123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279 |
- #ifndef _SCTL_FFT_WRAPPER_
- #define _SCTL_FFT_WRAPPER_
- #include <cmath>
- #include <cassert>
- #include <cstdlib>
- #include <vector>
- #include SCTL_INCLUDE(common.hpp)
- #include SCTL_INCLUDE(mem_mgr.hpp)
- #include SCTL_INCLUDE(matrix.hpp)
- namespace SCTL_NAMESPACE {
- template <class ValueType> class Complex {
- public:
- Complex<ValueType> operator*(const Complex<ValueType>& x){
- Complex<ValueType> z;
- z.real = real * x.real - imag * x.imag;
- z.imag = imag * x.real - real * x.imag;
- return z;
- }
- Complex<ValueType> operator*(const ValueType& x){
- Complex<ValueType> z;
- z.real = real * x;
- z.imag = imag * x;
- return z;
- }
- Complex<ValueType> operator+(const Complex<ValueType>& x){
- Complex<ValueType> z;
- z.real = real + x.real;
- z.imag = imag + x.imag;
- return z;
- }
- Complex<ValueType> operator+(const ValueType& x){
- Complex<ValueType> z;
- z.real = real + x;
- z.imag = imag;
- return z;
- }
- Complex<ValueType> operator-(const Complex<ValueType>& x){
- Complex<ValueType> z;
- z.real = real - x.real;
- z.imag = imag - x.imag;
- return z;
- }
- Complex<ValueType> operator-(const ValueType& x){
- Complex<ValueType> z;
- z.real = real - x;
- z.imag = imag;
- return z;
- }
- ValueType real;
- ValueType imag;
- };
- template <class ValueType> Complex<ValueType> operator*(const ValueType& x, const Complex<ValueType>& y){
- Complex<ValueType> z;
- z.real = y.real * x;
- z.imag = y.imag * x;
- return z;
- }
- template <class ValueType> Complex<ValueType> operator+(const ValueType& x, const Complex<ValueType>& y){
- Complex<ValueType> z;
- z.real = y.real + x;
- z.imag = y.imag;
- return z;
- }
- template <class ValueType> Complex<ValueType> operator-(const ValueType& x, const Complex<ValueType>& y){
- Complex<ValueType> z;
- z.real = y.real - x;
- z.imag = y.imag;
- return z;
- }
- enum class FFT_Type {R2C, C2C, C2C_INV, C2R};
- template <class ValueType> class FFT {
- typedef Complex<ValueType> ComplexType;
- struct FFTPlan {
- std::vector<Matrix<ValueType>> M;
- FFT_Type fft_type;
- Long howmany;
- };
- public:
- void Setup(FFT_Type fft_type, Long howmany, const Vector<Long>& dim_vec) {
- Long rank = dim_vec.Dim();
- plan.fft_type = fft_type;
- plan.howmany = howmany;
- plan.M.resize(0);
- if (fft_type == FFT_Type::R2C) {
- plan.M.push_back(fft_r2c(dim_vec[rank - 1]));
- for (Long i = rank - 2; i >= 0; i--) plan.M.push_back(fft_c2c(dim_vec[i]));
- } else if (fft_type == FFT_Type::C2C) {
- for (Long i = rank - 1; i >= 0; i--) plan.M.push_back(fft_c2c(dim_vec[i]));
- } else if (fft_type == FFT_Type::C2C_INV) {
- for (Long i = rank - 1; i >= 0; i--) plan.M.push_back(fft_c2c(dim_vec[i]).Transpose());
- } else if (fft_type == FFT_Type::C2R) {
- for (Long i = rank - 2; i >= 0; i--) plan.M.push_back(fft_c2c(dim_vec[i]).Transpose());
- plan.M.push_back(fft_c2r(dim_vec[rank - 1]));
- }
- Long N0 = howmany * 2;
- Long N1 = howmany * 2;
- for (const auto M : plan.M) {
- N0 = N0 * M.Dim(0) / 2;
- N1 = N1 * M.Dim(1) / 2;
- }
- }
- void Execute(const Vector<ValueType>& in, Vector<ValueType>& out) const {
- Long howmany = plan.howmany;
- Long N0 = howmany * 2;
- Long N1 = howmany * 2;
- for (const auto M : plan.M) {
- N0 = N0 * M.Dim(0) / 2;
- N1 = N1 * M.Dim(1) / 2;
- }
- SCTL_ASSERT_MSG(in.Dim() == N0, "FFT: Wrong input size.");
- if (out.Dim() != N1) out.ReInit(N1);
- Vector<ValueType> buff0(N0 + N1);
- Vector<ValueType> buff1(N0 + N1);
- Long rank = plan.M.size();
- if (rank <= 0) return;
- Long N = N0;
- if (plan.fft_type == FFT_Type::C2R) {
- const Matrix<ValueType>& M = plan.M[rank - 1];
- transpose<ComplexType>(buff0.begin(), in.begin(), N / M.Dim(0), M.Dim(0) / 2);
- for (Long i = 0; i < rank - 1; i++) {
- const Matrix<ValueType>& M = plan.M[i];
- Matrix<ValueType> vi(N / M.Dim(0), M.Dim(0), buff0.begin(), false);
- Matrix<ValueType> vo(N / M.Dim(0), M.Dim(1), buff1.begin(), false);
- Matrix<ValueType>::GEMM(vo, vi, M);
- N = N * M.Dim(1) / M.Dim(0);
- transpose<ComplexType>(buff0.begin(), buff1.begin(), N / M.Dim(1), M.Dim(1) / 2);
- }
- transpose<ComplexType>(buff1.begin(), buff0.begin(), N / howmany / 2, howmany);
- Matrix<ValueType> vi(N / M.Dim(0), M.Dim(0), buff1.begin(), false);
- Matrix<ValueType> vo(N / M.Dim(0), M.Dim(1), out.begin(), false);
- Matrix<ValueType>::GEMM(vo, vi, M);
- } else {
- memcopy(buff0.begin(), in.begin(), in.Dim());
- for (Long i = 0; i < rank; i++) {
- const Matrix<ValueType>& M = plan.M[i];
- Matrix<ValueType> vi(N / M.Dim(0), M.Dim(0), buff0.begin(), false);
- Matrix<ValueType> vo(N / M.Dim(0), M.Dim(1), buff1.begin(), false);
- Matrix<ValueType>::GEMM(vo, vi, M);
- N = N * M.Dim(1) / M.Dim(0);
- transpose<ComplexType>(buff0.begin(), buff1.begin(), N / M.Dim(1), M.Dim(1) / 2);
- }
- transpose<ComplexType>(out.begin(), buff0.begin(), N / howmany / 2, howmany);
- }
- }
- static void test() {
- Vector<Long> fft_dim;
- fft_dim.PushBack(2);
- fft_dim.PushBack(5);
- fft_dim.PushBack(3);
- if (1){ // R2C, C2R
- Vector<ValueType> v0, v1, v2;
- FFT<ValueType> myfft0, myfft1;
- myfft0.Setup(FFT_Type::R2C, 1, fft_dim, v0, v1);
- myfft1.Setup(FFT_Type::C2R, 1, fft_dim, v1, v2);
- for (int i = 0; i < v0.Dim(); i++) v0[i] = 1 + i;
- myfft0.Execute(v0, v1);
- myfft1.Execute(v1, v2);
- { // Print error
- ValueType err = 0;
- SCTL_ASSERT(v0.Dim() == v2.Dim());
- for (Long i=0;i<v0.Dim();i++) err = std::max(err, fabs(v0[i] - v2[i]));
- std::cout<<"Error : "<<err<<'\n';
- }
- }
- std::cout<<'\n';
- { // C2C, C2C_INV
- Vector<ValueType> v0, v1, v2;
- FFT<ValueType> myfft0, myfft1;
- myfft0.Setup(FFT_Type::C2C, 1, fft_dim, v0, v1);
- myfft1.Setup(FFT_Type::C2C_INV, 1, fft_dim, v1, v2);
- for (int i = 0; i < v0.Dim(); i++) v0[i] = 1 + i;
- myfft0.Execute(v0, v1);
- myfft1.Execute(v1, v2);
- { // Print error
- ValueType err = 0;
- SCTL_ASSERT(v0.Dim() == v2.Dim());
- for (Long i=0;i<v0.Dim();i++) err = std::max(err, fabs(v0[i] - v2[i]));
- std::cout<<"Error : "<<err<<'\n';
- }
- }
- }
- private:
- static Matrix<ValueType> fft_r2c(Long N0) {
- ValueType s = 1.0 / sqrt<ValueType>(N0);
- Long N1 = (N0 / 2 + 1);
- Matrix<ValueType> M(N0, 2 * N1);
- for (Long j = 0; j < N0; j++)
- for (Long i = 0; i < N1; i++) {
- M[j][2 * i + 0] = cos<ValueType>(j * i * (1.0 / N0) * 2.0 * const_pi<ValueType>())*s;
- M[j][2 * i + 1] = sin<ValueType>(j * i * (1.0 / N0) * 2.0 * const_pi<ValueType>())*s;
- }
- return M;
- }
- static Matrix<ValueType> fft_c2c(Long N0) {
- ValueType s = 1.0 / sqrt<ValueType>(N0);
- Matrix<ValueType> M(2 * N0, 2 * N0);
- for (Long i = 0; i < N0; i++)
- for (Long j = 0; j < N0; j++) {
- M[2 * i + 0][2 * j + 0] = cos<ValueType>(j * i * (1.0 / N0) * 2.0 * const_pi<ValueType>())*s;
- M[2 * i + 1][2 * j + 0] = sin<ValueType>(j * i * (1.0 / N0) * 2.0 * const_pi<ValueType>())*s;
- M[2 * i + 0][2 * j + 1] = -sin<ValueType>(j * i * (1.0 / N0) * 2.0 * const_pi<ValueType>())*s;
- M[2 * i + 1][2 * j + 1] = cos<ValueType>(j * i * (1.0 / N0) * 2.0 * const_pi<ValueType>())*s;
- }
- return M;
- }
- static Matrix<ValueType> fft_c2r(Long N0) {
- ValueType s = 1.0 / sqrt<ValueType>(N0);
- Long N1 = (N0 / 2 + 1);
- Matrix<ValueType> M(2 * N1, N0);
- for (Long i = 0; i < N1; i++) {
- for (Long j = 0; j < N0; j++) {
- M[2 * i + 0][j] = 2 * cos<ValueType>(j * i * (1.0 / N0) * 2.0 * const_pi<ValueType>())*s;
- M[2 * i + 1][j] = 2 * sin<ValueType>(j * i * (1.0 / N0) * 2.0 * const_pi<ValueType>())*s;
- }
- }
- if (N1 > 0) {
- for (Long j = 0; j < N0; j++) {
- M[0][j] = M[0][j] * 0.5;
- M[1][j] = M[1][j] * 0.5;
- }
- }
- if (N0 % 2 == 0) {
- for (Long j = 0; j < N0; j++) {
- M[2 * N1 - 2][j] = M[2 * N1 - 2][j] * 0.5;
- M[2 * N1 - 1][j] = M[2 * N1 - 1][j] * 0.5;
- }
- }
- return M;
- }
- template <class T> static void transpose(Iterator<ValueType> out, ConstIterator<ValueType> in, Long N0, Long N1) {
- Matrix<T> M0(N0, N1, (Iterator<T>)in, false);
- Matrix<T> M1(N1, N0, (Iterator<T>)out, false);
- M1 = M0.Transpose();
- }
- FFTPlan plan;
- };
- } // end namespace
- #endif //_SCTL_FFT_WRAPPER_
|