boundary_quadrature.hpp 258 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945
  1. #ifndef _SCTL_BOUNDARY_QUADRATURE_HPP_
  2. #define _SCTL_BOUNDARY_QUADRATURE_HPP_
  3. #include <mutex>
  4. #include <atomic>
  5. #include <tuple>
  6. namespace SCTL_NAMESPACE {
  7. template <class Real, Integer DIM, Integer ORDER> class Basis {
  8. public:
  9. using ValueType = Real;
  10. // class EvalOperator {
  11. // public:
  12. // };
  13. using EvalOpType = Matrix<ValueType>;
  14. static constexpr Long Dim() {
  15. return DIM;
  16. }
  17. static constexpr Long Size() {
  18. return pow<DIM,Long>(ORDER);
  19. }
  20. static const Matrix<ValueType>& Nodes() {
  21. static Matrix<ValueType> nodes_(DIM,Size());
  22. auto nodes_1d = [](Integer i) {
  23. return 0.5 - 0.5 * sctl::cos<ValueType>((2*i+1) * const_pi<ValueType>() / (2*ORDER));
  24. };
  25. { // Set nodes_
  26. static std::mutex mutex;
  27. static std::atomic<Integer> first_time(true);
  28. if (first_time.load(std::memory_order_relaxed)) {
  29. std::lock_guard<std::mutex> guard(mutex);
  30. if (first_time.load(std::memory_order_relaxed)) {
  31. Integer N = 1;
  32. for (Integer d = 0; d < DIM; d++) {
  33. for (Integer j = 0; j < ORDER; j++) {
  34. for (Integer i = 0; i < N; i++) {
  35. for (Integer k = 0; k < d; k++) {
  36. nodes_[k][j*N+i] = nodes_[k][i];
  37. }
  38. nodes_[d][j*N+i] = nodes_1d(j);
  39. }
  40. }
  41. N *= ORDER;
  42. }
  43. std::atomic_thread_fence(std::memory_order_seq_cst);
  44. first_time.store(false);
  45. }
  46. }
  47. }
  48. return nodes_;
  49. }
  50. static const Vector<ValueType>& QuadWts() {
  51. static Vector<ValueType> wts(Size());
  52. { // Set nodes_
  53. static std::mutex mutex;
  54. static std::atomic<Integer> first_time(true);
  55. if (first_time.load(std::memory_order_relaxed)) {
  56. std::lock_guard<std::mutex> guard(mutex);
  57. if (first_time.load(std::memory_order_relaxed)) {
  58. StaticArray<ValueType,ORDER> wts_1d;
  59. { // Set wts_1d
  60. Vector<ValueType> x_(ORDER);
  61. ChebBasis<ValueType>::template Nodes<1>(ORDER, x_);
  62. Vector<ValueType> V_cheb(ORDER * ORDER);
  63. { // Set V_cheb
  64. Vector<ValueType> I(ORDER*ORDER);
  65. I = 0;
  66. for (Long i = 0; i < ORDER; i++) I[i*ORDER+i] = 1;
  67. ChebBasis<ValueType>::template Approx<1>(ORDER, I, V_cheb);
  68. }
  69. Matrix<ValueType> M(ORDER, ORDER, V_cheb.begin());
  70. Vector<ValueType> w_sample(ORDER);
  71. for (Integer i = 0; i < ORDER; i++) {
  72. w_sample[i] = (i % 2 ? 0 : -(ORDER/(ValueType)(i*i-1)));
  73. }
  74. for (Integer j = 0; j < ORDER; j++) {
  75. wts_1d[j] = 0;
  76. for (Integer i = 0; i < ORDER; i++) {
  77. wts_1d[j] += M[j][i] * w_sample[i] / ORDER;
  78. }
  79. }
  80. }
  81. wts[0] = 1;
  82. Integer N = 1;
  83. for (Integer d = 0; d < DIM; d++) {
  84. for (Integer j = 1; j < ORDER; j++) {
  85. for (Integer i = 0; i < N; i++) {
  86. wts[j*N+i] = wts[i] * wts_1d[j];
  87. }
  88. }
  89. for (Integer i = 0; i < N; i++) {
  90. wts[i] *= wts_1d[0];
  91. }
  92. N *= ORDER;
  93. }
  94. std::atomic_thread_fence(std::memory_order_seq_cst);
  95. first_time.store(false);
  96. }
  97. }
  98. }
  99. return wts;
  100. }
  101. static void Grad(Vector<Basis>& dX, const Vector<Basis>& X) {
  102. static Matrix<ValueType> GradOp[DIM];
  103. static std::mutex mutex;
  104. static std::atomic<Integer> first_time(true);
  105. if (first_time.load(std::memory_order_relaxed)) {
  106. std::lock_guard<std::mutex> guard(mutex);
  107. if (first_time.load(std::memory_order_relaxed)) {
  108. { // Set GradOp
  109. auto nodes = Basis<ValueType,1,ORDER>::Nodes();
  110. SCTL_ASSERT(nodes.Dim(1) == ORDER);
  111. Matrix<ValueType> M(ORDER, ORDER);
  112. for (Integer i = 0; i < ORDER; i++) { // Set M
  113. Real x = nodes[0][i];
  114. for (Integer j = 0; j < ORDER; j++) {
  115. M[j][i] = 0;
  116. for (Integer l = 0; l < ORDER; l++) {
  117. if (l != j) {
  118. Real M_ = 1;
  119. for (Integer k = 0; k < ORDER; k++) {
  120. if (k != j && k != l) M_ *= (x - nodes[0][k]);
  121. if (k != j) M_ /= (nodes[0][j] - nodes[0][k]);
  122. }
  123. M[j][i] += M_;
  124. }
  125. }
  126. }
  127. }
  128. for (Integer d = 0; d < DIM; d++) {
  129. GradOp[d].ReInit(Size(), Size());
  130. GradOp[d] = 0;
  131. Integer stride0 = sctl::pow<Integer>(ORDER, d);
  132. Integer repeat0 = sctl::pow<Integer>(ORDER, d);
  133. Integer stride1 = sctl::pow<Integer>(ORDER, d+1);
  134. Integer repeat1 = sctl::pow<Integer>(ORDER, DIM-d-1);
  135. for (Integer k1 = 0; k1 < repeat1; k1++) {
  136. for (Integer i = 0; i < ORDER; i++) {
  137. for (Integer j = 0; j < ORDER; j++) {
  138. for (Integer k0 = 0; k0 < repeat0; k0++) {
  139. GradOp[d][k1*stride1 + i*stride0 + k0][k1*stride1 + j*stride0 + k0] = M[i][j];
  140. }
  141. }
  142. }
  143. }
  144. }
  145. }
  146. std::atomic_thread_fence(std::memory_order_seq_cst);
  147. first_time.store(false);
  148. }
  149. }
  150. if (dX.Dim() != X.Dim()*DIM) dX.ReInit(X.Dim()*DIM);
  151. for (Long i = 0; i < X.Dim(); i++) {
  152. const Matrix<ValueType> Vi(1, Size(), (Iterator<ValueType>)(ConstIterator<ValueType>)X[i].NodeValues_, false);
  153. for (Integer k = 0; k < DIM; k++) {
  154. Matrix<ValueType> Vo(1, Size(), dX[i*DIM+k].NodeValues_, false);
  155. Matrix<ValueType>::GEMM(Vo, Vi, GradOp[k]);
  156. }
  157. }
  158. }
  159. static EvalOpType SetupEval(const Matrix<ValueType>& X) {
  160. Long N = X.Dim(1);
  161. SCTL_ASSERT(X.Dim(0) == DIM);
  162. Matrix<ValueType> M(Size(), N);
  163. { // Set M
  164. auto nodes = Basis<ValueType,1,ORDER>::Nodes();
  165. Integer NN = Basis<ValueType,1,ORDER>::Size();
  166. Matrix<ValueType> M_(NN, DIM*N);
  167. for (Long i = 0; i < DIM*N; i++) {
  168. ValueType x = X[0][i];
  169. for (Integer j = 0; j < NN; j++) {
  170. ValueType y = 1;
  171. for (Integer k = 0; k < NN; k++) {
  172. y *= (j==k ? 1 : (nodes[0][k] - x) / (nodes[0][k] - nodes[0][j]));
  173. }
  174. M_[j][i] = y;
  175. }
  176. }
  177. if (DIM == 1) {
  178. SCTL_ASSERT(M.Dim(0) == M_.Dim(0));
  179. SCTL_ASSERT(M.Dim(1) == M_.Dim(1));
  180. M = M_;
  181. } else {
  182. Integer NNN = 1;
  183. M = 1;
  184. for (Integer d = 0; d < DIM; d++) {
  185. for (Integer k = 1; k < NN; k++) {
  186. for (Integer j = 0; j < NNN; j++) {
  187. for (Long i = 0; i < N; i++) {
  188. M[k*NNN+j][i] = M[j][i] * M_[k][d*N+i];
  189. }
  190. }
  191. }
  192. { // k = 0
  193. for (Integer j = 0; j < NNN; j++) {
  194. for (Long i = 0; i < N; i++) {
  195. M[j][i] *= M_[0][d*N+i];
  196. }
  197. }
  198. }
  199. NNN *= NN;
  200. }
  201. }
  202. }
  203. return M;
  204. }
  205. static void Eval(Matrix<ValueType>& Y, const Vector<Basis>& X, const EvalOpType& M) {
  206. Long N0 = X.Dim();
  207. Long N1 = M.Dim(1);
  208. SCTL_ASSERT(M.Dim(0) == Size());
  209. if (Y.Dim(0) != N0 || Y.Dim(1) != N1) Y.ReInit(N0, N1);
  210. for (Long i = 0; i < N0; i++) {
  211. const Matrix<ValueType> X_(1,Size(),(Iterator<ValueType>)(ConstIterator<ValueType>)X[i].NodeValues_,false);
  212. Matrix<ValueType> Y_(1,N1,Y[i],false);
  213. Matrix<ValueType>::GEMM(Y_,X_,M);
  214. }
  215. }
  216. Basis operator+(Basis X) const {
  217. for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] + X[i];
  218. return X;
  219. }
  220. Basis operator-(Basis X) const {
  221. for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] - X[i];
  222. return X;
  223. }
  224. Basis operator*(Basis X) const {
  225. for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] * X[i];
  226. return X;
  227. }
  228. Basis operator*(Real a) const {
  229. Basis X = (*this);
  230. for (Long i = 0; i < Size(); i++) X[i] *= a;
  231. return X;
  232. }
  233. Basis& operator+=(const Basis& X) {
  234. for (Long i = 0; i < Size(); i++) (*this)[i] += X[i];
  235. return *this;
  236. }
  237. Basis& operator-=(const Basis& X) {
  238. for (Long i = 0; i < Size(); i++) (*this)[i] -= X[i];
  239. return *this;
  240. }
  241. Basis& operator*=(const Basis& X) {
  242. for (Long i = 0; i < Size(); i++) (*this)[i] *= X[i];
  243. return *this;
  244. }
  245. Basis& operator*=(Real a) {
  246. for (Long i = 0; i < Size(); i++) (*this)[i] *= a;
  247. return *this;
  248. }
  249. Basis& operator=(Real a) {
  250. for (Long i = 0; i < Size(); i++) (*this)[i] = a;
  251. return *this;
  252. }
  253. const ValueType& operator[](Long i) const {
  254. SCTL_ASSERT(i < Size());
  255. return NodeValues_[i];
  256. }
  257. ValueType& operator[](Long i) {
  258. SCTL_ASSERT(i < Size());
  259. return NodeValues_[i];
  260. }
  261. private:
  262. StaticArray<ValueType,Size()> NodeValues_;
  263. };
  264. template <Integer COORD_DIM, class Basis> class ElemList {
  265. public:
  266. using CoordBasis = Basis;
  267. using CoordType = typename CoordBasis::ValueType;
  268. static constexpr Integer CoordDim() {
  269. return COORD_DIM;
  270. }
  271. static constexpr Integer ElemDim() {
  272. return CoordBasis::Dim();
  273. }
  274. ElemList(Long Nelem = 0) {
  275. ReInit(Nelem);
  276. }
  277. void ReInit(Long Nelem = 0) {
  278. Nelem_ = Nelem;
  279. X_.ReInit(Nelem_ * COORD_DIM);
  280. }
  281. void ReInit(const Vector<CoordBasis>& X) {
  282. Nelem_ = X.Dim() / COORD_DIM;
  283. SCTL_ASSERT(X.Dim() == Nelem_ * COORD_DIM);
  284. X_ = X;
  285. }
  286. Long NElem() const {
  287. return Nelem_;
  288. }
  289. CoordBasis& operator()(Long elem, Integer dim) {
  290. SCTL_ASSERT(elem >= 0 && elem < Nelem_);
  291. SCTL_ASSERT(dim >= 0 && dim < COORD_DIM);
  292. return X_[elem*COORD_DIM+dim];
  293. }
  294. const CoordBasis& operator()(Long elem, Integer dim) const {
  295. SCTL_ASSERT(elem >= 0 && elem < Nelem_);
  296. SCTL_ASSERT(dim >= 0 && dim < COORD_DIM);
  297. return X_[elem*COORD_DIM+dim];
  298. }
  299. const Vector<CoordBasis>& ElemVector() const {
  300. return X_;
  301. }
  302. private:
  303. static_assert(CoordBasis::Dim() <= CoordDim(), "Basis dimension can not be greater than COORD_DIM.");
  304. Vector<CoordBasis> X_;
  305. Long Nelem_;
  306. mutable Vector<CoordBasis> dX_;
  307. };
  308. template <class Real> class Quadrature {
  309. static Real machine_epsilon() {
  310. Real eps=1;
  311. while(eps*(Real)0.5+(Real)1.0>1.0) eps*=0.5;
  312. return eps;
  313. }
  314. template <Integer DIM> static void DuffyQuad(Matrix<Real>& nodes, Vector<Real>& weights, const Vector<Real>& coord, Integer order, Real adapt = -1.0) {
  315. SCTL_ASSERT(coord.Dim() == DIM);
  316. static Real eps = machine_epsilon()*16;
  317. Matrix<Real> qx;
  318. Vector<Real> qw;
  319. { // Set qx, qw
  320. Vector<Real> qx0, qw0;
  321. ChebBasis<Real>::quad_rule(order, qx0, qw0);
  322. Integer N = sctl::pow<DIM,Integer>(order);
  323. qx.ReInit(DIM,N);
  324. qw.ReInit(N);
  325. qw[0] = 1;
  326. Integer N_ = 1;
  327. for (Integer d = 0; d < DIM; d++) {
  328. for (Integer j = 0; j < order; j++) {
  329. for (Integer i = 0; i < N_; i++) {
  330. for (Integer k = 0; k < d; k++) {
  331. qx[k][j*N_+i] = qx[k][i];
  332. }
  333. qx[d][j*N_+i] = qx0[j];
  334. qw[j*N_+i] = qw[i];
  335. }
  336. }
  337. for (Integer j = 0; j < order; j++) {
  338. for (Integer i = 0; i < N_; i++) {
  339. qw[j*N_+i] *= qw0[j];
  340. }
  341. }
  342. N_ *= order;
  343. }
  344. }
  345. Vector<Real> X;
  346. { // Set X
  347. StaticArray<Real,2*DIM+2> X_;
  348. X_[0] = 0;
  349. X_[1] = adapt;
  350. for (Integer i = 0; i < DIM; i++) {
  351. X_[2*i+2] = sctl::fabs<Real>(coord[i]);
  352. X_[2*i+3] = sctl::fabs<Real>(coord[i]-1);
  353. }
  354. std::sort((Iterator<Real>)X_, (Iterator<Real>)X_+2*DIM+2);
  355. X.PushBack(std::max<Real>(0, X_[2*DIM]-1));
  356. for (Integer i = 0; i < 2*DIM+2; i++) {
  357. if (X[X.Dim()-1] < X_[i]) {
  358. if (X.Dim())
  359. X.PushBack(X_[i]);
  360. }
  361. }
  362. /////////////////////////////////////////////////////////////////////////////////////////////////
  363. Vector<Real> r(1);
  364. r[0] = X[0];
  365. for (Integer i = 1; i < X.Dim(); i++) {
  366. while (r[r.Dim() - 1] > 0.0 && (order*0.5) * r[r.Dim() - 1] < X[i]) r.PushBack((order*0.5) * r[r.Dim() - 1]); // TODO
  367. r.PushBack(X[i]);
  368. }
  369. X = r;
  370. /////////////////////////////////////////////////////////////////////////////////////////////////
  371. }
  372. Vector<Real> nds, wts;
  373. for (Integer k = 0; k < X.Dim()-1; k++) {
  374. for (Integer dd = 0; dd < 2*DIM; dd++) {
  375. Integer d0 = (dd>>1);
  376. StaticArray<Real,2*DIM> range0, range1;
  377. { // Set range0, range1
  378. Integer d1 = (dd%2?1:-1);
  379. for (Integer d = 0; d < DIM; d++) {
  380. range0[d*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d] - X[k] ));
  381. range0[d*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d] + X[k] ));
  382. range1[d*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d] - X[k+1]));
  383. range1[d*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d] + X[k+1]));
  384. }
  385. range0[d0*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+0]));
  386. range0[d0*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+0]));
  387. range1[d0*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+1]));
  388. range1[d0*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+1]));
  389. }
  390. { // if volume(range0, range1) == 0 then continue
  391. Real v0 = 1, v1 = 1;
  392. for (Integer d = 0; d < DIM; d++) {
  393. if (d == d0) {
  394. v0 *= sctl::fabs<Real>(range0[d*2+0]-range1[d*2+0]);
  395. v1 *= sctl::fabs<Real>(range0[d*2+0]-range1[d*2+0]);
  396. } else {
  397. v0 *= range0[d*2+1]-range0[d*2+0];
  398. v1 *= range1[d*2+1]-range1[d*2+0];
  399. }
  400. }
  401. if (v0 < eps && v1 < eps) continue;
  402. }
  403. for (Integer i = 0; i < qx.Dim(1); i++) { // Set nds, wts
  404. Real w = qw[i];
  405. Real z = qx[d0][i];
  406. for (Integer d = 0; d < DIM; d++) {
  407. Real y = qx[d][i];
  408. nds.PushBack((range0[d*2+0]*(1-y) + range0[d*2+1]*y)*(1-z) + (range1[d*2+0]*(1-y) + range1[d*2+1]*y)*z);
  409. if (d == d0) {
  410. w *= abs(range1[d*2+0] - range0[d*2+0]);
  411. } else {
  412. w *= (range0[d*2+1] - range0[d*2+0])*(1-z) + (range1[d*2+1] - range1[d*2+0])*z;
  413. }
  414. }
  415. wts.PushBack(w);
  416. }
  417. }
  418. }
  419. nodes = Matrix<Real>(nds.Dim()/DIM,DIM,nds.begin()).Transpose();
  420. weights = wts;
  421. }
  422. template <Integer DIM> static void TensorProductGaussQuad(Matrix<Real>& nodes, Vector<Real>& weights, Integer order) {
  423. Vector<Real> coord(DIM);
  424. coord = 0;
  425. coord[0] = -10;
  426. DuffyQuad<DIM>(nodes, weights, coord, order);
  427. }
  428. template <class DensityBasis, class ElemList, class Kernel> static void SetupSingular(Matrix<Real>& M_singular, const Matrix<Real>& trg_nds, const ElemList& elem_lst, const Kernel& kernel, Integer order_singular = 10, Integer order_direct = 10, Real Rqbx = 0) {
  429. using CoordBasis = typename ElemList::CoordBasis;
  430. using CoordEvalOpType = typename CoordBasis::EvalOpType;
  431. using DensityEvalOpType = typename DensityBasis::EvalOpType;
  432. constexpr Integer CoordDim = ElemList::CoordDim();
  433. constexpr Integer ElemDim = ElemList::ElemDim();
  434. constexpr Integer KDIM0 = Kernel::SrcDim();
  435. constexpr Integer KDIM1 = Kernel::TrgDim();
  436. const Long Nelem = elem_lst.NElem();
  437. const Integer Ntrg = trg_nds.Dim(1);
  438. SCTL_ASSERT(trg_nds.Dim(0) == ElemDim);
  439. const Vector<CoordBasis>& X = elem_lst.ElemVector();
  440. Vector<CoordBasis> dX;
  441. CoordBasis::Grad(dX, X);
  442. Vector<Real> Xt, Xnt;
  443. { // Set Xt, Xnt
  444. auto Meval = CoordBasis::SetupEval(trg_nds);
  445. eval_basis(Xt, X, CoordDim, trg_nds.Dim(1), Meval);
  446. Xnt = Xt;
  447. Vector<Real> dX_;
  448. eval_basis(dX_, dX, 2*CoordDim, trg_nds.Dim(1), Meval);
  449. for (Long i = 0; i < Ntrg; i++) {
  450. for (Long j = 0; j < Nelem; j++) {
  451. auto Xn = Xnt.begin() + (j*Ntrg+i)*CoordDim;
  452. auto dX0 = dX_.begin() + (j*Ntrg+i)*2*CoordDim;
  453. StaticArray<Real,CoordDim> normal;
  454. normal[0] = dX0[2]*dX0[5] - dX0[4]*dX0[3];
  455. normal[1] = dX0[4]*dX0[1] - dX0[0]*dX0[5];
  456. normal[2] = dX0[0]*dX0[3] - dX0[2]*dX0[1];
  457. Real Xa = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  458. Real invXa = 1/Xa;
  459. normal[0] *= invXa;
  460. normal[1] *= invXa;
  461. normal[2] *= invXa;
  462. Real sqrt_Xa = sqrt<Real>(Xa);
  463. Xn[0] = normal[0]*sqrt_Xa*Rqbx;
  464. Xn[1] = normal[1]*sqrt_Xa*Rqbx;
  465. Xn[2] = normal[2]*sqrt_Xa*Rqbx;
  466. }
  467. }
  468. }
  469. SCTL_ASSERT(Xt.Dim() == Nelem * Ntrg * CoordDim);
  470. auto& M = M_singular;
  471. M.ReInit(Nelem * KDIM0 * DensityBasis::Size(), KDIM1 * Ntrg);
  472. #pragma omp parallel for schedule(static)
  473. for (Long i = 0; i < Ntrg; i++) { // Set M (singular)
  474. Matrix<Real> quad_nds;
  475. Vector<Real> quad_wts;
  476. { // Set quad_nds, quad_wts
  477. StaticArray<Real,ElemDim> trg_node_;
  478. for (Integer k = 0; k < ElemDim; k++) {
  479. trg_node_[k] = trg_nds[k][i];
  480. }
  481. Vector<Real> trg_node(ElemDim, trg_node_, false);
  482. DuffyQuad<ElemDim>(quad_nds, quad_wts, trg_node, order_singular, fabs(Rqbx));
  483. }
  484. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  485. Integer Nnds = quad_wts.Dim();
  486. Vector<Real> X_, dX_, Xa_, Xn_;
  487. { // Set X_, dX_
  488. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  489. eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
  490. }
  491. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  492. Long N = Nelem*Nnds;
  493. Xa_.ReInit(N);
  494. Xn_.ReInit(N*CoordDim);
  495. for (Long j = 0; j < N; j++) {
  496. StaticArray<Real,CoordDim> normal;
  497. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  498. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  499. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  500. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  501. Real invXa = 1/Xa_[j];
  502. Xn_[j*3+0] = normal[0] * invXa;
  503. Xn_[j*3+1] = normal[1] * invXa;
  504. Xn_[j*3+2] = normal[2] * invXa;
  505. }
  506. }
  507. DensityEvalOpType DensityEvalOp;
  508. if (std::is_same<CoordBasis,DensityBasis>::value) {
  509. DensityEvalOp = CoordEvalOp;
  510. } else {
  511. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  512. }
  513. for (Long j = 0; j < Nelem; j++) {
  514. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  515. if (Rqbx == 0) { // Set kernel matrix M__
  516. const Vector<Real> X0_(CoordDim, Xt.begin() + (j * Ntrg + i) * CoordDim, false);
  517. const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
  518. const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
  519. kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
  520. } else {
  521. Vector<Real> X0_(CoordDim);
  522. constexpr Integer qbx_order = 6;
  523. StaticArray<Matrix<Real>,qbx_order> M___;
  524. for (Integer k = 0; k < qbx_order; k++) { // Set kernel matrix M___
  525. for (Integer kk = 0; kk < CoordDim; kk++) X0_[kk] = Xt[(j * Ntrg + i) * CoordDim + kk] + (k+1) * Xnt[(j * Ntrg + i) * CoordDim + kk];
  526. const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
  527. const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
  528. kernel.template KernelMatrix<Real>(M___[k], X0_, X__, Xn__);
  529. }
  530. for (Long k = 0; k < Nnds * KDIM0 * KDIM1; k++) {
  531. M__[0][k] = 0;
  532. M__[0][k] += 6*M___[0][0][k];
  533. M__[0][k] += -15*M___[1][0][k];
  534. M__[0][k] += 20*M___[2][0][k];
  535. M__[0][k] += -15*M___[3][0][k];
  536. M__[0][k] += 6*M___[4][0][k];
  537. M__[0][k] += -1*M___[5][0][k];
  538. }
  539. }
  540. for (Long k0 = 0; k0 < KDIM0; k0++) {
  541. for (Long k1 = 0; k1 < KDIM1; k1++) {
  542. for (Long l = 0; l < DensityBasis::Size(); l++) {
  543. Real M_lk = 0;
  544. for (Long n = 0; n < Nnds; n++) {
  545. Real quad_wt = Xa_[j * Nnds + n] * quad_wts[n];
  546. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  547. }
  548. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1 * Ntrg + i] = M_lk;
  549. }
  550. }
  551. }
  552. }
  553. }
  554. { // Set M (subtract direct)
  555. Matrix<Real> quad_nds;
  556. Vector<Real> quad_wts;
  557. TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
  558. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  559. Integer Nnds = quad_wts.Dim();
  560. Vector<Real> X_, dX_, Xa_, Xn_;
  561. { // Set X_, dX_
  562. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  563. eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
  564. }
  565. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  566. Long N = Nelem*Nnds;
  567. Xa_.ReInit(N);
  568. Xn_.ReInit(N*CoordDim);
  569. for (Long j = 0; j < N; j++) {
  570. StaticArray<Real,CoordDim> normal;
  571. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  572. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  573. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  574. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  575. Real invXa = 1/Xa_[j];
  576. Xn_[j*3+0] = normal[0] * invXa;
  577. Xn_[j*3+1] = normal[1] * invXa;
  578. Xn_[j*3+2] = normal[2] * invXa;
  579. }
  580. }
  581. DensityEvalOpType DensityEvalOp;
  582. if (std::is_same<CoordBasis,DensityBasis>::value) {
  583. DensityEvalOp = CoordEvalOp;
  584. } else {
  585. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  586. }
  587. #pragma omp parallel for schedule(static)
  588. for (Long i = 0; i < Ntrg; i++) { // Subtract direct contribution
  589. for (Long j = 0; j < Nelem; j++) {
  590. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  591. { // Set kernel matrix M__
  592. const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + (j * Ntrg + i) * CoordDim, false);
  593. const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
  594. const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
  595. kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
  596. }
  597. for (Long k0 = 0; k0 < KDIM0; k0++) {
  598. for (Long k1 = 0; k1 < KDIM1; k1++) {
  599. for (Long l = 0; l < DensityBasis::Size(); l++) {
  600. Real M_lk = 0;
  601. for (Long n = 0; n < Nnds; n++) {
  602. Real quad_wt = Xa_[j * Nnds + n] * quad_wts[n];
  603. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  604. }
  605. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1 * Ntrg + i] -= M_lk;
  606. }
  607. }
  608. }
  609. }
  610. }
  611. }
  612. }
  613. template <class DensityBasis> static void EvalSingular(Matrix<Real>& U, const Vector<DensityBasis>& density, const Matrix<Real>& M, Integer KDIM0_, Integer KDIM1_) {
  614. if (M.Dim(0) == 0 || M.Dim(1) == 0) {
  615. U.ReInit(0,0);
  616. return;
  617. }
  618. const Long Ntrg = M.Dim(1) / KDIM1_;
  619. SCTL_ASSERT(M.Dim(1) == KDIM1_ * Ntrg);
  620. const Long Nelem = M.Dim(0) / (KDIM0_ * DensityBasis::Size());
  621. SCTL_ASSERT(M.Dim(0) == Nelem * KDIM0_ * DensityBasis::Size());
  622. const Integer dof = density.Dim() / (Nelem * KDIM0_);
  623. SCTL_ASSERT(density.Dim() == Nelem * dof * KDIM0_);
  624. if (U.Dim(0) != Nelem * dof * KDIM1_ || U.Dim(1) != Ntrg) {
  625. U.ReInit(Nelem * dof * KDIM1_, Ntrg);
  626. U = 0;
  627. }
  628. for (Long j = 0; j < Nelem; j++) {
  629. const Matrix<Real> M_(KDIM0_ * DensityBasis::Size(), KDIM1_ * Ntrg, (Iterator<Real>)M[j * KDIM0_ * DensityBasis::Size()], false);
  630. Matrix<Real> U_(dof, KDIM1_ * Ntrg, U[j*dof*KDIM1_], false);
  631. Matrix<Real> F_(dof, KDIM0_ * DensityBasis::Size());
  632. for (Long i = 0; i < dof; i++) {
  633. for (Long k = 0; k < KDIM0_; k++) {
  634. for (Long l = 0; l < DensityBasis::Size(); l++) {
  635. F_[i][k * DensityBasis::Size() + l] = density[(j * dof + i) * KDIM0_ + k][l];
  636. }
  637. }
  638. }
  639. Matrix<Real>::GEMM(U_, F_, M_);
  640. }
  641. }
  642. template <Integer DIM> struct PointData {
  643. bool operator<(const PointData& p) const {
  644. return mid < p.mid;
  645. }
  646. Long rank;
  647. Long surf_rank;
  648. Morton<DIM> mid;
  649. StaticArray<Real,DIM> coord;
  650. Real radius2;
  651. };
  652. template <class T1, class T2> struct Pair {
  653. Pair() {}
  654. Pair(T1 x, T2 y) : first(x), second(y) {}
  655. bool operator<(const Pair& p) const {
  656. return (first < p.first) || (((first == p.first) && (second < p.second)));
  657. }
  658. T1 first;
  659. T2 second;
  660. };
  661. template <class ElemList> static void BuildNbrList(Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt, const Vector<Long>& trg_surf, const ElemList& elem_lst, Real distance_factor, Real period_length, const Comm& comm) {
  662. using CoordBasis = typename ElemList::CoordBasis;
  663. constexpr Integer CoordDim = ElemList::CoordDim();
  664. constexpr Integer ElemDim = ElemList::ElemDim();
  665. using PtData = PointData<CoordDim>;
  666. const Integer rank = comm.Rank();
  667. Real R0 = 0;
  668. StaticArray<Real,CoordDim> X0;
  669. { // Find bounding box
  670. Long N = Xt.Dim() / CoordDim;
  671. SCTL_ASSERT(Xt.Dim() == N * CoordDim);
  672. SCTL_ASSERT(N);
  673. StaticArray<Real,CoordDim*2> Xloc;
  674. StaticArray<Real,CoordDim*2> Xglb;
  675. for (Integer k = 0; k < CoordDim; k++) {
  676. Xloc[0*CoordDim+k] = Xt[k];
  677. Xloc[1*CoordDim+k] = Xt[k];
  678. }
  679. for (Long i = 0; i < N; i++) {
  680. for (Integer k = 0; k < CoordDim; k++) {
  681. Xloc[0*CoordDim+k] = std::min<Real>(Xloc[0*CoordDim+k], Xt[i*CoordDim+k]);
  682. Xloc[1*CoordDim+k] = std::max<Real>(Xloc[1*CoordDim+k], Xt[i*CoordDim+k]);
  683. }
  684. }
  685. comm.Allreduce((ConstIterator<Real>)Xloc+0*CoordDim, (Iterator<Real>)Xglb+0*CoordDim, CoordDim, Comm::CommOp::MIN);
  686. comm.Allreduce((ConstIterator<Real>)Xloc+1*CoordDim, (Iterator<Real>)Xglb+1*CoordDim, CoordDim, Comm::CommOp::MAX);
  687. for (Integer k = 0; k < CoordDim; k++) {
  688. R0 = std::max(R0, Xglb[1*CoordDim+k]-Xglb[0*CoordDim+k]);
  689. }
  690. R0 = R0 * 2.0;
  691. for (Integer k = 0; k < CoordDim; k++) {
  692. X0[k] = Xglb[k] - R0*0.25;
  693. }
  694. }
  695. if (period_length > 0) {
  696. R0 = period_length;
  697. }
  698. Vector<PtData> PtSrc, PtTrg;
  699. Integer order_upsample = (Integer)(const_pi<Real>() / distance_factor + 0.5);
  700. { // Set PtSrc
  701. const Vector<CoordBasis>& X_elem_lst = elem_lst.ElemVector();
  702. Vector<CoordBasis> dX_elem_lst;
  703. CoordBasis::Grad(dX_elem_lst, X_elem_lst);
  704. Matrix<Real> nds;
  705. Vector<Real> wts;
  706. TensorProductGaussQuad<ElemDim>(nds, wts, order_upsample);
  707. const Long Nnds = nds.Dim(1);
  708. Vector<Real> X, dX;
  709. const auto CoordEvalOp = CoordBasis::SetupEval(nds);
  710. eval_basis(X, X_elem_lst, CoordDim, Nnds, CoordEvalOp);
  711. eval_basis(dX, dX_elem_lst, CoordDim * ElemDim, Nnds, CoordEvalOp);
  712. const Long N = X.Dim() / CoordDim;
  713. const Long Nelem = elem_lst.NElem();
  714. SCTL_ASSERT(X.Dim() == N * CoordDim);
  715. SCTL_ASSERT(N == Nelem * Nnds);
  716. Long rank_offset, surf_rank_offset;
  717. { // Set rank_offset, surf_rank_offset
  718. comm.Scan(Ptr2ConstItr<Long>(&N,1), Ptr2Itr<Long>(&rank_offset,1), 1, Comm::CommOp::SUM);
  719. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&surf_rank_offset,1), 1, Comm::CommOp::SUM);
  720. surf_rank_offset -= Nelem;
  721. rank_offset -= N;
  722. }
  723. PtSrc.ReInit(N);
  724. const Real R0inv = 1.0 / R0;
  725. for (Long i = 0; i < N; i++) { // Set coord
  726. for (Integer k = 0; k < CoordDim; k++) {
  727. PtSrc[i].coord[k] = (X[i*CoordDim+k] - X0[k]) * R0inv;
  728. }
  729. }
  730. if (period_length > 0) { // Wrap-around coord
  731. for (Long i = 0; i < N; i++) {
  732. auto& x = PtSrc[i].coord;
  733. for (Integer k = 0; k < CoordDim; k++) {
  734. x[k] -= (Long)(x[k]);
  735. }
  736. }
  737. }
  738. for (Long i = 0; i < N; i++) { // Set radius2, mid, rank
  739. Integer depth = 0;
  740. { // Set radius2, depth
  741. Real radius2 = 0;
  742. for (Integer k0 = 0; k0 < ElemDim; k0++) {
  743. Real R2 = 0;
  744. for (Integer k1 = 0; k1 < CoordDim; k1++) {
  745. Real dX_ = dX[(i*CoordDim+k1)*ElemDim+k0];
  746. R2 += dX_*dX_;
  747. }
  748. radius2 = std::max(radius2, R2);
  749. }
  750. radius2 *= R0inv*R0inv * distance_factor*distance_factor;
  751. PtSrc[i].radius2 = radius2;
  752. Long Rinv = (Long)(1.0/radius2);
  753. while (Rinv > 0) {
  754. Rinv = (Rinv>>2);
  755. depth++;
  756. }
  757. }
  758. PtSrc[i].mid = Morton<CoordDim>((Iterator<Real>)PtSrc[i].coord, std::min(Morton<CoordDim>::MaxDepth(),depth));
  759. PtSrc[i].rank = rank_offset + i;
  760. }
  761. for (Long i = 0 ; i < Nelem; i++) { // Set surf_rank
  762. for (Long j = 0; j < Nnds; j++) {
  763. PtSrc[i*Nnds+j].surf_rank = surf_rank_offset + i;
  764. }
  765. }
  766. Vector<PtData> PtSrcSorted;
  767. comm.HyperQuickSort(PtSrc, PtSrcSorted);
  768. PtSrc.Swap(PtSrcSorted);
  769. }
  770. { // Set PtTrg
  771. const Long N = Xt.Dim() / CoordDim;
  772. SCTL_ASSERT(Xt.Dim() == N * CoordDim);
  773. Long rank_offset;
  774. { // Set rank_offset
  775. comm.Scan(Ptr2ConstItr<Long>(&N,1), Ptr2Itr<Long>(&rank_offset,1), 1, Comm::CommOp::SUM);
  776. rank_offset -= N;
  777. }
  778. PtTrg.ReInit(N);
  779. const Real R0inv = 1.0 / R0;
  780. for (Long i = 0; i < N; i++) { // Set coord
  781. for (Integer k = 0; k < CoordDim; k++) {
  782. PtTrg[i].coord[k] = (Xt[i*CoordDim+k] - X0[k]) * R0inv;
  783. }
  784. }
  785. if (period_length > 0) { // Wrap-around coord
  786. for (Long i = 0; i < N; i++) {
  787. auto& x = PtTrg[i].coord;
  788. for (Integer k = 0; k < CoordDim; k++) {
  789. x[k] -= (Long)(x[k]);
  790. }
  791. }
  792. }
  793. for (Long i = 0; i < N; i++) { // Set radius2, mid, rank
  794. PtTrg[i].radius2 = 0;
  795. PtTrg[i].mid = Morton<CoordDim>((Iterator<Real>)PtTrg[i].coord);
  796. PtTrg[i].rank = rank_offset + i;
  797. }
  798. if (trg_surf.Dim()) { // Set surf_rank
  799. SCTL_ASSERT(trg_surf.Dim() == N);
  800. for (Long i = 0; i < N; i++) {
  801. PtTrg[i].surf_rank = trg_surf[i];
  802. }
  803. } else {
  804. for (Long i = 0; i < N; i++) {
  805. PtTrg[i].surf_rank = -1;
  806. }
  807. }
  808. Vector<PtData> PtTrgSorted;
  809. comm.HyperQuickSort(PtTrg, PtTrgSorted);
  810. PtTrg.Swap(PtTrgSorted);
  811. }
  812. Tree<CoordDim> tree(comm);
  813. { // Init tree
  814. Vector<Real> Xall(PtSrc.Dim()+PtTrg.Dim());
  815. { // Set Xall
  816. Xall.ReInit((PtSrc.Dim()+PtTrg.Dim())*CoordDim);
  817. Long Nsrc = PtSrc.Dim();
  818. Long Ntrg = PtTrg.Dim();
  819. for (Long i = 0; i < Nsrc; i++) {
  820. for (Integer k = 0; k < CoordDim; k++) {
  821. Xall[i*CoordDim+k] = PtSrc[i].coord[k];
  822. }
  823. }
  824. for (Long i = 0; i < Ntrg; i++) {
  825. for (Integer k = 0; k < CoordDim; k++) {
  826. Xall[(Nsrc+i)*CoordDim+k] = PtTrg[i].coord[k];
  827. }
  828. }
  829. }
  830. tree.UpdateRefinement(Xall, 1000, true, period_length>0);
  831. }
  832. { // Repartition PtSrc, PtTrg
  833. PtData splitter;
  834. splitter.mid = tree.GetPartitionMID()[rank];
  835. comm.PartitionS(PtSrc, splitter);
  836. comm.PartitionS(PtTrg, splitter);
  837. }
  838. { // Add tree data PtSrc
  839. const auto& node_mid = tree.GetNodeMID();
  840. const Long N = node_mid.Dim();
  841. SCTL_ASSERT(N);
  842. Vector<Long> dsp(N), cnt(N);
  843. for (Long i = 0; i < N; i++) {
  844. PtData m0;
  845. m0.mid = node_mid[i];
  846. dsp[i] = std::lower_bound(PtSrc.begin(), PtSrc.end(), m0) - PtSrc.begin();
  847. }
  848. for (Long i = 0; i < N-1; i++) {
  849. cnt[i] = dsp[i+1] - dsp[i];
  850. }
  851. cnt[N-1] = PtSrc.Dim() - dsp[N-1];
  852. tree.AddData("PtSrc", PtSrc, cnt);
  853. }
  854. tree.template Broadcast<PtData>("PtSrc");
  855. { // Build pair_lst
  856. Vector<Long> cnt;
  857. Vector<PtData> PtSrc;
  858. tree.GetData(PtSrc, cnt, "PtSrc");
  859. const auto& node_mid = tree.GetNodeMID();
  860. const auto& node_attr = tree.GetNodeAttr();
  861. Vector<Morton<CoordDim>> nbr_mid_tmp;
  862. for (Long i = 0; i < node_mid.Dim(); i++) {
  863. if (node_attr[i].Leaf && !node_attr[i].Ghost) {
  864. Vector<Morton<CoordDim>> child_mid;
  865. node_mid[i].Children(child_mid);
  866. for (const auto& trg_mid : child_mid) {
  867. Integer d0 = trg_mid.Depth();
  868. Vector<PtData> Src, Trg;
  869. { // Set Trg
  870. PtData m0, m1;
  871. m0.mid = trg_mid;
  872. m1.mid = trg_mid.Next();
  873. Long a = std::lower_bound(PtTrg.begin(), PtTrg.end(), m0) - PtTrg.begin();
  874. Long b = std::lower_bound(PtTrg.begin(), PtTrg.end(), m1) - PtTrg.begin();
  875. Trg.ReInit(b-a, PtTrg.begin()+a, false);
  876. if (!Trg.Dim()) continue;
  877. }
  878. Vector<std::set<Long>> near_elem(Trg.Dim());
  879. for (Integer d = 0; d <= d0; d++) {
  880. trg_mid.NbrList(nbr_mid_tmp, d, period_length>0);
  881. for (const auto& src_mid : nbr_mid_tmp) { // Set Src
  882. PtData m0, m1;
  883. m0.mid = src_mid;
  884. m1.mid = (d==d0 ? src_mid.Next() : src_mid.Ancestor(d+1));
  885. Long a = std::lower_bound(PtSrc.begin(), PtSrc.end(), m0) - PtSrc.begin();
  886. Long b = std::lower_bound(PtSrc.begin(), PtSrc.end(), m1) - PtSrc.begin();
  887. Src.ReInit(b-a, PtSrc.begin()+a, false);
  888. if (!Src.Dim()) continue;
  889. for (Long t = 0; t < Trg.Dim(); t++) { // set near_elem[t] <-- {s : dist(s,t) < radius(s)}
  890. for (Long s = 0; s < Src.Dim(); s++) {
  891. if (Trg[t].surf_rank != Src[s].surf_rank) {
  892. Real R2 = 0;
  893. for (Integer k = 0; k < CoordDim; k++) {
  894. Real dx = (Src[s].coord[k] - Trg[t].coord[k]);
  895. R2 += dx * dx;
  896. }
  897. if (R2 < Src[s].radius2) {
  898. near_elem[t].insert(Src[s].surf_rank);
  899. }
  900. }
  901. }
  902. }
  903. }
  904. }
  905. for (Long t = 0; t < Trg.Dim(); t++) { // Set pair_lst
  906. for (Long elem_idx : near_elem[t]) {
  907. pair_lst.PushBack(Pair<Long,Long>(elem_idx,Trg[t].rank));
  908. }
  909. }
  910. }
  911. }
  912. }
  913. }
  914. { // Sort and repartition pair_lst
  915. Vector<Pair<Long,Long>> pair_lst_sorted;
  916. comm.HyperQuickSort(pair_lst, pair_lst_sorted);
  917. Long surf_rank_offset;
  918. const Long Nelem = elem_lst.NElem();
  919. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&surf_rank_offset,1), 1, Comm::CommOp::SUM);
  920. surf_rank_offset -= Nelem;
  921. comm.PartitionS(pair_lst_sorted, Pair<Long,Long>(surf_rank_offset,0));
  922. pair_lst.Swap(pair_lst_sorted);
  923. }
  924. }
  925. template <class ElemList> static void BuildNbrListDeprecated(Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt, const ElemList& elem_lst, const Matrix<Real>& surf_nds, Real distance_factor) {
  926. using CoordBasis = typename ElemList::CoordBasis;
  927. constexpr Integer CoordDim = ElemList::CoordDim();
  928. constexpr Integer ElemDim = ElemList::ElemDim();
  929. const Long Nelem = elem_lst.NElem();
  930. const Long Ntrg = Xt.Dim() / CoordDim;
  931. SCTL_ASSERT(Xt.Dim() == Ntrg * CoordDim);
  932. Long Nnds, Nsurf_nds;
  933. Vector<Real> X_surf, X, dX;
  934. Integer order_upsample = (Integer)(const_pi<Real>() / distance_factor + 0.5);
  935. { // Set X, dX
  936. const Vector<CoordBasis>& X_elem_lst = elem_lst.ElemVector();
  937. Vector<CoordBasis> dX_elem_lst;
  938. CoordBasis::Grad(dX_elem_lst, X_elem_lst);
  939. Matrix<Real> nds_upsample;
  940. Vector<Real> wts_upsample;
  941. TensorProductGaussQuad<ElemDim>(nds_upsample, wts_upsample, order_upsample);
  942. Nnds = nds_upsample.Dim(1);
  943. const auto CoordEvalOp = CoordBasis::SetupEval(nds_upsample);
  944. eval_basis(X, X_elem_lst, CoordDim, nds_upsample.Dim(1), CoordEvalOp);
  945. eval_basis(dX, dX_elem_lst, CoordDim * ElemDim, nds_upsample.Dim(1), CoordEvalOp);
  946. Nsurf_nds = surf_nds.Dim(1);
  947. const auto CoordEvalOp_surf = CoordBasis::SetupEval(surf_nds);
  948. eval_basis(X_surf, X_elem_lst, CoordDim, Nsurf_nds, CoordEvalOp_surf);
  949. }
  950. Real d2 = distance_factor * distance_factor;
  951. for (Long i = 0; i < Nelem; i++) {
  952. std::set<Long> near_pts;
  953. std::set<Long> self_pts;
  954. for (Long j = 0; j < Nnds; j++) {
  955. Real R2_max = 0;
  956. StaticArray<Real, CoordDim> X0;
  957. for (Integer k = 0; k < CoordDim; k++) {
  958. X0[k] = X[(i*Nnds+j)*CoordDim+k];
  959. }
  960. for (Integer k0 = 0; k0 < ElemDim; k0++) {
  961. Real R2 = 0;
  962. for (Integer k1 = 0; k1 < CoordDim; k1++) {
  963. Real dX_ = dX[((i*Nnds+j)*CoordDim+k1)*ElemDim+k0];
  964. R2 += dX_*dX_;
  965. }
  966. R2_max = std::max(R2_max, R2*d2);
  967. }
  968. for (Long k = 0; k < Ntrg; k++) {
  969. Real R2 = 0;
  970. for (Integer l = 0; l < CoordDim; l++) {
  971. Real dX = Xt[k*CoordDim+l]- X0[l];
  972. R2 += dX * dX;
  973. }
  974. if (R2 < R2_max) near_pts.insert(k);
  975. }
  976. }
  977. for (Long j = 0; j < Nsurf_nds; j++) {
  978. StaticArray<Real, CoordDim> X0;
  979. for (Integer k = 0; k < CoordDim; k++) {
  980. X0[k] = X_surf[(i*Nsurf_nds+j)*CoordDim+k];
  981. }
  982. for (Long k = 0; k < Ntrg; k++) {
  983. Real R2 = 0;
  984. for (Integer l = 0; l < CoordDim; l++) {
  985. Real dX = Xt[k*CoordDim+l]- X0[l];
  986. R2 += dX * dX;
  987. }
  988. if (R2 == 0) self_pts.insert(k);
  989. }
  990. }
  991. for (Long trg_idx : self_pts) {
  992. near_pts.erase(trg_idx);
  993. }
  994. for (Long trg_idx : near_pts) {
  995. pair_lst.PushBack(Pair<Long,Long>(i,trg_idx));
  996. }
  997. }
  998. }
  999. template <class DensityBasis, class ElemList, class Kernel> static void SetupNearSingular(Matrix<Real>& M_near_singular, Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt_, const Vector<Long>& trg_surf, const ElemList& elem_lst, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) {
  1000. static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
  1001. static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
  1002. static_assert(DensityBasis::Dim() == ElemList::ElemDim());
  1003. using CoordBasis = typename ElemList::CoordBasis;
  1004. using CoordEvalOpType = typename CoordBasis::EvalOpType;
  1005. using DensityEvalOpType = typename DensityBasis::EvalOpType;
  1006. constexpr Integer CoordDim = ElemList::CoordDim();
  1007. constexpr Integer ElemDim = ElemList::ElemDim();
  1008. constexpr Integer KDIM0 = Kernel::SrcDim();
  1009. constexpr Integer KDIM1 = Kernel::TrgDim();
  1010. const Long Nelem = elem_lst.NElem();
  1011. BuildNbrList(pair_lst, Xt_, trg_surf, elem_lst, 2.5/order_direct, period_length, comm);
  1012. const Long Ninterac = pair_lst.Dim();
  1013. Vector<Real> Xt;
  1014. { // Set Xt
  1015. Integer rank = comm.Rank();
  1016. Integer np = comm.Size();
  1017. Vector<Long> splitter_ranks;
  1018. { // Set splitter_ranks
  1019. Vector<Long> cnt(np);
  1020. const Long N = Xt_.Dim() / CoordDim;
  1021. comm.Allgather(Ptr2ConstItr<Long>(&N,1), 1, cnt.begin(), 1);
  1022. scan(splitter_ranks, cnt);
  1023. }
  1024. Vector<Long> scatter_index, recv_index, recv_cnt(np), recv_dsp(np);
  1025. { // Set scatter_index, recv_index, recv_cnt, recv_dsp
  1026. { // Set scatter_index, recv_index
  1027. Vector<Pair<Long,Long>> scatter_pair(pair_lst.Dim());
  1028. for (Long i = 0; i < pair_lst.Dim(); i++) {
  1029. scatter_pair[i] = Pair<Long,Long>(pair_lst[i].second,i);
  1030. }
  1031. omp_par::merge_sort(scatter_pair.begin(), scatter_pair.end());
  1032. recv_index.ReInit(scatter_pair.Dim());
  1033. scatter_index.ReInit(scatter_pair.Dim());
  1034. for (Long i = 0; i < scatter_index.Dim(); i++) {
  1035. recv_index[i] = scatter_pair[i].first;
  1036. scatter_index[i] = scatter_pair[i].second;
  1037. }
  1038. }
  1039. for (Integer i = 0; i < np; i++) {
  1040. recv_dsp[i] = std::lower_bound(recv_index.begin(), recv_index.end(), splitter_ranks[i]) - recv_index.begin();
  1041. }
  1042. for (Integer i = 0; i < np-1; i++) {
  1043. recv_cnt[i] = recv_dsp[i+1] - recv_dsp[i];
  1044. }
  1045. recv_cnt[np-1] = recv_index.Dim() - recv_dsp[np-1];
  1046. }
  1047. Vector<Long> send_index, send_cnt(np), send_dsp(np);
  1048. { // Set send_index, send_cnt, send_dsp
  1049. comm.Alltoall(recv_cnt.begin(), 1, send_cnt.begin(), 1);
  1050. scan(send_dsp, send_cnt);
  1051. send_index.ReInit(send_cnt[np-1] + send_dsp[np-1]);
  1052. comm.Alltoallv(recv_index.begin(), recv_cnt.begin(), recv_dsp.begin(), send_index.begin(), send_cnt.begin(), send_dsp.begin());
  1053. }
  1054. Vector<Real> Xt_send(send_index.Dim() * CoordDim);
  1055. for (Long i = 0; i < send_index.Dim(); i++) { // Set Xt_send
  1056. Long idx = send_index[i] - splitter_ranks[rank];
  1057. for (Integer k = 0; k < CoordDim; k++) {
  1058. Xt_send[i*CoordDim+k] = Xt_[idx*CoordDim+k];
  1059. }
  1060. }
  1061. Vector<Real> Xt_recv(recv_index.Dim() * CoordDim);
  1062. { // Set Xt_recv
  1063. for (Long i = 0; i < np; i++) {
  1064. send_cnt[i] *= CoordDim;
  1065. send_dsp[i] *= CoordDim;
  1066. recv_cnt[i] *= CoordDim;
  1067. recv_dsp[i] *= CoordDim;
  1068. }
  1069. comm.Alltoallv(Xt_send.begin(), send_cnt.begin(), send_dsp.begin(), Xt_recv.begin(), recv_cnt.begin(), recv_dsp.begin());
  1070. }
  1071. Xt.ReInit(scatter_index.Dim() * CoordDim);
  1072. for (Long i = 0; i < scatter_index.Dim(); i++) { // Set Xt
  1073. Long idx = scatter_index[i];
  1074. for (Integer k = 0; k < CoordDim; k++) {
  1075. Xt[idx*CoordDim+k] = Xt_recv[i*CoordDim+k];
  1076. }
  1077. }
  1078. }
  1079. const Vector<CoordBasis>& X = elem_lst.ElemVector();
  1080. Vector<CoordBasis> dX;
  1081. CoordBasis::Grad(dX, X);
  1082. Long elem_rank_offset;
  1083. { // Set elem_rank_offset
  1084. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&elem_rank_offset,1), 1, Comm::CommOp::SUM);
  1085. elem_rank_offset -= Nelem;
  1086. }
  1087. auto& M = M_near_singular;
  1088. M.ReInit(Ninterac * KDIM0 * DensityBasis::Size(), KDIM1);
  1089. #pragma omp parallel for schedule(static)
  1090. for (Long j = 0; j < Ninterac; j++) { // Set M (near-singular)
  1091. const Long src_idx = pair_lst[j].first - elem_rank_offset;
  1092. Real adapt = -1.0;
  1093. Tensor<Real,true,ElemDim,1> u0;
  1094. { // Set u0 (project target point to the surface patch in parameter space)
  1095. ConstIterator<Real> Xt_ = Xt.begin() + j * CoordDim;
  1096. const auto& nodes = CoordBasis::Nodes();
  1097. Long min_idx = -1;
  1098. Real min_R2 = 1e10;
  1099. for (Long i = 0; i < CoordBasis::Size(); i++) {
  1100. Real R2 = 0;
  1101. for (Integer k = 0; k < CoordDim; k++) {
  1102. Real dX = X[src_idx * CoordDim + k][i] - Xt_[k];
  1103. R2 += dX * dX;
  1104. }
  1105. if (R2 < min_R2) {
  1106. min_R2 = R2;
  1107. min_idx = i;
  1108. }
  1109. }
  1110. SCTL_ASSERT(min_idx >= 0);
  1111. for (Integer k = 0; k < ElemDim; k++) {
  1112. u0(k,0) = nodes[k][min_idx];
  1113. }
  1114. for (Integer i = 0; i < 2; i++) { // iterate
  1115. Matrix<Real> X_, dX_;
  1116. for (Integer k = 0; k < ElemDim; k++) {
  1117. u0(k,0) = std::min<Real>(1.0, u0(k,0));
  1118. u0(k,0) = std::max<Real>(0.0, u0(k,0));
  1119. }
  1120. const auto eval_op = CoordBasis::SetupEval(Matrix<Real>(ElemDim,1,u0.begin(),false));
  1121. CoordBasis::Eval(X_, Vector<CoordBasis>(CoordDim,(Iterator<CoordBasis>)X.begin()+src_idx*CoordDim,false),eval_op);
  1122. CoordBasis::Eval(dX_, Vector<CoordBasis>(CoordDim*ElemDim,dX.begin()+src_idx*CoordDim*ElemDim,false),eval_op);
  1123. const Tensor<Real,false,CoordDim,1> x0((Iterator<Real>)Xt_);
  1124. const Tensor<Real,false,CoordDim,1> x(X_.begin());
  1125. const Tensor<Real,false,CoordDim,ElemDim> x_u(dX_.begin());
  1126. auto inv = [](const Tensor<Real,true,2,2>& M) {
  1127. Tensor<Real,true,2,2> Minv;
  1128. Real det_inv = 1.0 / (M(0,0)*M(1,1) - M(1,0)*M(0,1));
  1129. Minv(0,0) = M(1,1) * det_inv;
  1130. Minv(0,1) =-M(0,1) * det_inv;
  1131. Minv(1,0) =-M(1,0) * det_inv;
  1132. Minv(1,1) = M(0,0) * det_inv;
  1133. return Minv;
  1134. };
  1135. auto du = inv(x_u.RotateRight()*x_u) * x_u.RotateRight()*(x0-x);
  1136. u0 = u0 + du;
  1137. auto x_u_squared = x_u.RotateRight() * x_u;
  1138. adapt = sctl::sqrt<Real>( ((x0-x).RotateRight()*(x0-x))(0,0) / std::max<Real>(x_u_squared(0,0),x_u_squared(1,1)) );
  1139. }
  1140. }
  1141. Matrix<Real> quad_nds;
  1142. Vector<Real> quad_wts;
  1143. DuffyQuad<ElemDim>(quad_nds, quad_wts, Vector<Real>(ElemDim,u0.begin(),false), order_singular, adapt);
  1144. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  1145. Integer Nnds = quad_wts.Dim();
  1146. Vector<Real> X_, dX_, Xa_, Xn_;
  1147. { // Set X_, dX_
  1148. const Vector<CoordBasis> X__(CoordDim, (Iterator<CoordBasis>)X.begin() + src_idx * CoordDim, false);
  1149. const Vector<CoordBasis> dX__(CoordDim * ElemDim, (Iterator<CoordBasis>)dX.begin() + src_idx * CoordDim * ElemDim, false);
  1150. eval_basis(X_, X__, CoordDim, Nnds, CoordEvalOp);
  1151. eval_basis(dX_, dX__, CoordDim * ElemDim, Nnds, CoordEvalOp);
  1152. }
  1153. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  1154. Xa_.ReInit(Nnds);
  1155. Xn_.ReInit(Nnds*CoordDim);
  1156. for (Long j = 0; j < Nnds; j++) {
  1157. StaticArray<Real,CoordDim> normal;
  1158. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  1159. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  1160. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  1161. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  1162. Real invXa = 1/Xa_[j];
  1163. Xn_[j*3+0] = normal[0] * invXa;
  1164. Xn_[j*3+1] = normal[1] * invXa;
  1165. Xn_[j*3+2] = normal[2] * invXa;
  1166. }
  1167. }
  1168. DensityEvalOpType DensityEvalOp;
  1169. if (std::is_same<CoordBasis,DensityBasis>::value) {
  1170. DensityEvalOp = CoordEvalOp;
  1171. } else {
  1172. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  1173. }
  1174. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  1175. { // Set kernel matrix M__
  1176. const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + j * CoordDim, false);
  1177. kernel.template KernelMatrix<Real>(M__, X0_, X_, Xn_);
  1178. }
  1179. for (Long k0 = 0; k0 < KDIM0; k0++) {
  1180. for (Long k1 = 0; k1 < KDIM1; k1++) {
  1181. for (Long l = 0; l < DensityBasis::Size(); l++) {
  1182. Real M_lk = 0;
  1183. for (Long n = 0; n < Nnds; n++) {
  1184. Real quad_wt = Xa_[n] * quad_wts[n];
  1185. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  1186. }
  1187. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1] = M_lk;
  1188. }
  1189. }
  1190. }
  1191. }
  1192. { // Set M (subtract direct)
  1193. Matrix<Real> quad_nds;
  1194. Vector<Real> quad_wts;
  1195. TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
  1196. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  1197. Integer Nnds = quad_wts.Dim();
  1198. Vector<Real> X_, dX_, Xa_, Xn_;
  1199. { // Set X_, dX_
  1200. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  1201. eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
  1202. }
  1203. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  1204. Long N = Nelem*Nnds;
  1205. Xa_.ReInit(N);
  1206. Xn_.ReInit(N*CoordDim);
  1207. for (Long j = 0; j < N; j++) {
  1208. StaticArray<Real,CoordDim> normal;
  1209. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  1210. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  1211. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  1212. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  1213. Real invXa = 1/Xa_[j];
  1214. Xn_[j*3+0] = normal[0] * invXa;
  1215. Xn_[j*3+1] = normal[1] * invXa;
  1216. Xn_[j*3+2] = normal[2] * invXa;
  1217. }
  1218. }
  1219. DensityEvalOpType DensityEvalOp;
  1220. if (std::is_same<CoordBasis,DensityBasis>::value) {
  1221. DensityEvalOp = CoordEvalOp;
  1222. } else {
  1223. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  1224. }
  1225. #pragma omp parallel for schedule(static)
  1226. for (Long j = 0; j < Ninterac; j++) { // Subtract direct contribution
  1227. const Long src_idx = pair_lst[j].first - elem_rank_offset;
  1228. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  1229. { // Set kernel matrix M__
  1230. const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + j * CoordDim, false);
  1231. Vector<Real> X__(Nnds * CoordDim, X_.begin() + src_idx * Nnds * CoordDim, false);
  1232. Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + src_idx * Nnds * CoordDim, false);
  1233. kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
  1234. }
  1235. for (Long k0 = 0; k0 < KDIM0; k0++) {
  1236. for (Long k1 = 0; k1 < KDIM1; k1++) {
  1237. for (Long l = 0; l < DensityBasis::Size(); l++) {
  1238. Real M_lk = 0;
  1239. for (Long n = 0; n < Nnds; n++) {
  1240. Real quad_wt = Xa_[src_idx * Nnds + n] * quad_wts[n];
  1241. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  1242. }
  1243. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1] -= M_lk;
  1244. }
  1245. }
  1246. }
  1247. }
  1248. }
  1249. }
  1250. template <class DensityBasis> static void EvalNearSingular(Vector<Real>& U, const Vector<DensityBasis>& density, const Matrix<Real>& M, const Vector<Pair<Long,Long>>& pair_lst, Long Nelem_, Long Ntrg_, Integer KDIM0_, Integer KDIM1_, const Comm& comm) {
  1251. const Long Ninterac = pair_lst.Dim();
  1252. const Integer dof = density.Dim() / Nelem_ / KDIM0_;
  1253. SCTL_ASSERT(density.Dim() == Nelem_ * dof * KDIM0_);
  1254. Long elem_rank_offset;
  1255. { // Set elem_rank_offset
  1256. comm.Scan(Ptr2ConstItr<Long>(&Nelem_,1), Ptr2Itr<Long>(&elem_rank_offset,1), 1, Comm::CommOp::SUM);
  1257. elem_rank_offset -= Nelem_;
  1258. }
  1259. Vector<Real> U_loc(Ninterac*dof*KDIM1_);
  1260. for (Long j = 0; j < Ninterac; j++) {
  1261. const Long src_idx = pair_lst[j].first - elem_rank_offset;
  1262. const Matrix<Real> M_(KDIM0_ * DensityBasis::Size(), KDIM1_, (Iterator<Real>)M[j * KDIM0_ * DensityBasis::Size()], false);
  1263. Matrix<Real> U_(dof, KDIM1_, U_loc.begin() + j*dof*KDIM1_, false);
  1264. Matrix<Real> F_(dof, KDIM0_ * DensityBasis::Size());
  1265. for (Long i = 0; i < dof; i++) {
  1266. for (Long k = 0; k < KDIM0_; k++) {
  1267. for (Long l = 0; l < DensityBasis::Size(); l++) {
  1268. F_[i][k * DensityBasis::Size() + l] = density[(src_idx * dof + i) * KDIM0_ + k][l];
  1269. }
  1270. }
  1271. }
  1272. Matrix<Real>::GEMM(U_, F_, M_);
  1273. }
  1274. if (U.Dim() != Ntrg_ * dof * KDIM1_) {
  1275. U.ReInit(Ntrg_ * dof * KDIM1_);
  1276. U = 0;
  1277. }
  1278. { // Set U
  1279. Integer rank = comm.Rank();
  1280. Integer np = comm.Size();
  1281. Vector<Long> splitter_ranks;
  1282. { // Set splitter_ranks
  1283. Vector<Long> cnt(np);
  1284. comm.Allgather(Ptr2ConstItr<Long>(&Ntrg_,1), 1, cnt.begin(), 1);
  1285. scan(splitter_ranks, cnt);
  1286. }
  1287. Vector<Long> scatter_index, send_index, send_cnt(np), send_dsp(np);
  1288. { // Set scatter_index, send_index, send_cnt, send_dsp
  1289. { // Set scatter_index, send_index
  1290. Vector<Pair<Long,Long>> scatter_pair(pair_lst.Dim());
  1291. for (Long i = 0; i < pair_lst.Dim(); i++) {
  1292. scatter_pair[i] = Pair<Long,Long>(pair_lst[i].second,i);
  1293. }
  1294. omp_par::merge_sort(scatter_pair.begin(), scatter_pair.end());
  1295. send_index.ReInit(scatter_pair.Dim());
  1296. scatter_index.ReInit(scatter_pair.Dim());
  1297. for (Long i = 0; i < scatter_index.Dim(); i++) {
  1298. send_index[i] = scatter_pair[i].first;
  1299. scatter_index[i] = scatter_pair[i].second;
  1300. }
  1301. }
  1302. for (Integer i = 0; i < np; i++) {
  1303. send_dsp[i] = std::lower_bound(send_index.begin(), send_index.end(), splitter_ranks[i]) - send_index.begin();
  1304. }
  1305. for (Integer i = 0; i < np-1; i++) {
  1306. send_cnt[i] = send_dsp[i+1] - send_dsp[i];
  1307. }
  1308. send_cnt[np-1] = send_index.Dim() - send_dsp[np-1];
  1309. }
  1310. Vector<Long> recv_index, recv_cnt(np), recv_dsp(np);
  1311. { // Set recv_index, recv_cnt, recv_dsp
  1312. comm.Alltoall(send_cnt.begin(), 1, recv_cnt.begin(), 1);
  1313. scan(recv_dsp, recv_cnt);
  1314. recv_index.ReInit(recv_cnt[np-1] + recv_dsp[np-1]);
  1315. comm.Alltoallv(send_index.begin(), send_cnt.begin(), send_dsp.begin(), recv_index.begin(), recv_cnt.begin(), recv_dsp.begin());
  1316. }
  1317. Vector<Real> U_send(scatter_index.Dim() * dof * KDIM1_);
  1318. for (Long i = 0; i < scatter_index.Dim(); i++) {
  1319. Long idx = scatter_index[i]*dof*KDIM1_;
  1320. for (Long k = 0; k < dof * KDIM1_; k++) {
  1321. U_send[i*dof*KDIM1_ + k] = U_loc[idx + k];
  1322. }
  1323. }
  1324. Vector<Real> U_recv(recv_index.Dim() * dof * KDIM1_);
  1325. { // Set U_recv
  1326. for (Long i = 0; i < np; i++) {
  1327. send_cnt[i] *= dof * KDIM1_;
  1328. send_dsp[i] *= dof * KDIM1_;
  1329. recv_cnt[i] *= dof * KDIM1_;
  1330. recv_dsp[i] *= dof * KDIM1_;
  1331. }
  1332. comm.Alltoallv(U_send.begin(), send_cnt.begin(), send_dsp.begin(), U_recv.begin(), recv_cnt.begin(), recv_dsp.begin());
  1333. }
  1334. for (Long i = 0; i < recv_index.Dim(); i++) { // Set U
  1335. Long idx = (recv_index[i] - splitter_ranks[rank]) * dof * KDIM1_;
  1336. for (Integer k = 0; k < dof * KDIM1_; k++) {
  1337. U[idx + k] += U_recv[i*dof*KDIM1_ + k];
  1338. }
  1339. }
  1340. }
  1341. }
  1342. template <class ElemList, class DensityBasis, class Kernel> static void Direct(Vector<Real>& U, const Vector<Real>& Xt, const ElemList& elem_lst, const Vector<DensityBasis>& density, const Kernel& kernel, Integer order_direct, const Comm& comm) {
  1343. using CoordBasis = typename ElemList::CoordBasis;
  1344. using CoordEvalOpType = typename CoordBasis::EvalOpType;
  1345. using DensityEvalOpType = typename DensityBasis::EvalOpType;
  1346. constexpr Integer CoordDim = ElemList::CoordDim();
  1347. constexpr Integer ElemDim = ElemList::ElemDim();
  1348. constexpr Integer KDIM0 = Kernel::SrcDim();
  1349. constexpr Integer KDIM1 = Kernel::TrgDim();
  1350. const Long Nelem = elem_lst.NElem();
  1351. const Integer dof = density.Dim() / Nelem / KDIM0;
  1352. SCTL_ASSERT(density.Dim() == Nelem * dof * KDIM0);
  1353. Matrix<Real> quad_nds;
  1354. Vector<Real> quad_wts;
  1355. TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
  1356. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  1357. Integer Nnds = quad_wts.Dim();
  1358. const Vector<CoordBasis>& X = elem_lst.ElemVector();
  1359. Vector<CoordBasis> dX;
  1360. CoordBasis::Grad(dX, X);
  1361. Vector<Real> X_, dX_, Xa_, Xn_;
  1362. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  1363. eval_basis(dX_, dX, CoordDim*ElemDim, Nnds, CoordEvalOp);
  1364. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  1365. Long N = Nelem*Nnds;
  1366. Xa_.ReInit(N);
  1367. Xn_.ReInit(N*CoordDim);
  1368. for (Long j = 0; j < N; j++) {
  1369. StaticArray<Real,CoordDim> normal;
  1370. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  1371. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  1372. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  1373. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  1374. Real invXa = 1/Xa_[j];
  1375. Xn_[j*3+0] = normal[0] * invXa;
  1376. Xn_[j*3+1] = normal[1] * invXa;
  1377. Xn_[j*3+2] = normal[2] * invXa;
  1378. }
  1379. }
  1380. Vector<Real> Fa_;
  1381. { // Set Fa_
  1382. Vector<Real> F_;
  1383. if (std::is_same<CoordBasis,DensityBasis>::value) {
  1384. eval_basis(F_, density, dof * KDIM0, Nnds, CoordEvalOp);
  1385. } else {
  1386. const DensityEvalOpType EvalOp = DensityBasis::SetupEval(quad_nds);
  1387. eval_basis(F_, density, dof * KDIM0, Nnds, EvalOp);
  1388. }
  1389. Fa_.ReInit(F_.Dim());
  1390. const Integer DensityDOF = dof * KDIM0;
  1391. SCTL_ASSERT(F_.Dim() == Nelem * Nnds * DensityDOF);
  1392. for (Long j = 0; j < Nelem; j++) {
  1393. for (Integer k = 0; k < Nnds; k++) {
  1394. Long idx = j * Nnds + k;
  1395. Real quad_wt = Xa_[idx] * quad_wts[k];
  1396. for (Integer l = 0; l < DensityDOF; l++) {
  1397. Fa_[idx * DensityDOF + l] = F_[idx * DensityDOF + l] * quad_wt;
  1398. }
  1399. }
  1400. }
  1401. }
  1402. { // Evaluate potential
  1403. const Long Ntrg = Xt.Dim() / CoordDim;
  1404. SCTL_ASSERT(Xt.Dim() == Ntrg * CoordDim);
  1405. if (U.Dim() != Ntrg * dof * KDIM1) {
  1406. U.ReInit(Ntrg * dof * KDIM1);
  1407. U = 0;
  1408. }
  1409. ParticleFMM<Real,CoordDim>::Eval(U, Xt, X_, Xn_, Fa_, kernel, comm);
  1410. }
  1411. }
  1412. public:
  1413. template <class DensityBasis, class ElemList, class Kernel> void Setup(const ElemList& elem_lst, const Vector<Real>& Xt, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) {
  1414. Xt_.ReInit(0);
  1415. M_singular.ReInit(0,0);
  1416. M_near_singular.ReInit(0,0);
  1417. pair_lst.ReInit(0);
  1418. order_direct_ = order_direct;
  1419. period_length_ = period_length;
  1420. comm_ = comm;
  1421. Profile::Tic("Setup", &comm_);
  1422. static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
  1423. static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
  1424. static_assert(DensityBasis::Dim() == ElemList::ElemDim());
  1425. Xt_ = Xt;
  1426. M_singular.ReInit(0,0);
  1427. Profile::Tic("SetupNearSingular", &comm_);
  1428. SetupNearSingular<DensityBasis>(M_near_singular, pair_lst, Xt_, Vector<Long>(), elem_lst, kernel, order_singular, order_direct_, period_length_, comm_);
  1429. Profile::Toc();
  1430. Profile::Toc();
  1431. }
  1432. template <class DensityBasis, class PotentialBasis, class ElemList, class Kernel> void Setup(const ElemList& elem_lst, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm, Real Rqbx = 0) {
  1433. Xt_.ReInit(0);
  1434. M_singular.ReInit(0,0);
  1435. M_near_singular.ReInit(0,0);
  1436. pair_lst.ReInit(0);
  1437. order_direct_ = order_direct;
  1438. period_length_ = period_length;
  1439. comm_ = comm;
  1440. Profile::Tic("Setup", &comm_);
  1441. static_assert(std::is_same<Real,typename PotentialBasis::ValueType>::value);
  1442. static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
  1443. static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
  1444. static_assert(PotentialBasis::Dim() == ElemList::ElemDim());
  1445. static_assert(DensityBasis::Dim() == ElemList::ElemDim());
  1446. Vector<Long> trg_surf;
  1447. { // Set Xt_
  1448. using CoordBasis = typename ElemList::CoordBasis;
  1449. Matrix<Real> trg_nds = PotentialBasis::Nodes();
  1450. auto Meval = CoordBasis::SetupEval(trg_nds);
  1451. eval_basis(Xt_, elem_lst.ElemVector(), ElemList::CoordDim(), trg_nds.Dim(1), Meval);
  1452. { // Set trg_surf
  1453. const Long Nelem = elem_lst.NElem();
  1454. const Long Nnds = trg_nds.Dim(1);
  1455. Long elem_offset;
  1456. { // Set elem_offset
  1457. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&elem_offset,1), 1, Comm::CommOp::SUM);
  1458. elem_offset -= Nelem;
  1459. }
  1460. trg_surf.ReInit(elem_lst.NElem() * trg_nds.Dim(1));
  1461. for (Long i = 0; i < Nelem; i++) {
  1462. for (Long j = 0; j < Nnds; j++) {
  1463. trg_surf[i*Nnds+j] = elem_offset + i;
  1464. }
  1465. }
  1466. }
  1467. }
  1468. Profile::Tic("SetupSingular", &comm_);
  1469. SetupSingular<DensityBasis>(M_singular, PotentialBasis::Nodes(), elem_lst, kernel, order_singular, order_direct_, Rqbx);
  1470. Profile::Toc();
  1471. Profile::Tic("SetupNearSingular", &comm_);
  1472. SetupNearSingular<DensityBasis>(M_near_singular, pair_lst, Xt_, trg_surf, elem_lst, kernel, order_singular, order_direct_, period_length_, comm_);
  1473. Profile::Toc();
  1474. Profile::Toc();
  1475. }
  1476. template <class DensityBasis, class PotentialBasis, class ElemList, class Kernel> void Eval(Vector<PotentialBasis>& U, const ElemList& elements, const Vector<DensityBasis>& F, const Kernel& kernel) {
  1477. Profile::Tic("Eval", &comm_);
  1478. Matrix<Real> U_singular;
  1479. Vector<Real> U_direct, U_near_sing;
  1480. Profile::Tic("EvalDirect", &comm_);
  1481. Direct(U_direct, Xt_, elements, F, kernel, order_direct_, comm_);
  1482. Profile::Toc();
  1483. Profile::Tic("EvalSingular", &comm_);
  1484. EvalSingular(U_singular, F, M_singular, kernel.SrcDim(), kernel.TrgDim());
  1485. Profile::Toc();
  1486. Profile::Tic("EvalNearSingular", &comm_);
  1487. EvalNearSingular(U_near_sing, F, M_near_singular, pair_lst, elements.NElem(), Xt_.Dim() / ElemList::CoordDim(), kernel.SrcDim(), kernel.TrgDim(), comm_);
  1488. SCTL_ASSERT(U_near_sing.Dim() == U_direct.Dim());
  1489. Profile::Toc();
  1490. const Long dof = U_direct.Dim() / (elements.NElem() * PotentialBasis::Size() * kernel.TrgDim());
  1491. SCTL_ASSERT(U_direct .Dim() == elements.NElem() * PotentialBasis::Size() * dof * kernel.TrgDim());
  1492. SCTL_ASSERT(U_near_sing.Dim() == elements.NElem() * PotentialBasis::Size() * dof * kernel.TrgDim());
  1493. if (U.Dim() != elements.NElem() * dof * kernel.TrgDim()) {
  1494. U.ReInit(elements.NElem() * dof * kernel.TrgDim());
  1495. }
  1496. for (int i = 0; i < elements.NElem(); i++) {
  1497. for (int j = 0; j < PotentialBasis::Size(); j++) {
  1498. for (int k = 0; k < dof*kernel.TrgDim(); k++) {
  1499. Real& U_ = U[i*dof*kernel.TrgDim()+k][j];
  1500. U_ = 0;
  1501. U_ += U_direct [(i*PotentialBasis::Size()+j)*dof*kernel.TrgDim()+k];
  1502. U_ += U_near_sing[(i*PotentialBasis::Size()+j)*dof*kernel.TrgDim()+k];
  1503. U_ *= kernel.template ScaleFactor<Real>();
  1504. }
  1505. }
  1506. }
  1507. if (U_singular.Dim(1)) {
  1508. SCTL_ASSERT(U_singular.Dim(0) == elements.NElem() * dof * kernel.TrgDim());
  1509. SCTL_ASSERT(U_singular.Dim(1) == PotentialBasis::Size());
  1510. for (int i = 0; i < elements.NElem(); i++) {
  1511. for (int j = 0; j < PotentialBasis::Size(); j++) {
  1512. for (int k = 0; k < dof*kernel.TrgDim(); k++) {
  1513. U[i*dof*kernel.TrgDim()+k][j] += U_singular[i*dof*kernel.TrgDim()+k][j] * kernel.template ScaleFactor<Real>();
  1514. }
  1515. }
  1516. }
  1517. }
  1518. Profile::Toc();
  1519. }
  1520. template <class DensityBasis, class ElemList, class Kernel> void Eval(Vector<Real>& U, const ElemList& elements, const Vector<DensityBasis>& F, const Kernel& kernel) {
  1521. Profile::Tic("Eval", &comm_);
  1522. Matrix<Real> U_singular;
  1523. Vector<Real> U_direct, U_near_sing;
  1524. Profile::Tic("EvalDirect", &comm_);
  1525. Direct(U_direct, Xt_, elements, F, kernel, order_direct_, comm_);
  1526. Profile::Toc();
  1527. Profile::Tic("EvalSingular", &comm_);
  1528. EvalSingular(U_singular, F, M_singular, kernel.SrcDim(), kernel.TrgDim());
  1529. Profile::Toc();
  1530. Profile::Tic("EvalNearSingular", &comm_);
  1531. EvalNearSingular(U_near_sing, F, M_near_singular, pair_lst, elements.NElem(), Xt_.Dim() / ElemList::CoordDim(), kernel.SrcDim(), kernel.TrgDim(), comm_);
  1532. SCTL_ASSERT(U_near_sing.Dim() == U_direct.Dim());
  1533. Profile::Toc();
  1534. Long Nt = Xt_.Dim() / ElemList::CoordDim();
  1535. const Long dof = U_direct.Dim() / (Nt * kernel.TrgDim());
  1536. SCTL_ASSERT(U_direct.Dim() == Nt * dof * kernel.TrgDim());
  1537. if (U.Dim() != U_direct.Dim()) {
  1538. U.ReInit(U_direct.Dim());
  1539. }
  1540. for (int i = 0; i < U.Dim(); i++) {
  1541. U[i] = (U_direct[i] + U_near_sing[i]) * kernel.template ScaleFactor<Real>();
  1542. }
  1543. if (U_singular.Dim(1)) {
  1544. SCTL_ASSERT(U_singular.Dim(0) == elements.NElem() * dof * kernel.TrgDim());
  1545. const Long Nnodes = U_singular.Dim(1);
  1546. for (int i = 0; i < elements.NElem(); i++) {
  1547. for (int j = 0; j < Nnodes; j++) {
  1548. for (int k = 0; k < dof*kernel.TrgDim(); k++) {
  1549. Real& U_ = U[(i*Nnodes+j)*dof*kernel.TrgDim()+k];
  1550. U_ += U_singular[i*dof*kernel.TrgDim()+k][j] * kernel.template ScaleFactor<Real>();
  1551. }
  1552. }
  1553. }
  1554. }
  1555. Profile::Toc();
  1556. }
  1557. template <Integer ORDER = 5> static void test(Integer order_singular = 10, Integer order_direct = 5, const Comm& comm = Comm::World()) {
  1558. constexpr Integer COORD_DIM = 3;
  1559. constexpr Integer ELEM_DIM = COORD_DIM-1;
  1560. using ElemList = ElemList<COORD_DIM, Basis<Real, ELEM_DIM, ORDER>>;
  1561. using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
  1562. using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
  1563. int np = comm.Size();
  1564. int rank = comm.Rank();
  1565. auto build_torus = [rank,np](ElemList& elements, long Nt, long Np, Real Rmajor, Real Rminor){
  1566. auto nodes = ElemList::CoordBasis::Nodes();
  1567. auto torus = [](Real theta, Real phi, Real Rmajor, Real Rminor) {
  1568. Real R = Rmajor + Rminor * cos<Real>(phi);
  1569. Real X = R * cos<Real>(theta);
  1570. Real Y = R * sin<Real>(theta);
  1571. Real Z = Rminor * sin<Real>(phi);
  1572. return std::make_tuple(X,Y,Z);
  1573. };
  1574. long start = Nt*Np*(rank+0)/np;
  1575. long end = Nt*Np*(rank+1)/np;
  1576. elements.ReInit(end - start);
  1577. for (long ii = start; ii < end; ii++) {
  1578. long i = ii / Np;
  1579. long j = ii % Np;
  1580. for (int k = 0; k < ElemList::CoordBasis::Size(); k++) {
  1581. Real X, Y, Z;
  1582. Real theta = 2 * const_pi<Real>() * (i + nodes[0][k]) / Nt;
  1583. Real phi = 2 * const_pi<Real>() * (j + nodes[1][k]) / Np;
  1584. std::tie(X,Y,Z) = torus(theta, phi, Rmajor, Rminor);
  1585. elements(ii-start,0)[k] = X;
  1586. elements(ii-start,1)[k] = Y;
  1587. elements(ii-start,2)[k] = Z;
  1588. }
  1589. }
  1590. };
  1591. ElemList elements_src, elements_trg;
  1592. build_torus(elements_src, 28, 16, 2, 1.0);
  1593. build_torus(elements_trg, 29, 17, 2, 0.99);
  1594. Vector<Real> Xt;
  1595. Vector<PotentialBasis> U_onsurf, U_offsurf;
  1596. Vector<DensityBasis> density_sl, density_dl;
  1597. { // Set Xt, elements_src, elements_trg, density_sl, density_dl, U
  1598. Real X0[COORD_DIM] = {3,2,1};
  1599. std::function<void(Real*,Real*,Real*)> potential = [X0](Real* U, Real* X, Real* Xn) {
  1600. Real dX[COORD_DIM] = {X[0]-X0[0],X[1]-X0[1],X[2]-X0[2]};
  1601. Real Rinv = 1/sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dX[2]);
  1602. U[0] = Rinv;
  1603. };
  1604. std::function<void(Real*,Real*,Real*)> potential_normal_derivative = [X0](Real* U, Real* X, Real* Xn) {
  1605. Real dX[COORD_DIM] = {X[0]-X0[0],X[1]-X0[1],X[2]-X0[2]};
  1606. Real Rinv = 1/sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dX[2]);
  1607. Real RdotN = dX[0]*Xn[0]+dX[1]*Xn[1]+dX[2]*Xn[2];
  1608. U[0] = -RdotN * Rinv*Rinv*Rinv;
  1609. };
  1610. DiscretizeSurfaceFn<COORD_DIM,1>(density_sl, elements_src, potential_normal_derivative);
  1611. DiscretizeSurfaceFn<COORD_DIM,1>(density_dl, elements_src, potential);
  1612. DiscretizeSurfaceFn<COORD_DIM,1>(U_onsurf , elements_src, potential);
  1613. DiscretizeSurfaceFn<COORD_DIM,1>(U_offsurf , elements_trg, potential);
  1614. for (long i = 0; i < elements_trg.NElem(); i++) { // Set Xt
  1615. for (long j = 0; j < PotentialBasis::Size(); j++) {
  1616. for (int k = 0; k < COORD_DIM; k++) {
  1617. Xt.PushBack(elements_trg(i,k)[j]);
  1618. }
  1619. }
  1620. }
  1621. }
  1622. GenericKernel<Laplace3D_DxU> Laplace_DxU;
  1623. GenericKernel<Laplace3D_FxU> Laplace_FxU;
  1624. Profile::Enable(true);
  1625. if (1) { // Greeen's identity test (Laplace, on-surface)
  1626. Profile::Tic("OnSurface", &comm);
  1627. Quadrature<Real> quadrature_DxU, quadrature_FxU;
  1628. quadrature_FxU.Setup<DensityBasis, PotentialBasis>(elements_src, Laplace_FxU, order_singular, order_direct, -1.0, comm);
  1629. quadrature_DxU.Setup<DensityBasis, PotentialBasis>(elements_src, Laplace_DxU, order_singular, order_direct, -1.0, comm);
  1630. Vector<PotentialBasis> U_sl, U_dl;
  1631. quadrature_FxU.Eval(U_sl, elements_src, density_sl, Laplace_FxU);
  1632. quadrature_DxU.Eval(U_dl, elements_src, density_dl, Laplace_DxU);
  1633. Profile::Toc();
  1634. Real max_err = 0;
  1635. Vector<PotentialBasis> err(U_onsurf.Dim());
  1636. for (long i = 0; i < U_sl.Dim(); i++) {
  1637. for (long j = 0; j < PotentialBasis::Size(); j++) {
  1638. err[i][j] = 0.5*U_onsurf[i][j] - (U_sl[i][j] + U_dl[i][j]);
  1639. max_err = std::max<Real>(max_err, fabs(err[i][j]));
  1640. }
  1641. }
  1642. { // Print error
  1643. Real glb_err;
  1644. comm.Allreduce(Ptr2ConstItr<Real>(&max_err,1), Ptr2Itr<Real>(&glb_err,1), 1, Comm::CommOp::MAX);
  1645. if (!comm.Rank()) std::cout<<"Error = "<<glb_err<<'\n';
  1646. }
  1647. { // Write VTK output
  1648. VTUData vtu;
  1649. vtu.AddElems(elements_src, err, ORDER);
  1650. vtu.WriteVTK("err", comm);
  1651. }
  1652. { // Write VTK output
  1653. VTUData vtu;
  1654. vtu.AddElems(elements_src, U_onsurf, ORDER);
  1655. vtu.WriteVTK("U", comm);
  1656. }
  1657. }
  1658. if (1) { // Greeen's identity test (Laplace, off-surface)
  1659. Profile::Tic("OffSurface", &comm);
  1660. Quadrature<Real> quadrature_DxU, quadrature_FxU;
  1661. quadrature_FxU.Setup<DensityBasis>(elements_src, Xt, Laplace_FxU, order_singular, order_direct, -1.0, comm);
  1662. quadrature_DxU.Setup<DensityBasis>(elements_src, Xt, Laplace_DxU, order_singular, order_direct, -1.0, comm);
  1663. Vector<Real> U_sl, U_dl;
  1664. quadrature_FxU.Eval(U_sl, elements_src, density_sl, Laplace_FxU);
  1665. quadrature_DxU.Eval(U_dl, elements_src, density_dl, Laplace_DxU);
  1666. Profile::Toc();
  1667. Real max_err = 0;
  1668. Vector<PotentialBasis> err(elements_trg.NElem());
  1669. for (long i = 0; i < elements_trg.NElem(); i++) {
  1670. for (long j = 0; j < PotentialBasis::Size(); j++) {
  1671. err[i][j] = U_offsurf[i][j] - (U_sl[i*PotentialBasis::Size()+j] + U_dl[i*PotentialBasis::Size()+j]);
  1672. max_err = std::max<Real>(max_err, fabs(err[i][j]));
  1673. }
  1674. }
  1675. { // Print error
  1676. Real glb_err;
  1677. comm.Allreduce(Ptr2ConstItr<Real>(&max_err,1), Ptr2Itr<Real>(&glb_err,1), 1, Comm::CommOp::MAX);
  1678. if (!comm.Rank()) std::cout<<"Error = "<<glb_err<<'\n';
  1679. }
  1680. { // Write VTK output
  1681. VTUData vtu;
  1682. vtu.AddElems(elements_trg, err, ORDER);
  1683. vtu.WriteVTK("err", comm);
  1684. }
  1685. { // Write VTK output
  1686. VTUData vtu;
  1687. vtu.AddElems(elements_trg, U_offsurf, ORDER);
  1688. vtu.WriteVTK("U", comm);
  1689. }
  1690. }
  1691. Profile::print(&comm);
  1692. }
  1693. static void test1() {
  1694. const Comm& comm = Comm::World();
  1695. constexpr Integer ORDER = 15;
  1696. Integer order_singular = 20;
  1697. Integer order_direct = 20;
  1698. constexpr Integer COORD_DIM = 3;
  1699. constexpr Integer ELEM_DIM = COORD_DIM-1;
  1700. using ElemList = ElemList<COORD_DIM, Basis<Real, ELEM_DIM, ORDER>>;
  1701. using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
  1702. using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
  1703. int np = comm.Size();
  1704. int rank = comm.Rank();
  1705. auto build_sphere = [rank,np](ElemList& elements, Real X, Real Y, Real Z, Real R){
  1706. auto nodes = ElemList::CoordBasis::Nodes();
  1707. long start = 2*COORD_DIM*(rank+0)/np;
  1708. long end = 2*COORD_DIM*(rank+1)/np;
  1709. elements.ReInit(end - start);
  1710. for (long ii = start; ii < end; ii++) {
  1711. long i = ii / 2;
  1712. long j = ii % 2;
  1713. for (int k = 0; k < ElemList::CoordBasis::Size(); k++) {
  1714. Real coord[COORD_DIM];
  1715. coord[(i+0)%COORD_DIM] = (j ? -1.0 : 1.0);
  1716. coord[(i+1)%COORD_DIM] = 2.0 * nodes[j?1:0][k] - 1.0;
  1717. coord[(i+2)%COORD_DIM] = 2.0 * nodes[j?0:1][k] - 1.0;
  1718. Real R0 = sqrt<Real>(coord[0]*coord[0] + coord[1]*coord[1] + coord[2]*coord[2]);
  1719. elements(ii-start,0)[k] = X + R * coord[0] / R0;
  1720. elements(ii-start,1)[k] = Y + R * coord[1] / R0;
  1721. elements(ii-start,2)[k] = Z + R * coord[2] / R0;
  1722. }
  1723. }
  1724. };
  1725. ElemList elements;
  1726. build_sphere(elements, 0.0, 0.0, 0.0, 1.00);
  1727. Vector<DensityBasis> density_sl;
  1728. { // Set density_sl
  1729. std::function<void(Real*,Real*,Real*)> sigma = [](Real* U, Real* X, Real* Xn) {
  1730. Real R = sqrt(X[0]*X[0]+X[1]*X[1]+X[2]*X[2]);
  1731. Real sinp = sqrt(X[1]*X[1] + X[2]*X[2]) / R;
  1732. Real cosp = -X[0] / R;
  1733. U[0] = -1.5;
  1734. U[1] = 0;
  1735. U[2] = 0;
  1736. };
  1737. DiscretizeSurfaceFn<COORD_DIM,3>(density_sl, elements, sigma);
  1738. }
  1739. GenericKernel<Stokes3D_DxU> Stokes_DxU;
  1740. GenericKernel<Stokes3D_FxU> Stokes_FxU;
  1741. Profile::Enable(true);
  1742. if (1) {
  1743. Vector<PotentialBasis> U;
  1744. Quadrature<Real> quadrature_FxU;
  1745. quadrature_FxU.Setup<DensityBasis, PotentialBasis>(elements, Stokes_FxU, order_singular, order_direct, -1.0, comm);
  1746. quadrature_FxU.Eval(U, elements, density_sl, Stokes_FxU);
  1747. { // Write VTK output
  1748. VTUData vtu;
  1749. vtu.AddElems(elements, U, ORDER);
  1750. vtu.WriteVTK("U", comm);
  1751. }
  1752. { // Write VTK output
  1753. VTUData vtu;
  1754. vtu.AddElems(elements, density_sl, ORDER);
  1755. vtu.WriteVTK("sigma", comm);
  1756. }
  1757. }
  1758. Profile::print(&comm);
  1759. }
  1760. private:
  1761. static void scan(Vector<Long>& dsp, const Vector<Long>& cnt) {
  1762. dsp.ReInit(cnt.Dim());
  1763. if (cnt.Dim()) dsp[0] = 0;
  1764. omp_par::scan(cnt.begin(), dsp.begin(), cnt.Dim());
  1765. }
  1766. template <class Basis> static void eval_basis(Vector<Real>& value, const Vector<Basis> X, Integer dof, Integer Nnds, const typename Basis::EvalOpType& EvalOp) {
  1767. Long Nelem = X.Dim() / dof;
  1768. SCTL_ASSERT(X.Dim() == Nelem * dof);
  1769. value.ReInit(Nelem*Nnds*dof);
  1770. Matrix<Real> X_(Nelem*dof, Nnds, value.begin(),false);
  1771. Basis::Eval(X_, X, EvalOp);
  1772. for (Long j = 0; j < Nelem; j++) { // Rearrange data
  1773. Matrix<Real> X(Nnds, dof, X_[j*dof], false);
  1774. X = Matrix<Real>(dof, Nnds, X_[j*dof], false).Transpose();
  1775. }
  1776. }
  1777. template <int CoordDim, int FnDim, class FnBasis, class ElemList> static void DiscretizeSurfaceFn(Vector<FnBasis>& U, const ElemList& elements, std::function<void(Real*,Real*,Real*)> fn) {
  1778. using CoordBasis = typename ElemList::CoordBasis;
  1779. const long Nelem = elements.NElem();
  1780. U.ReInit(Nelem * FnDim);
  1781. Matrix<Real> X, X_grad;
  1782. { // Set X, X_grad
  1783. Vector<CoordBasis> coord = elements.ElemVector();
  1784. Vector<CoordBasis> coord_grad;
  1785. CoordBasis::Grad(coord_grad, coord);
  1786. const auto Meval = CoordBasis::SetupEval(FnBasis::Nodes());
  1787. CoordBasis::Eval(X, coord, Meval);
  1788. CoordBasis::Eval(X_grad, coord_grad, Meval);
  1789. }
  1790. for (long i = 0; i < Nelem; i++) {
  1791. for (long j = 0; j < FnBasis::Size(); j++) {
  1792. Real X_[CoordDim], Xn[CoordDim], U_[FnDim];
  1793. for (long k = 0; k < CoordDim; k++) {
  1794. X_[k] = X[i*CoordDim+k][j];
  1795. }
  1796. { // Set Xn
  1797. Real Xu[CoordDim], Xv[CoordDim];
  1798. for (long k = 0; k < CoordDim; k++) {
  1799. Xu[k] = X_grad[(i*CoordDim+k)*2+0][j];
  1800. Xv[k] = X_grad[(i*CoordDim+k)*2+1][j];
  1801. }
  1802. Real dA = 0;
  1803. for (long k = 0; k < CoordDim; k++) {
  1804. Xn[k] = Xu[(k+1)%CoordDim] * Xv[(k+2)%CoordDim];
  1805. Xn[k] -= Xv[(k+1)%CoordDim] * Xu[(k+2)%CoordDim];
  1806. dA += Xn[k] * Xn[k];
  1807. }
  1808. dA = sqrt(dA);
  1809. for (long k = 0; k < CoordDim; k++) {
  1810. Xn[k] /= dA;
  1811. }
  1812. }
  1813. fn(U_, X_, Xn);
  1814. for (long k = 0; k < FnDim; k++) {
  1815. U[i*FnDim+k][j] = U_[k];
  1816. }
  1817. }
  1818. }
  1819. }
  1820. Vector<Real> Xt_;
  1821. Matrix<Real> M_singular;
  1822. Matrix<Real> M_near_singular;
  1823. Vector<Pair<Long,Long>> pair_lst;
  1824. Integer order_direct_;
  1825. Real period_length_;
  1826. Comm comm_;
  1827. };
  1828. template <class Real, Integer ORDER=10> class Stellarator {
  1829. private:
  1830. static constexpr Integer COORD_DIM = 3;
  1831. static constexpr Integer ELEM_DIM = COORD_DIM-1;
  1832. using ElemBasis = Basis<Real, ELEM_DIM, ORDER>;
  1833. using ElemLst = ElemList<COORD_DIM, ElemBasis>;
  1834. struct Laplace3D_dUxF {
  1835. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1836. return 1 / (4 * const_pi<ValueType>());
  1837. }
  1838. template <class ValueType> static void Eval(ValueType (&u)[3][1], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1839. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1840. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1841. ValueType rinv3 = rinv * rinv * rinv;
  1842. u[0][0] = -r[0] * rinv3;
  1843. u[1][0] = -r[1] * rinv3;
  1844. u[2][0] = -r[2] * rinv3;
  1845. }
  1846. };
  1847. struct BiotSavart3D {
  1848. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1849. return 1 / (4 * const_pi<ValueType>());
  1850. }
  1851. template <class ValueType> static void Eval(ValueType (&u)[3][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1852. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1853. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1854. ValueType rinv3 = rinv * rinv * rinv;
  1855. u[0][0] = (0) * rinv3; u[0][1] = -r[2] * rinv3; u[0][2] = r[1] * rinv3;
  1856. u[1][0] = r[2] * rinv3; u[1][1] = (0) * rinv3; u[1][2] = -r[0] * rinv3;
  1857. u[2][0] = -r[1] * rinv3; u[2][1] = r[0] * rinv3; u[2][2] = (0) * rinv3;
  1858. }
  1859. };
  1860. struct Laplace3D_dUxD {
  1861. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1862. return 1 / (4 * const_pi<ValueType>());
  1863. }
  1864. template <class ValueType> static void Eval(ValueType (&u)[3][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1865. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1866. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1867. ValueType rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2];
  1868. ValueType rinv2 = rinv * rinv;
  1869. ValueType rinv3 = rinv * rinv2;
  1870. ValueType rinv5 = rinv3 * rinv2;
  1871. u[0][0] = -1 * rinv3 + 3 * r[0] * r[0] * rinv5;
  1872. u[0][1] = -0 * rinv3 + 3 * r[0] * r[1] * rinv5;
  1873. u[0][2] = -0 * rinv3 + 3 * r[0] * r[2] * rinv5;
  1874. u[1][0] = -0 * rinv3 + 3 * r[1] * r[0] * rinv5;
  1875. u[1][1] = -1 * rinv3 + 3 * r[1] * r[1] * rinv5;
  1876. u[1][2] = -0 * rinv3 + 3 * r[1] * r[2] * rinv5;
  1877. u[2][0] = -0 * rinv3 + 3 * r[2] * r[0] * rinv5;
  1878. u[2][1] = -0 * rinv3 + 3 * r[2] * r[1] * rinv5;
  1879. u[2][2] = -1 * rinv3 + 3 * r[2] * r[2] * rinv5;
  1880. }
  1881. };
  1882. struct Laplace3D_DxdU {
  1883. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1884. return 1 / (4 * const_pi<ValueType>());
  1885. }
  1886. template <class ValueType> static void Eval(ValueType (&u)[1][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1887. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1888. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1889. ValueType rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2];
  1890. ValueType rinv2 = rinv * rinv;
  1891. ValueType rinv3 = rinv * rinv2;
  1892. ValueType rinv5 = rinv3 * rinv2;
  1893. u[0][0] = -n[0] * rinv3 + 3*rdotn * r[0] * rinv5;
  1894. u[0][1] = -n[1] * rinv3 + 3*rdotn * r[1] * rinv5;
  1895. u[0][2] = -n[2] * rinv3 + 3*rdotn * r[2] * rinv5;
  1896. }
  1897. };
  1898. struct Laplace3D_Fxd2U {
  1899. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1900. return 1 / (4 * const_pi<ValueType>());
  1901. }
  1902. template <class ValueType> static void Eval(ValueType (&u)[1][9], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1903. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1904. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1905. ValueType rinv2 = rinv * rinv;
  1906. ValueType rinv3 = rinv * rinv2;
  1907. ValueType rinv5 = rinv3 * rinv2;
  1908. u[0][0+3*0] = -1 * rinv3 + 3 * r[0] * r[0] * rinv5;
  1909. u[0][1+3*0] = -0 * rinv3 + 3 * r[0] * r[1] * rinv5;
  1910. u[0][2+3*0] = -0 * rinv3 + 3 * r[0] * r[2] * rinv5;
  1911. u[0][0+3*1] = -0 * rinv3 + 3 * r[1] * r[0] * rinv5;
  1912. u[0][1+3*1] = -1 * rinv3 + 3 * r[1] * r[1] * rinv5;
  1913. u[0][2+3*1] = -0 * rinv3 + 3 * r[1] * r[2] * rinv5;
  1914. u[0][0+3*2] = -0 * rinv3 + 3 * r[2] * r[0] * rinv5;
  1915. u[0][1+3*2] = -0 * rinv3 + 3 * r[2] * r[1] * rinv5;
  1916. u[0][2+3*2] = -1 * rinv3 + 3 * r[2] * r[2] * rinv5;
  1917. }
  1918. };
  1919. public:
  1920. Stellarator(const Vector<Long>& NtNp = Vector<Long>()) {
  1921. NtNp_ = NtNp;
  1922. Long Nsurf = NtNp_.Dim() / 2;
  1923. SCTL_ASSERT(Nsurf*2 == NtNp_.Dim());
  1924. Long Nelem = 0;
  1925. elem_dsp.ReInit(Nsurf);
  1926. if (elem_dsp.Dim()) elem_dsp[0] = 0;
  1927. for (Long i = 0; i < Nsurf; i++) {
  1928. Nelem += NtNp_[i*2+0]*NtNp_[i*2+1];
  1929. if (i+1 < Nsurf) elem_dsp[i+1] = elem_dsp[i] + NtNp_[i*2+0]*NtNp_[i*2+1];
  1930. }
  1931. elements.ReInit(Nelem);
  1932. for (Long i = 0; i < Nsurf; i++) {
  1933. InitSurf(i);
  1934. }
  1935. }
  1936. Long ElemIdx(Long s, Long t, Long p) {
  1937. SCTL_ASSERT(0 <= s && s < elem_dsp.Dim());
  1938. SCTL_ASSERT(0 <= t && t < NtNp_[s*2+0]);
  1939. SCTL_ASSERT(0 <= p && p < NtNp_[s*2+1]);
  1940. return elem_dsp[s] + t*NtNp_[s*2+1] + p;
  1941. }
  1942. ElemBasis& Elem(Long elem, Integer dim) {
  1943. return elements(elem,dim);
  1944. }
  1945. const ElemBasis& Elem(Long elem, Integer dim) const {
  1946. return elements(elem,dim);
  1947. }
  1948. const ElemLst& GetElemList() {
  1949. return elements;
  1950. }
  1951. static void test_() {
  1952. constexpr Integer order_singular = 20;
  1953. constexpr Integer order_direct = 35;
  1954. Comm comm = Comm::World();
  1955. Profile::Enable(true);
  1956. Stellarator<Real,ORDER> S;
  1957. { // Set S
  1958. Vector<Real> X(COORD_DIM);
  1959. Vector<Real> R(1);
  1960. X = 0;
  1961. R = 1;
  1962. SCTL_ASSERT(X.Dim() == R.Dim() * COORD_DIM);
  1963. Long N = R.Dim();
  1964. S.elements.ReInit(2*COORD_DIM*N);
  1965. auto nodes = ElemLst::CoordBasis::Nodes();
  1966. for (Long l = 0; l < N; l++) {
  1967. for (Integer i = 0; i < COORD_DIM; i++) {
  1968. for (Integer j = 0; j < 2; j++) {
  1969. for (int k = 0; k < ElemLst::CoordBasis::Size(); k++) {
  1970. Real coord[COORD_DIM];
  1971. coord[(i+0)%COORD_DIM] = (j ? -1.0 : 1.0);
  1972. coord[(i+1)%COORD_DIM] = 2.0 * nodes[j?1:0][k] - 1.0;
  1973. coord[(i+2)%COORD_DIM] = 2.0 * nodes[j?0:1][k] - 1.0;
  1974. Real R0 = sqrt<Real>(coord[0]*coord[0] + coord[1]*coord[1] + coord[2]*coord[2]);
  1975. S.elements((l*COORD_DIM+i)*2+j,0)[k] = X[l*COORD_DIM+0] + R[l] * coord[0] / R0;
  1976. S.elements((l*COORD_DIM+i)*2+j,1)[k] = X[l*COORD_DIM+1] + R[l] * coord[1] / R0;
  1977. S.elements((l*COORD_DIM+i)*2+j,2)[k] = X[l*COORD_DIM+2] + R[l] * coord[2] / R0;
  1978. }
  1979. }
  1980. }
  1981. }
  1982. S.elem_dsp.ReInit(1);
  1983. S.elem_dsp = 0;
  1984. }
  1985. S.quadrature_Fxd2U.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_Fxd2U, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  1986. //S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  1987. { // test Fxd2U
  1988. Vector<ElemBasis> U, sigma(S.elements.NElem());
  1989. sigma = 1;
  1990. sigma[0] = 1;
  1991. S.quadrature_Fxd2U.Eval(U, S.GetElemList(), sigma, S.Laplace_Fxd2U);
  1992. //S.quadrature_FxdU.Eval(U, S.GetElemList(), sigma, S.Laplace_FxdU);
  1993. { // Write VTU
  1994. VTUData vtu;
  1995. vtu.AddElems(S.GetElemList(), U, ORDER);
  1996. vtu.WriteVTK("test", comm);
  1997. }
  1998. }
  1999. Profile::print(&comm);
  2000. }
  2001. static void test() {
  2002. constexpr Integer order_singular = 15;
  2003. constexpr Integer order_direct = 35;
  2004. Comm comm = Comm::World();
  2005. Profile::Enable(true);
  2006. Stellarator<Real,ORDER> S;
  2007. { // Init S
  2008. Vector<Long> NtNp;
  2009. NtNp.PushBack(40);
  2010. NtNp.PushBack(8);
  2011. S = Stellarator<Real,ORDER>(NtNp);
  2012. }
  2013. Vector<ElemBasis> normal, area_elem;
  2014. auto compute_dot_prod = [](const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  2015. const Long Nelem = A.Dim() / COORD_DIM;
  2016. const Long Nnodes = ElemBasis::Size();
  2017. SCTL_ASSERT(A.Dim() == Nelem * COORD_DIM);
  2018. SCTL_ASSERT(B.Dim() == Nelem * COORD_DIM);
  2019. Vector<ElemBasis> AdotB(Nelem);
  2020. for (Long i = 0; i < Nelem; i++) {
  2021. for (Long j = 0; j < Nnodes; j++) {
  2022. Real a_dot_b = 0;
  2023. a_dot_b += A[i*COORD_DIM+0][j]*B[i*COORD_DIM+0][j];
  2024. a_dot_b += A[i*COORD_DIM+1][j]*B[i*COORD_DIM+1][j];
  2025. a_dot_b += A[i*COORD_DIM+2][j]*B[i*COORD_DIM+2][j];
  2026. AdotB[i][j] = a_dot_b;
  2027. }
  2028. }
  2029. return AdotB;
  2030. };
  2031. auto compute_inner_prod = [&S, &area_elem](const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  2032. const auto& quad_wts = ElemBasis::QuadWts();
  2033. const Long Nelem = S.GetElemList().NElem();
  2034. const Long Nnodes = ElemBasis::Size();
  2035. const Long dof = B.Dim() / Nelem;
  2036. Real sum = 0;
  2037. for (Long i = 0; i < Nelem; i++) {
  2038. for (Long j = 0; j < Nnodes; j++) {
  2039. Real AdotB = 0;
  2040. for (Long k = 0; k < dof; k++) {
  2041. AdotB += A[i*dof+k][j] * B[i*dof+k][j];
  2042. }
  2043. sum += AdotB * area_elem[i][j] * quad_wts[j];
  2044. }
  2045. }
  2046. return sum;
  2047. };
  2048. auto compute_norm_area_elem = [&S](Vector<ElemBasis>& normal, Vector<ElemBasis>& area_elem){ // Set normal, area_elem
  2049. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  2050. const Long Nelem = S.GetElemList().NElem();
  2051. const Long Nnodes = ElemBasis::Size();
  2052. Vector<ElemBasis> dX;
  2053. ElemBasis::Grad(dX, X);
  2054. area_elem.ReInit(Nelem);
  2055. normal.ReInit(Nelem * COORD_DIM);
  2056. for (Long i = 0; i < Nelem; i++) {
  2057. for (Long j = 0; j < Nnodes; j++) {
  2058. Tensor<Real,true,COORD_DIM> x, n;
  2059. Tensor<Real,true,COORD_DIM,2> dx;
  2060. x(0) = X[i*COORD_DIM+0][j];
  2061. x(1) = X[i*COORD_DIM+1][j];
  2062. x(2) = X[i*COORD_DIM+2][j];
  2063. dx(0,0) = dX[i*COORD_DIM*2+0][j];
  2064. dx(0,1) = dX[i*COORD_DIM*2+1][j];
  2065. dx(1,0) = dX[i*COORD_DIM*2+2][j];
  2066. dx(1,1) = dX[i*COORD_DIM*2+3][j];
  2067. dx(2,0) = dX[i*COORD_DIM*2+4][j];
  2068. dx(2,1) = dX[i*COORD_DIM*2+5][j];
  2069. n(0) = dx(1,0) * dx(2,1) - dx(2,0) * dx(1,1);
  2070. n(1) = dx(2,0) * dx(0,1) - dx(0,0) * dx(2,1);
  2071. n(2) = dx(0,0) * dx(1,1) - dx(1,0) * dx(0,1);
  2072. Real area_elem_ = sqrt<Real>(n(0)*n(0) + n(1)*n(1) + n(2)*n(2));
  2073. Real ooae = 1 / area_elem_;
  2074. n(0) *= ooae;
  2075. n(1) *= ooae;
  2076. n(2) *= ooae;
  2077. normal[i*COORD_DIM+0][j] = n(0);
  2078. normal[i*COORD_DIM+1][j] = n(1);
  2079. normal[i*COORD_DIM+2][j] = n(2);
  2080. area_elem[i][j] = area_elem_;
  2081. }
  2082. }
  2083. };
  2084. compute_norm_area_elem(normal, area_elem);
  2085. S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  2086. S.quadrature_DxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_DxU , order_singular, order_direct, -1.0, comm);
  2087. S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  2088. S.quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
  2089. auto compute_poloidal_circulation = [&S] (const Vector<ElemBasis>& B) {
  2090. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  2091. const Long Nelem = S.GetElemList().NElem();
  2092. const Long Nnodes = ElemBasis::Size();
  2093. const auto& quad_wts = Basis<Real,1,ORDER>::QuadWts();
  2094. Vector<ElemBasis> dX;
  2095. ElemBasis::Grad(dX, X);
  2096. const Long Nt = 40;
  2097. const Long Np = 8;
  2098. for (Long t = 0; t < Nt; t++) {
  2099. for (Long j = 0; j < ORDER; j++) {
  2100. Real sum = 0;
  2101. for (Long p = 0; p < Np; p++) {
  2102. for (Long i = 0; i < ORDER; i++) {
  2103. Long elem_idx = t*Np+p;
  2104. Long node_idx = i*ORDER+j;
  2105. Tensor<Real,true,COORD_DIM,2> dx;
  2106. dx(0,0) = dX[elem_idx*COORD_DIM*2+0][node_idx];
  2107. dx(0,1) = dX[elem_idx*COORD_DIM*2+1][node_idx];
  2108. dx(1,0) = dX[elem_idx*COORD_DIM*2+2][node_idx];
  2109. dx(1,1) = dX[elem_idx*COORD_DIM*2+3][node_idx];
  2110. dx(2,0) = dX[elem_idx*COORD_DIM*2+4][node_idx];
  2111. dx(2,1) = dX[elem_idx*COORD_DIM*2+5][node_idx];
  2112. Tensor<Real,true,COORD_DIM> b;
  2113. b(0) = B[elem_idx*COORD_DIM+0][node_idx];
  2114. b(1) = B[elem_idx*COORD_DIM+1][node_idx];
  2115. b(2) = B[elem_idx*COORD_DIM+2][node_idx];
  2116. sum += (b(0)*dx(0,1) + b(1)*dx(1,1) + b(2)*dx(2,1)) * quad_wts[i];
  2117. }
  2118. }
  2119. std::cout<<sum<<' ';
  2120. }
  2121. }
  2122. std::cout<<'\n';
  2123. };
  2124. auto compute_toroidal_circulation = [&S] (const Vector<ElemBasis>& B) {
  2125. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  2126. const Long Nelem = S.GetElemList().NElem();
  2127. const Long Nnodes = ElemBasis::Size();
  2128. const auto& quad_wts = Basis<Real,1,ORDER>::QuadWts();
  2129. Vector<ElemBasis> dX;
  2130. ElemBasis::Grad(dX, X);
  2131. const Long Nt = 40;
  2132. const Long Np = 8;
  2133. for (Long p = 0; p < Np; p++) {
  2134. for (Long i = 0; i < ORDER; i++) {
  2135. Real sum = 0;
  2136. for (Long t = 0; t < Nt; t++) {
  2137. for (Long j = 0; j < ORDER; j++) {
  2138. Long elem_idx = t*Np+p;
  2139. Long node_idx = i*ORDER+j;
  2140. Tensor<Real,true,COORD_DIM,2> dx;
  2141. dx(0,0) = dX[elem_idx*COORD_DIM*2+0][node_idx];
  2142. dx(0,1) = dX[elem_idx*COORD_DIM*2+1][node_idx];
  2143. dx(1,0) = dX[elem_idx*COORD_DIM*2+2][node_idx];
  2144. dx(1,1) = dX[elem_idx*COORD_DIM*2+3][node_idx];
  2145. dx(2,0) = dX[elem_idx*COORD_DIM*2+4][node_idx];
  2146. dx(2,1) = dX[elem_idx*COORD_DIM*2+5][node_idx];
  2147. Tensor<Real,true,COORD_DIM> b;
  2148. b(0) = B[elem_idx*COORD_DIM+0][node_idx];
  2149. b(1) = B[elem_idx*COORD_DIM+1][node_idx];
  2150. b(2) = B[elem_idx*COORD_DIM+2][node_idx];
  2151. sum += (b(0)*dx(0,0) + b(1)*dx(1,0) + b(2)*dx(2,0)) * quad_wts[j];
  2152. }
  2153. }
  2154. std::cout<<sum<<' ';
  2155. }
  2156. }
  2157. std::cout<<'\n';
  2158. };
  2159. auto compute_poloidal_circulation_ = [&S,&area_elem] (const Vector<ElemBasis>& B) {
  2160. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  2161. const Long Nelem = S.GetElemList().NElem();
  2162. const Long Nnodes = ElemBasis::Size();
  2163. const auto& quad_wts = ElemBasis::QuadWts();
  2164. Vector<ElemBasis> dX;
  2165. ElemBasis::Grad(dX, X);
  2166. Real sum = 0;
  2167. for (Long i = 0; i < Nelem; i++) {
  2168. for (Long j = 0; j < Nnodes; j++) {
  2169. Tensor<Real,true,COORD_DIM,2> dx;
  2170. dx(0,0) = dX[i*COORD_DIM*2+0][j];
  2171. dx(0,1) = dX[i*COORD_DIM*2+1][j];
  2172. dx(1,0) = dX[i*COORD_DIM*2+2][j];
  2173. dx(1,1) = dX[i*COORD_DIM*2+3][j];
  2174. dx(2,0) = dX[i*COORD_DIM*2+4][j];
  2175. dx(2,1) = dX[i*COORD_DIM*2+5][j];
  2176. Tensor<Real,true,COORD_DIM> b;
  2177. b(0) = B[i*COORD_DIM+0][j];
  2178. b(1) = B[i*COORD_DIM+1][j];
  2179. b(2) = B[i*COORD_DIM+2][j];
  2180. Real s = 1/area_elem[i][j];
  2181. sum += (b(0)*dx(0,1) + b(1)*dx(1,1) + b(2)*dx(2,1)) * s * area_elem[i][j] * quad_wts[j];
  2182. }
  2183. }
  2184. return sum;
  2185. };
  2186. auto compute_toroidal_circulation_ = [&S,&area_elem] (const Vector<ElemBasis>& B) {
  2187. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  2188. const Long Nelem = S.GetElemList().NElem();
  2189. const Long Nnodes = ElemBasis::Size();
  2190. const auto& quad_wts = ElemBasis::QuadWts();
  2191. Vector<ElemBasis> dX;
  2192. ElemBasis::Grad(dX, X);
  2193. Real sum = 0;
  2194. for (Long i = 0; i < Nelem; i++) {
  2195. for (Long j = 0; j < Nnodes; j++) {
  2196. Tensor<Real,true,COORD_DIM,2> dx;
  2197. dx(0,0) = dX[i*COORD_DIM*2+0][j];
  2198. dx(0,1) = dX[i*COORD_DIM*2+1][j];
  2199. dx(1,0) = dX[i*COORD_DIM*2+2][j];
  2200. dx(1,1) = dX[i*COORD_DIM*2+3][j];
  2201. dx(2,0) = dX[i*COORD_DIM*2+4][j];
  2202. dx(2,1) = dX[i*COORD_DIM*2+5][j];
  2203. Tensor<Real,true,COORD_DIM> b;
  2204. b(0) = B[i*COORD_DIM+0][j];
  2205. b(1) = B[i*COORD_DIM+1][j];
  2206. b(2) = B[i*COORD_DIM+2][j];
  2207. Real s = 1/area_elem[i][j];
  2208. sum += (b(0)*dx(0,0) + b(1)*dx(1,0) + b(2)*dx(2,0)) * s * area_elem[i][j] * quad_wts[j];
  2209. }
  2210. }
  2211. return sum;
  2212. };
  2213. auto compute_grad_adj = [&S,&area_elem] (const Vector<ElemBasis>& V) {
  2214. const Long Nelem = S.GetElemList().NElem();
  2215. const Long Nnodes = ElemBasis::Size();
  2216. Vector<ElemBasis> du_dX(Nelem*COORD_DIM*2);
  2217. { // Set du_dX
  2218. Vector<ElemBasis> dX;
  2219. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2220. auto inv2x2 = [](Tensor<Real, true, 2, 2> M) {
  2221. Tensor<Real, true, 2, 2> Mout;
  2222. Real oodet = 1 / (M(0,0) * M(1,1) - M(0,1) * M(1,0));
  2223. Mout(0,0) = M(1,1) * oodet;
  2224. Mout(0,1) = -M(0,1) * oodet;
  2225. Mout(1,0) = -M(1,0) * oodet;
  2226. Mout(1,1) = M(0,0) * oodet;
  2227. return Mout;
  2228. };
  2229. for (Long i = 0; i < Nelem; i++) {
  2230. for (Long j = 0; j < Nnodes; j++) {
  2231. Tensor<Real, true, 3, 2> dX_du;
  2232. dX_du(0,0) = dX[(i*COORD_DIM+0)*2+0][j];
  2233. dX_du(1,0) = dX[(i*COORD_DIM+1)*2+0][j];
  2234. dX_du(2,0) = dX[(i*COORD_DIM+2)*2+0][j];
  2235. dX_du(0,1) = dX[(i*COORD_DIM+0)*2+1][j];
  2236. dX_du(1,1) = dX[(i*COORD_DIM+1)*2+1][j];
  2237. dX_du(2,1) = dX[(i*COORD_DIM+2)*2+1][j];
  2238. Tensor<Real, true, 2, 2> G; // = dX_du.Transpose() * dX_du;
  2239. G(0,0) = dX_du(0,0) * dX_du(0,0) + dX_du(1,0) * dX_du(1,0) + dX_du(2,0) * dX_du(2,0);
  2240. G(0,1) = dX_du(0,0) * dX_du(0,1) + dX_du(1,0) * dX_du(1,1) + dX_du(2,0) * dX_du(2,1);
  2241. G(1,0) = dX_du(0,1) * dX_du(0,0) + dX_du(1,1) * dX_du(1,0) + dX_du(2,1) * dX_du(2,0);
  2242. G(1,1) = dX_du(0,1) * dX_du(0,1) + dX_du(1,1) * dX_du(1,1) + dX_du(2,1) * dX_du(2,1);
  2243. Tensor<Real, true, 2, 2> Ginv = inv2x2(G);
  2244. du_dX[(i*COORD_DIM+0)*2+0][j] = Ginv(0,0) * dX_du(0,0) + Ginv(0,1) * dX_du(0,1);
  2245. du_dX[(i*COORD_DIM+1)*2+0][j] = Ginv(0,0) * dX_du(1,0) + Ginv(0,1) * dX_du(1,1);
  2246. du_dX[(i*COORD_DIM+2)*2+0][j] = Ginv(0,0) * dX_du(2,0) + Ginv(0,1) * dX_du(2,1);
  2247. du_dX[(i*COORD_DIM+0)*2+1][j] = Ginv(1,0) * dX_du(0,0) + Ginv(1,1) * dX_du(0,1);
  2248. du_dX[(i*COORD_DIM+1)*2+1][j] = Ginv(1,0) * dX_du(1,0) + Ginv(1,1) * dX_du(1,1);
  2249. du_dX[(i*COORD_DIM+2)*2+1][j] = Ginv(1,0) * dX_du(2,0) + Ginv(1,1) * dX_du(2,1);
  2250. }
  2251. }
  2252. }
  2253. Vector<ElemBasis> dudX_V(Nelem*2);
  2254. for (Long i = 0; i < Nelem; i++) {
  2255. for (Long j = 0; j < Nnodes; j++) {
  2256. dudX_V[i*2+0][j] = 0;
  2257. dudX_V[i*2+1][j] = 0;
  2258. dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+0)*2+0][j] * V[i*COORD_DIM+0][j];
  2259. dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+1)*2+0][j] * V[i*COORD_DIM+1][j];
  2260. dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+2)*2+0][j] * V[i*COORD_DIM+2][j];
  2261. dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+0)*2+1][j] * V[i*COORD_DIM+0][j];
  2262. dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+1)*2+1][j] * V[i*COORD_DIM+1][j];
  2263. dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+2)*2+1][j] * V[i*COORD_DIM+2][j];
  2264. }
  2265. }
  2266. Vector<ElemBasis> eye(Nnodes), Mgrad;
  2267. eye = 0;
  2268. for (Long i = 0; i < Nnodes; i++) eye[i][i] = 1;
  2269. ElemBasis::Grad(Mgrad, eye);
  2270. Vector<ElemBasis> grad_adj_V(Nelem);
  2271. const auto& quad_wts = ElemBasis::QuadWts();
  2272. for (Long i = 0; i < Nelem; i++) {
  2273. for (Long j = 0; j < Nnodes; j++) {
  2274. Real sum = 0;
  2275. for (Long k = 0; k < Nnodes; k++) {
  2276. sum += Mgrad[j*2+0][k] * dudX_V[i*2+0][k] * (area_elem[i][k] * quad_wts[k]) / (quad_wts[j] * area_elem[i][j]);
  2277. sum += Mgrad[j*2+1][k] * dudX_V[i*2+1][k] * (area_elem[i][k] * quad_wts[k]) / (quad_wts[j] * area_elem[i][j]);
  2278. }
  2279. grad_adj_V[i][j] = -sum;
  2280. }
  2281. }
  2282. return grad_adj_V;
  2283. };
  2284. auto compute_B0 = [&S](const Real alpha) { // alpha/|r| \hat{\theta}
  2285. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  2286. const Long Nelem = S.GetElemList().NElem();
  2287. const Long Nnodes = ElemBasis::Size();
  2288. Vector<ElemBasis> B0(Nelem * COORD_DIM);
  2289. for (Long i = 0; i < Nelem; i++) {
  2290. for (Long j = 0; j < Nnodes; j++) {
  2291. Tensor<Real,true,COORD_DIM> x, b0, axis;
  2292. x(0) = X[i*COORD_DIM+0][j];
  2293. x(1) = X[i*COORD_DIM+1][j];
  2294. x(2) = X[i*COORD_DIM+2][j];
  2295. axis(0) = 0;
  2296. axis(1) = 0;
  2297. axis(2) = 1;
  2298. b0(0) = axis(1) * x(2) - axis(2) * x(1);
  2299. b0(1) = axis(2) * x(0) - axis(0) * x(2);
  2300. b0(2) = axis(0) * x(1) - axis(1) * x(0);
  2301. Real scale = 1 / (b0(0)*b0(0) + b0(1)*b0(1) + b0(2)*b0(2));
  2302. b0(0) *= scale;
  2303. b0(1) *= scale;
  2304. b0(2) *= scale;
  2305. B0[i*COORD_DIM+0][j] = alpha * b0(0);
  2306. B0[i*COORD_DIM+1][j] = alpha * b0(1);
  2307. B0[i*COORD_DIM+2][j] = alpha * b0(2);
  2308. }
  2309. }
  2310. return B0;
  2311. };
  2312. auto compute_dB0 = [&S](const Real alpha) { // alpha/|r| \hat{\theta}
  2313. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  2314. const Long Nelem = S.GetElemList().NElem();
  2315. const Long Nnodes = ElemBasis::Size();
  2316. Vector<ElemBasis> dB0(Nelem * COORD_DIM * COORD_DIM);
  2317. for (Long i = 0; i < Nelem; i++) {
  2318. for (Long j = 0; j < Nnodes; j++) {
  2319. Tensor<Real,true,COORD_DIM> x;
  2320. x(0) = X[i*COORD_DIM+0][j];
  2321. x(1) = X[i*COORD_DIM+1][j];
  2322. x(2) = X[i*COORD_DIM+2][j];
  2323. Real R2inv = 1 / (x(0)*x(0) + x(1)*x(1));
  2324. dB0[(i*COORD_DIM+0)*COORD_DIM+0][j] = alpha * (2*x(0)*x(1) * R2inv*R2inv);
  2325. dB0[(i*COORD_DIM+0)*COORD_DIM+1][j] = alpha * (-R2inv + 2*x(1)*x(1) * R2inv*R2inv);
  2326. dB0[(i*COORD_DIM+0)*COORD_DIM+2][j] = 0;
  2327. dB0[(i*COORD_DIM+1)*COORD_DIM+0][j] = alpha * (R2inv - 2*x(0)*x(0) * R2inv*R2inv);
  2328. dB0[(i*COORD_DIM+1)*COORD_DIM+1][j] = alpha * (-2*x(0)*x(1) * R2inv*R2inv);
  2329. dB0[(i*COORD_DIM+1)*COORD_DIM+2][j] = 0;
  2330. dB0[(i*COORD_DIM+2)*COORD_DIM+0][j] = 0;
  2331. dB0[(i*COORD_DIM+2)*COORD_DIM+1][j] = 0;
  2332. dB0[(i*COORD_DIM+2)*COORD_DIM+2][j] = 0;
  2333. }
  2334. }
  2335. return dB0;
  2336. };
  2337. auto compute_half_n_plus_dG = [&S, &normal](const Vector<ElemBasis>& sigma) { // B = n sigma/2 + dG[sigma]
  2338. const Long Nelem = S.GetElemList().NElem();
  2339. const Long Nnodes = ElemBasis::Size();
  2340. Vector<ElemBasis> B;
  2341. S.quadrature_FxdU.Eval(B, S.GetElemList(), sigma, S.Laplace_FxdU);
  2342. for (Long i = 0; i < Nelem; i++) {
  2343. for (Long j = 0; j < Nnodes; j++) {
  2344. for (Long k = 0; k < COORD_DIM; k++) {
  2345. B[i*COORD_DIM+k][j] -= 0.5*sigma[i][j]*normal[i*COORD_DIM+k][j];
  2346. }
  2347. }
  2348. }
  2349. return B;
  2350. };
  2351. auto compute_A11 = [&S,&normal,&compute_half_n_plus_dG,&compute_dot_prod](Vector<Real>& B_dot_n, const Vector<Real>& sigma) {
  2352. const Long Nelem = S.GetElemList().NElem();
  2353. const Long Nnodes = ElemBasis::Size();
  2354. B_dot_n.ReInit(Nelem * Nnodes);
  2355. Vector<ElemBasis> sigma_(Nelem);
  2356. for (Long i = 0; i < Nelem; i++) {
  2357. for (Long j = 0; j < Nnodes; j++) {
  2358. sigma_[i][j] = sigma[i*Nnodes+j];
  2359. }
  2360. }
  2361. Vector<ElemBasis> B_dot_n_ = compute_dot_prod(normal, compute_half_n_plus_dG(sigma_));
  2362. for (Long i = 0; i < Nelem; i++) {
  2363. for (Long j = 0; j < Nnodes; j++) {
  2364. B_dot_n[i*Nnodes+j] = B_dot_n_[i][j];
  2365. }
  2366. }
  2367. };
  2368. auto compute_A12 = [&S,&normal,&compute_dot_prod,&compute_B0](Vector<Real>& B_dot_n, const Real alpha) {
  2369. const Long Nelem = S.GetElemList().NElem();
  2370. const Long Nnodes = ElemBasis::Size();
  2371. B_dot_n.ReInit(Nelem * Nnodes);
  2372. Vector<ElemBasis> B_dot_n_ = compute_dot_prod(normal, compute_B0(alpha));
  2373. for (Long i = 0; i < Nelem; i++) {
  2374. for (Long j = 0; j < Nnodes; j++) {
  2375. B_dot_n[i*Nnodes+j] = B_dot_n_[i][j];
  2376. }
  2377. }
  2378. };
  2379. auto compute_A21 = [&S,&normal,&compute_half_n_plus_dG,&compute_poloidal_circulation_](const Vector<Real>& sigma) {
  2380. const Long Nelem = S.GetElemList().NElem();
  2381. const Long Nnodes = ElemBasis::Size();
  2382. Vector<ElemBasis> sigma_(Nelem);
  2383. for (Long i = 0; i < Nelem; i++) {
  2384. for (Long j = 0; j < Nnodes; j++) {
  2385. sigma_[i][j] = sigma[i*Nnodes+j];
  2386. }
  2387. }
  2388. if (0) { // alternate implementation
  2389. //Vector<ElemBasis> A21_(Nelem);
  2390. //Vector<Real> A21(Nelem*Nnodes);
  2391. //compute_A21adj(A21, 1);
  2392. //for (Long i = 0; i < Nelem; i++) {
  2393. // for (Long j = 0; j < Nnodes; j++) {
  2394. // A21_[i][j] = A21[i*Nnodes+j];
  2395. // }
  2396. //}
  2397. //return compute_inner_prod(A21_, sigma_);
  2398. }
  2399. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma_);
  2400. Vector<ElemBasis> J(Nelem * COORD_DIM);
  2401. for (Long i = 0; i < Nelem; i++) { // Set J
  2402. for (Long j = 0; j < Nnodes; j++) {
  2403. Tensor<Real,true,COORD_DIM> b, n;
  2404. b(0) = B[i*COORD_DIM+0][j];
  2405. b(1) = B[i*COORD_DIM+1][j];
  2406. b(2) = B[i*COORD_DIM+2][j];
  2407. n(0) = normal[i*COORD_DIM+0][j];
  2408. n(1) = normal[i*COORD_DIM+1][j];
  2409. n(2) = normal[i*COORD_DIM+2][j];
  2410. J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
  2411. J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
  2412. J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
  2413. }
  2414. }
  2415. Vector<ElemBasis> A;
  2416. S.quadrature_FxU.Eval(A, S.GetElemList(), J, S.Laplace_FxU);
  2417. return compute_poloidal_circulation_(A)/S.NtNp_[0];
  2418. };
  2419. auto compute_A22 = [&S,&compute_B0,&normal,&compute_poloidal_circulation_](const Real alpha) {
  2420. const Long Nelem = S.GetElemList().NElem();
  2421. const Long Nnodes = ElemBasis::Size();
  2422. Vector<ElemBasis> B = compute_B0(alpha);
  2423. Vector<ElemBasis> J(Nelem * COORD_DIM);
  2424. for (Long i = 0; i < Nelem; i++) { // Set J
  2425. for (Long j = 0; j < Nnodes; j++) {
  2426. Tensor<Real,true,COORD_DIM> b, n;
  2427. b(0) = B[i*COORD_DIM+0][j];
  2428. b(1) = B[i*COORD_DIM+1][j];
  2429. b(2) = B[i*COORD_DIM+2][j];
  2430. n(0) = normal[i*COORD_DIM+0][j];
  2431. n(1) = normal[i*COORD_DIM+1][j];
  2432. n(2) = normal[i*COORD_DIM+2][j];
  2433. J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
  2434. J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
  2435. J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
  2436. }
  2437. }
  2438. Vector<ElemBasis> A;
  2439. S.quadrature_FxU.Eval(A, S.GetElemList(), J, S.Laplace_FxU);
  2440. return compute_poloidal_circulation_(A)/S.NtNp_[0];
  2441. };
  2442. auto compute_A = [&compute_A11,&compute_A12,&compute_A21,&compute_A22] (const Vector<Real>& x) {
  2443. const Vector<Real> sigma(x.Dim()-1,(Iterator<Real>)x.begin(),false);
  2444. const Real& alpha = x[x.Dim()-1];
  2445. Vector<Real> Ax;
  2446. Ax.ReInit(x.Dim());
  2447. Vector<Real> Bdotn(x.Dim()-1,Ax.begin(),false);
  2448. Real& flux = Ax[x.Dim()-1];
  2449. Vector<Real> Adotn_0, Adotn_1;
  2450. compute_A11(Adotn_0, sigma);
  2451. compute_A12(Adotn_1, alpha);
  2452. Bdotn = Adotn_0 + Adotn_1;
  2453. flux = compute_A21(sigma) + compute_A22(alpha);
  2454. return Ax;
  2455. };
  2456. auto compute_invA = [&S,&comm,&compute_A] (Vector<ElemBasis>& sigma, Real& alpha, Real flux) {
  2457. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&compute_A](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  2458. (*Ax) = compute_A(x);
  2459. };
  2460. const Long Nelem = S.GetElemList().NElem();
  2461. const Long Nnodes = ElemBasis::Size();
  2462. Vector<Real> rhs_(Nelem * Nnodes + 1);
  2463. rhs_ = 0;
  2464. rhs_[Nelem * Nnodes] = flux;
  2465. Vector<Real> x_(Nelem * Nnodes + 1);
  2466. x_ = 0;
  2467. ParallelSolver<Real> linear_solver(comm, true);
  2468. linear_solver(&x_, BIOp, rhs_, 1e-8, 50);
  2469. sigma.ReInit(Nelem);
  2470. for (Long i = 0; i < Nelem; i++) {
  2471. for (Long j = 0; j < Nnodes; j++) {
  2472. sigma[i][j] = x_[i*Nnodes+j];
  2473. }
  2474. }
  2475. alpha = x_[Nelem * Nnodes];
  2476. };
  2477. auto compute_invA_ = [&S,&comm,&compute_A] (Vector<Real>& b) {
  2478. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&compute_A](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  2479. (*Ax) = compute_A(x);
  2480. };
  2481. const Long Nelem = S.GetElemList().NElem();
  2482. const Long Nnodes = ElemBasis::Size();
  2483. Vector<Real> x(b.Dim());
  2484. x = 0;
  2485. ParallelSolver<Real> linear_solver(comm, true);
  2486. linear_solver(&x, BIOp, b, 1e-8, 50);
  2487. return x;
  2488. };
  2489. auto compute_A11adj = [&S](Vector<Real>& U, const Vector<Real>& sigma) { // A11adj = I/2 + D
  2490. const Long Nelem = S.GetElemList().NElem();
  2491. const Long Nnodes = ElemBasis::Size();
  2492. Vector<ElemBasis> sigma_(Nelem);
  2493. for (Long i = 0; i < Nelem; i++) {
  2494. for (Long j = 0; j < Nnodes; j++) {
  2495. sigma_[i][j] = sigma[i*Nnodes+j];
  2496. }
  2497. }
  2498. S.quadrature_DxU.Eval(U, S.GetElemList(), sigma_, S.Laplace_DxU);
  2499. U = sigma*(-0.5) + U;
  2500. };
  2501. auto compute_A12adj = [&S,&compute_A12,&compute_inner_prod](const Vector<Real>& sigma_) {
  2502. const Long Nelem = S.GetElemList().NElem();
  2503. const Long Nnodes = ElemBasis::Size();
  2504. Vector<Real> A12_sigma_;
  2505. compute_A12(A12_sigma_, 1);
  2506. Vector<ElemBasis> A12_sigma(Nelem), sigma(Nelem);
  2507. for (Long i = 0; i < Nelem; i++) {
  2508. for (Long j = 0; j < Nnodes; j++) {
  2509. sigma[i][j] = sigma_[i*Nnodes+j];
  2510. A12_sigma[i][j] = A12_sigma_[i*Nnodes+j];
  2511. }
  2512. }
  2513. return compute_inner_prod(A12_sigma, sigma);
  2514. };
  2515. auto compute_A21adj = [&S,&area_elem,&normal](Vector<Real>& A21adj_flux, Real flux) {
  2516. const Long Nelem = S.GetElemList().NElem();
  2517. const Long Nnodes = ElemBasis::Size();
  2518. Vector<ElemBasis> density(Nelem * COORD_DIM);
  2519. { // Set density
  2520. Vector<ElemBasis> dX;
  2521. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2522. for (Long i = 0; i < Nelem; i++) {
  2523. for (Long j = 0; j < Nnodes; j++) {
  2524. Tensor<Real,true,COORD_DIM,2> dx;
  2525. dx(0,0) = dX[i*COORD_DIM*2+0][j];
  2526. dx(0,1) = dX[i*COORD_DIM*2+1][j];
  2527. dx(1,0) = dX[i*COORD_DIM*2+2][j];
  2528. dx(1,1) = dX[i*COORD_DIM*2+3][j];
  2529. dx(2,0) = dX[i*COORD_DIM*2+4][j];
  2530. dx(2,1) = dX[i*COORD_DIM*2+5][j];
  2531. Real s = 1 / (area_elem[i][j] * S.NtNp_[0]);
  2532. for (Long k = 0; k < COORD_DIM; k++) {
  2533. density[i*COORD_DIM+k][j] = dx(k,1) * s;
  2534. }
  2535. }
  2536. }
  2537. }
  2538. Vector<ElemBasis> Gdensity;
  2539. S.quadrature_FxU.Eval(Gdensity, S.GetElemList(), density, S.Laplace_FxU);
  2540. Vector<ElemBasis> nxGdensity(Nelem * COORD_DIM);
  2541. for (Long i = 0; i < Nelem; i++) { // Set nxGdensity
  2542. for (Long j = 0; j < Nnodes; j++) {
  2543. Tensor<Real,true,COORD_DIM> Gdensity_, n;
  2544. Gdensity_(0) = Gdensity[i*COORD_DIM+0][j];
  2545. Gdensity_(1) = Gdensity[i*COORD_DIM+1][j];
  2546. Gdensity_(2) = Gdensity[i*COORD_DIM+2][j];
  2547. n(0) = normal[i*COORD_DIM+0][j];
  2548. n(1) = normal[i*COORD_DIM+1][j];
  2549. n(2) = normal[i*COORD_DIM+2][j];
  2550. nxGdensity[i*COORD_DIM+0][j] = n(1) * Gdensity_(2) - n(2) * Gdensity_(1);
  2551. nxGdensity[i*COORD_DIM+1][j] = n(2) * Gdensity_(0) - n(0) * Gdensity_(2);
  2552. nxGdensity[i*COORD_DIM+2][j] = n(0) * Gdensity_(1) - n(1) * Gdensity_(0);
  2553. }
  2554. }
  2555. S.quadrature_dUxF.Eval(A21adj_flux, S.GetElemList(), nxGdensity, S.Laplace_dUxF);
  2556. A21adj_flux *= flux;
  2557. };
  2558. auto compute_A22adj = [&compute_A22] (const Real alpha) {
  2559. return compute_A22(alpha);
  2560. };
  2561. auto compute_Aadj = [&compute_A11adj,&compute_A12adj,&compute_A21adj,&compute_A22adj] (const Vector<Real>& x) {
  2562. const Vector<Real> sigma(x.Dim()-1,(Iterator<Real>)x.begin(),false);
  2563. const Real& alpha = x[x.Dim()-1];
  2564. Vector<Real> Ax;
  2565. Ax.ReInit(x.Dim());
  2566. Vector<Real> Bdotn(x.Dim()-1,Ax.begin(),false);
  2567. Real& flux = Ax[x.Dim()-1];
  2568. Vector<Real> Adotn_0, Adotn_1;
  2569. compute_A11adj(Adotn_0, sigma);
  2570. compute_A21adj(Adotn_1, alpha);
  2571. Bdotn = Adotn_0 + Adotn_1;
  2572. flux = compute_A12adj(sigma) + compute_A22adj(alpha);
  2573. return Ax;
  2574. };
  2575. auto compute_invAadj = [&S,&comm,&compute_Aadj] (Vector<Real>& b) {
  2576. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&compute_Aadj](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  2577. (*Ax) = compute_Aadj(x);
  2578. };
  2579. const Long Nelem = S.GetElemList().NElem();
  2580. const Long Nnodes = ElemBasis::Size();
  2581. Vector<Real> x(b.Dim());
  2582. x = 0;
  2583. ParallelSolver<Real> linear_solver(comm, true);
  2584. linear_solver(&x, BIOp, b, 1e-8, 50);
  2585. return x;
  2586. };
  2587. auto compute_dg_dsigma = [&S, &normal, &compute_dot_prod](const Vector<ElemBasis>& B) { // dg_dsigma = \int 2 B \cdot (\nabla G + n/2)
  2588. Vector<ElemBasis> B_dot_gradG;
  2589. S.quadrature_dUxF.Eval(B_dot_gradG, S.GetElemList(), B, S.Laplace_dUxF);
  2590. return B_dot_gradG * (-2.0) + compute_dot_prod(B,normal);
  2591. };
  2592. auto compute_dg_dalpha = [&S,&compute_B0,&compute_inner_prod] (const Vector<ElemBasis>& B) {
  2593. auto dB_dalpha = compute_B0(1);
  2594. return 2*compute_inner_prod(B,dB_dalpha);
  2595. };
  2596. auto compute_dg_dnu = [&S,&comm,&normal,&compute_inner_prod,&area_elem,&compute_dB0](const Vector<ElemBasis>& sigma, Real alpha, const Vector<ElemBasis>& B) { // dg_dnu = (B*B) 2H - (2 B) \cdot (n \cdnot nabla) \nabla G[sigma] + (2 B) \alpha dB0_dnu \hat{\theta} + sigma (\nabla D)^T [2 B] + (2H) sigma (\nabla G)^T [2 B]
  2597. const Long Nelem = S.GetElemList().NElem();
  2598. const Long Nnodes = ElemBasis::Size();
  2599. Vector<ElemBasis> v = B * 2.0;
  2600. Vector<ElemBasis> dg_dnu0(Nelem), dg_dnu1(Nelem), dg_dnu2(Nelem), dg_dnu3(Nelem), dg_dnu4(Nelem);
  2601. dg_dnu0 = 0;
  2602. dg_dnu1 = 0;
  2603. dg_dnu2 = 0;
  2604. dg_dnu3 = 0;
  2605. dg_dnu4 = 0;
  2606. Vector<ElemBasis> H(Nelem);
  2607. { // Set mean curvature H
  2608. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  2609. Vector<ElemBasis> dX, d2X;
  2610. ElemBasis::Grad(dX, X);
  2611. ElemBasis::Grad(d2X, dX);
  2612. for (Long i = 0; i < Nelem; i++) {
  2613. for (Long j = 0; j < Nnodes; j++) {
  2614. Tensor<Real,true,2,2> I, invI, II;
  2615. for (Long k0 = 0; k0 < 2; k0++) {
  2616. for (Long k1 = 0; k1 < 2; k1++) {
  2617. I(k0,k1) = 0;
  2618. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  2619. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  2620. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  2621. II(k0,k1) = 0;
  2622. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  2623. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  2624. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  2625. }
  2626. }
  2627. { // Set invI
  2628. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  2629. invI(0,0) = I(1,1) / detI;
  2630. invI(0,1) = -I(0,1) / detI;
  2631. invI(1,0) = -I(1,0) / detI;
  2632. invI(1,1) = I(0,0) / detI;
  2633. }
  2634. { // Set H
  2635. H[i][j] = 0;
  2636. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  2637. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  2638. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  2639. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  2640. }
  2641. }
  2642. }
  2643. }
  2644. // dg_dnu = (B*B) 2H
  2645. for (Long i = 0; i < Nelem; i++) {
  2646. for (Long j = 0; j < Nnodes; j++) {
  2647. dg_dnu0[i][j] = 0;
  2648. dg_dnu0[i][j] += B[i*COORD_DIM+0][j] * B[i*COORD_DIM+0][j] * (2.0*H[i][j]);
  2649. dg_dnu0[i][j] += B[i*COORD_DIM+1][j] * B[i*COORD_DIM+1][j] * (2.0*H[i][j]);
  2650. dg_dnu0[i][j] += B[i*COORD_DIM+2][j] * B[i*COORD_DIM+2][j] * (2.0*H[i][j]);
  2651. }
  2652. }
  2653. // dg_dnu1 = (2 B) \cdot (n \cdnot nabla) \nabla G[sigma]
  2654. Vector<ElemBasis> d2Gsigma;
  2655. Quadrature<Real> quadrature_Fxd2U;
  2656. quadrature_Fxd2U.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_Fxd2U, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  2657. quadrature_Fxd2U.Eval(d2Gsigma, S.GetElemList(), sigma, S.Laplace_Fxd2U);
  2658. for (Long i = 0; i < Nelem; i++) {
  2659. for (Long j = 0; j < Nnodes; j++) {
  2660. dg_dnu1[i][j] = 0;
  2661. dg_dnu1[i][j] -= d2Gsigma[i*9+0][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
  2662. dg_dnu1[i][j] -= d2Gsigma[i*9+1][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
  2663. dg_dnu1[i][j] -= d2Gsigma[i*9+2][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
  2664. dg_dnu1[i][j] -= d2Gsigma[i*9+3][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
  2665. dg_dnu1[i][j] -= d2Gsigma[i*9+4][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
  2666. dg_dnu1[i][j] -= d2Gsigma[i*9+5][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
  2667. dg_dnu1[i][j] -= d2Gsigma[i*9+6][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
  2668. dg_dnu1[i][j] -= d2Gsigma[i*9+7][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
  2669. dg_dnu1[i][j] -= d2Gsigma[i*9+8][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
  2670. }
  2671. }
  2672. // dg_dnu2 = (2 B) \alpha dB0_dnu \hat{\theta}
  2673. Vector<ElemBasis> dB0 = compute_dB0(alpha);
  2674. for (Long i = 0; i < Nelem; i++) {
  2675. for (Long j = 0; j < Nnodes; j++) {
  2676. dg_dnu2[i][j] = 0;
  2677. dg_dnu2[i][j] += dB0[i*9+0][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
  2678. dg_dnu2[i][j] += dB0[i*9+1][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
  2679. dg_dnu2[i][j] += dB0[i*9+2][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
  2680. dg_dnu2[i][j] += dB0[i*9+3][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
  2681. dg_dnu2[i][j] += dB0[i*9+4][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
  2682. dg_dnu2[i][j] += dB0[i*9+5][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
  2683. dg_dnu2[i][j] += dB0[i*9+6][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
  2684. dg_dnu2[i][j] += dB0[i*9+7][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
  2685. dg_dnu2[i][j] += dB0[i*9+8][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
  2686. }
  2687. }
  2688. // dg_dnu3 = (sigma (\nabla D)^T [2 B]
  2689. Vector<ElemBasis> nablaDtv;
  2690. Quadrature<Real> quadrature_dUxD;
  2691. quadrature_dUxD.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxD, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  2692. quadrature_dUxD.Eval(nablaDtv, S.GetElemList(), v, S.Laplace_dUxD);
  2693. for (Long i = 0; i < Nelem; i++) {
  2694. for (Long j = 0; j < Nnodes; j++) {
  2695. dg_dnu3[i][j] = 0;
  2696. dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  2697. dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  2698. dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  2699. }
  2700. }
  2701. // dg_dnu4 = (2H) sigma (\nabla G)^T [2 B]
  2702. Quadrature<Real> quadrature_dUxF;
  2703. quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  2704. quadrature_dUxF.Eval(dg_dnu4, S.GetElemList(), v, S.Laplace_dUxF);
  2705. for (Long i = 0; i < Nelem; i++) {
  2706. for (Long j = 0; j < Nnodes; j++) {
  2707. dg_dnu4[i][j] *= 2*H[i][j] * sigma[i][j];
  2708. }
  2709. }
  2710. return dg_dnu0 + dg_dnu1 + dg_dnu2 + dg_dnu3 - dg_dnu4;
  2711. };
  2712. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2713. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2714. Real flux = 1.0, alpha;
  2715. Vector<ElemBasis> sigma(S.GetElemList().NElem());
  2716. compute_invA(sigma, alpha, flux);
  2717. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma) + compute_B0(alpha);
  2718. Real g = compute_inner_prod(B, B);
  2719. std::cout<<"g = "<<g<<'\n';
  2720. { // Write VTU
  2721. VTUData vtu;
  2722. vtu.AddElems(S.GetElemList(), sigma, ORDER);
  2723. vtu.WriteVTK("sigma", comm);
  2724. }
  2725. { // Write VTU
  2726. VTUData vtu;
  2727. vtu.AddElems(S.GetElemList(), B, ORDER);
  2728. vtu.WriteVTK("B", comm);
  2729. }
  2730. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2731. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2732. if (0) { // test dg_dnu
  2733. auto compute_g = [&S,&comm,&normal,&area_elem,&sigma,&alpha,&compute_norm_area_elem,&compute_B0,&compute_inner_prod](const Vector<ElemBasis>& nu, Real eps) {
  2734. const Long Nelem = S.GetElemList().NElem();
  2735. const Long Nnodes = ElemBasis::Size();
  2736. Vector<ElemBasis> X_orig(Nelem*COORD_DIM);
  2737. for (Long i = 0; i < Nelem; i++) {
  2738. for (Long j = 0; j < Nnodes; j++) {
  2739. X_orig[i*COORD_DIM+0][j] = S.Elem(i,0)[j];
  2740. X_orig[i*COORD_DIM+1][j] = S.Elem(i,1)[j];
  2741. X_orig[i*COORD_DIM+2][j] = S.Elem(i,2)[j];
  2742. S.Elem(i,0)[j] += eps*nu[i][j] * normal[i*COORD_DIM+0][j];
  2743. S.Elem(i,1)[j] += eps*nu[i][j] * normal[i*COORD_DIM+1][j];
  2744. S.Elem(i,2)[j] += eps*nu[i][j] * normal[i*COORD_DIM+2][j];
  2745. }
  2746. }
  2747. compute_norm_area_elem(normal, area_elem);
  2748. Vector<Real> Xt(Nelem*Nnodes*COORD_DIM);
  2749. for (Long i = 0; i < Nelem; i++) {
  2750. for (Long j = 0; j < Nnodes; j++) {
  2751. for (Long k = 0; k < COORD_DIM; k++) {
  2752. Xt[(i*Nnodes+j)*COORD_DIM+k] = S.Elem(i,k)[j] - 1e-4*normal[i*COORD_DIM+k][j];// + eps*nu[i][j] * normal[i*COORD_DIM+k][j];
  2753. }
  2754. }
  2755. }
  2756. Vector<ElemBasis> B0 = compute_B0(alpha);
  2757. Vector<ElemBasis> B1;
  2758. Quadrature<Real> quadrature_FxdU;
  2759. quadrature_FxdU.template Setup<ElemBasis>(S.GetElemList(), Xt, S.Laplace_FxdU, order_singular, order_direct, -1, comm);
  2760. quadrature_FxdU.Eval(B1, S.GetElemList(), sigma, S.Laplace_FxdU);
  2761. Real g = compute_inner_prod(B0+B1, B0+B1);
  2762. for (Long i = 0; i < Nelem; i++) {
  2763. for (Long j = 0; j < Nnodes; j++) {
  2764. S.Elem(i,0)[j] = X_orig[i*COORD_DIM+0][j];
  2765. S.Elem(i,1)[j] = X_orig[i*COORD_DIM+1][j];
  2766. S.Elem(i,2)[j] = X_orig[i*COORD_DIM+2][j];
  2767. }
  2768. }
  2769. compute_norm_area_elem(normal, area_elem);
  2770. return g;
  2771. };
  2772. const Long Nelem = S.GetElemList().NElem();
  2773. const Long Nnodes = ElemBasis::Size();
  2774. Vector<ElemBasis> nu(Nelem);
  2775. nu = 1; //area_elem;
  2776. Vector<ElemBasis> dg_dnu = compute_dg_dnu(sigma, alpha, B);
  2777. std::cout<<compute_inner_prod(dg_dnu, nu)<<'\n';
  2778. { // Write VTU
  2779. VTUData vtu;
  2780. vtu.AddElems(S.GetElemList(), dg_dnu, ORDER);
  2781. vtu.WriteVTK("dg_dnu", comm);
  2782. }
  2783. Real eps = 1e-5;
  2784. Real g0 = compute_g(nu,-eps);
  2785. Real g1 = compute_g(nu,eps);
  2786. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  2787. }
  2788. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2789. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2790. if (0) { // test dg_dsigma
  2791. Vector<ElemBasis> dg_dsigma = compute_dg_dsigma(B);
  2792. { // Write VTU
  2793. VTUData vtu;
  2794. vtu.AddElems(S.GetElemList(), dg_dsigma, ORDER);
  2795. vtu.WriteVTK("dg_dsigma", comm);
  2796. }
  2797. Real dt = 1e-1;
  2798. const Long Nelem = S.GetElemList().NElem();
  2799. const auto& quad_wts = ElemBasis::QuadWts();
  2800. Vector<ElemBasis> dg_dsigma_(Nelem);
  2801. dg_dsigma_ = 0;
  2802. for (Long i = 0; i < Nelem; i++) { // Set dg_dsigma_
  2803. for (Long j = 0; j < ElemBasis::Size(); j++) {
  2804. auto sigma_0 = sigma;
  2805. auto sigma_1 = sigma;
  2806. sigma_0[i][j] -= 0.5*dt;
  2807. sigma_1[i][j] += 0.5*dt;
  2808. auto B_0 = compute_half_n_plus_dG(sigma_0) + compute_B0(alpha);
  2809. auto B_1 = compute_half_n_plus_dG(sigma_1) + compute_B0(alpha);
  2810. auto g_0 = compute_inner_prod(B_0, B_0);
  2811. auto g_1 = compute_inner_prod(B_1, B_1);
  2812. dg_dsigma_[i][j] = (g_1 - g_0) / dt;
  2813. dg_dsigma_[i][j] /= quad_wts[j] * area_elem[i][j];
  2814. std::cout<<dg_dsigma_[i][j]<<' '<<j<<' '<<ElemBasis::Size()<<'\n'; ////////////////
  2815. }
  2816. { // Write VTU
  2817. VTUData vtu;
  2818. vtu.AddElems(S.GetElemList(), dg_dsigma_, ORDER);
  2819. vtu.WriteVTK("dg_dsigma_", comm);
  2820. }
  2821. }
  2822. }
  2823. if (0) { // test dg_dalpha
  2824. Real dg_dalpha = compute_dg_dalpha(B);
  2825. Real dt = 1e-1;
  2826. auto B_0 = compute_half_n_plus_dG(sigma) + compute_B0(alpha - 0.5*dt);
  2827. auto B_1 = compute_half_n_plus_dG(sigma) + compute_B0(alpha + 0.5*dt);
  2828. auto g_0 = compute_inner_prod(B_0, B_0);
  2829. auto g_1 = compute_inner_prod(B_1, B_1);
  2830. Real dg_dalpha_ = (g_1 - g_0) / dt;
  2831. std::cout<<dg_dalpha<<' '<<dg_dalpha_<<'\n';
  2832. }
  2833. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2834. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2835. if (0) { // test compute_A21adj
  2836. const Long Nelem = S.GetElemList().NElem();
  2837. const Long Nnodes = ElemBasis::Size();
  2838. Vector<Real> A21adj_;
  2839. compute_A21adj(A21adj_, flux);
  2840. Vector<ElemBasis> A21adj(Nelem);
  2841. for (Long i = 0; i < Nelem; i++) {
  2842. for (Long j = 0; j < Nnodes; j++) {
  2843. A21adj[i][j] = A21adj_[i*Nnodes+j];
  2844. }
  2845. }
  2846. { // Write VTU
  2847. VTUData vtu;
  2848. vtu.AddElems(S.GetElemList(), A21adj, ORDER);
  2849. vtu.WriteVTK("A21adj", comm);
  2850. }
  2851. { // verify
  2852. Vector<Real> sigma_(Nelem*Nnodes);
  2853. for (Long i = 0; i < Nelem; i++) {
  2854. for (Long j = 0; j < Nnodes; j++) {
  2855. sigma_[i*Nnodes+j] = sigma[i][j];
  2856. }
  2857. }
  2858. Real flux = compute_inner_prod(A21adj, sigma);
  2859. std::cout<<"Error: "<<compute_A21(sigma_)-flux<<'\n';
  2860. }
  2861. { // compute finite-difference matrix
  2862. Real dt = 1e+1;
  2863. const Long Nelem = S.GetElemList().NElem();
  2864. const auto& quad_wts = ElemBasis::QuadWts();
  2865. Vector<ElemBasis> A21(Nelem);
  2866. A21 = 0;
  2867. for (Long i = 0; i < Nelem; i++) { // Set A21
  2868. for (Long j = 0; j < ElemBasis::Size(); j++) {
  2869. Vector<Real> sigma_0(Nelem*ElemBasis::Size());
  2870. Vector<Real> sigma_1(Nelem*ElemBasis::Size());
  2871. sigma_0 = 0;
  2872. sigma_1 = 0;
  2873. sigma_0[i*ElemBasis::Size()+j] -= 0.5*dt;
  2874. sigma_1[i*ElemBasis::Size()+j] += 0.5*dt;
  2875. auto flux_0 = compute_A21(sigma_0);
  2876. auto flux_1 = compute_A21(sigma_1);
  2877. A21[i][j] = (flux_1 - flux_0) / dt;
  2878. A21[i][j] /= quad_wts[j] * area_elem[i][j];
  2879. std::cout<<A21[i][j]<<' '<<j<<' '<<ElemBasis::Size()<<'\n'; ////////////////
  2880. }
  2881. { // Write VTU
  2882. VTUData vtu;
  2883. vtu.AddElems(S.GetElemList(), A21, ORDER);
  2884. vtu.WriteVTK("A21", comm);
  2885. }
  2886. }
  2887. }
  2888. }
  2889. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2890. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2891. auto compute_invA11 = [&S,&normal,&comm,&compute_A11](const Vector<ElemBasis>& rhs) { // Solver for sigma: sigma/2 + n.dG[sigma] = rhs
  2892. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&S,&normal,&compute_A11](sctl::Vector<Real>* A11_sigma, const sctl::Vector<Real>& sigma) {
  2893. compute_A11(*A11_sigma, sigma);
  2894. };
  2895. const Long Nelem = S.GetElemList().NElem();
  2896. const Long Nnodes = ElemBasis::Size();
  2897. Vector<ElemBasis> sigma(Nelem);
  2898. Vector<Real> rhs_(Nelem * Nnodes), sigma_(Nelem * Nnodes);
  2899. for (Long i = 0; i < Nelem; i++) {
  2900. for (Long j = 0; j < Nnodes; j++) {
  2901. rhs_[i*Nnodes+j] = rhs[i][j];
  2902. sigma_[i*Nnodes+j] = 0;
  2903. }
  2904. }
  2905. ParallelSolver<Real> linear_solver(comm, true);
  2906. linear_solver(&sigma_, BIOp, rhs_, 1e-8, 50);
  2907. for (Long i = 0; i < Nelem; i++) {
  2908. for (Long j = 0; j < Nnodes; j++) {
  2909. sigma[i][j] = sigma_[i*Nnodes+j];
  2910. }
  2911. }
  2912. return sigma;
  2913. };
  2914. auto compute_invA11adj = [&S,&normal,&comm,&compute_A11adj](const Vector<ElemBasis>& rhs) { // Solver for sigma: A11adj sigma = rhs
  2915. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&S,&compute_A11adj](sctl::Vector<Real>* A11adj_sigma, const sctl::Vector<Real>& sigma) {
  2916. compute_A11adj(*A11adj_sigma, sigma);
  2917. };
  2918. const Long Nelem = S.GetElemList().NElem();
  2919. const Long Nnodes = ElemBasis::Size();
  2920. Vector<ElemBasis> sigma(Nelem);
  2921. Vector<Real> rhs_(Nelem * Nnodes), sigma_(Nelem * Nnodes);
  2922. for (Long i = 0; i < Nelem; i++) {
  2923. for (Long j = 0; j < Nnodes; j++) {
  2924. rhs_[i*Nnodes+j] = rhs[i][j];
  2925. sigma_[i*Nnodes+j] = 0;
  2926. }
  2927. }
  2928. ParallelSolver<Real> linear_solver(comm, true);
  2929. linear_solver(&sigma_, BIOp, rhs_, 1e-8, 50);
  2930. for (Long i = 0; i < Nelem; i++) {
  2931. for (Long j = 0; j < Nnodes; j++) {
  2932. sigma[i][j] = sigma_[i*Nnodes+j];
  2933. }
  2934. }
  2935. return sigma;
  2936. };
  2937. if (0) { // Test invA11adj
  2938. Vector<ElemBasis> dg_dsigma = compute_dg_dsigma(B);
  2939. Real a = compute_inner_prod(dg_dsigma, compute_invA11(sigma));
  2940. Real b = compute_inner_prod(compute_invA11adj(dg_dsigma), sigma);
  2941. std::cout<<a<<' '<<b<<'\n';
  2942. }
  2943. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2944. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2945. // 0.168275 0.117983 -0.110446 -96.7293
  2946. // 0.603869 -1.901900 -1.229930 -245.5050
  2947. auto compute_u_dAdnu_v_00 = [&S,&normal,&comm,&compute_half_n_plus_dG,&compute_grad_adj] (const Vector<Real>& u_, const Vector<Real>& v_) {
  2948. const Long Nelem = S.GetElemList().NElem();
  2949. const Long Nnodes = ElemBasis::Size();
  2950. Vector<ElemBasis> u(Nelem), u_n(Nelem*COORD_DIM), v(Nelem);
  2951. for (Long i = 0; i < Nelem; i++) {
  2952. for (Long j = 0; j < Nnodes; j++) {
  2953. u[i][j] = u_[i*Nnodes+j];
  2954. v[i][j] = v_[i*Nnodes+j];
  2955. u_n[i*COORD_DIM+0][j] = u[i][j] * normal[i*COORD_DIM+0][j];
  2956. u_n[i*COORD_DIM+1][j] = u[i][j] * normal[i*COORD_DIM+1][j];
  2957. u_n[i*COORD_DIM+2][j] = u[i][j] * normal[i*COORD_DIM+2][j];
  2958. }
  2959. }
  2960. Vector<ElemBasis> dAdnu0(Nelem), dAdnu1(Nelem), dAdnu2(Nelem), dAdnu3(Nelem);
  2961. dAdnu0 = 0;
  2962. dAdnu1 = 0;
  2963. dAdnu2 = 0;
  2964. dAdnu3 = 0;
  2965. Vector<ElemBasis> H(Nelem);
  2966. { // Set mean curvature H
  2967. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  2968. Vector<ElemBasis> dX, d2X;
  2969. ElemBasis::Grad(dX, X);
  2970. ElemBasis::Grad(d2X, dX);
  2971. for (Long i = 0; i < Nelem; i++) {
  2972. for (Long j = 0; j < Nnodes; j++) {
  2973. Tensor<Real,true,2,2> I, invI, II;
  2974. for (Long k0 = 0; k0 < 2; k0++) {
  2975. for (Long k1 = 0; k1 < 2; k1++) {
  2976. I(k0,k1) = 0;
  2977. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  2978. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  2979. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  2980. II(k0,k1) = 0;
  2981. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  2982. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  2983. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  2984. }
  2985. }
  2986. { // Set invI
  2987. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  2988. invI(0,0) = I(1,1) / detI;
  2989. invI(0,1) = -I(0,1) / detI;
  2990. invI(1,0) = -I(1,0) / detI;
  2991. invI(1,1) = I(0,0) / detI;
  2992. }
  2993. { // Set H
  2994. H[i][j] = 0;
  2995. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  2996. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  2997. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  2998. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  2999. }
  3000. }
  3001. }
  3002. }
  3003. // dAdnu0 = u B \cdot grad_nu
  3004. Vector<ElemBasis> B = compute_half_n_plus_dG(v);
  3005. Vector<ElemBasis> u_B(Nelem*COORD_DIM);
  3006. for (Long i = 0; i < Nelem; i++) {
  3007. for (Long j = 0; j < Nnodes; j++) {
  3008. u_B[i*COORD_DIM+0][j] = u[i][j] * B[i*COORD_DIM+0][j];
  3009. u_B[i*COORD_DIM+1][j] = u[i][j] * B[i*COORD_DIM+1][j];
  3010. u_B[i*COORD_DIM+2][j] = u[i][j] * B[i*COORD_DIM+2][j];
  3011. }
  3012. }
  3013. dAdnu0 = compute_grad_adj(u_B);
  3014. // dAdnu1 = (2H) v (I/2 + \nabla G)^T [u n]
  3015. Quadrature<Real> quadrature_dUxF;
  3016. quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  3017. quadrature_dUxF.Eval(dAdnu1, S.GetElemList(), u_n, S.Laplace_dUxF);
  3018. for (Long i = 0; i < Nelem; i++) {
  3019. for (Long j = 0; j < Nnodes; j++) {
  3020. dAdnu1[i][j] *= -2*H[i][j] * v[i][j];
  3021. }
  3022. }
  3023. // dAdnu2 = (u n) \cdot (n \cdnot \nabla) \nabla G[v]
  3024. Vector<ElemBasis> d2G_v;
  3025. Quadrature<Real> quadrature_Fxd2U;
  3026. quadrature_Fxd2U.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_Fxd2U, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3027. quadrature_Fxd2U.Eval(d2G_v, S.GetElemList(), v, S.Laplace_Fxd2U);
  3028. for (Long i = 0; i < Nelem; i++) {
  3029. for (Long j = 0; j < Nnodes; j++) {
  3030. dAdnu2[i][j] = 0;
  3031. dAdnu2[i][j] -= d2G_v[i*9+0][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+0][j];
  3032. dAdnu2[i][j] -= d2G_v[i*9+1][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+1][j];
  3033. dAdnu2[i][j] -= d2G_v[i*9+2][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+2][j];
  3034. dAdnu2[i][j] -= d2G_v[i*9+3][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+0][j];
  3035. dAdnu2[i][j] -= d2G_v[i*9+4][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+1][j];
  3036. dAdnu2[i][j] -= d2G_v[i*9+5][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+2][j];
  3037. dAdnu2[i][j] -= d2G_v[i*9+6][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+0][j];
  3038. dAdnu2[i][j] -= d2G_v[i*9+7][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+1][j];
  3039. dAdnu2[i][j] -= d2G_v[i*9+8][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+2][j];
  3040. }
  3041. }
  3042. // dAdnu3 = (v (\nabla D)^T [u n]
  3043. Vector<ElemBasis> nablaDt_u_n;
  3044. Quadrature<Real> quadrature_dUxD;
  3045. quadrature_dUxD.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxD, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  3046. quadrature_dUxD.Eval(nablaDt_u_n, S.GetElemList(), u_n, S.Laplace_dUxD);
  3047. for (Long i = 0; i < Nelem; i++) {
  3048. for (Long j = 0; j < Nnodes; j++) {
  3049. dAdnu3[i][j] = 0;
  3050. dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  3051. dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  3052. dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  3053. }
  3054. }
  3055. return dAdnu0 + dAdnu1 + dAdnu2 + dAdnu3;
  3056. };
  3057. auto compute_u_dAdnu_v_01 = [&S,&comm,&compute_dB0,&normal,&area_elem,&compute_B0,&compute_grad_adj] (const Vector<Real>& u, const Vector<Real>& v) {
  3058. const Long Nelem = S.GetElemList().NElem();
  3059. const Long Nnodes = ElemBasis::Size();
  3060. Vector<ElemBasis> dAdnu(Nelem);
  3061. Vector<ElemBasis> dB0 = compute_dB0(v[Nelem*Nnodes]);
  3062. for (Long i = 0; i < Nelem; i++) {
  3063. for (Long j = 0; j < Nnodes; j++) {
  3064. Real n_n_dB0 = 0;
  3065. n_n_dB0 += dB0[i*9+0][j] * normal[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  3066. n_n_dB0 += dB0[i*9+1][j] * normal[i*COORD_DIM+1][j] * normal[i*COORD_DIM+0][j];
  3067. n_n_dB0 += dB0[i*9+2][j] * normal[i*COORD_DIM+2][j] * normal[i*COORD_DIM+0][j];
  3068. n_n_dB0 += dB0[i*9+3][j] * normal[i*COORD_DIM+0][j] * normal[i*COORD_DIM+1][j];
  3069. n_n_dB0 += dB0[i*9+4][j] * normal[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  3070. n_n_dB0 += dB0[i*9+5][j] * normal[i*COORD_DIM+2][j] * normal[i*COORD_DIM+1][j];
  3071. n_n_dB0 += dB0[i*9+6][j] * normal[i*COORD_DIM+0][j] * normal[i*COORD_DIM+2][j];
  3072. n_n_dB0 += dB0[i*9+7][j] * normal[i*COORD_DIM+1][j] * normal[i*COORD_DIM+2][j];
  3073. n_n_dB0 += dB0[i*9+8][j] * normal[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  3074. dAdnu[i][j] = u[i*Nnodes+j] * n_n_dB0;
  3075. }
  3076. }
  3077. Vector<ElemBasis> B0 = compute_B0(v[Nelem*Nnodes]);
  3078. Vector<ElemBasis> u_B0(Nelem*COORD_DIM);
  3079. for (Long i = 0; i < Nelem; i++) {
  3080. for (Long j = 0; j < Nnodes; j++) {
  3081. u_B0[i*COORD_DIM+0][j] = u[i*Nnodes+j] * B0[i*COORD_DIM+0][j];
  3082. u_B0[i*COORD_DIM+1][j] = u[i*Nnodes+j] * B0[i*COORD_DIM+1][j];
  3083. u_B0[i*COORD_DIM+2][j] = u[i*Nnodes+j] * B0[i*COORD_DIM+2][j];
  3084. }
  3085. }
  3086. dAdnu += compute_grad_adj(u_B0);
  3087. return dAdnu;
  3088. };
  3089. auto compute_u_dAdnu_v_10 = [&S,&comm,&area_elem,&normal,&compute_dot_prod,&compute_grad_adj,&compute_half_n_plus_dG] (const Vector<Real>& u, const Vector<Real>& v) {
  3090. const Long Nelem = S.GetElemList().NElem();
  3091. const Long Nnodes = ElemBasis::Size();
  3092. Vector<ElemBasis> sigma(Nelem);
  3093. for (Long i = 0; i < Nelem; i++) {
  3094. for (Long j = 0; j < Nnodes; j++) {
  3095. sigma[i][j] = v[i*Nnodes+j];
  3096. }
  3097. }
  3098. auto compute_v = [&S,&area_elem] () {
  3099. const Long Nelem = S.GetElemList().NElem();
  3100. const Long Nnodes = ElemBasis::Size();
  3101. Vector<ElemBasis> v(Nelem * COORD_DIM);
  3102. Vector<ElemBasis> dX;
  3103. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  3104. for (Long i = 0; i < Nelem; i++) {
  3105. for (Long j = 0; j < Nnodes; j++) {
  3106. Tensor<Real,true,COORD_DIM,2> dx;
  3107. dx(0,0) = dX[i*COORD_DIM*2+0][j];
  3108. dx(0,1) = dX[i*COORD_DIM*2+1][j];
  3109. dx(1,0) = dX[i*COORD_DIM*2+2][j];
  3110. dx(1,1) = dX[i*COORD_DIM*2+3][j];
  3111. dx(2,0) = dX[i*COORD_DIM*2+4][j];
  3112. dx(2,1) = dX[i*COORD_DIM*2+5][j];
  3113. Real s = 1 / (area_elem[i][j] * S.NtNp_[0]);
  3114. for (Long k = 0; k < COORD_DIM; k++) {
  3115. v[i*COORD_DIM+k][j] = dx(k,1) * s;
  3116. }
  3117. }
  3118. }
  3119. return v;
  3120. };
  3121. auto compute_AxB = [&S] (const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  3122. const Long Nelem = S.GetElemList().NElem();
  3123. const Long Nnodes = ElemBasis::Size();
  3124. Vector<ElemBasis> J(Nelem * COORD_DIM);
  3125. for (Long i = 0; i < Nelem; i++) { // Set J
  3126. for (Long j = 0; j < Nnodes; j++) {
  3127. Tensor<Real,true,COORD_DIM> a, b;
  3128. a(0) = A[i*COORD_DIM+0][j];
  3129. a(1) = A[i*COORD_DIM+1][j];
  3130. a(2) = A[i*COORD_DIM+2][j];
  3131. b(0) = B[i*COORD_DIM+0][j];
  3132. b(1) = B[i*COORD_DIM+1][j];
  3133. b(2) = B[i*COORD_DIM+2][j];
  3134. J[i*COORD_DIM+0][j] = a(1) * b(2) - a(2) * b(1);
  3135. J[i*COORD_DIM+1][j] = a(2) * b(0) - a(0) * b(2);
  3136. J[i*COORD_DIM+2][j] = a(0) * b(1) - a(1) * b(0);
  3137. }
  3138. }
  3139. return J;
  3140. };
  3141. auto compute_dphi_dnu0 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,compute_grad_adj,sigma] () {
  3142. const Long Nelem = S.GetElemList().NElem();
  3143. const Long Nnodes = ElemBasis::Size();
  3144. Vector<ElemBasis> Gv;
  3145. Vector<ElemBasis> v = compute_v();
  3146. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  3147. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  3148. Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
  3149. return compute_grad_adj(BxGv);
  3150. };
  3151. auto compute_dphi_dnu1 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,&compute_dot_prod,sigma] () {
  3152. const Long Nelem = S.GetElemList().NElem();
  3153. const Long Nnodes = ElemBasis::Size();
  3154. Vector<ElemBasis> H(Nelem);
  3155. { // Set mean curvature H
  3156. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  3157. Vector<ElemBasis> dX, d2X;
  3158. ElemBasis::Grad(dX, X);
  3159. ElemBasis::Grad(d2X, dX);
  3160. for (Long i = 0; i < Nelem; i++) {
  3161. for (Long j = 0; j < Nnodes; j++) {
  3162. Tensor<Real,true,2,2> I, invI, II;
  3163. for (Long k0 = 0; k0 < 2; k0++) {
  3164. for (Long k1 = 0; k1 < 2; k1++) {
  3165. I(k0,k1) = 0;
  3166. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3167. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3168. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3169. II(k0,k1) = 0;
  3170. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3171. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3172. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3173. }
  3174. }
  3175. { // Set invI
  3176. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3177. invI(0,0) = I(1,1) / detI;
  3178. invI(0,1) = -I(0,1) / detI;
  3179. invI(1,0) = -I(1,0) / detI;
  3180. invI(1,1) = I(0,0) / detI;
  3181. }
  3182. { // Set H
  3183. H[i][j] = 0;
  3184. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  3185. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  3186. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  3187. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  3188. }
  3189. }
  3190. }
  3191. }
  3192. Vector<ElemBasis> Gv;
  3193. Vector<ElemBasis> v = compute_v();
  3194. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  3195. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  3196. Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
  3197. Vector<ElemBasis> n_dot_BxGv = compute_dot_prod(normal,BxGv);
  3198. Vector<ElemBasis> dphi_dnu(Nelem);
  3199. for (Long i = 0; i < Nelem; i++) {
  3200. for (Long j = 0; j < Nnodes; j++) {
  3201. dphi_dnu[i][j] = n_dot_BxGv[i][j] * 2*H[i][j];
  3202. }
  3203. }
  3204. return dphi_dnu;
  3205. };
  3206. auto compute_dphi_dnu2 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,&compute_dot_prod,sigma] () {
  3207. const Long Nelem = S.GetElemList().NElem();
  3208. const Long Nnodes = ElemBasis::Size();
  3209. Vector<ElemBasis> H(Nelem);
  3210. { // Set mean curvature H
  3211. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  3212. Vector<ElemBasis> dX, d2X;
  3213. ElemBasis::Grad(dX, X);
  3214. ElemBasis::Grad(d2X, dX);
  3215. for (Long i = 0; i < Nelem; i++) {
  3216. for (Long j = 0; j < Nnodes; j++) {
  3217. Tensor<Real,true,2,2> I, invI, II;
  3218. for (Long k0 = 0; k0 < 2; k0++) {
  3219. for (Long k1 = 0; k1 < 2; k1++) {
  3220. I(k0,k1) = 0;
  3221. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3222. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3223. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3224. II(k0,k1) = 0;
  3225. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3226. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3227. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3228. }
  3229. }
  3230. { // Set invI
  3231. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3232. invI(0,0) = I(1,1) / detI;
  3233. invI(0,1) = -I(0,1) / detI;
  3234. invI(1,0) = -I(1,0) / detI;
  3235. invI(1,1) = I(0,0) / detI;
  3236. }
  3237. { // Set H
  3238. H[i][j] = 0;
  3239. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  3240. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  3241. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  3242. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  3243. }
  3244. }
  3245. }
  3246. }
  3247. Vector<ElemBasis> GnxB;
  3248. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  3249. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3250. S.quadrature_FxU.Eval(GnxB, S.GetElemList(), nxB, S.Laplace_FxU);
  3251. Vector<ElemBasis> v = compute_v();
  3252. Vector<ElemBasis> v_dot_GnxB = compute_dot_prod(v,GnxB);
  3253. Vector<ElemBasis> dphi_dnu(Nelem);
  3254. for (Long i = 0; i < Nelem; i++) {
  3255. for (Long j = 0; j < Nnodes; j++) {
  3256. dphi_dnu[i][j] = v_dot_GnxB[i][j] * 2*H[i][j];
  3257. }
  3258. }
  3259. return dphi_dnu;
  3260. };
  3261. auto compute_dphi_dnu3 = [&S,&normal,&area_elem,&compute_AxB,&compute_half_n_plus_dG,sigma] () {
  3262. const Long Nelem = S.GetElemList().NElem();
  3263. const Long Nnodes = ElemBasis::Size();
  3264. Vector<ElemBasis> GnxB;
  3265. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  3266. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3267. S.quadrature_FxU.Eval(GnxB, S.GetElemList(), nxB, S.Laplace_FxU);
  3268. Vector<ElemBasis> H(Nelem);
  3269. { // Set mean curvature H
  3270. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  3271. Vector<ElemBasis> dX, d2X;
  3272. ElemBasis::Grad(dX, X);
  3273. ElemBasis::Grad(d2X, dX);
  3274. for (Long i = 0; i < Nelem; i++) {
  3275. for (Long j = 0; j < Nnodes; j++) {
  3276. Tensor<Real,true,2,2> I, invI, II;
  3277. for (Long k0 = 0; k0 < 2; k0++) {
  3278. for (Long k1 = 0; k1 < 2; k1++) {
  3279. I(k0,k1) = 0;
  3280. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3281. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3282. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3283. II(k0,k1) = 0;
  3284. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3285. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3286. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3287. }
  3288. }
  3289. { // Set invI
  3290. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3291. invI(0,0) = I(1,1) / detI;
  3292. invI(0,1) = -I(0,1) / detI;
  3293. invI(1,0) = -I(1,0) / detI;
  3294. invI(1,1) = I(0,0) / detI;
  3295. }
  3296. { // Set H
  3297. H[i][j] = 0;
  3298. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  3299. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  3300. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  3301. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  3302. }
  3303. }
  3304. }
  3305. }
  3306. Vector<ElemBasis> dv_dnu1(Nelem), dv_dnu2(Nelem), dv_dnu3(Nelem);
  3307. { // Set dv_dnu1, dv_dnu2, dv_dnu3
  3308. Vector<ElemBasis> dX, dn, V_tmp(Nelem);
  3309. ElemBasis::Grad(dn, normal);
  3310. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  3311. for (Long i = 0; i < Nelem; i++) {
  3312. for (Long j = 0; j < Nnodes; j++) {
  3313. dv_dnu1[i][j] = 0;
  3314. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+0][j] * dX[(i*COORD_DIM+0)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
  3315. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+1][j] * dX[(i*COORD_DIM+1)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
  3316. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+2][j] * dX[(i*COORD_DIM+2)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
  3317. dv_dnu2[i][j] = 0;
  3318. dv_dnu2[i][j] += GnxB[i*COORD_DIM+0][j] * dn[(i*COORD_DIM+0)*2+1][j] / (area_elem[i][j] * S.NtNp_[0]);
  3319. dv_dnu2[i][j] += GnxB[i*COORD_DIM+1][j] * dn[(i*COORD_DIM+1)*2+1][j] / (area_elem[i][j] * S.NtNp_[0]);
  3320. dv_dnu2[i][j] += GnxB[i*COORD_DIM+2][j] * dn[(i*COORD_DIM+2)*2+1][j] / (area_elem[i][j] * S.NtNp_[0]);
  3321. V_tmp[i][j] = 0;
  3322. V_tmp[i][j] += GnxB[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j] / (area_elem[i][j] * S.NtNp_[0]); //dnu[i*2+1][j] *
  3323. V_tmp[i][j] += GnxB[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j] / (area_elem[i][j] * S.NtNp_[0]); //dnu[i*2+1][j] *
  3324. V_tmp[i][j] += GnxB[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j] / (area_elem[i][j] * S.NtNp_[0]); //dnu[i*2+1][j] *
  3325. }
  3326. }
  3327. { // dv_dnu3 <-- grad_adj V_tmp
  3328. Vector<ElemBasis> eye(Nnodes), Mgrad;
  3329. eye = 0;
  3330. for (Long i = 0; i < Nnodes; i++) eye[i][i] = 1;
  3331. ElemBasis::Grad(Mgrad, eye);
  3332. Vector<ElemBasis> grad_adj_V(Nelem);
  3333. const auto& quad_wts = ElemBasis::QuadWts();
  3334. for (Long i = 0; i < Nelem; i++) {
  3335. for (Long j = 0; j < Nnodes; j++) {
  3336. Real sum = 0;
  3337. for (Long k = 0; k < Nnodes; k++) {
  3338. sum += Mgrad[j*2+1][k] * V_tmp[i][k] * (area_elem[i][k] * quad_wts[k]) / (quad_wts[j] * area_elem[i][j]);
  3339. }
  3340. dv_dnu3[i][j] = sum;
  3341. }
  3342. }
  3343. }
  3344. }
  3345. return dv_dnu1+dv_dnu2+dv_dnu3;
  3346. };
  3347. auto compute_dphi_dnu4 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,sigma] () {
  3348. const Long Nelem = S.GetElemList().NElem();
  3349. const Long Nnodes = ElemBasis::Size();
  3350. Vector<ElemBasis> dGnxB;
  3351. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  3352. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3353. S.quadrature_FxdU.Eval(dGnxB, S.GetElemList(), nxB, S.Laplace_FxdU);
  3354. Vector<ElemBasis> v = compute_v();
  3355. Vector<ElemBasis> dphi_dnu(Nelem);
  3356. for (Long i = 0; i < Nelem; i++) {
  3357. for (Long j = 0; j < Nnodes; j++) {
  3358. Real dphi_dnu_ = 0;
  3359. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
  3360. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
  3361. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
  3362. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
  3363. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
  3364. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
  3365. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
  3366. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
  3367. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
  3368. dphi_dnu[i][j] = dphi_dnu_;
  3369. }
  3370. }
  3371. return dphi_dnu;
  3372. };
  3373. auto compute_dphi_dnu5 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,sigma] () {
  3374. const Long Nelem = S.GetElemList().NElem();
  3375. const Long Nnodes = ElemBasis::Size();
  3376. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  3377. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3378. Vector<ElemBasis> dGv;
  3379. Vector<ElemBasis> v = compute_v();
  3380. S.quadrature_FxdU.Eval(dGv, S.GetElemList(), v, S.Laplace_FxdU);
  3381. Vector<ElemBasis> dphi_dnu(Nelem);
  3382. for (Long i = 0; i < Nelem; i++) {
  3383. for (Long j = 0; j < Nnodes; j++) {
  3384. Real dphi_dnu_ = 0;
  3385. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+0][j] * nxB[i*COORD_DIM+0][j];
  3386. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+1][j] * nxB[i*COORD_DIM+0][j];
  3387. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+2][j] * nxB[i*COORD_DIM+0][j];
  3388. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+0][j] * nxB[i*COORD_DIM+1][j];
  3389. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+1][j] * nxB[i*COORD_DIM+1][j];
  3390. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+2][j] * nxB[i*COORD_DIM+1][j];
  3391. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+0][j] * nxB[i*COORD_DIM+2][j];
  3392. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+1][j] * nxB[i*COORD_DIM+2][j];
  3393. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+2][j] * nxB[i*COORD_DIM+2][j];
  3394. dphi_dnu[i][j] = dphi_dnu_;
  3395. }
  3396. }
  3397. return dphi_dnu;
  3398. };
  3399. auto compute_dphi_dnu6 = [&S,&normal,&compute_AxB,&compute_v,sigma,&comm] () {
  3400. const Long Nelem = S.GetElemList().NElem();
  3401. const Long Nnodes = ElemBasis::Size();
  3402. Vector<ElemBasis> Gv;
  3403. Vector<ElemBasis> v = compute_v();
  3404. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  3405. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3406. Vector<ElemBasis> gradB;
  3407. Quadrature<Real> quadrature_Fxd2U;
  3408. quadrature_Fxd2U.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_Fxd2U, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3409. quadrature_Fxd2U.Eval(gradB, S.GetElemList(), sigma, S.Laplace_Fxd2U);
  3410. Vector<ElemBasis> dphi_dnu(Nelem);
  3411. for (Long i = 0; i < Nelem; i++) {
  3412. for (Long j = 0; j < Nnodes; j++) {
  3413. Real dphi_dnu_ = 0;
  3414. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  3415. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+1][j] * normal[i*COORD_DIM+0][j];
  3416. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+2][j] * normal[i*COORD_DIM+0][j];
  3417. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+0][j] * normal[i*COORD_DIM+1][j];
  3418. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  3419. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+2][j] * normal[i*COORD_DIM+1][j];
  3420. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+0][j] * normal[i*COORD_DIM+2][j];
  3421. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+1][j] * normal[i*COORD_DIM+2][j];
  3422. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  3423. dphi_dnu[i][j] = dphi_dnu_;
  3424. }
  3425. }
  3426. return dphi_dnu;
  3427. };
  3428. auto compute_dphi_dnu7 = [&S,&normal,&compute_AxB,&compute_v,sigma,&comm] () {
  3429. const Long Nelem = S.GetElemList().NElem();
  3430. const Long Nnodes = ElemBasis::Size();
  3431. Vector<ElemBasis> H(Nelem);
  3432. { // Set mean curvature H
  3433. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  3434. Vector<ElemBasis> dX, d2X;
  3435. ElemBasis::Grad(dX, X);
  3436. ElemBasis::Grad(d2X, dX);
  3437. for (Long i = 0; i < Nelem; i++) {
  3438. for (Long j = 0; j < Nnodes; j++) {
  3439. Tensor<Real,true,2,2> I, invI, II;
  3440. for (Long k0 = 0; k0 < 2; k0++) {
  3441. for (Long k1 = 0; k1 < 2; k1++) {
  3442. I(k0,k1) = 0;
  3443. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3444. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3445. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3446. II(k0,k1) = 0;
  3447. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3448. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3449. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3450. }
  3451. }
  3452. { // Set invI
  3453. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3454. invI(0,0) = I(1,1) / detI;
  3455. invI(0,1) = -I(0,1) / detI;
  3456. invI(1,0) = -I(1,0) / detI;
  3457. invI(1,1) = I(0,0) / detI;
  3458. }
  3459. { // Set H
  3460. H[i][j] = 0;
  3461. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  3462. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  3463. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  3464. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  3465. }
  3466. }
  3467. }
  3468. }
  3469. Vector<ElemBasis> Gv;
  3470. Vector<ElemBasis> v = compute_v();
  3471. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  3472. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3473. Vector<ElemBasis> dphi_dnu(Nelem);
  3474. Quadrature<Real> quadrature_dUxF;
  3475. quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  3476. quadrature_dUxF.Eval(dphi_dnu, S.GetElemList(), nxGv, S.Laplace_dUxF);
  3477. for (Long i = 0; i < Nelem; i++) {
  3478. for (Long j = 0; j < Nnodes; j++) {
  3479. dphi_dnu[i][j] *= -2*H[i][j] * sigma[i][j];
  3480. }
  3481. }
  3482. return dphi_dnu;
  3483. };
  3484. auto compute_dphi_dnu8 = [&S,&normal,&compute_AxB,&compute_v,sigma,&comm] () {
  3485. const Long Nelem = S.GetElemList().NElem();
  3486. const Long Nnodes = ElemBasis::Size();
  3487. Vector<ElemBasis> H(Nelem);
  3488. { // Set mean curvature H
  3489. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  3490. Vector<ElemBasis> dX, d2X;
  3491. ElemBasis::Grad(dX, X);
  3492. ElemBasis::Grad(d2X, dX);
  3493. for (Long i = 0; i < Nelem; i++) {
  3494. for (Long j = 0; j < Nnodes; j++) {
  3495. Tensor<Real,true,2,2> I, invI, II;
  3496. for (Long k0 = 0; k0 < 2; k0++) {
  3497. for (Long k1 = 0; k1 < 2; k1++) {
  3498. I(k0,k1) = 0;
  3499. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3500. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3501. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3502. II(k0,k1) = 0;
  3503. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3504. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3505. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3506. }
  3507. }
  3508. { // Set invI
  3509. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3510. invI(0,0) = I(1,1) / detI;
  3511. invI(0,1) = -I(0,1) / detI;
  3512. invI(1,0) = -I(1,0) / detI;
  3513. invI(1,1) = I(0,0) / detI;
  3514. }
  3515. { // Set H
  3516. H[i][j] = 0;
  3517. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  3518. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  3519. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  3520. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  3521. }
  3522. }
  3523. }
  3524. }
  3525. Vector<ElemBasis> Gv;
  3526. Vector<ElemBasis> v = compute_v();
  3527. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  3528. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3529. Vector<ElemBasis> dphi_dnu(Nelem);
  3530. Vector<ElemBasis> nablaDt_nxGv;
  3531. Quadrature<Real> quadrature_dUxD;
  3532. quadrature_dUxD.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxD, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  3533. quadrature_dUxD.Eval(nablaDt_nxGv, S.GetElemList(), nxGv, S.Laplace_dUxD);
  3534. for (Long i = 0; i < Nelem; i++) {
  3535. for (Long j = 0; j < Nnodes; j++) {
  3536. dphi_dnu[i][j] = 0;
  3537. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  3538. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  3539. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  3540. }
  3541. }
  3542. return dphi_dnu;
  3543. };
  3544. auto dphi_dnu0 = compute_dphi_dnu0();
  3545. auto dphi_dnu1 = compute_dphi_dnu1();
  3546. auto dphi_dnu2 = compute_dphi_dnu2();
  3547. auto dphi_dnu3 = compute_dphi_dnu3();
  3548. auto dphi_dnu4 = compute_dphi_dnu4();
  3549. auto dphi_dnu5 = compute_dphi_dnu5();
  3550. auto dphi_dnu6 = compute_dphi_dnu6();
  3551. auto dphi_dnu7 = compute_dphi_dnu7();
  3552. auto dphi_dnu8 = compute_dphi_dnu8();
  3553. return (dphi_dnu0+dphi_dnu1+dphi_dnu2+dphi_dnu3+dphi_dnu4+dphi_dnu5+dphi_dnu6+dphi_dnu7+dphi_dnu8) * u[Nelem*Nnodes];
  3554. };
  3555. auto compute_u_dAdnu_v_11 = [&S,&comm,&area_elem,&normal,&compute_dot_prod,&compute_grad_adj,&compute_B0,&compute_dB0] (const Vector<Real>& u, const Vector<Real>& v) {
  3556. const Long Nelem = S.GetElemList().NElem();
  3557. const Long Nnodes = ElemBasis::Size();
  3558. auto compute_v = [&S,&area_elem] () {
  3559. const Long Nelem = S.GetElemList().NElem();
  3560. const Long Nnodes = ElemBasis::Size();
  3561. Vector<ElemBasis> v(Nelem * COORD_DIM);
  3562. Vector<ElemBasis> dX;
  3563. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  3564. for (Long i = 0; i < Nelem; i++) {
  3565. for (Long j = 0; j < Nnodes; j++) {
  3566. Tensor<Real,true,COORD_DIM,2> dx;
  3567. dx(0,0) = dX[i*COORD_DIM*2+0][j];
  3568. dx(0,1) = dX[i*COORD_DIM*2+1][j];
  3569. dx(1,0) = dX[i*COORD_DIM*2+2][j];
  3570. dx(1,1) = dX[i*COORD_DIM*2+3][j];
  3571. dx(2,0) = dX[i*COORD_DIM*2+4][j];
  3572. dx(2,1) = dX[i*COORD_DIM*2+5][j];
  3573. Real s = 1 / (area_elem[i][j] * S.NtNp_[0]);
  3574. for (Long k = 0; k < COORD_DIM; k++) {
  3575. v[i*COORD_DIM+k][j] = dx(k,1) * s;
  3576. }
  3577. }
  3578. }
  3579. return v;
  3580. };
  3581. auto compute_AxB = [&S] (const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  3582. const Long Nelem = S.GetElemList().NElem();
  3583. const Long Nnodes = ElemBasis::Size();
  3584. Vector<ElemBasis> J(Nelem * COORD_DIM);
  3585. for (Long i = 0; i < Nelem; i++) { // Set J
  3586. for (Long j = 0; j < Nnodes; j++) {
  3587. Tensor<Real,true,COORD_DIM> a, b;
  3588. a(0) = A[i*COORD_DIM+0][j];
  3589. a(1) = A[i*COORD_DIM+1][j];
  3590. a(2) = A[i*COORD_DIM+2][j];
  3591. b(0) = B[i*COORD_DIM+0][j];
  3592. b(1) = B[i*COORD_DIM+1][j];
  3593. b(2) = B[i*COORD_DIM+2][j];
  3594. J[i*COORD_DIM+0][j] = a(1) * b(2) - a(2) * b(1);
  3595. J[i*COORD_DIM+1][j] = a(2) * b(0) - a(0) * b(2);
  3596. J[i*COORD_DIM+2][j] = a(0) * b(1) - a(1) * b(0);
  3597. }
  3598. }
  3599. return J;
  3600. };
  3601. auto compute_dphi_dnu0 = [&S,&normal,&compute_AxB,&compute_v,&compute_dB0] () {
  3602. const Long Nelem = S.GetElemList().NElem();
  3603. const Long Nnodes = ElemBasis::Size();
  3604. Vector<ElemBasis> Gv;
  3605. Vector<ElemBasis> v = compute_v();
  3606. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  3607. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3608. Vector<ElemBasis> gradB = compute_dB0(1.0);
  3609. Vector<ElemBasis> dphi_dnu(Nelem);
  3610. for (Long i = 0; i < Nelem; i++) {
  3611. for (Long j = 0; j < Nnodes; j++) {
  3612. Real dphi_dnu_ = 0;
  3613. dphi_dnu_ += nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  3614. dphi_dnu_ += nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+1][j] * normal[i*COORD_DIM+0][j];
  3615. dphi_dnu_ += nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+2][j] * normal[i*COORD_DIM+0][j];
  3616. dphi_dnu_ += nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+0][j] * normal[i*COORD_DIM+1][j];
  3617. dphi_dnu_ += nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  3618. dphi_dnu_ += nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+2][j] * normal[i*COORD_DIM+1][j];
  3619. dphi_dnu_ += nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+0][j] * normal[i*COORD_DIM+2][j];
  3620. dphi_dnu_ += nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+1][j] * normal[i*COORD_DIM+2][j];
  3621. dphi_dnu_ += nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  3622. dphi_dnu[i][j] = dphi_dnu_;
  3623. }
  3624. }
  3625. return dphi_dnu;
  3626. };
  3627. auto compute_dphi_dnu1 = [&S,&normal,&compute_AxB,&compute_v,&compute_B0,compute_grad_adj] () {
  3628. const Long Nelem = S.GetElemList().NElem();
  3629. const Long Nnodes = ElemBasis::Size();
  3630. Vector<ElemBasis> Gv;
  3631. Vector<ElemBasis> v = compute_v();
  3632. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  3633. Vector<ElemBasis> B = compute_B0(1.0);
  3634. Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
  3635. return compute_grad_adj(BxGv);
  3636. };
  3637. auto compute_dphi_dnu2 = [&S,&normal,&compute_AxB,&compute_v,&compute_B0,&compute_dot_prod] () {
  3638. const Long Nelem = S.GetElemList().NElem();
  3639. const Long Nnodes = ElemBasis::Size();
  3640. Vector<ElemBasis> H(Nelem);
  3641. { // Set mean curvature H
  3642. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  3643. Vector<ElemBasis> dX, d2X;
  3644. ElemBasis::Grad(dX, X);
  3645. ElemBasis::Grad(d2X, dX);
  3646. for (Long i = 0; i < Nelem; i++) {
  3647. for (Long j = 0; j < Nnodes; j++) {
  3648. Tensor<Real,true,2,2> I, invI, II;
  3649. for (Long k0 = 0; k0 < 2; k0++) {
  3650. for (Long k1 = 0; k1 < 2; k1++) {
  3651. I(k0,k1) = 0;
  3652. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3653. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3654. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3655. II(k0,k1) = 0;
  3656. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3657. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3658. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3659. }
  3660. }
  3661. { // Set invI
  3662. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3663. invI(0,0) = I(1,1) / detI;
  3664. invI(0,1) = -I(0,1) / detI;
  3665. invI(1,0) = -I(1,0) / detI;
  3666. invI(1,1) = I(0,0) / detI;
  3667. }
  3668. { // Set H
  3669. H[i][j] = 0;
  3670. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  3671. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  3672. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  3673. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  3674. }
  3675. }
  3676. }
  3677. }
  3678. Vector<ElemBasis> Gv;
  3679. Vector<ElemBasis> v = compute_v();
  3680. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  3681. Vector<ElemBasis> B = compute_B0(1.0);
  3682. Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
  3683. Vector<ElemBasis> n_dot_BxGv = compute_dot_prod(normal,BxGv);
  3684. Vector<ElemBasis> dphi_dnu(Nelem);
  3685. for (Long i = 0; i < Nelem; i++) {
  3686. for (Long j = 0; j < Nnodes; j++) {
  3687. dphi_dnu[i][j] = n_dot_BxGv[i][j] * 2*H[i][j];
  3688. }
  3689. }
  3690. return dphi_dnu;
  3691. };
  3692. auto compute_dphi_dnu3 = [&S,&normal,&compute_AxB,&compute_v,&compute_B0,&compute_dot_prod] () {
  3693. const Long Nelem = S.GetElemList().NElem();
  3694. const Long Nnodes = ElemBasis::Size();
  3695. Vector<ElemBasis> H(Nelem);
  3696. { // Set mean curvature H
  3697. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  3698. Vector<ElemBasis> dX, d2X;
  3699. ElemBasis::Grad(dX, X);
  3700. ElemBasis::Grad(d2X, dX);
  3701. for (Long i = 0; i < Nelem; i++) {
  3702. for (Long j = 0; j < Nnodes; j++) {
  3703. Tensor<Real,true,2,2> I, invI, II;
  3704. for (Long k0 = 0; k0 < 2; k0++) {
  3705. for (Long k1 = 0; k1 < 2; k1++) {
  3706. I(k0,k1) = 0;
  3707. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3708. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3709. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3710. II(k0,k1) = 0;
  3711. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3712. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3713. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3714. }
  3715. }
  3716. { // Set invI
  3717. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3718. invI(0,0) = I(1,1) / detI;
  3719. invI(0,1) = -I(0,1) / detI;
  3720. invI(1,0) = -I(1,0) / detI;
  3721. invI(1,1) = I(0,0) / detI;
  3722. }
  3723. { // Set H
  3724. H[i][j] = 0;
  3725. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  3726. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  3727. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  3728. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  3729. }
  3730. }
  3731. }
  3732. }
  3733. Vector<ElemBasis> GnxB;
  3734. Vector<ElemBasis> B = compute_B0(1.0);
  3735. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3736. S.quadrature_FxU.Eval(GnxB, S.GetElemList(), nxB, S.Laplace_FxU);
  3737. Vector<ElemBasis> v = compute_v();
  3738. Vector<ElemBasis> v_dot_GnxB = compute_dot_prod(v,GnxB);
  3739. Vector<ElemBasis> dphi_dnu(Nelem);
  3740. for (Long i = 0; i < Nelem; i++) {
  3741. for (Long j = 0; j < Nnodes; j++) {
  3742. dphi_dnu[i][j] = v_dot_GnxB[i][j] * 2*H[i][j];
  3743. }
  3744. }
  3745. return dphi_dnu;
  3746. };
  3747. auto compute_dphi_dnu4 = [&S,&normal,&area_elem,&compute_AxB,&compute_B0] () {
  3748. const Long Nelem = S.GetElemList().NElem();
  3749. const Long Nnodes = ElemBasis::Size();
  3750. Vector<ElemBasis> GnxB;
  3751. Vector<ElemBasis> B = compute_B0(1.0);
  3752. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3753. S.quadrature_FxU.Eval(GnxB, S.GetElemList(), nxB, S.Laplace_FxU);
  3754. Vector<ElemBasis> H(Nelem);
  3755. { // Set mean curvature H
  3756. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  3757. Vector<ElemBasis> dX, d2X;
  3758. ElemBasis::Grad(dX, X);
  3759. ElemBasis::Grad(d2X, dX);
  3760. for (Long i = 0; i < Nelem; i++) {
  3761. for (Long j = 0; j < Nnodes; j++) {
  3762. Tensor<Real,true,2,2> I, invI, II;
  3763. for (Long k0 = 0; k0 < 2; k0++) {
  3764. for (Long k1 = 0; k1 < 2; k1++) {
  3765. I(k0,k1) = 0;
  3766. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3767. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3768. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3769. II(k0,k1) = 0;
  3770. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3771. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3772. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3773. }
  3774. }
  3775. { // Set invI
  3776. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3777. invI(0,0) = I(1,1) / detI;
  3778. invI(0,1) = -I(0,1) / detI;
  3779. invI(1,0) = -I(1,0) / detI;
  3780. invI(1,1) = I(0,0) / detI;
  3781. }
  3782. { // Set H
  3783. H[i][j] = 0;
  3784. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  3785. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  3786. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  3787. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  3788. }
  3789. }
  3790. }
  3791. }
  3792. Vector<ElemBasis> dv_dnu1(Nelem), dv_dnu2(Nelem), dv_dnu3(Nelem);
  3793. { // Set dv_dnu1, dv_dnu2, dv_dnu3
  3794. Vector<ElemBasis> dX, dn, V_tmp(Nelem);
  3795. ElemBasis::Grad(dn, normal);
  3796. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  3797. for (Long i = 0; i < Nelem; i++) {
  3798. for (Long j = 0; j < Nnodes; j++) {
  3799. dv_dnu1[i][j] = 0;
  3800. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+0][j] * dX[(i*COORD_DIM+0)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
  3801. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+1][j] * dX[(i*COORD_DIM+1)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
  3802. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+2][j] * dX[(i*COORD_DIM+2)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
  3803. dv_dnu2[i][j] = 0;
  3804. dv_dnu2[i][j] += GnxB[i*COORD_DIM+0][j] * dn[(i*COORD_DIM+0)*2+1][j] / (area_elem[i][j] * S.NtNp_[0]);
  3805. dv_dnu2[i][j] += GnxB[i*COORD_DIM+1][j] * dn[(i*COORD_DIM+1)*2+1][j] / (area_elem[i][j] * S.NtNp_[0]);
  3806. dv_dnu2[i][j] += GnxB[i*COORD_DIM+2][j] * dn[(i*COORD_DIM+2)*2+1][j] / (area_elem[i][j] * S.NtNp_[0]);
  3807. V_tmp[i][j] = 0;
  3808. V_tmp[i][j] += GnxB[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j] / (area_elem[i][j] * S.NtNp_[0]); //dnu[i*2+1][j] *
  3809. V_tmp[i][j] += GnxB[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j] / (area_elem[i][j] * S.NtNp_[0]); //dnu[i*2+1][j] *
  3810. V_tmp[i][j] += GnxB[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j] / (area_elem[i][j] * S.NtNp_[0]); //dnu[i*2+1][j] *
  3811. }
  3812. }
  3813. { // dv_dnu3 <-- grad_adj V_tmp
  3814. Vector<ElemBasis> eye(Nnodes), Mgrad;
  3815. eye = 0;
  3816. for (Long i = 0; i < Nnodes; i++) eye[i][i] = 1;
  3817. ElemBasis::Grad(Mgrad, eye);
  3818. Vector<ElemBasis> grad_adj_V(Nelem);
  3819. const auto& quad_wts = ElemBasis::QuadWts();
  3820. for (Long i = 0; i < Nelem; i++) {
  3821. for (Long j = 0; j < Nnodes; j++) {
  3822. Real sum = 0;
  3823. for (Long k = 0; k < Nnodes; k++) {
  3824. sum += Mgrad[j*2+1][k] * V_tmp[i][k] * (area_elem[i][k] * quad_wts[k]) / (quad_wts[j] * area_elem[i][j]);
  3825. }
  3826. dv_dnu3[i][j] = sum;
  3827. }
  3828. }
  3829. }
  3830. }
  3831. return dv_dnu1+dv_dnu2+dv_dnu3;
  3832. };
  3833. auto compute_dphi_dnu5 = [&S,&normal,&compute_AxB,&compute_v,&compute_B0] () {
  3834. const Long Nelem = S.GetElemList().NElem();
  3835. const Long Nnodes = ElemBasis::Size();
  3836. Vector<ElemBasis> dGnxB;
  3837. Vector<ElemBasis> B = compute_B0(1.0);
  3838. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3839. S.quadrature_FxdU.Eval(dGnxB, S.GetElemList(), nxB, S.Laplace_FxdU);
  3840. Vector<ElemBasis> v = compute_v();
  3841. Vector<ElemBasis> dphi_dnu(Nelem);
  3842. for (Long i = 0; i < Nelem; i++) {
  3843. for (Long j = 0; j < Nnodes; j++) {
  3844. Real dphi_dnu_ = 0;
  3845. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
  3846. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
  3847. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
  3848. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
  3849. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
  3850. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
  3851. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
  3852. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
  3853. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
  3854. dphi_dnu[i][j] = dphi_dnu_;
  3855. }
  3856. }
  3857. return dphi_dnu;
  3858. };
  3859. auto compute_dphi_dnu6 = [&S,&normal,&compute_AxB,&compute_v,&compute_B0] () {
  3860. const Long Nelem = S.GetElemList().NElem();
  3861. const Long Nnodes = ElemBasis::Size();
  3862. Vector<ElemBasis> B = compute_B0(1.0);
  3863. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3864. Vector<ElemBasis> dGv;
  3865. Vector<ElemBasis> v = compute_v();
  3866. S.quadrature_FxdU.Eval(dGv, S.GetElemList(), v, S.Laplace_FxdU);
  3867. Vector<ElemBasis> dphi_dnu(Nelem);
  3868. for (Long i = 0; i < Nelem; i++) {
  3869. for (Long j = 0; j < Nnodes; j++) {
  3870. Real dphi_dnu_ = 0;
  3871. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+0][j] * nxB[i*COORD_DIM+0][j];
  3872. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+1][j] * nxB[i*COORD_DIM+0][j];
  3873. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+2][j] * nxB[i*COORD_DIM+0][j];
  3874. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+0][j] * nxB[i*COORD_DIM+1][j];
  3875. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+1][j] * nxB[i*COORD_DIM+1][j];
  3876. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+2][j] * nxB[i*COORD_DIM+1][j];
  3877. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+0][j] * nxB[i*COORD_DIM+2][j];
  3878. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+1][j] * nxB[i*COORD_DIM+2][j];
  3879. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+2][j] * nxB[i*COORD_DIM+2][j];
  3880. dphi_dnu[i][j] = dphi_dnu_;
  3881. }
  3882. }
  3883. return dphi_dnu;
  3884. };
  3885. auto dphi_dnu0 = compute_dphi_dnu0();
  3886. auto dphi_dnu1 = compute_dphi_dnu1();
  3887. auto dphi_dnu2 = compute_dphi_dnu2();
  3888. auto dphi_dnu3 = compute_dphi_dnu3();
  3889. auto dphi_dnu4 = compute_dphi_dnu4();
  3890. auto dphi_dnu5 = compute_dphi_dnu5();
  3891. auto dphi_dnu6 = compute_dphi_dnu6();
  3892. return (dphi_dnu0+dphi_dnu1+dphi_dnu2+dphi_dnu3+dphi_dnu4+dphi_dnu5+dphi_dnu6) * (u[Nelem*Nnodes] * v[Nelem*Nnodes]);
  3893. };
  3894. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  3895. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  3896. if (0) {
  3897. const Long Nelem = S.GetElemList().NElem();
  3898. const Long Nnodes = ElemBasis::Size();
  3899. auto compute_v = [&S,&area_elem] () {
  3900. const Long Nelem = S.GetElemList().NElem();
  3901. const Long Nnodes = ElemBasis::Size();
  3902. Vector<ElemBasis> v(Nelem * COORD_DIM);
  3903. Vector<ElemBasis> dX;
  3904. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  3905. for (Long i = 0; i < Nelem; i++) {
  3906. for (Long j = 0; j < Nnodes; j++) {
  3907. Tensor<Real,true,COORD_DIM,2> dx;
  3908. dx(0,0) = dX[i*COORD_DIM*2+0][j];
  3909. dx(0,1) = dX[i*COORD_DIM*2+1][j];
  3910. dx(1,0) = dX[i*COORD_DIM*2+2][j];
  3911. dx(1,1) = dX[i*COORD_DIM*2+3][j];
  3912. dx(2,0) = dX[i*COORD_DIM*2+4][j];
  3913. dx(2,1) = dX[i*COORD_DIM*2+5][j];
  3914. Real s = 1 / (area_elem[i][j] * S.NtNp_[0]);
  3915. for (Long k = 0; k < COORD_DIM; k++) {
  3916. v[i*COORD_DIM+k][j] = dx(k,1) * s;
  3917. }
  3918. }
  3919. }
  3920. return v;
  3921. };
  3922. auto compute_AxB = [&S] (const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  3923. const Long Nelem = S.GetElemList().NElem();
  3924. const Long Nnodes = ElemBasis::Size();
  3925. Vector<ElemBasis> J(Nelem * COORD_DIM);
  3926. for (Long i = 0; i < Nelem; i++) { // Set J
  3927. for (Long j = 0; j < Nnodes; j++) {
  3928. Tensor<Real,true,COORD_DIM> a, b;
  3929. a(0) = A[i*COORD_DIM+0][j];
  3930. a(1) = A[i*COORD_DIM+1][j];
  3931. a(2) = A[i*COORD_DIM+2][j];
  3932. b(0) = B[i*COORD_DIM+0][j];
  3933. b(1) = B[i*COORD_DIM+1][j];
  3934. b(2) = B[i*COORD_DIM+2][j];
  3935. J[i*COORD_DIM+0][j] = a(1) * b(2) - a(2) * b(1);
  3936. J[i*COORD_DIM+1][j] = a(2) * b(0) - a(0) * b(2);
  3937. J[i*COORD_DIM+2][j] = a(0) * b(1) - a(1) * b(0);
  3938. }
  3939. }
  3940. return J;
  3941. };
  3942. auto compute_dphi_dnu0 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,compute_grad_adj,sigma] () {
  3943. const Long Nelem = S.GetElemList().NElem();
  3944. const Long Nnodes = ElemBasis::Size();
  3945. Vector<ElemBasis> Gv;
  3946. Vector<ElemBasis> v = compute_v();
  3947. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  3948. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  3949. Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
  3950. return compute_grad_adj(BxGv);
  3951. };
  3952. auto compute_dphi_dnu1 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,&compute_dot_prod,sigma] () {
  3953. const Long Nelem = S.GetElemList().NElem();
  3954. const Long Nnodes = ElemBasis::Size();
  3955. Vector<ElemBasis> H(Nelem);
  3956. { // Set mean curvature H
  3957. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  3958. Vector<ElemBasis> dX, d2X;
  3959. ElemBasis::Grad(dX, X);
  3960. ElemBasis::Grad(d2X, dX);
  3961. for (Long i = 0; i < Nelem; i++) {
  3962. for (Long j = 0; j < Nnodes; j++) {
  3963. Tensor<Real,true,2,2> I, invI, II;
  3964. for (Long k0 = 0; k0 < 2; k0++) {
  3965. for (Long k1 = 0; k1 < 2; k1++) {
  3966. I(k0,k1) = 0;
  3967. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3968. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3969. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3970. II(k0,k1) = 0;
  3971. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3972. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3973. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3974. }
  3975. }
  3976. { // Set invI
  3977. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3978. invI(0,0) = I(1,1) / detI;
  3979. invI(0,1) = -I(0,1) / detI;
  3980. invI(1,0) = -I(1,0) / detI;
  3981. invI(1,1) = I(0,0) / detI;
  3982. }
  3983. { // Set H
  3984. H[i][j] = 0;
  3985. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  3986. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  3987. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  3988. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  3989. }
  3990. }
  3991. }
  3992. }
  3993. Vector<ElemBasis> Gv;
  3994. Vector<ElemBasis> v = compute_v();
  3995. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  3996. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  3997. Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
  3998. Vector<ElemBasis> n_dot_BxGv = compute_dot_prod(normal,BxGv);
  3999. Vector<ElemBasis> dphi_dnu(Nelem);
  4000. for (Long i = 0; i < Nelem; i++) {
  4001. for (Long j = 0; j < Nnodes; j++) {
  4002. dphi_dnu[i][j] = n_dot_BxGv[i][j] * 2*H[i][j];
  4003. }
  4004. }
  4005. return dphi_dnu;
  4006. };
  4007. auto compute_dphi_dnu2 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,&compute_dot_prod,sigma] () {
  4008. const Long Nelem = S.GetElemList().NElem();
  4009. const Long Nnodes = ElemBasis::Size();
  4010. Vector<ElemBasis> H(Nelem);
  4011. { // Set mean curvature H
  4012. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  4013. Vector<ElemBasis> dX, d2X;
  4014. ElemBasis::Grad(dX, X);
  4015. ElemBasis::Grad(d2X, dX);
  4016. for (Long i = 0; i < Nelem; i++) {
  4017. for (Long j = 0; j < Nnodes; j++) {
  4018. Tensor<Real,true,2,2> I, invI, II;
  4019. for (Long k0 = 0; k0 < 2; k0++) {
  4020. for (Long k1 = 0; k1 < 2; k1++) {
  4021. I(k0,k1) = 0;
  4022. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  4023. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  4024. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  4025. II(k0,k1) = 0;
  4026. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  4027. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  4028. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  4029. }
  4030. }
  4031. { // Set invI
  4032. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  4033. invI(0,0) = I(1,1) / detI;
  4034. invI(0,1) = -I(0,1) / detI;
  4035. invI(1,0) = -I(1,0) / detI;
  4036. invI(1,1) = I(0,0) / detI;
  4037. }
  4038. { // Set H
  4039. H[i][j] = 0;
  4040. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  4041. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  4042. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  4043. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  4044. }
  4045. }
  4046. }
  4047. }
  4048. Vector<ElemBasis> GnxB;
  4049. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  4050. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  4051. S.quadrature_FxU.Eval(GnxB, S.GetElemList(), nxB, S.Laplace_FxU);
  4052. Vector<ElemBasis> v = compute_v();
  4053. Vector<ElemBasis> v_dot_GnxB = compute_dot_prod(v,GnxB);
  4054. Vector<ElemBasis> dphi_dnu(Nelem);
  4055. for (Long i = 0; i < Nelem; i++) {
  4056. for (Long j = 0; j < Nnodes; j++) {
  4057. dphi_dnu[i][j] = v_dot_GnxB[i][j] * 2*H[i][j];
  4058. }
  4059. }
  4060. return dphi_dnu;
  4061. };
  4062. auto compute_dphi_dnu3 = [&S,&normal,&area_elem,&compute_AxB,&compute_half_n_plus_dG,sigma] () {
  4063. const Long Nelem = S.GetElemList().NElem();
  4064. const Long Nnodes = ElemBasis::Size();
  4065. Vector<ElemBasis> GnxB;
  4066. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  4067. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  4068. S.quadrature_FxU.Eval(GnxB, S.GetElemList(), nxB, S.Laplace_FxU);
  4069. Vector<ElemBasis> H(Nelem);
  4070. { // Set mean curvature H
  4071. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  4072. Vector<ElemBasis> dX, d2X;
  4073. ElemBasis::Grad(dX, X);
  4074. ElemBasis::Grad(d2X, dX);
  4075. for (Long i = 0; i < Nelem; i++) {
  4076. for (Long j = 0; j < Nnodes; j++) {
  4077. Tensor<Real,true,2,2> I, invI, II;
  4078. for (Long k0 = 0; k0 < 2; k0++) {
  4079. for (Long k1 = 0; k1 < 2; k1++) {
  4080. I(k0,k1) = 0;
  4081. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  4082. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  4083. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  4084. II(k0,k1) = 0;
  4085. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  4086. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  4087. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  4088. }
  4089. }
  4090. { // Set invI
  4091. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  4092. invI(0,0) = I(1,1) / detI;
  4093. invI(0,1) = -I(0,1) / detI;
  4094. invI(1,0) = -I(1,0) / detI;
  4095. invI(1,1) = I(0,0) / detI;
  4096. }
  4097. { // Set H
  4098. H[i][j] = 0;
  4099. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  4100. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  4101. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  4102. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  4103. }
  4104. }
  4105. }
  4106. }
  4107. Vector<ElemBasis> dv_dnu1(Nelem), dv_dnu2(Nelem), dv_dnu3(Nelem);
  4108. { // Set dv_dnu1, dv_dnu2, dv_dnu3
  4109. Vector<ElemBasis> dX, dn, V_tmp(Nelem);
  4110. ElemBasis::Grad(dn, normal);
  4111. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  4112. for (Long i = 0; i < Nelem; i++) {
  4113. for (Long j = 0; j < Nnodes; j++) {
  4114. dv_dnu1[i][j] = 0;
  4115. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+0][j] * dX[(i*COORD_DIM+0)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
  4116. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+1][j] * dX[(i*COORD_DIM+1)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
  4117. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+2][j] * dX[(i*COORD_DIM+2)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
  4118. dv_dnu2[i][j] = 0;
  4119. dv_dnu2[i][j] += GnxB[i*COORD_DIM+0][j] * dn[(i*COORD_DIM+0)*2+1][j] / (area_elem[i][j] * S.NtNp_[0]);
  4120. dv_dnu2[i][j] += GnxB[i*COORD_DIM+1][j] * dn[(i*COORD_DIM+1)*2+1][j] / (area_elem[i][j] * S.NtNp_[0]);
  4121. dv_dnu2[i][j] += GnxB[i*COORD_DIM+2][j] * dn[(i*COORD_DIM+2)*2+1][j] / (area_elem[i][j] * S.NtNp_[0]);
  4122. V_tmp[i][j] = 0;
  4123. V_tmp[i][j] += GnxB[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j] / (area_elem[i][j] * S.NtNp_[0]); //dnu[i*2+1][j] *
  4124. V_tmp[i][j] += GnxB[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j] / (area_elem[i][j] * S.NtNp_[0]); //dnu[i*2+1][j] *
  4125. V_tmp[i][j] += GnxB[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j] / (area_elem[i][j] * S.NtNp_[0]); //dnu[i*2+1][j] *
  4126. }
  4127. }
  4128. { // dv_dnu3 <-- grad_adj V_tmp
  4129. Vector<ElemBasis> eye(Nnodes), Mgrad;
  4130. eye = 0;
  4131. for (Long i = 0; i < Nnodes; i++) eye[i][i] = 1;
  4132. ElemBasis::Grad(Mgrad, eye);
  4133. Vector<ElemBasis> grad_adj_V(Nelem);
  4134. const auto& quad_wts = ElemBasis::QuadWts();
  4135. for (Long i = 0; i < Nelem; i++) {
  4136. for (Long j = 0; j < Nnodes; j++) {
  4137. Real sum = 0;
  4138. for (Long k = 0; k < Nnodes; k++) {
  4139. sum += Mgrad[j*2+1][k] * V_tmp[i][k] * (area_elem[i][k] * quad_wts[k]) / (quad_wts[j] * area_elem[i][j]);
  4140. }
  4141. dv_dnu3[i][j] = sum;
  4142. }
  4143. }
  4144. }
  4145. }
  4146. return dv_dnu1+dv_dnu2+dv_dnu3;
  4147. };
  4148. auto compute_dphi_dnu4 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,sigma] () {
  4149. const Long Nelem = S.GetElemList().NElem();
  4150. const Long Nnodes = ElemBasis::Size();
  4151. Vector<ElemBasis> dGnxB;
  4152. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  4153. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  4154. S.quadrature_FxdU.Eval(dGnxB, S.GetElemList(), nxB, S.Laplace_FxdU);
  4155. Vector<ElemBasis> v = compute_v();
  4156. Vector<ElemBasis> dphi_dnu(Nelem);
  4157. for (Long i = 0; i < Nelem; i++) {
  4158. for (Long j = 0; j < Nnodes; j++) {
  4159. Real dphi_dnu_ = 0;
  4160. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
  4161. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
  4162. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
  4163. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
  4164. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
  4165. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
  4166. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
  4167. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
  4168. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
  4169. dphi_dnu[i][j] = dphi_dnu_;
  4170. }
  4171. }
  4172. return dphi_dnu;
  4173. };
  4174. auto compute_dphi_dnu5 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,sigma] () {
  4175. const Long Nelem = S.GetElemList().NElem();
  4176. const Long Nnodes = ElemBasis::Size();
  4177. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  4178. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  4179. Vector<ElemBasis> dGv;
  4180. Vector<ElemBasis> v = compute_v();
  4181. S.quadrature_FxdU.Eval(dGv, S.GetElemList(), v, S.Laplace_FxdU);
  4182. Vector<ElemBasis> dphi_dnu(Nelem);
  4183. for (Long i = 0; i < Nelem; i++) {
  4184. for (Long j = 0; j < Nnodes; j++) {
  4185. Real dphi_dnu_ = 0;
  4186. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+0][j] * nxB[i*COORD_DIM+0][j];
  4187. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+1][j] * nxB[i*COORD_DIM+0][j];
  4188. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+2][j] * nxB[i*COORD_DIM+0][j];
  4189. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+0][j] * nxB[i*COORD_DIM+1][j];
  4190. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+1][j] * nxB[i*COORD_DIM+1][j];
  4191. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+2][j] * nxB[i*COORD_DIM+1][j];
  4192. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+0][j] * nxB[i*COORD_DIM+2][j];
  4193. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+1][j] * nxB[i*COORD_DIM+2][j];
  4194. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+2][j] * nxB[i*COORD_DIM+2][j];
  4195. dphi_dnu[i][j] = dphi_dnu_;
  4196. }
  4197. }
  4198. return dphi_dnu;
  4199. };
  4200. auto compute_dphi_dnu6 = [&S,&normal,&compute_AxB,&compute_v,sigma,&comm] () {
  4201. const Long Nelem = S.GetElemList().NElem();
  4202. const Long Nnodes = ElemBasis::Size();
  4203. Vector<ElemBasis> Gv;
  4204. Vector<ElemBasis> v = compute_v();
  4205. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  4206. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  4207. Vector<ElemBasis> gradB;
  4208. Quadrature<Real> quadrature_Fxd2U;
  4209. quadrature_Fxd2U.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_Fxd2U, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  4210. quadrature_Fxd2U.Eval(gradB, S.GetElemList(), sigma, S.Laplace_Fxd2U);
  4211. Vector<ElemBasis> dphi_dnu(Nelem);
  4212. for (Long i = 0; i < Nelem; i++) {
  4213. for (Long j = 0; j < Nnodes; j++) {
  4214. Real dphi_dnu_ = 0;
  4215. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  4216. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+1][j] * normal[i*COORD_DIM+0][j];
  4217. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+2][j] * normal[i*COORD_DIM+0][j];
  4218. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+0][j] * normal[i*COORD_DIM+1][j];
  4219. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  4220. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+2][j] * normal[i*COORD_DIM+1][j];
  4221. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+0][j] * normal[i*COORD_DIM+2][j];
  4222. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+1][j] * normal[i*COORD_DIM+2][j];
  4223. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  4224. dphi_dnu[i][j] = dphi_dnu_;
  4225. }
  4226. }
  4227. return dphi_dnu;
  4228. };
  4229. auto compute_dphi_dnu7 = [&S,&normal,&compute_AxB,&compute_v,sigma,&comm] () {
  4230. const Long Nelem = S.GetElemList().NElem();
  4231. const Long Nnodes = ElemBasis::Size();
  4232. Vector<ElemBasis> H(Nelem);
  4233. { // Set mean curvature H
  4234. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  4235. Vector<ElemBasis> dX, d2X;
  4236. ElemBasis::Grad(dX, X);
  4237. ElemBasis::Grad(d2X, dX);
  4238. for (Long i = 0; i < Nelem; i++) {
  4239. for (Long j = 0; j < Nnodes; j++) {
  4240. Tensor<Real,true,2,2> I, invI, II;
  4241. for (Long k0 = 0; k0 < 2; k0++) {
  4242. for (Long k1 = 0; k1 < 2; k1++) {
  4243. I(k0,k1) = 0;
  4244. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  4245. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  4246. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  4247. II(k0,k1) = 0;
  4248. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  4249. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  4250. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  4251. }
  4252. }
  4253. { // Set invI
  4254. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  4255. invI(0,0) = I(1,1) / detI;
  4256. invI(0,1) = -I(0,1) / detI;
  4257. invI(1,0) = -I(1,0) / detI;
  4258. invI(1,1) = I(0,0) / detI;
  4259. }
  4260. { // Set H
  4261. H[i][j] = 0;
  4262. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  4263. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  4264. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  4265. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  4266. }
  4267. }
  4268. }
  4269. }
  4270. Vector<ElemBasis> Gv;
  4271. Vector<ElemBasis> v = compute_v();
  4272. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  4273. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  4274. Vector<ElemBasis> dphi_dnu(Nelem);
  4275. Quadrature<Real> quadrature_dUxF;
  4276. quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  4277. quadrature_dUxF.Eval(dphi_dnu, S.GetElemList(), nxGv, S.Laplace_dUxF);
  4278. for (Long i = 0; i < Nelem; i++) {
  4279. for (Long j = 0; j < Nnodes; j++) {
  4280. dphi_dnu[i][j] *= -2*H[i][j] * sigma[i][j];
  4281. }
  4282. }
  4283. return dphi_dnu;
  4284. };
  4285. auto compute_dphi_dnu8 = [&S,&normal,&compute_AxB,&compute_v,sigma,&comm] () {
  4286. const Long Nelem = S.GetElemList().NElem();
  4287. const Long Nnodes = ElemBasis::Size();
  4288. Vector<ElemBasis> H(Nelem);
  4289. { // Set mean curvature H
  4290. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  4291. Vector<ElemBasis> dX, d2X;
  4292. ElemBasis::Grad(dX, X);
  4293. ElemBasis::Grad(d2X, dX);
  4294. for (Long i = 0; i < Nelem; i++) {
  4295. for (Long j = 0; j < Nnodes; j++) {
  4296. Tensor<Real,true,2,2> I, invI, II;
  4297. for (Long k0 = 0; k0 < 2; k0++) {
  4298. for (Long k1 = 0; k1 < 2; k1++) {
  4299. I(k0,k1) = 0;
  4300. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  4301. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  4302. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  4303. II(k0,k1) = 0;
  4304. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  4305. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  4306. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  4307. }
  4308. }
  4309. { // Set invI
  4310. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  4311. invI(0,0) = I(1,1) / detI;
  4312. invI(0,1) = -I(0,1) / detI;
  4313. invI(1,0) = -I(1,0) / detI;
  4314. invI(1,1) = I(0,0) / detI;
  4315. }
  4316. { // Set H
  4317. H[i][j] = 0;
  4318. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  4319. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  4320. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  4321. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  4322. }
  4323. }
  4324. }
  4325. }
  4326. Vector<ElemBasis> Gv;
  4327. Vector<ElemBasis> v = compute_v();
  4328. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  4329. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  4330. Vector<ElemBasis> dphi_dnu(Nelem);
  4331. Vector<ElemBasis> nablaDt_nxGv;
  4332. Quadrature<Real> quadrature_dUxD;
  4333. quadrature_dUxD.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxD, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  4334. quadrature_dUxD.Eval(nablaDt_nxGv, S.GetElemList(), nxGv, S.Laplace_dUxD);
  4335. for (Long i = 0; i < Nelem; i++) {
  4336. for (Long j = 0; j < Nnodes; j++) {
  4337. dphi_dnu[i][j] = 0;
  4338. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  4339. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  4340. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  4341. }
  4342. }
  4343. return dphi_dnu;
  4344. };
  4345. Vector<ElemBasis> nu(Nelem);
  4346. nu = 1; //area_elem;
  4347. Real dphi_dnu0 = compute_inner_prod(nu, compute_dphi_dnu0());
  4348. Real dphi_dnu1 = compute_inner_prod(nu, compute_dphi_dnu1());
  4349. Real dphi_dnu2 = compute_inner_prod(nu, compute_dphi_dnu2());
  4350. Real dphi_dnu3 = compute_inner_prod(nu, compute_dphi_dnu3());
  4351. Real dphi_dnu4 = compute_inner_prod(nu, compute_dphi_dnu4());
  4352. Real dphi_dnu5 = compute_inner_prod(nu, compute_dphi_dnu5());
  4353. Real dphi_dnu6 = compute_inner_prod(nu, compute_dphi_dnu6());
  4354. Real dphi_dnu7 = compute_inner_prod(nu, compute_dphi_dnu7());
  4355. Real dphi_dnu8 = compute_inner_prod(nu, compute_dphi_dnu8());
  4356. std::cout<<dphi_dnu0<<' ';
  4357. std::cout<<dphi_dnu1<<' ';
  4358. std::cout<<dphi_dnu2<<' ';
  4359. std::cout<<dphi_dnu3<<' ';
  4360. std::cout<<dphi_dnu4<<' ';
  4361. std::cout<<dphi_dnu5<<' ';
  4362. std::cout<<dphi_dnu6<<' ';
  4363. std::cout<<dphi_dnu7<<' ';
  4364. std::cout<<dphi_dnu8<<' ';
  4365. std::cout<<'\n';
  4366. std::cout<<dphi_dnu0+dphi_dnu1+dphi_dnu2+dphi_dnu3+dphi_dnu4+dphi_dnu5+dphi_dnu6+dphi_dnu7+dphi_dnu8<<'\n';
  4367. auto compute_flux = [&S,&comm,&normal,&area_elem,&compute_norm_area_elem,&compute_AxB,&compute_v,&compute_inner_prod,&sigma,&compute_half_n_plus_dG] (const Vector<ElemBasis>& nu, Real eps) {
  4368. const Long Nelem = S.GetElemList().NElem();
  4369. const Long Nnodes = ElemBasis::Size();
  4370. Vector<ElemBasis> X_orig(Nelem*COORD_DIM);
  4371. for (Long i = 0; i < Nelem; i++) {
  4372. for (Long j = 0; j < Nnodes; j++) {
  4373. X_orig[i*COORD_DIM+0][j] = S.Elem(i,0)[j];
  4374. X_orig[i*COORD_DIM+1][j] = S.Elem(i,1)[j];
  4375. X_orig[i*COORD_DIM+2][j] = S.Elem(i,2)[j];
  4376. S.Elem(i,0)[j] += eps*nu[i][j] * normal[i*COORD_DIM+0][j];
  4377. S.Elem(i,1)[j] += eps*nu[i][j] * normal[i*COORD_DIM+1][j];
  4378. S.Elem(i,2)[j] += eps*nu[i][j] * normal[i*COORD_DIM+2][j];
  4379. }
  4380. }
  4381. compute_norm_area_elem(normal, area_elem);
  4382. S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  4383. S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  4384. Vector<ElemBasis> v = compute_v();
  4385. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  4386. Vector<ElemBasis> J = compute_AxB(normal,B);
  4387. Vector<ElemBasis> A;
  4388. S.quadrature_FxU.Eval(A, S.GetElemList(), J, S.Laplace_FxU);
  4389. Real flux = compute_inner_prod(v, A);
  4390. for (Long i = 0; i < Nelem; i++) {
  4391. for (Long j = 0; j < Nnodes; j++) {
  4392. S.Elem(i,0)[j] = X_orig[i*COORD_DIM+0][j];
  4393. S.Elem(i,1)[j] = X_orig[i*COORD_DIM+1][j];
  4394. S.Elem(i,2)[j] = X_orig[i*COORD_DIM+2][j];
  4395. }
  4396. }
  4397. compute_norm_area_elem(normal, area_elem);
  4398. S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  4399. S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  4400. return flux;
  4401. };
  4402. Real dphi_dnu = (compute_flux(nu,1e-3)-compute_flux(nu,-1e-3)) / 2e-3;
  4403. std::cout<<"dphi_dnu = "<<dphi_dnu<<'\n';
  4404. Real phi = compute_flux(nu,0);
  4405. std::cout<<"phi = "<<phi<<'\n';
  4406. }
  4407. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  4408. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  4409. auto compute_Av = [&S,&area_elem,&normal,&compute_norm_area_elem,&compute_A,&comm] (const Vector<Real>& v, const Vector<ElemBasis>& nu, Real eps) {
  4410. const Long Nelem = S.GetElemList().NElem();
  4411. const Long Nnodes = ElemBasis::Size();
  4412. Vector<ElemBasis> X_orig(Nelem*COORD_DIM);
  4413. for (Long i = 0; i < Nelem; i++) {
  4414. for (Long j = 0; j < Nnodes; j++) {
  4415. X_orig[i*COORD_DIM+0][j] = S.Elem(i,0)[j];
  4416. X_orig[i*COORD_DIM+1][j] = S.Elem(i,1)[j];
  4417. X_orig[i*COORD_DIM+2][j] = S.Elem(i,2)[j];
  4418. S.Elem(i,0)[j] += eps*nu[i][j] * normal[i*COORD_DIM+0][j];
  4419. S.Elem(i,1)[j] += eps*nu[i][j] * normal[i*COORD_DIM+1][j];
  4420. S.Elem(i,2)[j] += eps*nu[i][j] * normal[i*COORD_DIM+2][j];
  4421. }
  4422. }
  4423. compute_norm_area_elem(normal, area_elem);
  4424. S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  4425. S.quadrature_DxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_DxU , order_singular, order_direct, -1.0, comm);
  4426. S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  4427. S.quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
  4428. Vector<Real> Av = compute_A(v);
  4429. for (Long i = 0; i < Nelem; i++) {
  4430. for (Long j = 0; j < Nnodes; j++) {
  4431. S.Elem(i,0)[j] = X_orig[i*COORD_DIM+0][j];
  4432. S.Elem(i,1)[j] = X_orig[i*COORD_DIM+1][j];
  4433. S.Elem(i,2)[j] = X_orig[i*COORD_DIM+2][j];
  4434. }
  4435. }
  4436. compute_norm_area_elem(normal, area_elem);
  4437. S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  4438. S.quadrature_DxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_DxU , order_singular, order_direct, -1.0, comm);
  4439. S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  4440. S.quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
  4441. return Av;
  4442. };
  4443. auto compute_u_dAdnu_v = [&S,&compute_Av,&compute_inner_prod] (const Vector<Real>& u, const Vector<Real>& v, const Vector<ElemBasis>& nu) {
  4444. const Long Nelem = S.GetElemList().NElem();
  4445. const Long Nnodes = ElemBasis::Size();
  4446. Real eps = 1e-5;
  4447. Vector<Real> Av0 = compute_Av(v,nu,-eps);
  4448. Vector<Real> Av1 = compute_Av(v,nu,eps);
  4449. Vector<Real> dAdnu_v = (Av1-Av0)*(1/(2*eps));
  4450. Real u_dAdnu_v;
  4451. { // set u_dAdnu_v
  4452. Vector<ElemBasis> u_(Nelem), dAdnu_v_(Nelem);
  4453. for (Long i = 0; i < Nelem; i++) {
  4454. for (Long j = 0; j < Nnodes; j++) {
  4455. u_[i][j] = u[i*Nnodes+j];
  4456. dAdnu_v_[i][j] = dAdnu_v[i*Nnodes+j];
  4457. }
  4458. }
  4459. u_dAdnu_v = compute_inner_prod(u_, dAdnu_v_);
  4460. u_dAdnu_v += u[Nelem*Nnodes] * dAdnu_v[Nelem*Nnodes];
  4461. }
  4462. return u_dAdnu_v;
  4463. };
  4464. if (0) { // test dA_dnu
  4465. const Long Nelem = S.GetElemList().NElem();
  4466. const Long Nnodes = ElemBasis::Size();
  4467. Vector<ElemBasis> nu(Nelem);
  4468. Vector<Real> u(Nelem*Nnodes+1), v(Nelem*Nnodes+1);
  4469. for (Long i = 0; i < Nelem; i++) {
  4470. for (Long j = 0; j < Nnodes; j++) {
  4471. v[i*Nnodes+j] = sigma[i][j];
  4472. u[i*Nnodes+j] = sigma[i][j]*area_elem[i][j];
  4473. }
  4474. }
  4475. v[Nelem*Nnodes] = 0; //alpha;
  4476. u[Nelem*Nnodes] = 0;
  4477. nu = 1; //area_elem;
  4478. Real u_dAdnu_v = compute_u_dAdnu_v(u, v, nu);
  4479. std::cout<<"u_dAdnu_v = "<<u_dAdnu_v<<'\n';
  4480. }
  4481. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  4482. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  4483. auto compute_dsigma_dnu = [&S,&area_elem,&normal,&compute_norm_area_elem,&compute_invA,&comm] (const Vector<ElemBasis>& nu, Real eps) {
  4484. auto compute_sigma = [&S,&area_elem,&normal,&compute_norm_area_elem,&compute_invA,&comm] (const Vector<ElemBasis>& nu, Real eps) {
  4485. const Long Nelem = S.GetElemList().NElem();
  4486. const Long Nnodes = ElemBasis::Size();
  4487. Vector<ElemBasis> X_orig(Nelem*COORD_DIM);
  4488. for (Long i = 0; i < Nelem; i++) {
  4489. for (Long j = 0; j < Nnodes; j++) {
  4490. X_orig[i*COORD_DIM+0][j] = S.Elem(i,0)[j];
  4491. X_orig[i*COORD_DIM+1][j] = S.Elem(i,1)[j];
  4492. X_orig[i*COORD_DIM+2][j] = S.Elem(i,2)[j];
  4493. S.Elem(i,0)[j] += eps*nu[i][j] * normal[i*COORD_DIM+0][j];
  4494. S.Elem(i,1)[j] += eps*nu[i][j] * normal[i*COORD_DIM+1][j];
  4495. S.Elem(i,2)[j] += eps*nu[i][j] * normal[i*COORD_DIM+2][j];
  4496. }
  4497. }
  4498. compute_norm_area_elem(normal, area_elem);
  4499. S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  4500. S.quadrature_DxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_DxU , order_singular, order_direct, -1.0, comm);
  4501. S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  4502. S.quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
  4503. Real flux = 1.0, alpha;
  4504. Vector<ElemBasis> sigma;
  4505. compute_invA(sigma, alpha, flux);
  4506. Vector<Real> sigma_(Nelem*Nnodes+1);
  4507. for (Long i = 0; i < Nelem; i++) {
  4508. for (Long j = 0; j < Nnodes; j++) {
  4509. sigma_[i*Nnodes+j] = sigma[i][j];
  4510. }
  4511. }
  4512. sigma_[Nelem*Nnodes] = alpha;
  4513. for (Long i = 0; i < Nelem; i++) {
  4514. for (Long j = 0; j < Nnodes; j++) {
  4515. S.Elem(i,0)[j] = X_orig[i*COORD_DIM+0][j];
  4516. S.Elem(i,1)[j] = X_orig[i*COORD_DIM+1][j];
  4517. S.Elem(i,2)[j] = X_orig[i*COORD_DIM+2][j];
  4518. }
  4519. }
  4520. compute_norm_area_elem(normal, area_elem);
  4521. S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  4522. S.quadrature_DxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_DxU , order_singular, order_direct, -1.0, comm);
  4523. S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  4524. S.quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
  4525. return sigma_;
  4526. };
  4527. auto sigma0 = compute_sigma(nu,-eps);
  4528. auto sigma1 = compute_sigma(nu,eps);
  4529. return (sigma1-sigma0) * (1/(2*eps));
  4530. };
  4531. if (0) { // verify dA_dnu sigma + A dsigma_dnu = 0
  4532. const Long Nelem = S.GetElemList().NElem();
  4533. const Long Nnodes = ElemBasis::Size();
  4534. Vector<ElemBasis> nu(Nelem);
  4535. nu = 1; //area_elem;
  4536. Vector<Real> dA_dnu_sigma;
  4537. { // Set dA_dnu_simga
  4538. Vector<Real> sigma_(Nelem*Nnodes+1);
  4539. for (Long i = 0; i < Nelem; i++) {
  4540. for (Long j = 0; j < Nnodes; j++) {
  4541. sigma_[i*Nnodes+j] = sigma[i][j];
  4542. }
  4543. }
  4544. sigma_[Nelem*Nnodes] = alpha;
  4545. Real eps = 1e-3;
  4546. Vector<Real> Asigma0 = compute_Av(sigma_,nu,-eps);
  4547. Vector<Real> Asigma1 = compute_Av(sigma_,nu,eps);
  4548. dA_dnu_sigma = (Asigma1-Asigma0) * (1/(2*eps));
  4549. }
  4550. Vector<Real> A_dsigma_dnu;
  4551. { // Set A_dsigma_dnu
  4552. Vector<Real> dsigma_dnu = compute_dsigma_dnu(nu, 1e-3);
  4553. A_dsigma_dnu = compute_A(dsigma_dnu);
  4554. }
  4555. Vector<ElemBasis> dA_dnu_sigma_(Nelem);
  4556. Vector<ElemBasis> A_dsigma_dnu_(Nelem);
  4557. for (Long i = 0; i < Nelem; i++) {
  4558. for (Long j = 0; j < Nnodes; j++) {
  4559. dA_dnu_sigma_[i][j] = dA_dnu_sigma[i*Nnodes+j];
  4560. A_dsigma_dnu_[i][j] = A_dsigma_dnu[i*Nnodes+j];
  4561. }
  4562. }
  4563. std::cout<<dA_dnu_sigma[Nelem*Nnodes] + A_dsigma_dnu[Nelem*Nnodes]<<'\n';
  4564. { // Write VTU
  4565. VTUData vtu;
  4566. vtu.AddElems(S.GetElemList(), dA_dnu_sigma_ + A_dsigma_dnu_, ORDER);
  4567. vtu.WriteVTK("err", comm);
  4568. }
  4569. }
  4570. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  4571. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  4572. if (1) { // test grad_g
  4573. const Long Nelem = S.GetElemList().NElem();
  4574. const Long Nnodes = ElemBasis::Size();
  4575. Vector<ElemBasis> dg_dnu;
  4576. { // Compute dg_dnu
  4577. dg_dnu = compute_dg_dnu(sigma, alpha, B);
  4578. Vector<Real> dg_dsigma(Nelem*Nnodes+1);
  4579. { // Set dg_dsigma
  4580. Vector<ElemBasis> dg_dsigma_ = compute_dg_dsigma(B);
  4581. for (Long i = 0; i < Nelem; i++) {
  4582. for (Long j = 0; j < Nnodes; j++) {
  4583. dg_dsigma[i*Nnodes+j] = dg_dsigma_[i][j];
  4584. }
  4585. }
  4586. dg_dsigma[Nelem*Nnodes] = compute_dg_dalpha(B);
  4587. }
  4588. Vector<Real> dg_dsigma_invA = compute_invAadj(dg_dsigma);
  4589. { // Set dg_dnu = - dg_dsigma invA dA_dnu sigma
  4590. Vector<Real> sigma_(Nelem*Nnodes+1);
  4591. for (Long i = 0; i < Nelem; i++) {
  4592. for (Long j = 0; j < Nnodes; j++) {
  4593. sigma_[i*Nnodes+j] = sigma[i][j];
  4594. }
  4595. }
  4596. sigma_[Nelem*Nnodes] = alpha;
  4597. auto dg_dnu1 = compute_u_dAdnu_v_00(dg_dsigma_invA, sigma_)*(-1);
  4598. auto dg_dnu2 = compute_u_dAdnu_v_01(dg_dsigma_invA, sigma_)*(-1);
  4599. auto dg_dnu3 = compute_u_dAdnu_v_10(dg_dsigma_invA, sigma_)*(-1);
  4600. auto dg_dnu4 = compute_u_dAdnu_v_11(dg_dsigma_invA, sigma_)*(-1);
  4601. {
  4602. //Vector<ElemBasis> nu(Nelem);
  4603. //nu = area_elem;
  4604. //Real dg_dnu0_ = -compute_inner_prod(nu, dg_dnu);
  4605. //Real dg_dnu1_ = -compute_inner_prod(nu, dg_dnu1);
  4606. //Real dg_dnu2_ = -compute_inner_prod(nu, dg_dnu2);
  4607. //Real dg_dnu3_ = -compute_inner_prod(nu, dg_dnu3);
  4608. //Real dg_dnu4_ = -compute_inner_prod(nu, dg_dnu4);
  4609. //std::cout<<dg_dnu0_<<' '<<dg_dnu1_<<' '<<dg_dnu2_<<' '<<dg_dnu3_<<' '<<dg_dnu4_<<'\n';
  4610. }
  4611. dg_dnu += dg_dnu1;
  4612. dg_dnu += dg_dnu2;
  4613. dg_dnu += dg_dnu3;
  4614. dg_dnu += dg_dnu4;
  4615. }
  4616. if (0) { // Set dg_dnu = - dg_dsigma invA dA_dnu sigma
  4617. Vector<ElemBasis> nu(Nelem);
  4618. nu = dg_dnu; //1; //area_elem;
  4619. Vector<Real> dg_dsigma_invA = compute_invAadj(dg_dsigma);
  4620. Vector<Real> sigma_(Nelem*Nnodes+1);
  4621. for (Long i = 0; i < Nelem; i++) {
  4622. for (Long j = 0; j < Nnodes; j++) {
  4623. sigma_[i*Nnodes+j] = sigma[i][j];
  4624. }
  4625. }
  4626. sigma_[Nelem*Nnodes] = alpha;
  4627. Vector<Real> dg_dsigma_invA_0 = dg_dsigma_invA; dg_dsigma_invA_0[Nelem*Nnodes] = 0;
  4628. Vector<Real> dg_dsigma_invA_1(Nelem*Nnodes+1); dg_dsigma_invA_1 = 0; dg_dsigma_invA_1[Nelem*Nnodes] = dg_dsigma_invA[Nelem*Nnodes];
  4629. Vector<Real> sigma_0 = sigma_; sigma_0[Nelem*Nnodes] = 0;
  4630. Vector<Real> sigma_1(Nelem*Nnodes+1); sigma_1 = 0; sigma_1[Nelem*Nnodes] = sigma_[Nelem*Nnodes];
  4631. Real dg_dnu1 = -compute_u_dAdnu_v(dg_dsigma_invA_0, sigma_0, nu);
  4632. Real dg_dnu2 = -compute_u_dAdnu_v(dg_dsigma_invA_0, sigma_1, nu);
  4633. Real dg_dnu3 = -compute_u_dAdnu_v(dg_dsigma_invA_1, sigma_0, nu);
  4634. Real dg_dnu4 = -compute_u_dAdnu_v(dg_dsigma_invA_1, sigma_1, nu);
  4635. std::cout<<dg_dnu1<<' '<<dg_dnu2<<' '<<dg_dnu3<<' '<<dg_dnu4<<'\n';
  4636. }
  4637. if (0) { // Set dg_dnu = dg_dsigma dsigma_dnu
  4638. Vector<ElemBasis> nu(Nelem);
  4639. nu = dg_dnu; //1; //area_elem;
  4640. Vector<Real> dsigma_dnu = compute_dsigma_dnu(nu, 1e-3);
  4641. Vector<ElemBasis> dg_dsigma_(Nelem), dsigma_dnu_(Nelem);
  4642. for (Long i = 0; i < Nelem; i++) {
  4643. for (Long j = 0; j < Nnodes; j++) {
  4644. dg_dsigma_[i][j] = dg_dsigma[i*Nnodes+j];
  4645. dsigma_dnu_[i][j] = dsigma_dnu[i*Nnodes+j];
  4646. }
  4647. }
  4648. Real dg_dnu = compute_inner_prod(dg_dsigma_, dsigma_dnu_);
  4649. dg_dnu += dg_dsigma[Nelem*Nnodes] * dsigma_dnu[Nelem*Nnodes];
  4650. std::cout<<dg_dnu<<'\n';
  4651. }
  4652. }
  4653. { // Write VTU
  4654. VTUData vtu;
  4655. vtu.AddElems(S.GetElemList(), dg_dnu, ORDER);
  4656. vtu.WriteVTK("dg_dnu", comm);
  4657. }
  4658. { // filter dg_dnu and write VTU
  4659. const Long Nelem = S.GetElemList().NElem();
  4660. const Long Nnodes = ElemBasis::Size();
  4661. const Integer INTERP_ORDER = 12;
  4662. Long Nt = S.NtNp_[0]*ORDER/3, Np = S.NtNp_[1]*ORDER/3;
  4663. Matrix<Real> M(Nt, Np); M = 0;
  4664. const auto& quad_wts = ElemBasis::QuadWts();
  4665. const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
  4666. for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
  4667. for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
  4668. for (Long t = 0; t < ORDER; t++) {
  4669. for (Long p = 0; p < ORDER; p++) {
  4670. Real theta = (tt + Mnodes[0][t]) / S.NtNp_[0];
  4671. Real phi = (pp + Mnodes[0][p]) / S.NtNp_[1];
  4672. Long i = (Long)(theta * Nt);
  4673. Long j = (Long)(phi * Np);
  4674. Real x = theta * Nt - i;
  4675. Real y = phi * Np - j;
  4676. Long elem_idx = tt * S.NtNp_[1] + pp;
  4677. Long node_idx = p * ORDER + t;
  4678. Vector<Real> Interp0(INTERP_ORDER);
  4679. Vector<Real> Interp1(INTERP_ORDER);
  4680. { // Set Interp0, Interp1
  4681. auto node = [] (Long i) {
  4682. return (Real)i - (INTERP_ORDER-1)/2;
  4683. };
  4684. for (Long i = 0; i < INTERP_ORDER; i++) {
  4685. Real wt_x = 1, wt_y = 1;
  4686. for (Long j = 0; j < INTERP_ORDER; j++) {
  4687. if (j != i) {
  4688. wt_x *= (x - node(j)) / (node(i) - node(j));
  4689. wt_y *= (y - node(j)) / (node(i) - node(j));
  4690. }
  4691. Interp0[i] = wt_x;
  4692. Interp1[i] = wt_y;
  4693. }
  4694. }
  4695. }
  4696. for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  4697. for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  4698. Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  4699. Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  4700. M[idx_i][idx_j] += dg_dnu[elem_idx][node_idx] * quad_wts[node_idx] * Interp0[ii] * Interp1[jj] / (S.NtNp_[0] * S.NtNp_[1]) * (Nt * Np);
  4701. }
  4702. }
  4703. }
  4704. }
  4705. }
  4706. }
  4707. Vector<ElemBasis> f(Nelem);
  4708. for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
  4709. for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
  4710. for (Long t = 0; t < ORDER; t++) {
  4711. for (Long p = 0; p < ORDER; p++) {
  4712. Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
  4713. Real theta = (tt + Mnodes[0][t]) / S.NtNp_[0];
  4714. Real phi = (pp + Mnodes[0][p]) / S.NtNp_[1];
  4715. Long i = (Long)(theta * Nt);
  4716. Long j = (Long)(phi * Np);
  4717. Real x = theta * Nt - i;
  4718. Real y = phi * Np - j;
  4719. Vector<Real> Interp0(INTERP_ORDER);
  4720. Vector<Real> Interp1(INTERP_ORDER);
  4721. { // Set Interp0, Interp1
  4722. auto node = [] (Long i) {
  4723. return (Real)i - (INTERP_ORDER-1)/2;
  4724. };
  4725. for (Long i = 0; i < INTERP_ORDER; i++) {
  4726. Real wt_x = 1, wt_y = 1;
  4727. for (Long j = 0; j < INTERP_ORDER; j++) {
  4728. if (j != i) {
  4729. wt_x *= (x - node(j)) / (node(i) - node(j));
  4730. wt_y *= (y - node(j)) / (node(i) - node(j));
  4731. }
  4732. Interp0[i] = wt_x;
  4733. Interp1[i] = wt_y;
  4734. }
  4735. }
  4736. }
  4737. Real f0 = 0;
  4738. for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  4739. for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  4740. Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  4741. Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  4742. f0 += Interp0[ii] * Interp1[jj] * M[idx_i][idx_j];
  4743. }
  4744. }
  4745. Long elem_idx = tt * S.NtNp_[1] + pp;
  4746. Long node_idx = p * ORDER + t;
  4747. f[elem_idx][node_idx] = f0;
  4748. }
  4749. }
  4750. }
  4751. }
  4752. { // Write VTU
  4753. VTUData vtu;
  4754. vtu.AddElems(S.GetElemList(), f, ORDER);
  4755. vtu.WriteVTK("dg_dnu_filtered", comm);
  4756. }
  4757. }
  4758. auto compute_g = [&sigma,&alpha,&S,&area_elem,&normal,&compute_norm_area_elem,&compute_invA,&compute_half_n_plus_dG,&compute_B0,&compute_inner_prod,&comm] (const Vector<ElemBasis>& nu, Real eps) {
  4759. const Long Nelem = S.GetElemList().NElem();
  4760. const Long Nnodes = ElemBasis::Size();
  4761. Vector<ElemBasis> X_orig(Nelem*COORD_DIM);
  4762. for (Long i = 0; i < Nelem; i++) {
  4763. for (Long j = 0; j < Nnodes; j++) {
  4764. X_orig[i*COORD_DIM+0][j] = S.Elem(i,0)[j];
  4765. X_orig[i*COORD_DIM+1][j] = S.Elem(i,1)[j];
  4766. X_orig[i*COORD_DIM+2][j] = S.Elem(i,2)[j];
  4767. S.Elem(i,0)[j] += eps*nu[i][j] * normal[i*COORD_DIM+0][j];
  4768. S.Elem(i,1)[j] += eps*nu[i][j] * normal[i*COORD_DIM+1][j];
  4769. S.Elem(i,2)[j] += eps*nu[i][j] * normal[i*COORD_DIM+2][j];
  4770. }
  4771. }
  4772. compute_norm_area_elem(normal, area_elem);
  4773. S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  4774. S.quadrature_DxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_DxU , order_singular, order_direct, -1.0, comm);
  4775. S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  4776. S.quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
  4777. Real flux = 1.0, alpha;
  4778. Vector<ElemBasis> sigma;
  4779. compute_invA(sigma, alpha, flux);
  4780. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma) + compute_B0(alpha);
  4781. Real g = compute_inner_prod(B, B);
  4782. for (Long i = 0; i < Nelem; i++) {
  4783. for (Long j = 0; j < Nnodes; j++) {
  4784. S.Elem(i,0)[j] = X_orig[i*COORD_DIM+0][j];
  4785. S.Elem(i,1)[j] = X_orig[i*COORD_DIM+1][j];
  4786. S.Elem(i,2)[j] = X_orig[i*COORD_DIM+2][j];
  4787. }
  4788. }
  4789. compute_norm_area_elem(normal, area_elem);
  4790. S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  4791. S.quadrature_DxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_DxU , order_singular, order_direct, -1.0, comm);
  4792. S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  4793. S.quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
  4794. return g;
  4795. };
  4796. {
  4797. Vector<ElemBasis> nu(Nelem);
  4798. nu = area_elem;
  4799. Real eps = 1e-4;
  4800. Real g0 = compute_g(nu,-eps);
  4801. Real g1 = compute_g(nu,eps);
  4802. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  4803. std::cout<<"dg_dnu = "<<compute_inner_prod(nu, dg_dnu)<<'\n';
  4804. }
  4805. {
  4806. Vector<ElemBasis> nu(Nelem);
  4807. nu = 1;
  4808. Real eps = 1e-4;
  4809. Real g0 = compute_g(nu,-eps);
  4810. Real g1 = compute_g(nu,eps);
  4811. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  4812. std::cout<<"dg_dnu = "<<compute_inner_prod(nu, dg_dnu)<<'\n';
  4813. }
  4814. {
  4815. Vector<ElemBasis> nu(Nelem);
  4816. nu = dg_dnu;
  4817. Real eps = 1e-4;
  4818. Real g0 = compute_g(nu,-eps);
  4819. Real g1 = compute_g(nu,eps);
  4820. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  4821. std::cout<<"dg_dnu = "<<compute_inner_prod(nu, dg_dnu)<<'\n';
  4822. }
  4823. }
  4824. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  4825. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  4826. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  4827. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  4828. // dg_dnu
  4829. // dA_dnu_sigma
  4830. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  4831. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  4832. //Profile::print(&comm);
  4833. }
  4834. private:
  4835. void InitSurf(Long l) {
  4836. const auto& nodes = ElemBasis::Nodes();
  4837. const Long Nt = NtNp_[l*2+0];
  4838. const Long Np = NtNp_[l*2+1];
  4839. for (Long i = 0; i < Nt; i++) {
  4840. for (Long j = 0; j < Np; j++) {
  4841. for (Long k = 0; k < ElemBasis::Size(); k++) {
  4842. Real theta = (i + nodes[0][k]) * 2*const_pi<Real>()/Nt;
  4843. Real phi = (j + nodes[1][k]) * 2*const_pi<Real>()/Np;
  4844. Real X,Y,Z;
  4845. SurfGeom(X,Y,Z,theta,phi);
  4846. Elem(ElemIdx(l,i,j),0)[k] = X;
  4847. Elem(ElemIdx(l,i,j),1)[k] = Y;
  4848. Elem(ElemIdx(l,i,j),2)[k] = Z;
  4849. }
  4850. }
  4851. }
  4852. }
  4853. static void SurfGeom(Real& X, Real& Y, Real& Z, Real theta, Real phi) {
  4854. sctl::Integer Nperiod = 5;
  4855. #if 0
  4856. Real Aspect_ratio = 10.27932548522949;
  4857. Real coeffmat[21][21] = { 0.00000478813217, 0.00000000000000, 0.00000351611652, 0.00000135354389, 0.00000061357832, 0.00000220091101, 0.00000423862912, -0.00003000058678, 0.00000064187111, -0.00024228452821, 0.00003116775770, 0.00000176210710, 0.00000289141326, -0.00000150300525, 0.00000772853855, 0.00000098855242, 0.00000316606793, 0.00000002168364, 0.00000212047939, 0.00000299016097, 0.00000443224508,
  4858. 0.00000028202930, 0.00000000000000, -0.00000249222421, -0.00000203136278, 0.00000131104809, 0.00000011987446, -0.00000370760154, 0.00004553918916, -0.00007711342914, -0.00004685295062, 0.00011049838213, -0.00000197486270, 0.00000395827146, 0.00000615046474, 0.00000755337123, 0.00000700606006, 0.00000922725030, -0.00000043310337, 0.00000107416383, 0.00000449787694, 0.00000305137178,
  4859. 0.00001226376662, 0.00000000000000, 0.00000270820692, 0.00000208059305, 0.00000521478523, 0.00001779037302, 0.00000846544117, 0.00001120913385, -0.00065816845745, -0.00085107452469, -0.00013171190221, -0.00005540943675, -0.00001835885450, 0.00000101879823, 0.00000209222071, 0.00000091532502, -0.00000521515358, -0.00000209227142, -0.00000678545939, -0.00000034963549, -0.00000015111488,
  4860. 0.00001560274177, 0.00000000000000, 0.00000350691471, -0.00001160475040, -0.00001763036562, 0.00003487367940, -0.00002787247831, -0.00000910982726, 0.00008818832430, -0.00524408789352, 0.00009378376126, 0.00004184526188, 0.00002849263365, -0.00002757280527, 0.00003388467667, 0.00000706207265, 0.00000625263419, -0.00003315929280, -0.00001181772132, 0.00000311426015, 0.00001875682574,
  4861. -0.00000398287420, 0.00000000000000, -0.00001524541040, 0.00001724056165, 0.00002245173346, 0.00002806861812, -0.00000388776925, 0.00008143573359, -0.00005900909309, 0.00110496615525, 0.00134626252111, 0.00005128383054, -0.00001372421866, 0.00003612563887, 0.00002236580076, -0.00002728391883, 0.00001981237256, 0.00000655450458, 0.00000985319002, 0.00001347597299, 0.00000645987802,
  4862. 0.00003304968050, 0.00000000000000, -0.00000530822217, 0.00001324870937, -0.00003610889689, -0.00005478735329, -0.00005818806312, -0.00037112057908, -0.00017812002625, -0.00093204283621, 0.00115969858598, -0.00033559172880, -0.00010441876657, -0.00001617923044, -0.00000555065844, 0.00007343527250, -0.00004408047607, 0.00000403802142, 0.00001843931204, 0.00001694047933, 0.00001213414362,
  4863. -0.00000751115658, 0.00000000000000, 0.00005457974839, -0.00000334614515, 0.00005845565465, 0.00015000770509, 0.00021849104087, 0.00002724147635, 0.00167233624961, 0.00011666602222, 0.00276563479565, -0.00085952825611, -0.00030217235326, -0.00008841593808, 0.00000997664119, -0.00015285826521, 0.00002517224675, 0.00003009161810, 0.00001883217556, 0.00002146127554, 0.00001822445302,
  4864. -0.00004128706860, 0.00000000000000, -0.00003496417776, 0.00001088761655, -0.00000298955979, -0.00005359326315, -0.00019021633489, -0.00017992728681, -0.00347794801928, 0.00064632791327, 0.00449698418379, -0.00017710507382, 0.00006126180233, 0.00018059254216, 0.00002354096432, 0.00008189838991, -0.00010060678323, -0.00017183290038, 0.00019413756672, 0.00021334811754, 0.00011263617489,
  4865. 0.00000853522670, -0.00000000000000, -0.00006544789358, 0.00005424076880, -0.00000679056529, -0.00001249735487, -0.00053082982777, 0.00035396864405, -0.00115020677913, 0.05894451215863, 0.06573092192411, 0.01498018857092, 0.00278125284240, 0.00145188067108, 0.00033717858605, 0.00000800427370, -0.00009335305367, 0.00024286781263, -0.00023916347709, 0.00031213948387, 0.00018134393031,
  4866. -0.00002521496390, -0.00000000000000, -0.00054337945767, 0.00012690725271, 0.00053313979879, 0.00064233405283, -0.00047686311882, 0.00176536326762, 0.00074157933705, -0.02684566564858, 1.00000000000000, 0.07176169008017, 0.00837037432939, -0.00000381640211, 0.00088998704450, -0.00049218931235, -0.00024546548957, -0.00036608282244, 0.00049480766756, 0.00031158892671, 0.00006898906577,
  4867. 0.00021280418150, 0.00028127161204, -0.00070030166535, 0.00022237010126, -0.00028713891516, -0.00013800295710, 0.00005912094275, 0.00172126013786, -0.00618684850633, 0.03608432412148, Aspect_ratio , 0.49896776676178, 0.00091372377938, -0.00085712829605, -0.00124801427592, -0.00007427225501, -0.00005245858847, 0.00002841771493, 0.00020249813679, -0.00014303345233, 0.00001406490901,
  4868. 0.00023699452868, 0.00008661757602, 0.00025744654704, -0.00022715188970, -0.00076146807987, 0.00055185536621, -0.00012325309217, -0.00072356045712, -0.00160693109501, 0.00246682553552, -0.14175094664097, -0.36207047104836, -0.04089594259858, 0.00060774467420, 0.00088646943914, 0.00004865296432, -0.00041878610500, -0.00023025234987, -0.00009676301852, -0.00000000000000, 0.00008409228758,
  4869. 0.00011432896281, -0.00000707848403, 0.00004698805787, -0.00043642931269, 0.00081384339137, -0.00065635429928, -0.00011831733718, 0.00017413357273, 0.00224463525228, 0.00478497287259, 0.03294761106372, 0.01078986655921, 0.10731782764196, 0.00075034319889, -0.00009241879889, 0.00055023463210, 0.00006596000458, 0.00005045382932, 0.00014874986664, 0.00000000000000, -0.00015369028552,
  4870. 0.00001037383754, 0.00009250180301, 0.00026204055757, 0.00007424291834, -0.00047751804232, 0.00029184055165, 0.00050921301590, -0.00004825839278, -0.00029933769838, 0.00279659987427, 0.00210463814437, -0.00618590926751, -0.02400829829276, -0.02316811867058, -0.00086368201301, -0.00032258985448, -0.00018304496189, 0.00008438774967, -0.00008305341908, 0.00000000000000, 0.00013047417451,
  4871. -0.00001376930322, -0.00001723831701, -0.00011543079017, -0.00022646733851, 0.00013467084500, -0.00004661652201, -0.00008419520600, 0.00035772417323, -0.00011815709877, 0.00028718306567, 0.00092207465786, -0.00317224999890, 0.00061770365573, 0.01017294172198, 0.00294739892706, 0.00014669894881, 0.00015702951350, 0.00003432080121, -0.00008555022214, -0.00000000000000, 0.00000454909878,
  4872. -0.00000196001542, -0.00003198397462, -0.00004425687075, -0.00004129848094, -0.00003789070615, -0.00027583551127, 0.00025874207495, -0.00002334945384, -0.00007259396807, -0.00008295358566, 0.00011360697681, -0.00101968157105, 0.00046784928418, -0.00208410434425, -0.00313158822246, -0.00046005158219, -0.00010552268213, -0.00005850767775, 0.00003971093611, 0.00000000000000, -0.00005275657168,
  4873. -0.00001065901233, -0.00001934838656, -0.00001220186732, -0.00002060524639, -0.00000225423423, -0.00001894621164, -0.00001533334580, -0.00001791087379, 0.00008156246622, -0.00008441298269, 0.00021060956351, -0.00030303673702, 0.00075949780876, -0.00010539998038, 0.00109045265708, 0.00068949378328, 0.00009268362192, 0.00003471063246, 0.00001204656473, -0.00000000000000, 0.00001500743110,
  4874. 0.00000105878155, -0.00000910870767, -0.00000172467264, -0.00000722095228, 0.00000699280463, -0.00002061720625, -0.00000889817693, -0.00001993474507, 0.00000370749740, -0.00000090311920, 0.00002677819793, 0.00043428712524, 0.00210293265991, 0.00018200518389, -0.00009621794743, -0.00035250501242, -0.00012996385340, -0.00002185157609, -0.00001116586463, -0.00000000000000, -0.00000451994811,
  4875. 0.00000424055270, -0.00000463139304, 0.00000301006116, -0.00000123974939, 0.00000632465435, -0.00002090823000, 0.00001773388794, 0.00000121050368, 0.00001886057362, -0.00001043497195, -0.00002269273500, -0.00021979617304, -0.00001043962493, -0.00116343051195, -0.00004193381756, 0.00007944958634, 0.00007301353617, 0.00002082651736, -0.00000119863023, -0.00000000000000, -0.00001440504820,
  4876. -0.00000391270805, -0.00000490489265, -0.00000504441778, -0.00000904507579, -0.00000111389932, 0.00000597532107, 0.00000047090245, -0.00001553130096, -0.00001524566323, -0.00000522222899, -0.00007707672921, -0.00004165665086, 0.00015764687851, 0.00035649110214, 0.00038701237645, 0.00002386798405, -0.00001946414341, -0.00000913835174, -0.00000489907188, 0.00000000000000, 0.00000172327657,
  4877. -0.00000015388650, -0.00000603232729, -0.00000397650865, 0.00000280493782, 0.00000463132073, -0.00000788678426, -0.00000471605335, -0.00000283715985, -0.00000422824724, 0.00000366817630, -0.00001159603562, -0.00001625759251, 0.00049116823357, 0.00005048640014, -0.00020234247495, -0.00006341376866, -0.00000807822744, 0.00000070463199, 0.00000014041755, 0.00000000000000, -0.00000718306910};
  4878. #else
  4879. Real Aspect_ratio = 5;
  4880. Real coeffmat[21][21] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4881. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4882. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4883. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4884. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4885. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4886. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4887. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4888. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4889. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4890. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Aspect_ratio, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4891. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4892. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4893. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4894. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4895. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4896. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4897. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4898. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4899. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4900. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0};
  4901. #endif
  4902. Z = 0;
  4903. Real R = 0;
  4904. for (long i = -10; i <= 10; i++) {
  4905. for (long j = -10; j <= 10; j++) {
  4906. R += coeffmat[i+10][j+10] * sctl::cos(-i*phi + Nperiod*j*theta);
  4907. Z += coeffmat[i+10][j+10] * sctl::sin(-i*phi + Nperiod*j*theta);
  4908. }
  4909. }
  4910. X = R * sctl::cos(theta);
  4911. Y = R * sctl::sin(theta);
  4912. }
  4913. GenericKernel<BiotSavart3D > BiotSavart ;
  4914. GenericKernel<Laplace3D_FxU > Laplace_FxU ;
  4915. GenericKernel<Laplace3D_DxU > Laplace_DxU ;
  4916. GenericKernel<Laplace3D_FxdU> Laplace_FxdU;
  4917. GenericKernel<Laplace3D_dUxF> Laplace_dUxF;
  4918. GenericKernel<Laplace3D_Fxd2U> Laplace_Fxd2U;
  4919. GenericKernel<Laplace3D_dUxD> Laplace_dUxD;
  4920. GenericKernel<Laplace3D_DxdU> Laplace_DxdU;
  4921. Quadrature<Real> quadrature_FxU ;
  4922. Quadrature<Real> quadrature_DxU ;
  4923. Quadrature<Real> quadrature_FxdU;
  4924. Quadrature<Real> quadrature_dUxF;
  4925. Quadrature<Real> quadrature_Fxd2U;
  4926. Quadrature<Real> quadrature_dUxD;
  4927. ElemLst elements;
  4928. Vector<Long> NtNp_;
  4929. Vector<Long> elem_dsp;
  4930. };
  4931. template <class Real, Integer ORDER=5> class Spheres {
  4932. static constexpr Integer COORD_DIM = 3;
  4933. static constexpr Integer ELEM_DIM = COORD_DIM-1;
  4934. using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
  4935. using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
  4936. using CoordBasis = Basis<Real, ELEM_DIM, ORDER>;
  4937. using ElemLst = ElemList<COORD_DIM, CoordBasis>;
  4938. public:
  4939. Spheres(Long N = 0) {
  4940. Vector<Real> X(N*COORD_DIM);
  4941. Vector<Real> R(N);
  4942. X=0;
  4943. R=1;
  4944. for (Long i = 0; i < N; i++) X[i*COORD_DIM] = (i==0?-1.015:1.015); ///////////
  4945. InitSpheres(X,R);
  4946. }
  4947. const ElemLst& GetElem() const {
  4948. return elements;
  4949. }
  4950. static void test() {
  4951. constexpr Integer order_singular = 35;
  4952. constexpr Integer order_direct = 35;
  4953. Comm comm = Comm::World();
  4954. Profile::Enable(true);
  4955. Long Ns = 2;
  4956. Spheres S(Ns);
  4957. S.quadrature_FxT.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_FxT, order_singular, order_direct, -1.0, comm);
  4958. S.quadrature_FxU.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_FxU, order_singular, order_direct, -1.0, comm);
  4959. S.quadrature_DxU.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_DxU, order_singular, order_direct, -1.0, comm);
  4960. const auto SetMotion = [&S](Vector<DensityBasis>& density, const Vector<Real>& force_avg, const Vector<Real>& torque_avg) {
  4961. Long Nelem = S.GetElem().NElem();
  4962. Long Nsurf = S.elem_cnt.Dim();
  4963. const auto& X = S.GetElem().ElemVector();
  4964. Vector<Real> area, Xc;
  4965. Vector<DensityBasis> one(Nelem);
  4966. for (Long i = 0; i < Nelem; i++) {
  4967. for (Long j = 0; j < DensityBasis::Size(); j++) {
  4968. one[i][j] = 1;
  4969. }
  4970. }
  4971. S.SurfInteg(area, one);
  4972. S.SurfInteg(Xc, S.GetElem().ElemVector());
  4973. for (Long i = 0; i < Nsurf; i++) {
  4974. for (Long k = 0; k < COORD_DIM; k++) {
  4975. Xc[i*COORD_DIM+k] /= area[i];
  4976. }
  4977. }
  4978. if (density.Dim() != Nelem*COORD_DIM) density.ReInit(Nelem*COORD_DIM);
  4979. Long elem_itr = 0;
  4980. for (Long i = 0; i < Nsurf; i++) {
  4981. for (Long j = 0; j < S.elem_cnt[i]; j++) {
  4982. for (Long k = 0; k < DensityBasis::Size(); k++) {
  4983. StaticArray<Real,COORD_DIM> dX;
  4984. dX[0] = (X[elem_itr*COORD_DIM+0][k] - Xc[i*COORD_DIM+0]);
  4985. dX[1] = (X[elem_itr*COORD_DIM+1][k] - Xc[i*COORD_DIM+1]);
  4986. dX[2] = (X[elem_itr*COORD_DIM+2][k] - Xc[i*COORD_DIM+2]);
  4987. density[elem_itr*COORD_DIM+0][k] = force_avg[i*COORD_DIM+0]*(1/area[i]) + (torque_avg[i*COORD_DIM+1] * dX[2] - torque_avg[i*COORD_DIM+2] * dX[1]) / (2*area[i]/3);
  4988. density[elem_itr*COORD_DIM+1][k] = force_avg[i*COORD_DIM+1]*(1/area[i]) + (torque_avg[i*COORD_DIM+2] * dX[0] - torque_avg[i*COORD_DIM+0] * dX[2]) / (2*area[i]/3);
  4989. density[elem_itr*COORD_DIM+2][k] = force_avg[i*COORD_DIM+2]*(1/area[i]) + (torque_avg[i*COORD_DIM+0] * dX[1] - torque_avg[i*COORD_DIM+1] * dX[0]) / (2*area[i]/3);
  4990. }
  4991. elem_itr++;
  4992. }
  4993. }
  4994. };
  4995. const auto GetMotion = [&S](Vector<Real>& force_avg, Vector<Real>& torque_avg, const Vector<DensityBasis>& density) {
  4996. Long Nelem = S.GetElem().NElem();
  4997. Long Nsurf = S.elem_cnt.Dim();
  4998. const auto& X = S.GetElem().ElemVector();
  4999. S.SurfInteg(force_avg, density);
  5000. Vector<Real> area, Xc;
  5001. Vector<DensityBasis> one(Nelem);
  5002. for (Long i = 0; i < Nelem; i++) {
  5003. for (Long j = 0; j < DensityBasis::Size(); j++) {
  5004. one[i][j] = 1;
  5005. }
  5006. }
  5007. S.SurfInteg(area, one);
  5008. S.SurfInteg(Xc, S.GetElem().ElemVector());
  5009. for (Long i = 0; i < Nsurf; i++) {
  5010. for (Long k = 0; k < COORD_DIM; k++) {
  5011. Xc[i*COORD_DIM+k] /= area[i];
  5012. }
  5013. }
  5014. { // Set torque_avg
  5015. Long elem_itr = 0;
  5016. Vector<DensityBasis> torque(Nelem*COORD_DIM);
  5017. for (Long i = 0; i < Nsurf; i++) {
  5018. for (Long j = 0; j < S.elem_cnt[i]; j++) {
  5019. for (Long k = 0; k < DensityBasis::Size(); k++) {
  5020. StaticArray<Real,COORD_DIM> dX;
  5021. dX[0] = (X[elem_itr*COORD_DIM+0][k] - Xc[i*COORD_DIM+0]);
  5022. dX[1] = (X[elem_itr*COORD_DIM+1][k] - Xc[i*COORD_DIM+1]);
  5023. dX[2] = (X[elem_itr*COORD_DIM+2][k] - Xc[i*COORD_DIM+2]);
  5024. torque[elem_itr*COORD_DIM+0][k] = dX[1] * density[elem_itr*COORD_DIM+2][k] - dX[2] * density[elem_itr*COORD_DIM+1][k];
  5025. torque[elem_itr*COORD_DIM+1][k] = dX[2] * density[elem_itr*COORD_DIM+0][k] - dX[0] * density[elem_itr*COORD_DIM+2][k];
  5026. torque[elem_itr*COORD_DIM+2][k] = dX[0] * density[elem_itr*COORD_DIM+1][k] - dX[1] * density[elem_itr*COORD_DIM+0][k];
  5027. }
  5028. elem_itr++;
  5029. }
  5030. }
  5031. S.SurfInteg(torque_avg, torque);
  5032. }
  5033. };
  5034. const auto BIOpL = [&GetMotion,&SetMotion](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  5035. Vector<Real> force_avg, torque_avg;
  5036. GetMotion(force_avg, torque_avg, density);
  5037. SetMotion(potential, force_avg, torque_avg);
  5038. };
  5039. const auto BIOpK = [&S](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  5040. Vector<DensityBasis> traction;
  5041. S.quadrature_FxT.Eval(traction, S.GetElem(), density, S.Stokes_FxT);
  5042. Vector<CoordBasis> dX;
  5043. const auto X = S.GetElem().ElemVector();
  5044. CoordBasis::Grad(dX, X);
  5045. Long Nelem = S.GetElem().NElem();
  5046. Long Nnodes = CoordBasis::Size();
  5047. potential.ReInit(Nelem * COORD_DIM);
  5048. for (Long i = 0; i < Nelem; i++) {
  5049. for (Long j = 0; j < Nnodes; j++) {
  5050. StaticArray<Real,COORD_DIM> Xn;
  5051. Xn[0] = dX[i*COORD_DIM*2+2][j]*dX[i*COORD_DIM*2+5][j] - dX[i*COORD_DIM*2+4][j]*dX[i*COORD_DIM*2+3][j];
  5052. Xn[1] = dX[i*COORD_DIM*2+4][j]*dX[i*COORD_DIM*2+1][j] - dX[i*COORD_DIM*2+0][j]*dX[i*COORD_DIM*2+5][j];
  5053. Xn[2] = dX[i*COORD_DIM*2+0][j]*dX[i*COORD_DIM*2+3][j] - dX[i*COORD_DIM*2+2][j]*dX[i*COORD_DIM*2+1][j];
  5054. Real AreaElem = sqrt<Real>(Xn[0]*Xn[0] + Xn[1]*Xn[1] + Xn[2]*Xn[2]);
  5055. Real OOAreaElem = 1 / AreaElem;
  5056. Xn[0] *= OOAreaElem;
  5057. Xn[1] *= OOAreaElem;
  5058. Xn[2] *= OOAreaElem;
  5059. potential[i*COORD_DIM+0][j] = traction[i*COORD_DIM*COORD_DIM+0][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+1][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+2][j]*Xn[2];
  5060. potential[i*COORD_DIM+1][j] = traction[i*COORD_DIM*COORD_DIM+3][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+4][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+5][j]*Xn[2];
  5061. potential[i*COORD_DIM+2][j] = traction[i*COORD_DIM*COORD_DIM+6][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+7][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+8][j]*Xn[2];
  5062. }
  5063. }
  5064. };
  5065. const auto BIOp_half_K_L = [&S,&BIOpK,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  5066. Vector<DensityBasis> potential_K;
  5067. Vector<DensityBasis> potential_L;
  5068. BIOpK(potential_K, density);
  5069. BIOpL(potential_L, density);
  5070. if (potential.Dim() != potential_K.Dim()) {
  5071. potential.ReInit(potential_K.Dim());
  5072. }
  5073. for (Long i = 0; i < potential_K.Dim(); i++) {
  5074. for (Long k = 0; k < DensityBasis::Size(); k++) {
  5075. potential[i][k] = -0.5*density[i][k] + potential_K[i][k] + potential_L[i][k];
  5076. }
  5077. }
  5078. };
  5079. const auto BIOp_half_K = [&S,&BIOpK,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  5080. Vector<DensityBasis> potential_K;
  5081. BIOpK(potential_K, density);
  5082. if (potential.Dim() != potential_K.Dim()) {
  5083. potential.ReInit(potential_K.Dim());
  5084. }
  5085. for (Long i = 0; i < potential_K.Dim(); i++) {
  5086. for (Long k = 0; k < DensityBasis::Size(); k++) {
  5087. potential[i][k] = -0.5*density[i][k] + potential_K[i][k];
  5088. }
  5089. }
  5090. };
  5091. const auto BIOp_half_S_D = [&S,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  5092. Vector<DensityBasis> U;
  5093. S.quadrature_DxU.Eval(U, S.GetElem(), density, S.Stokes_DxU);
  5094. Vector<PotentialBasis> U1;
  5095. Vector<DensityBasis> sigma1;
  5096. BIOpL(sigma1,density);
  5097. S.quadrature_FxU.Eval(U1, S.GetElem(), sigma1, S.Stokes_FxU);
  5098. Long Nelem = S.GetElem().NElem();
  5099. Long Nnodes = CoordBasis::Size();
  5100. potential.ReInit(Nelem * COORD_DIM);
  5101. for (Long i = 0; i < Nelem; i++) {
  5102. for (Long j = 0; j < Nnodes; j++) {
  5103. potential[i*COORD_DIM+0][j] = 0.5*density[i*COORD_DIM+0][j] + U[i*COORD_DIM+0][j] + U1[i*COORD_DIM+0][j];
  5104. potential[i*COORD_DIM+1][j] = 0.5*density[i*COORD_DIM+1][j] + U[i*COORD_DIM+1][j] + U1[i*COORD_DIM+1][j];
  5105. potential[i*COORD_DIM+2][j] = 0.5*density[i*COORD_DIM+2][j] + U[i*COORD_DIM+2][j] + U1[i*COORD_DIM+2][j];
  5106. }
  5107. }
  5108. };
  5109. Vector<PotentialBasis> U;
  5110. { // Rachh
  5111. Vector<DensityBasis> sigma0;
  5112. { // Set sigma0
  5113. srand48(comm.Rank());
  5114. Vector<Real> force(Ns*COORD_DIM), torque(Ns*COORD_DIM);
  5115. //for (auto& x : force) x = drand48();
  5116. //for (auto& x : torque) x = drand48();
  5117. force = 0;
  5118. torque = 0;
  5119. force[0] = 1;
  5120. //force[4] = 1;
  5121. SetMotion(sigma0, force, torque);
  5122. }
  5123. Vector<DensityBasis> rhs;
  5124. BIOp_half_K(rhs, sigma0);
  5125. Vector<DensityBasis> sigma;
  5126. { // Set sigma
  5127. Long Nnode = DensityBasis::Size();
  5128. Long Nelem = S.GetElem().NElem();
  5129. typename sctl::ParallelSolver<Real>::ParallelOp A = [&S,&BIOp_half_K_L](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  5130. Long Nnode = DensityBasis::Size();
  5131. Long Nelem = S.GetElem().NElem();
  5132. Ax->ReInit(Nelem*COORD_DIM*Nnode);
  5133. Vector<DensityBasis> x_(Nelem*COORD_DIM), Ax_(Nelem*COORD_DIM);
  5134. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set x_
  5135. for (Long k = 0; k < Nnode; k++) {
  5136. x_[i][k] = x[i*Nnode+k];
  5137. }
  5138. }
  5139. BIOp_half_K_L(Ax_, x_);
  5140. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set Ax
  5141. for (Long k = 0; k < Nnode; k++) {
  5142. (*Ax)[i*Nnode+k] = Ax_[i][k];
  5143. }
  5144. }
  5145. };
  5146. Vector<Real> sigma_(Nelem*COORD_DIM*Nnode), rhs_(Nelem*COORD_DIM*Nnode);
  5147. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set rhs_
  5148. for (Long k = 0; k < Nnode; k++) {
  5149. rhs_[i*Nnode+k] = rhs[i][k];
  5150. }
  5151. }
  5152. sigma_ = 0;
  5153. ParallelSolver<Real> linear_solver(comm, true);
  5154. linear_solver(&sigma_, A, rhs_, 1e-6, 50);
  5155. sigma.ReInit(Nelem * COORD_DIM);
  5156. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set sigma
  5157. for (Long k = 0; k < Nnode; k++) {
  5158. sigma[i][k] = sigma_[i*Nnode+k] - sigma0[i][k];
  5159. }
  5160. }
  5161. }
  5162. S.quadrature_FxU.Eval(U, S.GetElem(), sigma, S.Stokes_FxU);
  5163. { // Write VTU
  5164. VTUData vtu_sigma;
  5165. vtu_sigma.AddElems(S.elements, sigma, ORDER);
  5166. vtu_sigma.WriteVTK("sphere-sigma0", comm);
  5167. VTUData vtu_U;
  5168. vtu_U.AddElems(S.elements, U, ORDER);
  5169. vtu_U.WriteVTK("sphere-U0", comm);
  5170. }
  5171. }
  5172. { // Tornberg
  5173. Vector<DensityBasis> rhs;
  5174. BIOpL(rhs, U);
  5175. Vector<DensityBasis> sigma;
  5176. { // Set sigma
  5177. Long Nnode = DensityBasis::Size();
  5178. Long Nelem = S.GetElem().NElem();
  5179. typename sctl::ParallelSolver<Real>::ParallelOp A = [&S,&BIOp_half_S_D](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  5180. Long Nnode = DensityBasis::Size();
  5181. Long Nelem = S.GetElem().NElem();
  5182. Ax->ReInit(Nelem*COORD_DIM*Nnode);
  5183. Vector<DensityBasis> x_(Nelem*COORD_DIM), Ax_(Nelem*COORD_DIM);
  5184. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set x_
  5185. for (Long k = 0; k < Nnode; k++) {
  5186. x_[i][k] = x[i*Nnode+k];
  5187. }
  5188. }
  5189. BIOp_half_S_D(Ax_, x_);
  5190. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set Ax
  5191. for (Long k = 0; k < Nnode; k++) {
  5192. (*Ax)[i*Nnode+k] = Ax_[i][k];
  5193. }
  5194. }
  5195. };
  5196. Vector<Real> sigma_(Nelem*COORD_DIM*Nnode), rhs_(Nelem*COORD_DIM*Nnode);
  5197. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set rhs_
  5198. for (Long k = 0; k < Nnode; k++) {
  5199. rhs_[i*Nnode+k] = rhs[i][k];
  5200. }
  5201. }
  5202. sigma_ = 0;
  5203. ParallelSolver<Real> linear_solver(comm, true);
  5204. linear_solver(&sigma_, A, rhs_, 1e-6, 50);
  5205. sigma.ReInit(Nelem * COORD_DIM);
  5206. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set sigma
  5207. for (Long k = 0; k < Nnode; k++) {
  5208. sigma[i][k] = sigma_[i*Nnode+k];
  5209. }
  5210. }
  5211. }
  5212. Vector<PotentialBasis> U1;
  5213. BIOp_half_S_D(U1, sigma);
  5214. { // Write VTU
  5215. VTUData vtu_sigma;
  5216. vtu_sigma.AddElems(S.elements, sigma, ORDER);
  5217. vtu_sigma.WriteVTK("sphere-sigma1", comm);
  5218. VTUData vtu_U;
  5219. vtu_U.AddElems(S.elements, U1, ORDER);
  5220. vtu_U.WriteVTK("sphere-U1", comm);
  5221. }
  5222. }
  5223. Profile::print(&comm);
  5224. }
  5225. private:
  5226. template <class FnBasis> void SurfInteg(Vector<Real>& I, const Vector<FnBasis>& f) {
  5227. static_assert(std::is_same<FnBasis,CoordBasis>::value, "FnBasis is different from CoordBasis");
  5228. const Long Nelem = elements.NElem();
  5229. const Long dof = f.Dim() / Nelem;
  5230. SCTL_ASSERT(f.Dim() == Nelem * dof);
  5231. auto nodes = FnBasis::Nodes();
  5232. auto quad_wts = FnBasis::QuadWts();
  5233. const Long Nnodes = FnBasis::Size();
  5234. auto EvalOp = CoordBasis::SetupEval(nodes);
  5235. Vector<CoordBasis> dX;
  5236. const auto& X = elements.ElemVector();
  5237. SCTL_ASSERT(X.Dim() == Nelem * COORD_DIM);
  5238. CoordBasis::Grad(dX, X);
  5239. Matrix<Real> I_(Nelem, dof);
  5240. for (Long i = 0; i < Nelem; i++) {
  5241. for (Long k = 0; k < dof; k++) {
  5242. I_[i][k] = 0;
  5243. }
  5244. for (Long j = 0; j < Nnodes; j++) {
  5245. Real dA = 0;
  5246. StaticArray<Real,COORD_DIM> Xn;
  5247. Xn[0] = dX[i*COORD_DIM*2+2][j] * dX[i*COORD_DIM*2+5][j] - dX[i*COORD_DIM*2+3][j] * dX[i*COORD_DIM*2+4][j];
  5248. Xn[1] = dX[i*COORD_DIM*2+4][j] * dX[i*COORD_DIM*2+1][j] - dX[i*COORD_DIM*2+5][j] * dX[i*COORD_DIM*2+0][j];
  5249. Xn[2] = dX[i*COORD_DIM*2+0][j] * dX[i*COORD_DIM*2+3][j] - dX[i*COORD_DIM*2+1][j] * dX[i*COORD_DIM*2+2][j];
  5250. dA += sqrt<Real>(Xn[0]*Xn[0] + Xn[1]*Xn[1] + Xn[2]*Xn[2]) * quad_wts[j];
  5251. for (Long k = 0; k < dof; k++) {
  5252. I_[i][k] += dA * f[i*dof+k][j];
  5253. }
  5254. }
  5255. }
  5256. Long Ns = elem_cnt.Dim();
  5257. if (I.Dim() != Ns * dof) I.ReInit(Ns * dof);
  5258. I = 0;
  5259. Long elem_itr = 0;
  5260. for (Long i = 0; i < Ns; i++) {
  5261. for (Long j = 0; j < elem_cnt[i]; j++) {
  5262. for (Long k = 0; k < dof; k++) {
  5263. I[i*dof+k] += I_[elem_itr][k];
  5264. }
  5265. elem_itr++;
  5266. }
  5267. }
  5268. }
  5269. void InitSpheres(const Vector<Real> X, const Vector<Real>& R){
  5270. SCTL_ASSERT(X.Dim() == R.Dim() * COORD_DIM);
  5271. Long N = R.Dim();
  5272. elements.ReInit(2*COORD_DIM*N);
  5273. auto nodes = ElemLst::CoordBasis::Nodes();
  5274. for (Long l = 0; l < N; l++) {
  5275. for (Integer i = 0; i < COORD_DIM; i++) {
  5276. for (Integer j = 0; j < 2; j++) {
  5277. for (int k = 0; k < ElemLst::CoordBasis::Size(); k++) {
  5278. Real coord[COORD_DIM];
  5279. coord[(i+0)%COORD_DIM] = (j ? -1.0 : 1.0);
  5280. coord[(i+1)%COORD_DIM] = 2.0 * nodes[j?1:0][k] - 1.0;
  5281. coord[(i+2)%COORD_DIM] = 2.0 * nodes[j?0:1][k] - 1.0;
  5282. Real R0 = sqrt<Real>(coord[0]*coord[0] + coord[1]*coord[1] + coord[2]*coord[2]);
  5283. elements((l*COORD_DIM+i)*2+j,0)[k] = X[l*COORD_DIM+0] + R[l] * coord[0] / R0;
  5284. elements((l*COORD_DIM+i)*2+j,1)[k] = X[l*COORD_DIM+1] + R[l] * coord[1] / R0;
  5285. elements((l*COORD_DIM+i)*2+j,2)[k] = X[l*COORD_DIM+2] + R[l] * coord[2] / R0;
  5286. }
  5287. }
  5288. }
  5289. }
  5290. elem_cnt.ReInit(N);
  5291. elem_cnt = 6;
  5292. }
  5293. GenericKernel<Stokes3D_DxU> Stokes_DxU;
  5294. GenericKernel<Stokes3D_FxU> Stokes_FxU;
  5295. GenericKernel<Stokes3D_FxT> Stokes_FxT;
  5296. Quadrature<Real> quadrature_DxU;
  5297. Quadrature<Real> quadrature_FxU;
  5298. Quadrature<Real> quadrature_FxT;
  5299. ElemLst elements;
  5300. Vector<Long> elem_cnt;
  5301. };
  5302. } // end namespace
  5303. #endif //_SCTL_BOUNDARY_QUADRATURE_HPP_