123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961 |
- #ifndef _SCTL_BOUNDARY_QUADRATURE_HPP_
- #define _SCTL_BOUNDARY_QUADRATURE_HPP_
- #include <mutex>
- #include <atomic>
- #include <tuple>
- namespace SCTL_NAMESPACE {
- template <class Real, Integer DIM, Integer ORDER> class Basis {
- public:
- using ValueType = Real;
- // class EvalOperator {
- // public:
- // };
- using EvalOpType = Matrix<ValueType>;
- static constexpr Long Dim() {
- return DIM;
- }
- static constexpr Long Size() {
- return pow<DIM,Long>(ORDER);
- }
- static const Matrix<ValueType>& Nodes() {
- static Matrix<ValueType> nodes_(DIM,Size());
- auto nodes_1d = [](Integer i) {
- return 0.5 - 0.5 * sctl::cos<ValueType>((2*i+1) * const_pi<ValueType>() / (2*ORDER));
- };
- { // Set nodes_
- static std::mutex mutex;
- static std::atomic<Integer> first_time(true);
- if (first_time.load(std::memory_order_relaxed)) {
- std::lock_guard<std::mutex> guard(mutex);
- if (first_time.load(std::memory_order_relaxed)) {
- Integer N = 1;
- for (Integer d = 0; d < DIM; d++) {
- for (Integer j = 0; j < ORDER; j++) {
- for (Integer i = 0; i < N; i++) {
- for (Integer k = 0; k < d; k++) {
- nodes_[k][j*N+i] = nodes_[k][i];
- }
- nodes_[d][j*N+i] = nodes_1d(j);
- }
- }
- N *= ORDER;
- }
- std::atomic_thread_fence(std::memory_order_seq_cst);
- first_time.store(false);
- }
- }
- }
- return nodes_;
- }
- static const Vector<ValueType>& QuadWts() {
- static Vector<ValueType> wts(Size());
- { // Set nodes_
- static std::mutex mutex;
- static std::atomic<Integer> first_time(true);
- if (first_time.load(std::memory_order_relaxed)) {
- std::lock_guard<std::mutex> guard(mutex);
- if (first_time.load(std::memory_order_relaxed)) {
- StaticArray<ValueType,ORDER> wts_1d;
- { // Set wts_1d
- Vector<ValueType> x_(ORDER);
- ChebBasis<ValueType>::template Nodes<1>(ORDER, x_);
- Vector<ValueType> V_cheb(ORDER * ORDER);
- { // Set V_cheb
- Vector<ValueType> I(ORDER*ORDER);
- I = 0;
- for (Long i = 0; i < ORDER; i++) I[i*ORDER+i] = 1;
- ChebBasis<ValueType>::template Approx<1>(ORDER, I, V_cheb);
- }
- Matrix<ValueType> M(ORDER, ORDER, V_cheb.begin());
- Vector<ValueType> w_sample(ORDER);
- for (Integer i = 0; i < ORDER; i++) {
- w_sample[i] = (i % 2 ? 0 : -(ORDER/(ValueType)(i*i-1)));
- }
- for (Integer j = 0; j < ORDER; j++) {
- wts_1d[j] = 0;
- for (Integer i = 0; i < ORDER; i++) {
- wts_1d[j] += M[j][i] * w_sample[i] / ORDER;
- }
- }
- }
- wts[0] = 1;
- Integer N = 1;
- for (Integer d = 0; d < DIM; d++) {
- for (Integer j = 1; j < ORDER; j++) {
- for (Integer i = 0; i < N; i++) {
- wts[j*N+i] = wts[i] * wts_1d[j];
- }
- }
- for (Integer i = 0; i < N; i++) {
- wts[i] *= wts_1d[0];
- }
- N *= ORDER;
- }
- std::atomic_thread_fence(std::memory_order_seq_cst);
- first_time.store(false);
- }
- }
- }
- return wts;
- }
- static void Grad(Vector<Basis>& dX, const Vector<Basis>& X) {
- static Matrix<ValueType> GradOp[DIM];
- static std::mutex mutex;
- static std::atomic<Integer> first_time(true);
- if (first_time.load(std::memory_order_relaxed)) {
- std::lock_guard<std::mutex> guard(mutex);
- if (first_time.load(std::memory_order_relaxed)) {
- { // Set GradOp
- auto nodes = Basis<ValueType,1,ORDER>::Nodes();
- SCTL_ASSERT(nodes.Dim(1) == ORDER);
- Matrix<ValueType> M(ORDER, ORDER);
- for (Integer i = 0; i < ORDER; i++) { // Set M
- Real x = nodes[0][i];
- for (Integer j = 0; j < ORDER; j++) {
- M[j][i] = 0;
- for (Integer l = 0; l < ORDER; l++) {
- if (l != j) {
- Real M_ = 1;
- for (Integer k = 0; k < ORDER; k++) {
- if (k != j && k != l) M_ *= (x - nodes[0][k]);
- if (k != j) M_ /= (nodes[0][j] - nodes[0][k]);
- }
- M[j][i] += M_;
- }
- }
- }
- }
- for (Integer d = 0; d < DIM; d++) {
- GradOp[d].ReInit(Size(), Size());
- GradOp[d] = 0;
- Integer stride0 = sctl::pow<Integer>(ORDER, d);
- Integer repeat0 = sctl::pow<Integer>(ORDER, d);
- Integer stride1 = sctl::pow<Integer>(ORDER, d+1);
- Integer repeat1 = sctl::pow<Integer>(ORDER, DIM-d-1);
- for (Integer k1 = 0; k1 < repeat1; k1++) {
- for (Integer i = 0; i < ORDER; i++) {
- for (Integer j = 0; j < ORDER; j++) {
- for (Integer k0 = 0; k0 < repeat0; k0++) {
- GradOp[d][k1*stride1 + i*stride0 + k0][k1*stride1 + j*stride0 + k0] = M[i][j];
- }
- }
- }
- }
- }
- }
- std::atomic_thread_fence(std::memory_order_seq_cst);
- first_time.store(false);
- }
- }
- if (dX.Dim() != X.Dim()*DIM) dX.ReInit(X.Dim()*DIM);
- for (Long i = 0; i < X.Dim(); i++) {
- const Matrix<ValueType> Vi(1, Size(), (Iterator<ValueType>)(ConstIterator<ValueType>)X[i].NodeValues_, false);
- for (Integer k = 0; k < DIM; k++) {
- Matrix<ValueType> Vo(1, Size(), dX[i*DIM+k].NodeValues_, false);
- Matrix<ValueType>::GEMM(Vo, Vi, GradOp[k]);
- }
- }
- }
- static EvalOpType SetupEval(const Matrix<ValueType>& X) {
- Long N = X.Dim(1);
- SCTL_ASSERT(X.Dim(0) == DIM);
- Matrix<ValueType> M(Size(), N);
- { // Set M
- auto nodes = Basis<ValueType,1,ORDER>::Nodes();
- Integer NN = Basis<ValueType,1,ORDER>::Size();
- Matrix<ValueType> M_(NN, DIM*N);
- for (Long i = 0; i < DIM*N; i++) {
- ValueType x = X[0][i];
- for (Integer j = 0; j < NN; j++) {
- ValueType y = 1;
- for (Integer k = 0; k < NN; k++) {
- y *= (j==k ? 1 : (nodes[0][k] - x) / (nodes[0][k] - nodes[0][j]));
- }
- M_[j][i] = y;
- }
- }
- if (DIM == 1) {
- SCTL_ASSERT(M.Dim(0) == M_.Dim(0));
- SCTL_ASSERT(M.Dim(1) == M_.Dim(1));
- M = M_;
- } else {
- Integer NNN = 1;
- M = 1;
- for (Integer d = 0; d < DIM; d++) {
- for (Integer k = 1; k < NN; k++) {
- for (Integer j = 0; j < NNN; j++) {
- for (Long i = 0; i < N; i++) {
- M[k*NNN+j][i] = M[j][i] * M_[k][d*N+i];
- }
- }
- }
- { // k = 0
- for (Integer j = 0; j < NNN; j++) {
- for (Long i = 0; i < N; i++) {
- M[j][i] *= M_[0][d*N+i];
- }
- }
- }
- NNN *= NN;
- }
- }
- }
- return M;
- }
- static void Eval(Matrix<ValueType>& Y, const Vector<Basis>& X, const EvalOpType& M) {
- Long N0 = X.Dim();
- Long N1 = M.Dim(1);
- SCTL_ASSERT(M.Dim(0) == Size());
- if (Y.Dim(0) != N0 || Y.Dim(1) != N1) Y.ReInit(N0, N1);
- for (Long i = 0; i < N0; i++) {
- const Matrix<ValueType> X_(1,Size(),(Iterator<ValueType>)(ConstIterator<ValueType>)X[i].NodeValues_,false);
- Matrix<ValueType> Y_(1,N1,Y[i],false);
- Matrix<ValueType>::GEMM(Y_,X_,M);
- }
- }
- Basis operator+(Basis X) const {
- for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] + X[i];
- return X;
- }
- Basis operator-(Basis X) const {
- for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] - X[i];
- return X;
- }
- Basis operator*(Basis X) const {
- for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] * X[i];
- return X;
- }
- Basis operator*(Real a) const {
- Basis X = (*this);
- for (Long i = 0; i < Size(); i++) X[i] *= a;
- return X;
- }
- Basis& operator+=(const Basis& X) {
- for (Long i = 0; i < Size(); i++) (*this)[i] += X[i];
- return *this;
- }
- Basis& operator-=(const Basis& X) {
- for (Long i = 0; i < Size(); i++) (*this)[i] -= X[i];
- return *this;
- }
- Basis& operator*=(const Basis& X) {
- for (Long i = 0; i < Size(); i++) (*this)[i] *= X[i];
- return *this;
- }
- Basis& operator*=(Real a) {
- for (Long i = 0; i < Size(); i++) (*this)[i] *= a;
- return *this;
- }
- Basis& operator=(Real a) {
- for (Long i = 0; i < Size(); i++) (*this)[i] = a;
- return *this;
- }
- const ValueType& operator[](Long i) const {
- SCTL_ASSERT(i < Size());
- return NodeValues_[i];
- }
- ValueType& operator[](Long i) {
- SCTL_ASSERT(i < Size());
- return NodeValues_[i];
- }
- private:
- StaticArray<ValueType,Size()> NodeValues_;
- };
- template <Integer COORD_DIM, class Basis> class ElemList {
- public:
- using CoordBasis = Basis;
- using CoordType = typename CoordBasis::ValueType;
- static constexpr Integer CoordDim() {
- return COORD_DIM;
- }
- static constexpr Integer ElemDim() {
- return CoordBasis::Dim();
- }
- ElemList(Long Nelem = 0) {
- ReInit(Nelem);
- }
- void ReInit(Long Nelem = 0) {
- Nelem_ = Nelem;
- X_.ReInit(Nelem_ * COORD_DIM);
- }
- void ReInit(const Vector<CoordBasis>& X) {
- Nelem_ = X.Dim() / COORD_DIM;
- SCTL_ASSERT(X.Dim() == Nelem_ * COORD_DIM);
- X_ = X;
- }
- Long NElem() const {
- return Nelem_;
- }
- CoordBasis& operator()(Long elem, Integer dim) {
- SCTL_ASSERT(elem >= 0 && elem < Nelem_);
- SCTL_ASSERT(dim >= 0 && dim < COORD_DIM);
- return X_[elem*COORD_DIM+dim];
- }
- const CoordBasis& operator()(Long elem, Integer dim) const {
- SCTL_ASSERT(elem >= 0 && elem < Nelem_);
- SCTL_ASSERT(dim >= 0 && dim < COORD_DIM);
- return X_[elem*COORD_DIM+dim];
- }
- const Vector<CoordBasis>& ElemVector() const {
- return X_;
- }
- private:
- static_assert(CoordBasis::Dim() <= CoordDim(), "Basis dimension can not be greater than COORD_DIM.");
- Vector<CoordBasis> X_;
- Long Nelem_;
- mutable Vector<CoordBasis> dX_;
- };
- template <class Real> class Quadrature {
- static Real machine_epsilon() {
- Real eps=1;
- while(eps*(Real)0.5+(Real)1.0>1.0) eps*=0.5;
- return eps;
- }
- template <Integer DIM> static void DuffyQuad(Matrix<Real>& nodes, Vector<Real>& weights, const Vector<Real>& coord, Integer order, Real adapt = -1.0) {
- SCTL_ASSERT(coord.Dim() == DIM);
- static Real eps = machine_epsilon()*16;
- Matrix<Real> qx;
- Vector<Real> qw;
- { // Set qx, qw
- Vector<Real> qx0, qw0;
- ChebBasis<Real>::quad_rule(order, qx0, qw0);
- Integer N = sctl::pow<DIM,Integer>(order);
- qx.ReInit(DIM,N);
- qw.ReInit(N);
- qw[0] = 1;
- Integer N_ = 1;
- for (Integer d = 0; d < DIM; d++) {
- for (Integer j = 0; j < order; j++) {
- for (Integer i = 0; i < N_; i++) {
- for (Integer k = 0; k < d; k++) {
- qx[k][j*N_+i] = qx[k][i];
- }
- qx[d][j*N_+i] = qx0[j];
- qw[j*N_+i] = qw[i];
- }
- }
- for (Integer j = 0; j < order; j++) {
- for (Integer i = 0; i < N_; i++) {
- qw[j*N_+i] *= qw0[j];
- }
- }
- N_ *= order;
- }
- }
- Vector<Real> X;
- { // Set X
- StaticArray<Real,2*DIM+2> X_;
- X_[0] = 0;
- X_[1] = adapt;
- for (Integer i = 0; i < DIM; i++) {
- X_[2*i+2] = sctl::fabs<Real>(coord[i]);
- X_[2*i+3] = sctl::fabs<Real>(coord[i]-1);
- }
- std::sort((Iterator<Real>)X_, (Iterator<Real>)X_+2*DIM+2);
- X.PushBack(std::max<Real>(0, X_[2*DIM]-1));
- for (Integer i = 0; i < 2*DIM+2; i++) {
- if (X[X.Dim()-1] < X_[i]) {
- if (X.Dim())
- X.PushBack(X_[i]);
- }
- }
- /////////////////////////////////////////////////////////////////////////////////////////////////
- Vector<Real> r(1);
- r[0] = X[0];
- for (Integer i = 1; i < X.Dim(); i++) {
- while (r[r.Dim() - 1] > 0.0 && (order*0.5) * r[r.Dim() - 1] < X[i]) r.PushBack((order*0.5) * r[r.Dim() - 1]); // TODO
- r.PushBack(X[i]);
- }
- X = r;
- /////////////////////////////////////////////////////////////////////////////////////////////////
- }
- Vector<Real> nds, wts;
- for (Integer k = 0; k < X.Dim()-1; k++) {
- for (Integer dd = 0; dd < 2*DIM; dd++) {
- Integer d0 = (dd>>1);
- StaticArray<Real,2*DIM> range0, range1;
- { // Set range0, range1
- Integer d1 = (dd%2?1:-1);
- for (Integer d = 0; d < DIM; d++) {
- range0[d*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d] - X[k] ));
- range0[d*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d] + X[k] ));
- range1[d*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d] - X[k+1]));
- range1[d*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d] + X[k+1]));
- }
- range0[d0*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+0]));
- range0[d0*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+0]));
- range1[d0*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+1]));
- range1[d0*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+1]));
- }
- { // if volume(range0, range1) == 0 then continue
- Real v0 = 1, v1 = 1;
- for (Integer d = 0; d < DIM; d++) {
- if (d == d0) {
- v0 *= sctl::fabs<Real>(range0[d*2+0]-range1[d*2+0]);
- v1 *= sctl::fabs<Real>(range0[d*2+0]-range1[d*2+0]);
- } else {
- v0 *= range0[d*2+1]-range0[d*2+0];
- v1 *= range1[d*2+1]-range1[d*2+0];
- }
- }
- if (v0 < eps && v1 < eps) continue;
- }
- for (Integer i = 0; i < qx.Dim(1); i++) { // Set nds, wts
- Real w = qw[i];
- Real z = qx[d0][i];
- for (Integer d = 0; d < DIM; d++) {
- Real y = qx[d][i];
- nds.PushBack((range0[d*2+0]*(1-y) + range0[d*2+1]*y)*(1-z) + (range1[d*2+0]*(1-y) + range1[d*2+1]*y)*z);
- if (d == d0) {
- w *= abs(range1[d*2+0] - range0[d*2+0]);
- } else {
- w *= (range0[d*2+1] - range0[d*2+0])*(1-z) + (range1[d*2+1] - range1[d*2+0])*z;
- }
- }
- wts.PushBack(w);
- }
- }
- }
- nodes = Matrix<Real>(nds.Dim()/DIM,DIM,nds.begin()).Transpose();
- weights = wts;
- }
- template <Integer DIM> static void TensorProductGaussQuad(Matrix<Real>& nodes, Vector<Real>& weights, Integer order) {
- Vector<Real> coord(DIM);
- coord = 0;
- coord[0] = -10;
- DuffyQuad<DIM>(nodes, weights, coord, order);
- }
- template <class DensityBasis, class ElemList, class Kernel> static void SetupSingular(Matrix<Real>& M_singular, const Matrix<Real>& trg_nds, const ElemList& elem_lst, const Kernel& kernel, Integer order_singular = 10, Integer order_direct = 10, Real Rqbx = 0) {
- using CoordBasis = typename ElemList::CoordBasis;
- using CoordEvalOpType = typename CoordBasis::EvalOpType;
- using DensityEvalOpType = typename DensityBasis::EvalOpType;
- constexpr Integer CoordDim = ElemList::CoordDim();
- constexpr Integer ElemDim = ElemList::ElemDim();
- constexpr Integer KDIM0 = Kernel::SrcDim();
- constexpr Integer KDIM1 = Kernel::TrgDim();
- const Long Nelem = elem_lst.NElem();
- const Integer Ntrg = trg_nds.Dim(1);
- SCTL_ASSERT(trg_nds.Dim(0) == ElemDim);
- const Vector<CoordBasis>& X = elem_lst.ElemVector();
- Vector<CoordBasis> dX;
- CoordBasis::Grad(dX, X);
- Vector<Real> Xt, Xnt;
- { // Set Xt, Xnt
- auto Meval = CoordBasis::SetupEval(trg_nds);
- eval_basis(Xt, X, CoordDim, trg_nds.Dim(1), Meval);
- Xnt = Xt;
- Vector<Real> dX_;
- eval_basis(dX_, dX, 2*CoordDim, trg_nds.Dim(1), Meval);
- for (Long i = 0; i < Ntrg; i++) {
- for (Long j = 0; j < Nelem; j++) {
- auto Xn = Xnt.begin() + (j*Ntrg+i)*CoordDim;
- auto dX0 = dX_.begin() + (j*Ntrg+i)*2*CoordDim;
- StaticArray<Real,CoordDim> normal;
- normal[0] = dX0[2]*dX0[5] - dX0[4]*dX0[3];
- normal[1] = dX0[4]*dX0[1] - dX0[0]*dX0[5];
- normal[2] = dX0[0]*dX0[3] - dX0[2]*dX0[1];
- Real Xa = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
- Real invXa = 1/Xa;
- normal[0] *= invXa;
- normal[1] *= invXa;
- normal[2] *= invXa;
- Real sqrt_Xa = sqrt<Real>(Xa);
- Xn[0] = normal[0]*sqrt_Xa*Rqbx;
- Xn[1] = normal[1]*sqrt_Xa*Rqbx;
- Xn[2] = normal[2]*sqrt_Xa*Rqbx;
- }
- }
- }
- SCTL_ASSERT(Xt.Dim() == Nelem * Ntrg * CoordDim);
- auto& M = M_singular;
- M.ReInit(Nelem * KDIM0 * DensityBasis::Size(), KDIM1 * Ntrg);
- #pragma omp parallel for schedule(static)
- for (Long i = 0; i < Ntrg; i++) { // Set M (singular)
- Matrix<Real> quad_nds;
- Vector<Real> quad_wts;
- { // Set quad_nds, quad_wts
- StaticArray<Real,ElemDim> trg_node_;
- for (Integer k = 0; k < ElemDim; k++) {
- trg_node_[k] = trg_nds[k][i];
- }
- Vector<Real> trg_node(ElemDim, trg_node_, false);
- DuffyQuad<ElemDim>(quad_nds, quad_wts, trg_node, order_singular, fabs(Rqbx));
- }
- const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
- Integer Nnds = quad_wts.Dim();
- Vector<Real> X_, dX_, Xa_, Xn_;
- { // Set X_, dX_
- eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
- eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
- }
- if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
- Long N = Nelem*Nnds;
- Xa_.ReInit(N);
- Xn_.ReInit(N*CoordDim);
- for (Long j = 0; j < N; j++) {
- StaticArray<Real,CoordDim> normal;
- normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
- normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
- normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
- Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
- Real invXa = 1/Xa_[j];
- Xn_[j*3+0] = normal[0] * invXa;
- Xn_[j*3+1] = normal[1] * invXa;
- Xn_[j*3+2] = normal[2] * invXa;
- }
- }
- DensityEvalOpType DensityEvalOp;
- if (std::is_same<CoordBasis,DensityBasis>::value) {
- DensityEvalOp = CoordEvalOp;
- } else {
- DensityEvalOp = DensityBasis::SetupEval(quad_nds);
- }
- for (Long j = 0; j < Nelem; j++) {
- Matrix<Real> M__(Nnds * KDIM0, KDIM1);
- if (Rqbx == 0) { // Set kernel matrix M__
- const Vector<Real> X0_(CoordDim, Xt.begin() + (j * Ntrg + i) * CoordDim, false);
- const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
- const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
- kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
- } else {
- Vector<Real> X0_(CoordDim);
- constexpr Integer qbx_order = 6;
- StaticArray<Matrix<Real>,qbx_order> M___;
- for (Integer k = 0; k < qbx_order; k++) { // Set kernel matrix M___
- for (Integer kk = 0; kk < CoordDim; kk++) X0_[kk] = Xt[(j * Ntrg + i) * CoordDim + kk] + (k+1) * Xnt[(j * Ntrg + i) * CoordDim + kk];
- const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
- const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
- kernel.template KernelMatrix<Real>(M___[k], X0_, X__, Xn__);
- }
- for (Long k = 0; k < Nnds * KDIM0 * KDIM1; k++) {
- M__[0][k] = 0;
- M__[0][k] += 6*M___[0][0][k];
- M__[0][k] += -15*M___[1][0][k];
- M__[0][k] += 20*M___[2][0][k];
- M__[0][k] += -15*M___[3][0][k];
- M__[0][k] += 6*M___[4][0][k];
- M__[0][k] += -1*M___[5][0][k];
- }
- }
- for (Long k0 = 0; k0 < KDIM0; k0++) {
- for (Long k1 = 0; k1 < KDIM1; k1++) {
- for (Long l = 0; l < DensityBasis::Size(); l++) {
- Real M_lk = 0;
- for (Long n = 0; n < Nnds; n++) {
- Real quad_wt = Xa_[j * Nnds + n] * quad_wts[n];
- M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
- }
- M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1 * Ntrg + i] = M_lk;
- }
- }
- }
- }
- }
- { // Set M (subtract direct)
- Matrix<Real> quad_nds;
- Vector<Real> quad_wts;
- TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
- const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
- Integer Nnds = quad_wts.Dim();
- Vector<Real> X_, dX_, Xa_, Xn_;
- { // Set X_, dX_
- eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
- eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
- }
- if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
- Long N = Nelem*Nnds;
- Xa_.ReInit(N);
- Xn_.ReInit(N*CoordDim);
- for (Long j = 0; j < N; j++) {
- StaticArray<Real,CoordDim> normal;
- normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
- normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
- normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
- Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
- Real invXa = 1/Xa_[j];
- Xn_[j*3+0] = normal[0] * invXa;
- Xn_[j*3+1] = normal[1] * invXa;
- Xn_[j*3+2] = normal[2] * invXa;
- }
- }
- DensityEvalOpType DensityEvalOp;
- if (std::is_same<CoordBasis,DensityBasis>::value) {
- DensityEvalOp = CoordEvalOp;
- } else {
- DensityEvalOp = DensityBasis::SetupEval(quad_nds);
- }
- #pragma omp parallel for schedule(static)
- for (Long i = 0; i < Ntrg; i++) { // Subtract direct contribution
- for (Long j = 0; j < Nelem; j++) {
- Matrix<Real> M__(Nnds * KDIM0, KDIM1);
- { // Set kernel matrix M__
- const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + (j * Ntrg + i) * CoordDim, false);
- const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
- const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
- kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
- }
- for (Long k0 = 0; k0 < KDIM0; k0++) {
- for (Long k1 = 0; k1 < KDIM1; k1++) {
- for (Long l = 0; l < DensityBasis::Size(); l++) {
- Real M_lk = 0;
- for (Long n = 0; n < Nnds; n++) {
- Real quad_wt = Xa_[j * Nnds + n] * quad_wts[n];
- M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
- }
- M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1 * Ntrg + i] -= M_lk;
- }
- }
- }
- }
- }
- }
- }
- template <class DensityBasis> static void EvalSingular(Matrix<Real>& U, const Vector<DensityBasis>& density, const Matrix<Real>& M, Integer KDIM0_, Integer KDIM1_) {
- if (M.Dim(0) == 0 || M.Dim(1) == 0) {
- U.ReInit(0,0);
- return;
- }
- const Long Ntrg = M.Dim(1) / KDIM1_;
- SCTL_ASSERT(M.Dim(1) == KDIM1_ * Ntrg);
- const Long Nelem = M.Dim(0) / (KDIM0_ * DensityBasis::Size());
- SCTL_ASSERT(M.Dim(0) == Nelem * KDIM0_ * DensityBasis::Size());
- const Integer dof = density.Dim() / (Nelem * KDIM0_);
- SCTL_ASSERT(density.Dim() == Nelem * dof * KDIM0_);
- if (U.Dim(0) != Nelem * dof * KDIM1_ || U.Dim(1) != Ntrg) {
- U.ReInit(Nelem * dof * KDIM1_, Ntrg);
- U = 0;
- }
- for (Long j = 0; j < Nelem; j++) {
- const Matrix<Real> M_(KDIM0_ * DensityBasis::Size(), KDIM1_ * Ntrg, (Iterator<Real>)M[j * KDIM0_ * DensityBasis::Size()], false);
- Matrix<Real> U_(dof, KDIM1_ * Ntrg, U[j*dof*KDIM1_], false);
- Matrix<Real> F_(dof, KDIM0_ * DensityBasis::Size());
- for (Long i = 0; i < dof; i++) {
- for (Long k = 0; k < KDIM0_; k++) {
- for (Long l = 0; l < DensityBasis::Size(); l++) {
- F_[i][k * DensityBasis::Size() + l] = density[(j * dof + i) * KDIM0_ + k][l];
- }
- }
- }
- Matrix<Real>::GEMM(U_, F_, M_);
- }
- }
- template <Integer DIM> struct PointData {
- bool operator<(const PointData& p) const {
- return mid < p.mid;
- }
- Long rank;
- Long surf_rank;
- Morton<DIM> mid;
- StaticArray<Real,DIM> coord;
- Real radius2;
- };
- template <class T1, class T2> struct Pair {
- Pair() {}
- Pair(T1 x, T2 y) : first(x), second(y) {}
- bool operator<(const Pair& p) const {
- return (first < p.first) || (((first == p.first) && (second < p.second)));
- }
- T1 first;
- T2 second;
- };
- template <class ElemList> static void BuildNbrList(Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt, const Vector<Long>& trg_surf, const ElemList& elem_lst, Real distance_factor, Real period_length, const Comm& comm) {
- using CoordBasis = typename ElemList::CoordBasis;
- constexpr Integer CoordDim = ElemList::CoordDim();
- constexpr Integer ElemDim = ElemList::ElemDim();
- using PtData = PointData<CoordDim>;
- const Integer rank = comm.Rank();
- Real R0 = 0;
- StaticArray<Real,CoordDim> X0;
- { // Find bounding box
- Long N = Xt.Dim() / CoordDim;
- SCTL_ASSERT(Xt.Dim() == N * CoordDim);
- SCTL_ASSERT(N);
- StaticArray<Real,CoordDim*2> Xloc;
- StaticArray<Real,CoordDim*2> Xglb;
- for (Integer k = 0; k < CoordDim; k++) {
- Xloc[0*CoordDim+k] = Xt[k];
- Xloc[1*CoordDim+k] = Xt[k];
- }
- for (Long i = 0; i < N; i++) {
- for (Integer k = 0; k < CoordDim; k++) {
- Xloc[0*CoordDim+k] = std::min<Real>(Xloc[0*CoordDim+k], Xt[i*CoordDim+k]);
- Xloc[1*CoordDim+k] = std::max<Real>(Xloc[1*CoordDim+k], Xt[i*CoordDim+k]);
- }
- }
- comm.Allreduce((ConstIterator<Real>)Xloc+0*CoordDim, (Iterator<Real>)Xglb+0*CoordDim, CoordDim, Comm::CommOp::MIN);
- comm.Allreduce((ConstIterator<Real>)Xloc+1*CoordDim, (Iterator<Real>)Xglb+1*CoordDim, CoordDim, Comm::CommOp::MAX);
- for (Integer k = 0; k < CoordDim; k++) {
- R0 = std::max(R0, Xglb[1*CoordDim+k]-Xglb[0*CoordDim+k]);
- }
- R0 = R0 * 2.0;
- for (Integer k = 0; k < CoordDim; k++) {
- X0[k] = Xglb[k] - R0*0.25;
- }
- }
- if (period_length > 0) {
- R0 = period_length;
- }
- Vector<PtData> PtSrc, PtTrg;
- Integer order_upsample = (Integer)(const_pi<Real>() / distance_factor + 0.5);
- { // Set PtSrc
- const Vector<CoordBasis>& X_elem_lst = elem_lst.ElemVector();
- Vector<CoordBasis> dX_elem_lst;
- CoordBasis::Grad(dX_elem_lst, X_elem_lst);
- Matrix<Real> nds;
- Vector<Real> wts;
- TensorProductGaussQuad<ElemDim>(nds, wts, order_upsample);
- const Long Nnds = nds.Dim(1);
- Vector<Real> X, dX;
- const auto CoordEvalOp = CoordBasis::SetupEval(nds);
- eval_basis(X, X_elem_lst, CoordDim, Nnds, CoordEvalOp);
- eval_basis(dX, dX_elem_lst, CoordDim * ElemDim, Nnds, CoordEvalOp);
- const Long N = X.Dim() / CoordDim;
- const Long Nelem = elem_lst.NElem();
- SCTL_ASSERT(X.Dim() == N * CoordDim);
- SCTL_ASSERT(N == Nelem * Nnds);
- Long rank_offset, surf_rank_offset;
- { // Set rank_offset, surf_rank_offset
- comm.Scan(Ptr2ConstItr<Long>(&N,1), Ptr2Itr<Long>(&rank_offset,1), 1, Comm::CommOp::SUM);
- comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&surf_rank_offset,1), 1, Comm::CommOp::SUM);
- surf_rank_offset -= Nelem;
- rank_offset -= N;
- }
- PtSrc.ReInit(N);
- const Real R0inv = 1.0 / R0;
- for (Long i = 0; i < N; i++) { // Set coord
- for (Integer k = 0; k < CoordDim; k++) {
- PtSrc[i].coord[k] = (X[i*CoordDim+k] - X0[k]) * R0inv;
- }
- }
- if (period_length > 0) { // Wrap-around coord
- for (Long i = 0; i < N; i++) {
- auto& x = PtSrc[i].coord;
- for (Integer k = 0; k < CoordDim; k++) {
- x[k] -= (Long)(x[k]);
- }
- }
- }
- for (Long i = 0; i < N; i++) { // Set radius2, mid, rank
- Integer depth = 0;
- { // Set radius2, depth
- Real radius2 = 0;
- for (Integer k0 = 0; k0 < ElemDim; k0++) {
- Real R2 = 0;
- for (Integer k1 = 0; k1 < CoordDim; k1++) {
- Real dX_ = dX[(i*CoordDim+k1)*ElemDim+k0];
- R2 += dX_*dX_;
- }
- radius2 = std::max(radius2, R2);
- }
- radius2 *= R0inv*R0inv * distance_factor*distance_factor;
- PtSrc[i].radius2 = radius2;
- Long Rinv = (Long)(1.0/radius2);
- while (Rinv > 0) {
- Rinv = (Rinv>>2);
- depth++;
- }
- }
- PtSrc[i].mid = Morton<CoordDim>((Iterator<Real>)PtSrc[i].coord, std::min(Morton<CoordDim>::MaxDepth(),depth));
- PtSrc[i].rank = rank_offset + i;
- }
- for (Long i = 0 ; i < Nelem; i++) { // Set surf_rank
- for (Long j = 0; j < Nnds; j++) {
- PtSrc[i*Nnds+j].surf_rank = surf_rank_offset + i;
- }
- }
- Vector<PtData> PtSrcSorted;
- comm.HyperQuickSort(PtSrc, PtSrcSorted);
- PtSrc.Swap(PtSrcSorted);
- }
- { // Set PtTrg
- const Long N = Xt.Dim() / CoordDim;
- SCTL_ASSERT(Xt.Dim() == N * CoordDim);
- Long rank_offset;
- { // Set rank_offset
- comm.Scan(Ptr2ConstItr<Long>(&N,1), Ptr2Itr<Long>(&rank_offset,1), 1, Comm::CommOp::SUM);
- rank_offset -= N;
- }
- PtTrg.ReInit(N);
- const Real R0inv = 1.0 / R0;
- for (Long i = 0; i < N; i++) { // Set coord
- for (Integer k = 0; k < CoordDim; k++) {
- PtTrg[i].coord[k] = (Xt[i*CoordDim+k] - X0[k]) * R0inv;
- }
- }
- if (period_length > 0) { // Wrap-around coord
- for (Long i = 0; i < N; i++) {
- auto& x = PtTrg[i].coord;
- for (Integer k = 0; k < CoordDim; k++) {
- x[k] -= (Long)(x[k]);
- }
- }
- }
- for (Long i = 0; i < N; i++) { // Set radius2, mid, rank
- PtTrg[i].radius2 = 0;
- PtTrg[i].mid = Morton<CoordDim>((Iterator<Real>)PtTrg[i].coord);
- PtTrg[i].rank = rank_offset + i;
- }
- if (trg_surf.Dim()) { // Set surf_rank
- SCTL_ASSERT(trg_surf.Dim() == N);
- for (Long i = 0; i < N; i++) {
- PtTrg[i].surf_rank = trg_surf[i];
- }
- } else {
- for (Long i = 0; i < N; i++) {
- PtTrg[i].surf_rank = -1;
- }
- }
- Vector<PtData> PtTrgSorted;
- comm.HyperQuickSort(PtTrg, PtTrgSorted);
- PtTrg.Swap(PtTrgSorted);
- }
- Tree<CoordDim> tree(comm);
- { // Init tree
- Vector<Real> Xall(PtSrc.Dim()+PtTrg.Dim());
- { // Set Xall
- Xall.ReInit((PtSrc.Dim()+PtTrg.Dim())*CoordDim);
- Long Nsrc = PtSrc.Dim();
- Long Ntrg = PtTrg.Dim();
- for (Long i = 0; i < Nsrc; i++) {
- for (Integer k = 0; k < CoordDim; k++) {
- Xall[i*CoordDim+k] = PtSrc[i].coord[k];
- }
- }
- for (Long i = 0; i < Ntrg; i++) {
- for (Integer k = 0; k < CoordDim; k++) {
- Xall[(Nsrc+i)*CoordDim+k] = PtTrg[i].coord[k];
- }
- }
- }
- tree.UpdateRefinement(Xall, 1000, true, period_length>0);
- }
- { // Repartition PtSrc, PtTrg
- PtData splitter;
- splitter.mid = tree.GetPartitionMID()[rank];
- comm.PartitionS(PtSrc, splitter);
- comm.PartitionS(PtTrg, splitter);
- }
- { // Add tree data PtSrc
- const auto& node_mid = tree.GetNodeMID();
- const Long N = node_mid.Dim();
- SCTL_ASSERT(N);
- Vector<Long> dsp(N), cnt(N);
- for (Long i = 0; i < N; i++) {
- PtData m0;
- m0.mid = node_mid[i];
- dsp[i] = std::lower_bound(PtSrc.begin(), PtSrc.end(), m0) - PtSrc.begin();
- }
- for (Long i = 0; i < N-1; i++) {
- cnt[i] = dsp[i+1] - dsp[i];
- }
- cnt[N-1] = PtSrc.Dim() - dsp[N-1];
- tree.AddData("PtSrc", PtSrc, cnt);
- }
- tree.template Broadcast<PtData>("PtSrc");
- { // Build pair_lst
- Vector<Long> cnt;
- Vector<PtData> PtSrc;
- tree.GetData(PtSrc, cnt, "PtSrc");
- const auto& node_mid = tree.GetNodeMID();
- const auto& node_attr = tree.GetNodeAttr();
- Vector<Morton<CoordDim>> nbr_mid_tmp;
- for (Long i = 0; i < node_mid.Dim(); i++) {
- if (node_attr[i].Leaf && !node_attr[i].Ghost) {
- Vector<Morton<CoordDim>> child_mid;
- node_mid[i].Children(child_mid);
- for (const auto& trg_mid : child_mid) {
- Integer d0 = trg_mid.Depth();
- Vector<PtData> Src, Trg;
- { // Set Trg
- PtData m0, m1;
- m0.mid = trg_mid;
- m1.mid = trg_mid.Next();
- Long a = std::lower_bound(PtTrg.begin(), PtTrg.end(), m0) - PtTrg.begin();
- Long b = std::lower_bound(PtTrg.begin(), PtTrg.end(), m1) - PtTrg.begin();
- Trg.ReInit(b-a, PtTrg.begin()+a, false);
- if (!Trg.Dim()) continue;
- }
- Vector<std::set<Long>> near_elem(Trg.Dim());
- for (Integer d = 0; d <= d0; d++) {
- trg_mid.NbrList(nbr_mid_tmp, d, period_length>0);
- for (const auto& src_mid : nbr_mid_tmp) { // Set Src
- PtData m0, m1;
- m0.mid = src_mid;
- m1.mid = (d==d0 ? src_mid.Next() : src_mid.Ancestor(d+1));
- Long a = std::lower_bound(PtSrc.begin(), PtSrc.end(), m0) - PtSrc.begin();
- Long b = std::lower_bound(PtSrc.begin(), PtSrc.end(), m1) - PtSrc.begin();
- Src.ReInit(b-a, PtSrc.begin()+a, false);
- if (!Src.Dim()) continue;
- for (Long t = 0; t < Trg.Dim(); t++) { // set near_elem[t] <-- {s : dist(s,t) < radius(s)}
- for (Long s = 0; s < Src.Dim(); s++) {
- if (Trg[t].surf_rank != Src[s].surf_rank) {
- Real R2 = 0;
- for (Integer k = 0; k < CoordDim; k++) {
- Real dx = (Src[s].coord[k] - Trg[t].coord[k]);
- R2 += dx * dx;
- }
- if (R2 < Src[s].radius2) {
- near_elem[t].insert(Src[s].surf_rank);
- }
- }
- }
- }
- }
- }
- for (Long t = 0; t < Trg.Dim(); t++) { // Set pair_lst
- for (Long elem_idx : near_elem[t]) {
- pair_lst.PushBack(Pair<Long,Long>(elem_idx,Trg[t].rank));
- }
- }
- }
- }
- }
- }
- { // Sort and repartition pair_lst
- Vector<Pair<Long,Long>> pair_lst_sorted;
- comm.HyperQuickSort(pair_lst, pair_lst_sorted);
- Long surf_rank_offset;
- const Long Nelem = elem_lst.NElem();
- comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&surf_rank_offset,1), 1, Comm::CommOp::SUM);
- surf_rank_offset -= Nelem;
- comm.PartitionS(pair_lst_sorted, Pair<Long,Long>(surf_rank_offset,0));
- pair_lst.Swap(pair_lst_sorted);
- }
- }
- template <class ElemList> static void BuildNbrListDeprecated(Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt, const ElemList& elem_lst, const Matrix<Real>& surf_nds, Real distance_factor) {
- using CoordBasis = typename ElemList::CoordBasis;
- constexpr Integer CoordDim = ElemList::CoordDim();
- constexpr Integer ElemDim = ElemList::ElemDim();
- const Long Nelem = elem_lst.NElem();
- const Long Ntrg = Xt.Dim() / CoordDim;
- SCTL_ASSERT(Xt.Dim() == Ntrg * CoordDim);
- Long Nnds, Nsurf_nds;
- Vector<Real> X_surf, X, dX;
- Integer order_upsample = (Integer)(const_pi<Real>() / distance_factor + 0.5);
- { // Set X, dX
- const Vector<CoordBasis>& X_elem_lst = elem_lst.ElemVector();
- Vector<CoordBasis> dX_elem_lst;
- CoordBasis::Grad(dX_elem_lst, X_elem_lst);
- Matrix<Real> nds_upsample;
- Vector<Real> wts_upsample;
- TensorProductGaussQuad<ElemDim>(nds_upsample, wts_upsample, order_upsample);
- Nnds = nds_upsample.Dim(1);
- const auto CoordEvalOp = CoordBasis::SetupEval(nds_upsample);
- eval_basis(X, X_elem_lst, CoordDim, nds_upsample.Dim(1), CoordEvalOp);
- eval_basis(dX, dX_elem_lst, CoordDim * ElemDim, nds_upsample.Dim(1), CoordEvalOp);
- Nsurf_nds = surf_nds.Dim(1);
- const auto CoordEvalOp_surf = CoordBasis::SetupEval(surf_nds);
- eval_basis(X_surf, X_elem_lst, CoordDim, Nsurf_nds, CoordEvalOp_surf);
- }
- Real d2 = distance_factor * distance_factor;
- for (Long i = 0; i < Nelem; i++) {
- std::set<Long> near_pts;
- std::set<Long> self_pts;
- for (Long j = 0; j < Nnds; j++) {
- Real R2_max = 0;
- StaticArray<Real, CoordDim> X0;
- for (Integer k = 0; k < CoordDim; k++) {
- X0[k] = X[(i*Nnds+j)*CoordDim+k];
- }
- for (Integer k0 = 0; k0 < ElemDim; k0++) {
- Real R2 = 0;
- for (Integer k1 = 0; k1 < CoordDim; k1++) {
- Real dX_ = dX[((i*Nnds+j)*CoordDim+k1)*ElemDim+k0];
- R2 += dX_*dX_;
- }
- R2_max = std::max(R2_max, R2*d2);
- }
- for (Long k = 0; k < Ntrg; k++) {
- Real R2 = 0;
- for (Integer l = 0; l < CoordDim; l++) {
- Real dX = Xt[k*CoordDim+l]- X0[l];
- R2 += dX * dX;
- }
- if (R2 < R2_max) near_pts.insert(k);
- }
- }
- for (Long j = 0; j < Nsurf_nds; j++) {
- StaticArray<Real, CoordDim> X0;
- for (Integer k = 0; k < CoordDim; k++) {
- X0[k] = X_surf[(i*Nsurf_nds+j)*CoordDim+k];
- }
- for (Long k = 0; k < Ntrg; k++) {
- Real R2 = 0;
- for (Integer l = 0; l < CoordDim; l++) {
- Real dX = Xt[k*CoordDim+l]- X0[l];
- R2 += dX * dX;
- }
- if (R2 == 0) self_pts.insert(k);
- }
- }
- for (Long trg_idx : self_pts) {
- near_pts.erase(trg_idx);
- }
- for (Long trg_idx : near_pts) {
- pair_lst.PushBack(Pair<Long,Long>(i,trg_idx));
- }
- }
- }
- template <class DensityBasis, class ElemList, class Kernel> static void SetupNearSingular(Matrix<Real>& M_near_singular, Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt_, const Vector<Long>& trg_surf, const ElemList& elem_lst, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) {
- static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
- static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
- static_assert(DensityBasis::Dim() == ElemList::ElemDim());
- using CoordBasis = typename ElemList::CoordBasis;
- using CoordEvalOpType = typename CoordBasis::EvalOpType;
- using DensityEvalOpType = typename DensityBasis::EvalOpType;
- constexpr Integer CoordDim = ElemList::CoordDim();
- constexpr Integer ElemDim = ElemList::ElemDim();
- constexpr Integer KDIM0 = Kernel::SrcDim();
- constexpr Integer KDIM1 = Kernel::TrgDim();
- const Long Nelem = elem_lst.NElem();
- BuildNbrList(pair_lst, Xt_, trg_surf, elem_lst, 2.5/order_direct, period_length, comm);
- const Long Ninterac = pair_lst.Dim();
- Vector<Real> Xt;
- { // Set Xt
- Integer rank = comm.Rank();
- Integer np = comm.Size();
- Vector<Long> splitter_ranks;
- { // Set splitter_ranks
- Vector<Long> cnt(np);
- const Long N = Xt_.Dim() / CoordDim;
- comm.Allgather(Ptr2ConstItr<Long>(&N,1), 1, cnt.begin(), 1);
- scan(splitter_ranks, cnt);
- }
- Vector<Long> scatter_index, recv_index, recv_cnt(np), recv_dsp(np);
- { // Set scatter_index, recv_index, recv_cnt, recv_dsp
- { // Set scatter_index, recv_index
- Vector<Pair<Long,Long>> scatter_pair(pair_lst.Dim());
- for (Long i = 0; i < pair_lst.Dim(); i++) {
- scatter_pair[i] = Pair<Long,Long>(pair_lst[i].second,i);
- }
- omp_par::merge_sort(scatter_pair.begin(), scatter_pair.end());
- recv_index.ReInit(scatter_pair.Dim());
- scatter_index.ReInit(scatter_pair.Dim());
- for (Long i = 0; i < scatter_index.Dim(); i++) {
- recv_index[i] = scatter_pair[i].first;
- scatter_index[i] = scatter_pair[i].second;
- }
- }
- for (Integer i = 0; i < np; i++) {
- recv_dsp[i] = std::lower_bound(recv_index.begin(), recv_index.end(), splitter_ranks[i]) - recv_index.begin();
- }
- for (Integer i = 0; i < np-1; i++) {
- recv_cnt[i] = recv_dsp[i+1] - recv_dsp[i];
- }
- recv_cnt[np-1] = recv_index.Dim() - recv_dsp[np-1];
- }
- Vector<Long> send_index, send_cnt(np), send_dsp(np);
- { // Set send_index, send_cnt, send_dsp
- comm.Alltoall(recv_cnt.begin(), 1, send_cnt.begin(), 1);
- scan(send_dsp, send_cnt);
- send_index.ReInit(send_cnt[np-1] + send_dsp[np-1]);
- comm.Alltoallv(recv_index.begin(), recv_cnt.begin(), recv_dsp.begin(), send_index.begin(), send_cnt.begin(), send_dsp.begin());
- }
- Vector<Real> Xt_send(send_index.Dim() * CoordDim);
- for (Long i = 0; i < send_index.Dim(); i++) { // Set Xt_send
- Long idx = send_index[i] - splitter_ranks[rank];
- for (Integer k = 0; k < CoordDim; k++) {
- Xt_send[i*CoordDim+k] = Xt_[idx*CoordDim+k];
- }
- }
- Vector<Real> Xt_recv(recv_index.Dim() * CoordDim);
- { // Set Xt_recv
- for (Long i = 0; i < np; i++) {
- send_cnt[i] *= CoordDim;
- send_dsp[i] *= CoordDim;
- recv_cnt[i] *= CoordDim;
- recv_dsp[i] *= CoordDim;
- }
- comm.Alltoallv(Xt_send.begin(), send_cnt.begin(), send_dsp.begin(), Xt_recv.begin(), recv_cnt.begin(), recv_dsp.begin());
- }
- Xt.ReInit(scatter_index.Dim() * CoordDim);
- for (Long i = 0; i < scatter_index.Dim(); i++) { // Set Xt
- Long idx = scatter_index[i];
- for (Integer k = 0; k < CoordDim; k++) {
- Xt[idx*CoordDim+k] = Xt_recv[i*CoordDim+k];
- }
- }
- }
- const Vector<CoordBasis>& X = elem_lst.ElemVector();
- Vector<CoordBasis> dX;
- CoordBasis::Grad(dX, X);
- Long elem_rank_offset;
- { // Set elem_rank_offset
- comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&elem_rank_offset,1), 1, Comm::CommOp::SUM);
- elem_rank_offset -= Nelem;
- }
- auto& M = M_near_singular;
- M.ReInit(Ninterac * KDIM0 * DensityBasis::Size(), KDIM1);
- #pragma omp parallel for schedule(static)
- for (Long j = 0; j < Ninterac; j++) { // Set M (near-singular)
- const Long src_idx = pair_lst[j].first - elem_rank_offset;
- Real adapt = -1.0;
- Tensor<Real,true,ElemDim,1> u0;
- { // Set u0 (project target point to the surface patch in parameter space)
- ConstIterator<Real> Xt_ = Xt.begin() + j * CoordDim;
- const auto& nodes = CoordBasis::Nodes();
- Long min_idx = -1;
- Real min_R2 = 1e10;
- for (Long i = 0; i < CoordBasis::Size(); i++) {
- Real R2 = 0;
- for (Integer k = 0; k < CoordDim; k++) {
- Real dX = X[src_idx * CoordDim + k][i] - Xt_[k];
- R2 += dX * dX;
- }
- if (R2 < min_R2) {
- min_R2 = R2;
- min_idx = i;
- }
- }
- SCTL_ASSERT(min_idx >= 0);
- for (Integer k = 0; k < ElemDim; k++) {
- u0(k,0) = nodes[k][min_idx];
- }
- for (Integer i = 0; i < 2; i++) { // iterate
- Matrix<Real> X_, dX_;
- for (Integer k = 0; k < ElemDim; k++) {
- u0(k,0) = std::min<Real>(1.0, u0(k,0));
- u0(k,0) = std::max<Real>(0.0, u0(k,0));
- }
- const auto eval_op = CoordBasis::SetupEval(Matrix<Real>(ElemDim,1,u0.begin(),false));
- CoordBasis::Eval(X_, Vector<CoordBasis>(CoordDim,(Iterator<CoordBasis>)X.begin()+src_idx*CoordDim,false),eval_op);
- CoordBasis::Eval(dX_, Vector<CoordBasis>(CoordDim*ElemDim,dX.begin()+src_idx*CoordDim*ElemDim,false),eval_op);
- const Tensor<Real,false,CoordDim,1> x0((Iterator<Real>)Xt_);
- const Tensor<Real,false,CoordDim,1> x(X_.begin());
- const Tensor<Real,false,CoordDim,ElemDim> x_u(dX_.begin());
- auto inv = [](const Tensor<Real,true,2,2>& M) {
- Tensor<Real,true,2,2> Minv;
- Real det_inv = 1.0 / (M(0,0)*M(1,1) - M(1,0)*M(0,1));
- Minv(0,0) = M(1,1) * det_inv;
- Minv(0,1) =-M(0,1) * det_inv;
- Minv(1,0) =-M(1,0) * det_inv;
- Minv(1,1) = M(0,0) * det_inv;
- return Minv;
- };
- auto du = inv(x_u.RotateRight()*x_u) * x_u.RotateRight()*(x0-x);
- u0 = u0 + du;
- auto x_u_squared = x_u.RotateRight() * x_u;
- adapt = sctl::sqrt<Real>( ((x0-x).RotateRight()*(x0-x))(0,0) / std::max<Real>(x_u_squared(0,0),x_u_squared(1,1)) );
- }
- }
- Matrix<Real> quad_nds;
- Vector<Real> quad_wts;
- DuffyQuad<ElemDim>(quad_nds, quad_wts, Vector<Real>(ElemDim,u0.begin(),false), order_singular, adapt);
- const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
- Integer Nnds = quad_wts.Dim();
- Vector<Real> X_, dX_, Xa_, Xn_;
- { // Set X_, dX_
- const Vector<CoordBasis> X__(CoordDim, (Iterator<CoordBasis>)X.begin() + src_idx * CoordDim, false);
- const Vector<CoordBasis> dX__(CoordDim * ElemDim, (Iterator<CoordBasis>)dX.begin() + src_idx * CoordDim * ElemDim, false);
- eval_basis(X_, X__, CoordDim, Nnds, CoordEvalOp);
- eval_basis(dX_, dX__, CoordDim * ElemDim, Nnds, CoordEvalOp);
- }
- if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
- Xa_.ReInit(Nnds);
- Xn_.ReInit(Nnds*CoordDim);
- for (Long j = 0; j < Nnds; j++) {
- StaticArray<Real,CoordDim> normal;
- normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
- normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
- normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
- Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
- Real invXa = 1/Xa_[j];
- Xn_[j*3+0] = normal[0] * invXa;
- Xn_[j*3+1] = normal[1] * invXa;
- Xn_[j*3+2] = normal[2] * invXa;
- }
- }
- DensityEvalOpType DensityEvalOp;
- if (std::is_same<CoordBasis,DensityBasis>::value) {
- DensityEvalOp = CoordEvalOp;
- } else {
- DensityEvalOp = DensityBasis::SetupEval(quad_nds);
- }
- Matrix<Real> M__(Nnds * KDIM0, KDIM1);
- { // Set kernel matrix M__
- const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + j * CoordDim, false);
- kernel.template KernelMatrix<Real>(M__, X0_, X_, Xn_);
- }
- for (Long k0 = 0; k0 < KDIM0; k0++) {
- for (Long k1 = 0; k1 < KDIM1; k1++) {
- for (Long l = 0; l < DensityBasis::Size(); l++) {
- Real M_lk = 0;
- for (Long n = 0; n < Nnds; n++) {
- Real quad_wt = Xa_[n] * quad_wts[n];
- M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
- }
- M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1] = M_lk;
- }
- }
- }
- }
- { // Set M (subtract direct)
- Matrix<Real> quad_nds;
- Vector<Real> quad_wts;
- TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
- const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
- Integer Nnds = quad_wts.Dim();
- Vector<Real> X_, dX_, Xa_, Xn_;
- { // Set X_, dX_
- eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
- eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
- }
- if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
- Long N = Nelem*Nnds;
- Xa_.ReInit(N);
- Xn_.ReInit(N*CoordDim);
- for (Long j = 0; j < N; j++) {
- StaticArray<Real,CoordDim> normal;
- normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
- normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
- normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
- Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
- Real invXa = 1/Xa_[j];
- Xn_[j*3+0] = normal[0] * invXa;
- Xn_[j*3+1] = normal[1] * invXa;
- Xn_[j*3+2] = normal[2] * invXa;
- }
- }
- DensityEvalOpType DensityEvalOp;
- if (std::is_same<CoordBasis,DensityBasis>::value) {
- DensityEvalOp = CoordEvalOp;
- } else {
- DensityEvalOp = DensityBasis::SetupEval(quad_nds);
- }
- #pragma omp parallel for schedule(static)
- for (Long j = 0; j < Ninterac; j++) { // Subtract direct contribution
- const Long src_idx = pair_lst[j].first - elem_rank_offset;
- Matrix<Real> M__(Nnds * KDIM0, KDIM1);
- { // Set kernel matrix M__
- const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + j * CoordDim, false);
- Vector<Real> X__(Nnds * CoordDim, X_.begin() + src_idx * Nnds * CoordDim, false);
- Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + src_idx * Nnds * CoordDim, false);
- kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
- }
- for (Long k0 = 0; k0 < KDIM0; k0++) {
- for (Long k1 = 0; k1 < KDIM1; k1++) {
- for (Long l = 0; l < DensityBasis::Size(); l++) {
- Real M_lk = 0;
- for (Long n = 0; n < Nnds; n++) {
- Real quad_wt = Xa_[src_idx * Nnds + n] * quad_wts[n];
- M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
- }
- M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1] -= M_lk;
- }
- }
- }
- }
- }
- }
- template <class DensityBasis> static void EvalNearSingular(Vector<Real>& U, const Vector<DensityBasis>& density, const Matrix<Real>& M, const Vector<Pair<Long,Long>>& pair_lst, Long Nelem_, Long Ntrg_, Integer KDIM0_, Integer KDIM1_, const Comm& comm) {
- const Long Ninterac = pair_lst.Dim();
- const Integer dof = density.Dim() / Nelem_ / KDIM0_;
- SCTL_ASSERT(density.Dim() == Nelem_ * dof * KDIM0_);
- Long elem_rank_offset;
- { // Set elem_rank_offset
- comm.Scan(Ptr2ConstItr<Long>(&Nelem_,1), Ptr2Itr<Long>(&elem_rank_offset,1), 1, Comm::CommOp::SUM);
- elem_rank_offset -= Nelem_;
- }
- Vector<Real> U_loc(Ninterac*dof*KDIM1_);
- for (Long j = 0; j < Ninterac; j++) {
- const Long src_idx = pair_lst[j].first - elem_rank_offset;
- const Matrix<Real> M_(KDIM0_ * DensityBasis::Size(), KDIM1_, (Iterator<Real>)M[j * KDIM0_ * DensityBasis::Size()], false);
- Matrix<Real> U_(dof, KDIM1_, U_loc.begin() + j*dof*KDIM1_, false);
- Matrix<Real> F_(dof, KDIM0_ * DensityBasis::Size());
- for (Long i = 0; i < dof; i++) {
- for (Long k = 0; k < KDIM0_; k++) {
- for (Long l = 0; l < DensityBasis::Size(); l++) {
- F_[i][k * DensityBasis::Size() + l] = density[(src_idx * dof + i) * KDIM0_ + k][l];
- }
- }
- }
- Matrix<Real>::GEMM(U_, F_, M_);
- }
- if (U.Dim() != Ntrg_ * dof * KDIM1_) {
- U.ReInit(Ntrg_ * dof * KDIM1_);
- U = 0;
- }
- { // Set U
- Integer rank = comm.Rank();
- Integer np = comm.Size();
- Vector<Long> splitter_ranks;
- { // Set splitter_ranks
- Vector<Long> cnt(np);
- comm.Allgather(Ptr2ConstItr<Long>(&Ntrg_,1), 1, cnt.begin(), 1);
- scan(splitter_ranks, cnt);
- }
- Vector<Long> scatter_index, send_index, send_cnt(np), send_dsp(np);
- { // Set scatter_index, send_index, send_cnt, send_dsp
- { // Set scatter_index, send_index
- Vector<Pair<Long,Long>> scatter_pair(pair_lst.Dim());
- for (Long i = 0; i < pair_lst.Dim(); i++) {
- scatter_pair[i] = Pair<Long,Long>(pair_lst[i].second,i);
- }
- omp_par::merge_sort(scatter_pair.begin(), scatter_pair.end());
- send_index.ReInit(scatter_pair.Dim());
- scatter_index.ReInit(scatter_pair.Dim());
- for (Long i = 0; i < scatter_index.Dim(); i++) {
- send_index[i] = scatter_pair[i].first;
- scatter_index[i] = scatter_pair[i].second;
- }
- }
- for (Integer i = 0; i < np; i++) {
- send_dsp[i] = std::lower_bound(send_index.begin(), send_index.end(), splitter_ranks[i]) - send_index.begin();
- }
- for (Integer i = 0; i < np-1; i++) {
- send_cnt[i] = send_dsp[i+1] - send_dsp[i];
- }
- send_cnt[np-1] = send_index.Dim() - send_dsp[np-1];
- }
- Vector<Long> recv_index, recv_cnt(np), recv_dsp(np);
- { // Set recv_index, recv_cnt, recv_dsp
- comm.Alltoall(send_cnt.begin(), 1, recv_cnt.begin(), 1);
- scan(recv_dsp, recv_cnt);
- recv_index.ReInit(recv_cnt[np-1] + recv_dsp[np-1]);
- comm.Alltoallv(send_index.begin(), send_cnt.begin(), send_dsp.begin(), recv_index.begin(), recv_cnt.begin(), recv_dsp.begin());
- }
- Vector<Real> U_send(scatter_index.Dim() * dof * KDIM1_);
- for (Long i = 0; i < scatter_index.Dim(); i++) {
- Long idx = scatter_index[i]*dof*KDIM1_;
- for (Long k = 0; k < dof * KDIM1_; k++) {
- U_send[i*dof*KDIM1_ + k] = U_loc[idx + k];
- }
- }
- Vector<Real> U_recv(recv_index.Dim() * dof * KDIM1_);
- { // Set U_recv
- for (Long i = 0; i < np; i++) {
- send_cnt[i] *= dof * KDIM1_;
- send_dsp[i] *= dof * KDIM1_;
- recv_cnt[i] *= dof * KDIM1_;
- recv_dsp[i] *= dof * KDIM1_;
- }
- comm.Alltoallv(U_send.begin(), send_cnt.begin(), send_dsp.begin(), U_recv.begin(), recv_cnt.begin(), recv_dsp.begin());
- }
- for (Long i = 0; i < recv_index.Dim(); i++) { // Set U
- Long idx = (recv_index[i] - splitter_ranks[rank]) * dof * KDIM1_;
- for (Integer k = 0; k < dof * KDIM1_; k++) {
- U[idx + k] += U_recv[i*dof*KDIM1_ + k];
- }
- }
- }
- }
- template <class ElemList, class DensityBasis, class Kernel> static void Direct(Vector<Real>& U, const Vector<Real>& Xt, const ElemList& elem_lst, const Vector<DensityBasis>& density, const Kernel& kernel, Integer order_direct, const Comm& comm) {
- using CoordBasis = typename ElemList::CoordBasis;
- using CoordEvalOpType = typename CoordBasis::EvalOpType;
- using DensityEvalOpType = typename DensityBasis::EvalOpType;
- constexpr Integer CoordDim = ElemList::CoordDim();
- constexpr Integer ElemDim = ElemList::ElemDim();
- constexpr Integer KDIM0 = Kernel::SrcDim();
- constexpr Integer KDIM1 = Kernel::TrgDim();
- const Long Nelem = elem_lst.NElem();
- const Integer dof = density.Dim() / Nelem / KDIM0;
- SCTL_ASSERT(density.Dim() == Nelem * dof * KDIM0);
- Matrix<Real> quad_nds;
- Vector<Real> quad_wts;
- TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
- const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
- Integer Nnds = quad_wts.Dim();
- const Vector<CoordBasis>& X = elem_lst.ElemVector();
- Vector<CoordBasis> dX;
- CoordBasis::Grad(dX, X);
- Vector<Real> X_, dX_, Xa_, Xn_;
- eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
- eval_basis(dX_, dX, CoordDim*ElemDim, Nnds, CoordEvalOp);
- if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
- Long N = Nelem*Nnds;
- Xa_.ReInit(N);
- Xn_.ReInit(N*CoordDim);
- for (Long j = 0; j < N; j++) {
- StaticArray<Real,CoordDim> normal;
- normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
- normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
- normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
- Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
- Real invXa = 1/Xa_[j];
- Xn_[j*3+0] = normal[0] * invXa;
- Xn_[j*3+1] = normal[1] * invXa;
- Xn_[j*3+2] = normal[2] * invXa;
- }
- }
- Vector<Real> Fa_;
- { // Set Fa_
- Vector<Real> F_;
- if (std::is_same<CoordBasis,DensityBasis>::value) {
- eval_basis(F_, density, dof * KDIM0, Nnds, CoordEvalOp);
- } else {
- const DensityEvalOpType EvalOp = DensityBasis::SetupEval(quad_nds);
- eval_basis(F_, density, dof * KDIM0, Nnds, EvalOp);
- }
- Fa_.ReInit(F_.Dim());
- const Integer DensityDOF = dof * KDIM0;
- SCTL_ASSERT(F_.Dim() == Nelem * Nnds * DensityDOF);
- for (Long j = 0; j < Nelem; j++) {
- for (Integer k = 0; k < Nnds; k++) {
- Long idx = j * Nnds + k;
- Real quad_wt = Xa_[idx] * quad_wts[k];
- for (Integer l = 0; l < DensityDOF; l++) {
- Fa_[idx * DensityDOF + l] = F_[idx * DensityDOF + l] * quad_wt;
- }
- }
- }
- }
- { // Evaluate potential
- const Long Ntrg = Xt.Dim() / CoordDim;
- SCTL_ASSERT(Xt.Dim() == Ntrg * CoordDim);
- if (U.Dim() != Ntrg * dof * KDIM1) {
- U.ReInit(Ntrg * dof * KDIM1);
- U = 0;
- }
- ParticleFMM<Real,CoordDim>::Eval(U, Xt, X_, Xn_, Fa_, kernel, comm);
- }
- }
- public:
- template <class DensityBasis, class ElemList, class Kernel> void Setup(const ElemList& elem_lst, const Vector<Real>& Xt, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) {
- Xt_.ReInit(0);
- M_singular.ReInit(0,0);
- M_near_singular.ReInit(0,0);
- pair_lst.ReInit(0);
- order_direct_ = order_direct;
- period_length_ = period_length;
- comm_ = comm;
- Profile::Tic("Setup", &comm_);
- static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
- static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
- static_assert(DensityBasis::Dim() == ElemList::ElemDim());
- Xt_ = Xt;
- M_singular.ReInit(0,0);
- Profile::Tic("SetupNearSingular", &comm_);
- SetupNearSingular<DensityBasis>(M_near_singular, pair_lst, Xt_, Vector<Long>(), elem_lst, kernel, order_singular, order_direct_, period_length_, comm_);
- Profile::Toc();
- Profile::Toc();
- }
- template <class DensityBasis, class PotentialBasis, class ElemList, class Kernel> void Setup(const ElemList& elem_lst, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm, Real Rqbx = 0) {
- Xt_.ReInit(0);
- M_singular.ReInit(0,0);
- M_near_singular.ReInit(0,0);
- pair_lst.ReInit(0);
- order_direct_ = order_direct;
- period_length_ = period_length;
- comm_ = comm;
- Profile::Tic("Setup", &comm_);
- static_assert(std::is_same<Real,typename PotentialBasis::ValueType>::value);
- static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
- static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
- static_assert(PotentialBasis::Dim() == ElemList::ElemDim());
- static_assert(DensityBasis::Dim() == ElemList::ElemDim());
- Vector<Long> trg_surf;
- { // Set Xt_
- using CoordBasis = typename ElemList::CoordBasis;
- Matrix<Real> trg_nds = PotentialBasis::Nodes();
- auto Meval = CoordBasis::SetupEval(trg_nds);
- eval_basis(Xt_, elem_lst.ElemVector(), ElemList::CoordDim(), trg_nds.Dim(1), Meval);
- { // Set trg_surf
- const Long Nelem = elem_lst.NElem();
- const Long Nnds = trg_nds.Dim(1);
- Long elem_offset;
- { // Set elem_offset
- comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&elem_offset,1), 1, Comm::CommOp::SUM);
- elem_offset -= Nelem;
- }
- trg_surf.ReInit(elem_lst.NElem() * trg_nds.Dim(1));
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnds; j++) {
- trg_surf[i*Nnds+j] = elem_offset + i;
- }
- }
- }
- }
- Profile::Tic("SetupSingular", &comm_);
- SetupSingular<DensityBasis>(M_singular, PotentialBasis::Nodes(), elem_lst, kernel, order_singular, order_direct_, Rqbx);
- Profile::Toc();
- Profile::Tic("SetupNearSingular", &comm_);
- SetupNearSingular<DensityBasis>(M_near_singular, pair_lst, Xt_, trg_surf, elem_lst, kernel, order_singular, order_direct_, period_length_, comm_);
- Profile::Toc();
- Profile::Toc();
- }
- template <class DensityBasis, class PotentialBasis, class ElemList, class Kernel> void Eval(Vector<PotentialBasis>& U, const ElemList& elements, const Vector<DensityBasis>& F, const Kernel& kernel) {
- Profile::Tic("Eval", &comm_);
- Matrix<Real> U_singular;
- Vector<Real> U_direct, U_near_sing;
- Profile::Tic("EvalDirect", &comm_);
- Direct(U_direct, Xt_, elements, F, kernel, order_direct_, comm_);
- Profile::Toc();
- Profile::Tic("EvalSingular", &comm_);
- EvalSingular(U_singular, F, M_singular, kernel.SrcDim(), kernel.TrgDim());
- Profile::Toc();
- Profile::Tic("EvalNearSingular", &comm_);
- EvalNearSingular(U_near_sing, F, M_near_singular, pair_lst, elements.NElem(), Xt_.Dim() / ElemList::CoordDim(), kernel.SrcDim(), kernel.TrgDim(), comm_);
- SCTL_ASSERT(U_near_sing.Dim() == U_direct.Dim());
- Profile::Toc();
- const Long dof = U_direct.Dim() / (elements.NElem() * PotentialBasis::Size() * kernel.TrgDim());
- SCTL_ASSERT(U_direct .Dim() == elements.NElem() * PotentialBasis::Size() * dof * kernel.TrgDim());
- SCTL_ASSERT(U_near_sing.Dim() == elements.NElem() * PotentialBasis::Size() * dof * kernel.TrgDim());
- if (U.Dim() != elements.NElem() * dof * kernel.TrgDim()) {
- U.ReInit(elements.NElem() * dof * kernel.TrgDim());
- }
- for (int i = 0; i < elements.NElem(); i++) {
- for (int j = 0; j < PotentialBasis::Size(); j++) {
- for (int k = 0; k < dof*kernel.TrgDim(); k++) {
- Real& U_ = U[i*dof*kernel.TrgDim()+k][j];
- U_ = 0;
- U_ += U_direct [(i*PotentialBasis::Size()+j)*dof*kernel.TrgDim()+k];
- U_ += U_near_sing[(i*PotentialBasis::Size()+j)*dof*kernel.TrgDim()+k];
- U_ *= kernel.template ScaleFactor<Real>();
- }
- }
- }
- if (U_singular.Dim(1)) {
- SCTL_ASSERT(U_singular.Dim(0) == elements.NElem() * dof * kernel.TrgDim());
- SCTL_ASSERT(U_singular.Dim(1) == PotentialBasis::Size());
- for (int i = 0; i < elements.NElem(); i++) {
- for (int j = 0; j < PotentialBasis::Size(); j++) {
- for (int k = 0; k < dof*kernel.TrgDim(); k++) {
- U[i*dof*kernel.TrgDim()+k][j] += U_singular[i*dof*kernel.TrgDim()+k][j] * kernel.template ScaleFactor<Real>();
- }
- }
- }
- }
- Profile::Toc();
- }
- template <class DensityBasis, class ElemList, class Kernel> void Eval(Vector<Real>& U, const ElemList& elements, const Vector<DensityBasis>& F, const Kernel& kernel) {
- Profile::Tic("Eval", &comm_);
- Matrix<Real> U_singular;
- Vector<Real> U_direct, U_near_sing;
- Profile::Tic("EvalDirect", &comm_);
- Direct(U_direct, Xt_, elements, F, kernel, order_direct_, comm_);
- Profile::Toc();
- Profile::Tic("EvalSingular", &comm_);
- EvalSingular(U_singular, F, M_singular, kernel.SrcDim(), kernel.TrgDim());
- Profile::Toc();
- Profile::Tic("EvalNearSingular", &comm_);
- EvalNearSingular(U_near_sing, F, M_near_singular, pair_lst, elements.NElem(), Xt_.Dim() / ElemList::CoordDim(), kernel.SrcDim(), kernel.TrgDim(), comm_);
- SCTL_ASSERT(U_near_sing.Dim() == U_direct.Dim());
- Profile::Toc();
- Long Nt = Xt_.Dim() / ElemList::CoordDim();
- const Long dof = U_direct.Dim() / (Nt * kernel.TrgDim());
- SCTL_ASSERT(U_direct.Dim() == Nt * dof * kernel.TrgDim());
- if (U.Dim() != U_direct.Dim()) {
- U.ReInit(U_direct.Dim());
- }
- for (int i = 0; i < U.Dim(); i++) {
- U[i] = (U_direct[i] + U_near_sing[i]) * kernel.template ScaleFactor<Real>();
- }
- if (U_singular.Dim(1)) {
- SCTL_ASSERT(U_singular.Dim(0) == elements.NElem() * dof * kernel.TrgDim());
- const Long Nnodes = U_singular.Dim(1);
- for (int i = 0; i < elements.NElem(); i++) {
- for (int j = 0; j < Nnodes; j++) {
- for (int k = 0; k < dof*kernel.TrgDim(); k++) {
- Real& U_ = U[(i*Nnodes+j)*dof*kernel.TrgDim()+k];
- U_ += U_singular[i*dof*kernel.TrgDim()+k][j] * kernel.template ScaleFactor<Real>();
- }
- }
- }
- }
- Profile::Toc();
- }
- template <Integer ORDER = 5> static void test(Integer order_singular = 10, Integer order_direct = 5, const Comm& comm = Comm::World()) {
- constexpr Integer COORD_DIM = 3;
- constexpr Integer ELEM_DIM = COORD_DIM-1;
- using ElemList = ElemList<COORD_DIM, Basis<Real, ELEM_DIM, ORDER>>;
- using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
- using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
- int np = comm.Size();
- int rank = comm.Rank();
- auto build_torus = [rank,np](ElemList& elements, long Nt, long Np, Real Rmajor, Real Rminor){
- auto nodes = ElemList::CoordBasis::Nodes();
- auto torus = [](Real theta, Real phi, Real Rmajor, Real Rminor) {
- Real R = Rmajor + Rminor * cos<Real>(phi);
- Real X = R * cos<Real>(theta);
- Real Y = R * sin<Real>(theta);
- Real Z = Rminor * sin<Real>(phi);
- return std::make_tuple(X,Y,Z);
- };
- long start = Nt*Np*(rank+0)/np;
- long end = Nt*Np*(rank+1)/np;
- elements.ReInit(end - start);
- for (long ii = start; ii < end; ii++) {
- long i = ii / Np;
- long j = ii % Np;
- for (int k = 0; k < ElemList::CoordBasis::Size(); k++) {
- Real X, Y, Z;
- Real theta = 2 * const_pi<Real>() * (i + nodes[0][k]) / Nt;
- Real phi = 2 * const_pi<Real>() * (j + nodes[1][k]) / Np;
- std::tie(X,Y,Z) = torus(theta, phi, Rmajor, Rminor);
- elements(ii-start,0)[k] = X;
- elements(ii-start,1)[k] = Y;
- elements(ii-start,2)[k] = Z;
- }
- }
- };
- ElemList elements_src, elements_trg;
- build_torus(elements_src, 28, 16, 2, 1.0);
- build_torus(elements_trg, 29, 17, 2, 0.99);
- Vector<Real> Xt;
- Vector<PotentialBasis> U_onsurf, U_offsurf;
- Vector<DensityBasis> density_sl, density_dl;
- { // Set Xt, elements_src, elements_trg, density_sl, density_dl, U
- Real X0[COORD_DIM] = {3,2,1};
- std::function<void(Real*,Real*,Real*)> potential = [X0](Real* U, Real* X, Real* Xn) {
- Real dX[COORD_DIM] = {X[0]-X0[0],X[1]-X0[1],X[2]-X0[2]};
- Real Rinv = 1/sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dX[2]);
- U[0] = Rinv;
- };
- std::function<void(Real*,Real*,Real*)> potential_normal_derivative = [X0](Real* U, Real* X, Real* Xn) {
- Real dX[COORD_DIM] = {X[0]-X0[0],X[1]-X0[1],X[2]-X0[2]};
- Real Rinv = 1/sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dX[2]);
- Real RdotN = dX[0]*Xn[0]+dX[1]*Xn[1]+dX[2]*Xn[2];
- U[0] = -RdotN * Rinv*Rinv*Rinv;
- };
- DiscretizeSurfaceFn<COORD_DIM,1>(density_sl, elements_src, potential_normal_derivative);
- DiscretizeSurfaceFn<COORD_DIM,1>(density_dl, elements_src, potential);
- DiscretizeSurfaceFn<COORD_DIM,1>(U_onsurf , elements_src, potential);
- DiscretizeSurfaceFn<COORD_DIM,1>(U_offsurf , elements_trg, potential);
- for (long i = 0; i < elements_trg.NElem(); i++) { // Set Xt
- for (long j = 0; j < PotentialBasis::Size(); j++) {
- for (int k = 0; k < COORD_DIM; k++) {
- Xt.PushBack(elements_trg(i,k)[j]);
- }
- }
- }
- }
- GenericKernel<Laplace3D_DxU> Laplace_DxU;
- GenericKernel<Laplace3D_FxU> Laplace_FxU;
- Profile::Enable(true);
- if (1) { // Greeen's identity test (Laplace, on-surface)
- Profile::Tic("OnSurface", &comm);
- Quadrature<Real> quadrature_DxU, quadrature_FxU;
- quadrature_FxU.Setup<DensityBasis, PotentialBasis>(elements_src, Laplace_FxU, order_singular, order_direct, -1.0, comm);
- quadrature_DxU.Setup<DensityBasis, PotentialBasis>(elements_src, Laplace_DxU, order_singular, order_direct, -1.0, comm);
- Vector<PotentialBasis> U_sl, U_dl;
- quadrature_FxU.Eval(U_sl, elements_src, density_sl, Laplace_FxU);
- quadrature_DxU.Eval(U_dl, elements_src, density_dl, Laplace_DxU);
- Profile::Toc();
- Real max_err = 0;
- Vector<PotentialBasis> err(U_onsurf.Dim());
- for (long i = 0; i < U_sl.Dim(); i++) {
- for (long j = 0; j < PotentialBasis::Size(); j++) {
- err[i][j] = 0.5*U_onsurf[i][j] - (U_sl[i][j] + U_dl[i][j]);
- max_err = std::max<Real>(max_err, fabs(err[i][j]));
- }
- }
- { // Print error
- Real glb_err;
- comm.Allreduce(Ptr2ConstItr<Real>(&max_err,1), Ptr2Itr<Real>(&glb_err,1), 1, Comm::CommOp::MAX);
- if (!comm.Rank()) std::cout<<"Error = "<<glb_err<<'\n';
- }
- { // Write VTK output
- VTUData vtu;
- vtu.AddElems(elements_src, err, ORDER);
- vtu.WriteVTK("err", comm);
- }
- { // Write VTK output
- VTUData vtu;
- vtu.AddElems(elements_src, U_onsurf, ORDER);
- vtu.WriteVTK("U", comm);
- }
- }
- if (1) { // Greeen's identity test (Laplace, off-surface)
- Profile::Tic("OffSurface", &comm);
- Quadrature<Real> quadrature_DxU, quadrature_FxU;
- quadrature_FxU.Setup<DensityBasis>(elements_src, Xt, Laplace_FxU, order_singular, order_direct, -1.0, comm);
- quadrature_DxU.Setup<DensityBasis>(elements_src, Xt, Laplace_DxU, order_singular, order_direct, -1.0, comm);
- Vector<Real> U_sl, U_dl;
- quadrature_FxU.Eval(U_sl, elements_src, density_sl, Laplace_FxU);
- quadrature_DxU.Eval(U_dl, elements_src, density_dl, Laplace_DxU);
- Profile::Toc();
- Real max_err = 0;
- Vector<PotentialBasis> err(elements_trg.NElem());
- for (long i = 0; i < elements_trg.NElem(); i++) {
- for (long j = 0; j < PotentialBasis::Size(); j++) {
- err[i][j] = U_offsurf[i][j] - (U_sl[i*PotentialBasis::Size()+j] + U_dl[i*PotentialBasis::Size()+j]);
- max_err = std::max<Real>(max_err, fabs(err[i][j]));
- }
- }
- { // Print error
- Real glb_err;
- comm.Allreduce(Ptr2ConstItr<Real>(&max_err,1), Ptr2Itr<Real>(&glb_err,1), 1, Comm::CommOp::MAX);
- if (!comm.Rank()) std::cout<<"Error = "<<glb_err<<'\n';
- }
- { // Write VTK output
- VTUData vtu;
- vtu.AddElems(elements_trg, err, ORDER);
- vtu.WriteVTK("err", comm);
- }
- { // Write VTK output
- VTUData vtu;
- vtu.AddElems(elements_trg, U_offsurf, ORDER);
- vtu.WriteVTK("U", comm);
- }
- }
- Profile::print(&comm);
- }
- static void test1() {
- const Comm& comm = Comm::World();
- constexpr Integer ORDER = 15;
- Integer order_singular = 20;
- Integer order_direct = 20;
- constexpr Integer COORD_DIM = 3;
- constexpr Integer ELEM_DIM = COORD_DIM-1;
- using ElemList = ElemList<COORD_DIM, Basis<Real, ELEM_DIM, ORDER>>;
- using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
- using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
- int np = comm.Size();
- int rank = comm.Rank();
- auto build_sphere = [rank,np](ElemList& elements, Real X, Real Y, Real Z, Real R){
- auto nodes = ElemList::CoordBasis::Nodes();
- long start = 2*COORD_DIM*(rank+0)/np;
- long end = 2*COORD_DIM*(rank+1)/np;
- elements.ReInit(end - start);
- for (long ii = start; ii < end; ii++) {
- long i = ii / 2;
- long j = ii % 2;
- for (int k = 0; k < ElemList::CoordBasis::Size(); k++) {
- Real coord[COORD_DIM];
- coord[(i+0)%COORD_DIM] = (j ? -1.0 : 1.0);
- coord[(i+1)%COORD_DIM] = 2.0 * nodes[j?1:0][k] - 1.0;
- coord[(i+2)%COORD_DIM] = 2.0 * nodes[j?0:1][k] - 1.0;
- Real R0 = sqrt<Real>(coord[0]*coord[0] + coord[1]*coord[1] + coord[2]*coord[2]);
- elements(ii-start,0)[k] = X + R * coord[0] / R0;
- elements(ii-start,1)[k] = Y + R * coord[1] / R0;
- elements(ii-start,2)[k] = Z + R * coord[2] / R0;
- }
- }
- };
- ElemList elements;
- build_sphere(elements, 0.0, 0.0, 0.0, 1.00);
- Vector<DensityBasis> density_sl;
- { // Set density_sl
- std::function<void(Real*,Real*,Real*)> sigma = [](Real* U, Real* X, Real* Xn) {
- Real R = sqrt(X[0]*X[0]+X[1]*X[1]+X[2]*X[2]);
- Real sinp = sqrt(X[1]*X[1] + X[2]*X[2]) / R;
- Real cosp = -X[0] / R;
- U[0] = -1.5;
- U[1] = 0;
- U[2] = 0;
- };
- DiscretizeSurfaceFn<COORD_DIM,3>(density_sl, elements, sigma);
- }
- GenericKernel<Stokes3D_DxU> Stokes_DxU;
- GenericKernel<Stokes3D_FxU> Stokes_FxU;
- Profile::Enable(true);
- if (1) {
- Vector<PotentialBasis> U;
- Quadrature<Real> quadrature_FxU;
- quadrature_FxU.Setup<DensityBasis, PotentialBasis>(elements, Stokes_FxU, order_singular, order_direct, -1.0, comm);
- quadrature_FxU.Eval(U, elements, density_sl, Stokes_FxU);
- { // Write VTK output
- VTUData vtu;
- vtu.AddElems(elements, U, ORDER);
- vtu.WriteVTK("U", comm);
- }
- { // Write VTK output
- VTUData vtu;
- vtu.AddElems(elements, density_sl, ORDER);
- vtu.WriteVTK("sigma", comm);
- }
- }
- Profile::print(&comm);
- }
- private:
- static void scan(Vector<Long>& dsp, const Vector<Long>& cnt) {
- dsp.ReInit(cnt.Dim());
- if (cnt.Dim()) dsp[0] = 0;
- omp_par::scan(cnt.begin(), dsp.begin(), cnt.Dim());
- }
- template <class Basis> static void eval_basis(Vector<Real>& value, const Vector<Basis> X, Integer dof, Integer Nnds, const typename Basis::EvalOpType& EvalOp) {
- Long Nelem = X.Dim() / dof;
- SCTL_ASSERT(X.Dim() == Nelem * dof);
- value.ReInit(Nelem*Nnds*dof);
- Matrix<Real> X_(Nelem*dof, Nnds, value.begin(),false);
- Basis::Eval(X_, X, EvalOp);
- for (Long j = 0; j < Nelem; j++) { // Rearrange data
- Matrix<Real> X(Nnds, dof, X_[j*dof], false);
- X = Matrix<Real>(dof, Nnds, X_[j*dof], false).Transpose();
- }
- }
- template <int CoordDim, int FnDim, class FnBasis, class ElemList> static void DiscretizeSurfaceFn(Vector<FnBasis>& U, const ElemList& elements, std::function<void(Real*,Real*,Real*)> fn) {
- using CoordBasis = typename ElemList::CoordBasis;
- const long Nelem = elements.NElem();
- U.ReInit(Nelem * FnDim);
- Matrix<Real> X, X_grad;
- { // Set X, X_grad
- Vector<CoordBasis> coord = elements.ElemVector();
- Vector<CoordBasis> coord_grad;
- CoordBasis::Grad(coord_grad, coord);
- const auto Meval = CoordBasis::SetupEval(FnBasis::Nodes());
- CoordBasis::Eval(X, coord, Meval);
- CoordBasis::Eval(X_grad, coord_grad, Meval);
- }
- for (long i = 0; i < Nelem; i++) {
- for (long j = 0; j < FnBasis::Size(); j++) {
- Real X_[CoordDim], Xn[CoordDim], U_[FnDim];
- for (long k = 0; k < CoordDim; k++) {
- X_[k] = X[i*CoordDim+k][j];
- }
- { // Set Xn
- Real Xu[CoordDim], Xv[CoordDim];
- for (long k = 0; k < CoordDim; k++) {
- Xu[k] = X_grad[(i*CoordDim+k)*2+0][j];
- Xv[k] = X_grad[(i*CoordDim+k)*2+1][j];
- }
- Real dA = 0;
- for (long k = 0; k < CoordDim; k++) {
- Xn[k] = Xu[(k+1)%CoordDim] * Xv[(k+2)%CoordDim];
- Xn[k] -= Xv[(k+1)%CoordDim] * Xu[(k+2)%CoordDim];
- dA += Xn[k] * Xn[k];
- }
- dA = sqrt(dA);
- for (long k = 0; k < CoordDim; k++) {
- Xn[k] /= dA;
- }
- }
- fn(U_, X_, Xn);
- for (long k = 0; k < FnDim; k++) {
- U[i*FnDim+k][j] = U_[k];
- }
- }
- }
- }
- Vector<Real> Xt_;
- Matrix<Real> M_singular;
- Matrix<Real> M_near_singular;
- Vector<Pair<Long,Long>> pair_lst;
- Integer order_direct_;
- Real period_length_;
- Comm comm_;
- };
- template <class Real, Integer ORDER=10> class Stellarator {
- private:
- static constexpr Integer COORD_DIM = 3;
- static constexpr Integer ELEM_DIM = COORD_DIM-1;
- using ElemBasis = Basis<Real, ELEM_DIM, ORDER>;
- using ElemLst = ElemList<COORD_DIM, ElemBasis>;
- struct Laplace3D_dUxF {
- template <class ValueType> static constexpr ValueType ScaleFactor() {
- return 1 / (4 * const_pi<ValueType>());
- }
- template <class ValueType> static void Eval(ValueType (&u)[3][1], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
- ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
- ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
- ValueType rinv3 = rinv * rinv * rinv;
- u[0][0] = -r[0] * rinv3;
- u[1][0] = -r[1] * rinv3;
- u[2][0] = -r[2] * rinv3;
- }
- };
- struct BiotSavart3D {
- template <class ValueType> static constexpr ValueType ScaleFactor() {
- return 1 / (4 * const_pi<ValueType>());
- }
- template <class ValueType> static void Eval(ValueType (&u)[3][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
- ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
- ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
- ValueType rinv3 = rinv * rinv * rinv;
- u[0][0] = (0) * rinv3; u[0][1] = -r[2] * rinv3; u[0][2] = r[1] * rinv3;
- u[1][0] = r[2] * rinv3; u[1][1] = (0) * rinv3; u[1][2] = -r[0] * rinv3;
- u[2][0] = -r[1] * rinv3; u[2][1] = r[0] * rinv3; u[2][2] = (0) * rinv3;
- }
- };
- struct Laplace3D_dUxD {
- template <class ValueType> static constexpr ValueType ScaleFactor() {
- return 1 / (4 * const_pi<ValueType>());
- }
- template <class ValueType> static void Eval(ValueType (&u)[3][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
- ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
- ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
- ValueType rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2];
- ValueType rinv2 = rinv * rinv;
- ValueType rinv3 = rinv * rinv2;
- ValueType rinv5 = rinv3 * rinv2;
- u[0][0] = -1 * rinv3 + 3 * r[0] * r[0] * rinv5;
- u[0][1] = -0 * rinv3 + 3 * r[0] * r[1] * rinv5;
- u[0][2] = -0 * rinv3 + 3 * r[0] * r[2] * rinv5;
- u[1][0] = -0 * rinv3 + 3 * r[1] * r[0] * rinv5;
- u[1][1] = -1 * rinv3 + 3 * r[1] * r[1] * rinv5;
- u[1][2] = -0 * rinv3 + 3 * r[1] * r[2] * rinv5;
- u[2][0] = -0 * rinv3 + 3 * r[2] * r[0] * rinv5;
- u[2][1] = -0 * rinv3 + 3 * r[2] * r[1] * rinv5;
- u[2][2] = -1 * rinv3 + 3 * r[2] * r[2] * rinv5;
- }
- };
- struct Laplace3D_DxdU {
- template <class ValueType> static constexpr ValueType ScaleFactor() {
- return 1 / (4 * const_pi<ValueType>());
- }
- template <class ValueType> static void Eval(ValueType (&u)[1][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
- ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
- ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
- ValueType rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2];
- ValueType rinv2 = rinv * rinv;
- ValueType rinv3 = rinv * rinv2;
- ValueType rinv5 = rinv3 * rinv2;
- u[0][0] = -n[0] * rinv3 + 3*rdotn * r[0] * rinv5;
- u[0][1] = -n[1] * rinv3 + 3*rdotn * r[1] * rinv5;
- u[0][2] = -n[2] * rinv3 + 3*rdotn * r[2] * rinv5;
- }
- };
- struct Laplace3D_Fxd2U {
- template <class ValueType> static constexpr ValueType ScaleFactor() {
- return 1 / (4 * const_pi<ValueType>());
- }
- template <class ValueType> static void Eval(ValueType (&u)[1][9], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
- ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
- ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
- ValueType rinv2 = rinv * rinv;
- ValueType rinv3 = rinv * rinv2;
- ValueType rinv5 = rinv3 * rinv2;
- u[0][0+3*0] = -1 * rinv3 + 3 * r[0] * r[0] * rinv5;
- u[0][1+3*0] = -0 * rinv3 + 3 * r[0] * r[1] * rinv5;
- u[0][2+3*0] = -0 * rinv3 + 3 * r[0] * r[2] * rinv5;
- u[0][0+3*1] = -0 * rinv3 + 3 * r[1] * r[0] * rinv5;
- u[0][1+3*1] = -1 * rinv3 + 3 * r[1] * r[1] * rinv5;
- u[0][2+3*1] = -0 * rinv3 + 3 * r[1] * r[2] * rinv5;
- u[0][0+3*2] = -0 * rinv3 + 3 * r[2] * r[0] * rinv5;
- u[0][1+3*2] = -0 * rinv3 + 3 * r[2] * r[1] * rinv5;
- u[0][2+3*2] = -1 * rinv3 + 3 * r[2] * r[2] * rinv5;
- }
- };
- public:
- Stellarator(const Vector<Long>& NtNp = Vector<Long>()) {
- NtNp_ = NtNp;
- Long Nsurf = NtNp_.Dim() / 2;
- SCTL_ASSERT(Nsurf*2 == NtNp_.Dim());
- Long Nelem = 0;
- elem_dsp.ReInit(Nsurf);
- if (elem_dsp.Dim()) elem_dsp[0] = 0;
- for (Long i = 0; i < Nsurf; i++) {
- Nelem += NtNp_[i*2+0]*NtNp_[i*2+1];
- if (i+1 < Nsurf) elem_dsp[i+1] = elem_dsp[i] + NtNp_[i*2+0]*NtNp_[i*2+1];
- }
- elements.ReInit(Nelem);
- for (Long i = 0; i < Nsurf; i++) {
- InitSurf(i);
- }
- }
- Long ElemIdx(Long s, Long t, Long p) {
- SCTL_ASSERT(0 <= s && s < elem_dsp.Dim());
- SCTL_ASSERT(0 <= t && t < NtNp_[s*2+0]);
- SCTL_ASSERT(0 <= p && p < NtNp_[s*2+1]);
- return elem_dsp[s] + t*NtNp_[s*2+1] + p;
- }
- ElemBasis& Elem(Long elem, Integer dim) {
- return elements(elem,dim);
- }
- const ElemBasis& Elem(Long elem, Integer dim) const {
- return elements(elem,dim);
- }
- const ElemLst& GetElemList() {
- return elements;
- }
- static void test_() {
- constexpr Integer order_singular = 20;
- constexpr Integer order_direct = 35;
- Comm comm = Comm::World();
- Profile::Enable(true);
- Stellarator<Real,ORDER> S;
- { // Set S
- Vector<Real> X(COORD_DIM);
- Vector<Real> R(1);
- X = 0;
- R = 1;
- SCTL_ASSERT(X.Dim() == R.Dim() * COORD_DIM);
- Long N = R.Dim();
- S.elements.ReInit(2*COORD_DIM*N);
- auto nodes = ElemLst::CoordBasis::Nodes();
- for (Long l = 0; l < N; l++) {
- for (Integer i = 0; i < COORD_DIM; i++) {
- for (Integer j = 0; j < 2; j++) {
- for (int k = 0; k < ElemLst::CoordBasis::Size(); k++) {
- Real coord[COORD_DIM];
- coord[(i+0)%COORD_DIM] = (j ? -1.0 : 1.0);
- coord[(i+1)%COORD_DIM] = 2.0 * nodes[j?1:0][k] - 1.0;
- coord[(i+2)%COORD_DIM] = 2.0 * nodes[j?0:1][k] - 1.0;
- Real R0 = sqrt<Real>(coord[0]*coord[0] + coord[1]*coord[1] + coord[2]*coord[2]);
- S.elements((l*COORD_DIM+i)*2+j,0)[k] = X[l*COORD_DIM+0] + R[l] * coord[0] / R0;
- S.elements((l*COORD_DIM+i)*2+j,1)[k] = X[l*COORD_DIM+1] + R[l] * coord[1] / R0;
- S.elements((l*COORD_DIM+i)*2+j,2)[k] = X[l*COORD_DIM+2] + R[l] * coord[2] / R0;
- }
- }
- }
- }
- S.elem_dsp.ReInit(1);
- S.elem_dsp = 0;
- }
- S.quadrature_Fxd2U.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_Fxd2U, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
- //S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
- { // test Fxd2U
- Vector<ElemBasis> U, sigma(S.elements.NElem());
- sigma = 1;
- sigma[0] = 1;
- S.quadrature_Fxd2U.Eval(U, S.GetElemList(), sigma, S.Laplace_Fxd2U);
- //S.quadrature_FxdU.Eval(U, S.GetElemList(), sigma, S.Laplace_FxdU);
- { // Write VTU
- VTUData vtu;
- vtu.AddElems(S.GetElemList(), U, ORDER);
- vtu.WriteVTK("test", comm);
- }
- }
- Profile::print(&comm);
- }
- static void test() {
- constexpr Integer order_singular = 15;
- constexpr Integer order_direct = 35;
- Comm comm = Comm::World();
- Profile::Enable(true);
- Stellarator<Real,ORDER> S;
- { // Init S
- Vector<Long> NtNp;
- NtNp.PushBack(40);
- NtNp.PushBack(8);
- S = Stellarator<Real,ORDER>(NtNp);
- }
- Vector<ElemBasis> normal, area_elem;
- auto compute_dot_prod = [](const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
- const Long Nelem = A.Dim() / COORD_DIM;
- const Long Nnodes = ElemBasis::Size();
- SCTL_ASSERT(A.Dim() == Nelem * COORD_DIM);
- SCTL_ASSERT(B.Dim() == Nelem * COORD_DIM);
- Vector<ElemBasis> AdotB(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Real a_dot_b = 0;
- a_dot_b += A[i*COORD_DIM+0][j]*B[i*COORD_DIM+0][j];
- a_dot_b += A[i*COORD_DIM+1][j]*B[i*COORD_DIM+1][j];
- a_dot_b += A[i*COORD_DIM+2][j]*B[i*COORD_DIM+2][j];
- AdotB[i][j] = a_dot_b;
- }
- }
- return AdotB;
- };
- auto compute_inner_prod = [&S, &area_elem](const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
- const auto& quad_wts = ElemBasis::QuadWts();
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- const Long dof = B.Dim() / Nelem;
- Real sum = 0;
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Real AdotB = 0;
- for (Long k = 0; k < dof; k++) {
- AdotB += A[i*dof+k][j] * B[i*dof+k][j];
- }
- sum += AdotB * area_elem[i][j] * quad_wts[j];
- }
- }
- return sum;
- };
- auto compute_norm_area_elem = [&S](Vector<ElemBasis>& normal, Vector<ElemBasis>& area_elem){ // Set normal, area_elem
- const Vector<ElemBasis> X = S.GetElemList().ElemVector();
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> dX;
- ElemBasis::Grad(dX, X);
- area_elem.ReInit(Nelem);
- normal.ReInit(Nelem * COORD_DIM);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,COORD_DIM> x, n;
- Tensor<Real,true,COORD_DIM,2> dx;
- x(0) = X[i*COORD_DIM+0][j];
- x(1) = X[i*COORD_DIM+1][j];
- x(2) = X[i*COORD_DIM+2][j];
- dx(0,0) = dX[i*COORD_DIM*2+0][j];
- dx(0,1) = dX[i*COORD_DIM*2+1][j];
- dx(1,0) = dX[i*COORD_DIM*2+2][j];
- dx(1,1) = dX[i*COORD_DIM*2+3][j];
- dx(2,0) = dX[i*COORD_DIM*2+4][j];
- dx(2,1) = dX[i*COORD_DIM*2+5][j];
- n(0) = dx(1,0) * dx(2,1) - dx(2,0) * dx(1,1);
- n(1) = dx(2,0) * dx(0,1) - dx(0,0) * dx(2,1);
- n(2) = dx(0,0) * dx(1,1) - dx(1,0) * dx(0,1);
- Real area_elem_ = sqrt<Real>(n(0)*n(0) + n(1)*n(1) + n(2)*n(2));
- Real ooae = 1 / area_elem_;
- n(0) *= ooae;
- n(1) *= ooae;
- n(2) *= ooae;
- normal[i*COORD_DIM+0][j] = n(0);
- normal[i*COORD_DIM+1][j] = n(1);
- normal[i*COORD_DIM+2][j] = n(2);
- area_elem[i][j] = area_elem_;
- }
- }
- };
- compute_norm_area_elem(normal, area_elem);
- S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
- S.quadrature_DxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_DxU , order_singular, order_direct, -1.0, comm);
- S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
- S.quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
- auto compute_poloidal_circulation = [&S] (const Vector<ElemBasis>& B) {
- const Vector<ElemBasis> X = S.GetElemList().ElemVector();
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- const auto& quad_wts = Basis<Real,1,ORDER>::QuadWts();
- Vector<ElemBasis> dX;
- ElemBasis::Grad(dX, X);
- const Long Nt = 40;
- const Long Np = 8;
- for (Long t = 0; t < Nt; t++) {
- for (Long j = 0; j < ORDER; j++) {
- Real sum = 0;
- for (Long p = 0; p < Np; p++) {
- for (Long i = 0; i < ORDER; i++) {
- Long elem_idx = t*Np+p;
- Long node_idx = i*ORDER+j;
- Tensor<Real,true,COORD_DIM,2> dx;
- dx(0,0) = dX[elem_idx*COORD_DIM*2+0][node_idx];
- dx(0,1) = dX[elem_idx*COORD_DIM*2+1][node_idx];
- dx(1,0) = dX[elem_idx*COORD_DIM*2+2][node_idx];
- dx(1,1) = dX[elem_idx*COORD_DIM*2+3][node_idx];
- dx(2,0) = dX[elem_idx*COORD_DIM*2+4][node_idx];
- dx(2,1) = dX[elem_idx*COORD_DIM*2+5][node_idx];
- Tensor<Real,true,COORD_DIM> b;
- b(0) = B[elem_idx*COORD_DIM+0][node_idx];
- b(1) = B[elem_idx*COORD_DIM+1][node_idx];
- b(2) = B[elem_idx*COORD_DIM+2][node_idx];
- sum += (b(0)*dx(0,1) + b(1)*dx(1,1) + b(2)*dx(2,1)) * quad_wts[i];
- }
- }
- std::cout<<sum<<' ';
- }
- }
- std::cout<<'\n';
- };
- auto compute_toroidal_circulation = [&S] (const Vector<ElemBasis>& B) {
- const Vector<ElemBasis> X = S.GetElemList().ElemVector();
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- const auto& quad_wts = Basis<Real,1,ORDER>::QuadWts();
- Vector<ElemBasis> dX;
- ElemBasis::Grad(dX, X);
- const Long Nt = 40;
- const Long Np = 8;
- for (Long p = 0; p < Np; p++) {
- for (Long i = 0; i < ORDER; i++) {
- Real sum = 0;
- for (Long t = 0; t < Nt; t++) {
- for (Long j = 0; j < ORDER; j++) {
- Long elem_idx = t*Np+p;
- Long node_idx = i*ORDER+j;
- Tensor<Real,true,COORD_DIM,2> dx;
- dx(0,0) = dX[elem_idx*COORD_DIM*2+0][node_idx];
- dx(0,1) = dX[elem_idx*COORD_DIM*2+1][node_idx];
- dx(1,0) = dX[elem_idx*COORD_DIM*2+2][node_idx];
- dx(1,1) = dX[elem_idx*COORD_DIM*2+3][node_idx];
- dx(2,0) = dX[elem_idx*COORD_DIM*2+4][node_idx];
- dx(2,1) = dX[elem_idx*COORD_DIM*2+5][node_idx];
- Tensor<Real,true,COORD_DIM> b;
- b(0) = B[elem_idx*COORD_DIM+0][node_idx];
- b(1) = B[elem_idx*COORD_DIM+1][node_idx];
- b(2) = B[elem_idx*COORD_DIM+2][node_idx];
- sum += (b(0)*dx(0,0) + b(1)*dx(1,0) + b(2)*dx(2,0)) * quad_wts[j];
- }
- }
- std::cout<<sum<<' ';
- }
- }
- std::cout<<'\n';
- };
- auto compute_poloidal_circulation_ = [&S,&area_elem] (const Vector<ElemBasis>& B) {
- const Vector<ElemBasis> X = S.GetElemList().ElemVector();
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- const auto& quad_wts = ElemBasis::QuadWts();
- Vector<ElemBasis> dX;
- ElemBasis::Grad(dX, X);
- Real sum = 0;
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,COORD_DIM,2> dx;
- dx(0,0) = dX[i*COORD_DIM*2+0][j];
- dx(0,1) = dX[i*COORD_DIM*2+1][j];
- dx(1,0) = dX[i*COORD_DIM*2+2][j];
- dx(1,1) = dX[i*COORD_DIM*2+3][j];
- dx(2,0) = dX[i*COORD_DIM*2+4][j];
- dx(2,1) = dX[i*COORD_DIM*2+5][j];
- Tensor<Real,true,COORD_DIM> b;
- b(0) = B[i*COORD_DIM+0][j];
- b(1) = B[i*COORD_DIM+1][j];
- b(2) = B[i*COORD_DIM+2][j];
- Real s = 1/area_elem[i][j];
- sum += (b(0)*dx(0,1) + b(1)*dx(1,1) + b(2)*dx(2,1)) * s * area_elem[i][j] * quad_wts[j];
- }
- }
- return sum;
- };
- auto compute_toroidal_circulation_ = [&S,&area_elem] (const Vector<ElemBasis>& B) {
- const Vector<ElemBasis> X = S.GetElemList().ElemVector();
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- const auto& quad_wts = ElemBasis::QuadWts();
- Vector<ElemBasis> dX;
- ElemBasis::Grad(dX, X);
- Real sum = 0;
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,COORD_DIM,2> dx;
- dx(0,0) = dX[i*COORD_DIM*2+0][j];
- dx(0,1) = dX[i*COORD_DIM*2+1][j];
- dx(1,0) = dX[i*COORD_DIM*2+2][j];
- dx(1,1) = dX[i*COORD_DIM*2+3][j];
- dx(2,0) = dX[i*COORD_DIM*2+4][j];
- dx(2,1) = dX[i*COORD_DIM*2+5][j];
- Tensor<Real,true,COORD_DIM> b;
- b(0) = B[i*COORD_DIM+0][j];
- b(1) = B[i*COORD_DIM+1][j];
- b(2) = B[i*COORD_DIM+2][j];
- Real s = 1/area_elem[i][j];
- sum += (b(0)*dx(0,0) + b(1)*dx(1,0) + b(2)*dx(2,0)) * s * area_elem[i][j] * quad_wts[j];
- }
- }
- return sum;
- };
- auto compute_grad_adj = [&S,&area_elem] (const Vector<ElemBasis>& V) {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> du_dX(Nelem*COORD_DIM*2);
- { // Set du_dX
- Vector<ElemBasis> dX;
- ElemBasis::Grad(dX, S.GetElemList().ElemVector());
- auto inv2x2 = [](Tensor<Real, true, 2, 2> M) {
- Tensor<Real, true, 2, 2> Mout;
- Real oodet = 1 / (M(0,0) * M(1,1) - M(0,1) * M(1,0));
- Mout(0,0) = M(1,1) * oodet;
- Mout(0,1) = -M(0,1) * oodet;
- Mout(1,0) = -M(1,0) * oodet;
- Mout(1,1) = M(0,0) * oodet;
- return Mout;
- };
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real, true, 3, 2> dX_du;
- dX_du(0,0) = dX[(i*COORD_DIM+0)*2+0][j];
- dX_du(1,0) = dX[(i*COORD_DIM+1)*2+0][j];
- dX_du(2,0) = dX[(i*COORD_DIM+2)*2+0][j];
- dX_du(0,1) = dX[(i*COORD_DIM+0)*2+1][j];
- dX_du(1,1) = dX[(i*COORD_DIM+1)*2+1][j];
- dX_du(2,1) = dX[(i*COORD_DIM+2)*2+1][j];
- Tensor<Real, true, 2, 2> G; // = dX_du.Transpose() * dX_du;
- G(0,0) = dX_du(0,0) * dX_du(0,0) + dX_du(1,0) * dX_du(1,0) + dX_du(2,0) * dX_du(2,0);
- G(0,1) = dX_du(0,0) * dX_du(0,1) + dX_du(1,0) * dX_du(1,1) + dX_du(2,0) * dX_du(2,1);
- G(1,0) = dX_du(0,1) * dX_du(0,0) + dX_du(1,1) * dX_du(1,0) + dX_du(2,1) * dX_du(2,0);
- G(1,1) = dX_du(0,1) * dX_du(0,1) + dX_du(1,1) * dX_du(1,1) + dX_du(2,1) * dX_du(2,1);
- Tensor<Real, true, 2, 2> Ginv = inv2x2(G);
- du_dX[(i*COORD_DIM+0)*2+0][j] = Ginv(0,0) * dX_du(0,0) + Ginv(0,1) * dX_du(0,1);
- du_dX[(i*COORD_DIM+1)*2+0][j] = Ginv(0,0) * dX_du(1,0) + Ginv(0,1) * dX_du(1,1);
- du_dX[(i*COORD_DIM+2)*2+0][j] = Ginv(0,0) * dX_du(2,0) + Ginv(0,1) * dX_du(2,1);
- du_dX[(i*COORD_DIM+0)*2+1][j] = Ginv(1,0) * dX_du(0,0) + Ginv(1,1) * dX_du(0,1);
- du_dX[(i*COORD_DIM+1)*2+1][j] = Ginv(1,0) * dX_du(1,0) + Ginv(1,1) * dX_du(1,1);
- du_dX[(i*COORD_DIM+2)*2+1][j] = Ginv(1,0) * dX_du(2,0) + Ginv(1,1) * dX_du(2,1);
- }
- }
- }
- Vector<ElemBasis> dudX_V(Nelem*2);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dudX_V[i*2+0][j] = 0;
- dudX_V[i*2+1][j] = 0;
- dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+0)*2+0][j] * V[i*COORD_DIM+0][j];
- dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+1)*2+0][j] * V[i*COORD_DIM+1][j];
- dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+2)*2+0][j] * V[i*COORD_DIM+2][j];
- dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+0)*2+1][j] * V[i*COORD_DIM+0][j];
- dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+1)*2+1][j] * V[i*COORD_DIM+1][j];
- dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+2)*2+1][j] * V[i*COORD_DIM+2][j];
- }
- }
- Vector<ElemBasis> eye(Nnodes), Mgrad;
- eye = 0;
- for (Long i = 0; i < Nnodes; i++) eye[i][i] = 1;
- ElemBasis::Grad(Mgrad, eye);
- Vector<ElemBasis> grad_adj_V(Nelem);
- const auto& quad_wts = ElemBasis::QuadWts();
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Real sum = 0;
- for (Long k = 0; k < Nnodes; k++) {
- sum += Mgrad[j*2+0][k] * dudX_V[i*2+0][k] * (area_elem[i][k] * quad_wts[k]) / (quad_wts[j] * area_elem[i][j]);
- sum += Mgrad[j*2+1][k] * dudX_V[i*2+1][k] * (area_elem[i][k] * quad_wts[k]) / (quad_wts[j] * area_elem[i][j]);
- }
- grad_adj_V[i][j] = -sum;
- }
- }
- return grad_adj_V;
- };
- auto compute_B0 = [&S](const Real alpha) { // alpha/|r| \hat{\theta}
- const Vector<ElemBasis> X = S.GetElemList().ElemVector();
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> B0(Nelem * COORD_DIM);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,COORD_DIM> x, b0, axis;
- x(0) = X[i*COORD_DIM+0][j];
- x(1) = X[i*COORD_DIM+1][j];
- x(2) = X[i*COORD_DIM+2][j];
- axis(0) = 0;
- axis(1) = 0;
- axis(2) = 1;
- b0(0) = axis(1) * x(2) - axis(2) * x(1);
- b0(1) = axis(2) * x(0) - axis(0) * x(2);
- b0(2) = axis(0) * x(1) - axis(1) * x(0);
- Real scale = 1 / (b0(0)*b0(0) + b0(1)*b0(1) + b0(2)*b0(2));
- b0(0) *= scale;
- b0(1) *= scale;
- b0(2) *= scale;
- B0[i*COORD_DIM+0][j] = alpha * b0(0);
- B0[i*COORD_DIM+1][j] = alpha * b0(1);
- B0[i*COORD_DIM+2][j] = alpha * b0(2);
- }
- }
- return B0;
- };
- auto compute_dB0 = [&S](const Real alpha) { // alpha/|r| \hat{\theta}
- const Vector<ElemBasis> X = S.GetElemList().ElemVector();
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> dB0(Nelem * COORD_DIM * COORD_DIM);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,COORD_DIM> x;
- x(0) = X[i*COORD_DIM+0][j];
- x(1) = X[i*COORD_DIM+1][j];
- x(2) = X[i*COORD_DIM+2][j];
- Real R2inv = 1 / (x(0)*x(0) + x(1)*x(1));
- dB0[(i*COORD_DIM+0)*COORD_DIM+0][j] = alpha * (2*x(0)*x(1) * R2inv*R2inv);
- dB0[(i*COORD_DIM+0)*COORD_DIM+1][j] = alpha * (-R2inv + 2*x(1)*x(1) * R2inv*R2inv);
- dB0[(i*COORD_DIM+0)*COORD_DIM+2][j] = 0;
- dB0[(i*COORD_DIM+1)*COORD_DIM+0][j] = alpha * (R2inv - 2*x(0)*x(0) * R2inv*R2inv);
- dB0[(i*COORD_DIM+1)*COORD_DIM+1][j] = alpha * (-2*x(0)*x(1) * R2inv*R2inv);
- dB0[(i*COORD_DIM+1)*COORD_DIM+2][j] = 0;
- dB0[(i*COORD_DIM+2)*COORD_DIM+0][j] = 0;
- dB0[(i*COORD_DIM+2)*COORD_DIM+1][j] = 0;
- dB0[(i*COORD_DIM+2)*COORD_DIM+2][j] = 0;
- }
- }
- return dB0;
- };
- auto compute_half_n_plus_dG = [&S, &normal](const Vector<ElemBasis>& sigma) { // B = n sigma/2 + dG[sigma]
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> B;
- S.quadrature_FxdU.Eval(B, S.GetElemList(), sigma, S.Laplace_FxdU);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- for (Long k = 0; k < COORD_DIM; k++) {
- B[i*COORD_DIM+k][j] -= 0.5*sigma[i][j]*normal[i*COORD_DIM+k][j];
- }
- }
- }
- return B;
- };
- auto compute_A11 = [&S,&normal,&compute_half_n_plus_dG,&compute_dot_prod](Vector<Real>& B_dot_n, const Vector<Real>& sigma) {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- B_dot_n.ReInit(Nelem * Nnodes);
- Vector<ElemBasis> sigma_(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- sigma_[i][j] = sigma[i*Nnodes+j];
- }
- }
- Vector<ElemBasis> B_dot_n_ = compute_dot_prod(normal, compute_half_n_plus_dG(sigma_));
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- B_dot_n[i*Nnodes+j] = B_dot_n_[i][j];
- }
- }
- };
- auto compute_A12 = [&S,&normal,&compute_dot_prod,&compute_B0](Vector<Real>& B_dot_n, const Real alpha) {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- B_dot_n.ReInit(Nelem * Nnodes);
- Vector<ElemBasis> B_dot_n_ = compute_dot_prod(normal, compute_B0(alpha));
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- B_dot_n[i*Nnodes+j] = B_dot_n_[i][j];
- }
- }
- };
- auto compute_A21 = [&S,&normal,&compute_half_n_plus_dG,&compute_poloidal_circulation_](const Vector<Real>& sigma) {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> sigma_(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- sigma_[i][j] = sigma[i*Nnodes+j];
- }
- }
- if (0) { // alternate implementation
- //Vector<ElemBasis> A21_(Nelem);
- //Vector<Real> A21(Nelem*Nnodes);
- //compute_A21adj(A21, 1);
- //for (Long i = 0; i < Nelem; i++) {
- // for (Long j = 0; j < Nnodes; j++) {
- // A21_[i][j] = A21[i*Nnodes+j];
- // }
- //}
- //return compute_inner_prod(A21_, sigma_);
- }
- Vector<ElemBasis> B = compute_half_n_plus_dG(sigma_);
- Vector<ElemBasis> J(Nelem * COORD_DIM);
- for (Long i = 0; i < Nelem; i++) { // Set J
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,COORD_DIM> b, n;
- b(0) = B[i*COORD_DIM+0][j];
- b(1) = B[i*COORD_DIM+1][j];
- b(2) = B[i*COORD_DIM+2][j];
- n(0) = normal[i*COORD_DIM+0][j];
- n(1) = normal[i*COORD_DIM+1][j];
- n(2) = normal[i*COORD_DIM+2][j];
- J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
- J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
- J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
- }
- }
- Vector<ElemBasis> A;
- S.quadrature_FxU.Eval(A, S.GetElemList(), J, S.Laplace_FxU);
- return compute_poloidal_circulation_(A)/S.NtNp_[0];
- };
- auto compute_A22 = [&S,&compute_B0,&normal,&compute_poloidal_circulation_](const Real alpha) {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> B = compute_B0(alpha);
- Vector<ElemBasis> J(Nelem * COORD_DIM);
- for (Long i = 0; i < Nelem; i++) { // Set J
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,COORD_DIM> b, n;
- b(0) = B[i*COORD_DIM+0][j];
- b(1) = B[i*COORD_DIM+1][j];
- b(2) = B[i*COORD_DIM+2][j];
- n(0) = normal[i*COORD_DIM+0][j];
- n(1) = normal[i*COORD_DIM+1][j];
- n(2) = normal[i*COORD_DIM+2][j];
- J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
- J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
- J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
- }
- }
- Vector<ElemBasis> A;
- S.quadrature_FxU.Eval(A, S.GetElemList(), J, S.Laplace_FxU);
- return compute_poloidal_circulation_(A)/S.NtNp_[0];
- };
- auto compute_A = [&compute_A11,&compute_A12,&compute_A21,&compute_A22] (const Vector<Real>& x) {
- const Vector<Real> sigma(x.Dim()-1,(Iterator<Real>)x.begin(),false);
- const Real& alpha = x[x.Dim()-1];
- Vector<Real> Ax;
- Ax.ReInit(x.Dim());
- Vector<Real> Bdotn(x.Dim()-1,Ax.begin(),false);
- Real& flux = Ax[x.Dim()-1];
- Vector<Real> Adotn_0, Adotn_1;
- compute_A11(Adotn_0, sigma);
- compute_A12(Adotn_1, alpha);
- Bdotn = Adotn_0 + Adotn_1;
- flux = compute_A21(sigma) + compute_A22(alpha);
- return Ax;
- };
- auto compute_invA = [&S,&comm,&compute_A] (Vector<ElemBasis>& sigma, Real& alpha, Real flux) {
- typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&compute_A](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
- (*Ax) = compute_A(x);
- };
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<Real> rhs_(Nelem * Nnodes + 1);
- rhs_ = 0;
- rhs_[Nelem * Nnodes] = flux;
- Vector<Real> x_(Nelem * Nnodes + 1);
- x_ = 0;
- ParallelSolver<Real> linear_solver(comm, true);
- linear_solver(&x_, BIOp, rhs_, 1e-8, 50);
- sigma.ReInit(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- sigma[i][j] = x_[i*Nnodes+j];
- }
- }
- alpha = x_[Nelem * Nnodes];
- };
- auto compute_invA_ = [&S,&comm,&compute_A] (Vector<Real>& b) {
- typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&compute_A](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
- (*Ax) = compute_A(x);
- };
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<Real> x(b.Dim());
- x = 0;
- ParallelSolver<Real> linear_solver(comm, true);
- linear_solver(&x, BIOp, b, 1e-8, 50);
- return x;
- };
- auto compute_A11adj = [&S](Vector<Real>& U, const Vector<Real>& sigma) { // A11adj = I/2 + D
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> sigma_(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- sigma_[i][j] = sigma[i*Nnodes+j];
- }
- }
- S.quadrature_DxU.Eval(U, S.GetElemList(), sigma_, S.Laplace_DxU);
- U = sigma*(-0.5) + U;
- };
- auto compute_A12adj = [&S,&compute_A12,&compute_inner_prod](const Vector<Real>& sigma_) {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<Real> A12_sigma_;
- compute_A12(A12_sigma_, 1);
- Vector<ElemBasis> A12_sigma(Nelem), sigma(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- sigma[i][j] = sigma_[i*Nnodes+j];
- A12_sigma[i][j] = A12_sigma_[i*Nnodes+j];
- }
- }
- return compute_inner_prod(A12_sigma, sigma);
- };
- auto compute_A21adj = [&S,&area_elem,&normal](Vector<Real>& A21adj_flux, Real flux) {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> density(Nelem * COORD_DIM);
- { // Set density
- Vector<ElemBasis> dX;
- ElemBasis::Grad(dX, S.GetElemList().ElemVector());
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,COORD_DIM,2> dx;
- dx(0,0) = dX[i*COORD_DIM*2+0][j];
- dx(0,1) = dX[i*COORD_DIM*2+1][j];
- dx(1,0) = dX[i*COORD_DIM*2+2][j];
- dx(1,1) = dX[i*COORD_DIM*2+3][j];
- dx(2,0) = dX[i*COORD_DIM*2+4][j];
- dx(2,1) = dX[i*COORD_DIM*2+5][j];
- Real s = 1 / (area_elem[i][j] * S.NtNp_[0]);
- for (Long k = 0; k < COORD_DIM; k++) {
- density[i*COORD_DIM+k][j] = dx(k,1) * s;
- }
- }
- }
- }
- Vector<ElemBasis> Gdensity;
- S.quadrature_FxU.Eval(Gdensity, S.GetElemList(), density, S.Laplace_FxU);
- Vector<ElemBasis> nxGdensity(Nelem * COORD_DIM);
- for (Long i = 0; i < Nelem; i++) { // Set nxGdensity
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,COORD_DIM> Gdensity_, n;
- Gdensity_(0) = Gdensity[i*COORD_DIM+0][j];
- Gdensity_(1) = Gdensity[i*COORD_DIM+1][j];
- Gdensity_(2) = Gdensity[i*COORD_DIM+2][j];
- n(0) = normal[i*COORD_DIM+0][j];
- n(1) = normal[i*COORD_DIM+1][j];
- n(2) = normal[i*COORD_DIM+2][j];
- nxGdensity[i*COORD_DIM+0][j] = n(1) * Gdensity_(2) - n(2) * Gdensity_(1);
- nxGdensity[i*COORD_DIM+1][j] = n(2) * Gdensity_(0) - n(0) * Gdensity_(2);
- nxGdensity[i*COORD_DIM+2][j] = n(0) * Gdensity_(1) - n(1) * Gdensity_(0);
- }
- }
- S.quadrature_dUxF.Eval(A21adj_flux, S.GetElemList(), nxGdensity, S.Laplace_dUxF);
- A21adj_flux *= flux;
- };
- auto compute_A22adj = [&compute_A22] (const Real alpha) {
- return compute_A22(alpha);
- };
- auto compute_Aadj = [&compute_A11adj,&compute_A12adj,&compute_A21adj,&compute_A22adj] (const Vector<Real>& x) {
- const Vector<Real> sigma(x.Dim()-1,(Iterator<Real>)x.begin(),false);
- const Real& alpha = x[x.Dim()-1];
- Vector<Real> Ax;
- Ax.ReInit(x.Dim());
- Vector<Real> Bdotn(x.Dim()-1,Ax.begin(),false);
- Real& flux = Ax[x.Dim()-1];
- Vector<Real> Adotn_0, Adotn_1;
- compute_A11adj(Adotn_0, sigma);
- compute_A21adj(Adotn_1, alpha);
- Bdotn = Adotn_0 + Adotn_1;
- flux = compute_A12adj(sigma) + compute_A22adj(alpha);
- return Ax;
- };
- auto compute_invAadj = [&S,&comm,&compute_Aadj] (Vector<Real>& b) {
- typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&compute_Aadj](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
- (*Ax) = compute_Aadj(x);
- };
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<Real> x(b.Dim());
- x = 0;
- ParallelSolver<Real> linear_solver(comm, true);
- linear_solver(&x, BIOp, b, 1e-8, 50);
- return x;
- };
- auto compute_dg_dsigma = [&S, &normal, &compute_dot_prod](const Vector<ElemBasis>& B) { // dg_dsigma = \int 2 B \cdot (\nabla G + n/2)
- Vector<ElemBasis> B_dot_gradG;
- S.quadrature_dUxF.Eval(B_dot_gradG, S.GetElemList(), B, S.Laplace_dUxF);
- return B_dot_gradG * (-2.0) + compute_dot_prod(B,normal);
- };
- auto compute_dg_dalpha = [&S,&compute_B0,&compute_inner_prod] (const Vector<ElemBasis>& B) {
- auto dB_dalpha = compute_B0(1);
- return 2*compute_inner_prod(B,dB_dalpha);
- };
- auto compute_dg_dnu = [&S,&comm,&normal,&compute_inner_prod,&area_elem,&compute_dB0](const Vector<ElemBasis>& sigma, Real alpha, const Vector<ElemBasis>& B) { // dg_dnu = (B*B) 2H - (2 B) \cdot (n \cdnot nabla) \nabla G[sigma] + (2 B) \alpha dB0_dnu \hat{\theta} + sigma (\nabla D)^T [2 B] + (2H) sigma (\nabla G)^T [2 B]
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> v = B * 2.0;
- Vector<ElemBasis> dg_dnu0(Nelem), dg_dnu1(Nelem), dg_dnu2(Nelem), dg_dnu3(Nelem), dg_dnu4(Nelem);
- dg_dnu0 = 0;
- dg_dnu1 = 0;
- dg_dnu2 = 0;
- dg_dnu3 = 0;
- dg_dnu4 = 0;
- Vector<ElemBasis> H(Nelem);
- { // Set mean curvature H
- const Vector<ElemBasis> X = S.GetElemList().ElemVector();
- Vector<ElemBasis> dX, d2X;
- ElemBasis::Grad(dX, X);
- ElemBasis::Grad(d2X, dX);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,2,2> I, invI, II;
- for (Long k0 = 0; k0 < 2; k0++) {
- for (Long k1 = 0; k1 < 2; k1++) {
- I(k0,k1) = 0;
- I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
- II(k0,k1) = 0;
- II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
- II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
- II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
- }
- }
- { // Set invI
- Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
- invI(0,0) = I(1,1) / detI;
- invI(0,1) = -I(0,1) / detI;
- invI(1,0) = -I(1,0) / detI;
- invI(1,1) = I(0,0) / detI;
- }
- { // Set H
- H[i][j] = 0;
- H[i][j] += -0.5 * II(0,0)*invI(0,0);
- H[i][j] += -0.5 * II(0,1)*invI(0,1);
- H[i][j] += -0.5 * II(1,0)*invI(1,0);
- H[i][j] += -0.5 * II(1,1)*invI(1,1);
- }
- }
- }
- }
- // dg_dnu0 = (B*B) 2H
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dg_dnu0[i][j] = 0;
- dg_dnu0[i][j] += B[i*COORD_DIM+0][j] * B[i*COORD_DIM+0][j] * (2.0*H[i][j]);
- dg_dnu0[i][j] += B[i*COORD_DIM+1][j] * B[i*COORD_DIM+1][j] * (2.0*H[i][j]);
- dg_dnu0[i][j] += B[i*COORD_DIM+2][j] * B[i*COORD_DIM+2][j] * (2.0*H[i][j]);
- }
- }
- // dg_dnu1 = (2 B) \cdot (n \cdnot \nabla) \nabla G[sigma]
- Vector<ElemBasis> d2Gsigma;
- Quadrature<Real> quadrature_Fxd2U;
- quadrature_Fxd2U.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_Fxd2U, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
- quadrature_Fxd2U.Eval(d2Gsigma, S.GetElemList(), sigma, S.Laplace_Fxd2U);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dg_dnu1[i][j] = 0;
- dg_dnu1[i][j] -= d2Gsigma[i*9+0][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
- dg_dnu1[i][j] -= d2Gsigma[i*9+1][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
- dg_dnu1[i][j] -= d2Gsigma[i*9+2][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
- dg_dnu1[i][j] -= d2Gsigma[i*9+3][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
- dg_dnu1[i][j] -= d2Gsigma[i*9+4][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
- dg_dnu1[i][j] -= d2Gsigma[i*9+5][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
- dg_dnu1[i][j] -= d2Gsigma[i*9+6][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
- dg_dnu1[i][j] -= d2Gsigma[i*9+7][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
- dg_dnu1[i][j] -= d2Gsigma[i*9+8][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
- }
- }
- // dg_dnu2 = (2 B) \alpha (n \cdot \nabla) \hat{\theta} / |r|
- Vector<ElemBasis> dB0 = compute_dB0(alpha);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dg_dnu2[i][j] = 0;
- dg_dnu2[i][j] += dB0[i*9+0][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
- dg_dnu2[i][j] += dB0[i*9+1][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
- dg_dnu2[i][j] += dB0[i*9+2][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
- dg_dnu2[i][j] += dB0[i*9+3][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
- dg_dnu2[i][j] += dB0[i*9+4][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
- dg_dnu2[i][j] += dB0[i*9+5][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
- dg_dnu2[i][j] += dB0[i*9+6][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
- dg_dnu2[i][j] += dB0[i*9+7][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
- dg_dnu2[i][j] += dB0[i*9+8][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
- }
- }
- // dg_dnu3 = (sigma (\nabla D)^T [2 B]
- Vector<ElemBasis> nablaDtv;
- Quadrature<Real> quadrature_dUxD;
- quadrature_dUxD.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxD, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
- quadrature_dUxD.Eval(nablaDtv, S.GetElemList(), v, S.Laplace_dUxD);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dg_dnu3[i][j] = 0;
- dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
- dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
- dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
- }
- }
- // dg_dnu4 = (2H) sigma (\nabla G)^T [2 B]
- Quadrature<Real> quadrature_dUxF;
- quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
- quadrature_dUxF.Eval(dg_dnu4, S.GetElemList(), v, S.Laplace_dUxF);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dg_dnu4[i][j] *= 2*H[i][j] * sigma[i][j];
- }
- }
- return dg_dnu0 + dg_dnu1 + dg_dnu2 + dg_dnu3 - dg_dnu4;
- };
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- Real flux = 1.0, alpha;
- Vector<ElemBasis> sigma(S.GetElemList().NElem());
- compute_invA(sigma, alpha, flux);
- Vector<ElemBasis> B = compute_half_n_plus_dG(sigma) + compute_B0(alpha);
- Real g = compute_inner_prod(B, B);
- std::cout<<"g = "<<g<<'\n';
- { // Write VTU
- VTUData vtu;
- vtu.AddElems(S.GetElemList(), sigma, ORDER);
- vtu.WriteVTK("sigma", comm);
- }
- { // Write VTU
- VTUData vtu;
- vtu.AddElems(S.GetElemList(), B, ORDER);
- vtu.WriteVTK("B", comm);
- }
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- if (0) { // test dg_dnu
- auto compute_g = [&S,&comm,&normal,&area_elem,&sigma,&alpha,&compute_norm_area_elem,&compute_B0,&compute_inner_prod](const Vector<ElemBasis>& nu, Real eps) {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> X_orig(Nelem*COORD_DIM);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- X_orig[i*COORD_DIM+0][j] = S.Elem(i,0)[j];
- X_orig[i*COORD_DIM+1][j] = S.Elem(i,1)[j];
- X_orig[i*COORD_DIM+2][j] = S.Elem(i,2)[j];
- S.Elem(i,0)[j] += eps*nu[i][j] * normal[i*COORD_DIM+0][j];
- S.Elem(i,1)[j] += eps*nu[i][j] * normal[i*COORD_DIM+1][j];
- S.Elem(i,2)[j] += eps*nu[i][j] * normal[i*COORD_DIM+2][j];
- }
- }
- compute_norm_area_elem(normal, area_elem);
- Vector<Real> Xt(Nelem*Nnodes*COORD_DIM);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- for (Long k = 0; k < COORD_DIM; k++) {
- Xt[(i*Nnodes+j)*COORD_DIM+k] = S.Elem(i,k)[j] - 1e-4*normal[i*COORD_DIM+k][j];// + eps*nu[i][j] * normal[i*COORD_DIM+k][j];
- }
- }
- }
- Vector<ElemBasis> B0 = compute_B0(alpha);
- Vector<ElemBasis> B1;
- Quadrature<Real> quadrature_FxdU;
- quadrature_FxdU.template Setup<ElemBasis>(S.GetElemList(), Xt, S.Laplace_FxdU, order_singular, order_direct, -1, comm);
- quadrature_FxdU.Eval(B1, S.GetElemList(), sigma, S.Laplace_FxdU);
- Real g = compute_inner_prod(B0+B1, B0+B1);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- S.Elem(i,0)[j] = X_orig[i*COORD_DIM+0][j];
- S.Elem(i,1)[j] = X_orig[i*COORD_DIM+1][j];
- S.Elem(i,2)[j] = X_orig[i*COORD_DIM+2][j];
- }
- }
- compute_norm_area_elem(normal, area_elem);
- return g;
- };
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> nu(Nelem);
- nu = 1; //area_elem;
- Vector<ElemBasis> dg_dnu = compute_dg_dnu(sigma, alpha, B);
- std::cout<<compute_inner_prod(dg_dnu, nu)<<'\n';
- { // Write VTU
- VTUData vtu;
- vtu.AddElems(S.GetElemList(), dg_dnu, ORDER);
- vtu.WriteVTK("dg_dnu", comm);
- }
- Real eps = 1e-5;
- Real g0 = compute_g(nu,-eps);
- Real g1 = compute_g(nu,eps);
- std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
- }
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- if (0) { // test dg_dsigma
- Vector<ElemBasis> dg_dsigma = compute_dg_dsigma(B);
- { // Write VTU
- VTUData vtu;
- vtu.AddElems(S.GetElemList(), dg_dsigma, ORDER);
- vtu.WriteVTK("dg_dsigma", comm);
- }
- Real dt = 1e-1;
- const Long Nelem = S.GetElemList().NElem();
- const auto& quad_wts = ElemBasis::QuadWts();
- Vector<ElemBasis> dg_dsigma_(Nelem);
- dg_dsigma_ = 0;
- for (Long i = 0; i < Nelem; i++) { // Set dg_dsigma_
- for (Long j = 0; j < ElemBasis::Size(); j++) {
- auto sigma_0 = sigma;
- auto sigma_1 = sigma;
- sigma_0[i][j] -= 0.5*dt;
- sigma_1[i][j] += 0.5*dt;
- auto B_0 = compute_half_n_plus_dG(sigma_0) + compute_B0(alpha);
- auto B_1 = compute_half_n_plus_dG(sigma_1) + compute_B0(alpha);
- auto g_0 = compute_inner_prod(B_0, B_0);
- auto g_1 = compute_inner_prod(B_1, B_1);
- dg_dsigma_[i][j] = (g_1 - g_0) / dt;
- dg_dsigma_[i][j] /= quad_wts[j] * area_elem[i][j];
- std::cout<<dg_dsigma_[i][j]<<' '<<j<<' '<<ElemBasis::Size()<<'\n'; ////////////////
- }
- { // Write VTU
- VTUData vtu;
- vtu.AddElems(S.GetElemList(), dg_dsigma_, ORDER);
- vtu.WriteVTK("dg_dsigma_", comm);
- }
- }
- }
- if (0) { // test dg_dalpha
- Real dg_dalpha = compute_dg_dalpha(B);
- Real dt = 1e-1;
- auto B_0 = compute_half_n_plus_dG(sigma) + compute_B0(alpha - 0.5*dt);
- auto B_1 = compute_half_n_plus_dG(sigma) + compute_B0(alpha + 0.5*dt);
- auto g_0 = compute_inner_prod(B_0, B_0);
- auto g_1 = compute_inner_prod(B_1, B_1);
- Real dg_dalpha_ = (g_1 - g_0) / dt;
- std::cout<<dg_dalpha<<' '<<dg_dalpha_<<'\n';
- }
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- if (0) { // test compute_A21adj
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<Real> A21adj_;
- compute_A21adj(A21adj_, flux);
- Vector<ElemBasis> A21adj(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- A21adj[i][j] = A21adj_[i*Nnodes+j];
- }
- }
- { // Write VTU
- VTUData vtu;
- vtu.AddElems(S.GetElemList(), A21adj, ORDER);
- vtu.WriteVTK("A21adj", comm);
- }
- { // verify
- Vector<Real> sigma_(Nelem*Nnodes);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- sigma_[i*Nnodes+j] = sigma[i][j];
- }
- }
- Real flux = compute_inner_prod(A21adj, sigma);
- std::cout<<"Error: "<<compute_A21(sigma_)-flux<<'\n';
- }
- { // compute finite-difference matrix
- Real dt = 1e+1;
- const Long Nelem = S.GetElemList().NElem();
- const auto& quad_wts = ElemBasis::QuadWts();
- Vector<ElemBasis> A21(Nelem);
- A21 = 0;
- for (Long i = 0; i < Nelem; i++) { // Set A21
- for (Long j = 0; j < ElemBasis::Size(); j++) {
- Vector<Real> sigma_0(Nelem*ElemBasis::Size());
- Vector<Real> sigma_1(Nelem*ElemBasis::Size());
- sigma_0 = 0;
- sigma_1 = 0;
- sigma_0[i*ElemBasis::Size()+j] -= 0.5*dt;
- sigma_1[i*ElemBasis::Size()+j] += 0.5*dt;
- auto flux_0 = compute_A21(sigma_0);
- auto flux_1 = compute_A21(sigma_1);
- A21[i][j] = (flux_1 - flux_0) / dt;
- A21[i][j] /= quad_wts[j] * area_elem[i][j];
- std::cout<<A21[i][j]<<' '<<j<<' '<<ElemBasis::Size()<<'\n'; ////////////////
- }
- { // Write VTU
- VTUData vtu;
- vtu.AddElems(S.GetElemList(), A21, ORDER);
- vtu.WriteVTK("A21", comm);
- }
- }
- }
- }
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- auto compute_invA11 = [&S,&normal,&comm,&compute_A11](const Vector<ElemBasis>& rhs) { // Solver for sigma: sigma/2 + n.dG[sigma] = rhs
- typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&S,&normal,&compute_A11](sctl::Vector<Real>* A11_sigma, const sctl::Vector<Real>& sigma) {
- compute_A11(*A11_sigma, sigma);
- };
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> sigma(Nelem);
- Vector<Real> rhs_(Nelem * Nnodes), sigma_(Nelem * Nnodes);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- rhs_[i*Nnodes+j] = rhs[i][j];
- sigma_[i*Nnodes+j] = 0;
- }
- }
- ParallelSolver<Real> linear_solver(comm, true);
- linear_solver(&sigma_, BIOp, rhs_, 1e-8, 50);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- sigma[i][j] = sigma_[i*Nnodes+j];
- }
- }
- return sigma;
- };
- auto compute_invA11adj = [&S,&normal,&comm,&compute_A11adj](const Vector<ElemBasis>& rhs) { // Solver for sigma: A11adj sigma = rhs
- typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&S,&compute_A11adj](sctl::Vector<Real>* A11adj_sigma, const sctl::Vector<Real>& sigma) {
- compute_A11adj(*A11adj_sigma, sigma);
- };
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> sigma(Nelem);
- Vector<Real> rhs_(Nelem * Nnodes), sigma_(Nelem * Nnodes);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- rhs_[i*Nnodes+j] = rhs[i][j];
- sigma_[i*Nnodes+j] = 0;
- }
- }
- ParallelSolver<Real> linear_solver(comm, true);
- linear_solver(&sigma_, BIOp, rhs_, 1e-8, 50);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- sigma[i][j] = sigma_[i*Nnodes+j];
- }
- }
- return sigma;
- };
- if (0) { // Test invA11adj
- Vector<ElemBasis> dg_dsigma = compute_dg_dsigma(B);
- Real a = compute_inner_prod(dg_dsigma, compute_invA11(sigma));
- Real b = compute_inner_prod(compute_invA11adj(dg_dsigma), sigma);
- std::cout<<a<<' '<<b<<'\n';
- }
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- // 0.168275 0.117983 -0.110446 -96.7293
- // 0.603869 -1.901900 -1.229930 -245.5050
- auto compute_u_dAdnu_v_00 = [&S,&normal,&comm,&compute_half_n_plus_dG,&compute_grad_adj] (const Vector<Real>& u_, const Vector<Real>& v_) {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> u(Nelem), u_n(Nelem*COORD_DIM), v(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- u[i][j] = u_[i*Nnodes+j];
- v[i][j] = v_[i*Nnodes+j];
- u_n[i*COORD_DIM+0][j] = u[i][j] * normal[i*COORD_DIM+0][j];
- u_n[i*COORD_DIM+1][j] = u[i][j] * normal[i*COORD_DIM+1][j];
- u_n[i*COORD_DIM+2][j] = u[i][j] * normal[i*COORD_DIM+2][j];
- }
- }
- Vector<ElemBasis> dAdnu0(Nelem), dAdnu1(Nelem), dAdnu2(Nelem), dAdnu3(Nelem);
- dAdnu0 = 0;
- dAdnu1 = 0;
- dAdnu2 = 0;
- dAdnu3 = 0;
- Vector<ElemBasis> H(Nelem);
- { // Set mean curvature H
- const Vector<ElemBasis> X = S.GetElemList().ElemVector();
- Vector<ElemBasis> dX, d2X;
- ElemBasis::Grad(dX, X);
- ElemBasis::Grad(d2X, dX);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,2,2> I, invI, II;
- for (Long k0 = 0; k0 < 2; k0++) {
- for (Long k1 = 0; k1 < 2; k1++) {
- I(k0,k1) = 0;
- I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
- II(k0,k1) = 0;
- II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
- II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
- II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
- }
- }
- { // Set invI
- Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
- invI(0,0) = I(1,1) / detI;
- invI(0,1) = -I(0,1) / detI;
- invI(1,0) = -I(1,0) / detI;
- invI(1,1) = I(0,0) / detI;
- }
- { // Set H
- H[i][j] = 0;
- H[i][j] += -0.5 * II(0,0)*invI(0,0);
- H[i][j] += -0.5 * II(0,1)*invI(0,1);
- H[i][j] += -0.5 * II(1,0)*invI(1,0);
- H[i][j] += -0.5 * II(1,1)*invI(1,1);
- }
- }
- }
- }
- // dAdnu0 = u B \cdot grad_nu
- Vector<ElemBasis> B = compute_half_n_plus_dG(v);
- Vector<ElemBasis> u_B(Nelem*COORD_DIM);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- u_B[i*COORD_DIM+0][j] = u[i][j] * B[i*COORD_DIM+0][j];
- u_B[i*COORD_DIM+1][j] = u[i][j] * B[i*COORD_DIM+1][j];
- u_B[i*COORD_DIM+2][j] = u[i][j] * B[i*COORD_DIM+2][j];
- }
- }
- dAdnu0 = compute_grad_adj(u_B);
- // dAdnu1 = (2H) v (I/2 + \nabla G)^T [u n]
- Quadrature<Real> quadrature_dUxF;
- quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
- quadrature_dUxF.Eval(dAdnu1, S.GetElemList(), u_n, S.Laplace_dUxF);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dAdnu1[i][j] *= -2*H[i][j] * v[i][j];
- }
- }
- // dAdnu2 = (u n) \cdot (n \cdnot \nabla) \nabla G[v]
- Vector<ElemBasis> d2G_v;
- Quadrature<Real> quadrature_Fxd2U;
- quadrature_Fxd2U.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_Fxd2U, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
- quadrature_Fxd2U.Eval(d2G_v, S.GetElemList(), v, S.Laplace_Fxd2U);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dAdnu2[i][j] = 0;
- dAdnu2[i][j] -= d2G_v[i*9+0][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+0][j];
- dAdnu2[i][j] -= d2G_v[i*9+1][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+1][j];
- dAdnu2[i][j] -= d2G_v[i*9+2][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+2][j];
- dAdnu2[i][j] -= d2G_v[i*9+3][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+0][j];
- dAdnu2[i][j] -= d2G_v[i*9+4][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+1][j];
- dAdnu2[i][j] -= d2G_v[i*9+5][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+2][j];
- dAdnu2[i][j] -= d2G_v[i*9+6][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+0][j];
- dAdnu2[i][j] -= d2G_v[i*9+7][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+1][j];
- dAdnu2[i][j] -= d2G_v[i*9+8][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+2][j];
- }
- }
- // dAdnu3 = (v n \cdot \nabla D[u]
- Vector<ElemBasis> nablaDt_u_n;
- Quadrature<Real> quadrature_dUxD;
- quadrature_dUxD.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxD, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
- quadrature_dUxD.Eval(nablaDt_u_n, S.GetElemList(), u_n, S.Laplace_dUxD);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dAdnu3[i][j] = 0;
- dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
- dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
- dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
- }
- }
- return dAdnu0 + dAdnu1 + dAdnu2 + dAdnu3;
- };
- auto compute_u_dAdnu_v_01 = [&S,&comm,&compute_dB0,&normal,&area_elem,&compute_B0,&compute_grad_adj] (const Vector<Real>& u, const Vector<Real>& v) {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> dAdnu(Nelem);
- Vector<ElemBasis> dB0 = compute_dB0(v[Nelem*Nnodes]);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Real n_n_dB0 = 0;
- n_n_dB0 += dB0[i*9+0][j] * normal[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
- n_n_dB0 += dB0[i*9+1][j] * normal[i*COORD_DIM+1][j] * normal[i*COORD_DIM+0][j];
- n_n_dB0 += dB0[i*9+2][j] * normal[i*COORD_DIM+2][j] * normal[i*COORD_DIM+0][j];
- n_n_dB0 += dB0[i*9+3][j] * normal[i*COORD_DIM+0][j] * normal[i*COORD_DIM+1][j];
- n_n_dB0 += dB0[i*9+4][j] * normal[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
- n_n_dB0 += dB0[i*9+5][j] * normal[i*COORD_DIM+2][j] * normal[i*COORD_DIM+1][j];
- n_n_dB0 += dB0[i*9+6][j] * normal[i*COORD_DIM+0][j] * normal[i*COORD_DIM+2][j];
- n_n_dB0 += dB0[i*9+7][j] * normal[i*COORD_DIM+1][j] * normal[i*COORD_DIM+2][j];
- n_n_dB0 += dB0[i*9+8][j] * normal[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
- dAdnu[i][j] = u[i*Nnodes+j] * n_n_dB0;
- }
- }
- Vector<ElemBasis> B0 = compute_B0(v[Nelem*Nnodes]);
- Vector<ElemBasis> u_B0(Nelem*COORD_DIM);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- u_B0[i*COORD_DIM+0][j] = u[i*Nnodes+j] * B0[i*COORD_DIM+0][j];
- u_B0[i*COORD_DIM+1][j] = u[i*Nnodes+j] * B0[i*COORD_DIM+1][j];
- u_B0[i*COORD_DIM+2][j] = u[i*Nnodes+j] * B0[i*COORD_DIM+2][j];
- }
- }
- dAdnu += compute_grad_adj(u_B0);
- return dAdnu;
- };
- auto compute_u_dAdnu_v_10 = [&S,&comm,&area_elem,&normal,&compute_dot_prod,&compute_grad_adj,&compute_half_n_plus_dG] (const Vector<Real>& u, const Vector<Real>& v) {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> sigma(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- sigma[i][j] = v[i*Nnodes+j];
- }
- }
- auto compute_v = [&S,&area_elem] () {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> v(Nelem * COORD_DIM);
- Vector<ElemBasis> dX;
- ElemBasis::Grad(dX, S.GetElemList().ElemVector());
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,COORD_DIM,2> dx;
- dx(0,0) = dX[i*COORD_DIM*2+0][j];
- dx(0,1) = dX[i*COORD_DIM*2+1][j];
- dx(1,0) = dX[i*COORD_DIM*2+2][j];
- dx(1,1) = dX[i*COORD_DIM*2+3][j];
- dx(2,0) = dX[i*COORD_DIM*2+4][j];
- dx(2,1) = dX[i*COORD_DIM*2+5][j];
- Real s = 1 / (area_elem[i][j] * S.NtNp_[0]);
- for (Long k = 0; k < COORD_DIM; k++) {
- v[i*COORD_DIM+k][j] = dx(k,1) * s;
- }
- }
- }
- return v;
- };
- auto compute_AxB = [&S] (const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> J(Nelem * COORD_DIM);
- for (Long i = 0; i < Nelem; i++) { // Set J
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,COORD_DIM> a, b;
- a(0) = A[i*COORD_DIM+0][j];
- a(1) = A[i*COORD_DIM+1][j];
- a(2) = A[i*COORD_DIM+2][j];
- b(0) = B[i*COORD_DIM+0][j];
- b(1) = B[i*COORD_DIM+1][j];
- b(2) = B[i*COORD_DIM+2][j];
- J[i*COORD_DIM+0][j] = a(1) * b(2) - a(2) * b(1);
- J[i*COORD_DIM+1][j] = a(2) * b(0) - a(0) * b(2);
- J[i*COORD_DIM+2][j] = a(0) * b(1) - a(1) * b(0);
- }
- }
- return J;
- };
- auto compute_dphi_dnu0 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,compute_grad_adj,sigma] () {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> Gv;
- Vector<ElemBasis> v = compute_v();
- S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
- Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
- Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
- return compute_grad_adj(BxGv);
- };
- auto compute_dphi_dnu1 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,&compute_dot_prod,sigma] () {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> H(Nelem);
- { // Set mean curvature H
- const Vector<ElemBasis> X = S.GetElemList().ElemVector();
- Vector<ElemBasis> dX, d2X;
- ElemBasis::Grad(dX, X);
- ElemBasis::Grad(d2X, dX);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,2,2> I, invI, II;
- for (Long k0 = 0; k0 < 2; k0++) {
- for (Long k1 = 0; k1 < 2; k1++) {
- I(k0,k1) = 0;
- I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
- II(k0,k1) = 0;
- II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
- II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
- II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
- }
- }
- { // Set invI
- Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
- invI(0,0) = I(1,1) / detI;
- invI(0,1) = -I(0,1) / detI;
- invI(1,0) = -I(1,0) / detI;
- invI(1,1) = I(0,0) / detI;
- }
- { // Set H
- H[i][j] = 0;
- H[i][j] += -0.5 * II(0,0)*invI(0,0);
- H[i][j] += -0.5 * II(0,1)*invI(0,1);
- H[i][j] += -0.5 * II(1,0)*invI(1,0);
- H[i][j] += -0.5 * II(1,1)*invI(1,1);
- }
- }
- }
- }
- Vector<ElemBasis> Gv;
- Vector<ElemBasis> v = compute_v();
- S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
- Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
- Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
- Vector<ElemBasis> n_dot_BxGv = compute_dot_prod(normal,BxGv);
- Vector<ElemBasis> dphi_dnu(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dphi_dnu[i][j] = n_dot_BxGv[i][j] * 2*H[i][j];
- }
- }
- return dphi_dnu;
- };
- auto compute_dphi_dnu2 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,&compute_dot_prod,sigma] () {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> H(Nelem);
- { // Set mean curvature H
- const Vector<ElemBasis> X = S.GetElemList().ElemVector();
- Vector<ElemBasis> dX, d2X;
- ElemBasis::Grad(dX, X);
- ElemBasis::Grad(d2X, dX);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,2,2> I, invI, II;
- for (Long k0 = 0; k0 < 2; k0++) {
- for (Long k1 = 0; k1 < 2; k1++) {
- I(k0,k1) = 0;
- I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
- II(k0,k1) = 0;
- II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
- II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
- II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
- }
- }
- { // Set invI
- Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
- invI(0,0) = I(1,1) / detI;
- invI(0,1) = -I(0,1) / detI;
- invI(1,0) = -I(1,0) / detI;
- invI(1,1) = I(0,0) / detI;
- }
- { // Set H
- H[i][j] = 0;
- H[i][j] += -0.5 * II(0,0)*invI(0,0);
- H[i][j] += -0.5 * II(0,1)*invI(0,1);
- H[i][j] += -0.5 * II(1,0)*invI(1,0);
- H[i][j] += -0.5 * II(1,1)*invI(1,1);
- }
- }
- }
- }
- Vector<ElemBasis> GnxB;
- Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
- Vector<ElemBasis> nxB = compute_AxB(normal,B);
- S.quadrature_FxU.Eval(GnxB, S.GetElemList(), nxB, S.Laplace_FxU);
- Vector<ElemBasis> v = compute_v();
- Vector<ElemBasis> v_dot_GnxB = compute_dot_prod(v,GnxB);
- Vector<ElemBasis> dphi_dnu(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dphi_dnu[i][j] = v_dot_GnxB[i][j] * 2*H[i][j];
- }
- }
- return dphi_dnu;
- };
- auto compute_dphi_dnu3 = [&S,&normal,&area_elem,&compute_AxB,&compute_half_n_plus_dG,sigma] () {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> GnxB;
- Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
- Vector<ElemBasis> nxB = compute_AxB(normal,B);
- S.quadrature_FxU.Eval(GnxB, S.GetElemList(), nxB, S.Laplace_FxU);
- Vector<ElemBasis> H(Nelem);
- { // Set mean curvature H
- const Vector<ElemBasis> X = S.GetElemList().ElemVector();
- Vector<ElemBasis> dX, d2X;
- ElemBasis::Grad(dX, X);
- ElemBasis::Grad(d2X, dX);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,2,2> I, invI, II;
- for (Long k0 = 0; k0 < 2; k0++) {
- for (Long k1 = 0; k1 < 2; k1++) {
- I(k0,k1) = 0;
- I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
- II(k0,k1) = 0;
- II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
- II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
- II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
- }
- }
- { // Set invI
- Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
- invI(0,0) = I(1,1) / detI;
- invI(0,1) = -I(0,1) / detI;
- invI(1,0) = -I(1,0) / detI;
- invI(1,1) = I(0,0) / detI;
- }
- { // Set H
- H[i][j] = 0;
- H[i][j] += -0.5 * II(0,0)*invI(0,0);
- H[i][j] += -0.5 * II(0,1)*invI(0,1);
- H[i][j] += -0.5 * II(1,0)*invI(1,0);
- H[i][j] += -0.5 * II(1,1)*invI(1,1);
- }
- }
- }
- }
- Vector<ElemBasis> dv_dnu1(Nelem), dv_dnu2(Nelem), dv_dnu3(Nelem);
- { // Set dv_dnu1, dv_dnu2, dv_dnu3
- Vector<ElemBasis> dX, dn, V_tmp(Nelem);
- ElemBasis::Grad(dn, normal);
- ElemBasis::Grad(dX, S.GetElemList().ElemVector());
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dv_dnu1[i][j] = 0;
- dv_dnu1[i][j] += -GnxB[i*COORD_DIM+0][j] * dX[(i*COORD_DIM+0)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
- dv_dnu1[i][j] += -GnxB[i*COORD_DIM+1][j] * dX[(i*COORD_DIM+1)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
- dv_dnu1[i][j] += -GnxB[i*COORD_DIM+2][j] * dX[(i*COORD_DIM+2)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
- dv_dnu2[i][j] = 0;
- dv_dnu2[i][j] += GnxB[i*COORD_DIM+0][j] * dn[(i*COORD_DIM+0)*2+1][j] / (area_elem[i][j] * S.NtNp_[0]);
- dv_dnu2[i][j] += GnxB[i*COORD_DIM+1][j] * dn[(i*COORD_DIM+1)*2+1][j] / (area_elem[i][j] * S.NtNp_[0]);
- dv_dnu2[i][j] += GnxB[i*COORD_DIM+2][j] * dn[(i*COORD_DIM+2)*2+1][j] / (area_elem[i][j] * S.NtNp_[0]);
- V_tmp[i][j] = 0;
- V_tmp[i][j] += GnxB[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j] / (area_elem[i][j] * S.NtNp_[0]); //dnu[i*2+1][j] *
- V_tmp[i][j] += GnxB[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j] / (area_elem[i][j] * S.NtNp_[0]); //dnu[i*2+1][j] *
- V_tmp[i][j] += GnxB[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j] / (area_elem[i][j] * S.NtNp_[0]); //dnu[i*2+1][j] *
- }
- }
- { // dv_dnu3 <-- grad_adj V_tmp
- Vector<ElemBasis> eye(Nnodes), Mgrad;
- eye = 0;
- for (Long i = 0; i < Nnodes; i++) eye[i][i] = 1;
- ElemBasis::Grad(Mgrad, eye);
- Vector<ElemBasis> grad_adj_V(Nelem);
- const auto& quad_wts = ElemBasis::QuadWts();
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Real sum = 0;
- for (Long k = 0; k < Nnodes; k++) {
- sum += Mgrad[j*2+1][k] * V_tmp[i][k] * (area_elem[i][k] * quad_wts[k]) / (quad_wts[j] * area_elem[i][j]);
- }
- dv_dnu3[i][j] = sum;
- }
- }
- }
- }
- return dv_dnu1+dv_dnu2+dv_dnu3;
- };
- auto compute_dphi_dnu4 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,sigma] () {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> dGnxB;
- Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
- Vector<ElemBasis> nxB = compute_AxB(normal,B);
- S.quadrature_FxdU.Eval(dGnxB, S.GetElemList(), nxB, S.Laplace_FxdU);
- Vector<ElemBasis> v = compute_v();
- Vector<ElemBasis> dphi_dnu(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Real dphi_dnu_ = 0;
- dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
- dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
- dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
- dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
- dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
- dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
- dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
- dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
- dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
- dphi_dnu[i][j] = dphi_dnu_;
- }
- }
- return dphi_dnu;
- };
- auto compute_dphi_dnu5 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,sigma] () {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
- Vector<ElemBasis> nxB = compute_AxB(normal,B);
- Vector<ElemBasis> dGv;
- Vector<ElemBasis> v = compute_v();
- S.quadrature_FxdU.Eval(dGv, S.GetElemList(), v, S.Laplace_FxdU);
- Vector<ElemBasis> dphi_dnu(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Real dphi_dnu_ = 0;
- dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+0][j] * nxB[i*COORD_DIM+0][j];
- dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+1][j] * nxB[i*COORD_DIM+0][j];
- dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+2][j] * nxB[i*COORD_DIM+0][j];
- dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+0][j] * nxB[i*COORD_DIM+1][j];
- dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+1][j] * nxB[i*COORD_DIM+1][j];
- dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+2][j] * nxB[i*COORD_DIM+1][j];
- dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+0][j] * nxB[i*COORD_DIM+2][j];
- dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+1][j] * nxB[i*COORD_DIM+2][j];
- dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+2][j] * nxB[i*COORD_DIM+2][j];
- dphi_dnu[i][j] = dphi_dnu_;
- }
- }
- return dphi_dnu;
- };
- auto compute_dphi_dnu6 = [&S,&normal,&compute_AxB,&compute_v,sigma,&comm] () {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> Gv;
- Vector<ElemBasis> v = compute_v();
- S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
- Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
- Vector<ElemBasis> gradB;
- Quadrature<Real> quadrature_Fxd2U;
- quadrature_Fxd2U.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_Fxd2U, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
- quadrature_Fxd2U.Eval(gradB, S.GetElemList(), sigma, S.Laplace_Fxd2U);
- Vector<ElemBasis> dphi_dnu(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Real dphi_dnu_ = 0;
- dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
- dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+1][j] * normal[i*COORD_DIM+0][j];
- dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+2][j] * normal[i*COORD_DIM+0][j];
- dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+0][j] * normal[i*COORD_DIM+1][j];
- dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
- dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+2][j] * normal[i*COORD_DIM+1][j];
- dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+0][j] * normal[i*COORD_DIM+2][j];
- dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+1][j] * normal[i*COORD_DIM+2][j];
- dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
- dphi_dnu[i][j] = dphi_dnu_;
- }
- }
- return dphi_dnu;
- };
- auto compute_dphi_dnu7 = [&S,&normal,&compute_AxB,&compute_v,sigma,&comm] () {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> H(Nelem);
- { // Set mean curvature H
- const Vector<ElemBasis> X = S.GetElemList().ElemVector();
- Vector<ElemBasis> dX, d2X;
- ElemBasis::Grad(dX, X);
- ElemBasis::Grad(d2X, dX);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,2,2> I, invI, II;
- for (Long k0 = 0; k0 < 2; k0++) {
- for (Long k1 = 0; k1 < 2; k1++) {
- I(k0,k1) = 0;
- I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
- II(k0,k1) = 0;
- II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
- II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
- II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
- }
- }
- { // Set invI
- Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
- invI(0,0) = I(1,1) / detI;
- invI(0,1) = -I(0,1) / detI;
- invI(1,0) = -I(1,0) / detI;
- invI(1,1) = I(0,0) / detI;
- }
- { // Set H
- H[i][j] = 0;
- H[i][j] += -0.5 * II(0,0)*invI(0,0);
- H[i][j] += -0.5 * II(0,1)*invI(0,1);
- H[i][j] += -0.5 * II(1,0)*invI(1,0);
- H[i][j] += -0.5 * II(1,1)*invI(1,1);
- }
- }
- }
- }
- Vector<ElemBasis> Gv;
- Vector<ElemBasis> v = compute_v();
- S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
- Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
- Vector<ElemBasis> dphi_dnu(Nelem);
- Quadrature<Real> quadrature_dUxF;
- quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
- quadrature_dUxF.Eval(dphi_dnu, S.GetElemList(), nxGv, S.Laplace_dUxF);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dphi_dnu[i][j] *= -2*H[i][j] * sigma[i][j];
- }
- }
- return dphi_dnu;
- };
- auto compute_dphi_dnu8 = [&S,&normal,&compute_AxB,&compute_v,sigma,&comm] () {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> H(Nelem);
- { // Set mean curvature H
- const Vector<ElemBasis> X = S.GetElemList().ElemVector();
- Vector<ElemBasis> dX, d2X;
- ElemBasis::Grad(dX, X);
- ElemBasis::Grad(d2X, dX);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,2,2> I, invI, II;
- for (Long k0 = 0; k0 < 2; k0++) {
- for (Long k1 = 0; k1 < 2; k1++) {
- I(k0,k1) = 0;
- I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
- II(k0,k1) = 0;
- II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
- II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
- II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
- }
- }
- { // Set invI
- Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
- invI(0,0) = I(1,1) / detI;
- invI(0,1) = -I(0,1) / detI;
- invI(1,0) = -I(1,0) / detI;
- invI(1,1) = I(0,0) / detI;
- }
- { // Set H
- H[i][j] = 0;
- H[i][j] += -0.5 * II(0,0)*invI(0,0);
- H[i][j] += -0.5 * II(0,1)*invI(0,1);
- H[i][j] += -0.5 * II(1,0)*invI(1,0);
- H[i][j] += -0.5 * II(1,1)*invI(1,1);
- }
- }
- }
- }
- Vector<ElemBasis> Gv;
- Vector<ElemBasis> v = compute_v();
- S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
- Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
- Vector<ElemBasis> dphi_dnu(Nelem);
- Vector<ElemBasis> nablaDt_nxGv;
- Quadrature<Real> quadrature_dUxD;
- quadrature_dUxD.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxD, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
- quadrature_dUxD.Eval(nablaDt_nxGv, S.GetElemList(), nxGv, S.Laplace_dUxD);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dphi_dnu[i][j] = 0;
- dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
- dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
- dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
- }
- }
- return dphi_dnu;
- };
- auto dphi_dnu0 = compute_dphi_dnu0();
- auto dphi_dnu1 = compute_dphi_dnu1();
- auto dphi_dnu2 = compute_dphi_dnu2();
- auto dphi_dnu3 = compute_dphi_dnu3();
- auto dphi_dnu4 = compute_dphi_dnu4();
- auto dphi_dnu5 = compute_dphi_dnu5();
- auto dphi_dnu6 = compute_dphi_dnu6();
- auto dphi_dnu7 = compute_dphi_dnu7();
- auto dphi_dnu8 = compute_dphi_dnu8();
- return (dphi_dnu0+dphi_dnu1+dphi_dnu2+dphi_dnu3+dphi_dnu4+dphi_dnu5+dphi_dnu6+dphi_dnu7+dphi_dnu8) * u[Nelem*Nnodes];
- };
- auto compute_u_dAdnu_v_11 = [&S,&comm,&area_elem,&normal,&compute_dot_prod,&compute_grad_adj,&compute_B0,&compute_dB0] (const Vector<Real>& u, const Vector<Real>& v) {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- auto compute_v = [&S,&area_elem] () {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> v(Nelem * COORD_DIM);
- Vector<ElemBasis> dX;
- ElemBasis::Grad(dX, S.GetElemList().ElemVector());
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,COORD_DIM,2> dx;
- dx(0,0) = dX[i*COORD_DIM*2+0][j];
- dx(0,1) = dX[i*COORD_DIM*2+1][j];
- dx(1,0) = dX[i*COORD_DIM*2+2][j];
- dx(1,1) = dX[i*COORD_DIM*2+3][j];
- dx(2,0) = dX[i*COORD_DIM*2+4][j];
- dx(2,1) = dX[i*COORD_DIM*2+5][j];
- Real s = 1 / (area_elem[i][j] * S.NtNp_[0]);
- for (Long k = 0; k < COORD_DIM; k++) {
- v[i*COORD_DIM+k][j] = dx(k,1) * s;
- }
- }
- }
- return v;
- };
- auto compute_AxB = [&S] (const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> J(Nelem * COORD_DIM);
- for (Long i = 0; i < Nelem; i++) { // Set J
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,COORD_DIM> a, b;
- a(0) = A[i*COORD_DIM+0][j];
- a(1) = A[i*COORD_DIM+1][j];
- a(2) = A[i*COORD_DIM+2][j];
- b(0) = B[i*COORD_DIM+0][j];
- b(1) = B[i*COORD_DIM+1][j];
- b(2) = B[i*COORD_DIM+2][j];
- J[i*COORD_DIM+0][j] = a(1) * b(2) - a(2) * b(1);
- J[i*COORD_DIM+1][j] = a(2) * b(0) - a(0) * b(2);
- J[i*COORD_DIM+2][j] = a(0) * b(1) - a(1) * b(0);
- }
- }
- return J;
- };
- auto compute_dphi_dnu0 = [&S,&normal,&compute_AxB,&compute_v,&compute_dB0] () {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> Gv;
- Vector<ElemBasis> v = compute_v();
- S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
- Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
- Vector<ElemBasis> gradB = compute_dB0(1.0);
- Vector<ElemBasis> dphi_dnu(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Real dphi_dnu_ = 0;
- dphi_dnu_ += nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
- dphi_dnu_ += nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+1][j] * normal[i*COORD_DIM+0][j];
- dphi_dnu_ += nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+2][j] * normal[i*COORD_DIM+0][j];
- dphi_dnu_ += nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+0][j] * normal[i*COORD_DIM+1][j];
- dphi_dnu_ += nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
- dphi_dnu_ += nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+2][j] * normal[i*COORD_DIM+1][j];
- dphi_dnu_ += nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+0][j] * normal[i*COORD_DIM+2][j];
- dphi_dnu_ += nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+1][j] * normal[i*COORD_DIM+2][j];
- dphi_dnu_ += nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
- dphi_dnu[i][j] = dphi_dnu_;
- }
- }
- return dphi_dnu;
- };
- auto compute_dphi_dnu1 = [&S,&normal,&compute_AxB,&compute_v,&compute_B0,compute_grad_adj] () {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> Gv;
- Vector<ElemBasis> v = compute_v();
- S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
- Vector<ElemBasis> B = compute_B0(1.0);
- Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
- return compute_grad_adj(BxGv);
- };
- auto compute_dphi_dnu2 = [&S,&normal,&compute_AxB,&compute_v,&compute_B0,&compute_dot_prod] () {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> H(Nelem);
- { // Set mean curvature H
- const Vector<ElemBasis> X = S.GetElemList().ElemVector();
- Vector<ElemBasis> dX, d2X;
- ElemBasis::Grad(dX, X);
- ElemBasis::Grad(d2X, dX);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,2,2> I, invI, II;
- for (Long k0 = 0; k0 < 2; k0++) {
- for (Long k1 = 0; k1 < 2; k1++) {
- I(k0,k1) = 0;
- I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
- II(k0,k1) = 0;
- II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
- II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
- II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
- }
- }
- { // Set invI
- Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
- invI(0,0) = I(1,1) / detI;
- invI(0,1) = -I(0,1) / detI;
- invI(1,0) = -I(1,0) / detI;
- invI(1,1) = I(0,0) / detI;
- }
- { // Set H
- H[i][j] = 0;
- H[i][j] += -0.5 * II(0,0)*invI(0,0);
- H[i][j] += -0.5 * II(0,1)*invI(0,1);
- H[i][j] += -0.5 * II(1,0)*invI(1,0);
- H[i][j] += -0.5 * II(1,1)*invI(1,1);
- }
- }
- }
- }
- Vector<ElemBasis> Gv;
- Vector<ElemBasis> v = compute_v();
- S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
- Vector<ElemBasis> B = compute_B0(1.0);
- Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
- Vector<ElemBasis> n_dot_BxGv = compute_dot_prod(normal,BxGv);
- Vector<ElemBasis> dphi_dnu(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dphi_dnu[i][j] = n_dot_BxGv[i][j] * 2*H[i][j];
- }
- }
- return dphi_dnu;
- };
- auto compute_dphi_dnu3 = [&S,&normal,&compute_AxB,&compute_v,&compute_B0,&compute_dot_prod] () {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> H(Nelem);
- { // Set mean curvature H
- const Vector<ElemBasis> X = S.GetElemList().ElemVector();
- Vector<ElemBasis> dX, d2X;
- ElemBasis::Grad(dX, X);
- ElemBasis::Grad(d2X, dX);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,2,2> I, invI, II;
- for (Long k0 = 0; k0 < 2; k0++) {
- for (Long k1 = 0; k1 < 2; k1++) {
- I(k0,k1) = 0;
- I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
- II(k0,k1) = 0;
- II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
- II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
- II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
- }
- }
- { // Set invI
- Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
- invI(0,0) = I(1,1) / detI;
- invI(0,1) = -I(0,1) / detI;
- invI(1,0) = -I(1,0) / detI;
- invI(1,1) = I(0,0) / detI;
- }
- { // Set H
- H[i][j] = 0;
- H[i][j] += -0.5 * II(0,0)*invI(0,0);
- H[i][j] += -0.5 * II(0,1)*invI(0,1);
- H[i][j] += -0.5 * II(1,0)*invI(1,0);
- H[i][j] += -0.5 * II(1,1)*invI(1,1);
- }
- }
- }
- }
- Vector<ElemBasis> GnxB;
- Vector<ElemBasis> B = compute_B0(1.0);
- Vector<ElemBasis> nxB = compute_AxB(normal,B);
- S.quadrature_FxU.Eval(GnxB, S.GetElemList(), nxB, S.Laplace_FxU);
- Vector<ElemBasis> v = compute_v();
- Vector<ElemBasis> v_dot_GnxB = compute_dot_prod(v,GnxB);
- Vector<ElemBasis> dphi_dnu(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dphi_dnu[i][j] = v_dot_GnxB[i][j] * 2*H[i][j];
- }
- }
- return dphi_dnu;
- };
- auto compute_dphi_dnu4 = [&S,&normal,&area_elem,&compute_AxB,&compute_B0] () {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> GnxB;
- Vector<ElemBasis> B = compute_B0(1.0);
- Vector<ElemBasis> nxB = compute_AxB(normal,B);
- S.quadrature_FxU.Eval(GnxB, S.GetElemList(), nxB, S.Laplace_FxU);
- Vector<ElemBasis> H(Nelem);
- { // Set mean curvature H
- const Vector<ElemBasis> X = S.GetElemList().ElemVector();
- Vector<ElemBasis> dX, d2X;
- ElemBasis::Grad(dX, X);
- ElemBasis::Grad(d2X, dX);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,2,2> I, invI, II;
- for (Long k0 = 0; k0 < 2; k0++) {
- for (Long k1 = 0; k1 < 2; k1++) {
- I(k0,k1) = 0;
- I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
- II(k0,k1) = 0;
- II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
- II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
- II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
- }
- }
- { // Set invI
- Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
- invI(0,0) = I(1,1) / detI;
- invI(0,1) = -I(0,1) / detI;
- invI(1,0) = -I(1,0) / detI;
- invI(1,1) = I(0,0) / detI;
- }
- { // Set H
- H[i][j] = 0;
- H[i][j] += -0.5 * II(0,0)*invI(0,0);
- H[i][j] += -0.5 * II(0,1)*invI(0,1);
- H[i][j] += -0.5 * II(1,0)*invI(1,0);
- H[i][j] += -0.5 * II(1,1)*invI(1,1);
- }
- }
- }
- }
- Vector<ElemBasis> dv_dnu1(Nelem), dv_dnu2(Nelem), dv_dnu3(Nelem);
- { // Set dv_dnu1, dv_dnu2, dv_dnu3
- Vector<ElemBasis> dX, dn, V_tmp(Nelem);
- ElemBasis::Grad(dn, normal);
- ElemBasis::Grad(dX, S.GetElemList().ElemVector());
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dv_dnu1[i][j] = 0;
- dv_dnu1[i][j] += -GnxB[i*COORD_DIM+0][j] * dX[(i*COORD_DIM+0)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
- dv_dnu1[i][j] += -GnxB[i*COORD_DIM+1][j] * dX[(i*COORD_DIM+1)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
- dv_dnu1[i][j] += -GnxB[i*COORD_DIM+2][j] * dX[(i*COORD_DIM+2)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
- dv_dnu2[i][j] = 0;
- dv_dnu2[i][j] += GnxB[i*COORD_DIM+0][j] * dn[(i*COORD_DIM+0)*2+1][j] / (area_elem[i][j] * S.NtNp_[0]);
- dv_dnu2[i][j] += GnxB[i*COORD_DIM+1][j] * dn[(i*COORD_DIM+1)*2+1][j] / (area_elem[i][j] * S.NtNp_[0]);
- dv_dnu2[i][j] += GnxB[i*COORD_DIM+2][j] * dn[(i*COORD_DIM+2)*2+1][j] / (area_elem[i][j] * S.NtNp_[0]);
- V_tmp[i][j] = 0;
- V_tmp[i][j] += GnxB[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j] / (area_elem[i][j] * S.NtNp_[0]); //dnu[i*2+1][j] *
- V_tmp[i][j] += GnxB[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j] / (area_elem[i][j] * S.NtNp_[0]); //dnu[i*2+1][j] *
- V_tmp[i][j] += GnxB[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j] / (area_elem[i][j] * S.NtNp_[0]); //dnu[i*2+1][j] *
- }
- }
- { // dv_dnu3 <-- grad_adj V_tmp
- Vector<ElemBasis> eye(Nnodes), Mgrad;
- eye = 0;
- for (Long i = 0; i < Nnodes; i++) eye[i][i] = 1;
- ElemBasis::Grad(Mgrad, eye);
- Vector<ElemBasis> grad_adj_V(Nelem);
- const auto& quad_wts = ElemBasis::QuadWts();
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Real sum = 0;
- for (Long k = 0; k < Nnodes; k++) {
- sum += Mgrad[j*2+1][k] * V_tmp[i][k] * (area_elem[i][k] * quad_wts[k]) / (quad_wts[j] * area_elem[i][j]);
- }
- dv_dnu3[i][j] = sum;
- }
- }
- }
- }
- return dv_dnu1+dv_dnu2+dv_dnu3;
- };
- auto compute_dphi_dnu5 = [&S,&normal,&compute_AxB,&compute_v,&compute_B0] () {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> dGnxB;
- Vector<ElemBasis> B = compute_B0(1.0);
- Vector<ElemBasis> nxB = compute_AxB(normal,B);
- S.quadrature_FxdU.Eval(dGnxB, S.GetElemList(), nxB, S.Laplace_FxdU);
- Vector<ElemBasis> v = compute_v();
- Vector<ElemBasis> dphi_dnu(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Real dphi_dnu_ = 0;
- dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
- dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
- dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
- dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
- dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
- dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
- dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
- dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
- dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
- dphi_dnu[i][j] = dphi_dnu_;
- }
- }
- return dphi_dnu;
- };
- auto compute_dphi_dnu6 = [&S,&normal,&compute_AxB,&compute_v,&compute_B0] () {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> B = compute_B0(1.0);
- Vector<ElemBasis> nxB = compute_AxB(normal,B);
- Vector<ElemBasis> dGv;
- Vector<ElemBasis> v = compute_v();
- S.quadrature_FxdU.Eval(dGv, S.GetElemList(), v, S.Laplace_FxdU);
- Vector<ElemBasis> dphi_dnu(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Real dphi_dnu_ = 0;
- dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+0][j] * nxB[i*COORD_DIM+0][j];
- dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+1][j] * nxB[i*COORD_DIM+0][j];
- dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+2][j] * nxB[i*COORD_DIM+0][j];
- dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+0][j] * nxB[i*COORD_DIM+1][j];
- dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+1][j] * nxB[i*COORD_DIM+1][j];
- dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+2][j] * nxB[i*COORD_DIM+1][j];
- dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+0][j] * nxB[i*COORD_DIM+2][j];
- dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+1][j] * nxB[i*COORD_DIM+2][j];
- dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+2][j] * nxB[i*COORD_DIM+2][j];
- dphi_dnu[i][j] = dphi_dnu_;
- }
- }
- return dphi_dnu;
- };
- auto dphi_dnu0 = compute_dphi_dnu0();
- auto dphi_dnu1 = compute_dphi_dnu1();
- auto dphi_dnu2 = compute_dphi_dnu2();
- auto dphi_dnu3 = compute_dphi_dnu3();
- auto dphi_dnu4 = compute_dphi_dnu4();
- auto dphi_dnu5 = compute_dphi_dnu5();
- auto dphi_dnu6 = compute_dphi_dnu6();
- return (dphi_dnu0+dphi_dnu1+dphi_dnu2+dphi_dnu3+dphi_dnu4+dphi_dnu5+dphi_dnu6) * (u[Nelem*Nnodes] * v[Nelem*Nnodes]);
- };
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- if (0) {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- auto compute_v = [&S,&area_elem] () {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> v(Nelem * COORD_DIM);
- Vector<ElemBasis> dX;
- ElemBasis::Grad(dX, S.GetElemList().ElemVector());
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,COORD_DIM,2> dx;
- dx(0,0) = dX[i*COORD_DIM*2+0][j];
- dx(0,1) = dX[i*COORD_DIM*2+1][j];
- dx(1,0) = dX[i*COORD_DIM*2+2][j];
- dx(1,1) = dX[i*COORD_DIM*2+3][j];
- dx(2,0) = dX[i*COORD_DIM*2+4][j];
- dx(2,1) = dX[i*COORD_DIM*2+5][j];
- Real s = 1 / (area_elem[i][j] * S.NtNp_[0]);
- for (Long k = 0; k < COORD_DIM; k++) {
- v[i*COORD_DIM+k][j] = dx(k,1) * s;
- }
- }
- }
- return v;
- };
- auto compute_AxB = [&S] (const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> J(Nelem * COORD_DIM);
- for (Long i = 0; i < Nelem; i++) { // Set J
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,COORD_DIM> a, b;
- a(0) = A[i*COORD_DIM+0][j];
- a(1) = A[i*COORD_DIM+1][j];
- a(2) = A[i*COORD_DIM+2][j];
- b(0) = B[i*COORD_DIM+0][j];
- b(1) = B[i*COORD_DIM+1][j];
- b(2) = B[i*COORD_DIM+2][j];
- J[i*COORD_DIM+0][j] = a(1) * b(2) - a(2) * b(1);
- J[i*COORD_DIM+1][j] = a(2) * b(0) - a(0) * b(2);
- J[i*COORD_DIM+2][j] = a(0) * b(1) - a(1) * b(0);
- }
- }
- return J;
- };
- auto compute_dphi_dnu0 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,compute_grad_adj,sigma] () {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> Gv;
- Vector<ElemBasis> v = compute_v();
- S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
- Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
- Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
- return compute_grad_adj(BxGv);
- };
- auto compute_dphi_dnu1 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,&compute_dot_prod,sigma] () {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> H(Nelem);
- { // Set mean curvature H
- const Vector<ElemBasis> X = S.GetElemList().ElemVector();
- Vector<ElemBasis> dX, d2X;
- ElemBasis::Grad(dX, X);
- ElemBasis::Grad(d2X, dX);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,2,2> I, invI, II;
- for (Long k0 = 0; k0 < 2; k0++) {
- for (Long k1 = 0; k1 < 2; k1++) {
- I(k0,k1) = 0;
- I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
- II(k0,k1) = 0;
- II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
- II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
- II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
- }
- }
- { // Set invI
- Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
- invI(0,0) = I(1,1) / detI;
- invI(0,1) = -I(0,1) / detI;
- invI(1,0) = -I(1,0) / detI;
- invI(1,1) = I(0,0) / detI;
- }
- { // Set H
- H[i][j] = 0;
- H[i][j] += -0.5 * II(0,0)*invI(0,0);
- H[i][j] += -0.5 * II(0,1)*invI(0,1);
- H[i][j] += -0.5 * II(1,0)*invI(1,0);
- H[i][j] += -0.5 * II(1,1)*invI(1,1);
- }
- }
- }
- }
- Vector<ElemBasis> Gv;
- Vector<ElemBasis> v = compute_v();
- S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
- Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
- Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
- Vector<ElemBasis> n_dot_BxGv = compute_dot_prod(normal,BxGv);
- Vector<ElemBasis> dphi_dnu(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dphi_dnu[i][j] = n_dot_BxGv[i][j] * 2*H[i][j];
- }
- }
- return dphi_dnu;
- };
- auto compute_dphi_dnu2 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,&compute_dot_prod,sigma] () {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> H(Nelem);
- { // Set mean curvature H
- const Vector<ElemBasis> X = S.GetElemList().ElemVector();
- Vector<ElemBasis> dX, d2X;
- ElemBasis::Grad(dX, X);
- ElemBasis::Grad(d2X, dX);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,2,2> I, invI, II;
- for (Long k0 = 0; k0 < 2; k0++) {
- for (Long k1 = 0; k1 < 2; k1++) {
- I(k0,k1) = 0;
- I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
- II(k0,k1) = 0;
- II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
- II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
- II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
- }
- }
- { // Set invI
- Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
- invI(0,0) = I(1,1) / detI;
- invI(0,1) = -I(0,1) / detI;
- invI(1,0) = -I(1,0) / detI;
- invI(1,1) = I(0,0) / detI;
- }
- { // Set H
- H[i][j] = 0;
- H[i][j] += -0.5 * II(0,0)*invI(0,0);
- H[i][j] += -0.5 * II(0,1)*invI(0,1);
- H[i][j] += -0.5 * II(1,0)*invI(1,0);
- H[i][j] += -0.5 * II(1,1)*invI(1,1);
- }
- }
- }
- }
- Vector<ElemBasis> GnxB;
- Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
- Vector<ElemBasis> nxB = compute_AxB(normal,B);
- S.quadrature_FxU.Eval(GnxB, S.GetElemList(), nxB, S.Laplace_FxU);
- Vector<ElemBasis> v = compute_v();
- Vector<ElemBasis> v_dot_GnxB = compute_dot_prod(v,GnxB);
- Vector<ElemBasis> dphi_dnu(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dphi_dnu[i][j] = v_dot_GnxB[i][j] * 2*H[i][j];
- }
- }
- return dphi_dnu;
- };
- auto compute_dphi_dnu3 = [&S,&normal,&area_elem,&compute_AxB,&compute_half_n_plus_dG,sigma] () {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> GnxB;
- Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
- Vector<ElemBasis> nxB = compute_AxB(normal,B);
- S.quadrature_FxU.Eval(GnxB, S.GetElemList(), nxB, S.Laplace_FxU);
- Vector<ElemBasis> H(Nelem);
- { // Set mean curvature H
- const Vector<ElemBasis> X = S.GetElemList().ElemVector();
- Vector<ElemBasis> dX, d2X;
- ElemBasis::Grad(dX, X);
- ElemBasis::Grad(d2X, dX);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,2,2> I, invI, II;
- for (Long k0 = 0; k0 < 2; k0++) {
- for (Long k1 = 0; k1 < 2; k1++) {
- I(k0,k1) = 0;
- I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
- II(k0,k1) = 0;
- II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
- II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
- II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
- }
- }
- { // Set invI
- Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
- invI(0,0) = I(1,1) / detI;
- invI(0,1) = -I(0,1) / detI;
- invI(1,0) = -I(1,0) / detI;
- invI(1,1) = I(0,0) / detI;
- }
- { // Set H
- H[i][j] = 0;
- H[i][j] += -0.5 * II(0,0)*invI(0,0);
- H[i][j] += -0.5 * II(0,1)*invI(0,1);
- H[i][j] += -0.5 * II(1,0)*invI(1,0);
- H[i][j] += -0.5 * II(1,1)*invI(1,1);
- }
- }
- }
- }
- Vector<ElemBasis> dv_dnu1(Nelem), dv_dnu2(Nelem), dv_dnu3(Nelem);
- { // Set dv_dnu1, dv_dnu2, dv_dnu3
- Vector<ElemBasis> dX, dn, V_tmp(Nelem);
- ElemBasis::Grad(dn, normal);
- ElemBasis::Grad(dX, S.GetElemList().ElemVector());
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dv_dnu1[i][j] = 0;
- dv_dnu1[i][j] += -GnxB[i*COORD_DIM+0][j] * dX[(i*COORD_DIM+0)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
- dv_dnu1[i][j] += -GnxB[i*COORD_DIM+1][j] * dX[(i*COORD_DIM+1)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
- dv_dnu1[i][j] += -GnxB[i*COORD_DIM+2][j] * dX[(i*COORD_DIM+2)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
- dv_dnu2[i][j] = 0;
- dv_dnu2[i][j] += GnxB[i*COORD_DIM+0][j] * dn[(i*COORD_DIM+0)*2+1][j] / (area_elem[i][j] * S.NtNp_[0]);
- dv_dnu2[i][j] += GnxB[i*COORD_DIM+1][j] * dn[(i*COORD_DIM+1)*2+1][j] / (area_elem[i][j] * S.NtNp_[0]);
- dv_dnu2[i][j] += GnxB[i*COORD_DIM+2][j] * dn[(i*COORD_DIM+2)*2+1][j] / (area_elem[i][j] * S.NtNp_[0]);
- V_tmp[i][j] = 0;
- V_tmp[i][j] += GnxB[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j] / (area_elem[i][j] * S.NtNp_[0]); //dnu[i*2+1][j] *
- V_tmp[i][j] += GnxB[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j] / (area_elem[i][j] * S.NtNp_[0]); //dnu[i*2+1][j] *
- V_tmp[i][j] += GnxB[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j] / (area_elem[i][j] * S.NtNp_[0]); //dnu[i*2+1][j] *
- }
- }
- { // dv_dnu3 <-- grad_adj V_tmp
- Vector<ElemBasis> eye(Nnodes), Mgrad;
- eye = 0;
- for (Long i = 0; i < Nnodes; i++) eye[i][i] = 1;
- ElemBasis::Grad(Mgrad, eye);
- Vector<ElemBasis> grad_adj_V(Nelem);
- const auto& quad_wts = ElemBasis::QuadWts();
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Real sum = 0;
- for (Long k = 0; k < Nnodes; k++) {
- sum += Mgrad[j*2+1][k] * V_tmp[i][k] * (area_elem[i][k] * quad_wts[k]) / (quad_wts[j] * area_elem[i][j]);
- }
- dv_dnu3[i][j] = sum;
- }
- }
- }
- }
- return dv_dnu1+dv_dnu2+dv_dnu3;
- };
- auto compute_dphi_dnu4 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,sigma] () {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> dGnxB;
- Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
- Vector<ElemBasis> nxB = compute_AxB(normal,B);
- S.quadrature_FxdU.Eval(dGnxB, S.GetElemList(), nxB, S.Laplace_FxdU);
- Vector<ElemBasis> v = compute_v();
- Vector<ElemBasis> dphi_dnu(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Real dphi_dnu_ = 0;
- dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
- dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
- dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
- dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
- dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
- dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
- dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
- dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
- dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
- dphi_dnu[i][j] = dphi_dnu_;
- }
- }
- return dphi_dnu;
- };
- auto compute_dphi_dnu5 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,sigma] () {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
- Vector<ElemBasis> nxB = compute_AxB(normal,B);
- Vector<ElemBasis> dGv;
- Vector<ElemBasis> v = compute_v();
- S.quadrature_FxdU.Eval(dGv, S.GetElemList(), v, S.Laplace_FxdU);
- Vector<ElemBasis> dphi_dnu(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Real dphi_dnu_ = 0;
- dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+0][j] * nxB[i*COORD_DIM+0][j];
- dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+1][j] * nxB[i*COORD_DIM+0][j];
- dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+2][j] * nxB[i*COORD_DIM+0][j];
- dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+0][j] * nxB[i*COORD_DIM+1][j];
- dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+1][j] * nxB[i*COORD_DIM+1][j];
- dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+2][j] * nxB[i*COORD_DIM+1][j];
- dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+0][j] * nxB[i*COORD_DIM+2][j];
- dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+1][j] * nxB[i*COORD_DIM+2][j];
- dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+2][j] * nxB[i*COORD_DIM+2][j];
- dphi_dnu[i][j] = dphi_dnu_;
- }
- }
- return dphi_dnu;
- };
- auto compute_dphi_dnu6 = [&S,&normal,&compute_AxB,&compute_v,sigma,&comm] () {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> Gv;
- Vector<ElemBasis> v = compute_v();
- S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
- Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
- Vector<ElemBasis> gradB;
- Quadrature<Real> quadrature_Fxd2U;
- quadrature_Fxd2U.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_Fxd2U, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
- quadrature_Fxd2U.Eval(gradB, S.GetElemList(), sigma, S.Laplace_Fxd2U);
- Vector<ElemBasis> dphi_dnu(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Real dphi_dnu_ = 0;
- dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
- dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+1][j] * normal[i*COORD_DIM+0][j];
- dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+2][j] * normal[i*COORD_DIM+0][j];
- dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+0][j] * normal[i*COORD_DIM+1][j];
- dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
- dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+2][j] * normal[i*COORD_DIM+1][j];
- dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+0][j] * normal[i*COORD_DIM+2][j];
- dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+1][j] * normal[i*COORD_DIM+2][j];
- dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
- dphi_dnu[i][j] = dphi_dnu_;
- }
- }
- return dphi_dnu;
- };
- auto compute_dphi_dnu7 = [&S,&normal,&compute_AxB,&compute_v,sigma,&comm] () {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> H(Nelem);
- { // Set mean curvature H
- const Vector<ElemBasis> X = S.GetElemList().ElemVector();
- Vector<ElemBasis> dX, d2X;
- ElemBasis::Grad(dX, X);
- ElemBasis::Grad(d2X, dX);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,2,2> I, invI, II;
- for (Long k0 = 0; k0 < 2; k0++) {
- for (Long k1 = 0; k1 < 2; k1++) {
- I(k0,k1) = 0;
- I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
- II(k0,k1) = 0;
- II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
- II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
- II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
- }
- }
- { // Set invI
- Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
- invI(0,0) = I(1,1) / detI;
- invI(0,1) = -I(0,1) / detI;
- invI(1,0) = -I(1,0) / detI;
- invI(1,1) = I(0,0) / detI;
- }
- { // Set H
- H[i][j] = 0;
- H[i][j] += -0.5 * II(0,0)*invI(0,0);
- H[i][j] += -0.5 * II(0,1)*invI(0,1);
- H[i][j] += -0.5 * II(1,0)*invI(1,0);
- H[i][j] += -0.5 * II(1,1)*invI(1,1);
- }
- }
- }
- }
- Vector<ElemBasis> Gv;
- Vector<ElemBasis> v = compute_v();
- S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
- Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
- Vector<ElemBasis> dphi_dnu(Nelem);
- Quadrature<Real> quadrature_dUxF;
- quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
- quadrature_dUxF.Eval(dphi_dnu, S.GetElemList(), nxGv, S.Laplace_dUxF);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dphi_dnu[i][j] *= -2*H[i][j] * sigma[i][j];
- }
- }
- return dphi_dnu;
- };
- auto compute_dphi_dnu8 = [&S,&normal,&compute_AxB,&compute_v,sigma,&comm] () {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> H(Nelem);
- { // Set mean curvature H
- const Vector<ElemBasis> X = S.GetElemList().ElemVector();
- Vector<ElemBasis> dX, d2X;
- ElemBasis::Grad(dX, X);
- ElemBasis::Grad(d2X, dX);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- Tensor<Real,true,2,2> I, invI, II;
- for (Long k0 = 0; k0 < 2; k0++) {
- for (Long k1 = 0; k1 < 2; k1++) {
- I(k0,k1) = 0;
- I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
- I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
- II(k0,k1) = 0;
- II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
- II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
- II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
- }
- }
- { // Set invI
- Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
- invI(0,0) = I(1,1) / detI;
- invI(0,1) = -I(0,1) / detI;
- invI(1,0) = -I(1,0) / detI;
- invI(1,1) = I(0,0) / detI;
- }
- { // Set H
- H[i][j] = 0;
- H[i][j] += -0.5 * II(0,0)*invI(0,0);
- H[i][j] += -0.5 * II(0,1)*invI(0,1);
- H[i][j] += -0.5 * II(1,0)*invI(1,0);
- H[i][j] += -0.5 * II(1,1)*invI(1,1);
- }
- }
- }
- }
- Vector<ElemBasis> Gv;
- Vector<ElemBasis> v = compute_v();
- S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
- Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
- Vector<ElemBasis> dphi_dnu(Nelem);
- Vector<ElemBasis> nablaDt_nxGv;
- Quadrature<Real> quadrature_dUxD;
- quadrature_dUxD.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxD, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
- quadrature_dUxD.Eval(nablaDt_nxGv, S.GetElemList(), nxGv, S.Laplace_dUxD);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dphi_dnu[i][j] = 0;
- dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
- dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
- dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
- }
- }
- return dphi_dnu;
- };
- Vector<ElemBasis> nu(Nelem);
- nu = 1; //area_elem;
- Real dphi_dnu0 = compute_inner_prod(nu, compute_dphi_dnu0());
- Real dphi_dnu1 = compute_inner_prod(nu, compute_dphi_dnu1());
- Real dphi_dnu2 = compute_inner_prod(nu, compute_dphi_dnu2());
- Real dphi_dnu3 = compute_inner_prod(nu, compute_dphi_dnu3());
- Real dphi_dnu4 = compute_inner_prod(nu, compute_dphi_dnu4());
- Real dphi_dnu5 = compute_inner_prod(nu, compute_dphi_dnu5());
- Real dphi_dnu6 = compute_inner_prod(nu, compute_dphi_dnu6());
- Real dphi_dnu7 = compute_inner_prod(nu, compute_dphi_dnu7());
- Real dphi_dnu8 = compute_inner_prod(nu, compute_dphi_dnu8());
- std::cout<<dphi_dnu0<<' ';
- std::cout<<dphi_dnu1<<' ';
- std::cout<<dphi_dnu2<<' ';
- std::cout<<dphi_dnu3<<' ';
- std::cout<<dphi_dnu4<<' ';
- std::cout<<dphi_dnu5<<' ';
- std::cout<<dphi_dnu6<<' ';
- std::cout<<dphi_dnu7<<' ';
- std::cout<<dphi_dnu8<<' ';
- std::cout<<'\n';
- std::cout<<dphi_dnu0+dphi_dnu1+dphi_dnu2+dphi_dnu3+dphi_dnu4+dphi_dnu5+dphi_dnu6+dphi_dnu7+dphi_dnu8<<'\n';
- auto compute_flux = [&S,&comm,&normal,&area_elem,&compute_norm_area_elem,&compute_AxB,&compute_v,&compute_inner_prod,&sigma,&compute_half_n_plus_dG] (const Vector<ElemBasis>& nu, Real eps) {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> X_orig(Nelem*COORD_DIM);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- X_orig[i*COORD_DIM+0][j] = S.Elem(i,0)[j];
- X_orig[i*COORD_DIM+1][j] = S.Elem(i,1)[j];
- X_orig[i*COORD_DIM+2][j] = S.Elem(i,2)[j];
- S.Elem(i,0)[j] += eps*nu[i][j] * normal[i*COORD_DIM+0][j];
- S.Elem(i,1)[j] += eps*nu[i][j] * normal[i*COORD_DIM+1][j];
- S.Elem(i,2)[j] += eps*nu[i][j] * normal[i*COORD_DIM+2][j];
- }
- }
- compute_norm_area_elem(normal, area_elem);
- S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
- S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
- Vector<ElemBasis> v = compute_v();
- Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
- Vector<ElemBasis> J = compute_AxB(normal,B);
- Vector<ElemBasis> A;
- S.quadrature_FxU.Eval(A, S.GetElemList(), J, S.Laplace_FxU);
- Real flux = compute_inner_prod(v, A);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- S.Elem(i,0)[j] = X_orig[i*COORD_DIM+0][j];
- S.Elem(i,1)[j] = X_orig[i*COORD_DIM+1][j];
- S.Elem(i,2)[j] = X_orig[i*COORD_DIM+2][j];
- }
- }
- compute_norm_area_elem(normal, area_elem);
- S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
- S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
- return flux;
- };
- Real dphi_dnu = (compute_flux(nu,1e-3)-compute_flux(nu,-1e-3)) / 2e-3;
- std::cout<<"dphi_dnu = "<<dphi_dnu<<'\n';
- Real phi = compute_flux(nu,0);
- std::cout<<"phi = "<<phi<<'\n';
- }
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- auto compute_Av = [&S,&area_elem,&normal,&compute_norm_area_elem,&compute_A,&comm] (const Vector<Real>& v, const Vector<ElemBasis>& nu, Real eps) {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> X_orig(Nelem*COORD_DIM);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- X_orig[i*COORD_DIM+0][j] = S.Elem(i,0)[j];
- X_orig[i*COORD_DIM+1][j] = S.Elem(i,1)[j];
- X_orig[i*COORD_DIM+2][j] = S.Elem(i,2)[j];
- S.Elem(i,0)[j] += eps*nu[i][j] * normal[i*COORD_DIM+0][j];
- S.Elem(i,1)[j] += eps*nu[i][j] * normal[i*COORD_DIM+1][j];
- S.Elem(i,2)[j] += eps*nu[i][j] * normal[i*COORD_DIM+2][j];
- }
- }
- compute_norm_area_elem(normal, area_elem);
- S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
- S.quadrature_DxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_DxU , order_singular, order_direct, -1.0, comm);
- S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
- S.quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
- Vector<Real> Av = compute_A(v);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- S.Elem(i,0)[j] = X_orig[i*COORD_DIM+0][j];
- S.Elem(i,1)[j] = X_orig[i*COORD_DIM+1][j];
- S.Elem(i,2)[j] = X_orig[i*COORD_DIM+2][j];
- }
- }
- compute_norm_area_elem(normal, area_elem);
- S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
- S.quadrature_DxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_DxU , order_singular, order_direct, -1.0, comm);
- S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
- S.quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
- return Av;
- };
- auto compute_u_dAdnu_v = [&S,&compute_Av,&compute_inner_prod] (const Vector<Real>& u, const Vector<Real>& v, const Vector<ElemBasis>& nu) {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Real eps = 1e-5;
- Vector<Real> Av0 = compute_Av(v,nu,-eps);
- Vector<Real> Av1 = compute_Av(v,nu,eps);
- Vector<Real> dAdnu_v = (Av1-Av0)*(1/(2*eps));
- Real u_dAdnu_v;
- { // set u_dAdnu_v
- Vector<ElemBasis> u_(Nelem), dAdnu_v_(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- u_[i][j] = u[i*Nnodes+j];
- dAdnu_v_[i][j] = dAdnu_v[i*Nnodes+j];
- }
- }
- u_dAdnu_v = compute_inner_prod(u_, dAdnu_v_);
- u_dAdnu_v += u[Nelem*Nnodes] * dAdnu_v[Nelem*Nnodes];
- }
- return u_dAdnu_v;
- };
- if (0) { // test dA_dnu
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> nu(Nelem);
- Vector<Real> u(Nelem*Nnodes+1), v(Nelem*Nnodes+1);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- v[i*Nnodes+j] = sigma[i][j];
- u[i*Nnodes+j] = sigma[i][j]*area_elem[i][j];
- }
- }
- v[Nelem*Nnodes] = 0; //alpha;
- u[Nelem*Nnodes] = 0;
- nu = 1; //area_elem;
- Real u_dAdnu_v = compute_u_dAdnu_v(u, v, nu);
- std::cout<<"u_dAdnu_v = "<<u_dAdnu_v<<'\n';
- }
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- auto compute_dsigma_dnu = [&S,&area_elem,&normal,&compute_norm_area_elem,&compute_invA,&comm] (const Vector<ElemBasis>& nu, Real eps) {
- auto compute_sigma = [&S,&area_elem,&normal,&compute_norm_area_elem,&compute_invA,&comm] (const Vector<ElemBasis>& nu, Real eps) {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> X_orig(Nelem*COORD_DIM);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- X_orig[i*COORD_DIM+0][j] = S.Elem(i,0)[j];
- X_orig[i*COORD_DIM+1][j] = S.Elem(i,1)[j];
- X_orig[i*COORD_DIM+2][j] = S.Elem(i,2)[j];
- S.Elem(i,0)[j] += eps*nu[i][j] * normal[i*COORD_DIM+0][j];
- S.Elem(i,1)[j] += eps*nu[i][j] * normal[i*COORD_DIM+1][j];
- S.Elem(i,2)[j] += eps*nu[i][j] * normal[i*COORD_DIM+2][j];
- }
- }
- compute_norm_area_elem(normal, area_elem);
- S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
- S.quadrature_DxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_DxU , order_singular, order_direct, -1.0, comm);
- S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
- S.quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
- Real flux = 1.0, alpha;
- Vector<ElemBasis> sigma;
- compute_invA(sigma, alpha, flux);
- Vector<Real> sigma_(Nelem*Nnodes+1);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- sigma_[i*Nnodes+j] = sigma[i][j];
- }
- }
- sigma_[Nelem*Nnodes] = alpha;
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- S.Elem(i,0)[j] = X_orig[i*COORD_DIM+0][j];
- S.Elem(i,1)[j] = X_orig[i*COORD_DIM+1][j];
- S.Elem(i,2)[j] = X_orig[i*COORD_DIM+2][j];
- }
- }
- compute_norm_area_elem(normal, area_elem);
- S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
- S.quadrature_DxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_DxU , order_singular, order_direct, -1.0, comm);
- S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
- S.quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
- return sigma_;
- };
- auto sigma0 = compute_sigma(nu,-eps);
- auto sigma1 = compute_sigma(nu,eps);
- return (sigma1-sigma0) * (1/(2*eps));
- };
- if (0) { // verify dA_dnu sigma + A dsigma_dnu = 0
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> nu(Nelem);
- nu = 1; //area_elem;
- Vector<Real> dA_dnu_sigma;
- { // Set dA_dnu_simga
- Vector<Real> sigma_(Nelem*Nnodes+1);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- sigma_[i*Nnodes+j] = sigma[i][j];
- }
- }
- sigma_[Nelem*Nnodes] = alpha;
- Real eps = 1e-3;
- Vector<Real> Asigma0 = compute_Av(sigma_,nu,-eps);
- Vector<Real> Asigma1 = compute_Av(sigma_,nu,eps);
- dA_dnu_sigma = (Asigma1-Asigma0) * (1/(2*eps));
- }
- Vector<Real> A_dsigma_dnu;
- { // Set A_dsigma_dnu
- Vector<Real> dsigma_dnu = compute_dsigma_dnu(nu, 1e-3);
- A_dsigma_dnu = compute_A(dsigma_dnu);
- }
- Vector<ElemBasis> dA_dnu_sigma_(Nelem);
- Vector<ElemBasis> A_dsigma_dnu_(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dA_dnu_sigma_[i][j] = dA_dnu_sigma[i*Nnodes+j];
- A_dsigma_dnu_[i][j] = A_dsigma_dnu[i*Nnodes+j];
- }
- }
- std::cout<<dA_dnu_sigma[Nelem*Nnodes] + A_dsigma_dnu[Nelem*Nnodes]<<'\n';
- { // Write VTU
- VTUData vtu;
- vtu.AddElems(S.GetElemList(), dA_dnu_sigma_ + A_dsigma_dnu_, ORDER);
- vtu.WriteVTK("err", comm);
- }
- }
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- if (1) { // test grad_g
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> dg_dnu;
- { // Compute dg_dnu
- dg_dnu = compute_dg_dnu(sigma, alpha, B);
- Vector<Real> dg_dsigma(Nelem*Nnodes+1);
- { // Set dg_dsigma
- Vector<ElemBasis> dg_dsigma_ = compute_dg_dsigma(B);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dg_dsigma[i*Nnodes+j] = dg_dsigma_[i][j];
- }
- }
- dg_dsigma[Nelem*Nnodes] = compute_dg_dalpha(B);
- }
- Vector<Real> dg_dsigma_invA = compute_invAadj(dg_dsigma);
- { // Set dg_dnu = - dg_dsigma invA dA_dnu sigma
- Vector<Real> sigma_(Nelem*Nnodes+1);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- sigma_[i*Nnodes+j] = sigma[i][j];
- }
- }
- sigma_[Nelem*Nnodes] = alpha;
- auto dg_dnu1 = compute_u_dAdnu_v_00(dg_dsigma_invA, sigma_)*(-1);
- auto dg_dnu2 = compute_u_dAdnu_v_01(dg_dsigma_invA, sigma_)*(-1);
- auto dg_dnu3 = compute_u_dAdnu_v_10(dg_dsigma_invA, sigma_)*(-1);
- auto dg_dnu4 = compute_u_dAdnu_v_11(dg_dsigma_invA, sigma_)*(-1);
- {
- //Vector<ElemBasis> nu(Nelem);
- //nu = area_elem;
- //Real dg_dnu0_ = -compute_inner_prod(nu, dg_dnu);
- //Real dg_dnu1_ = -compute_inner_prod(nu, dg_dnu1);
- //Real dg_dnu2_ = -compute_inner_prod(nu, dg_dnu2);
- //Real dg_dnu3_ = -compute_inner_prod(nu, dg_dnu3);
- //Real dg_dnu4_ = -compute_inner_prod(nu, dg_dnu4);
- //std::cout<<dg_dnu0_<<' '<<dg_dnu1_<<' '<<dg_dnu2_<<' '<<dg_dnu3_<<' '<<dg_dnu4_<<'\n';
- }
- dg_dnu += dg_dnu1;
- dg_dnu += dg_dnu2;
- dg_dnu += dg_dnu3;
- dg_dnu += dg_dnu4;
- }
- if (0) { // Set dg_dnu = - dg_dsigma invA dA_dnu sigma
- Vector<ElemBasis> nu(Nelem);
- nu = dg_dnu; //1; //area_elem;
- Vector<Real> dg_dsigma_invA = compute_invAadj(dg_dsigma);
- Vector<Real> sigma_(Nelem*Nnodes+1);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- sigma_[i*Nnodes+j] = sigma[i][j];
- }
- }
- sigma_[Nelem*Nnodes] = alpha;
- Vector<Real> dg_dsigma_invA_0 = dg_dsigma_invA; dg_dsigma_invA_0[Nelem*Nnodes] = 0;
- Vector<Real> dg_dsigma_invA_1(Nelem*Nnodes+1); dg_dsigma_invA_1 = 0; dg_dsigma_invA_1[Nelem*Nnodes] = dg_dsigma_invA[Nelem*Nnodes];
- Vector<Real> sigma_0 = sigma_; sigma_0[Nelem*Nnodes] = 0;
- Vector<Real> sigma_1(Nelem*Nnodes+1); sigma_1 = 0; sigma_1[Nelem*Nnodes] = sigma_[Nelem*Nnodes];
- Real dg_dnu1 = -compute_u_dAdnu_v(dg_dsigma_invA_0, sigma_0, nu);
- Real dg_dnu2 = -compute_u_dAdnu_v(dg_dsigma_invA_0, sigma_1, nu);
- Real dg_dnu3 = -compute_u_dAdnu_v(dg_dsigma_invA_1, sigma_0, nu);
- Real dg_dnu4 = -compute_u_dAdnu_v(dg_dsigma_invA_1, sigma_1, nu);
- std::cout<<dg_dnu1<<' '<<dg_dnu2<<' '<<dg_dnu3<<' '<<dg_dnu4<<'\n';
- }
- if (0) { // Set dg_dnu = dg_dsigma dsigma_dnu
- Vector<ElemBasis> nu(Nelem);
- nu = dg_dnu; //1; //area_elem;
- Vector<Real> dsigma_dnu = compute_dsigma_dnu(nu, 1e-3);
- Vector<ElemBasis> dg_dsigma_(Nelem), dsigma_dnu_(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- dg_dsigma_[i][j] = dg_dsigma[i*Nnodes+j];
- dsigma_dnu_[i][j] = dsigma_dnu[i*Nnodes+j];
- }
- }
- Real dg_dnu = compute_inner_prod(dg_dsigma_, dsigma_dnu_);
- dg_dnu += dg_dsigma[Nelem*Nnodes] * dsigma_dnu[Nelem*Nnodes];
- std::cout<<dg_dnu<<'\n';
- }
- }
- { // Write VTU
- VTUData vtu;
- vtu.AddElems(S.GetElemList(), dg_dnu, ORDER);
- vtu.WriteVTK("dg_dnu", comm);
- }
- { // Save data
- Matrix<Real> M(S.NtNp_[0]*ORDER, S.NtNp_[1]*ORDER);
- for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
- for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
- for (Long t = 0; t < ORDER; t++) {
- for (Long p = 0; p < ORDER; p++) {
- Long elem_idx = tt * S.NtNp_[1] + pp;
- Long node_idx = p * ORDER + t;
- M[tt*ORDER+t][pp*ORDER+p] = dg_dnu[elem_idx][node_idx];
- }
- }
- }
- }
- M.Write("dg_dnu.mat");
- }
- { // filter dg_dnu and write VTU
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- const Integer INTERP_ORDER = 12;
- Long Nt = S.NtNp_[0]*ORDER/5, Np = S.NtNp_[1]*ORDER/5;
- Matrix<Real> M(Nt, Np); M = 0;
- const auto& quad_wts = ElemBasis::QuadWts();
- const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
- for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
- for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
- for (Long t = 0; t < ORDER; t++) {
- for (Long p = 0; p < ORDER; p++) {
- Real theta = (tt + Mnodes[0][t]) / S.NtNp_[0];
- Real phi = (pp + Mnodes[0][p]) / S.NtNp_[1];
- Long i = (Long)(theta * Nt);
- Long j = (Long)(phi * Np);
- Real x = theta * Nt - i;
- Real y = phi * Np - j;
- Long elem_idx = tt * S.NtNp_[1] + pp;
- Long node_idx = p * ORDER + t;
- Vector<Real> Interp0(INTERP_ORDER);
- Vector<Real> Interp1(INTERP_ORDER);
- { // Set Interp0, Interp1
- auto node = [] (Long i) {
- return (Real)i - (INTERP_ORDER-1)/2;
- };
- for (Long i = 0; i < INTERP_ORDER; i++) {
- Real wt_x = 1, wt_y = 1;
- for (Long j = 0; j < INTERP_ORDER; j++) {
- if (j != i) {
- wt_x *= (x - node(j)) / (node(i) - node(j));
- wt_y *= (y - node(j)) / (node(i) - node(j));
- }
- Interp0[i] = wt_x;
- Interp1[i] = wt_y;
- }
- }
- }
- for (Long ii = 0; ii < INTERP_ORDER; ii++) {
- for (Long jj = 0; jj < INTERP_ORDER; jj++) {
- Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
- Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
- M[idx_i][idx_j] += dg_dnu[elem_idx][node_idx] * quad_wts[node_idx] * Interp0[ii] * Interp1[jj] / (S.NtNp_[0] * S.NtNp_[1]) * (Nt * Np);
- }
- }
- }
- }
- }
- }
- Vector<ElemBasis> f(Nelem);
- for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
- for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
- for (Long t = 0; t < ORDER; t++) {
- for (Long p = 0; p < ORDER; p++) {
- Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
- Real theta = (tt + Mnodes[0][t]) / S.NtNp_[0];
- Real phi = (pp + Mnodes[0][p]) / S.NtNp_[1];
- Long i = (Long)(theta * Nt);
- Long j = (Long)(phi * Np);
- Real x = theta * Nt - i;
- Real y = phi * Np - j;
- Vector<Real> Interp0(INTERP_ORDER);
- Vector<Real> Interp1(INTERP_ORDER);
- { // Set Interp0, Interp1
- auto node = [] (Long i) {
- return (Real)i - (INTERP_ORDER-1)/2;
- };
- for (Long i = 0; i < INTERP_ORDER; i++) {
- Real wt_x = 1, wt_y = 1;
- for (Long j = 0; j < INTERP_ORDER; j++) {
- if (j != i) {
- wt_x *= (x - node(j)) / (node(i) - node(j));
- wt_y *= (y - node(j)) / (node(i) - node(j));
- }
- Interp0[i] = wt_x;
- Interp1[i] = wt_y;
- }
- }
- }
- Real f0 = 0;
- for (Long ii = 0; ii < INTERP_ORDER; ii++) {
- for (Long jj = 0; jj < INTERP_ORDER; jj++) {
- Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
- Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
- f0 += Interp0[ii] * Interp1[jj] * M[idx_i][idx_j];
- }
- }
- Long elem_idx = tt * S.NtNp_[1] + pp;
- Long node_idx = p * ORDER + t;
- f[elem_idx][node_idx] = f0;
- }
- }
- }
- }
- { // Write VTU
- VTUData vtu;
- vtu.AddElems(S.GetElemList(), f, ORDER);
- vtu.WriteVTK("dg_dnu_filtered", comm);
- }
- dg_dnu = f;
- }
- auto compute_g = [&sigma,&alpha,&S,&area_elem,&normal,&compute_norm_area_elem,&compute_invA,&compute_half_n_plus_dG,&compute_B0,&compute_inner_prod,&comm] (const Vector<ElemBasis>& nu, Real eps) {
- const Long Nelem = S.GetElemList().NElem();
- const Long Nnodes = ElemBasis::Size();
- Vector<ElemBasis> X_orig(Nelem*COORD_DIM);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- X_orig[i*COORD_DIM+0][j] = S.Elem(i,0)[j];
- X_orig[i*COORD_DIM+1][j] = S.Elem(i,1)[j];
- X_orig[i*COORD_DIM+2][j] = S.Elem(i,2)[j];
- S.Elem(i,0)[j] += eps*nu[i][j] * normal[i*COORD_DIM+0][j];
- S.Elem(i,1)[j] += eps*nu[i][j] * normal[i*COORD_DIM+1][j];
- S.Elem(i,2)[j] += eps*nu[i][j] * normal[i*COORD_DIM+2][j];
- }
- }
- compute_norm_area_elem(normal, area_elem);
- S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
- S.quadrature_DxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_DxU , order_singular, order_direct, -1.0, comm);
- S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
- S.quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
- Real flux = 1.0, alpha;
- Vector<ElemBasis> sigma;
- compute_invA(sigma, alpha, flux);
- Vector<ElemBasis> B = compute_half_n_plus_dG(sigma) + compute_B0(alpha);
- Real g = compute_inner_prod(B, B);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- S.Elem(i,0)[j] = X_orig[i*COORD_DIM+0][j];
- S.Elem(i,1)[j] = X_orig[i*COORD_DIM+1][j];
- S.Elem(i,2)[j] = X_orig[i*COORD_DIM+2][j];
- }
- }
- compute_norm_area_elem(normal, area_elem);
- S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
- S.quadrature_DxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_DxU , order_singular, order_direct, -1.0, comm);
- S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
- S.quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
- return g;
- };
- {
- Vector<ElemBasis> nu(Nelem);
- nu = area_elem;
- Real eps = 1e-4;
- Real g0 = compute_g(nu,-eps);
- Real g1 = compute_g(nu,eps);
- std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
- std::cout<<"dg_dnu = "<<compute_inner_prod(nu, dg_dnu)<<'\n';
- }
- {
- Vector<ElemBasis> nu(Nelem);
- nu = 1;
- Real eps = 1e-4;
- Real g0 = compute_g(nu,-eps);
- Real g1 = compute_g(nu,eps);
- std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
- std::cout<<"dg_dnu = "<<compute_inner_prod(nu, dg_dnu)<<'\n';
- }
- {
- Vector<ElemBasis> nu(Nelem);
- nu = dg_dnu;
- Real eps = 1e-4;
- Real g0 = compute_g(nu,-eps);
- Real g1 = compute_g(nu,eps);
- std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
- std::cout<<"dg_dnu = "<<compute_inner_prod(nu, dg_dnu)<<'\n';
- }
- }
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- // dg_dnu
- // dA_dnu_sigma
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //Profile::print(&comm);
- }
- private:
- void InitSurf(Long l) {
- const auto& nodes = ElemBasis::Nodes();
- const Long Nt = NtNp_[l*2+0];
- const Long Np = NtNp_[l*2+1];
- for (Long i = 0; i < Nt; i++) {
- for (Long j = 0; j < Np; j++) {
- for (Long k = 0; k < ElemBasis::Size(); k++) {
- Real theta = (i + nodes[0][k]) * 2*const_pi<Real>()/Nt;
- Real phi = (j + nodes[1][k]) * 2*const_pi<Real>()/Np;
- Real X,Y,Z;
- SurfGeom(X,Y,Z,theta,phi);
- Elem(ElemIdx(l,i,j),0)[k] = X;
- Elem(ElemIdx(l,i,j),1)[k] = Y;
- Elem(ElemIdx(l,i,j),2)[k] = Z;
- }
- }
- }
- }
- static void SurfGeom(Real& X, Real& Y, Real& Z, Real theta, Real phi) {
- sctl::Integer Nperiod = 5;
- #if 0
- Real Aspect_ratio = 10.27932548522949;
- Real coeffmat[21][21] = { 0.00000478813217, 0.00000000000000, 0.00000351611652, 0.00000135354389, 0.00000061357832, 0.00000220091101, 0.00000423862912, -0.00003000058678, 0.00000064187111, -0.00024228452821, 0.00003116775770, 0.00000176210710, 0.00000289141326, -0.00000150300525, 0.00000772853855, 0.00000098855242, 0.00000316606793, 0.00000002168364, 0.00000212047939, 0.00000299016097, 0.00000443224508,
- 0.00000028202930, 0.00000000000000, -0.00000249222421, -0.00000203136278, 0.00000131104809, 0.00000011987446, -0.00000370760154, 0.00004553918916, -0.00007711342914, -0.00004685295062, 0.00011049838213, -0.00000197486270, 0.00000395827146, 0.00000615046474, 0.00000755337123, 0.00000700606006, 0.00000922725030, -0.00000043310337, 0.00000107416383, 0.00000449787694, 0.00000305137178,
- 0.00001226376662, 0.00000000000000, 0.00000270820692, 0.00000208059305, 0.00000521478523, 0.00001779037302, 0.00000846544117, 0.00001120913385, -0.00065816845745, -0.00085107452469, -0.00013171190221, -0.00005540943675, -0.00001835885450, 0.00000101879823, 0.00000209222071, 0.00000091532502, -0.00000521515358, -0.00000209227142, -0.00000678545939, -0.00000034963549, -0.00000015111488,
- 0.00001560274177, 0.00000000000000, 0.00000350691471, -0.00001160475040, -0.00001763036562, 0.00003487367940, -0.00002787247831, -0.00000910982726, 0.00008818832430, -0.00524408789352, 0.00009378376126, 0.00004184526188, 0.00002849263365, -0.00002757280527, 0.00003388467667, 0.00000706207265, 0.00000625263419, -0.00003315929280, -0.00001181772132, 0.00000311426015, 0.00001875682574,
- -0.00000398287420, 0.00000000000000, -0.00001524541040, 0.00001724056165, 0.00002245173346, 0.00002806861812, -0.00000388776925, 0.00008143573359, -0.00005900909309, 0.00110496615525, 0.00134626252111, 0.00005128383054, -0.00001372421866, 0.00003612563887, 0.00002236580076, -0.00002728391883, 0.00001981237256, 0.00000655450458, 0.00000985319002, 0.00001347597299, 0.00000645987802,
- 0.00003304968050, 0.00000000000000, -0.00000530822217, 0.00001324870937, -0.00003610889689, -0.00005478735329, -0.00005818806312, -0.00037112057908, -0.00017812002625, -0.00093204283621, 0.00115969858598, -0.00033559172880, -0.00010441876657, -0.00001617923044, -0.00000555065844, 0.00007343527250, -0.00004408047607, 0.00000403802142, 0.00001843931204, 0.00001694047933, 0.00001213414362,
- -0.00000751115658, 0.00000000000000, 0.00005457974839, -0.00000334614515, 0.00005845565465, 0.00015000770509, 0.00021849104087, 0.00002724147635, 0.00167233624961, 0.00011666602222, 0.00276563479565, -0.00085952825611, -0.00030217235326, -0.00008841593808, 0.00000997664119, -0.00015285826521, 0.00002517224675, 0.00003009161810, 0.00001883217556, 0.00002146127554, 0.00001822445302,
- -0.00004128706860, 0.00000000000000, -0.00003496417776, 0.00001088761655, -0.00000298955979, -0.00005359326315, -0.00019021633489, -0.00017992728681, -0.00347794801928, 0.00064632791327, 0.00449698418379, -0.00017710507382, 0.00006126180233, 0.00018059254216, 0.00002354096432, 0.00008189838991, -0.00010060678323, -0.00017183290038, 0.00019413756672, 0.00021334811754, 0.00011263617489,
- 0.00000853522670, -0.00000000000000, -0.00006544789358, 0.00005424076880, -0.00000679056529, -0.00001249735487, -0.00053082982777, 0.00035396864405, -0.00115020677913, 0.05894451215863, 0.06573092192411, 0.01498018857092, 0.00278125284240, 0.00145188067108, 0.00033717858605, 0.00000800427370, -0.00009335305367, 0.00024286781263, -0.00023916347709, 0.00031213948387, 0.00018134393031,
- -0.00002521496390, -0.00000000000000, -0.00054337945767, 0.00012690725271, 0.00053313979879, 0.00064233405283, -0.00047686311882, 0.00176536326762, 0.00074157933705, -0.02684566564858, 1.00000000000000, 0.07176169008017, 0.00837037432939, -0.00000381640211, 0.00088998704450, -0.00049218931235, -0.00024546548957, -0.00036608282244, 0.00049480766756, 0.00031158892671, 0.00006898906577,
- 0.00021280418150, 0.00028127161204, -0.00070030166535, 0.00022237010126, -0.00028713891516, -0.00013800295710, 0.00005912094275, 0.00172126013786, -0.00618684850633, 0.03608432412148, Aspect_ratio , 0.49896776676178, 0.00091372377938, -0.00085712829605, -0.00124801427592, -0.00007427225501, -0.00005245858847, 0.00002841771493, 0.00020249813679, -0.00014303345233, 0.00001406490901,
- 0.00023699452868, 0.00008661757602, 0.00025744654704, -0.00022715188970, -0.00076146807987, 0.00055185536621, -0.00012325309217, -0.00072356045712, -0.00160693109501, 0.00246682553552, -0.14175094664097, -0.36207047104836, -0.04089594259858, 0.00060774467420, 0.00088646943914, 0.00004865296432, -0.00041878610500, -0.00023025234987, -0.00009676301852, -0.00000000000000, 0.00008409228758,
- 0.00011432896281, -0.00000707848403, 0.00004698805787, -0.00043642931269, 0.00081384339137, -0.00065635429928, -0.00011831733718, 0.00017413357273, 0.00224463525228, 0.00478497287259, 0.03294761106372, 0.01078986655921, 0.10731782764196, 0.00075034319889, -0.00009241879889, 0.00055023463210, 0.00006596000458, 0.00005045382932, 0.00014874986664, 0.00000000000000, -0.00015369028552,
- 0.00001037383754, 0.00009250180301, 0.00026204055757, 0.00007424291834, -0.00047751804232, 0.00029184055165, 0.00050921301590, -0.00004825839278, -0.00029933769838, 0.00279659987427, 0.00210463814437, -0.00618590926751, -0.02400829829276, -0.02316811867058, -0.00086368201301, -0.00032258985448, -0.00018304496189, 0.00008438774967, -0.00008305341908, 0.00000000000000, 0.00013047417451,
- -0.00001376930322, -0.00001723831701, -0.00011543079017, -0.00022646733851, 0.00013467084500, -0.00004661652201, -0.00008419520600, 0.00035772417323, -0.00011815709877, 0.00028718306567, 0.00092207465786, -0.00317224999890, 0.00061770365573, 0.01017294172198, 0.00294739892706, 0.00014669894881, 0.00015702951350, 0.00003432080121, -0.00008555022214, -0.00000000000000, 0.00000454909878,
- -0.00000196001542, -0.00003198397462, -0.00004425687075, -0.00004129848094, -0.00003789070615, -0.00027583551127, 0.00025874207495, -0.00002334945384, -0.00007259396807, -0.00008295358566, 0.00011360697681, -0.00101968157105, 0.00046784928418, -0.00208410434425, -0.00313158822246, -0.00046005158219, -0.00010552268213, -0.00005850767775, 0.00003971093611, 0.00000000000000, -0.00005275657168,
- -0.00001065901233, -0.00001934838656, -0.00001220186732, -0.00002060524639, -0.00000225423423, -0.00001894621164, -0.00001533334580, -0.00001791087379, 0.00008156246622, -0.00008441298269, 0.00021060956351, -0.00030303673702, 0.00075949780876, -0.00010539998038, 0.00109045265708, 0.00068949378328, 0.00009268362192, 0.00003471063246, 0.00001204656473, -0.00000000000000, 0.00001500743110,
- 0.00000105878155, -0.00000910870767, -0.00000172467264, -0.00000722095228, 0.00000699280463, -0.00002061720625, -0.00000889817693, -0.00001993474507, 0.00000370749740, -0.00000090311920, 0.00002677819793, 0.00043428712524, 0.00210293265991, 0.00018200518389, -0.00009621794743, -0.00035250501242, -0.00012996385340, -0.00002185157609, -0.00001116586463, -0.00000000000000, -0.00000451994811,
- 0.00000424055270, -0.00000463139304, 0.00000301006116, -0.00000123974939, 0.00000632465435, -0.00002090823000, 0.00001773388794, 0.00000121050368, 0.00001886057362, -0.00001043497195, -0.00002269273500, -0.00021979617304, -0.00001043962493, -0.00116343051195, -0.00004193381756, 0.00007944958634, 0.00007301353617, 0.00002082651736, -0.00000119863023, -0.00000000000000, -0.00001440504820,
- -0.00000391270805, -0.00000490489265, -0.00000504441778, -0.00000904507579, -0.00000111389932, 0.00000597532107, 0.00000047090245, -0.00001553130096, -0.00001524566323, -0.00000522222899, -0.00007707672921, -0.00004165665086, 0.00015764687851, 0.00035649110214, 0.00038701237645, 0.00002386798405, -0.00001946414341, -0.00000913835174, -0.00000489907188, 0.00000000000000, 0.00000172327657,
- -0.00000015388650, -0.00000603232729, -0.00000397650865, 0.00000280493782, 0.00000463132073, -0.00000788678426, -0.00000471605335, -0.00000283715985, -0.00000422824724, 0.00000366817630, -0.00001159603562, -0.00001625759251, 0.00049116823357, 0.00005048640014, -0.00020234247495, -0.00006341376866, -0.00000807822744, 0.00000070463199, 0.00000014041755, 0.00000000000000, -0.00000718306910};
- #else
- Real Aspect_ratio = 5;
- Real coeffmat[21][21] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Aspect_ratio, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0};
- #endif
- Z = 0;
- Real R = 0;
- for (long i = -10; i <= 10; i++) {
- for (long j = -10; j <= 10; j++) {
- R += coeffmat[i+10][j+10] * sctl::cos(-i*phi + Nperiod*j*theta);
- Z += coeffmat[i+10][j+10] * sctl::sin(-i*phi + Nperiod*j*theta);
- }
- }
- X = R * sctl::cos(theta);
- Y = R * sctl::sin(theta);
- }
- GenericKernel<BiotSavart3D > BiotSavart ;
- GenericKernel<Laplace3D_FxU > Laplace_FxU ;
- GenericKernel<Laplace3D_DxU > Laplace_DxU ;
- GenericKernel<Laplace3D_FxdU> Laplace_FxdU;
- GenericKernel<Laplace3D_dUxF> Laplace_dUxF;
- GenericKernel<Laplace3D_Fxd2U> Laplace_Fxd2U;
- GenericKernel<Laplace3D_dUxD> Laplace_dUxD;
- GenericKernel<Laplace3D_DxdU> Laplace_DxdU;
- Quadrature<Real> quadrature_FxU ;
- Quadrature<Real> quadrature_DxU ;
- Quadrature<Real> quadrature_FxdU;
- Quadrature<Real> quadrature_dUxF;
- Quadrature<Real> quadrature_Fxd2U;
- Quadrature<Real> quadrature_dUxD;
- ElemLst elements;
- Vector<Long> NtNp_;
- Vector<Long> elem_dsp;
- };
- template <class Real, Integer ORDER=5> class Spheres {
- static constexpr Integer COORD_DIM = 3;
- static constexpr Integer ELEM_DIM = COORD_DIM-1;
- using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
- using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
- using CoordBasis = Basis<Real, ELEM_DIM, ORDER>;
- using ElemLst = ElemList<COORD_DIM, CoordBasis>;
- public:
- Spheres(Long N = 0) {
- Vector<Real> X(N*COORD_DIM);
- Vector<Real> R(N);
- X=0;
- R=1;
- for (Long i = 0; i < N; i++) X[i*COORD_DIM] = (i==0?-1.015:1.015); ///////////
- InitSpheres(X,R);
- }
- const ElemLst& GetElem() const {
- return elements;
- }
- static void test() {
- constexpr Integer order_singular = 35;
- constexpr Integer order_direct = 35;
- Comm comm = Comm::World();
- Profile::Enable(true);
- Long Ns = 2;
- Spheres S(Ns);
- S.quadrature_FxT.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_FxT, order_singular, order_direct, -1.0, comm);
- S.quadrature_FxU.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_FxU, order_singular, order_direct, -1.0, comm);
- S.quadrature_DxU.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_DxU, order_singular, order_direct, -1.0, comm);
- const auto SetMotion = [&S](Vector<DensityBasis>& density, const Vector<Real>& force_avg, const Vector<Real>& torque_avg) {
- Long Nelem = S.GetElem().NElem();
- Long Nsurf = S.elem_cnt.Dim();
- const auto& X = S.GetElem().ElemVector();
- Vector<Real> area, Xc;
- Vector<DensityBasis> one(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < DensityBasis::Size(); j++) {
- one[i][j] = 1;
- }
- }
- S.SurfInteg(area, one);
- S.SurfInteg(Xc, S.GetElem().ElemVector());
- for (Long i = 0; i < Nsurf; i++) {
- for (Long k = 0; k < COORD_DIM; k++) {
- Xc[i*COORD_DIM+k] /= area[i];
- }
- }
- if (density.Dim() != Nelem*COORD_DIM) density.ReInit(Nelem*COORD_DIM);
- Long elem_itr = 0;
- for (Long i = 0; i < Nsurf; i++) {
- for (Long j = 0; j < S.elem_cnt[i]; j++) {
- for (Long k = 0; k < DensityBasis::Size(); k++) {
- StaticArray<Real,COORD_DIM> dX;
- dX[0] = (X[elem_itr*COORD_DIM+0][k] - Xc[i*COORD_DIM+0]);
- dX[1] = (X[elem_itr*COORD_DIM+1][k] - Xc[i*COORD_DIM+1]);
- dX[2] = (X[elem_itr*COORD_DIM+2][k] - Xc[i*COORD_DIM+2]);
- density[elem_itr*COORD_DIM+0][k] = force_avg[i*COORD_DIM+0]*(1/area[i]) + (torque_avg[i*COORD_DIM+1] * dX[2] - torque_avg[i*COORD_DIM+2] * dX[1]) / (2*area[i]/3);
- density[elem_itr*COORD_DIM+1][k] = force_avg[i*COORD_DIM+1]*(1/area[i]) + (torque_avg[i*COORD_DIM+2] * dX[0] - torque_avg[i*COORD_DIM+0] * dX[2]) / (2*area[i]/3);
- density[elem_itr*COORD_DIM+2][k] = force_avg[i*COORD_DIM+2]*(1/area[i]) + (torque_avg[i*COORD_DIM+0] * dX[1] - torque_avg[i*COORD_DIM+1] * dX[0]) / (2*area[i]/3);
- }
- elem_itr++;
- }
- }
- };
- const auto GetMotion = [&S](Vector<Real>& force_avg, Vector<Real>& torque_avg, const Vector<DensityBasis>& density) {
- Long Nelem = S.GetElem().NElem();
- Long Nsurf = S.elem_cnt.Dim();
- const auto& X = S.GetElem().ElemVector();
- S.SurfInteg(force_avg, density);
- Vector<Real> area, Xc;
- Vector<DensityBasis> one(Nelem);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < DensityBasis::Size(); j++) {
- one[i][j] = 1;
- }
- }
- S.SurfInteg(area, one);
- S.SurfInteg(Xc, S.GetElem().ElemVector());
- for (Long i = 0; i < Nsurf; i++) {
- for (Long k = 0; k < COORD_DIM; k++) {
- Xc[i*COORD_DIM+k] /= area[i];
- }
- }
- { // Set torque_avg
- Long elem_itr = 0;
- Vector<DensityBasis> torque(Nelem*COORD_DIM);
- for (Long i = 0; i < Nsurf; i++) {
- for (Long j = 0; j < S.elem_cnt[i]; j++) {
- for (Long k = 0; k < DensityBasis::Size(); k++) {
- StaticArray<Real,COORD_DIM> dX;
- dX[0] = (X[elem_itr*COORD_DIM+0][k] - Xc[i*COORD_DIM+0]);
- dX[1] = (X[elem_itr*COORD_DIM+1][k] - Xc[i*COORD_DIM+1]);
- dX[2] = (X[elem_itr*COORD_DIM+2][k] - Xc[i*COORD_DIM+2]);
- torque[elem_itr*COORD_DIM+0][k] = dX[1] * density[elem_itr*COORD_DIM+2][k] - dX[2] * density[elem_itr*COORD_DIM+1][k];
- torque[elem_itr*COORD_DIM+1][k] = dX[2] * density[elem_itr*COORD_DIM+0][k] - dX[0] * density[elem_itr*COORD_DIM+2][k];
- torque[elem_itr*COORD_DIM+2][k] = dX[0] * density[elem_itr*COORD_DIM+1][k] - dX[1] * density[elem_itr*COORD_DIM+0][k];
- }
- elem_itr++;
- }
- }
- S.SurfInteg(torque_avg, torque);
- }
- };
- const auto BIOpL = [&GetMotion,&SetMotion](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
- Vector<Real> force_avg, torque_avg;
- GetMotion(force_avg, torque_avg, density);
- SetMotion(potential, force_avg, torque_avg);
- };
- const auto BIOpK = [&S](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
- Vector<DensityBasis> traction;
- S.quadrature_FxT.Eval(traction, S.GetElem(), density, S.Stokes_FxT);
- Vector<CoordBasis> dX;
- const auto X = S.GetElem().ElemVector();
- CoordBasis::Grad(dX, X);
- Long Nelem = S.GetElem().NElem();
- Long Nnodes = CoordBasis::Size();
- potential.ReInit(Nelem * COORD_DIM);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- StaticArray<Real,COORD_DIM> Xn;
- Xn[0] = dX[i*COORD_DIM*2+2][j]*dX[i*COORD_DIM*2+5][j] - dX[i*COORD_DIM*2+4][j]*dX[i*COORD_DIM*2+3][j];
- Xn[1] = dX[i*COORD_DIM*2+4][j]*dX[i*COORD_DIM*2+1][j] - dX[i*COORD_DIM*2+0][j]*dX[i*COORD_DIM*2+5][j];
- Xn[2] = dX[i*COORD_DIM*2+0][j]*dX[i*COORD_DIM*2+3][j] - dX[i*COORD_DIM*2+2][j]*dX[i*COORD_DIM*2+1][j];
- Real AreaElem = sqrt<Real>(Xn[0]*Xn[0] + Xn[1]*Xn[1] + Xn[2]*Xn[2]);
- Real OOAreaElem = 1 / AreaElem;
- Xn[0] *= OOAreaElem;
- Xn[1] *= OOAreaElem;
- Xn[2] *= OOAreaElem;
- potential[i*COORD_DIM+0][j] = traction[i*COORD_DIM*COORD_DIM+0][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+1][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+2][j]*Xn[2];
- potential[i*COORD_DIM+1][j] = traction[i*COORD_DIM*COORD_DIM+3][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+4][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+5][j]*Xn[2];
- potential[i*COORD_DIM+2][j] = traction[i*COORD_DIM*COORD_DIM+6][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+7][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+8][j]*Xn[2];
- }
- }
- };
- const auto BIOp_half_K_L = [&S,&BIOpK,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
- Vector<DensityBasis> potential_K;
- Vector<DensityBasis> potential_L;
- BIOpK(potential_K, density);
- BIOpL(potential_L, density);
- if (potential.Dim() != potential_K.Dim()) {
- potential.ReInit(potential_K.Dim());
- }
- for (Long i = 0; i < potential_K.Dim(); i++) {
- for (Long k = 0; k < DensityBasis::Size(); k++) {
- potential[i][k] = -0.5*density[i][k] + potential_K[i][k] + potential_L[i][k];
- }
- }
- };
- const auto BIOp_half_K = [&S,&BIOpK,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
- Vector<DensityBasis> potential_K;
- BIOpK(potential_K, density);
- if (potential.Dim() != potential_K.Dim()) {
- potential.ReInit(potential_K.Dim());
- }
- for (Long i = 0; i < potential_K.Dim(); i++) {
- for (Long k = 0; k < DensityBasis::Size(); k++) {
- potential[i][k] = -0.5*density[i][k] + potential_K[i][k];
- }
- }
- };
- const auto BIOp_half_S_D = [&S,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
- Vector<DensityBasis> U;
- S.quadrature_DxU.Eval(U, S.GetElem(), density, S.Stokes_DxU);
- Vector<PotentialBasis> U1;
- Vector<DensityBasis> sigma1;
- BIOpL(sigma1,density);
- S.quadrature_FxU.Eval(U1, S.GetElem(), sigma1, S.Stokes_FxU);
- Long Nelem = S.GetElem().NElem();
- Long Nnodes = CoordBasis::Size();
- potential.ReInit(Nelem * COORD_DIM);
- for (Long i = 0; i < Nelem; i++) {
- for (Long j = 0; j < Nnodes; j++) {
- potential[i*COORD_DIM+0][j] = 0.5*density[i*COORD_DIM+0][j] + U[i*COORD_DIM+0][j] + U1[i*COORD_DIM+0][j];
- potential[i*COORD_DIM+1][j] = 0.5*density[i*COORD_DIM+1][j] + U[i*COORD_DIM+1][j] + U1[i*COORD_DIM+1][j];
- potential[i*COORD_DIM+2][j] = 0.5*density[i*COORD_DIM+2][j] + U[i*COORD_DIM+2][j] + U1[i*COORD_DIM+2][j];
- }
- }
- };
- Vector<PotentialBasis> U;
- { // Rachh
- Vector<DensityBasis> sigma0;
- { // Set sigma0
- srand48(comm.Rank());
- Vector<Real> force(Ns*COORD_DIM), torque(Ns*COORD_DIM);
- //for (auto& x : force) x = drand48();
- //for (auto& x : torque) x = drand48();
- force = 0;
- torque = 0;
- force[0] = 1;
- //force[4] = 1;
- SetMotion(sigma0, force, torque);
- }
- Vector<DensityBasis> rhs;
- BIOp_half_K(rhs, sigma0);
- Vector<DensityBasis> sigma;
- { // Set sigma
- Long Nnode = DensityBasis::Size();
- Long Nelem = S.GetElem().NElem();
- typename sctl::ParallelSolver<Real>::ParallelOp A = [&S,&BIOp_half_K_L](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
- Long Nnode = DensityBasis::Size();
- Long Nelem = S.GetElem().NElem();
- Ax->ReInit(Nelem*COORD_DIM*Nnode);
- Vector<DensityBasis> x_(Nelem*COORD_DIM), Ax_(Nelem*COORD_DIM);
- for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set x_
- for (Long k = 0; k < Nnode; k++) {
- x_[i][k] = x[i*Nnode+k];
- }
- }
- BIOp_half_K_L(Ax_, x_);
- for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set Ax
- for (Long k = 0; k < Nnode; k++) {
- (*Ax)[i*Nnode+k] = Ax_[i][k];
- }
- }
- };
- Vector<Real> sigma_(Nelem*COORD_DIM*Nnode), rhs_(Nelem*COORD_DIM*Nnode);
- for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set rhs_
- for (Long k = 0; k < Nnode; k++) {
- rhs_[i*Nnode+k] = rhs[i][k];
- }
- }
- sigma_ = 0;
- ParallelSolver<Real> linear_solver(comm, true);
- linear_solver(&sigma_, A, rhs_, 1e-6, 50);
- sigma.ReInit(Nelem * COORD_DIM);
- for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set sigma
- for (Long k = 0; k < Nnode; k++) {
- sigma[i][k] = sigma_[i*Nnode+k] - sigma0[i][k];
- }
- }
- }
- S.quadrature_FxU.Eval(U, S.GetElem(), sigma, S.Stokes_FxU);
- { // Write VTU
- VTUData vtu_sigma;
- vtu_sigma.AddElems(S.elements, sigma, ORDER);
- vtu_sigma.WriteVTK("sphere-sigma0", comm);
- VTUData vtu_U;
- vtu_U.AddElems(S.elements, U, ORDER);
- vtu_U.WriteVTK("sphere-U0", comm);
- }
- }
- { // Tornberg
- Vector<DensityBasis> rhs;
- BIOpL(rhs, U);
- Vector<DensityBasis> sigma;
- { // Set sigma
- Long Nnode = DensityBasis::Size();
- Long Nelem = S.GetElem().NElem();
- typename sctl::ParallelSolver<Real>::ParallelOp A = [&S,&BIOp_half_S_D](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
- Long Nnode = DensityBasis::Size();
- Long Nelem = S.GetElem().NElem();
- Ax->ReInit(Nelem*COORD_DIM*Nnode);
- Vector<DensityBasis> x_(Nelem*COORD_DIM), Ax_(Nelem*COORD_DIM);
- for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set x_
- for (Long k = 0; k < Nnode; k++) {
- x_[i][k] = x[i*Nnode+k];
- }
- }
- BIOp_half_S_D(Ax_, x_);
- for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set Ax
- for (Long k = 0; k < Nnode; k++) {
- (*Ax)[i*Nnode+k] = Ax_[i][k];
- }
- }
- };
- Vector<Real> sigma_(Nelem*COORD_DIM*Nnode), rhs_(Nelem*COORD_DIM*Nnode);
- for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set rhs_
- for (Long k = 0; k < Nnode; k++) {
- rhs_[i*Nnode+k] = rhs[i][k];
- }
- }
- sigma_ = 0;
- ParallelSolver<Real> linear_solver(comm, true);
- linear_solver(&sigma_, A, rhs_, 1e-6, 50);
- sigma.ReInit(Nelem * COORD_DIM);
- for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set sigma
- for (Long k = 0; k < Nnode; k++) {
- sigma[i][k] = sigma_[i*Nnode+k];
- }
- }
- }
- Vector<PotentialBasis> U1;
- BIOp_half_S_D(U1, sigma);
- { // Write VTU
- VTUData vtu_sigma;
- vtu_sigma.AddElems(S.elements, sigma, ORDER);
- vtu_sigma.WriteVTK("sphere-sigma1", comm);
- VTUData vtu_U;
- vtu_U.AddElems(S.elements, U1, ORDER);
- vtu_U.WriteVTK("sphere-U1", comm);
- }
- }
- Profile::print(&comm);
- }
- private:
- template <class FnBasis> void SurfInteg(Vector<Real>& I, const Vector<FnBasis>& f) {
- static_assert(std::is_same<FnBasis,CoordBasis>::value, "FnBasis is different from CoordBasis");
- const Long Nelem = elements.NElem();
- const Long dof = f.Dim() / Nelem;
- SCTL_ASSERT(f.Dim() == Nelem * dof);
- auto nodes = FnBasis::Nodes();
- auto quad_wts = FnBasis::QuadWts();
- const Long Nnodes = FnBasis::Size();
- auto EvalOp = CoordBasis::SetupEval(nodes);
- Vector<CoordBasis> dX;
- const auto& X = elements.ElemVector();
- SCTL_ASSERT(X.Dim() == Nelem * COORD_DIM);
- CoordBasis::Grad(dX, X);
- Matrix<Real> I_(Nelem, dof);
- for (Long i = 0; i < Nelem; i++) {
- for (Long k = 0; k < dof; k++) {
- I_[i][k] = 0;
- }
- for (Long j = 0; j < Nnodes; j++) {
- Real dA = 0;
- StaticArray<Real,COORD_DIM> Xn;
- Xn[0] = dX[i*COORD_DIM*2+2][j] * dX[i*COORD_DIM*2+5][j] - dX[i*COORD_DIM*2+3][j] * dX[i*COORD_DIM*2+4][j];
- Xn[1] = dX[i*COORD_DIM*2+4][j] * dX[i*COORD_DIM*2+1][j] - dX[i*COORD_DIM*2+5][j] * dX[i*COORD_DIM*2+0][j];
- Xn[2] = dX[i*COORD_DIM*2+0][j] * dX[i*COORD_DIM*2+3][j] - dX[i*COORD_DIM*2+1][j] * dX[i*COORD_DIM*2+2][j];
- dA += sqrt<Real>(Xn[0]*Xn[0] + Xn[1]*Xn[1] + Xn[2]*Xn[2]) * quad_wts[j];
- for (Long k = 0; k < dof; k++) {
- I_[i][k] += dA * f[i*dof+k][j];
- }
- }
- }
- Long Ns = elem_cnt.Dim();
- if (I.Dim() != Ns * dof) I.ReInit(Ns * dof);
- I = 0;
- Long elem_itr = 0;
- for (Long i = 0; i < Ns; i++) {
- for (Long j = 0; j < elem_cnt[i]; j++) {
- for (Long k = 0; k < dof; k++) {
- I[i*dof+k] += I_[elem_itr][k];
- }
- elem_itr++;
- }
- }
- }
- void InitSpheres(const Vector<Real> X, const Vector<Real>& R){
- SCTL_ASSERT(X.Dim() == R.Dim() * COORD_DIM);
- Long N = R.Dim();
- elements.ReInit(2*COORD_DIM*N);
- auto nodes = ElemLst::CoordBasis::Nodes();
- for (Long l = 0; l < N; l++) {
- for (Integer i = 0; i < COORD_DIM; i++) {
- for (Integer j = 0; j < 2; j++) {
- for (int k = 0; k < ElemLst::CoordBasis::Size(); k++) {
- Real coord[COORD_DIM];
- coord[(i+0)%COORD_DIM] = (j ? -1.0 : 1.0);
- coord[(i+1)%COORD_DIM] = 2.0 * nodes[j?1:0][k] - 1.0;
- coord[(i+2)%COORD_DIM] = 2.0 * nodes[j?0:1][k] - 1.0;
- Real R0 = sqrt<Real>(coord[0]*coord[0] + coord[1]*coord[1] + coord[2]*coord[2]);
- elements((l*COORD_DIM+i)*2+j,0)[k] = X[l*COORD_DIM+0] + R[l] * coord[0] / R0;
- elements((l*COORD_DIM+i)*2+j,1)[k] = X[l*COORD_DIM+1] + R[l] * coord[1] / R0;
- elements((l*COORD_DIM+i)*2+j,2)[k] = X[l*COORD_DIM+2] + R[l] * coord[2] / R0;
- }
- }
- }
- }
- elem_cnt.ReInit(N);
- elem_cnt = 6;
- }
- GenericKernel<Stokes3D_DxU> Stokes_DxU;
- GenericKernel<Stokes3D_FxU> Stokes_FxU;
- GenericKernel<Stokes3D_FxT> Stokes_FxT;
- Quadrature<Real> quadrature_DxU;
- Quadrature<Real> quadrature_FxU;
- Quadrature<Real> quadrature_FxT;
- ElemLst elements;
- Vector<Long> elem_cnt;
- };
- } // end namespace
- #endif //_SCTL_BOUNDARY_QUADRATURE_HPP_
|