kernel.hpp 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230
  1. /**
  2. * \file kernel.hpp
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 12-20-2011
  5. * \brief This file contains the definition of the struct Kernel and also the
  6. * implementation of various kernels for FMM.
  7. */
  8. #ifndef _PVFMM_FMM_KERNEL_HPP_
  9. #define _PVFMM_FMM_KERNEL_HPP_
  10. #include <pvfmm_common.hpp>
  11. #include <mem_mgr.hpp>
  12. #include <string>
  13. #ifdef __INTEL_OFFLOAD
  14. #pragma offload_attribute(push,target(mic))
  15. #endif
  16. namespace pvfmm{
  17. template <class T>
  18. struct Kernel{
  19. public:
  20. /**
  21. * \brief Evaluate potential due to source points at target coordinates.
  22. * \param[in] r_src Coordinates of source points.
  23. * \param[in] src_cnt Number of source points.
  24. * \param[in] v_src Strength of source points.
  25. * \param[in] r_trg Coordinates of target points.
  26. * \param[in] trg_cnt Number of target points.
  27. * \param[out] k_out Output array with potential values.
  28. */
  29. typedef void (*Ker_t)(T* r_src, int src_cnt, T* v_src, int dof,
  30. T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  31. /**
  32. * \brief Constructor.
  33. */
  34. Kernel();
  35. /**
  36. * \brief Constructor.
  37. */
  38. Kernel(Ker_t poten, Ker_t dbl_poten, const char* name, int dim_,
  39. const int (&k_dim)[2], bool homogen_=false, T ker_scale=0,
  40. size_t dev_poten=(size_t)NULL, size_t dev_dbl_poten=(size_t)NULL);
  41. /**
  42. * \brief Compute the transformation matrix (on the source strength vector)
  43. * to get potential at target coordinates due to sources at the given
  44. * coordinates.
  45. * \param[in] r_src Coordinates of source points.
  46. * \param[in] src_cnt Number of source points.
  47. * \param[in] r_trg Coordinates of target points.
  48. * \param[in] trg_cnt Number of target points.
  49. * \param[out] k_out Output array with potential values.
  50. */
  51. void BuildMatrix(T* r_src, int src_cnt,
  52. T* r_trg, int trg_cnt, T* k_out);
  53. int dim;
  54. int ker_dim[2];
  55. Ker_t ker_poten;
  56. Ker_t dbl_layer_poten;
  57. size_t dev_ker_poten;
  58. size_t dev_dbl_layer_poten;
  59. bool homogen;
  60. T poten_scale;
  61. std::string ker_name;
  62. };
  63. template<typename T, void (*A)(T*, int, T*, int, T*, int, T*, mem::MemoryManager* mem_mgr),
  64. void (*B)(T*, int, T*, int, T*, int, T*, mem::MemoryManager* mem_mgr)>
  65. Kernel<T> BuildKernel(const char* name, int dim,
  66. const int (&k_dim)[2], bool homogen=false, T ker_scale=0){
  67. size_t dev_ker_poten ;
  68. size_t dev_dbl_layer_poten;
  69. #ifdef __INTEL_OFFLOAD
  70. #pragma offload target(mic:0)
  71. #endif
  72. {
  73. dev_ker_poten =(size_t)((typename Kernel<T>::Ker_t)A);
  74. dev_dbl_layer_poten=(size_t)((typename Kernel<T>::Ker_t)B);
  75. }
  76. return Kernel<T>(A, B,
  77. name, dim, k_dim, homogen, ker_scale,
  78. dev_ker_poten, dev_dbl_layer_poten);
  79. }
  80. template<typename T, void (*A)(T*, int, T*, int, T*, int, T*, mem::MemoryManager* mem_mgr)>
  81. Kernel<T> BuildKernel(const char* name, int dim,
  82. const int (&k_dim)[2], bool homogen=false, T ker_scale=0){
  83. size_t dev_ker_poten ;
  84. #ifdef __INTEL_OFFLOAD
  85. #pragma offload target(mic:0)
  86. #endif
  87. {
  88. dev_ker_poten =(size_t)((typename Kernel<T>::Ker_t)A);
  89. }
  90. return Kernel<T>(A, NULL,
  91. name, dim, k_dim, homogen, ker_scale,
  92. dev_ker_poten, (size_t)NULL);
  93. }
  94. ////////////////////////////////////////////////////////////////////////////////
  95. //////// LAPLACE KERNEL ////////
  96. ////////////////////////////////////////////////////////////////////////////////
  97. /**
  98. * \brief Green's function for the Poisson's equation. Kernel tensor
  99. * dimension = 1x1.
  100. */
  101. template <class T>
  102. void laplace_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  103. // Laplace double layer potential.
  104. template <class T>
  105. void laplace_dbl_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  106. // Laplace grdient kernel.
  107. template <class T>
  108. void laplace_grad(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  109. int dim_laplace_poten[2]={1,1};
  110. const Kernel<double> laplace_potn_d=BuildKernel<double, laplace_poten, laplace_dbl_poten>("laplace" , 3, dim_laplace_poten, true, 1.0);
  111. const Kernel<float > laplace_potn_f=BuildKernel<float , laplace_poten, laplace_dbl_poten>("laplace" , 3, dim_laplace_poten, true, 1.0);
  112. int dim_laplace_grad [2]={1,3};
  113. const Kernel<double> laplace_grad_d=BuildKernel<double, laplace_grad >("laplace_grad", 3, dim_laplace_grad , true, 2.0);
  114. const Kernel<float > laplace_grad_f=BuildKernel<float , laplace_grad >("laplace_grad", 3, dim_laplace_grad , true, 2.0);
  115. template<class T>
  116. struct LaplaceKernel{
  117. static Kernel<T>* potn_ker;
  118. static Kernel<T>* grad_ker;
  119. };
  120. template<> Kernel<double>* LaplaceKernel<double>::potn_ker=(Kernel<double>*)&laplace_potn_d;
  121. template<> Kernel<double>* LaplaceKernel<double>::grad_ker=(Kernel<double>*)&laplace_grad_d;
  122. template<> Kernel<float>* LaplaceKernel<float>::potn_ker=(Kernel<float>*)&laplace_potn_f;
  123. template<> Kernel<float>* LaplaceKernel<float>::grad_ker=(Kernel<float>*)&laplace_grad_f;
  124. ////////////////////////////////////////////////////////////////////////////////
  125. //////// STOKES KERNEL ////////
  126. ////////////////////////////////////////////////////////////////////////////////
  127. /**
  128. * \brief Green's function for the Stokes's equation. Kernel tensor
  129. * dimension = 3x3.
  130. */
  131. template <class T>
  132. void stokes_vel(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  133. template <class T>
  134. void stokes_dbl_vel(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  135. template <class T>
  136. void stokes_press(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  137. template <class T>
  138. void stokes_stress(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  139. template <class T>
  140. void stokes_grad(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  141. int dim_stokes_vel [2]={3,3};
  142. const Kernel<double> ker_stokes_vel =BuildKernel<double, stokes_vel, stokes_dbl_vel>("stokes_vel" , 3, dim_stokes_vel ,true,1.0);
  143. int dim_stokes_press [2]={3,1};
  144. const Kernel<double> ker_stokes_press =BuildKernel<double, stokes_press >("stokes_press" , 3, dim_stokes_press ,true,2.0);
  145. int dim_stokes_stress[2]={3,9};
  146. const Kernel<double> ker_stokes_stress=BuildKernel<double, stokes_stress >("stokes_stress", 3, dim_stokes_stress,true,2.0);
  147. int dim_stokes_grad [2]={3,9};
  148. const Kernel<double> ker_stokes_grad =BuildKernel<double, stokes_grad >("stokes_grad" , 3, dim_stokes_grad ,true,2.0);
  149. ////////////////////////////////////////////////////////////////////////////////
  150. //////// BIOT-SAVART KERNEL ////////
  151. ////////////////////////////////////////////////////////////////////////////////
  152. template <class T>
  153. void biot_savart(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  154. int dim_biot_savart[2]={3,3};
  155. const Kernel<double> ker_biot_savart=BuildKernel<double, biot_savart>("biot_savart", 3, dim_biot_savart,true,2.0);
  156. ////////////////////////////////////////////////////////////////////////////////
  157. //////// HELMHOLTZ KERNEL ////////
  158. ////////////////////////////////////////////////////////////////////////////////
  159. /**
  160. * \brief Green's function for the Helmholtz's equation. Kernel tensor
  161. * dimension = 2x2.
  162. */
  163. template <class T>
  164. void helmholtz_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  165. template <class T>
  166. void helmholtz_grad(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  167. int dim_helmholtz [2]={2,2};
  168. const Kernel<double> ker_helmholtz =BuildKernel<double, helmholtz_poten>("helmholtz" , 3, dim_helmholtz );
  169. int dim_helmholtz_grad[2]={2,6};
  170. const Kernel<double> ker_helmholtz_grad=BuildKernel<double, helmholtz_grad >("helmholtz_grad", 3, dim_helmholtz_grad);
  171. }//end namespace
  172. #include <kernel.txx>
  173. #ifdef __INTEL_OFFLOAD
  174. #pragma offload_attribute(pop)
  175. #endif
  176. #endif //_PVFMM_FMM_KERNEL_HPP_