NTor(k);
  4529. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+3][j] * quad_wts[j] / S.NTor(k);
  4530. circ_pol[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+5][j] * quad_wts[j] / S.NTor(k);
  4531. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+0][j] * dX[(Ndsp+i)*COORD_DIM*2+0][j] * quad_wts[j] / S.NPol(k);
  4532. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+1][j] * dX[(Ndsp+i)*COORD_DIM*2+2][j] * quad_wts[j] / S.NPol(k);
  4533. circ_tor[k] += A[(Ndsp+i)*COORD_DIM+2][j] * dX[(Ndsp+i)*COORD_DIM*2+4][j] * quad_wts[j] / S.NPol(k);
  4534. }
  4535. }
  4536. }
  4537. }
  4538. if (S.Nsurf() == 1) {
  4539. flux_tor = circ_pol[0];
  4540. flux_pol = 0;
  4541. } else if (S.Nsurf() == 2) {
  4542. flux_tor = circ_pol[1] - circ_pol[0];
  4543. flux_pol = circ_tor[0] - circ_tor[1];
  4544. } else {
  4545. SCTL_ASSERT(false);
  4546. }
  4547. };
  4548. auto compute_A = [&S,compute_B,&compute_flux] (const Vector<Real>& x) {
  4549. const Long Nelem = S.NElem();
  4550. const Long Nnodes = ElemBasis::Size();
  4551. SCTL_ASSERT(x.Dim() == Nelem*Nnodes+S.Nsurf());
  4552. Vector<ElemBasis> normal, area_elem;
  4553. compute_norm_area_elem(S, normal, area_elem);
  4554. Vector<ElemBasis> sigma(Nelem);
  4555. for (Long i = 0; i < Nelem; i++) {
  4556. for (Long j = 0; j < Nnodes; j++) {
  4557. sigma[i][j] = x[i*Nnodes+j];
  4558. }
  4559. }
  4560. Real alpha = (S.Nsurf() >= 1 ? x[Nelem*Nnodes + 0] : 0);
  4561. Real beta = (S.Nsurf() >= 2 ? x[Nelem*Nnodes + 1] : 0);
  4562. Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
  4563. Vector<ElemBasis> BdotN = compute_dot_prod(B, normal);
  4564. Real flux_tor, flux_pol;
  4565. compute_flux(flux_tor, flux_pol, B, normal);
  4566. Vector<Real> Ax(Nelem*Nnodes+S.Nsurf());
  4567. for (Long i = 0; i < Nelem; i++) {
  4568. for (Long j = 0; j < Nnodes; j++) {
  4569. Ax[i*Nnodes+j] = BdotN[i][j];
  4570. }
  4571. }
  4572. if (S.Nsurf() >= 1) Ax[Nelem*Nnodes + 0] = flux_tor;
  4573. if (S.Nsurf() >= 2) Ax[Nelem*Nnodes + 1] = flux_pol;
  4574. return Ax;
  4575. };
  4576. auto compute_invA = [&S,&comm,&compute_A] (Vector<ElemBasis>& sigma, Real& alpha, Real& beta, Real flux_tor, Real flux_pol) {
  4577. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&compute_A](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  4578. (*Ax) = compute_A(x);
  4579. };
  4580. const Long Nelem = S.NElem();
  4581. const Long Nnodes = ElemBasis::Size();
  4582. Vector<Real> rhs_(Nelem * Nnodes + S.Nsurf());
  4583. rhs_ = 0;
  4584. if (S.Nsurf() >= 1) rhs_[Nelem * Nnodes + 0] = flux_tor;
  4585. if (S.Nsurf() >= 2) rhs_[Nelem * Nnodes + 1] = flux_pol;
  4586. Vector<Real> x_(Nelem * Nnodes + S.Nsurf());
  4587. x_ = 0;
  4588. ParallelSolver<Real> linear_solver(comm, true);
  4589. linear_solver(&x_, BIOp, rhs_, 1e-8, 100);
  4590. sigma.ReInit(Nelem);
  4591. for (Long i = 0; i < Nelem; i++) {
  4592. for (Long j = 0; j < Nnodes; j++) {
  4593. sigma[i][j] = x_[i*Nnodes+j];
  4594. }
  4595. }
  4596. alpha = (S.Nsurf() >= 1 ? x_[Nelem * Nnodes + 0] : 0);
  4597. beta = (S.Nsurf() >= 2 ? x_[Nelem * Nnodes + 1] : 0);
  4598. };
  4599. auto compute_H = [] (const ElemList<COORD_DIM,ElemBasis>& elem_lst, const Vector<ElemBasis>& normal) {
  4600. const Long Nnodes = ElemBasis::Size();
  4601. const Long Nelem = elem_lst.NElem();
  4602. const Vector<ElemBasis> X = elem_lst.ElemVector();
  4603. Vector<ElemBasis> dX, d2X, H(Nelem);
  4604. ElemBasis::Grad(dX, X);
  4605. ElemBasis::Grad(d2X, dX);
  4606. for (Long i = 0; i < Nelem; i++) {
  4607. for (Long j = 0; j < Nnodes; j++) {
  4608. Tensor<Real,true,2,2> I, invI, II;
  4609. for (Long k0 = 0; k0 < 2; k0++) {
  4610. for (Long k1 = 0; k1 < 2; k1++) {
  4611. I(k0,k1) = 0;
  4612. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  4613. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  4614. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  4615. II(k0,k1) = 0;
  4616. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  4617. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  4618. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  4619. }
  4620. }
  4621. { // Set invI
  4622. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  4623. invI(0,0) = I(1,1) / detI;
  4624. invI(0,1) = -I(0,1) / detI;
  4625. invI(1,0) = -I(1,0) / detI;
  4626. invI(1,1) = I(0,0) / detI;
  4627. }
  4628. { // Set H
  4629. H[i][j] = 0;
  4630. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  4631. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  4632. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  4633. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  4634. }
  4635. }
  4636. }
  4637. return H;
  4638. };
  4639. auto compute_grad = [&S,&compute_B,&compute_dB,&compute_invA,&compute_H](Vector<ElemBasis>& pressure, Real flux_tor, Real flux_pol) {
  4640. const Long Nelem = S.NElem();
  4641. const Long Nnodes = ElemBasis::Size();
  4642. Real alpha, beta;
  4643. Vector<ElemBasis> sigma;
  4644. compute_invA(sigma, alpha, beta, flux_tor, flux_pol);
  4645. Vector<ElemBasis> B = compute_B(sigma, alpha, beta);
  4646. Vector<ElemBasis> dB = compute_dB(sigma, alpha, beta);
  4647. Vector<ElemBasis> normal, area_elem;
  4648. compute_norm_area_elem(S, normal, area_elem);
  4649. Vector<ElemBasis> gvec = compute_gvec(S, B, pressure);
  4650. Vector<ElemBasis> dgdB = compute_dgdB(S, B, pressure);
  4651. Vector<ElemBasis> H = compute_H(S.GetElemList(), normal);
  4652. Vector<ElemBasis> dgdnu(Nelem);
  4653. dgdnu = 0;
  4654. for (Long i = 0; i < Nelem; i++) {
  4655. for (Long j = 0; j < Nnodes; j++) {
  4656. Real dgdB_dot_dBdn = 0;
  4657. Real dBdn[COORD_DIM] = {0,0,0};
  4658. for (Long k = 0; k < COORD_DIM; k++) {
  4659. dBdn[0] += dB[(i*COORD_DIM+0)*COORD_DIM+k][j] * normal[i*COORD_DIM+k][j];
  4660. dBdn[1] += dB[(i*COORD_DIM+1)*COORD_DIM+k][j] * normal[i*COORD_DIM+k][j];
  4661. dBdn[2] += dB[(i*COORD_DIM+2)*COORD_DIM+k][j] * normal[i*COORD_DIM+k][j];
  4662. }
  4663. for (Long k = 0; k < COORD_DIM; k++) {
  4664. dgdB_dot_dBdn += dgdB[i*COORD_DIM+k][j] * dBdn[k];
  4665. }
  4666. dgdnu[i][j] = dgdB_dot_dBdn + 2*H[i][j]*gvec[i][j];
  4667. }
  4668. }
  4669. return dgdnu;
  4670. };
  4671. auto dg_dnu0 = compute_gradient(S, pressure, flux_tor, flux_pol);
  4672. auto dg_dnu1 = compute_grad ( pressure, flux_tor, flux_pol);
  4673. { // Write VTU
  4674. VTUData vtu;
  4675. vtu.AddElems(S.GetElemList(), dg_dnu0, ORDER);
  4676. vtu.WriteVTK("dg_dnu0", comm);
  4677. }
  4678. { // Write VTU
  4679. VTUData vtu;
  4680. vtu.AddElems(S.GetElemList(), dg_dnu1, ORDER);
  4681. vtu.WriteVTK("dg_dnu1", comm);
  4682. }
  4683. #endif
  4684. }
  4685. private:
  4686. static void tmp() {
  4687. //if (0) { // Save data
  4688. // Matrix<Real> M(S.NtNp_[0]*ORDER, S.NtNp_[1]*ORDER);
  4689. // for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
  4690. // for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
  4691. // for (Long t = 0; t < ORDER; t++) {
  4692. // for (Long p = 0; p < ORDER; p++) {
  4693. // Long elem_idx = tt * S.NtNp_[1] + pp;
  4694. // Long node_idx = p * ORDER + t;
  4695. // M[tt*ORDER+t][pp*ORDER+p] = dg_dnu[elem_idx][node_idx];
  4696. // }
  4697. // }
  4698. // }
  4699. // }
  4700. // M.Write("dg_dnu.mat");
  4701. //}
  4702. //if (0) { // filter dg_dnu and write VTU
  4703. // const Long Nelem = S.NElem();
  4704. // const Long Nnodes = ElemBasis::Size();
  4705. // const Integer INTERP_ORDER = 12;
  4706. // Long Nt = S.NtNp_[0]*ORDER/5, Np = S.NtNp_[1]*ORDER/5;
  4707. // Matrix<Real> M(Nt, Np); M = 0;
  4708. // const auto& quad_wts = ElemBasis::QuadWts();
  4709. // const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
  4710. // for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
  4711. // for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
  4712. // for (Long t = 0; t < ORDER; t++) {
  4713. // for (Long p = 0; p < ORDER; p++) {
  4714. // Real theta = (tt + Mnodes[0][t]) / S.NtNp_[0];
  4715. // Real phi = (pp + Mnodes[0][p]) / S.NtNp_[1];
  4716. // Long i = (Long)(theta * Nt);
  4717. // Long j = (Long)(phi * Np);
  4718. // Real x = theta * Nt - i;
  4719. // Real y = phi * Np - j;
  4720. // Long elem_idx = tt * S.NtNp_[1] + pp;
  4721. // Long node_idx = p * ORDER + t;
  4722. // Vector<Real> Interp0(INTERP_ORDER);
  4723. // Vector<Real> Interp1(INTERP_ORDER);
  4724. // { // Set Interp0, Interp1
  4725. // auto node = [] (Long i) {
  4726. // return (Real)i - (INTERP_ORDER-1)/2;
  4727. // };
  4728. // for (Long i = 0; i < INTERP_ORDER; i++) {
  4729. // Real wt_x = 1, wt_y = 1;
  4730. // for (Long j = 0; j < INTERP_ORDER; j++) {
  4731. // if (j != i) {
  4732. // wt_x *= (x - node(j)) / (node(i) - node(j));
  4733. // wt_y *= (y - node(j)) / (node(i) - node(j));
  4734. // }
  4735. // Interp0[i] = wt_x;
  4736. // Interp1[i] = wt_y;
  4737. // }
  4738. // }
  4739. // }
  4740. // for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  4741. // for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  4742. // Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  4743. // Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  4744. // M[idx_i][idx_j] += dg_dnu[elem_idx][node_idx] * quad_wts[node_idx] * Interp0[ii] * Interp1[jj] / (S.NtNp_[0] * S.NtNp_[1]) * (Nt * Np);
  4745. // }
  4746. // }
  4747. // }
  4748. // }
  4749. // }
  4750. // }
  4751. // Vector<ElemBasis> f(Nelem);
  4752. // for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
  4753. // for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
  4754. // for (Long t = 0; t < ORDER; t++) {
  4755. // for (Long p = 0; p < ORDER; p++) {
  4756. // Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
  4757. // Real theta = (tt + Mnodes[0][t]) / S.NtNp_[0];
  4758. // Real phi = (pp + Mnodes[0][p]) / S.NtNp_[1];
  4759. // Long i = (Long)(theta * Nt);
  4760. // Long j = (Long)(phi * Np);
  4761. // Real x = theta * Nt - i;
  4762. // Real y = phi * Np - j;
  4763. // Vector<Real> Interp0(INTERP_ORDER);
  4764. // Vector<Real> Interp1(INTERP_ORDER);
  4765. // { // Set Interp0, Interp1
  4766. // auto node = [] (Long i) {
  4767. // return (Real)i - (INTERP_ORDER-1)/2;
  4768. // };
  4769. // for (Long i = 0; i < INTERP_ORDER; i++) {
  4770. // Real wt_x = 1, wt_y = 1;
  4771. // for (Long j = 0; j < INTERP_ORDER; j++) {
  4772. // if (j != i) {
  4773. // wt_x *= (x - node(j)) / (node(i) - node(j));
  4774. // wt_y *= (y - node(j)) / (node(i) - node(j));
  4775. // }
  4776. // Interp0[i] = wt_x;
  4777. // Interp1[i] = wt_y;
  4778. // }
  4779. // }
  4780. // }
  4781. // Real f0 = 0;
  4782. // for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  4783. // for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  4784. // Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  4785. // Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  4786. // f0 += Interp0[ii] * Interp1[jj] * M[idx_i][idx_j];
  4787. // }
  4788. // }
  4789. // Long elem_idx = tt * S.NtNp_[1] + pp;
  4790. // Long node_idx = p * ORDER + t;
  4791. // f[elem_idx][node_idx] = f0;
  4792. // }
  4793. // }
  4794. // }
  4795. // }
  4796. // { // Write VTU
  4797. // VTUData vtu;
  4798. // vtu.AddElems(S.GetElemList(), f, ORDER);
  4799. // vtu.WriteVTK("dg_dnu_filtered", comm);
  4800. // }
  4801. // dg_dnu = f;
  4802. //}
  4803. }
  4804. static void FlipNormal(Vector<ElemBasis>& v) {
  4805. for (Long i = 0; i < v.Dim(); i++) {
  4806. const auto elem = v[i];
  4807. for (Long j0 = 0; j0 < ORDER; j0++) {
  4808. for (Long j1 = 0; j1 < ORDER; j1++) {
  4809. v[i][j0*ORDER+j1] = elem[j0*ORDER+(ORDER-j1-1)];
  4810. }
  4811. }
  4812. }
  4813. }
  4814. template <class Kernel> static void SetupQuadrature(Quadrature<Real>& quadrature, const Stellarator<Real,ORDER>& S, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm, Real Rqbx = 0) {
  4815. if (S.Nsurf() == 2) {
  4816. Long Nelem0 = S.NTor(0)*S.NPol(0);
  4817. ElemList<COORD_DIM, ElemBasis> elem_lst = S.GetElemList();
  4818. { // Update elem_lst
  4819. Vector<ElemBasis> X = elem_lst.ElemVector();
  4820. Vector<ElemBasis> X0(Nelem0*COORD_DIM, X.begin(), false);
  4821. FlipNormal(X0);
  4822. elem_lst.ReInit(X);
  4823. }
  4824. quadrature.template Setup<ElemBasis, ElemBasis>(elem_lst, kernel, order_singular, order_direct, period_length, comm, Rqbx);
  4825. } else {
  4826. quadrature.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), kernel, order_singular, order_direct, period_length, comm, Rqbx);
  4827. }
  4828. }
  4829. template <class Kernel> static void EvalQuadrature(Vector<ElemBasis>& potential, const Quadrature<Real>& quadrature, const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& density, const Kernel& kernel) {
  4830. if (S.Nsurf() == 2) {
  4831. Long Nelem0 = S.NTor(0)*S.NPol(0);
  4832. Vector<ElemBasis> potential_, density_ = density;
  4833. ElemList<COORD_DIM, ElemBasis> elem_lst = S.GetElemList();
  4834. { // Update elem_lst
  4835. Vector<ElemBasis> X = elem_lst.ElemVector();
  4836. Vector<ElemBasis> X0(Nelem0*COORD_DIM, X.begin(), false);
  4837. FlipNormal(X0);
  4838. elem_lst.ReInit(X);
  4839. }
  4840. { // Update density_
  4841. Long dof = density_.Dim() / S.NElem();
  4842. Vector<ElemBasis> density0(Nelem0*dof, density_.begin(), false);
  4843. FlipNormal(density0);
  4844. }
  4845. quadrature.Eval(potential_, elem_lst, density_, kernel);
  4846. { // Update potential_
  4847. Long dof = potential_.Dim() / S.NElem();
  4848. Vector<ElemBasis> potential0(Nelem0*dof, potential_.begin(), false);
  4849. FlipNormal(potential0);
  4850. }
  4851. potential = potential_;
  4852. } else {
  4853. quadrature.Eval(potential, S.GetElemList(), density, kernel);
  4854. }
  4855. }
  4856. void InitSurf(Long l, Long Nsurf) {
  4857. const auto& nodes = ElemBasis::Nodes();
  4858. const Long Nt = NTor(l);
  4859. const Long Np = NPol(l);
  4860. for (Long i = 0; i < Nt; i++) {
  4861. for (Long j = 0; j < Np; j++) {
  4862. for (Long k = 0; k < ElemBasis::Size(); k++) {
  4863. Real theta = (i + nodes[0][k]) * 2*const_pi<Real>()/Nt;
  4864. Real phi = (j + nodes[1][k]) * 2*const_pi<Real>()/Np;
  4865. Real X,Y,Z;
  4866. SurfGeom(X,Y,Z,theta,phi, (2.0+l)/(1.0+Nsurf));
  4867. Elem(ElemIdx(l,i,j),0)[k] = X;
  4868. Elem(ElemIdx(l,i,j),1)[k] = Y;
  4869. Elem(ElemIdx(l,i,j),2)[k] = Z;
  4870. }
  4871. }
  4872. }
  4873. }
  4874. static void SurfGeom(Real& X, Real& Y, Real& Z, Real theta, Real phi, Real s) {
  4875. sctl::Integer Nperiod = 5;
  4876. #if 0
  4877. Real Aspect_ratio = 10.27932548522949;
  4878. Real coeffmat[21][21] = { 0.00000478813217, 0.00000000000000, 0.00000351611652, 0.00000135354389, 0.00000061357832, 0.00000220091101, 0.00000423862912, -0.00003000058678, 0.00000064187111, -0.00024228452821, 0.00003116775770, 0.00000176210710, 0.00000289141326, -0.00000150300525, 0.00000772853855, 0.00000098855242, 0.00000316606793, 0.00000002168364, 0.00000212047939, 0.00000299016097, 0.00000443224508,
  4879. 0.00000028202930, 0.00000000000000, -0.00000249222421, -0.00000203136278, 0.00000131104809, 0.00000011987446, -0.00000370760154, 0.00004553918916, -0.00007711342914, -0.00004685295062, 0.00011049838213, -0.00000197486270, 0.00000395827146, 0.00000615046474, 0.00000755337123, 0.00000700606006, 0.00000922725030, -0.00000043310337, 0.00000107416383, 0.00000449787694, 0.00000305137178,
  4880. 0.00001226376662, 0.00000000000000, 0.00000270820692, 0.00000208059305, 0.00000521478523, 0.00001779037302, 0.00000846544117, 0.00001120913385, -0.00065816845745, -0.00085107452469, -0.00013171190221, -0.00005540943675, -0.00001835885450, 0.00000101879823, 0.00000209222071, 0.00000091532502, -0.00000521515358, -0.00000209227142, -0.00000678545939, -0.00000034963549, -0.00000015111488,
  4881. 0.00001560274177, 0.00000000000000, 0.00000350691471, -0.00001160475040, -0.00001763036562, 0.00003487367940, -0.00002787247831, -0.00000910982726, 0.00008818832430, -0.00524408789352, 0.00009378376126, 0.00004184526188, 0.00002849263365, -0.00002757280527, 0.00003388467667, 0.00000706207265, 0.00000625263419, -0.00003315929280, -0.00001181772132, 0.00000311426015, 0.00001875682574,
  4882. -0.00000398287420, 0.00000000000000, -0.00001524541040, 0.00001724056165, 0.00002245173346, 0.00002806861812, -0.00000388776925, 0.00008143573359, -0.00005900909309, 0.00110496615525, 0.00134626252111, 0.00005128383054, -0.00001372421866, 0.00003612563887, 0.00002236580076, -0.00002728391883, 0.00001981237256, 0.00000655450458, 0.00000985319002, 0.00001347597299, 0.00000645987802,
  4883. 0.00003304968050, 0.00000000000000, -0.00000530822217, 0.00001324870937, -0.00003610889689, -0.00005478735329, -0.00005818806312, -0.00037112057908, -0.00017812002625, -0.00093204283621, 0.00115969858598, -0.00033559172880, -0.00010441876657, -0.00001617923044, -0.00000555065844, 0.00007343527250, -0.00004408047607, 0.00000403802142, 0.00001843931204, 0.00001694047933, 0.00001213414362,
  4884. -0.00000751115658, 0.00000000000000, 0.00005457974839, -0.00000334614515, 0.00005845565465, 0.00015000770509, 0.00021849104087, 0.00002724147635, 0.00167233624961, 0.00011666602222, 0.00276563479565, -0.00085952825611, -0.00030217235326, -0.00008841593808, 0.00000997664119, -0.00015285826521, 0.00002517224675, 0.00003009161810, 0.00001883217556, 0.00002146127554, 0.00001822445302,
  4885. -0.00004128706860, 0.00000000000000, -0.00003496417776, 0.00001088761655, -0.00000298955979, -0.00005359326315, -0.00019021633489, -0.00017992728681, -0.00347794801928, 0.00064632791327, 0.00449698418379, -0.00017710507382, 0.00006126180233, 0.00018059254216, 0.00002354096432, 0.00008189838991, -0.00010060678323, -0.00017183290038, 0.00019413756672, 0.00021334811754, 0.00011263617489,
  4886. 0.00000853522670, -0.00000000000000, -0.00006544789358, 0.00005424076880, -0.00000679056529, -0.00001249735487, -0.00053082982777, 0.00035396864405, -0.00115020677913, 0.05894451215863, 0.06573092192411, 0.01498018857092, 0.00278125284240, 0.00145188067108, 0.00033717858605, 0.00000800427370, -0.00009335305367, 0.00024286781263, -0.00023916347709, 0.00031213948387, 0.00018134393031,
  4887. -0.00002521496390, -0.00000000000000, -0.00054337945767, 0.00012690725271, 0.00053313979879, 0.00064233405283, -0.00047686311882, 0.00176536326762, 0.00074157933705, -0.02684566564858, 1.00000000000000, 0.07176169008017, 0.00837037432939, -0.00000381640211, 0.00088998704450, -0.00049218931235, -0.00024546548957, -0.00036608282244, 0.00049480766756, 0.00031158892671, 0.00006898906577,
  4888. 0.00021280418150, 0.00028127161204, -0.00070030166535, 0.00022237010126, -0.00028713891516, -0.00013800295710, 0.00005912094275, 0.00172126013786, -0.00618684850633, 0.03608432412148, Aspect_ratio , 0.49896776676178, 0.00091372377938, -0.00085712829605, -0.00124801427592, -0.00007427225501, -0.00005245858847, 0.00002841771493, 0.00020249813679, -0.00014303345233, 0.00001406490901,
  4889. 0.00023699452868, 0.00008661757602, 0.00025744654704, -0.00022715188970, -0.00076146807987, 0.00055185536621, -0.00012325309217, -0.00072356045712, -0.00160693109501, 0.00246682553552, -0.14175094664097, -0.36207047104836, -0.04089594259858, 0.00060774467420, 0.00088646943914, 0.00004865296432, -0.00041878610500, -0.00023025234987, -0.00009676301852, -0.00000000000000, 0.00008409228758,
  4890. 0.00011432896281, -0.00000707848403, 0.00004698805787, -0.00043642931269, 0.00081384339137, -0.00065635429928, -0.00011831733718, 0.00017413357273, 0.00224463525228, 0.00478497287259, 0.03294761106372, 0.01078986655921, 0.10731782764196, 0.00075034319889, -0.00009241879889, 0.00055023463210, 0.00006596000458, 0.00005045382932, 0.00014874986664, 0.00000000000000, -0.00015369028552,
  4891. 0.00001037383754, 0.00009250180301, 0.00026204055757, 0.00007424291834, -0.00047751804232, 0.00029184055165, 0.00050921301590, -0.00004825839278, -0.00029933769838, 0.00279659987427, 0.00210463814437, -0.00618590926751, -0.02400829829276, -0.02316811867058, -0.00086368201301, -0.00032258985448, -0.00018304496189, 0.00008438774967, -0.00008305341908, 0.00000000000000, 0.00013047417451,
  4892. -0.00001376930322, -0.00001723831701, -0.00011543079017, -0.00022646733851, 0.00013467084500, -0.00004661652201, -0.00008419520600, 0.00035772417323, -0.00011815709877, 0.00028718306567, 0.00092207465786, -0.00317224999890, 0.00061770365573, 0.01017294172198, 0.00294739892706, 0.00014669894881, 0.00015702951350, 0.00003432080121, -0.00008555022214, -0.00000000000000, 0.00000454909878,
  4893. -0.00000196001542, -0.00003198397462, -0.00004425687075, -0.00004129848094, -0.00003789070615, -0.00027583551127, 0.00025874207495, -0.00002334945384, -0.00007259396807, -0.00008295358566, 0.00011360697681, -0.00101968157105, 0.00046784928418, -0.00208410434425, -0.00313158822246, -0.00046005158219, -0.00010552268213, -0.00005850767775, 0.00003971093611, 0.00000000000000, -0.00005275657168,
  4894. -0.00001065901233, -0.00001934838656, -0.00001220186732, -0.00002060524639, -0.00000225423423, -0.00001894621164, -0.00001533334580, -0.00001791087379, 0.00008156246622, -0.00008441298269, 0.00021060956351, -0.00030303673702, 0.00075949780876, -0.00010539998038, 0.00109045265708, 0.00068949378328, 0.00009268362192, 0.00003471063246, 0.00001204656473, -0.00000000000000, 0.00001500743110,
  4895. 0.00000105878155, -0.00000910870767, -0.00000172467264, -0.00000722095228, 0.00000699280463, -0.00002061720625, -0.00000889817693, -0.00001993474507, 0.00000370749740, -0.00000090311920, 0.00002677819793, 0.00043428712524, 0.00210293265991, 0.00018200518389, -0.00009621794743, -0.00035250501242, -0.00012996385340, -0.00002185157609, -0.00001116586463, -0.00000000000000, -0.00000451994811,
  4896. 0.00000424055270, -0.00000463139304, 0.00000301006116, -0.00000123974939, 0.00000632465435, -0.00002090823000, 0.00001773388794, 0.00000121050368, 0.00001886057362, -0.00001043497195, -0.00002269273500, -0.00021979617304, -0.00001043962493, -0.00116343051195, -0.00004193381756, 0.00007944958634, 0.00007301353617, 0.00002082651736, -0.00000119863023, -0.00000000000000, -0.00001440504820,
  4897. -0.00000391270805, -0.00000490489265, -0.00000504441778, -0.00000904507579, -0.00000111389932, 0.00000597532107, 0.00000047090245, -0.00001553130096, -0.00001524566323, -0.00000522222899, -0.00007707672921, -0.00004165665086, 0.00015764687851, 0.00035649110214, 0.00038701237645, 0.00002386798405, -0.00001946414341, -0.00000913835174, -0.00000489907188, 0.00000000000000, 0.00000172327657,
  4898. -0.00000015388650, -0.00000603232729, -0.00000397650865, 0.00000280493782, 0.00000463132073, -0.00000788678426, -0.00000471605335, -0.00000283715985, -0.00000422824724, 0.00000366817630, -0.00001159603562, -0.00001625759251, 0.00049116823357, 0.00005048640014, -0.00020234247495, -0.00006341376866, -0.00000807822744, 0.00000070463199, 0.00000014041755, 0.00000000000000, -0.00000718306910};
  4899. #else
  4900. Real Aspect_ratio = 5;
  4901. Real coeffmat[21][21] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4902. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4903. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4904. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4905. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4906. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4907. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4908. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4909. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4910. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, s, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4911. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Aspect_ratio, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4912. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2*s, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4913. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4914. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4915. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4916. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4917. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4918. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4919. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4920. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4921. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0};
  4922. #endif
  4923. Z = 0;
  4924. Real R = 0;
  4925. for (long i = -10; i <= 10; i++) {
  4926. for (long j = -10; j <= 10; j++) {
  4927. R += coeffmat[i+10][j+10] * sctl::cos(-i*phi + Nperiod*j*theta);
  4928. Z += coeffmat[i+10][j+10] * sctl::sin(-i*phi + Nperiod*j*theta);
  4929. }
  4930. }
  4931. X = R * sctl::cos(theta);
  4932. Y = R * sctl::sin(theta);
  4933. }
  4934. GenericKernel<BiotSavart3D> BiotSavart ;
  4935. GenericKernel<BiotSavartGrad3D> BiotSavartGrad;
  4936. GenericKernel<Laplace3D_FxU > Laplace_FxU ;
  4937. GenericKernel<Laplace3D_FxdU> Laplace_FxdU;
  4938. GenericKernel<Laplace3D_dUxF> Laplace_dUxF;
  4939. GenericKernel<Laplace3D_dUxD> Laplace_dUxD;
  4940. GenericKernel<Laplace3D_Fxd2U> Laplace_Fxd2U;
  4941. mutable Quadrature<Real> quadrature_BS ;
  4942. mutable Quadrature<Real> quadrature_dBS ;
  4943. mutable Quadrature<Real> quadrature_FxU ;
  4944. mutable Quadrature<Real> quadrature_FxdU;
  4945. mutable Quadrature<Real> quadrature_dUxF;
  4946. mutable Quadrature<Real> quadrature_dUxD;
  4947. mutable Quadrature<Real> quadrature_Fxd2U;
  4948. mutable Vector<ElemBasis> Bt0, Bp0, dBt0, dBp0;
  4949. mutable Vector<ElemBasis> sigma, B, gvec, dgdB;
  4950. mutable Real alpha, beta;
  4951. ElemLst elements;
  4952. Vector<Long> NtNp_;
  4953. Vector<Long> elem_dsp;
  4954. };
  4955. template <class Real, Integer ORDER=10> class MHDEquilib {
  4956. static constexpr Integer fourier_upsample = 2;
  4957. static constexpr Integer COORD_DIM = 3;
  4958. static constexpr Integer ELEM_DIM = COORD_DIM-1;
  4959. using ElemBasis = Basis<Real, ELEM_DIM, ORDER>;
  4960. static Vector<Real> cheb2grid(const Vector<ElemBasis>& X, Long Mt, Long Mp, Long Nt, Long Np) {
  4961. const Long dof = X.Dim() / (Mt * Mp);
  4962. SCTL_ASSERT(X.Dim() == Mt * Mp *dof);
  4963. Vector<Real> Xf(dof*Nt*Np); Xf = 0;
  4964. const Long Nnodes = ElemBasis::Size();
  4965. const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
  4966. for (Long t = 0; t < Nt; t++) {
  4967. for (Long p = 0; p < Np; p++) {
  4968. Real theta = t / (Real)Nt;
  4969. Real phi = p / (Real)Np;
  4970. Long i = (Long)(theta * Mt);
  4971. Long j = (Long)(phi * Mp);
  4972. Real x = theta * Mt - i;
  4973. Real y = phi * Mp - j;
  4974. Long elem_idx = i * Mp + j;
  4975. Vector<Real> Interp0(ORDER);
  4976. Vector<Real> Interp1(ORDER);
  4977. { // Set Interp0, Interp1
  4978. auto node = [&Mnodes] (Long i) {
  4979. return Mnodes[0][i];
  4980. };
  4981. for (Long i = 0; i < ORDER; i++) {
  4982. Real wt_x = 1, wt_y = 1;
  4983. for (Long j = 0; j < ORDER; j++) {
  4984. if (j != i) {
  4985. wt_x *= (x - node(j)) / (node(i) - node(j));
  4986. wt_y *= (y - node(j)) / (node(i) - node(j));
  4987. }
  4988. Interp0[i] = wt_x;
  4989. Interp1[i] = wt_y;
  4990. }
  4991. }
  4992. }
  4993. for (Long ii = 0; ii < ORDER; ii++) {
  4994. for (Long jj = 0; jj < ORDER; jj++) {
  4995. Long node_idx = jj * ORDER + ii;
  4996. for (Long k = 0; k < dof; k++) {
  4997. Xf[(k*Nt+t)*Np+p] += X[elem_idx*dof+k][node_idx] * Interp0[ii] * Interp1[jj];
  4998. }
  4999. }
  5000. }
  5001. }
  5002. }
  5003. return Xf;
  5004. }
  5005. static Vector<ElemBasis> grid2cheb(const Vector<Real>& Xf, Long Nt, Long Np, Long Mt, Long Mp) {
  5006. Long dof = Xf.Dim() / (Nt*Np);
  5007. SCTL_ASSERT(Xf.Dim() == dof*Nt*Np);
  5008. Vector<ElemBasis> X(Mt*Mp*dof);
  5009. constexpr Integer INTERP_ORDER = 12;
  5010. for (Long tt = 0; tt < Mt; tt++) {
  5011. for (Long pp = 0; pp < Mp; pp++) {
  5012. for (Long t = 0; t < ORDER; t++) {
  5013. for (Long p = 0; p < ORDER; p++) {
  5014. Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
  5015. Real theta = (tt + Mnodes[0][t]) / Mt;
  5016. Real phi = (pp + Mnodes[0][p]) / Mp;
  5017. Long i = (Long)(theta * Nt);
  5018. Long j = (Long)(phi * Np);
  5019. Real x = theta * Nt - i;
  5020. Real y = phi * Np - j;
  5021. Vector<Real> Interp0(INTERP_ORDER);
  5022. Vector<Real> Interp1(INTERP_ORDER);
  5023. { // Set Interp0, Interp1
  5024. auto node = [] (Long i) {
  5025. return (Real)i - (INTERP_ORDER-1)/2;
  5026. };
  5027. for (Long i = 0; i < INTERP_ORDER; i++) {
  5028. Real wt_x = 1, wt_y = 1;
  5029. for (Long j = 0; j < INTERP_ORDER; j++) {
  5030. if (j != i) {
  5031. wt_x *= (x - node(j)) / (node(i) - node(j));
  5032. wt_y *= (y - node(j)) / (node(i) - node(j));
  5033. }
  5034. Interp0[i] = wt_x;
  5035. Interp1[i] = wt_y;
  5036. }
  5037. }
  5038. }
  5039. for (Long k = 0; k < dof; k++) {
  5040. Real X0 = 0;
  5041. for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  5042. for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  5043. Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  5044. Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  5045. X0 += Interp0[ii] * Interp1[jj] * Xf[(k*Nt+idx_i)*Np+idx_j];
  5046. }
  5047. }
  5048. Long elem_idx = tt * Mp + pp;
  5049. Long node_idx = p * ORDER + t;
  5050. X[elem_idx*dof+k][node_idx] = X0;
  5051. }
  5052. }
  5053. }
  5054. }
  5055. }
  5056. return X;
  5057. }
  5058. static void fourier_filter(sctl::Vector<Real>& X, long Nt_, long Np_, Real sigma, const Comm& comm) {
  5059. long dof = X.Dim() / (Nt_ * Np_);
  5060. SCTL_ASSERT(X.Dim() == dof * Nt_ * Np_);
  5061. sctl::FFT<Real> fft_r2c, fft_c2r;
  5062. sctl::StaticArray<sctl::Long, 2> fft_dim = {Nt_, Np_};
  5063. fft_r2c.Setup(sctl::FFT_Type::R2C, 1, sctl::Vector<sctl::Long>(2, fft_dim, false), omp_get_max_threads());
  5064. fft_c2r.Setup(sctl::FFT_Type::C2R, 1, sctl::Vector<sctl::Long>(2, fft_dim, false), omp_get_max_threads());
  5065. long Nt = Nt_;
  5066. long Np = fft_r2c.Dim(1) / (Nt * 2);
  5067. SCTL_ASSERT(fft_r2c.Dim(1) == Nt * Np * 2);
  5068. auto filter_fn = [](Real x2, Real sigma) {return exp(-x2/(2*sigma*sigma));};
  5069. //auto filter_fn = [](Real x2, Real sigma) {return (x2<sigma*sigma?1.0:0.0);};
  5070. sctl::Vector<Real> normal, gradX;
  5071. biest::SurfaceOp<Real> op(comm, Nt_, Np_);
  5072. sctl::Vector<Real> coeff(fft_r2c.Dim(1));
  5073. for (long k = 0; k < dof; k++) {
  5074. sctl::Vector<Real> X_(Nt_*Np_, X.begin() + k*Nt_*Np_, false);
  5075. fft_r2c.Execute(X_, coeff);
  5076. for (long t = 0; t < Nt; t++) {
  5077. for (long p = 0; p < Np; p++) {
  5078. Real tt = (t - (t > Nt / 2 ? Nt : 0)) / (Real)(Nt / 2);
  5079. Real pp = p / (Real)Np;
  5080. Real f = filter_fn(tt*tt+pp*pp, sigma);
  5081. coeff[(t * Np + p) * 2 + 0] *= f;
  5082. coeff[(t * Np + p) * 2 + 1] *= f;
  5083. }
  5084. }
  5085. fft_c2r.Execute(coeff, X_);
  5086. }
  5087. };
  5088. static void filter(const Stellarator<Real,ORDER>& S, const Comm& comm, Vector<ElemBasis>& f, Real sigma) {
  5089. Long dof = f.Dim() / S.NElem();
  5090. SCTL_ASSERT(f.Dim() == S.NElem() * dof);
  5091. for (Long i = 0; i < S.Nsurf()-1; i++) {
  5092. const Long Mt = S.NTor(i);
  5093. const Long Mp = S.NPol(i);
  5094. const Long Nelem = Mt * Mp;
  5095. const Long offset = S.ElemDsp(i);
  5096. const Long Nt = Mt * ORDER * 4;
  5097. const Long Np = Mp * ORDER * 4;
  5098. Vector<ElemBasis> f_(Nelem*dof, f.begin() + offset*dof, false);
  5099. Vector<Real> f_fourier = cheb2grid(f_, Mt, Mp, Nt, Np);
  5100. fourier_filter(f_fourier, Nt, Np, 0.25 * sigma, comm);
  5101. f_ = grid2cheb(f_fourier, Nt, Np, Mt, Mp);
  5102. }
  5103. };
  5104. static Vector<Real> cheb2grid(const Stellarator<Real,ORDER>& S, const Vector<ElemBasis>& f) {
  5105. const Long Nnodes = ElemBasis::Size();
  5106. const Long Nelem = S.NElem();
  5107. const Long dof = f.Dim() / Nelem;
  5108. SCTL_ASSERT(Nelem * dof == f.Dim());
  5109. Vector<Real> f_fourier(dof * Nelem * (ORDER*ORDER*fourier_upsample*fourier_upsample));
  5110. for (Long i = 0; i < S.Nsurf(); i++) {
  5111. const Long Mt = S.NTor(i);
  5112. const Long Mp = S.NPol(i);
  5113. const Long offset = S.ElemDsp(i);
  5114. const Long Nt = Mt * ORDER * fourier_upsample;
  5115. const Long Np = Mp * ORDER * fourier_upsample;
  5116. const Vector<ElemBasis> f_(Mt*Mp*dof, (Iterator<ElemBasis>)f.begin() + offset*dof, false);
  5117. Vector<Real> f_fourier_(dof*Nt*Np, f_fourier.begin() + dof*offset * (ORDER*ORDER*fourier_upsample*fourier_upsample), false);
  5118. f_fourier_ = cheb2grid(f_, Mt, Mp, Nt, Np);
  5119. SCTL_ASSERT(f_fourier_.Dim() == dof*Nt*Np);
  5120. }
  5121. return f_fourier;
  5122. }
  5123. static Vector<ElemBasis> grid2cheb(const Stellarator<Real,ORDER>& S, const Vector<Real>& f_fourier) {
  5124. const Long Nnodes = ElemBasis::Size();
  5125. const Long Nelem = S.NElem();
  5126. const Long dof = f_fourier.Dim() / (Nelem * (ORDER*ORDER*fourier_upsample*fourier_upsample));
  5127. SCTL_ASSERT(dof * Nelem * (ORDER*ORDER*fourier_upsample*fourier_upsample) == f_fourier.Dim());
  5128. Vector<ElemBasis> f(Nelem * dof);
  5129. for (Long i = 0; i < S.Nsurf(); i++) {
  5130. const Long Mt = S.NTor(i);
  5131. const Long Mp = S.NPol(i);
  5132. const Long offset = S.ElemDsp(i);
  5133. const Long Nt = Mt * ORDER * fourier_upsample;
  5134. const Long Np = Mp * ORDER * fourier_upsample;
  5135. Vector<ElemBasis> f_(Mt*Mp*dof, f.begin() + offset*dof, false);
  5136. const Vector<Real> f_fourier_(dof*Nt*Np, (Iterator<Real>)f_fourier.begin() + dof*offset * (ORDER*ORDER*fourier_upsample*fourier_upsample), false);
  5137. f_ = grid2cheb(f_fourier_, Nt, Np, Mt, Mp);
  5138. SCTL_ASSERT(f_.Dim() == Mt*Mp*dof);
  5139. }
  5140. return f;
  5141. }
  5142. template <class Real, class GradOp> static Long GradientDescent(GradOp& grad_op, Eigen::VectorXd& x, Real& fx, Long max_iter, Real tol) {
  5143. Real dt = 0.1;
  5144. for (Long iter = 0; iter < max_iter; iter++) {
  5145. Eigen::VectorXd grad(x.size());
  5146. fx = grad_op(x, grad);
  5147. { // Update dt
  5148. Eigen::VectorXd grad_(x.size());
  5149. Eigen::VectorXd x1 = x - grad * dt * 0.5;
  5150. Eigen::VectorXd x2 = x - grad * dt * 1.0;
  5151. Real fx1 = grad_op(x1, grad_);
  5152. Real fx2 = grad_op(x2, grad_);
  5153. { // Calculate optimal step size dt
  5154. Real a = 2*fx - 4*fx1 + 2*fx2;
  5155. Real b =-3*fx + 4*fx1 - fx2;
  5156. Real c = fx;
  5157. Real s = -b/(2*a);
  5158. dt *= s;
  5159. Real fx_ = a*s*s + b*s + c;
  5160. std::cout<<"g = "<<fx_<<' ';
  5161. std::cout<<fx<<' ';
  5162. std::cout<<fx1<<' ';
  5163. std::cout<<fx2<<' ';
  5164. std::cout<<dt<<'\n';
  5165. }
  5166. }
  5167. x = x - grad * dt;
  5168. if (fx < tol) return iter;
  5169. }
  5170. return max_iter;
  5171. }
  5172. public:
  5173. MHDEquilib(const Stellarator<Real,ORDER>& S, const Vector<Real>& pressure, const Vector<Real>& flux_tor, const Vector<Real>& flux_pol) {
  5174. S_ = S;
  5175. pressure_ = pressure;
  5176. flux_tor_ = flux_tor;
  5177. flux_pol_ = flux_pol;
  5178. iter = 0;
  5179. }
  5180. Real operator()(const Eigen::VectorXd& x, Eigen::VectorXd& grad) {
  5181. const Comm comm = Comm::World();
  5182. const Long Nelem = S_.NElem();
  5183. const Long Nnodes = ElemBasis::Size();
  5184. const Long N = Nelem * COORD_DIM * Nnodes;
  5185. Vector<Real> X_fourier(x.size());
  5186. for (Long i = 0; i < x.size(); i++) { // Set X_fourier
  5187. X_fourier[i] = x(i);
  5188. }
  5189. Vector<ElemBasis> X = grid2cheb(S_, X_fourier);
  5190. Real g;
  5191. for (Long i = 0; i < Nelem; i++) { // Set S_
  5192. for (Long j = 0; j < Nnodes; j++) {
  5193. S_.Elem(i,0)[j] = X[i*COORD_DIM+0][j];
  5194. S_.Elem(i,1)[j] = X[i*COORD_DIM+1][j];
  5195. S_.Elem(i,2)[j] = X[i*COORD_DIM+2][j];
  5196. }
  5197. }
  5198. Vector<ElemBasis> dgdnu = Stellarator<Real,ORDER>::compute_gradient(S_, pressure_, flux_tor_, flux_pol_, &g);
  5199. //Vector<ElemBasis> dgdnu = Stellarator<Real,ORDER>::compute_pressure_jump(S_, pressure_, flux_tor_, flux_pol_, &g);
  5200. Vector<Real> dXdt_fourier;
  5201. { // Set grad
  5202. //filter(S_, comm, dgdnu, 0.1);
  5203. //Vector<Real> dgdnu_fourier = cheb2grid(S_, dgdnu);
  5204. { // deprecate
  5205. Vector<ElemBasis> dXdt(Nelem*COORD_DIM);
  5206. { // Set dXdt
  5207. dXdt = 0;
  5208. const Long Nnodes = ElemBasis::Size();
  5209. Vector<ElemBasis> normal, area_elem;
  5210. Stellarator<Real,ORDER>::compute_norm_area_elem(S_, normal, area_elem);
  5211. for (Long i = 0; i < S_.ElemDsp(S_.Nsurf()-1); i++) {
  5212. for (Long j = 0; j < Nnodes; j++) {
  5213. dXdt[i*COORD_DIM+0][j] = normal[i*COORD_DIM+0][j] * dgdnu[i][j];
  5214. dXdt[i*COORD_DIM+1][j] = normal[i*COORD_DIM+1][j] * dgdnu[i][j];
  5215. dXdt[i*COORD_DIM+2][j] = normal[i*COORD_DIM+2][j] * dgdnu[i][j];
  5216. }
  5217. }
  5218. }
  5219. { // Filter dXdt
  5220. filter(S_, comm, dXdt, 0.1);
  5221. }
  5222. dXdt_fourier = cheb2grid(S_, dXdt);
  5223. SCTL_ASSERT(grad.size() == dXdt_fourier.Dim());
  5224. for (Long i = 0; i < grad.size(); i++) { // Set grad
  5225. grad(i) = dXdt_fourier[i];
  5226. }
  5227. }
  5228. }
  5229. if (1) { // Write VTU
  5230. VTUData vtu;
  5231. vtu.AddElems(S_.GetElemList(), dgdnu, ORDER);
  5232. vtu.WriteVTK("dgdnu"+std::to_string(iter), comm);
  5233. }
  5234. if (1) { // Write VTU
  5235. VTUData vtu;
  5236. Vector<ElemBasis> dXdt = grid2cheb(S_, dXdt_fourier);
  5237. vtu.AddElems(S_.GetElemList(), dXdt, ORDER);
  5238. vtu.WriteVTK("dXdt"+std::to_string(iter), comm);
  5239. }
  5240. std::cout<<"iter = "<<iter<<" g = "<<g<<'\n';
  5241. iter++;
  5242. return g;
  5243. }
  5244. static void ComputeEquilibrium(MHDEquilib& mhd_equilib) {
  5245. Comm comm = Comm::World();
  5246. const Long Nelem = mhd_equilib.S_.NElem();
  5247. const Long Nnodes = ElemBasis::Size();
  5248. // Initial guess
  5249. Eigen::VectorXd x;
  5250. { // Set x
  5251. Vector<ElemBasis> X(Nelem * COORD_DIM);
  5252. for (Long i = 0; i < Nelem; i++) { // Set x
  5253. X[i*COORD_DIM+0] = mhd_equilib.S_.Elem(i,0);
  5254. X[i*COORD_DIM+1] = mhd_equilib.S_.Elem(i,1);
  5255. X[i*COORD_DIM+2] = mhd_equilib.S_.Elem(i,2);
  5256. }
  5257. Vector<Real> X_fourier = cheb2grid(mhd_equilib.S_, X);
  5258. x.resize(X_fourier.Dim());
  5259. for (Long i = 0; i < X_fourier.Dim(); i++) {
  5260. x(i) = X_fourier[i];
  5261. }
  5262. }
  5263. Real fx;
  5264. if (1) {
  5265. LBFGSpp::LBFGSParam<Real> param;
  5266. param.max_iterations = 100;
  5267. param.epsilon = 1e-8;
  5268. param.m = 20;
  5269. LBFGSpp::LBFGSSolver<Real> solver(param);
  5270. Integer niter = solver.minimize(mhd_equilib, x, fx);
  5271. } else {
  5272. Integer niter = GradientDescent(mhd_equilib, x, fx, 100, 1e-8);
  5273. }
  5274. { // Set x
  5275. // TODO
  5276. }
  5277. }
  5278. static void test() {
  5279. Comm comm = Comm::World();
  5280. Profile::Enable(true);
  5281. Long Nsurf = 2;
  5282. Stellarator<Real,ORDER> S;
  5283. Vector<Real> flux_tor(Nsurf), flux_pol(Nsurf), pressure(Nsurf);
  5284. { // Init S, flux_tor, flux_pol, pressure
  5285. Vector<Long> NtNp;
  5286. for (Long i = 0; i < Nsurf; i++) {
  5287. //NtNp.PushBack(50);
  5288. //NtNp.PushBack(8);
  5289. NtNp.PushBack(30);
  5290. NtNp.PushBack(4);
  5291. }
  5292. S = Stellarator<Real,ORDER>(NtNp);
  5293. flux_tor = 1;
  5294. flux_pol = 1;
  5295. pressure = 0;
  5296. //flux_tor[0] = 1; //0.791881512;
  5297. //flux_tor[1] = 1;
  5298. //flux_pol[0] = 0;
  5299. //flux_pol[1] = 0;
  5300. //pressure[0] = 0;
  5301. //pressure[1] = 0;
  5302. }
  5303. MHDEquilib mhd_equilib(S, pressure, flux_tor, flux_pol);
  5304. ComputeEquilibrium(mhd_equilib);
  5305. }
  5306. private:
  5307. Stellarator<Real,ORDER> S_;
  5308. Vector<Real> pressure_;
  5309. Vector<Real> flux_tor_;
  5310. Vector<Real> flux_pol_;
  5311. Long iter = 0;
  5312. };
  5313. template <class Real, Integer ORDER=5> class Spheres {
  5314. static constexpr Integer COORD_DIM = 3;
  5315. static constexpr Integer ELEM_DIM = COORD_DIM-1;
  5316. using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
  5317. using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
  5318. using CoordBasis = Basis<Real, ELEM_DIM, ORDER>;
  5319. using ElemLst = ElemList<COORD_DIM, CoordBasis>;
  5320. public:
  5321. Spheres(Long N = 0) {
  5322. Vector<Real> X(N*COORD_DIM);
  5323. Vector<Real> R(N);
  5324. X=0;
  5325. R=1;
  5326. for (Long i = 0; i < N; i++) X[i*COORD_DIM] = (i==0?-1.015:1.015); ///////////
  5327. InitSpheres(X,R);
  5328. }
  5329. const ElemLst& GetElem() const {
  5330. return elements;
  5331. }
  5332. static void test() {
  5333. constexpr Integer order_singular = 35;
  5334. constexpr Integer order_direct = 35;
  5335. Comm comm = Comm::World();
  5336. Profile::Enable(true);
  5337. Long Ns = 2;
  5338. Spheres S(Ns);
  5339. S.quadrature_FxT.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_FxT, order_singular, order_direct, -1.0, comm);
  5340. S.quadrature_FxU.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_FxU, order_singular, order_direct, -1.0, comm);
  5341. S.quadrature_DxU.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_DxU, order_singular, order_direct, -1.0, comm);
  5342. const auto SetMotion = [&S](Vector<DensityBasis>& density, const Vector<Real>& force_avg, const Vector<Real>& torque_avg) {
  5343. Long Nelem = S.GetElem().NElem();
  5344. Long Nsurf = S.elem_cnt.Dim();
  5345. const auto& X = S.GetElem().ElemVector();
  5346. Vector<Real> area, Xc;
  5347. Vector<DensityBasis> one(Nelem);
  5348. for (Long i = 0; i < Nelem; i++) {
  5349. for (Long j = 0; j < DensityBasis::Size(); j++) {
  5350. one[i][j] = 1;
  5351. }
  5352. }
  5353. S.SurfInteg(area, one);
  5354. S.SurfInteg(Xc, S.GetElem().ElemVector());
  5355. for (Long i = 0; i < Nsurf; i++) {
  5356. for (Long k = 0; k < COORD_DIM; k++) {
  5357. Xc[i*COORD_DIM+k] /= area[i];
  5358. }
  5359. }
  5360. if (density.Dim() != Nelem*COORD_DIM) density.ReInit(Nelem*COORD_DIM);
  5361. Long elem_itr = 0;
  5362. for (Long i = 0; i < Nsurf; i++) {
  5363. for (Long j = 0; j < S.elem_cnt[i]; j++) {
  5364. for (Long k = 0; k < DensityBasis::Size(); k++) {
  5365. StaticArray<Real,COORD_DIM> dX;
  5366. dX[0] = (X[elem_itr*COORD_DIM+0][k] - Xc[i*COORD_DIM+0]);
  5367. dX[1] = (X[elem_itr*COORD_DIM+1][k] - Xc[i*COORD_DIM+1]);
  5368. dX[2] = (X[elem_itr*COORD_DIM+2][k] - Xc[i*COORD_DIM+2]);
  5369. density[elem_itr*COORD_DIM+0][k] = force_avg[i*COORD_DIM+0]*(1/area[i]) + (torque_avg[i*COORD_DIM+1] * dX[2] - torque_avg[i*COORD_DIM+2] * dX[1]) / (2*area[i]/3);
  5370. density[elem_itr*COORD_DIM+1][k] = force_avg[i*COORD_DIM+1]*(1/area[i]) + (torque_avg[i*COORD_DIM+2] * dX[0] - torque_avg[i*COORD_DIM+0] * dX[2]) / (2*area[i]/3);
  5371. density[elem_itr*COORD_DIM+2][k] = force_avg[i*COORD_DIM+2]*(1/area[i]) + (torque_avg[i*COORD_DIM+0] * dX[1] - torque_avg[i*COORD_DIM+1] * dX[0]) / (2*area[i]/3);
  5372. }
  5373. elem_itr++;
  5374. }
  5375. }
  5376. };
  5377. const auto GetMotion = [&S](Vector<Real>& force_avg, Vector<Real>& torque_avg, const Vector<DensityBasis>& density) {
  5378. Long Nelem = S.GetElem().NElem();
  5379. Long Nsurf = S.elem_cnt.Dim();
  5380. const auto& X = S.GetElem().ElemVector();
  5381. S.SurfInteg(force_avg, density);
  5382. Vector<Real> area, Xc;
  5383. Vector<DensityBasis> one(Nelem);
  5384. for (Long i = 0; i < Nelem; i++) {
  5385. for (Long j = 0; j < DensityBasis::Size(); j++) {
  5386. one[i][j] = 1;
  5387. }
  5388. }
  5389. S.SurfInteg(area, one);
  5390. S.SurfInteg(Xc, S.GetElem().ElemVector());
  5391. for (Long i = 0; i < Nsurf; i++) {
  5392. for (Long k = 0; k < COORD_DIM; k++) {
  5393. Xc[i*COORD_DIM+k] /= area[i];
  5394. }
  5395. }
  5396. { // Set torque_avg
  5397. Long elem_itr = 0;
  5398. Vector<DensityBasis> torque(Nelem*COORD_DIM);
  5399. for (Long i = 0; i < Nsurf; i++) {
  5400. for (Long j = 0; j < S.elem_cnt[i]; j++) {
  5401. for (Long k = 0; k < DensityBasis::Size(); k++) {
  5402. StaticArray<Real,COORD_DIM> dX;
  5403. dX[0] = (X[elem_itr*COORD_DIM+0][k] - Xc[i*COORD_DIM+0]);
  5404. dX[1] = (X[elem_itr*COORD_DIM+1][k] - Xc[i*COORD_DIM+1]);
  5405. dX[2] = (X[elem_itr*COORD_DIM+2][k] - Xc[i*COORD_DIM+2]);
  5406. torque[elem_itr*COORD_DIM+0][k] = dX[1] * density[elem_itr*COORD_DIM+2][k] - dX[2] * density[elem_itr*COORD_DIM+1][k];
  5407. torque[elem_itr*COORD_DIM+1][k] = dX[2] * density[elem_itr*COORD_DIM+0][k] - dX[0] * density[elem_itr*COORD_DIM+2][k];
  5408. torque[elem_itr*COORD_DIM+2][k] = dX[0] * density[elem_itr*COORD_DIM+1][k] - dX[1] * density[elem_itr*COORD_DIM+0][k];
  5409. }
  5410. elem_itr++;
  5411. }
  5412. }
  5413. S.SurfInteg(torque_avg, torque);
  5414. }
  5415. };
  5416. const auto BIOpL = [&GetMotion,&SetMotion](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  5417. Vector<Real> force_avg, torque_avg;
  5418. GetMotion(force_avg, torque_avg, density);
  5419. SetMotion(potential, force_avg, torque_avg);
  5420. };
  5421. const auto BIOpK = [&S](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  5422. Vector<DensityBasis> traction;
  5423. S.quadrature_FxT.Eval(traction, S.GetElem(), density, S.Stokes_FxT);
  5424. Vector<CoordBasis> dX;
  5425. const auto X = S.GetElem().ElemVector();
  5426. CoordBasis::Grad(dX, X);
  5427. Long Nelem = S.GetElem().NElem();
  5428. Long Nnodes = CoordBasis::Size();
  5429. potential.ReInit(Nelem * COORD_DIM);
  5430. for (Long i = 0; i < Nelem; i++) {
  5431. for (Long j = 0; j < Nnodes; j++) {
  5432. StaticArray<Real,COORD_DIM> Xn;
  5433. Xn[0] = dX[i*COORD_DIM*2+2][j]*dX[i*COORD_DIM*2+5][j] - dX[i*COORD_DIM*2+4][j]*dX[i*COORD_DIM*2+3][j];
  5434. Xn[1] = dX[i*COORD_DIM*2+4][j]*dX[i*COORD_DIM*2+1][j] - dX[i*COORD_DIM*2+0][j]*dX[i*COORD_DIM*2+5][j];
  5435. Xn[2] = dX[i*COORD_DIM*2+0][j]*dX[i*COORD_DIM*2+3][j] - dX[i*COORD_DIM*2+2][j]*dX[i*COORD_DIM*2+1][j];
  5436. Real AreaElem = sqrt<Real>(Xn[0]*Xn[0] + Xn[1]*Xn[1] + Xn[2]*Xn[2]);
  5437. Real OOAreaElem = 1 / AreaElem;
  5438. Xn[0] *= OOAreaElem;
  5439. Xn[1] *= OOAreaElem;
  5440. Xn[2] *= OOAreaElem;
  5441. potential[i*COORD_DIM+0][j] = traction[i*COORD_DIM*COORD_DIM+0][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+1][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+2][j]*Xn[2];
  5442. potential[i*COORD_DIM+1][j] = traction[i*COORD_DIM*COORD_DIM+3][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+4][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+5][j]*Xn[2];
  5443. potential[i*COORD_DIM+2][j] = traction[i*COORD_DIM*COORD_DIM+6][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+7][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+8][j]*Xn[2];
  5444. }
  5445. }
  5446. };
  5447. const auto BIOp_half_K_L = [&S,&BIOpK,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  5448. Vector<DensityBasis> potential_K;
  5449. Vector<DensityBasis> potential_L;
  5450. BIOpK(potential_K, density);
  5451. BIOpL(potential_L, density);
  5452. if (potential.Dim() != potential_K.Dim()) {
  5453. potential.ReInit(potential_K.Dim());
  5454. }
  5455. for (Long i = 0; i < potential_K.Dim(); i++) {
  5456. for (Long k = 0; k < DensityBasis::Size(); k++) {
  5457. potential[i][k] = -0.5*density[i][k] + potential_K[i][k] + potential_L[i][k];
  5458. }
  5459. }
  5460. };
  5461. const auto BIOp_half_K = [&S,&BIOpK,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  5462. Vector<DensityBasis> potential_K;
  5463. BIOpK(potential_K, density);
  5464. if (potential.Dim() != potential_K.Dim()) {
  5465. potential.ReInit(potential_K.Dim());
  5466. }
  5467. for (Long i = 0; i < potential_K.Dim(); i++) {
  5468. for (Long k = 0; k < DensityBasis::Size(); k++) {
  5469. potential[i][k] = -0.5*density[i][k] + potential_K[i][k];
  5470. }
  5471. }
  5472. };
  5473. const auto BIOp_half_S_D = [&S,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  5474. Vector<DensityBasis> U;
  5475. S.quadrature_DxU.Eval(U, S.GetElem(), density, S.Stokes_DxU);
  5476. Vector<PotentialBasis> U1;
  5477. Vector<DensityBasis> sigma1;
  5478. BIOpL(sigma1,density);
  5479. S.quadrature_FxU.Eval(U1, S.GetElem(), sigma1, S.Stokes_FxU);
  5480. Long Nelem = S.GetElem().NElem();
  5481. Long Nnodes = CoordBasis::Size();
  5482. potential.ReInit(Nelem * COORD_DIM);
  5483. for (Long i = 0; i < Nelem; i++) {
  5484. for (Long j = 0; j < Nnodes; j++) {
  5485. potential[i*COORD_DIM+0][j] = 0.5*density[i*COORD_DIM+0][j] + U[i*COORD_DIM+0][j] + U1[i*COORD_DIM+0][j];
  5486. potential[i*COORD_DIM+1][j] = 0.5*density[i*COORD_DIM+1][j] + U[i*COORD_DIM+1][j] + U1[i*COORD_DIM+1][j];
  5487. potential[i*COORD_DIM+2][j] = 0.5*density[i*COORD_DIM+2][j] + U[i*COORD_DIM+2][j] + U1[i*COORD_DIM+2][j];
  5488. }
  5489. }
  5490. };
  5491. Vector<PotentialBasis> U;
  5492. { // Rachh
  5493. Vector<DensityBasis> sigma0;
  5494. { // Set sigma0
  5495. srand48(comm.Rank());
  5496. Vector<Real> force(Ns*COORD_DIM), torque(Ns*COORD_DIM);
  5497. //for (auto& x : force) x = drand48();
  5498. //for (auto& x : torque) x = drand48();
  5499. force = 0;
  5500. torque = 0;
  5501. force[0] = 1;
  5502. //force[4] = 1;
  5503. SetMotion(sigma0, force, torque);
  5504. }
  5505. Vector<DensityBasis> rhs;
  5506. BIOp_half_K(rhs, sigma0);
  5507. Vector<DensityBasis> sigma;
  5508. { // Set sigma
  5509. Long Nnode = DensityBasis::Size();
  5510. Long Nelem = S.GetElem().NElem();
  5511. typename sctl::ParallelSolver<Real>::ParallelOp A = [&S,&BIOp_half_K_L](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  5512. Long Nnode = DensityBasis::Size();
  5513. Long Nelem = S.GetElem().NElem();
  5514. Ax->ReInit(Nelem*COORD_DIM*Nnode);
  5515. Vector<DensityBasis> x_(Nelem*COORD_DIM), Ax_(Nelem*COORD_DIM);
  5516. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set x_
  5517. for (Long k = 0; k < Nnode; k++) {
  5518. x_[i][k] = x[i*Nnode+k];
  5519. }
  5520. }
  5521. BIOp_half_K_L(Ax_, x_);
  5522. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set Ax
  5523. for (Long k = 0; k < Nnode; k++) {
  5524. (*Ax)[i*Nnode+k] = Ax_[i][k];
  5525. }
  5526. }
  5527. };
  5528. Vector<Real> sigma_(Nelem*COORD_DIM*Nnode), rhs_(Nelem*COORD_DIM*Nnode);
  5529. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set rhs_
  5530. for (Long k = 0; k < Nnode; k++) {
  5531. rhs_[i*Nnode+k] = rhs[i][k];
  5532. }
  5533. }
  5534. sigma_ = 0;
  5535. ParallelSolver<Real> linear_solver(comm, true);
  5536. linear_solver(&sigma_, A, rhs_, 1e-6, 50);
  5537. sigma.ReInit(Nelem * COORD_DIM);
  5538. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set sigma
  5539. for (Long k = 0; k < Nnode; k++) {
  5540. sigma[i][k] = sigma_[i*Nnode+k] - sigma0[i][k];
  5541. }
  5542. }
  5543. }
  5544. S.quadrature_FxU.Eval(U, S.GetElem(), sigma, S.Stokes_FxU);
  5545. { // Write VTU
  5546. VTUData vtu_sigma;
  5547. vtu_sigma.AddElems(S.elements, sigma, ORDER);
  5548. vtu_sigma.WriteVTK("sphere-sigma0", comm);
  5549. VTUData vtu_U;
  5550. vtu_U.AddElems(S.elements, U, ORDER);
  5551. vtu_U.WriteVTK("sphere-U0", comm);
  5552. }
  5553. }
  5554. { // Tornberg
  5555. Vector<DensityBasis> rhs;
  5556. BIOpL(rhs, U);
  5557. Vector<DensityBasis> sigma;
  5558. { // Set sigma
  5559. Long Nnode = DensityBasis::Size();
  5560. Long Nelem = S.GetElem().NElem();
  5561. typename sctl::ParallelSolver<Real>::ParallelOp A = [&S,&BIOp_half_S_D](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  5562. Long Nnode = DensityBasis::Size();
  5563. Long Nelem = S.GetElem().NElem();
  5564. Ax->ReInit(Nelem*COORD_DIM*Nnode);
  5565. Vector<DensityBasis> x_(Nelem*COORD_DIM), Ax_(Nelem*COORD_DIM);
  5566. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set x_
  5567. for (Long k = 0; k < Nnode; k++) {
  5568. x_[i][k] = x[i*Nnode+k];
  5569. }
  5570. }
  5571. BIOp_half_S_D(Ax_, x_);
  5572. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set Ax
  5573. for (Long k = 0; k < Nnode; k++) {
  5574. (*Ax)[i*Nnode+k] = Ax_[i][k];
  5575. }
  5576. }
  5577. };
  5578. Vector<Real> sigma_(Nelem*COORD_DIM*Nnode), rhs_(Nelem*COORD_DIM*Nnode);
  5579. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set rhs_
  5580. for (Long k = 0; k < Nnode; k++) {
  5581. rhs_[i*Nnode+k] = rhs[i][k];
  5582. }
  5583. }
  5584. sigma_ = 0;
  5585. ParallelSolver<Real> linear_solver(comm, true);
  5586. linear_solver(&sigma_, A, rhs_, 1e-6, 50);
  5587. sigma.ReInit(Nelem * COORD_DIM);
  5588. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set sigma
  5589. for (Long k = 0; k < Nnode; k++) {
  5590. sigma[i][k] = sigma_[i*Nnode+k];
  5591. }
  5592. }
  5593. }
  5594. Vector<PotentialBasis> U1;
  5595. BIOp_half_S_D(U1, sigma);
  5596. { // Write VTU
  5597. VTUData vtu_sigma;
  5598. vtu_sigma.AddElems(S.elements, sigma, ORDER);
  5599. vtu_sigma.WriteVTK("sphere-sigma1", comm);
  5600. VTUData vtu_U;
  5601. vtu_U.AddElems(S.elements, U1, ORDER);
  5602. vtu_U.WriteVTK("sphere-U1", comm);
  5603. }
  5604. }
  5605. Profile::print(&comm);
  5606. }
  5607. private:
  5608. template <class FnBasis> void SurfInteg(Vector<Real>& I, const Vector<FnBasis>& f) {
  5609. static_assert(std::is_same<FnBasis,CoordBasis>::value, "FnBasis is different from CoordBasis");
  5610. const Long Nelem = elements.NElem();
  5611. const Long dof = f.Dim() / Nelem;
  5612. SCTL_ASSERT(f.Dim() == Nelem * dof);
  5613. auto nodes = FnBasis::Nodes();
  5614. auto quad_wts = FnBasis::QuadWts();
  5615. const Long Nnodes = FnBasis::Size();
  5616. auto EvalOp = CoordBasis::SetupEval(nodes);
  5617. Vector<CoordBasis> dX;
  5618. const auto& X = elements.ElemVector();
  5619. SCTL_ASSERT(X.Dim() == Nelem * COORD_DIM);
  5620. CoordBasis::Grad(dX, X);
  5621. Matrix<Real> I_(Nelem, dof);
  5622. for (Long i = 0; i < Nelem; i++) {
  5623. for (Long k = 0; k < dof; k++) {
  5624. I_[i][k] = 0;
  5625. }
  5626. for (Long j = 0; j < Nnodes; j++) {
  5627. Real dA = 0;
  5628. StaticArray<Real,COORD_DIM> Xn;
  5629. Xn[0] = dX[i*COORD_DIM*2+2][j] * dX[i*COORD_DIM*2+5][j] - dX[i*COORD_DIM*2+3][j] * dX[i*COORD_DIM*2+4][j];
  5630. Xn[1] = dX[i*COORD_DIM*2+4][j] * dX[i*COORD_DIM*2+1][j] - dX[i*COORD_DIM*2+5][j] * dX[i*COORD_DIM*2+0][j];
  5631. Xn[2] = dX[i*COORD_DIM*2+0][j] * dX[i*COORD_DIM*2+3][j] - dX[i*COORD_DIM*2+1][j] * dX[i*COORD_DIM*2+2][j];
  5632. dA += sqrt<Real>(Xn[0]*Xn[0] + Xn[1]*Xn[1] + Xn[2]*Xn[2]) * quad_wts[j];
  5633. for (Long k = 0; k < dof; k++) {
  5634. I_[i][k] += dA * f[i*dof+k][j];
  5635. }
  5636. }
  5637. }
  5638. Long Ns = elem_cnt.Dim();
  5639. if (I.Dim() != Ns * dof) I.ReInit(Ns * dof);
  5640. I = 0;
  5641. Long elem_itr = 0;
  5642. for (Long i = 0; i < Ns; i++) {
  5643. for (Long j = 0; j < elem_cnt[i]; j++) {
  5644. for (Long k = 0; k < dof; k++) {
  5645. I[i*dof+k] += I_[elem_itr][k];
  5646. }
  5647. elem_itr++;
  5648. }
  5649. }
  5650. }
  5651. void InitSpheres(const Vector<Real> X, const Vector<Real>& R){
  5652. SCTL_ASSERT(X.Dim() == R.Dim() * COORD_DIM);
  5653. Long N = R.Dim();
  5654. elements.ReInit(2*COORD_DIM*N);
  5655. auto nodes = ElemLst::CoordBasis::Nodes();
  5656. for (Long l = 0; l < N; l++) {
  5657. for (Integer i = 0; i < COORD_DIM; i++) {
  5658. for (Integer j = 0; j < 2; j++) {
  5659. for (int k = 0; k < ElemLst::CoordBasis::Size(); k++) {
  5660. Real coord[COORD_DIM];
  5661. coord[(i+0)%COORD_DIM] = (j ? -1.0 : 1.0);
  5662. coord[(i+1)%COORD_DIM] = 2.0 * nodes[j?1:0][k] - 1.0;
  5663. coord[(i+2)%COORD_DIM] = 2.0 * nodes[j?0:1][k] - 1.0;
  5664. Real R0 = sqrt<Real>(coord[0]*coord[0] + coord[1]*coord[1] + coord[2]*coord[2]);
  5665. elements((l*COORD_DIM+i)*2+j,0)[k] = X[l*COORD_DIM+0] + R[l] * coord[0] / R0;
  5666. elements((l*COORD_DIM+i)*2+j,1)[k] = X[l*COORD_DIM+1] + R[l] * coord[1] / R0;
  5667. elements((l*COORD_DIM+i)*2+j,2)[k] = X[l*COORD_DIM+2] + R[l] * coord[2] / R0;
  5668. }
  5669. }
  5670. }
  5671. }
  5672. elem_cnt.ReInit(N);
  5673. elem_cnt = 6;
  5674. }
  5675. GenericKernel<Stokes3D_DxU> Stokes_DxU;
  5676. GenericKernel<Stokes3D_FxU> Stokes_FxU;
  5677. GenericKernel<Stokes3D_FxT> Stokes_FxT;
  5678. Quadrature<Real> quadrature_DxU;
  5679. Quadrature<Real> quadrature_FxU;
  5680. Quadrature<Real> quadrature_FxT;
  5681. ElemLst elements;
  5682. Vector<Long> elem_cnt;
  5683. };
  5684. } // end namespace
  5685. #endif //_SCTL_BOUNDARY_QUADRATURE_HPP_