123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185 |
- /**
- * \file cheb_utils.txx
- * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
- * \date 2-11-2011
- * \brief This file contains chebyshev related functions.
- */
- #include <assert.h>
- #include <algorithm>
- #include <matrix.hpp>
- #include <mem_mgr.hpp>
- #include <legendre_rule.hpp>
- #include <limits>
- namespace pvfmm{
- /**
- * \brief Returns the values of all chebyshev polynomials up to degree d,
- * evaluated at points in the input vector. Output format:
- * { T0[in[0]], ..., T0[in[n-1]], T1[in[0]], ..., T(d-1)[in[n-1]] }
- */
- template <class T>
- inline void cheb_poly(int d, T* in, int n, T* out){
- if(d==0){
- for(int i=0;i<n;i++)
- out[i]=(fabs(in[i])<=1?1.0:0);
- }else if(d==1){
- for(int i=0;i<n;i++){
- out[i]=(fabs(in[i])<=1?1.0:0);
- out[i+n]=(fabs(in[i])<=1?in[i]:0);
- }
- }else{
- for(int j=0;j<n;j++){
- T x=(fabs(in[j])<=1?in[j]:0);
- T y0=(fabs(in[j])<=1?1.0:0);
- out[j]=y0;
- out[j+n]=x;
- T y1=x;
- T* y2=&out[2*n+j];
- for(int i=2;i<=d;i++){
- *y2=2*x*y1-y0;
- y0=y1;
- y1=*y2;
- y2=&y2[n];
- }
- }
- }
- }
- /**
- * \brief Returns the sum of the absolute value of coeffecients of the highest
- * order polynomial as an estimate of error.
- */
- template <class T>
- T cheb_err(T* cheb_coeff, int deg, int dof){
- T err=0;
- int indx=0;
- for(int l=0;l<dof;l++)
- for(int i=0;i<=deg;i++)
- for(int j=0;i+j<=deg;j++)
- for(int k=0;i+j+k<=deg;k++){
- if(i+j+k==deg) err+=fabs(cheb_coeff[indx]);
- indx++;
- }
- return err;
- }
- /**
- * \brief Computes Chebyshev approximation from function values at cheb node points.
- */
- template <class T, class Y>
- T cheb_approx(T* fn_v, int cheb_deg, int dof, T* out){
- //T eps=std::numeric_limits<T>::epsilon()*100;
- int d=cheb_deg+1;
- static std::vector<Matrix<Y> > precomp;
- static std::vector<Matrix<Y> > precomp_;
- Matrix<Y>* Mp ;
- Matrix<Y>* Mp_;
- #pragma omp critical (CHEB_APPROX)
- {
- if(precomp.size()<=(size_t)d){
- precomp .resize(d+1);
- precomp_.resize(d+1);
- }
- if(precomp [d].Dim(0)==0 && precomp [d].Dim(1)==0){
- std::vector<Y> x(d);
- for(int i=0;i<d;i++)
- x[i]=-cos((i+0.5)*M_PI/d);
- std::vector<Y> p(d*d);
- cheb_poly(d-1,&x[0],d,&p[0]);
- for(int i=0;i<d*d;i++)
- p[i]=p[i]*(2.0/d);
- Matrix<Y> Mp1(d,d,&p[0],false);
- Matrix<Y> Mp1_=Mp1.Transpose();
- precomp [d]=Mp1 ;
- precomp_[d]=Mp1_;
- }
- Mp =&precomp [d];
- Mp_=&precomp_[d];
- }
- std::vector<Y> fn_v0(d*d*d*dof);
- std::vector<Y> fn_v1(d*d*d);
- std::vector<Y> fn_v2(d*d*d);
- std::vector<Y> fn_v3(d*d*d);
- for(size_t i=0;i<(size_t)(d*d*d*dof);i++)
- fn_v0[i]=fn_v[i];
- int indx=0;
- for(int l=0;l<dof;l++){
- {
- Matrix<Y> M0(d*d,d,&fn_v0[d*d*d*l],false);
- Matrix<Y> M1(d*d,d,&fn_v1[0],false);
- M1=M0*(*Mp_);
- }
- {
- Matrix<Y> M0(d,d*d,&fn_v1[0],false);
- Matrix<Y> M1(d,d*d,&fn_v2[0],false);
- M1=(*Mp)*M0;
- }
- for(int i=0;i<d;i++){
- Matrix<Y> M0(d,d,&fn_v2[d*d*i],false);
- Matrix<Y> M1(d,d,&fn_v3[d*d*i],false);
- M1=(*Mp)*M0;
- }
- for(int i=0;i<d;i++)
- for(int j=0;j<d;j++){
- fn_v3[i*d+j*d*d]/=2.0;
- fn_v3[i+j*d*d]/=2.0;
- fn_v3[i+j*d]/=2.0;
- }
- Y sum=0;
- for(int i=0;i<d;i++)
- for(int j=0;i+j<d;j++)
- for(int k=0;i+j+k<d;k++){
- sum+=fabs(fn_v3[k+(j+i*d)*d]);
- }
- for(int i=0;i<d;i++)
- for(int j=0;i+j<d;j++)
- for(int k=0;i+j+k<d;k++){
- out[indx]=fn_v3[k+(j+i*d)*d];
- //if(fabs(out[indx])<eps*sum) out[indx]=0;
- indx++;
- }
- }
- return cheb_err(out,d-1,dof);
- }
- /**
- * \brief Returns the values of all legendre polynomials up to degree d,
- * evaluated at points in the input vector. Output format:
- * { P0[in[0]], ..., P0[in[n-1]], P1[in[0]], ..., P(d-1)[in[n-1]] }
- */
- template <class T>
- inline void legn_poly(int d, T* in, int n, T* out){
- if(d==0){
- for(int i=0;i<n;i++)
- out[i]=(fabs(in[i])<=1?1.0:0);
- }else if(d==1){
- for(int i=0;i<n;i++){
- out[i]=(fabs(in[i])<=1?1.0:0);
- out[i+n]=(fabs(in[i])<=1?in[i]:0);
- }
- }else{
- for(int j=0;j<n;j++){
- T x=(fabs(in[j])<=1?in[j]:0);
- T y0=(fabs(in[j])<=1?1.0:0);
- out[j]=y0;
- out[j+n]=x;
- T y1=x;
- T* y2=&out[2*n+j];
- for(int i=2;i<=d;i++){
- *y2=( (2*i-1)*x*y1-(i-1)*y0 )/i;
- y0=y1;
- y1=*y2;
- y2=&y2[n];
- }
- }
- }
- }
- /**
- * \brief Computes Legendre-Gauss-Lobatto nodes and weights.
- */
- template <class T>
- void gll_quadrature(int deg, T* x_, T* w){//*
- T eps=std::numeric_limits<T>::epsilon()*100;
- int d=deg+1;
- assert(d>1);
- int N=d-1;
- Vector<T> x(d,x_,false);
- for(int i=0;i<d;i++)
- x[i]=-cos((M_PI*i)/N);
- Matrix<T> P(d,d); P.SetZero();
- T err=1;
- Vector<T> xold(d);
- while(err>eps){
- xold=x;
- for(int i=0;i<d;i++){
- P[i][0]=1;
- P[i][1]=x[i];
- }
- for(int k=2;k<=N;k++)
- for(int i=0;i<d;i++)
- P[i][k]=( (2*k-1)*x[i]*P[i][k-1]-(k-1)*P[i][k-2] )/k;
- err=0;
- for(int i=0;i<d;i++){
- T dx=-( x[i]*P[i][N]-P[i][N-1] )/( d*P[i][N] );
- err=(err<fabs(dx)?fabs(dx):err);
- x[i]=xold[i]+dx;
- }
- }
- for(int i=0;i<d;i++)
- w[i]=2.0/(N*d*P[i][N]*P[i][N]);
- }
- /**
- * \brief Computes Chebyshev approximation from function values at GLL points.
- */
- template <class T, class Y>
- T gll2cheb(T* fn_v, int deg, int dof, T* out){//*
- //T eps=std::numeric_limits<T>::epsilon()*100;
- int d=deg+1;
- static std::vector<Matrix<Y> > precomp;
- static std::vector<Matrix<Y> > precomp_;
- Matrix<Y>* Mp ;
- Matrix<Y>* Mp_;
- #pragma omp critical (GLL_TO_CHEB)
- {
- if(precomp.size()<=(size_t)d){
- precomp .resize(d+1);
- precomp_.resize(d+1);
- std::vector<Y> x(d); //Cheb nodes.
- for(int i=0;i<d;i++)
- x[i]=-cos((i+0.5)*M_PI/d);
- Vector<T> w(d);
- Vector<T> x_legn(d); // GLL nodes.
- gll_quadrature(d-1, &x_legn[0], &w[0]);
- Matrix<T> P(d,d); //GLL node 2 GLL coeff.
- legn_poly(d-1,&x_legn[0],d,&P[0][0]);
- for(int i=0;i<d;i++)
- for(int j=0;j<d;j++)
- P[i][j]*=w[j]*0.5*(i<d-1?(2*i+1):(i));
- Matrix<T> M_gll2cheb(d,d); //GLL coeff 2 cheb node.
- legn_poly(d-1,&x[0],d,&M_gll2cheb[0][0]);
- Matrix<T> M_g2c; //GLL node to cheb node.
- M_g2c=M_gll2cheb.Transpose()*P;
- std::vector<Y> p(d*d);
- cheb_poly(d-1,&x[0],d,&p[0]);
- for(int i=0;i<d*d;i++)
- p[i]=p[i]*(2.0/d);
- Matrix<Y> Mp1(d,d,&p[0],false);
- Mp1=Mp1*M_g2c;
- Matrix<Y> Mp1_=Mp1.Transpose();
- precomp [d]=Mp1 ;
- precomp_[d]=Mp1_;
- }
- Mp =&precomp [d];
- Mp_=&precomp_[d];
- }
- std::vector<Y> fn_v0(d*d*d*dof);
- std::vector<Y> fn_v1(d*d*d);
- std::vector<Y> fn_v2(d*d*d);
- std::vector<Y> fn_v3(d*d*d);
- for(size_t i=0;i<(size_t)(d*d*d*dof);i++)
- fn_v0[i]=fn_v[i];
- int indx=0;
- for(int l=0;l<dof;l++){
- {
- Matrix<Y> M0(d*d,d,&fn_v0[d*d*d*l],false);
- Matrix<Y> M1(d*d,d,&fn_v1[0],false);
- M1=M0*(*Mp_);
- }
- {
- Matrix<Y> M0(d,d*d,&fn_v1[0],false);
- Matrix<Y> M1(d,d*d,&fn_v2[0],false);
- M1=(*Mp)*M0;
- }
- for(int i=0;i<d;i++){
- Matrix<Y> M0(d,d,&fn_v2[d*d*i],false);
- Matrix<Y> M1(d,d,&fn_v3[d*d*i],false);
- M1=(*Mp)*M0;
- }
- for(int i=0;i<d;i++)
- for(int j=0;j<d;j++){
- fn_v3[i*d+j*d*d]/=2.0;
- fn_v3[i+j*d*d]/=2.0;
- fn_v3[i+j*d]/=2.0;
- }
- Y sum=0;
- for(int i=0;i<d;i++)
- for(int j=0;i+j<d;j++)
- for(int k=0;i+j+k<d;k++){
- sum+=fabs(fn_v3[k+(j+i*d)*d]);
- }
- for(int i=0;i<d;i++)
- for(int j=0;i+j<d;j++)
- for(int k=0;i+j+k<d;k++){
- out[indx]=fn_v3[k+(j+i*d)*d];
- //if(fabs(out[indx])<eps*sum) out[indx]=0;
- indx++;
- }
- }
- return cheb_err(out,d-1,dof);
- }
- /**
- * \brief Computes Chebyshev approximation from the input function pointer.
- */
- template <class T>
- T cheb_approx(T (*fn)(T,T,T), int cheb_deg, T* coord, T s, std::vector<T>& out){
- int d=cheb_deg+1;
- std::vector<T> x(d);
- for(int i=0;i<d;i++)
- x[i]=cos((i+0.5)*M_PI/d);
- std::vector<T> p;
- cheb_poly(d-1,&x[0],d,&p[0]);
- std::vector<T> x1(d);
- std::vector<T> x2(d);
- std::vector<T> x3(d);
- for(int i=0;i<d;i++){
- x1[i]=(x[i]+1.0)/2.0*s+coord[0];
- x2[i]=(x[i]+1.0)/2.0*s+coord[1];
- x3[i]=(x[i]+1.0)/2.0*s+coord[2];
- }
- std::vector<T> fn_v(d*d*d);
- T* fn_p=&fn_v[0];
- for(int i=0;i<d;i++){
- for(int j=0;j<d;j++){
- for(int k=0;k<d;k++){
- *fn_p=fn(x3[k],x2[j],x1[i]);
- fn_p++;
- }
- }
- }
- out.resize((d*(d+1)*(d+2))/6);
- return cheb_approx(&fn_v[0], d-1, 1, &out[0]);
- }
- /**
- * \brief Evaluates polynomial values from input coefficients at points on
- * a regular grid defined by in_x, in_y, in_z the values in the input vector.
- */
- template <class T>
- void cheb_eval(Vector<T>& coeff_, int cheb_deg, std::vector<T>& in_x, std::vector<T>& in_y, std::vector<T>& in_z, Vector<T>& out){
- int d=cheb_deg+1;
- int dof=coeff_.Dim()/((d*(d+1)*(d+2))/6);
- assert(coeff_.Dim()==(size_t)(d*(d+1)*(d+2)*dof)/6);
- std::vector<T> coeff(d*d*d*dof);
- {// Rearrange data
- int indx=0;
- for(int l=0;l<dof;l++)
- for(int i=0;i<d;i++)
- for(int j=0;i+j<d;j++)
- for(int k=0;i+j+k<d;k++){
- coeff[(k+(j+(i+l*d)*d)*d)]=coeff_[indx];
- indx++;
- }
- }
- int n1=in_x.size();
- int n2=in_y.size();
- int n3=in_z.size();
- out.Resize(n1*n2*n3*dof);
- if(n1==0 || n2==0 || n3==0) return;
- std::vector<T> p1(n1*d);
- std::vector<T> p2(n2*d);
- std::vector<T> p3(n3*d);
- cheb_poly(d-1,&in_x[0],n1,&p1[0]);
- cheb_poly(d-1,&in_y[0],n2,&p2[0]);
- cheb_poly(d-1,&in_z[0],n3,&p3[0]);
- std::vector<T> fn_v1(n1*d *d );
- std::vector<T> fn_v2(n1*d *n3);
- std::vector<T> fn_v3(n1*n2*n3);
- Matrix<T> Mp1(d,n1,&p1[0],false);
- Matrix<T> Mp2(d,n2,&p2[0],false);
- Matrix<T> Mp3(d,n3,&p3[0],false);
- Matrix<T> Mp2_=Mp2.Transpose();
- Matrix<T> Mp3_=Mp3.Transpose();
- for(int k=0;k<dof;k++){
- {
- Matrix<T> M0(d*d,d,&coeff[k*d*d*d],false);
- Matrix<T> M1(d*d,n1,&fn_v1[0],false);
- M1=M0*Mp1;
- }
- {
- Matrix<T> M0(d,d*n1,&fn_v1[0],false);
- Matrix<T> M1(n3,d*n1,&fn_v2[0],false);
- M1=Mp3_*M0;
- }
- {
- int dn1=d*n1;
- int n2n1=n2*n1;
- for(int i=0;i<n3;i++){
- Matrix<T> M0(d,n1,&fn_v2[i*dn1],false);
- Matrix<T> M1(n2,n1,&fn_v3[i*n2n1],false);
- M1=Mp2_*M0;
- }
- }
- mem::memcopy(&out[n1*n2*n3*k],&fn_v3[0],n1*n2*n3*sizeof(T));
- }
- }
- /**
- * \brief Evaluates polynomial values from input coefficients at points
- * in the coord vector.
- */
- template <class T>
- inline void cheb_eval(Vector<T>& coeff_, int cheb_deg, std::vector<T>& coord, Vector<T>& out){
- int dim=3;
- int d=cheb_deg+1;
- int n=coord.size()/dim;
- int dof=coeff_.Dim()/((d*(d+1)*(d+2))/6);
- assert(coeff_.Dim()==(size_t)(d*(d+1)*(d+2)*dof)/6);
- std::vector<T> coeff(d*d*d*dof);
- {// Rearrange data
- int indx=0;
- for(int l=0;l<dof;l++)
- for(int i=0;i<d;i++)
- for(int j=0;i+j<d;j++)
- for(int k=0;i+j+k<d;k++){
- coeff[(k+(j+(i+l*d)*d)*d)]=coeff_[indx];
- indx++;
- }
- }
- Matrix<T> coord_(n,dim,&coord[0]);
- coord_=coord_.Transpose();
- Matrix<T> px(d,n);
- Matrix<T> py(d,n);
- Matrix<T> pz(d,n);
- cheb_poly(d-1,&(coord_[0][0]),n,&(px[0][0]));
- cheb_poly(d-1,&(coord_[1][0]),n,&(py[0][0]));
- cheb_poly(d-1,&(coord_[2][0]),n,&(pz[0][0]));
- Matrix<T> M_coeff0(d*d*dof, d, &coeff[0], false);
- Matrix<T> M0 = (M_coeff0 * px).Transpose(); // {n, dof*d*d}
- py = py.Transpose();
- pz = pz.Transpose();
- out.Resize(n*dof);
- for(int i=0; i<n; i++)
- for(int j=0; j<dof; j++){
- Matrix<T> M0_ (d, d, &(M0[i][ j*d*d]), false);
- Matrix<T> py_ (d, 1, &(py[i][ 0]), false);
- Matrix<T> pz_ (1, d, &(pz[i][ 0]), false);
- Matrix<T> M_out(1, 1, &( out[i*dof+j]), false);
- M_out += pz_ * M0_ * py_;
- }
- }
- /**
- * \brief Returns the values of all Chebyshev basis functions of degree up to d
- * evaluated at the point coord.
- */
- template <class T>
- inline void cheb_eval(int cheb_deg, T* coord, T* coeff0,T* buff){
- int d=cheb_deg+1;
- std::vector<T> coeff(d*d*d);
- T* p=&buff[0];
- T* p_=&buff[3*d];
- cheb_poly(d-1,&coord[0],3,&p[0]);
- for(int i=0;i<d;i++){
- p_[i]=p[i*3];
- p_[i+d]=p[i*3+1];
- p_[i+2*d]=p[i*3+2];
- }
- T* coeff_=&buff[2*3*d];
- Matrix<T> v_p0 (1, d, & p_[0],false);
- Matrix<T> v_p1 (d, 1, & p_[d],false);
- Matrix<T> M_coeff_(d, d, &coeff_[0],false);
- M_coeff_ = v_p1 * v_p0; // */
- //mat::gemm(CblasRowMajor,CblasNoTrans,CblasNoTrans,d,d,1,1.0,&p_[d],1,&p_[0],d,0.0,&coeff_[0],d);
- Matrix<T> v_p2 (d, 1, & p_[2*d],false);
- Matrix<T> v_coeff_(1, d*d, &coeff_[ 0],false);
- Matrix<T> M_coeff (d, d*d, &coeff [ 0],false);
- M_coeff = v_p2 * v_coeff_; // */
- //mat::gemm(CblasRowMajor,CblasNoTrans,CblasNoTrans,d,d*d,1,1.0,&p_[2*d],1,&coeff_[0],d*d,0.0,&coeff[0],d*d);
- {// Rearrange data
- int indx=0;
- for(int i=0;i<d;i++)
- for(int j=0;i+j<d;j++)
- for(int k=0;i+j+k<d;k++){
- coeff0[indx]=coeff[(k+(j+i*d)*d)];
- indx++;
- }
- }
- }
- /**
- * \brief Computes a least squares solution for Chebyshev approximation over a
- * cube from point samples.
- * \param[in] deg Maximum degree of the polynomial.
- * \param[in] coord Coordinates of points (x,y,z interleaved).
- * \param[in] node_coord Coordinates of the octant.
- * \param[in] node_size Length of the side of the octant.
- * \param[out] cheb_coeff Output coefficients.
- */
- template <class T>
- void points2cheb(int deg, T* coord, T* val, int n, int dim, T* node_coord, T node_size, Vector<T>& cheb_coeff){
- if(n==0) return;
- int deg_=((int)(pow((T)n*6,1.0/3.0)+0.5))/2;
- deg_=(deg_>deg?deg:deg_);
- deg_=(deg_>0?deg_:1);
- int deg3=((deg_+1)*(deg_+2)*(deg_+3))/6;
- cheb_coeff.Resize(dim*((deg+1)*(deg+2)*(deg+3))/6);
- cheb_coeff.SetZero();
- //Map coordinates to unit cube
- std::vector<T> coord_(n*3);
- for(int i=0;i<n;i++){
- coord_[i*3 ]=(coord[i*3 ]-node_coord[0])*2.0/node_size-1.0;
- coord_[i*3+1]=(coord[i*3+1]-node_coord[1])*2.0/node_size-1.0;
- coord_[i*3+2]=(coord[i*3+2]-node_coord[2])*2.0/node_size-1.0;
- }
- //Compute the matrix M
- Matrix<T> M(n,deg3);
- std::vector<T> buff((deg_+1)*(deg_+1+3*2));
- for(int i=0;i<n;i++)
- cheb_eval(deg_,&coord_[i*3],&(M[i][0]),&buff[0]);
- //Compute the pinv and get the cheb_coeff.
- Matrix<T> M_val(n,dim,&val[0]);
- T eps=std::numeric_limits<T>::epsilon()*100;
- Matrix<T> cheb_coeff_=(M.pinv(eps)*M_val).Transpose();
- //Set the output
- int indx=0;
- int indx1=0;
- for(int l=0;l<dim;l++)
- for(int i=0;i <=deg;i++)
- for(int j=0;i+j <=deg;j++)
- for(int k=0;i+j+k<=deg;k++){
- if(i+j+k<=deg_){
- cheb_coeff[indx]=cheb_coeff_[0][indx1];
- indx1++;
- }else{
- cheb_coeff[indx]=0;
- }
- indx++;
- }
- }
- template <class T>
- void quad_rule(int n, T* x, T* w){//*
- static std::vector<Vector<double> > x_lst(10000);
- static std::vector<Vector<double> > w_lst(10000);
- assert(n<10000);
- bool done=false;
- #pragma omp critical (QUAD_RULE)
- if(x_lst[n].Dim()>0){
- Vector<double>& x_=x_lst[n];
- Vector<double>& w_=w_lst[n];
- for(int i=0;i<n;i++){
- x[i]=x_[i];
- w[i]=w_[i];
- }
- done=true;
- }
- if(done) return;
- Vector<double> x_(n);
- Vector<double> w_(n);
- T alpha=0.0;
- T beta=0.0;
- T a=-1.0;
- T b= 1.0;
- int kind = 1;
- cgqf ( n, kind, (double)alpha, (double)beta, (double)a, (double)b, &x_[0], &w_[0] );
- #pragma omp critical (QUAD_RULE)
- { // Set x_lst, w_lst
- x_lst[n]=x_;
- w_lst[n]=w_;
- }
- quad_rule(n, x, w);
- //Trapezoidal quadrature nodes and weights
- /* for(int i=0;i<n;i++){
- x[i]=(2.0*i+1.0)/(1.0*n)-1.0;
- w[i]=2.0/n;
- }// */
- //Gauss-Chebyshev quadrature nodes and weights
- /* for(int i=0;i<n;i++){
- x[i]=cos((2.0*i+1.0)/(2.0*n)*M_PI);
- w[i]=sqrt(1.0-x[i]*x[i])*M_PI/n;
- }// */
- //Gauss-Legendre quadrature nodes and weights
- /* T x_[10]={-0.97390652851717, -0.86506336668898, -0.67940956829902, -0.43339539412925, -0.14887433898163,
- 0.14887433898163, 0.43339539412925, 0.67940956829902, 0.86506336668898, 0.97390652851717};
- T w_[10]={0.06667134430869, 0.14945134915058, 0.21908636251598, 0.26926671931000, 0.29552422471475,
- 0.29552422471475, 0.26926671931000, 0.21908636251598, 0.14945134915058, 0.06667134430869};
- for(int i=0;i<10;i++){
- x[i]=x_[i];
- w[i]=w_[i];
- }// */
- }
- template <class T>
- std::vector<T> integ_pyramid(int m, T* s, T r, int nx, Kernel<T>& kernel, int* perm){//*
- static mem::MemoryManager mem_mgr(16*1024*1024*sizeof(T));
- int ny=nx;
- int nz=nx;
- T eps=std::numeric_limits<T>::epsilon()*100;
- int k_dim=kernel.ker_dim[0]*kernel.ker_dim[1];
- std::vector<T> qp_x(nx), qw_x(nx);
- std::vector<T> qp_y(ny), qw_y(ny);
- std::vector<T> qp_z(nz), qw_z(nz);
- std::vector<T> p_x(nx*m);
- std::vector<T> p_y(ny*m);
- std::vector<T> p_z(nz*m);
- std::vector<T> x_;
- { // Build stack along X-axis.
- x_.push_back(s[0]);
- x_.push_back(fabs(1.0-s[0])+s[0]);
- x_.push_back(fabs(1.0-s[1])+s[0]);
- x_.push_back(fabs(1.0+s[1])+s[0]);
- x_.push_back(fabs(1.0-s[2])+s[0]);
- x_.push_back(fabs(1.0+s[2])+s[0]);
- std::sort(x_.begin(),x_.end());
- for(int i=0;i<x_.size();i++){
- if(x_[i]<-1.0) x_[i]=-1.0;
- if(x_[i]> 1.0) x_[i]= 1.0;
- }
- std::vector<T> x_new;
- T x_jump=fabs(1.0-s[0]);
- if(fabs(1.0-s[1])>eps) x_jump=std::min(x_jump,(T)fabs(1.0-s[1]));
- if(fabs(1.0+s[1])>eps) x_jump=std::min(x_jump,(T)fabs(1.0+s[1]));
- if(fabs(1.0-s[2])>eps) x_jump=std::min(x_jump,(T)fabs(1.0-s[2]));
- if(fabs(1.0+s[2])>eps) x_jump=std::min(x_jump,(T)fabs(1.0+s[2]));
- for(int k=0; k<x_.size()-1; k++){
- T x0=x_[k];
- T x1=x_[k+1];
- T A0=0;
- T A1=0;
- { // A0
- T y0=s[1]-(x0-s[0]); if(y0<-1.0) y0=-1.0; if(y0> 1.0) y0= 1.0;
- T y1=s[1]+(x0-s[0]); if(y1<-1.0) y1=-1.0; if(y1> 1.0) y1= 1.0;
- T z0=s[2]-(x0-s[0]); if(z0<-1.0) z0=-1.0; if(z0> 1.0) z0= 1.0;
- T z1=s[2]+(x0-s[0]); if(z1<-1.0) z1=-1.0; if(z1> 1.0) z1= 1.0;
- A0=(y1-y0)*(z1-z0);
- }
- { // A1
- T y0=s[1]-(x1-s[0]); if(y0<-1.0) y0=-1.0; if(y0> 1.0) y0= 1.0;
- T y1=s[1]+(x1-s[0]); if(y1<-1.0) y1=-1.0; if(y1> 1.0) y1= 1.0;
- T z0=s[2]-(x1-s[0]); if(z0<-1.0) z0=-1.0; if(z0> 1.0) z0= 1.0;
- T z1=s[2]+(x1-s[0]); if(z1<-1.0) z1=-1.0; if(z1> 1.0) z1= 1.0;
- A1=(y1-y0)*(z1-z0);
- }
- T V=0.5*(A0+A1)*(x1-x0);
- if(V<eps) continue;
- if(!x_new.size()) x_new.push_back(x0);
- x_jump=std::max(x_jump,x0-s[0]);
- while(s[0]+x_jump*1.5<x1){
- x_new.push_back(s[0]+x_jump);
- x_jump*=2.0;
- }
- if(x_new.back()+eps<x1) x_new.push_back(x1);
- }
- assert(x_new.size()<30);
- x_.swap(x_new);
- }
- Vector<T> k_out( ny*nz*k_dim,(T*)mem_mgr.malloc( ny*nz*k_dim*sizeof(T)),false); //Output of kernel evaluation.
- Vector<T> I0 ( ny*m *k_dim,(T*)mem_mgr.malloc( ny*m *k_dim*sizeof(T)),false);
- Vector<T> I1 ( m *m *k_dim,(T*)mem_mgr.malloc( m *m *k_dim*sizeof(T)),false);
- Vector<T> I2 (m *m *m *k_dim,(T*)mem_mgr.malloc(m *m *m *k_dim*sizeof(T)),false); I2.SetZero();
- if(x_.size()>1)
- for(int k=0; k<x_.size()-1; k++){
- T x0=x_[k];
- T x1=x_[k+1];
- { // Set qp_x
- std::vector<T> qp(nx);
- std::vector<T> qw(nx);
- quad_rule(nx,&qp[0],&qw[0]);
- for(int i=0; i<nx; i++)
- qp_x[i]=(x1-x0)*qp[i]/2.0+(x1+x0)/2.0;
- qw_x=qw;
- }
- cheb_poly(m-1,&qp_x[0],nx,&p_x[0]);
- for(int i=0; i<nx; i++){
- T y0=s[1]-(qp_x[i]-s[0]); if(y0<-1.0) y0=-1.0; if(y0> 1.0) y0= 1.0;
- T y1=s[1]+(qp_x[i]-s[0]); if(y1<-1.0) y1=-1.0; if(y1> 1.0) y1= 1.0;
- T z0=s[2]-(qp_x[i]-s[0]); if(z0<-1.0) z0=-1.0; if(z0> 1.0) z0= 1.0;
- T z1=s[2]+(qp_x[i]-s[0]); if(z1<-1.0) z1=-1.0; if(z1> 1.0) z1= 1.0;
- { // Set qp_y
- std::vector<T> qp(ny);
- std::vector<T> qw(ny);
- quad_rule(ny,&qp[0],&qw[0]);
- for(int j=0; j<ny; j++)
- qp_y[j]=(y1-y0)*qp[j]/2.0+(y1+y0)/2.0;
- qw_y=qw;
- }
- { // Set qp_z
- std::vector<T> qp(nz);
- std::vector<T> qw(nz);
- quad_rule(nz,&qp[0],&qw[0]);
- for(int j=0; j<nz; j++)
- qp_z[j]=(z1-z0)*qp[j]/2.0+(z1+z0)/2.0;
- qw_z=qw;
- }
- cheb_poly(m-1,&qp_y[0],ny,&p_y[0]);
- cheb_poly(m-1,&qp_z[0],nz,&p_z[0]);
- { // k_out = kernel x qw
- T src[3]={0,0,0};
- std::vector<T> trg(ny*nz*3);
- for(int i0=0; i0<ny; i0++){
- size_t indx0=i0*nz*3;
- for(int i1=0; i1<nz; i1++){
- size_t indx1=indx0+i1*3;
- trg[indx1+perm[0]]=(s[0]-qp_x[i ])*r*0.5*perm[1];
- trg[indx1+perm[2]]=(s[1]-qp_y[i0])*r*0.5*perm[3];
- trg[indx1+perm[4]]=(s[2]-qp_z[i1])*r*0.5*perm[5];
- }
- }
- {
- Matrix<T> k_val(ny*nz*kernel.ker_dim[0],kernel.ker_dim[1]);
- kernel.BuildMatrix(&src[0],1,&trg[0],ny*nz,&k_val[0][0]);
- Matrix<T> k_val_t(kernel.ker_dim[1],ny*nz*kernel.ker_dim[0],&k_out[0], false);
- k_val_t=k_val.Transpose();
- }
- for(int kk=0; kk<k_dim; kk++){
- for(int i0=0; i0<ny; i0++){
- size_t indx=(kk*ny+i0)*nz;
- for(int i1=0; i1<nz; i1++){
- k_out[indx+i1] *= qw_y[i0]*qw_z[i1];
- }
- }
- }
- }
- I0.SetZero();
- for(int kk=0; kk<k_dim; kk++){
- for(int i0=0; i0<ny; i0++){
- size_t indx0=(kk*ny+i0)*nz;
- size_t indx1=(kk*ny+i0)* m;
- for(int i2=0; i2<m; i2++){
- for(int i1=0; i1<nz; i1++){
- I0[indx1+i2] += k_out[indx0+i1]*p_z[i2*nz+i1];
- }
- }
- }
- }
- I1.SetZero();
- for(int kk=0; kk<k_dim; kk++){
- for(int i2=0; i2<ny; i2++){
- size_t indx0=(kk*ny+i2)*m;
- for(int i0=0; i0<m; i0++){
- size_t indx1=(kk* m+i0)*m;
- T py=p_y[i0*ny+i2];
- for(int i1=0; i0+i1<m; i1++){
- I1[indx1+i1] += I0[indx0+i1]*py;
- }
- }
- }
- }
- T v=(x1-x0)*(y1-y0)*(z1-z0);
- for(int kk=0; kk<k_dim; kk++){
- for(int i0=0; i0<m; i0++){
- T px=p_x[i+i0*nx]*qw_x[i]*v;
- for(int i1=0; i0+i1<m; i1++){
- size_t indx0= (kk*m+i1)*m;
- size_t indx1=((kk*m+i0)*m+i1)*m;
- for(int i2=0; i0+i1+i2<m; i2++){
- I2[indx1+i2] += I1[indx0+i2]*px;
- }
- }
- }
- }
- }
- }
- for(int i=0;i<m*m*m*k_dim;i++)
- I2[i]=I2[i]*r*r*r/64.0;
- if(x_.size()>1)
- Profile::Add_FLOP(( 2*ny*nz*m*k_dim
- +ny*m*(m+1)*k_dim
- +2*m*(m+1)*k_dim
- +m*(m+1)*(m+2)/3*k_dim)*nx*(x_.size()-1));
- std::vector<T> I2_(&I2[0], &I2[0]+I2.Dim());
- mem_mgr.free(&k_out[0]);
- mem_mgr.free(&I0 [0]);
- mem_mgr.free(&I1 [0]);
- mem_mgr.free(&I2 [0]);
- return I2_;
- }
- template <class T>
- std::vector<T> integ(int m, T* s, T r, int n, Kernel<T>& kernel){//*
- //Compute integrals over pyramids in all directions.
- int k_dim=kernel.ker_dim[0]*kernel.ker_dim[1];
- T s_[3];
- s_[0]=s[0]*2.0/r-1.0;
- s_[1]=s[1]*2.0/r-1.0;
- s_[2]=s[2]*2.0/r-1.0;
- T s1[3];
- int perm[6];
- std::vector<T> U_[6];
- s1[0]= s_[0];s1[1]=s_[1];s1[2]=s_[2];
- perm[0]= 0; perm[2]= 1; perm[4]= 2;
- perm[1]= 1; perm[3]= 1; perm[5]= 1;
- U_[0]=integ_pyramid<T>(m,s1,r,n,kernel,perm);
- s1[0]=-s_[0];s1[1]=s_[1];s1[2]=s_[2];
- perm[0]= 0; perm[2]= 1; perm[4]= 2;
- perm[1]=-1; perm[3]= 1; perm[5]= 1;
- U_[1]=integ_pyramid<T>(m,s1,r,n,kernel,perm);
- s1[0]= s_[1];s1[1]=s_[0];s1[2]=s_[2];
- perm[0]= 1; perm[2]= 0; perm[4]= 2;
- perm[1]= 1; perm[3]= 1; perm[5]= 1;
- U_[2]=integ_pyramid<T>(m,s1,r,n,kernel,perm);
- s1[0]=-s_[1];s1[1]=s_[0];s1[2]=s_[2];
- perm[0]= 1; perm[2]= 0; perm[4]= 2;
- perm[1]=-1; perm[3]= 1; perm[5]= 1;
- U_[3]=integ_pyramid<T>(m,s1,r,n,kernel,perm);
- s1[0]= s_[2];s1[1]=s_[0];s1[2]=s_[1];
- perm[0]= 2; perm[2]= 0; perm[4]= 1;
- perm[1]= 1; perm[3]= 1; perm[5]= 1;
- U_[4]=integ_pyramid<T>(m,s1,r,n,kernel,perm);
- s1[0]=-s_[2];s1[1]=s_[0];s1[2]=s_[1];
- perm[0]= 2; perm[2]= 0; perm[4]= 1;
- perm[1]=-1; perm[3]= 1; perm[5]= 1;
- U_[5]=integ_pyramid<T>(m,s1,r,n,kernel,perm);
- std::vector<T> U; U.assign(m*m*m*k_dim,0);
- for(int kk=0; kk<k_dim; kk++){
- for(int i=0;i<m;i++){
- for(int j=0;j<m;j++){
- for(int k=0;k<m;k++){
- U[kk*m*m*m + k*m*m + j*m + i]+=U_[0][kk*m*m*m + i*m*m + j*m + k];
- U[kk*m*m*m + k*m*m + j*m + i]+=U_[1][kk*m*m*m + i*m*m + j*m + k]*(i%2?-1.0:1.0);
- }
- }
- }
- }
- for(int kk=0; kk<k_dim; kk++){
- for(int i=0; i<m; i++){
- for(int j=0; j<m; j++){
- for(int k=0; k<m; k++){
- U[kk*m*m*m + k*m*m + i*m + j]+=U_[2][kk*m*m*m + i*m*m + j*m + k];
- U[kk*m*m*m + k*m*m + i*m + j]+=U_[3][kk*m*m*m + i*m*m + j*m + k]*(i%2?-1.0:1.0);
- }
- }
- }
- }
- for(int kk=0; kk<k_dim; kk++){
- for(int i=0; i<m; i++){
- for(int j=0; j<m; j++){
- for(int k=0; k<m; k++){
- U[kk*m*m*m + i*m*m + k*m + j]+=U_[4][kk*m*m*m + i*m*m + j*m + k];
- U[kk*m*m*m + i*m*m + k*m + j]+=U_[5][kk*m*m*m + i*m*m + j*m + k]*(i%2?-1.0:1.0);
- }
- }
- }
- }
- return U;
- }
- /**
- * \brief
- * \param[in] r Length of the side of cubic region.
- */
- template <class T>
- std::vector<T> cheb_integ(int m, T* s_, T r_, Kernel<T>& kernel){
- T eps=std::numeric_limits<T>::epsilon()*100;
- T r=r_;
- T s[3]={s_[0],s_[1],s_[2]};
- int n=m+1;
- T err=1.0;
- int k_dim=kernel.ker_dim[0]*kernel.ker_dim[1];
- std::vector<T> U=integ<T>(m+1,s,r,n,kernel);
- std::vector<T> U_;
- while(err>eps){
- n=(int)round(n*1.3);
- if(n>300){
- std::cout<<"Cheb_Integ::Failed to converge.["<<err<<","<<s[0]<<","<<s[1]<<","<<s[2]<<"]\n";
- break;
- }
- U_=integ<T>(m+1,s,r,n,kernel);
- err=0;
- for(int i=0;i<(m+1)*(m+1)*(m+1)*k_dim;i++)
- if(fabs(U[i]-U_[i])>err)
- err=fabs(U[i]-U_[i]);
- U=U_;
- }
- std::vector<T> U0(((m+1)*(m+2)*(m+3)*k_dim)/6);
- {// Rearrange data
- int indx=0;
- int* ker_dim=kernel.ker_dim;
- for(int l0=0;l0<ker_dim[0];l0++)
- for(int l1=0;l1<ker_dim[1];l1++)
- for(int i=0;i<=m;i++)
- for(int j=0;i+j<=m;j++)
- for(int k=0;i+j+k<=m;k++){
- U0[indx]=U[(k+(j+(i+(l1*ker_dim[0]+l0)*(m+1))*(m+1))*(m+1))];
- indx++;
- }
- }
- return U0;
- }
- template <class T>
- std::vector<T> cheb_nodes(int deg, int dim){
- int d=deg+1;
- std::vector<T> x(d);
- for(int i=0;i<d;i++)
- x[i]=-cos((i+0.5)*M_PI/d)*0.5+0.5;
- if(dim==1) return x;
- int n1=(int)(pow((T)d,dim)+0.5);
- std::vector<T> y(n1*dim);
- for(int i=0;i<dim;i++){
- int n2=(int)(pow((T)d,i)+0.5);
- for(int j=0;j<n1;j++){
- y[j*dim+i]=x[(j/n2)%d];
- }
- }
- return y;
- }
- template <class T>
- void cheb_diff(T* A, int deg, T* B){
- int d=deg+1;
- static Matrix<T> M;
- #pragma omp critical (CHEB_DIFF)
- if(M.Dim(0)!=d){
- M.Resize(d,d);
- for(int i=0;i<d;i++){
- for(int j=0;j<d;j++) M[j][i]=0;
- for(int j=1-(i%2);j<i-1;j=j+2){
- M[j][i]=2*i*2;
- }
- if(i%2==1) M[0][i]-=i*2;
- }
- }
- Matrix<T> MA(d,1,A,false);
- Matrix<T> MB(d,1,B,false);
- MB=M*MA;
- }
- template <class T>
- void cheb_diff(T* A, int deg, int dim, int curr_dim, T* B){
- int d=deg+1;
- static Matrix<T> M;
- #pragma omp critical (CHEB_DIFF1)
- if(M.Dim(0)!=(size_t)d){
- M.Resize(d,d);
- for(int i=0;i<d;i++){
- for(int j=0;j<d;j++) M[j][i]=0;
- for(int j=1-(i%2);j<i;j=j+2){
- M[j][i]=2*i*2;
- }
- if(i%2==1) M[0][i]-=i*2;
- }
- }
- int n1=(int)(pow((T)d,curr_dim)+0.5);
- int n2=(int)(pow((T)d,dim-curr_dim-1)+0.5);
- for(int i=0;i<n2;i++){
- Matrix<T> MA(d,n1,&A[i*n1*d],false);
- Matrix<T> MB(d,n1,&B[i*n1*d],false);
- MB=M*MA;
- }
- }
- template <class T>
- void cheb_grad(T* A, int deg, T* B){
- int dim=3;
- int d=deg+1;
- int n1 =(d*(d+1)*(d+2))/6;
- int n1_=(int)(pow((T)d,dim)+0.5);
- Vector<T> A_(n1_); A_.SetZero();
- Vector<T> B_(n1_); B_.SetZero();
- {// Rearrange data
- int indx=0;
- for(int i=0;i<d;i++)
- for(int j=0;i+j<d;j++)
- for(int k=0;i+j+k<d;k++){
- A_[k+(j+i*d)*d]=A[indx];
- indx++;
- }
- }
- for(int l=0;l<dim;l++){
- cheb_diff(&A_[0],d-1,dim,l,&B_[0]);
- {// Rearrange data
- int indx=l*n1;
- for(int i=0;i<d;i++)
- for(int j=0;i+j<d;j++)
- for(int k=0;i+j+k<d;k++){
- B[indx]=B_[k+(j+i*d)*d];
- indx++;
- }
- }
- }
- }
- template <class T>
- void cheb_div(T* A_, int deg, T* B_){
- int dim=3;
- int d=deg+1;
- int n1 =(int)(pow((T)d,dim)+0.5);
- Vector<T> A(n1*dim); A.SetZero();
- Vector<T> B(n1 ); B.SetZero();
- {// Rearrange data
- int indx=0;
- for(int l=0;l<dim;l++)
- for(int i=0;i<d;i++)
- for(int j=0;i+j<d;j++)
- for(int k=0;i+j+k<d;k++){
- A[k+(j+(i+l*d)*d)*d]=A_[indx];
- indx++;
- }
- }
- Matrix<T> MB(n1,1,&B[0],false);
- Matrix<T> MC(n1,1);
- for(int i=0;i<3;i++){
- cheb_diff(&A[n1*i],d-1,3,i,MC[0]);
- MB+=MC;
- }
- {// Rearrange data
- int indx=0;
- for(int i=0;i<d;i++)
- for(int j=0;i+j<d;j++)
- for(int k=0;i+j+k<d;k++){
- B_[indx]=B[k+(j+i*d)*d];
- indx++;
- }
- }
- }
- template <class T>
- void cheb_curl(T* A_, int deg, T* B_){
- int dim=3;
- int d=deg+1;
- int n1 =(int)(pow((T)d,dim)+0.5);
- Vector<T> A(n1*dim); A.SetZero();
- Vector<T> B(n1*dim); B.SetZero();
- {// Rearrange data
- int indx=0;
- for(int l=0;l<dim;l++)
- for(int i=0;i<d;i++)
- for(int j=0;i+j<d;j++)
- for(int k=0;i+j+k<d;k++){
- A[k+(j+(i+l*d)*d)*d]=A_[indx];
- indx++;
- }
- }
- Matrix<T> MC1(n1,1);
- Matrix<T> MC2(n1,1);
- for(int i=0;i<3;i++){
- Matrix<T> MB(n1,1,&B[n1*i],false);
- int j1=(i+1)%3;
- int j2=(i+2)%3;
- cheb_diff(&A[n1*j1],d-1,3,j2,MC1[0]);
- cheb_diff(&A[n1*j2],d-1,3,j1,MC2[0]);
- MB=MC2;
- MB-=MC1;
- }
- {// Rearrange data
- int indx=0;
- for(int l=0;l<dim;l++)
- for(int i=0;i<d;i++)
- for(int j=0;i+j<d;j++)
- for(int k=0;i+j+k<d;k++){
- B_[indx]=B[k+(j+(i+l*d)*d)*d];
- indx++;
- }
- }
- }
- //TODO: Fix number of cheb_coeff to (d+1)*(d+2)*(d+3)/6 for the following functions.
- template <class T>
- void cheb_laplacian(T* A, int deg, T* B){
- int dim=3;
- int d=deg+1;
- int n1=(int)(pow((T)d,dim)+0.5);
- T* C1=new T[n1];
- T* C2=new T[n1];
- Matrix<T> M_(1,n1,C2,false);
- for(int i=0;i<3;i++){
- Matrix<T> M (1,n1,&B[n1*i],false);
- for(int j=0;j<n1;j++) M[0][j]=0;
- for(int j=0;j<3;j++){
- cheb_diff(&A[n1*i],d-1,3,j,C1);
- cheb_diff( C1 ,d-1,3,j,C2);
- M+=M_;
- }
- }
- delete[] C1;
- delete[] C2;
- }
- /*
- * \brief Computes image of the chebyshev interpolation along the specified axis.
- */
- template <class T>
- void cheb_img(T* A, T* B, int deg, int dir, bool neg_){
- int d=deg+1;
- int n1=(int)(pow((T)d,3-dir)+0.5);
- int n2=(int)(pow((T)d, dir)+0.5);
- int indx;
- T sgn,neg;
- neg=(T)(neg_?-1.0:1.0);
- for(int i=0;i<n1;i++){
- indx=i%d;
- sgn=(T)(indx%2?-neg:neg);
- for(int j=0;j<n2;j++){
- B[i*n2+j]=sgn*A[i*n2+j];
- }
- }
- }
- }//end namespace
|