mem_mgr.hpp 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293
  1. /**
  2. * \file mem_mgr.hpp
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 6-30-2014
  5. * \brief This file contains the definition of a simple memory manager which
  6. * uses a pre-allocated buffer of size defined in call to the constructor.
  7. */
  8. #ifndef _PVFMM_MEM_MGR_HPP_
  9. #define _PVFMM_MEM_MGR_HPP_
  10. #include <map>
  11. #include <stack>
  12. #include <vector>
  13. #include <cassert>
  14. #include <iostream>
  15. #include <cmath>
  16. #include <omp.h>
  17. #include <pvfmm_common.hpp>
  18. #include <mem_utils.hpp>
  19. #ifdef __INTEL_OFFLOAD
  20. #pragma offload_attribute(push,target(mic))
  21. #endif
  22. namespace pvfmm{
  23. namespace mem{
  24. class MemoryManager{
  25. public:
  26. MemoryManager(size_t N){
  27. buff_size=N;
  28. buff=(char*)::malloc(buff_size); assert(buff);
  29. n_dummy_indx=new_node();
  30. size_t n_indx=new_node();
  31. node& n_dummy=node_buff[n_dummy_indx-1];
  32. node& n=node_buff[n_indx-1];
  33. n_dummy.size=0;
  34. n_dummy.free=false;
  35. n_dummy.prev=0;
  36. n_dummy.next=n_indx;
  37. n_dummy.mem_ptr=&buff[0];
  38. assert(n_indx);
  39. n.size=N;
  40. n.free=true;
  41. n.prev=n_dummy_indx;
  42. n.next=0;
  43. n.mem_ptr=&buff[0];
  44. n.it=free_map.insert(std::make_pair(N,n_indx));
  45. omp_init_lock(&omp_lock);
  46. }
  47. ~MemoryManager(){
  48. node* n=&node_buff[n_dummy_indx-1];
  49. n=&node_buff[n->next-1];
  50. if(n==NULL || !n->free || n->size!=buff_size ||
  51. node_stack.size()!=node_buff.size()-2){
  52. std::cout<<"\nWarning: memory leak detected.\n";
  53. }
  54. omp_destroy_lock(&omp_lock);
  55. if(buff) ::free(buff);
  56. }
  57. void* malloc(size_t size){
  58. size_t alignment=MEM_ALIGN;
  59. assert(alignment <= 0x8000);
  60. if(!size) return NULL;
  61. size+=sizeof(size_t) + --alignment + 2;
  62. std::multimap<size_t, size_t>::iterator it;
  63. uintptr_t r=0;
  64. omp_set_lock(&omp_lock);
  65. it=free_map.lower_bound(size);
  66. if(it==free_map.end()){ // Use system malloc
  67. r = (uintptr_t)::malloc(size);
  68. }else if(it->first==size){ // Found exact size block
  69. size_t n_indx=it->second;
  70. node& n=node_buff[n_indx-1];
  71. //assert(n.size==it->first);
  72. //assert(n.it==it);
  73. //assert(n.free);
  74. n.free=false;
  75. free_map.erase(it);
  76. ((size_t*)n.mem_ptr)[0]=n_indx;
  77. r = (uintptr_t)&((size_t*)n.mem_ptr)[1];
  78. }else{ // Found larger block.
  79. size_t n_indx=it->second;
  80. size_t n_free_indx=new_node();
  81. node& n_free=node_buff[n_free_indx-1];
  82. node& n =node_buff[n_indx-1];
  83. //assert(n.size==it->first);
  84. //assert(n.it==it);
  85. //assert(n.free);
  86. n_free=n;
  87. n_free.size-=size;
  88. n_free.mem_ptr=(char*)n_free.mem_ptr+size;
  89. n_free.prev=n_indx;
  90. if(n_free.next){
  91. size_t n_next_indx=n_free.next;
  92. node& n_next=node_buff[n_next_indx-1];
  93. n_next.prev=n_free_indx;
  94. }
  95. n.free=false;
  96. n.size=size;
  97. n.next=n_free_indx;
  98. free_map.erase(it);
  99. n_free.it=free_map.insert(std::make_pair(n_free.size,n_free_indx));
  100. ((size_t*)n.mem_ptr)[0]=n_indx;
  101. r = (uintptr_t) &((size_t*)n.mem_ptr)[1];
  102. }
  103. omp_unset_lock(&omp_lock);
  104. uintptr_t o = (uintptr_t)(r + 2 + alignment) & ~(uintptr_t)alignment;
  105. ((uint16_t*)o)[-1] = (uint16_t)(o-r);
  106. return (void*)o;
  107. }
  108. void free(void* p_){
  109. if(!p_) return;
  110. void* p=((void*)((uintptr_t)p_-((uint16_t*)p_)[-1]));
  111. if(p<&buff[0] || p>=&buff[buff_size]) return ::free(p);
  112. size_t n_indx=((size_t*)p)[-1];
  113. assert(n_indx>0 && n_indx<=node_buff.size());
  114. ((size_t*)p)[-1]=0;
  115. omp_set_lock(&omp_lock);
  116. node& n=node_buff[n_indx-1];
  117. assert(!n.free && n.size>0 && n.mem_ptr==&((size_t*)p)[-1]);
  118. n.free=true;
  119. if(n.prev!=0 && node_buff[n.prev-1].free){
  120. size_t n_prev_indx=n.prev;
  121. node& n_prev=node_buff[n_prev_indx-1];
  122. free_map.erase(n_prev.it);
  123. n.size+=n_prev.size;
  124. n.mem_ptr=n_prev.mem_ptr;
  125. n.prev=n_prev.prev;
  126. delete_node(n_prev_indx);
  127. if(n.prev){
  128. size_t n_prev_indx=n.prev;
  129. node& n_prev=node_buff[n_prev_indx-1];
  130. n_prev.next=n_indx;
  131. }
  132. }
  133. if(n.next!=0 && node_buff[n.next-1].free){
  134. size_t n_next_indx=n.next;
  135. node& n_next=node_buff[n_next_indx-1];
  136. free_map.erase(n_next.it);
  137. n.size+=n_next.size;
  138. n.next=n_next.next;
  139. delete_node(n_next_indx);
  140. if(n.next){
  141. size_t n_next_indx=n.next;
  142. node& n_next=node_buff[n_next_indx-1];
  143. n_next.prev=n_indx;
  144. }
  145. }
  146. n.it=free_map.insert(std::make_pair(n.size,n_indx));
  147. omp_unset_lock(&omp_lock);
  148. }
  149. void print(){
  150. if(!buff_size) return;
  151. omp_set_lock(&omp_lock);
  152. size_t size=0;
  153. size_t largest_size=0;
  154. node* n=&node_buff[n_dummy_indx-1];
  155. std::cout<<"\n|";
  156. while(n->next){
  157. n=&node_buff[n->next-1];
  158. if(n->free){
  159. std::cout<<' ';
  160. largest_size=std::max(largest_size,n->size);
  161. }
  162. else{
  163. std::cout<<'#';
  164. size+=n->size;
  165. }
  166. }
  167. std::cout<<"| allocated="<<round(size*1000.0/buff_size)/10<<"%";
  168. std::cout<<" largest_free="<<round(largest_size*1000.0/buff_size)/10<<"%\n";
  169. omp_unset_lock(&omp_lock);
  170. }
  171. static void test(){
  172. size_t M=2000000000;
  173. { // With memory manager
  174. size_t N=M*sizeof(double)*1.1;
  175. double tt;
  176. double* tmp;
  177. std::cout<<"With memory manager: ";
  178. MemoryManager memgr(N);
  179. for(size_t j=0;j<3;j++){
  180. tmp=(double*)memgr.malloc(M*sizeof(double)); assert(tmp);
  181. tt=omp_get_wtime();
  182. #pragma omp parallel for
  183. for(size_t i=0;i<M;i+=64) tmp[i]=i;
  184. tt=omp_get_wtime()-tt;
  185. std::cout<<tt<<' ';
  186. memgr.free(tmp);
  187. }
  188. std::cout<<'\n';
  189. }
  190. { // Without memory manager
  191. double tt;
  192. double* tmp;
  193. //pvfmm::MemoryManager memgr(N);
  194. std::cout<<"Without memory manager: ";
  195. for(size_t j=0;j<3;j++){
  196. tmp=(double*)::malloc(M*sizeof(double)); assert(tmp);
  197. tt=omp_get_wtime();
  198. #pragma omp parallel for
  199. for(size_t i=0;i<M;i+=64) tmp[i]=i;
  200. tt=omp_get_wtime()-tt;
  201. std::cout<<tt<<' ';
  202. ::free(tmp);
  203. }
  204. std::cout<<'\n';
  205. }
  206. }
  207. private:
  208. struct node{
  209. bool free;
  210. size_t size;
  211. void* mem_ptr;
  212. size_t prev, next;
  213. std::multimap<size_t, size_t>::iterator it;
  214. };
  215. MemoryManager();
  216. MemoryManager(const MemoryManager& m);
  217. size_t new_node(){
  218. if(node_stack.empty()){
  219. node_buff.resize(node_buff.size()+1);
  220. node_stack.push(node_buff.size());
  221. }
  222. size_t indx=node_stack.top();
  223. node_stack.pop();
  224. assert(indx);
  225. return indx;
  226. }
  227. void delete_node(size_t indx){
  228. assert(indx);
  229. assert(indx<=node_buff.size());
  230. node& n=node_buff[indx-1];
  231. n.size=0;
  232. n.prev=0;
  233. n.next=0;
  234. n.mem_ptr=NULL;
  235. node_stack.push(indx);
  236. }
  237. char* buff;
  238. size_t buff_size;
  239. std::vector<node> node_buff;
  240. std::stack<size_t> node_stack;
  241. std::multimap<size_t, size_t> free_map;
  242. size_t n_dummy_indx;
  243. omp_lock_t omp_lock;
  244. };
  245. }//end namespace
  246. }//end namespace
  247. #ifdef __INTEL_OFFLOAD
  248. #pragma offload_attribute(pop)
  249. #endif
  250. #endif //_PVFMM_MEM_MGR_HPP_