kernel.txx 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972
  1. /**
  2. * \file kernel.txx
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 12-20-2011
  5. * \brief This file contains the implementation of the struct Kernel and also the
  6. * implementation of various kernels for FMM.
  7. */
  8. #ifdef USE_SSE
  9. #include <emmintrin.h>
  10. #endif
  11. #include <math.h>
  12. #include <assert.h>
  13. #include <vector>
  14. #include <profile.hpp>
  15. namespace pvfmm{
  16. /**
  17. * \brief Constructor.
  18. */
  19. template <class T>
  20. Kernel<T>::Kernel(): dim(0){
  21. ker_dim[0]=0;
  22. ker_dim[1]=0;
  23. }
  24. /**
  25. * \brief Constructor.
  26. */
  27. template <class T>
  28. Kernel<T>::Kernel(Ker_t poten, Ker_t dbl_poten, const char* name, int dim_,
  29. const int (&k_dim)[2], bool homogen_, T ker_scale,
  30. size_t dev_poten, size_t dev_dbl_poten){
  31. dim=dim_;
  32. ker_dim[0]=k_dim[0];
  33. ker_dim[1]=k_dim[1];
  34. ker_poten=poten;
  35. dbl_layer_poten=dbl_poten;
  36. homogen=homogen_;
  37. poten_scale=ker_scale;
  38. ker_name=std::string(name);
  39. dev_ker_poten=dev_poten;
  40. dev_dbl_layer_poten=dev_dbl_poten;
  41. }
  42. /**
  43. * \brief Compute the transformation matrix (on the source strength vector)
  44. * to get potential at target coordinates due to sources at the given
  45. * coordinates.
  46. * \param[in] r_src Coordinates of source points.
  47. * \param[in] src_cnt Number of source points.
  48. * \param[in] r_trg Coordinates of target points.
  49. * \param[in] trg_cnt Number of target points.
  50. * \param[out] k_out Output array with potential values.
  51. */
  52. template <class T>
  53. void Kernel<T>::BuildMatrix(T* r_src, int src_cnt,
  54. T* r_trg, int trg_cnt, T* k_out){
  55. int dim=3; //Only supporting 3D
  56. memset(k_out, 0, src_cnt*ker_dim[0]*trg_cnt*ker_dim[1]*sizeof(T));
  57. for(int i=0;i<src_cnt;i++) //TODO Optimize this.
  58. for(int j=0;j<ker_dim[0];j++){
  59. std::vector<T> v_src(ker_dim[0],0);
  60. v_src[j]=1.0;
  61. ker_poten(&r_src[i*dim], 1, &v_src[0], 1, r_trg, trg_cnt,
  62. &k_out[(i*ker_dim[0]+j)*trg_cnt*ker_dim[1]], NULL);
  63. }
  64. }
  65. ////////////////////////////////////////////////////////////////////////////////
  66. //////// LAPLACE KERNEL ////////
  67. ////////////////////////////////////////////////////////////////////////////////
  68. #ifndef __MIC__
  69. #ifdef USE_SSE
  70. namespace
  71. {
  72. #define IDEAL_ALIGNMENT 16
  73. #define SIMD_LEN (int)(IDEAL_ALIGNMENT / sizeof(double))
  74. #define DECL_SIMD_ALIGNED __declspec(align(IDEAL_ALIGNMENT))
  75. #define OOFP_R 1.0/(4.0*M_PI)
  76. void laplaceSSE(
  77. const int ns,
  78. const int nt,
  79. const double *sx,
  80. const double *sy,
  81. const double *sz,
  82. const double *tx,
  83. const double *ty,
  84. const double *tz,
  85. const double *srcDen,
  86. double *trgVal)
  87. {
  88. if ( size_t(sx)%IDEAL_ALIGNMENT || size_t(sy)%IDEAL_ALIGNMENT || size_t(sz)%IDEAL_ALIGNMENT )
  89. abort();
  90. double OOFP = 1.0/(4.0*M_PI);
  91. __m128d temp;
  92. double aux_arr[SIMD_LEN+1];
  93. double *tempval;
  94. // if aux_arr is misaligned
  95. if (size_t(aux_arr)%IDEAL_ALIGNMENT) tempval = aux_arr + 1;
  96. else tempval = aux_arr;
  97. if (size_t(tempval)%IDEAL_ALIGNMENT) abort();
  98. /*! One over four pi */
  99. __m128d oofp = _mm_set1_pd (OOFP_R);
  100. __m128d half = _mm_set1_pd (0.5);
  101. __m128d opf = _mm_set1_pd (1.5);
  102. __m128d zero = _mm_setzero_pd ();
  103. // loop over sources
  104. int i = 0;
  105. for (; i < nt; i++) {
  106. temp = _mm_setzero_pd();
  107. __m128d txi = _mm_load1_pd (&tx[i]);
  108. __m128d tyi = _mm_load1_pd (&ty[i]);
  109. __m128d tzi = _mm_load1_pd (&tz[i]);
  110. int j = 0;
  111. // Load and calculate in groups of SIMD_LEN
  112. for (; j + SIMD_LEN <= ns; j+=SIMD_LEN) {
  113. __m128d sxj = _mm_load_pd (&sx[j]);
  114. __m128d syj = _mm_load_pd (&sy[j]);
  115. __m128d szj = _mm_load_pd (&sz[j]);
  116. __m128d sden = _mm_set_pd (srcDen[j+1], srcDen[j]);
  117. __m128d dX, dY, dZ;
  118. __m128d dR2;
  119. __m128d S;
  120. dX = _mm_sub_pd(txi , sxj);
  121. dY = _mm_sub_pd(tyi , syj);
  122. dZ = _mm_sub_pd(tzi , szj);
  123. sxj = _mm_mul_pd(dX, dX);
  124. syj = _mm_mul_pd(dY, dY);
  125. szj = _mm_mul_pd(dZ, dZ);
  126. dR2 = _mm_add_pd(sxj, syj);
  127. dR2 = _mm_add_pd(szj, dR2);
  128. __m128d reqzero = _mm_cmpeq_pd (dR2, zero);
  129. __m128d xhalf = _mm_mul_pd (half, dR2);
  130. __m128 dR2_s = _mm_cvtpd_ps(dR2);
  131. __m128 S_s = _mm_rsqrt_ps(dR2_s);
  132. __m128d S_d = _mm_cvtps_pd(S_s);
  133. // To handle the condition when src and trg coincide
  134. S_d = _mm_andnot_pd (reqzero, S_d);
  135. S = _mm_mul_pd (S_d, S_d);
  136. S = _mm_mul_pd (S, xhalf);
  137. S = _mm_sub_pd (opf, S);
  138. S = _mm_mul_pd (S, S_d);
  139. sden = _mm_mul_pd (sden, S);
  140. temp = _mm_add_pd (sden, temp);
  141. }
  142. temp = _mm_mul_pd (temp, oofp);
  143. _mm_store_pd(tempval, temp);
  144. for (int k = 0; k < SIMD_LEN; k++) {
  145. trgVal[i] += tempval[k];
  146. }
  147. for (; j < ns; j++) {
  148. double x = tx[i] - sx[j];
  149. double y = ty[i] - sy[j];
  150. double z = tz[i] - sz[j];
  151. double r2 = x*x + y*y + z*z;
  152. double r = sqrt(r2);
  153. double invdr;
  154. if (r == 0)
  155. invdr = 0;
  156. else
  157. invdr = 1/r;
  158. double den = srcDen[j];
  159. trgVal[i] += den*invdr*OOFP;
  160. }
  161. }
  162. return;
  163. }
  164. void laplaceDblSSE(
  165. const int ns,
  166. const int nt,
  167. const double *sx,
  168. const double *sy,
  169. const double *sz,
  170. const double *tx,
  171. const double *ty,
  172. const double *tz,
  173. const double *srcDen,
  174. double *trgVal)
  175. {
  176. if ( size_t(sx)%IDEAL_ALIGNMENT || size_t(sy)%IDEAL_ALIGNMENT || size_t(sz)%IDEAL_ALIGNMENT )
  177. abort();
  178. double OOFP = 1.0/(4.0*M_PI);
  179. __m128d temp;
  180. double aux_arr[SIMD_LEN+1];
  181. double *tempval;
  182. // if aux_arr is misaligned
  183. if (size_t(aux_arr)%IDEAL_ALIGNMENT) tempval = aux_arr + 1;
  184. else tempval = aux_arr;
  185. if (size_t(tempval)%IDEAL_ALIGNMENT) abort();
  186. /*! One over four pi */
  187. __m128d oofp = _mm_set1_pd (OOFP_R);
  188. __m128d half = _mm_set1_pd (0.5);
  189. __m128d opf = _mm_set1_pd (1.5);
  190. __m128d zero = _mm_setzero_pd ();
  191. // loop over sources
  192. int i = 0;
  193. for (; i < nt; i++) {
  194. temp = _mm_setzero_pd();
  195. __m128d txi = _mm_load1_pd (&tx[i]);
  196. __m128d tyi = _mm_load1_pd (&ty[i]);
  197. __m128d tzi = _mm_load1_pd (&tz[i]);
  198. int j = 0;
  199. // Load and calculate in groups of SIMD_LEN
  200. for (; j + SIMD_LEN <= ns; j+=SIMD_LEN) {
  201. __m128d sxj = _mm_load_pd (&sx[j]);
  202. __m128d syj = _mm_load_pd (&sy[j]);
  203. __m128d szj = _mm_load_pd (&sz[j]);
  204. __m128d snormx = _mm_set_pd (srcDen[(j+1)*4+0], srcDen[j*4+0]);
  205. __m128d snormy = _mm_set_pd (srcDen[(j+1)*4+1], srcDen[j*4+1]);
  206. __m128d snormz = _mm_set_pd (srcDen[(j+1)*4+2], srcDen[j*4+2]);
  207. __m128d sden = _mm_set_pd (srcDen[(j+1)*4+3], srcDen[j*4+3]);
  208. __m128d dX, dY, dZ;
  209. __m128d dR2;
  210. __m128d S;
  211. __m128d S2;
  212. __m128d S3;
  213. dX = _mm_sub_pd(txi , sxj);
  214. dY = _mm_sub_pd(tyi , syj);
  215. dZ = _mm_sub_pd(tzi , szj);
  216. sxj = _mm_mul_pd(dX, dX);
  217. syj = _mm_mul_pd(dY, dY);
  218. szj = _mm_mul_pd(dZ, dZ);
  219. dR2 = _mm_add_pd(sxj, syj);
  220. dR2 = _mm_add_pd(szj, dR2);
  221. __m128d reqzero = _mm_cmpeq_pd (dR2, zero);
  222. __m128d xhalf = _mm_mul_pd (half, dR2);
  223. __m128 dR2_s = _mm_cvtpd_ps(dR2);
  224. __m128 S_s = _mm_rsqrt_ps(dR2_s);
  225. __m128d S_d = _mm_cvtps_pd(S_s);
  226. // To handle the condition when src and trg coincide
  227. S_d = _mm_andnot_pd (reqzero, S_d);
  228. S = _mm_mul_pd (S_d, S_d);
  229. S = _mm_mul_pd (S, xhalf);
  230. S = _mm_sub_pd (opf, S);
  231. S = _mm_mul_pd (S, S_d);
  232. S2 = _mm_mul_pd (S, S);
  233. S3 = _mm_mul_pd (S2, S);
  234. __m128d S3_sden=_mm_mul_pd(S3, sden);
  235. __m128d dot_sum = _mm_add_pd(_mm_mul_pd(snormx,dX),_mm_mul_pd(snormy,dY));
  236. dot_sum = _mm_add_pd(dot_sum,_mm_mul_pd(snormz,dZ));
  237. temp = _mm_add_pd(_mm_mul_pd(S3_sden,dot_sum),temp);
  238. }
  239. temp = _mm_mul_pd (temp, oofp);
  240. _mm_store_pd(tempval, temp);
  241. for (int k = 0; k < SIMD_LEN; k++) {
  242. trgVal[i] += tempval[k];
  243. }
  244. for (; j < ns; j++) {
  245. double x = tx[i] - sx[j];
  246. double y = ty[i] - sy[j];
  247. double z = tz[i] - sz[j];
  248. double r2 = x*x + y*y + z*z;
  249. double r = sqrt(r2);
  250. double invdr;
  251. if (r == 0)
  252. invdr = 0;
  253. else
  254. invdr = 1/r;
  255. double invdr2=invdr*invdr;
  256. double invdr3=invdr2*invdr;
  257. double dot_sum = x*srcDen[j*4+0] + y*srcDen[j*4+1] + z*srcDen[j*4+2];
  258. trgVal[i] += OOFP*invdr3*x*srcDen[j*4+3]*dot_sum;
  259. }
  260. }
  261. return;
  262. }
  263. void laplaceGradSSE(
  264. const int ns,
  265. const int nt,
  266. const double *sx,
  267. const double *sy,
  268. const double *sz,
  269. const double *tx,
  270. const double *ty,
  271. const double *tz,
  272. const double *srcDen,
  273. double *trgVal)
  274. {
  275. if ( size_t(sx)%IDEAL_ALIGNMENT || size_t(sy)%IDEAL_ALIGNMENT || size_t(sz)%IDEAL_ALIGNMENT )
  276. abort();
  277. double OOFP = 1.0/(4.0*M_PI);
  278. __m128d tempx; __m128d tempy; __m128d tempz;
  279. double aux_arr[3*SIMD_LEN+1];
  280. double *tempvalx, *tempvaly, *tempvalz;
  281. // if aux_arr is misaligned
  282. if (size_t(aux_arr)%IDEAL_ALIGNMENT) tempvalx = aux_arr + 1;
  283. else tempvalx = aux_arr;
  284. if (size_t(tempvalx)%IDEAL_ALIGNMENT) abort();
  285. tempvaly=tempvalx+SIMD_LEN;
  286. tempvalz=tempvaly+SIMD_LEN;
  287. /*! One over four pi */
  288. __m128d oofp = _mm_set1_pd (OOFP_R);
  289. __m128d half = _mm_set1_pd (0.5);
  290. __m128d opf = _mm_set1_pd (1.5);
  291. __m128d zero = _mm_setzero_pd ();
  292. // loop over sources
  293. int i = 0;
  294. for (; i < nt; i++) {
  295. tempx = _mm_setzero_pd();
  296. tempy = _mm_setzero_pd();
  297. tempz = _mm_setzero_pd();
  298. __m128d txi = _mm_load1_pd (&tx[i]);
  299. __m128d tyi = _mm_load1_pd (&ty[i]);
  300. __m128d tzi = _mm_load1_pd (&tz[i]);
  301. int j = 0;
  302. // Load and calculate in groups of SIMD_LEN
  303. for (; j + SIMD_LEN <= ns; j+=SIMD_LEN) {
  304. __m128d sxj = _mm_load_pd (&sx[j]);
  305. __m128d syj = _mm_load_pd (&sy[j]);
  306. __m128d szj = _mm_load_pd (&sz[j]);
  307. __m128d sden = _mm_set_pd (srcDen[j+1], srcDen[j]);
  308. __m128d dX, dY, dZ;
  309. __m128d dR2;
  310. __m128d S;
  311. __m128d S2;
  312. __m128d S3;
  313. dX = _mm_sub_pd(txi , sxj);
  314. dY = _mm_sub_pd(tyi , syj);
  315. dZ = _mm_sub_pd(tzi , szj);
  316. sxj = _mm_mul_pd(dX, dX);
  317. syj = _mm_mul_pd(dY, dY);
  318. szj = _mm_mul_pd(dZ, dZ);
  319. dR2 = _mm_add_pd(sxj, syj);
  320. dR2 = _mm_add_pd(szj, dR2);
  321. __m128d reqzero = _mm_cmpeq_pd (dR2, zero);
  322. __m128d xhalf = _mm_mul_pd (half, dR2);
  323. __m128 dR2_s = _mm_cvtpd_ps(dR2);
  324. __m128 S_s = _mm_rsqrt_ps(dR2_s);
  325. __m128d S_d = _mm_cvtps_pd(S_s);
  326. // To handle the condition when src and trg coincide
  327. S_d = _mm_andnot_pd (reqzero, S_d);
  328. S = _mm_mul_pd (S_d, S_d);
  329. S = _mm_mul_pd (S, xhalf);
  330. S = _mm_sub_pd (opf, S);
  331. S = _mm_mul_pd (S, S_d);
  332. S2 = _mm_mul_pd (S, S);
  333. S3 = _mm_mul_pd (S2, S);
  334. __m128d S3_sden=_mm_mul_pd(S3, sden);
  335. tempx = _mm_add_pd(_mm_mul_pd(S3_sden,dX),tempx);
  336. tempy = _mm_add_pd(_mm_mul_pd(S3_sden,dY),tempy);
  337. tempz = _mm_add_pd(_mm_mul_pd(S3_sden,dZ),tempz);
  338. }
  339. tempx = _mm_mul_pd (tempx, oofp);
  340. tempy = _mm_mul_pd (tempy, oofp);
  341. tempz = _mm_mul_pd (tempz, oofp);
  342. _mm_store_pd(tempvalx, tempx);
  343. _mm_store_pd(tempvaly, tempy);
  344. _mm_store_pd(tempvalz, tempz);
  345. for (int k = 0; k < SIMD_LEN; k++) {
  346. trgVal[i*3 ] += tempvalx[k];
  347. trgVal[i*3+1] += tempvaly[k];
  348. trgVal[i*3+2] += tempvalz[k];
  349. }
  350. for (; j < ns; j++) {
  351. double x = tx[i] - sx[j];
  352. double y = ty[i] - sy[j];
  353. double z = tz[i] - sz[j];
  354. double r2 = x*x + y*y + z*z;
  355. double r = sqrt(r2);
  356. double invdr;
  357. if (r == 0)
  358. invdr = 0;
  359. else
  360. invdr = 1/r;
  361. double invdr2=invdr*invdr;
  362. double invdr3=invdr2*invdr;
  363. trgVal[i*3 ] += OOFP*invdr3*x*srcDen[j];
  364. trgVal[i*3+1] += OOFP*invdr3*y*srcDen[j];
  365. trgVal[i*3+2] += OOFP*invdr3*z*srcDen[j];
  366. }
  367. }
  368. return;
  369. }
  370. #undef OOFP_R
  371. #undef SIMD_LEN
  372. #define X(s,k) (s)[(k)*COORD_DIM]
  373. #define Y(s,k) (s)[(k)*COORD_DIM+1]
  374. #define Z(s,k) (s)[(k)*COORD_DIM+2]
  375. void laplaceSSEShuffle(const int ns, const int nt, float const src[], float const trg[], float const den[], float pot[], mem::MemoryManager* mem_mgr=NULL)
  376. {
  377. // TODO
  378. }
  379. void laplaceSSEShuffle(const int ns, const int nt, double const src[], double const trg[], double const den[], double pot[], mem::MemoryManager* mem_mgr=NULL)
  380. {
  381. double* buff=NULL;
  382. if(mem_mgr) buff=(double*)mem_mgr->malloc((ns+1+nt)*3*sizeof(double));
  383. else buff=(double*)malloc((ns+1+nt)*3*sizeof(double));
  384. double* buff_=buff;
  385. pvfmm::Vector<double> xs(ns+1,buff_,false); buff_+=ns+1;
  386. pvfmm::Vector<double> ys(ns+1,buff_,false); buff_+=ns+1;
  387. pvfmm::Vector<double> zs(ns+1,buff_,false); buff_+=ns+1;
  388. pvfmm::Vector<double> xt(nt ,buff_,false); buff_+=nt ;
  389. pvfmm::Vector<double> yt(nt ,buff_,false); buff_+=nt ;
  390. pvfmm::Vector<double> zt(nt ,buff_,false); buff_+=nt ;
  391. //std::vector<double> xs(ns+1);
  392. //std::vector<double> ys(ns+1);
  393. //std::vector<double> zs(ns+1);
  394. //std::vector<double> xt(nt );
  395. //std::vector<double> yt(nt );
  396. //std::vector<double> zt(nt );
  397. int x_shift = size_t(&xs[0]) % IDEAL_ALIGNMENT ? 1:0;
  398. int y_shift = size_t(&ys[0]) % IDEAL_ALIGNMENT ? 1:0;
  399. int z_shift = size_t(&zs[0]) % IDEAL_ALIGNMENT ? 1:0;
  400. //1. reshuffle memory
  401. for (int k =0;k<ns;k++){
  402. xs[k+x_shift]=X(src,k);
  403. ys[k+y_shift]=Y(src,k);
  404. zs[k+z_shift]=Z(src,k);
  405. }
  406. for (int k=0;k<nt;k++){
  407. xt[k]=X(trg,k);
  408. yt[k]=Y(trg,k);
  409. zt[k]=Z(trg,k);
  410. }
  411. //2. perform caclulation
  412. laplaceSSE(ns,nt,&xs[x_shift],&ys[y_shift],&zs[z_shift],&xt[0],&yt[0],&zt[0],den,pot);
  413. if(mem_mgr) mem_mgr->free(buff);
  414. else free(buff);
  415. return;
  416. }
  417. void laplaceDblSSEShuffle(const int ns, const int nt, float const src[], float const trg[], float const den[], float pot[], mem::MemoryManager* mem_mgr=NULL)
  418. {
  419. // TODO
  420. }
  421. void laplaceDblSSEShuffle(const int ns, const int nt, double const src[], double const trg[], double const den[], double pot[], mem::MemoryManager* mem_mgr=NULL)
  422. {
  423. std::vector<double> xs(ns+1); std::vector<double> xt(nt);
  424. std::vector<double> ys(ns+1); std::vector<double> yt(nt);
  425. std::vector<double> zs(ns+1); std::vector<double> zt(nt);
  426. int x_shift = size_t(&xs[0]) % IDEAL_ALIGNMENT ? 1:0;
  427. int y_shift = size_t(&ys[0]) % IDEAL_ALIGNMENT ? 1:0;
  428. int z_shift = size_t(&zs[0]) % IDEAL_ALIGNMENT ? 1:0;
  429. //1. reshuffle memory
  430. for (int k =0;k<ns;k++){
  431. xs[k+x_shift]=X(src,k);
  432. ys[k+y_shift]=Y(src,k);
  433. zs[k+z_shift]=Z(src,k);
  434. }
  435. for (int k=0;k<nt;k++){
  436. xt[k]=X(trg,k);
  437. yt[k]=Y(trg,k);
  438. zt[k]=Z(trg,k);
  439. }
  440. //2. perform caclulation
  441. laplaceDblSSE(ns,nt,&xs[x_shift],&ys[y_shift],&zs[z_shift],&xt[0],&yt[0],&zt[0],den,pot);
  442. return;
  443. }
  444. void laplaceGradSSEShuffle(const int ns, const int nt, float const src[], float const trg[], float const den[], float pot[], mem::MemoryManager* mem_mgr=NULL)
  445. {
  446. // TODO
  447. }
  448. void laplaceGradSSEShuffle(const int ns, const int nt, double const src[], double const trg[], double const den[], double pot[], mem::MemoryManager* mem_mgr=NULL)
  449. {
  450. int tid=omp_get_thread_num();
  451. static std::vector<std::vector<double> > xs_(100); static std::vector<std::vector<double> > xt_(100);
  452. static std::vector<std::vector<double> > ys_(100); static std::vector<std::vector<double> > yt_(100);
  453. static std::vector<std::vector<double> > zs_(100); static std::vector<std::vector<double> > zt_(100);
  454. std::vector<double>& xs=xs_[tid]; std::vector<double>& xt=xt_[tid];
  455. std::vector<double>& ys=ys_[tid]; std::vector<double>& yt=yt_[tid];
  456. std::vector<double>& zs=zs_[tid]; std::vector<double>& zt=zt_[tid];
  457. xs.resize(ns+1); xt.resize(nt);
  458. ys.resize(ns+1); yt.resize(nt);
  459. zs.resize(ns+1); zt.resize(nt);
  460. int x_shift = size_t(&xs[0]) % IDEAL_ALIGNMENT ? 1:0;
  461. int y_shift = size_t(&ys[0]) % IDEAL_ALIGNMENT ? 1:0;
  462. int z_shift = size_t(&zs[0]) % IDEAL_ALIGNMENT ? 1:0;
  463. //1. reshuffle memory
  464. for (int k =0;k<ns;k++){
  465. xs[k+x_shift]=X(src,k);
  466. ys[k+y_shift]=Y(src,k);
  467. zs[k+z_shift]=Z(src,k);
  468. }
  469. for (int k=0;k<nt;k++){
  470. xt[k]=X(trg,k);
  471. yt[k]=Y(trg,k);
  472. zt[k]=Z(trg,k);
  473. }
  474. //2. perform caclulation
  475. laplaceGradSSE(ns,nt,&xs[x_shift],&ys[y_shift],&zs[z_shift],&xt[0],&yt[0],&zt[0],den,pot);
  476. return;
  477. }
  478. #undef X
  479. #undef Y
  480. #undef Z
  481. #undef IDEAL_ALIGNMENT
  482. #undef DECL_SIMD_ALIGNED
  483. }
  484. #endif
  485. #endif
  486. /**
  487. * \brief Green's function for the Poisson's equation. Kernel tensor
  488. * dimension = 1x1.
  489. */
  490. template <class T>
  491. void laplace_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  492. #ifndef __MIC__
  493. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(12*dof));
  494. #ifdef USE_SSE
  495. if(dof==1){
  496. laplaceSSEShuffle(src_cnt, trg_cnt, r_src, r_trg, v_src, k_out, mem_mgr);
  497. return;
  498. }
  499. #endif
  500. #endif
  501. const T OOFP = 1.0/(4.0*M_PI);
  502. for(int t=0;t<trg_cnt;t++){
  503. for(int i=0;i<dof;i++){
  504. T p=0;
  505. for(int s=0;s<src_cnt;s++){
  506. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  507. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  508. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  509. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  510. if (invR!=0) invR = 1.0/sqrt(invR);
  511. p += v_src[s*dof+i]*invR;
  512. }
  513. k_out[t*dof+i] += p*OOFP;
  514. }
  515. }
  516. }
  517. template <class T>
  518. void laplace_poten_(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  519. //void laplace_poten(T* r_src_, int src_cnt, T* v_src_, int dof, T* r_trg_, int trg_cnt, T* k_out_){
  520. // int dim=3; //Only supporting 3D
  521. // T* r_src=new T[src_cnt*dim];
  522. // T* r_trg=new T[trg_cnt*dim];
  523. // T* v_src=new T[src_cnt ];
  524. // T* k_out=new T[trg_cnt ];
  525. // mem::memcopy(r_src,r_src_,src_cnt*dim*sizeof(T));
  526. // mem::memcopy(r_trg,r_trg_,trg_cnt*dim*sizeof(T));
  527. // mem::memcopy(v_src,v_src_,src_cnt *sizeof(T));
  528. // mem::memcopy(k_out,k_out_,trg_cnt *sizeof(T));
  529. #define EVAL_BLKSZ 32
  530. #define MAX_DOF 100
  531. //Compute source to target interactions.
  532. const T OOFP = 1.0/(4.0*M_PI);
  533. if(dof==1){
  534. for (int t_=0; t_<trg_cnt; t_+=EVAL_BLKSZ)
  535. for (int s_=0; s_<src_cnt; s_+=EVAL_BLKSZ){
  536. int src_blk=s_+EVAL_BLKSZ; src_blk=(src_blk>src_cnt?src_cnt:src_blk);
  537. int trg_blk=t_+EVAL_BLKSZ; trg_blk=(trg_blk>trg_cnt?trg_cnt:trg_blk);
  538. for(int t=t_;t<trg_blk;t++){
  539. T p=0;
  540. for(int s=s_;s<src_blk;s++){
  541. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  542. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  543. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  544. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  545. if (invR!=0) invR = 1.0/sqrt(invR);
  546. p += v_src[s]*invR;
  547. }
  548. k_out[t] += p*OOFP;
  549. }
  550. }
  551. }else if(dof==2){
  552. T p[MAX_DOF];
  553. for (int t_=0; t_<trg_cnt; t_+=EVAL_BLKSZ)
  554. for (int s_=0; s_<src_cnt; s_+=EVAL_BLKSZ){
  555. int src_blk=s_+EVAL_BLKSZ; src_blk=(src_blk>src_cnt?src_cnt:src_blk);
  556. int trg_blk=t_+EVAL_BLKSZ; trg_blk=(trg_blk>trg_cnt?trg_cnt:trg_blk);
  557. for(int t=t_;t<trg_blk;t++){
  558. p[0]=0; p[1]=0;
  559. for(int s=s_;s<src_blk;s++){
  560. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  561. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  562. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  563. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  564. if (invR!=0) invR = 1.0/sqrt(invR);
  565. p[0] += v_src[s*dof+0]*invR;
  566. p[1] += v_src[s*dof+1]*invR;
  567. }
  568. k_out[t*dof+0] += p[0]*OOFP;
  569. k_out[t*dof+1] += p[1]*OOFP;
  570. }
  571. }
  572. }else if(dof==3){
  573. T p[MAX_DOF];
  574. for (int t_=0; t_<trg_cnt; t_+=EVAL_BLKSZ)
  575. for (int s_=0; s_<src_cnt; s_+=EVAL_BLKSZ){
  576. int src_blk=s_+EVAL_BLKSZ; src_blk=(src_blk>src_cnt?src_cnt:src_blk);
  577. int trg_blk=t_+EVAL_BLKSZ; trg_blk=(trg_blk>trg_cnt?trg_cnt:trg_blk);
  578. for(int t=t_;t<trg_blk;t++){
  579. p[0]=0; p[1]=0; p[2]=0;
  580. for(int s=s_;s<src_blk;s++){
  581. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  582. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  583. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  584. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  585. if (invR!=0) invR = 1.0/sqrt(invR);
  586. p[0] += v_src[s*dof+0]*invR;
  587. p[1] += v_src[s*dof+1]*invR;
  588. p[2] += v_src[s*dof+2]*invR;
  589. }
  590. k_out[t*dof+0] += p[0]*OOFP;
  591. k_out[t*dof+1] += p[1]*OOFP;
  592. k_out[t*dof+2] += p[2]*OOFP;
  593. }
  594. }
  595. }else{
  596. T p[MAX_DOF];
  597. for (int t_=0; t_<trg_cnt; t_+=EVAL_BLKSZ)
  598. for (int s_=0; s_<src_cnt; s_+=EVAL_BLKSZ){
  599. int src_blk=s_+EVAL_BLKSZ; src_blk=(src_blk>src_cnt?src_cnt:src_blk);
  600. int trg_blk=t_+EVAL_BLKSZ; trg_blk=(trg_blk>trg_cnt?trg_cnt:trg_blk);
  601. for(int t=t_;t<trg_blk;t++){
  602. for(int i=0;i<dof;i++) p[i]=0;
  603. for(int s=s_;s<src_blk;s++){
  604. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  605. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  606. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  607. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  608. if (invR!=0) invR = 1.0/sqrt(invR);
  609. for(int i=0;i<dof;i++)
  610. p[i] += v_src[s*dof+i]*invR;
  611. }
  612. for(int i=0;i<dof;i++)
  613. k_out[t*dof+i] += p[i]*OOFP;
  614. }
  615. }
  616. }
  617. #ifndef __MIC__
  618. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(10+2*dof));
  619. #endif
  620. #undef MAX_DOF
  621. #undef EVAL_BLKSZ
  622. // for (int t=0; t<trg_cnt; t++)
  623. // k_out_[t] += k_out[t];
  624. // delete[] r_src;
  625. // delete[] r_trg;
  626. // delete[] v_src;
  627. // delete[] k_out;
  628. }
  629. // Laplace double layer potential.
  630. template <class T>
  631. void laplace_dbl_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  632. #ifndef __MIC__
  633. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(19*dof));
  634. #ifdef USE_SSE
  635. if(dof==1){
  636. laplaceDblSSEShuffle(src_cnt, trg_cnt, r_src, r_trg, v_src, k_out, mem_mgr);
  637. return;
  638. }
  639. #endif
  640. #endif
  641. const T OOFP = -1.0/(4.0*M_PI);
  642. for(int t=0;t<trg_cnt;t++){
  643. for(int i=0;i<dof;i++){
  644. T p=0;
  645. for(int s=0;s<src_cnt;s++){
  646. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  647. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  648. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  649. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  650. if (invR!=0) invR = 1.0/sqrt(invR);
  651. p = v_src[(s*dof+i)*4+3]*invR*invR*invR;
  652. k_out[t*dof+i] += p*OOFP*( dX_reg*v_src[(s*dof+i)*4+0] +
  653. dY_reg*v_src[(s*dof+i)*4+1] +
  654. dZ_reg*v_src[(s*dof+i)*4+2] );
  655. }
  656. }
  657. }
  658. }
  659. // Laplace grdient kernel.
  660. template <class T>
  661. void laplace_grad(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  662. #ifndef __MIC__
  663. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(10+12*dof));
  664. #ifdef USE_SSE
  665. if(dof==1){
  666. laplaceGradSSEShuffle(src_cnt, trg_cnt, r_src, r_trg, v_src, k_out, mem_mgr);
  667. return;
  668. }
  669. #endif
  670. #endif
  671. const T OOFP = -1.0/(4.0*M_PI);
  672. if(dof==1){
  673. for(int t=0;t<trg_cnt;t++){
  674. T p=0;
  675. for(int s=0;s<src_cnt;s++){
  676. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  677. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  678. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  679. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  680. if (invR!=0) invR = 1.0/sqrt(invR);
  681. p = v_src[s]*invR*invR*invR;
  682. k_out[(t)*3+0] += p*OOFP*dX_reg;
  683. k_out[(t)*3+1] += p*OOFP*dY_reg;
  684. k_out[(t)*3+2] += p*OOFP*dZ_reg;
  685. }
  686. }
  687. }else if(dof==2){
  688. for(int t=0;t<trg_cnt;t++){
  689. T p=0;
  690. for(int s=0;s<src_cnt;s++){
  691. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  692. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  693. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  694. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  695. if (invR!=0) invR = 1.0/sqrt(invR);
  696. p = v_src[s*dof+0]*invR*invR*invR;
  697. k_out[(t*dof+0)*3+0] += p*OOFP*dX_reg;
  698. k_out[(t*dof+0)*3+1] += p*OOFP*dY_reg;
  699. k_out[(t*dof+0)*3+2] += p*OOFP*dZ_reg;
  700. p = v_src[s*dof+1]*invR*invR*invR;
  701. k_out[(t*dof+1)*3+0] += p*OOFP*dX_reg;
  702. k_out[(t*dof+1)*3+1] += p*OOFP*dY_reg;
  703. k_out[(t*dof+1)*3+2] += p*OOFP*dZ_reg;
  704. }
  705. }
  706. }else if(dof==3){
  707. for(int t=0;t<trg_cnt;t++){
  708. T p=0;
  709. for(int s=0;s<src_cnt;s++){
  710. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  711. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  712. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  713. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  714. if (invR!=0) invR = 1.0/sqrt(invR);
  715. p = v_src[s*dof+0]*invR*invR*invR;
  716. k_out[(t*dof+0)*3+0] += p*OOFP*dX_reg;
  717. k_out[(t*dof+0)*3+1] += p*OOFP*dY_reg;
  718. k_out[(t*dof+0)*3+2] += p*OOFP*dZ_reg;
  719. p = v_src[s*dof+1]*invR*invR*invR;
  720. k_out[(t*dof+1)*3+0] += p*OOFP*dX_reg;
  721. k_out[(t*dof+1)*3+1] += p*OOFP*dY_reg;
  722. k_out[(t*dof+1)*3+2] += p*OOFP*dZ_reg;
  723. p = v_src[s*dof+2]*invR*invR*invR;
  724. k_out[(t*dof+2)*3+0] += p*OOFP*dX_reg;
  725. k_out[(t*dof+2)*3+1] += p*OOFP*dY_reg;
  726. k_out[(t*dof+2)*3+2] += p*OOFP*dZ_reg;
  727. }
  728. }
  729. }else{
  730. for(int t=0;t<trg_cnt;t++){
  731. for(int i=0;i<dof;i++){
  732. T p=0;
  733. for(int s=0;s<src_cnt;s++){
  734. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  735. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  736. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  737. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  738. if (invR!=0) invR = 1.0/sqrt(invR);
  739. p = v_src[s*dof+i]*invR*invR*invR;
  740. k_out[(t*dof+i)*3+0] += p*OOFP*dX_reg;
  741. k_out[(t*dof+i)*3+1] += p*OOFP*dY_reg;
  742. k_out[(t*dof+i)*3+2] += p*OOFP*dZ_reg;
  743. }
  744. }
  745. }
  746. }
  747. }
  748. ////////////////////////////////////////////////////////////////////////////////
  749. //////// STOKES KERNEL ////////
  750. ////////////////////////////////////////////////////////////////////////////////
  751. #ifndef __MIC__
  752. #ifdef USE_SSE
  753. namespace
  754. {
  755. #define IDEAL_ALIGNMENT 16
  756. #define SIMD_LEN (int)(IDEAL_ALIGNMENT / sizeof(double))
  757. #define DECL_SIMD_ALIGNED __declspec(align(IDEAL_ALIGNMENT))
  758. #define OOEP_R 1.0/(8.0 * M_PI)
  759. void stokesDirectVecSSE(
  760. const int ns,
  761. const int nt,
  762. const double *sx,
  763. const double *sy,
  764. const double *sz,
  765. const double *tx,
  766. const double *ty,
  767. const double *tz,
  768. const double *srcDen,
  769. double *trgVal,
  770. const double cof )
  771. {
  772. if ( size_t(sx)%IDEAL_ALIGNMENT || size_t(sy)%IDEAL_ALIGNMENT || size_t(sz)%IDEAL_ALIGNMENT )
  773. abort();
  774. double mu = cof;
  775. double OOEP = 1.0/(8.0*M_PI);
  776. __m128d tempx;
  777. __m128d tempy;
  778. __m128d tempz;
  779. double oomeu = 1/mu;
  780. double aux_arr[3*SIMD_LEN+1];
  781. double *tempvalx;
  782. double *tempvaly;
  783. double *tempvalz;
  784. if (size_t(aux_arr)%IDEAL_ALIGNMENT) // if aux_arr is misaligned
  785. {
  786. tempvalx = aux_arr + 1;
  787. if (size_t(tempvalx)%IDEAL_ALIGNMENT)
  788. abort();
  789. }
  790. else
  791. tempvalx = aux_arr;
  792. tempvaly=tempvalx+SIMD_LEN;
  793. tempvalz=tempvaly+SIMD_LEN;
  794. /*! One over eight pi */
  795. __m128d ooep = _mm_set1_pd (OOEP_R);
  796. __m128d half = _mm_set1_pd (0.5);
  797. __m128d opf = _mm_set1_pd (1.5);
  798. __m128d zero = _mm_setzero_pd ();
  799. __m128d oomu = _mm_set1_pd (1/mu);
  800. // loop over sources
  801. int i = 0;
  802. for (; i < nt; i++) {
  803. tempx = _mm_setzero_pd();
  804. tempy = _mm_setzero_pd();
  805. tempz = _mm_setzero_pd();
  806. __m128d txi = _mm_load1_pd (&tx[i]);
  807. __m128d tyi = _mm_load1_pd (&ty[i]);
  808. __m128d tzi = _mm_load1_pd (&tz[i]);
  809. int j = 0;
  810. // Load and calculate in groups of SIMD_LEN
  811. for (; j + SIMD_LEN <= ns; j+=SIMD_LEN) {
  812. __m128d sxj = _mm_load_pd (&sx[j]);
  813. __m128d syj = _mm_load_pd (&sy[j]);
  814. __m128d szj = _mm_load_pd (&sz[j]);
  815. __m128d sdenx = _mm_set_pd (srcDen[(j+1)*3], srcDen[j*3]);
  816. __m128d sdeny = _mm_set_pd (srcDen[(j+1)*3+1], srcDen[j*3+1]);
  817. __m128d sdenz = _mm_set_pd (srcDen[(j+1)*3+2], srcDen[j*3+2]);
  818. __m128d dX, dY, dZ;
  819. __m128d dR2;
  820. __m128d S;
  821. dX = _mm_sub_pd(txi , sxj);
  822. dY = _mm_sub_pd(tyi , syj);
  823. dZ = _mm_sub_pd(tzi , szj);
  824. sxj = _mm_mul_pd(dX, dX);
  825. syj = _mm_mul_pd(dY, dY);
  826. szj = _mm_mul_pd(dZ, dZ);
  827. dR2 = _mm_add_pd(sxj, syj);
  828. dR2 = _mm_add_pd(szj, dR2);
  829. __m128d temp = _mm_cmpeq_pd (dR2, zero);
  830. __m128d xhalf = _mm_mul_pd (half, dR2);
  831. __m128 dR2_s = _mm_cvtpd_ps(dR2);
  832. __m128 S_s = _mm_rsqrt_ps(dR2_s);
  833. __m128d S_d = _mm_cvtps_pd(S_s);
  834. // To handle the condition when src and trg coincide
  835. S_d = _mm_andnot_pd (temp, S_d);
  836. S = _mm_mul_pd (S_d, S_d);
  837. S = _mm_mul_pd (S, xhalf);
  838. S = _mm_sub_pd (opf, S);
  839. S = _mm_mul_pd (S, S_d);
  840. __m128d dotx = _mm_mul_pd (dX, sdenx);
  841. __m128d doty = _mm_mul_pd (dY, sdeny);
  842. __m128d dotz = _mm_mul_pd (dZ, sdenz);
  843. __m128d dot_sum = _mm_add_pd (dotx, doty);
  844. dot_sum = _mm_add_pd (dot_sum, dotz);
  845. dot_sum = _mm_mul_pd (dot_sum, S);
  846. dot_sum = _mm_mul_pd (dot_sum, S);
  847. dotx = _mm_mul_pd (dot_sum, dX);
  848. doty = _mm_mul_pd (dot_sum, dY);
  849. dotz = _mm_mul_pd (dot_sum, dZ);
  850. sdenx = _mm_add_pd (sdenx, dotx);
  851. sdeny = _mm_add_pd (sdeny, doty);
  852. sdenz = _mm_add_pd (sdenz, dotz);
  853. sdenx = _mm_mul_pd (sdenx, S);
  854. sdeny = _mm_mul_pd (sdeny, S);
  855. sdenz = _mm_mul_pd (sdenz, S);
  856. tempx = _mm_add_pd (sdenx, tempx);
  857. tempy = _mm_add_pd (sdeny, tempy);
  858. tempz = _mm_add_pd (sdenz, tempz);
  859. }
  860. tempx = _mm_mul_pd (tempx, ooep);
  861. tempy = _mm_mul_pd (tempy, ooep);
  862. tempz = _mm_mul_pd (tempz, ooep);
  863. tempx = _mm_mul_pd (tempx, oomu);
  864. tempy = _mm_mul_pd (tempy, oomu);
  865. tempz = _mm_mul_pd (tempz, oomu);
  866. _mm_store_pd(tempvalx, tempx);
  867. _mm_store_pd(tempvaly, tempy);
  868. _mm_store_pd(tempvalz, tempz);
  869. for (int k = 0; k < SIMD_LEN; k++) {
  870. trgVal[i*3] += tempvalx[k];
  871. trgVal[i*3+1] += tempvaly[k];
  872. trgVal[i*3+2] += tempvalz[k];
  873. }
  874. for (; j < ns; j++) {
  875. double x = tx[i] - sx[j];
  876. double y = ty[i] - sy[j];
  877. double z = tz[i] - sz[j];
  878. double r2 = x*x + y*y + z*z;
  879. double r = sqrt(r2);
  880. double invdr;
  881. if (r == 0)
  882. invdr = 0;
  883. else
  884. invdr = 1/r;
  885. double dot = (x*srcDen[j*3] + y*srcDen[j*3+1] + z*srcDen[j*3+2]) * invdr * invdr;
  886. double denx = srcDen[j*3] + dot*x;
  887. double deny = srcDen[j*3+1] + dot*y;
  888. double denz = srcDen[j*3+2] + dot*z;
  889. trgVal[i*3] += denx*invdr*OOEP*oomeu;
  890. trgVal[i*3+1] += deny*invdr*OOEP*oomeu;
  891. trgVal[i*3+2] += denz*invdr*OOEP*oomeu;
  892. }
  893. }
  894. return;
  895. }
  896. #undef OOEP_R
  897. #define OOFP_R 1.0/(4.0 * M_PI)
  898. void stokesPressureSSE(
  899. const int ns,
  900. const int nt,
  901. const double *sx,
  902. const double *sy,
  903. const double *sz,
  904. const double *tx,
  905. const double *ty,
  906. const double *tz,
  907. const double *srcDen,
  908. double *trgVal)
  909. {
  910. if ( size_t(sx)%IDEAL_ALIGNMENT || size_t(sy)%IDEAL_ALIGNMENT || size_t(sz)%IDEAL_ALIGNMENT )
  911. abort();
  912. double OOFP = 1.0/(4.0*M_PI);
  913. __m128d temp_press;
  914. double aux_arr[SIMD_LEN+1];
  915. double *tempval_press;
  916. if (size_t(aux_arr)%IDEAL_ALIGNMENT) // if aux_arr is misaligned
  917. {
  918. tempval_press = aux_arr + 1;
  919. if (size_t(tempval_press)%IDEAL_ALIGNMENT)
  920. abort();
  921. }
  922. else
  923. tempval_press = aux_arr;
  924. /*! One over eight pi */
  925. __m128d oofp = _mm_set1_pd (OOFP_R);
  926. __m128d half = _mm_set1_pd (0.5);
  927. __m128d opf = _mm_set1_pd (1.5);
  928. __m128d zero = _mm_setzero_pd ();
  929. // loop over sources
  930. int i = 0;
  931. for (; i < nt; i++) {
  932. temp_press = _mm_setzero_pd();
  933. __m128d txi = _mm_load1_pd (&tx[i]);
  934. __m128d tyi = _mm_load1_pd (&ty[i]);
  935. __m128d tzi = _mm_load1_pd (&tz[i]);
  936. int j = 0;
  937. // Load and calculate in groups of SIMD_LEN
  938. for (; j + SIMD_LEN <= ns; j+=SIMD_LEN) {
  939. __m128d sxj = _mm_load_pd (&sx[j]);
  940. __m128d syj = _mm_load_pd (&sy[j]);
  941. __m128d szj = _mm_load_pd (&sz[j]);
  942. __m128d sdenx = _mm_set_pd (srcDen[(j+1)*3], srcDen[j*3]);
  943. __m128d sdeny = _mm_set_pd (srcDen[(j+1)*3+1], srcDen[j*3+1]);
  944. __m128d sdenz = _mm_set_pd (srcDen[(j+1)*3+2], srcDen[j*3+2]);
  945. __m128d dX, dY, dZ;
  946. __m128d dR2;
  947. __m128d S;
  948. dX = _mm_sub_pd(txi , sxj);
  949. dY = _mm_sub_pd(tyi , syj);
  950. dZ = _mm_sub_pd(tzi , szj);
  951. sxj = _mm_mul_pd(dX, dX);
  952. syj = _mm_mul_pd(dY, dY);
  953. szj = _mm_mul_pd(dZ, dZ);
  954. dR2 = _mm_add_pd(sxj, syj);
  955. dR2 = _mm_add_pd(szj, dR2);
  956. __m128d temp = _mm_cmpeq_pd (dR2, zero);
  957. __m128d xhalf = _mm_mul_pd (half, dR2);
  958. __m128 dR2_s = _mm_cvtpd_ps(dR2);
  959. __m128 S_s = _mm_rsqrt_ps(dR2_s);
  960. __m128d S_d = _mm_cvtps_pd(S_s);
  961. // To handle the condition when src and trg coincide
  962. S_d = _mm_andnot_pd (temp, S_d);
  963. S = _mm_mul_pd (S_d, S_d);
  964. S = _mm_mul_pd (S, xhalf);
  965. S = _mm_sub_pd (opf, S);
  966. S = _mm_mul_pd (S, S_d);
  967. __m128d dotx = _mm_mul_pd (dX, sdenx);
  968. __m128d doty = _mm_mul_pd (dY, sdeny);
  969. __m128d dotz = _mm_mul_pd (dZ, sdenz);
  970. __m128d dot_sum = _mm_add_pd (dotx, doty);
  971. dot_sum = _mm_add_pd (dot_sum, dotz);
  972. dot_sum = _mm_mul_pd (dot_sum, S);
  973. dot_sum = _mm_mul_pd (dot_sum, S);
  974. dot_sum = _mm_mul_pd (dot_sum, S);
  975. temp_press = _mm_add_pd (dot_sum, temp_press);
  976. }
  977. temp_press = _mm_mul_pd (temp_press, oofp);
  978. _mm_store_pd(tempval_press, temp_press);
  979. for (int k = 0; k < SIMD_LEN; k++) {
  980. trgVal[i] += tempval_press[k];
  981. }
  982. for (; j < ns; j++) {
  983. double x = tx[i] - sx[j];
  984. double y = ty[i] - sy[j];
  985. double z = tz[i] - sz[j];
  986. double r2 = x*x + y*y + z*z;
  987. double r = sqrt(r2);
  988. double invdr;
  989. if (r == 0)
  990. invdr = 0;
  991. else
  992. invdr = 1/r;
  993. double dot = (x*srcDen[j*3] + y*srcDen[j*3+1] + z*srcDen[j*3+2]) * invdr * invdr * invdr;
  994. trgVal[i] += dot*OOFP;
  995. }
  996. }
  997. return;
  998. }
  999. #undef OOFP_R
  1000. #define TOFP_R -3.0/(4.0 * M_PI)
  1001. void stokesStressSSE(
  1002. const int ns,
  1003. const int nt,
  1004. const double *sx,
  1005. const double *sy,
  1006. const double *sz,
  1007. const double *tx,
  1008. const double *ty,
  1009. const double *tz,
  1010. const double *srcDen,
  1011. double *trgVal)
  1012. {
  1013. if ( size_t(sx)%IDEAL_ALIGNMENT || size_t(sy)%IDEAL_ALIGNMENT || size_t(sz)%IDEAL_ALIGNMENT )
  1014. abort();
  1015. double TOFP = -3.0/(4.0*M_PI);
  1016. __m128d tempxx; __m128d tempxy; __m128d tempxz;
  1017. __m128d tempyx; __m128d tempyy; __m128d tempyz;
  1018. __m128d tempzx; __m128d tempzy; __m128d tempzz;
  1019. double aux_arr[9*SIMD_LEN+1];
  1020. double *tempvalxx, *tempvalxy, *tempvalxz;
  1021. double *tempvalyx, *tempvalyy, *tempvalyz;
  1022. double *tempvalzx, *tempvalzy, *tempvalzz;
  1023. if (size_t(aux_arr)%IDEAL_ALIGNMENT) // if aux_arr is misaligned
  1024. {
  1025. tempvalxx = aux_arr + 1;
  1026. if (size_t(tempvalxx)%IDEAL_ALIGNMENT)
  1027. abort();
  1028. }
  1029. else
  1030. tempvalxx = aux_arr;
  1031. tempvalxy=tempvalxx+SIMD_LEN;
  1032. tempvalxz=tempvalxy+SIMD_LEN;
  1033. tempvalyx=tempvalxz+SIMD_LEN;
  1034. tempvalyy=tempvalyx+SIMD_LEN;
  1035. tempvalyz=tempvalyy+SIMD_LEN;
  1036. tempvalzx=tempvalyz+SIMD_LEN;
  1037. tempvalzy=tempvalzx+SIMD_LEN;
  1038. tempvalzz=tempvalzy+SIMD_LEN;
  1039. /*! One over eight pi */
  1040. __m128d tofp = _mm_set1_pd (TOFP_R);
  1041. __m128d half = _mm_set1_pd (0.5);
  1042. __m128d opf = _mm_set1_pd (1.5);
  1043. __m128d zero = _mm_setzero_pd ();
  1044. // loop over sources
  1045. int i = 0;
  1046. for (; i < nt; i++) {
  1047. tempxx = _mm_setzero_pd(); tempxy = _mm_setzero_pd(); tempxz = _mm_setzero_pd();
  1048. tempyx = _mm_setzero_pd(); tempyy = _mm_setzero_pd(); tempyz = _mm_setzero_pd();
  1049. tempzx = _mm_setzero_pd(); tempzy = _mm_setzero_pd(); tempzz = _mm_setzero_pd();
  1050. __m128d txi = _mm_load1_pd (&tx[i]);
  1051. __m128d tyi = _mm_load1_pd (&ty[i]);
  1052. __m128d tzi = _mm_load1_pd (&tz[i]);
  1053. int j = 0;
  1054. // Load and calculate in groups of SIMD_LEN
  1055. for (; j + SIMD_LEN <= ns; j+=SIMD_LEN) {
  1056. __m128d sxj = _mm_load_pd (&sx[j]);
  1057. __m128d syj = _mm_load_pd (&sy[j]);
  1058. __m128d szj = _mm_load_pd (&sz[j]);
  1059. __m128d sdenx = _mm_set_pd (srcDen[(j+1)*3], srcDen[j*3]);
  1060. __m128d sdeny = _mm_set_pd (srcDen[(j+1)*3+1], srcDen[j*3+1]);
  1061. __m128d sdenz = _mm_set_pd (srcDen[(j+1)*3+2], srcDen[j*3+2]);
  1062. __m128d dX, dY, dZ;
  1063. __m128d dR2;
  1064. __m128d S;
  1065. __m128d S2;
  1066. dX = _mm_sub_pd(txi , sxj);
  1067. dY = _mm_sub_pd(tyi , syj);
  1068. dZ = _mm_sub_pd(tzi , szj);
  1069. sxj = _mm_mul_pd(dX, dX);
  1070. syj = _mm_mul_pd(dY, dY);
  1071. szj = _mm_mul_pd(dZ, dZ);
  1072. dR2 = _mm_add_pd(sxj, syj);
  1073. dR2 = _mm_add_pd(szj, dR2);
  1074. __m128d temp = _mm_cmpeq_pd (dR2, zero);
  1075. __m128d xhalf = _mm_mul_pd (half, dR2);
  1076. __m128 dR2_s = _mm_cvtpd_ps(dR2);
  1077. __m128 S_s = _mm_rsqrt_ps(dR2_s);
  1078. __m128d S_d = _mm_cvtps_pd(S_s);
  1079. // To handle the condition when src and trg coincide
  1080. S_d = _mm_andnot_pd (temp, S_d);
  1081. S = _mm_mul_pd (S_d, S_d);
  1082. S = _mm_mul_pd (S, xhalf);
  1083. S = _mm_sub_pd (opf, S);
  1084. S = _mm_mul_pd (S, S_d);
  1085. S2 = _mm_mul_pd (S, S);
  1086. __m128d dotx = _mm_mul_pd (dX, sdenx);
  1087. __m128d doty = _mm_mul_pd (dY, sdeny);
  1088. __m128d dotz = _mm_mul_pd (dZ, sdenz);
  1089. __m128d dot_sum = _mm_add_pd (dotx, doty);
  1090. dot_sum = _mm_add_pd (dot_sum, dotz);
  1091. dot_sum = _mm_mul_pd (dot_sum, S);
  1092. dot_sum = _mm_mul_pd (dot_sum, S2);
  1093. dot_sum = _mm_mul_pd (dot_sum, S2);
  1094. dotx = _mm_mul_pd (dot_sum, dX);
  1095. doty = _mm_mul_pd (dot_sum, dY);
  1096. dotz = _mm_mul_pd (dot_sum, dZ);
  1097. tempxx = _mm_add_pd (_mm_mul_pd(dotx,dX), tempxx);
  1098. tempxy = _mm_add_pd (_mm_mul_pd(dotx,dY), tempxy);
  1099. tempxz = _mm_add_pd (_mm_mul_pd(dotx,dZ), tempxz);
  1100. tempyx = _mm_add_pd (_mm_mul_pd(doty,dX), tempyx);
  1101. tempyy = _mm_add_pd (_mm_mul_pd(doty,dY), tempyy);
  1102. tempyz = _mm_add_pd (_mm_mul_pd(doty,dZ), tempyz);
  1103. tempzx = _mm_add_pd (_mm_mul_pd(dotz,dX), tempzx);
  1104. tempzy = _mm_add_pd (_mm_mul_pd(dotz,dY), tempzy);
  1105. tempzz = _mm_add_pd (_mm_mul_pd(dotz,dZ), tempzz);
  1106. }
  1107. tempxx = _mm_mul_pd (tempxx, tofp);
  1108. tempxy = _mm_mul_pd (tempxy, tofp);
  1109. tempxz = _mm_mul_pd (tempxz, tofp);
  1110. tempyx = _mm_mul_pd (tempyx, tofp);
  1111. tempyy = _mm_mul_pd (tempyy, tofp);
  1112. tempyz = _mm_mul_pd (tempyz, tofp);
  1113. tempzx = _mm_mul_pd (tempzx, tofp);
  1114. tempzy = _mm_mul_pd (tempzy, tofp);
  1115. tempzz = _mm_mul_pd (tempzz, tofp);
  1116. _mm_store_pd(tempvalxx, tempxx); _mm_store_pd(tempvalxy, tempxy); _mm_store_pd(tempvalxz, tempxz);
  1117. _mm_store_pd(tempvalyx, tempyx); _mm_store_pd(tempvalyy, tempyy); _mm_store_pd(tempvalyz, tempyz);
  1118. _mm_store_pd(tempvalzx, tempzx); _mm_store_pd(tempvalzy, tempzy); _mm_store_pd(tempvalzz, tempzz);
  1119. for (int k = 0; k < SIMD_LEN; k++) {
  1120. trgVal[i*9 ] += tempvalxx[k];
  1121. trgVal[i*9+1] += tempvalxy[k];
  1122. trgVal[i*9+2] += tempvalxz[k];
  1123. trgVal[i*9+3] += tempvalyx[k];
  1124. trgVal[i*9+4] += tempvalyy[k];
  1125. trgVal[i*9+5] += tempvalyz[k];
  1126. trgVal[i*9+6] += tempvalzx[k];
  1127. trgVal[i*9+7] += tempvalzy[k];
  1128. trgVal[i*9+8] += tempvalzz[k];
  1129. }
  1130. for (; j < ns; j++) {
  1131. double x = tx[i] - sx[j];
  1132. double y = ty[i] - sy[j];
  1133. double z = tz[i] - sz[j];
  1134. double r2 = x*x + y*y + z*z;
  1135. double r = sqrt(r2);
  1136. double invdr;
  1137. if (r == 0)
  1138. invdr = 0;
  1139. else
  1140. invdr = 1/r;
  1141. double invdr2=invdr*invdr;
  1142. double dot = (x*srcDen[j*3] + y*srcDen[j*3+1] + z*srcDen[j*3+2]) * invdr2 * invdr2 * invdr;
  1143. double denx = dot*x;
  1144. double deny = dot*y;
  1145. double denz = dot*z;
  1146. trgVal[i*9 ] += denx*x*TOFP;
  1147. trgVal[i*9+1] += denx*y*TOFP;
  1148. trgVal[i*9+2] += denx*z*TOFP;
  1149. trgVal[i*9+3] += deny*x*TOFP;
  1150. trgVal[i*9+4] += deny*y*TOFP;
  1151. trgVal[i*9+5] += deny*z*TOFP;
  1152. trgVal[i*9+6] += denz*x*TOFP;
  1153. trgVal[i*9+7] += denz*y*TOFP;
  1154. trgVal[i*9+8] += denz*z*TOFP;
  1155. }
  1156. }
  1157. return;
  1158. }
  1159. #undef TOFP_R
  1160. #define OOEP_R 1.0/(8.0 * M_PI)
  1161. void stokesGradSSE(
  1162. const int ns,
  1163. const int nt,
  1164. const double *sx,
  1165. const double *sy,
  1166. const double *sz,
  1167. const double *tx,
  1168. const double *ty,
  1169. const double *tz,
  1170. const double *srcDen,
  1171. double *trgVal,
  1172. const double cof )
  1173. {
  1174. if ( size_t(sx)%IDEAL_ALIGNMENT || size_t(sy)%IDEAL_ALIGNMENT || size_t(sz)%IDEAL_ALIGNMENT )
  1175. abort();
  1176. double mu = cof;
  1177. double OOEP = 1.0/(8.0*M_PI);
  1178. __m128d tempxx; __m128d tempxy; __m128d tempxz;
  1179. __m128d tempyx; __m128d tempyy; __m128d tempyz;
  1180. __m128d tempzx; __m128d tempzy; __m128d tempzz;
  1181. double oomeu = 1/mu;
  1182. double aux_arr[9*SIMD_LEN+1];
  1183. double *tempvalxx, *tempvalxy, *tempvalxz;
  1184. double *tempvalyx, *tempvalyy, *tempvalyz;
  1185. double *tempvalzx, *tempvalzy, *tempvalzz;
  1186. if (size_t(aux_arr)%IDEAL_ALIGNMENT) // if aux_arr is misaligned
  1187. {
  1188. tempvalxx = aux_arr + 1;
  1189. if (size_t(tempvalxx)%IDEAL_ALIGNMENT)
  1190. abort();
  1191. }
  1192. else
  1193. tempvalxx = aux_arr;
  1194. tempvalxy=tempvalxx+SIMD_LEN;
  1195. tempvalxz=tempvalxy+SIMD_LEN;
  1196. tempvalyx=tempvalxz+SIMD_LEN;
  1197. tempvalyy=tempvalyx+SIMD_LEN;
  1198. tempvalyz=tempvalyy+SIMD_LEN;
  1199. tempvalzx=tempvalyz+SIMD_LEN;
  1200. tempvalzy=tempvalzx+SIMD_LEN;
  1201. tempvalzz=tempvalzy+SIMD_LEN;
  1202. /*! One over eight pi */
  1203. __m128d ooep = _mm_set1_pd (OOEP_R);
  1204. __m128d half = _mm_set1_pd (0.5);
  1205. __m128d opf = _mm_set1_pd (1.5);
  1206. __m128d three = _mm_set1_pd (3.0);
  1207. __m128d zero = _mm_setzero_pd ();
  1208. __m128d oomu = _mm_set1_pd (1/mu);
  1209. __m128d ooepmu = _mm_mul_pd(ooep,oomu);
  1210. // loop over sources
  1211. int i = 0;
  1212. for (; i < nt; i++) {
  1213. tempxx = _mm_setzero_pd(); tempxy = _mm_setzero_pd(); tempxz = _mm_setzero_pd();
  1214. tempyx = _mm_setzero_pd(); tempyy = _mm_setzero_pd(); tempyz = _mm_setzero_pd();
  1215. tempzx = _mm_setzero_pd(); tempzy = _mm_setzero_pd(); tempzz = _mm_setzero_pd();
  1216. __m128d txi = _mm_load1_pd (&tx[i]);
  1217. __m128d tyi = _mm_load1_pd (&ty[i]);
  1218. __m128d tzi = _mm_load1_pd (&tz[i]);
  1219. int j = 0;
  1220. // Load and calculate in groups of SIMD_LEN
  1221. for (; j + SIMD_LEN <= ns; j+=SIMD_LEN) {
  1222. __m128d sxj = _mm_load_pd (&sx[j]);
  1223. __m128d syj = _mm_load_pd (&sy[j]);
  1224. __m128d szj = _mm_load_pd (&sz[j]);
  1225. __m128d sdenx = _mm_set_pd (srcDen[(j+1)*3], srcDen[j*3]);
  1226. __m128d sdeny = _mm_set_pd (srcDen[(j+1)*3+1], srcDen[j*3+1]);
  1227. __m128d sdenz = _mm_set_pd (srcDen[(j+1)*3+2], srcDen[j*3+2]);
  1228. __m128d dX, dY, dZ;
  1229. __m128d dR2;
  1230. __m128d S;
  1231. __m128d S2;
  1232. __m128d S3;
  1233. dX = _mm_sub_pd(txi , sxj);
  1234. dY = _mm_sub_pd(tyi , syj);
  1235. dZ = _mm_sub_pd(tzi , szj);
  1236. sxj = _mm_mul_pd(dX, dX);
  1237. syj = _mm_mul_pd(dY, dY);
  1238. szj = _mm_mul_pd(dZ, dZ);
  1239. dR2 = _mm_add_pd(sxj, syj);
  1240. dR2 = _mm_add_pd(szj, dR2);
  1241. __m128d temp = _mm_cmpeq_pd (dR2, zero);
  1242. __m128d xhalf = _mm_mul_pd (half, dR2);
  1243. __m128 dR2_s = _mm_cvtpd_ps(dR2);
  1244. __m128 S_s = _mm_rsqrt_ps(dR2_s);
  1245. __m128d S_d = _mm_cvtps_pd(S_s);
  1246. // To handle the condition when src and trg coincide
  1247. S_d = _mm_andnot_pd (temp, S_d);
  1248. S = _mm_mul_pd (S_d, S_d);
  1249. S = _mm_mul_pd (S, xhalf);
  1250. S = _mm_sub_pd (opf, S);
  1251. S = _mm_mul_pd (S, S_d);
  1252. S2 = _mm_mul_pd (S, S);
  1253. S3 = _mm_mul_pd (S2, S);
  1254. __m128d dotx = _mm_mul_pd (dX, sdenx);
  1255. __m128d doty = _mm_mul_pd (dY, sdeny);
  1256. __m128d dotz = _mm_mul_pd (dZ, sdenz);
  1257. __m128d dot_sum = _mm_add_pd (dotx, doty);
  1258. dot_sum = _mm_add_pd (dot_sum, dotz);
  1259. dot_sum = _mm_mul_pd (dot_sum, S2);
  1260. tempxx = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dX, sdenx), _mm_mul_pd(sdenx, dX)), _mm_mul_pd(dot_sum, _mm_sub_pd(dR2 , _mm_mul_pd(three, _mm_mul_pd(dX, dX)))))),tempxx);
  1261. tempxy = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dY, sdenx), _mm_mul_pd(sdeny, dX)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dY, dX)))))),tempxy);
  1262. tempxz = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dZ, sdenx), _mm_mul_pd(sdenz, dX)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dZ, dX)))))),tempxz);
  1263. tempyx = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dX, sdeny), _mm_mul_pd(sdenx, dY)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dX, dY)))))),tempyx);
  1264. tempyy = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dY, sdeny), _mm_mul_pd(sdeny, dY)), _mm_mul_pd(dot_sum, _mm_sub_pd(dR2 , _mm_mul_pd(three, _mm_mul_pd(dY, dY)))))),tempyy);
  1265. tempyz = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dZ, sdeny), _mm_mul_pd(sdenz, dY)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dZ, dY)))))),tempyz);
  1266. tempzx = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dX, sdenz), _mm_mul_pd(sdenx, dZ)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dX, dZ)))))),tempzx);
  1267. tempzy = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dY, sdenz), _mm_mul_pd(sdeny, dZ)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dY, dZ)))))),tempzy);
  1268. tempzz = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dZ, sdenz), _mm_mul_pd(sdenz, dZ)), _mm_mul_pd(dot_sum, _mm_sub_pd(dR2 , _mm_mul_pd(three, _mm_mul_pd(dZ, dZ)))))),tempzz);
  1269. }
  1270. tempxx = _mm_mul_pd (tempxx, ooepmu);
  1271. tempxy = _mm_mul_pd (tempxy, ooepmu);
  1272. tempxz = _mm_mul_pd (tempxz, ooepmu);
  1273. tempyx = _mm_mul_pd (tempyx, ooepmu);
  1274. tempyy = _mm_mul_pd (tempyy, ooepmu);
  1275. tempyz = _mm_mul_pd (tempyz, ooepmu);
  1276. tempzx = _mm_mul_pd (tempzx, ooepmu);
  1277. tempzy = _mm_mul_pd (tempzy, ooepmu);
  1278. tempzz = _mm_mul_pd (tempzz, ooepmu);
  1279. _mm_store_pd(tempvalxx, tempxx); _mm_store_pd(tempvalxy, tempxy); _mm_store_pd(tempvalxz, tempxz);
  1280. _mm_store_pd(tempvalyx, tempyx); _mm_store_pd(tempvalyy, tempyy); _mm_store_pd(tempvalyz, tempyz);
  1281. _mm_store_pd(tempvalzx, tempzx); _mm_store_pd(tempvalzy, tempzy); _mm_store_pd(tempvalzz, tempzz);
  1282. for (int k = 0; k < SIMD_LEN; k++) {
  1283. trgVal[i*9 ] += tempvalxx[k];
  1284. trgVal[i*9+1] += tempvalxy[k];
  1285. trgVal[i*9+2] += tempvalxz[k];
  1286. trgVal[i*9+3] += tempvalyx[k];
  1287. trgVal[i*9+4] += tempvalyy[k];
  1288. trgVal[i*9+5] += tempvalyz[k];
  1289. trgVal[i*9+6] += tempvalzx[k];
  1290. trgVal[i*9+7] += tempvalzy[k];
  1291. trgVal[i*9+8] += tempvalzz[k];
  1292. }
  1293. for (; j < ns; j++) {
  1294. double x = tx[i] - sx[j];
  1295. double y = ty[i] - sy[j];
  1296. double z = tz[i] - sz[j];
  1297. double r2 = x*x + y*y + z*z;
  1298. double r = sqrt(r2);
  1299. double invdr;
  1300. if (r == 0)
  1301. invdr = 0;
  1302. else
  1303. invdr = 1/r;
  1304. double invdr2=invdr*invdr;
  1305. double invdr3=invdr2*invdr;
  1306. double dot = (x*srcDen[j*3] + y*srcDen[j*3+1] + z*srcDen[j*3+2]);
  1307. trgVal[i*9 ] += OOEP*oomeu*invdr3*( x*srcDen[j*3 ] - srcDen[j*3 ]*x + dot*(1-3*x*x*invdr2) );
  1308. trgVal[i*9+1] += OOEP*oomeu*invdr3*( y*srcDen[j*3 ] - srcDen[j*3+1]*x + dot*(0-3*y*x*invdr2) );
  1309. trgVal[i*9+2] += OOEP*oomeu*invdr3*( z*srcDen[j*3 ] - srcDen[j*3+2]*x + dot*(0-3*z*x*invdr2) );
  1310. trgVal[i*9+3] += OOEP*oomeu*invdr3*( x*srcDen[j*3+1] - srcDen[j*3 ]*y + dot*(0-3*x*y*invdr2) );
  1311. trgVal[i*9+4] += OOEP*oomeu*invdr3*( y*srcDen[j*3+1] - srcDen[j*3+1]*y + dot*(1-3*y*y*invdr2) );
  1312. trgVal[i*9+5] += OOEP*oomeu*invdr3*( z*srcDen[j*3+1] - srcDen[j*3+2]*y + dot*(0-3*z*y*invdr2) );
  1313. trgVal[i*9+6] += OOEP*oomeu*invdr3*( x*srcDen[j*3+2] - srcDen[j*3 ]*z + dot*(0-3*x*z*invdr2) );
  1314. trgVal[i*9+7] += OOEP*oomeu*invdr3*( y*srcDen[j*3+2] - srcDen[j*3+1]*z + dot*(0-3*y*z*invdr2) );
  1315. trgVal[i*9+8] += OOEP*oomeu*invdr3*( z*srcDen[j*3+2] - srcDen[j*3+2]*z + dot*(1-3*z*z*invdr2) );
  1316. }
  1317. }
  1318. return;
  1319. }
  1320. #undef OOEP_R
  1321. #undef SIMD_LEN
  1322. #define X(s,k) (s)[(k)*COORD_DIM]
  1323. #define Y(s,k) (s)[(k)*COORD_DIM+1]
  1324. #define Z(s,k) (s)[(k)*COORD_DIM+2]
  1325. void stokesDirectSSEShuffle(const int ns, const int nt, double const src[], double const trg[], double const den[], double pot[], const double kernel_coef, mem::MemoryManager* mem_mgr=NULL)
  1326. {
  1327. std::vector<double> xs(ns+1); std::vector<double> xt(nt);
  1328. std::vector<double> ys(ns+1); std::vector<double> yt(nt);
  1329. std::vector<double> zs(ns+1); std::vector<double> zt(nt);
  1330. int x_shift = size_t(&xs[0]) % IDEAL_ALIGNMENT ? 1:0;
  1331. int y_shift = size_t(&ys[0]) % IDEAL_ALIGNMENT ? 1:0;
  1332. int z_shift = size_t(&zs[0]) % IDEAL_ALIGNMENT ? 1:0;
  1333. //1. reshuffle memory
  1334. for (int k =0;k<ns;k++){
  1335. xs[k+x_shift]=X(src,k);
  1336. ys[k+y_shift]=Y(src,k);
  1337. zs[k+z_shift]=Z(src,k);
  1338. }
  1339. for (int k=0;k<nt;k++){
  1340. xt[k]=X(trg,k);
  1341. yt[k]=Y(trg,k);
  1342. zt[k]=Z(trg,k);
  1343. }
  1344. //2. perform caclulation
  1345. stokesDirectVecSSE(ns,nt,&xs[x_shift],&ys[y_shift],&zs[z_shift],&xt[0],&yt[0],&zt[0],den,pot,kernel_coef);
  1346. return;
  1347. }
  1348. void stokesPressureSSEShuffle(const int ns, const int nt, double const src[], double const trg[], double const den[], double pot[], mem::MemoryManager* mem_mgr=NULL)
  1349. {
  1350. std::vector<double> xs(ns+1); std::vector<double> xt(nt);
  1351. std::vector<double> ys(ns+1); std::vector<double> yt(nt);
  1352. std::vector<double> zs(ns+1); std::vector<double> zt(nt);
  1353. int x_shift = size_t(&xs[0]) % IDEAL_ALIGNMENT ? 1:0;
  1354. int y_shift = size_t(&ys[0]) % IDEAL_ALIGNMENT ? 1:0;
  1355. int z_shift = size_t(&zs[0]) % IDEAL_ALIGNMENT ? 1:0;
  1356. //1. reshuffle memory
  1357. for (int k =0;k<ns;k++){
  1358. xs[k+x_shift]=X(src,k);
  1359. ys[k+y_shift]=Y(src,k);
  1360. zs[k+z_shift]=Z(src,k);
  1361. }
  1362. for (int k=0;k<nt;k++){
  1363. xt[k]=X(trg,k);
  1364. yt[k]=Y(trg,k);
  1365. zt[k]=Z(trg,k);
  1366. }
  1367. //2. perform caclulation
  1368. stokesPressureSSE(ns,nt,&xs[x_shift],&ys[y_shift],&zs[z_shift],&xt[0],&yt[0],&zt[0],den,pot);
  1369. return;
  1370. }
  1371. void stokesStressSSEShuffle(const int ns, const int nt, double const src[], double const trg[], double const den[], double pot[], mem::MemoryManager* mem_mgr=NULL)
  1372. {
  1373. std::vector<double> xs(ns+1); std::vector<double> xt(nt);
  1374. std::vector<double> ys(ns+1); std::vector<double> yt(nt);
  1375. std::vector<double> zs(ns+1); std::vector<double> zt(nt);
  1376. int x_shift = size_t(&xs[0]) % IDEAL_ALIGNMENT ? 1:0;
  1377. int y_shift = size_t(&ys[0]) % IDEAL_ALIGNMENT ? 1:0;
  1378. int z_shift = size_t(&zs[0]) % IDEAL_ALIGNMENT ? 1:0;
  1379. //1. reshuffle memory
  1380. for (int k =0;k<ns;k++){
  1381. xs[k+x_shift]=X(src,k);
  1382. ys[k+y_shift]=Y(src,k);
  1383. zs[k+z_shift]=Z(src,k);
  1384. }
  1385. for (int k=0;k<nt;k++){
  1386. xt[k]=X(trg,k);
  1387. yt[k]=Y(trg,k);
  1388. zt[k]=Z(trg,k);
  1389. }
  1390. //2. perform caclulation
  1391. stokesStressSSE(ns,nt,&xs[x_shift],&ys[y_shift],&zs[z_shift],&xt[0],&yt[0],&zt[0],den,pot);
  1392. return;
  1393. }
  1394. void stokesGradSSEShuffle(const int ns, const int nt, double const src[], double const trg[], double const den[], double pot[], const double kernel_coef, mem::MemoryManager* mem_mgr=NULL)
  1395. {
  1396. std::vector<double> xs(ns+1); std::vector<double> xt(nt);
  1397. std::vector<double> ys(ns+1); std::vector<double> yt(nt);
  1398. std::vector<double> zs(ns+1); std::vector<double> zt(nt);
  1399. int x_shift = size_t(&xs[0]) % IDEAL_ALIGNMENT ? 1:0;
  1400. int y_shift = size_t(&ys[0]) % IDEAL_ALIGNMENT ? 1:0;
  1401. int z_shift = size_t(&zs[0]) % IDEAL_ALIGNMENT ? 1:0;
  1402. //1. reshuffle memory
  1403. for (int k =0;k<ns;k++){
  1404. xs[k+x_shift]=X(src,k);
  1405. ys[k+y_shift]=Y(src,k);
  1406. zs[k+z_shift]=Z(src,k);
  1407. }
  1408. for (int k=0;k<nt;k++){
  1409. xt[k]=X(trg,k);
  1410. yt[k]=Y(trg,k);
  1411. zt[k]=Z(trg,k);
  1412. }
  1413. //2. perform caclulation
  1414. stokesGradSSE(ns,nt,&xs[x_shift],&ys[y_shift],&zs[z_shift],&xt[0],&yt[0],&zt[0],den,pot,kernel_coef);
  1415. return;
  1416. }
  1417. #undef X
  1418. #undef Y
  1419. #undef Z
  1420. #undef IDEAL_ALIGNMENT
  1421. #undef DECL_SIMD_ALIGNED
  1422. }
  1423. #endif
  1424. #endif
  1425. /**
  1426. * \brief Green's function for the Stokes's equation. Kernel tensor
  1427. * dimension = 3x3.
  1428. */
  1429. template <class T>
  1430. void stokes_vel(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1431. const T mu=1.0;
  1432. #ifndef __MIC__
  1433. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(28*dof));
  1434. #ifdef USE_SSE
  1435. stokesDirectSSEShuffle(src_cnt, trg_cnt, r_src, r_trg, v_src_, k_out, mu, mem_mgr);
  1436. return;
  1437. #endif
  1438. #endif
  1439. const T OOEPMU = 1.0/(8.0*M_PI*mu);
  1440. for(int t=0;t<trg_cnt;t++){
  1441. for(int i=0;i<dof;i++){
  1442. T p[3]={0,0,0};
  1443. for(int s=0;s<src_cnt;s++){
  1444. T dR[3]={r_trg[3*t ]-r_src[3*s ],
  1445. r_trg[3*t+1]-r_src[3*s+1],
  1446. r_trg[3*t+2]-r_src[3*s+2]};
  1447. T R = (dR[0]*dR[0]+dR[1]*dR[1]+dR[2]*dR[2]);
  1448. if (R!=0){
  1449. T invR2=1.0/R;
  1450. T invR=sqrt(invR2);
  1451. T v_src[3]={v_src_[(s*dof+i)*3 ],
  1452. v_src_[(s*dof+i)*3+1],
  1453. v_src_[(s*dof+i)*3+2]};
  1454. T inner_prod=(v_src[0]*dR[0] +
  1455. v_src[1]*dR[1] +
  1456. v_src[2]*dR[2])* invR2;
  1457. p[0] += (v_src[0] + dR[0]*inner_prod)*invR;
  1458. p[1] += (v_src[1] + dR[1]*inner_prod)*invR;
  1459. p[2] += (v_src[2] + dR[2]*inner_prod)*invR;
  1460. }
  1461. }
  1462. k_out[(t*dof+i)*3+0] += p[0]*OOEPMU;
  1463. k_out[(t*dof+i)*3+1] += p[1]*OOEPMU;
  1464. k_out[(t*dof+i)*3+2] += p[2]*OOEPMU;
  1465. }
  1466. }
  1467. }
  1468. template <class T>
  1469. void stokes_dbl_vel(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1470. #ifndef __MIC__
  1471. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(32*dof));
  1472. #endif
  1473. const T mu=1.0;
  1474. const T SOEPMU = -6.0/(8.0*M_PI*mu);
  1475. for(int t=0;t<trg_cnt;t++){
  1476. for(int i=0;i<dof;i++){
  1477. T p[3]={0,0,0};
  1478. for(int s=0;s<src_cnt;s++){
  1479. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  1480. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  1481. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  1482. T R = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  1483. if (R!=0){
  1484. R = sqrt(R);
  1485. T invR=1.0/R;
  1486. T invR5=invR*invR*invR*invR*invR;
  1487. T inner_prod =(v_src[(s*dof+i)*6+0]*dX_reg +
  1488. v_src[(s*dof+i)*6+1]*dY_reg +
  1489. v_src[(s*dof+i)*6+2]*dZ_reg)*
  1490. (v_src[(s*dof+i)*6+3]*dX_reg +
  1491. v_src[(s*dof+i)*6+4]*dY_reg +
  1492. v_src[(s*dof+i)*6+5]*dZ_reg)*invR5;
  1493. p[0] += dX_reg*inner_prod;
  1494. p[1] += dY_reg*inner_prod;
  1495. p[2] += dZ_reg*inner_prod;
  1496. }
  1497. }
  1498. k_out[(t*dof+i)*3+0] += p[0]*SOEPMU;
  1499. k_out[(t*dof+i)*3+1] += p[1]*SOEPMU;
  1500. k_out[(t*dof+i)*3+2] += p[2]*SOEPMU;
  1501. }
  1502. }
  1503. }
  1504. template <class T>
  1505. void stokes_press(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1506. #ifndef __MIC__
  1507. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(17*dof));
  1508. #ifdef USE_SSE
  1509. stokesPressureSSEShuffle(src_cnt, trg_cnt, r_src, r_trg, v_src_, k_out, mem_mgr);
  1510. return;
  1511. #endif
  1512. #endif
  1513. const T OOFP = 1.0/(4.0*M_PI);
  1514. for(int t=0;t<trg_cnt;t++){
  1515. for(int i=0;i<dof;i++){
  1516. T p=0;
  1517. for(int s=0;s<src_cnt;s++){
  1518. T dR[3]={r_trg[3*t ]-r_src[3*s ],
  1519. r_trg[3*t+1]-r_src[3*s+1],
  1520. r_trg[3*t+2]-r_src[3*s+2]};
  1521. T R = (dR[0]*dR[0]+dR[1]*dR[1]+dR[2]*dR[2]);
  1522. if (R!=0){
  1523. T invR2=1.0/R;
  1524. T invR=sqrt(invR2);
  1525. T invR3=invR2*invR;
  1526. T v_src[3]={v_src_[(s*dof+i)*3 ],
  1527. v_src_[(s*dof+i)*3+1],
  1528. v_src_[(s*dof+i)*3+2]};
  1529. T inner_prod=(v_src[0]*dR[0] +
  1530. v_src[1]*dR[1] +
  1531. v_src[2]*dR[2])* invR3;
  1532. p += inner_prod;
  1533. }
  1534. }
  1535. k_out[t*dof+i] += p*OOFP;
  1536. }
  1537. }
  1538. }
  1539. template <class T>
  1540. void stokes_stress(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1541. #ifndef __MIC__
  1542. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(45*dof));
  1543. #ifdef USE_SSE
  1544. stokesStressSSEShuffle(src_cnt, trg_cnt, r_src, r_trg, v_src_, k_out, mem_mgr);
  1545. return;
  1546. #endif
  1547. #endif
  1548. const T TOFP = -3.0/(4.0*M_PI);
  1549. for(int t=0;t<trg_cnt;t++){
  1550. for(int i=0;i<dof;i++){
  1551. T p[9]={0,0,0,
  1552. 0,0,0,
  1553. 0,0,0};
  1554. for(int s=0;s<src_cnt;s++){
  1555. T dR[3]={r_trg[3*t ]-r_src[3*s ],
  1556. r_trg[3*t+1]-r_src[3*s+1],
  1557. r_trg[3*t+2]-r_src[3*s+2]};
  1558. T R = (dR[0]*dR[0]+dR[1]*dR[1]+dR[2]*dR[2]);
  1559. if (R!=0){
  1560. T invR2=1.0/R;
  1561. T invR=sqrt(invR2);
  1562. T invR3=invR2*invR;
  1563. T invR5=invR3*invR2;
  1564. T v_src[3]={v_src_[(s*dof+i)*3 ],
  1565. v_src_[(s*dof+i)*3+1],
  1566. v_src_[(s*dof+i)*3+2]};
  1567. T inner_prod=(v_src[0]*dR[0] +
  1568. v_src[1]*dR[1] +
  1569. v_src[2]*dR[2])* invR5;
  1570. p[0] += inner_prod*dR[0]*dR[0]; p[1] += inner_prod*dR[1]*dR[0]; p[2] += inner_prod*dR[2]*dR[0];
  1571. p[3] += inner_prod*dR[0]*dR[1]; p[4] += inner_prod*dR[1]*dR[1]; p[5] += inner_prod*dR[2]*dR[1];
  1572. p[6] += inner_prod*dR[0]*dR[2]; p[7] += inner_prod*dR[1]*dR[2]; p[8] += inner_prod*dR[2]*dR[2];
  1573. }
  1574. }
  1575. k_out[(t*dof+i)*9+0] += p[0]*TOFP;
  1576. k_out[(t*dof+i)*9+1] += p[1]*TOFP;
  1577. k_out[(t*dof+i)*9+2] += p[2]*TOFP;
  1578. k_out[(t*dof+i)*9+3] += p[3]*TOFP;
  1579. k_out[(t*dof+i)*9+4] += p[4]*TOFP;
  1580. k_out[(t*dof+i)*9+5] += p[5]*TOFP;
  1581. k_out[(t*dof+i)*9+6] += p[6]*TOFP;
  1582. k_out[(t*dof+i)*9+7] += p[7]*TOFP;
  1583. k_out[(t*dof+i)*9+8] += p[8]*TOFP;
  1584. }
  1585. }
  1586. }
  1587. template <class T>
  1588. void stokes_grad(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1589. const T mu=1.0;
  1590. #ifndef __MIC__
  1591. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(89*dof));
  1592. #ifdef USE_SSE
  1593. stokesGradSSEShuffle(src_cnt, trg_cnt, r_src, r_trg, v_src_, k_out, mu, mem_mgr);
  1594. return;
  1595. #endif
  1596. #endif
  1597. const T OOEPMU = 1.0/(8.0*M_PI*mu);
  1598. for(int t=0;t<trg_cnt;t++){
  1599. for(int i=0;i<dof;i++){
  1600. T p[9]={0,0,0,
  1601. 0,0,0,
  1602. 0,0,0};
  1603. for(int s=0;s<src_cnt;s++){
  1604. T dR[3]={r_trg[3*t ]-r_src[3*s ],
  1605. r_trg[3*t+1]-r_src[3*s+1],
  1606. r_trg[3*t+2]-r_src[3*s+2]};
  1607. T R = (dR[0]*dR[0]+dR[1]*dR[1]+dR[2]*dR[2]);
  1608. if (R!=0){
  1609. T invR2=1.0/R;
  1610. T invR=sqrt(invR2);
  1611. T invR3=invR2*invR;
  1612. T v_src[3]={v_src_[(s*dof+i)*3 ],
  1613. v_src_[(s*dof+i)*3+1],
  1614. v_src_[(s*dof+i)*3+2]};
  1615. T inner_prod=(v_src[0]*dR[0] +
  1616. v_src[1]*dR[1] +
  1617. v_src[2]*dR[2]);
  1618. p[0] += ( inner_prod*(1-3*dR[0]*dR[0]*invR2))*invR3; //6
  1619. p[1] += (dR[1]*v_src[0]-v_src[1]*dR[0]+inner_prod*( -3*dR[1]*dR[0]*invR2))*invR3; //9
  1620. p[2] += (dR[2]*v_src[0]-v_src[2]*dR[0]+inner_prod*( -3*dR[2]*dR[0]*invR2))*invR3;
  1621. p[3] += (dR[0]*v_src[1]-v_src[0]*dR[1]+inner_prod*( -3*dR[0]*dR[1]*invR2))*invR3;
  1622. p[4] += ( inner_prod*(1-3*dR[1]*dR[1]*invR2))*invR3;
  1623. p[5] += (dR[2]*v_src[1]-v_src[2]*dR[1]+inner_prod*( -3*dR[2]*dR[1]*invR2))*invR3;
  1624. p[6] += (dR[0]*v_src[2]-v_src[0]*dR[2]+inner_prod*( -3*dR[0]*dR[2]*invR2))*invR3;
  1625. p[7] += (dR[1]*v_src[2]-v_src[1]*dR[2]+inner_prod*( -3*dR[1]*dR[2]*invR2))*invR3;
  1626. p[8] += ( inner_prod*(1-3*dR[2]*dR[2]*invR2))*invR3;
  1627. }
  1628. }
  1629. k_out[(t*dof+i)*9+0] += p[0]*OOEPMU;
  1630. k_out[(t*dof+i)*9+1] += p[1]*OOEPMU;
  1631. k_out[(t*dof+i)*9+2] += p[2]*OOEPMU;
  1632. k_out[(t*dof+i)*9+3] += p[3]*OOEPMU;
  1633. k_out[(t*dof+i)*9+4] += p[4]*OOEPMU;
  1634. k_out[(t*dof+i)*9+5] += p[5]*OOEPMU;
  1635. k_out[(t*dof+i)*9+6] += p[6]*OOEPMU;
  1636. k_out[(t*dof+i)*9+7] += p[7]*OOEPMU;
  1637. k_out[(t*dof+i)*9+8] += p[8]*OOEPMU;
  1638. }
  1639. }
  1640. }
  1641. ////////////////////////////////////////////////////////////////////////////////
  1642. //////// BIOT-SAVART KERNEL ////////
  1643. ////////////////////////////////////////////////////////////////////////////////
  1644. template <class T>
  1645. void biot_savart(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1646. #ifndef __MIC__
  1647. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(26*dof));
  1648. #endif
  1649. const T OOFP = -1.0/(4.0*M_PI);
  1650. for(int t=0;t<trg_cnt;t++){
  1651. for(int i=0;i<dof;i++){
  1652. T p[3]={0,0,0};
  1653. for(int s=0;s<src_cnt;s++){
  1654. T dR[3]={r_trg[3*t ]-r_src[3*s ],
  1655. r_trg[3*t+1]-r_src[3*s+1],
  1656. r_trg[3*t+2]-r_src[3*s+2]};
  1657. T R2 = (dR[0]*dR[0]+dR[1]*dR[1]+dR[2]*dR[2]);
  1658. if (R2!=0){
  1659. T invR2=1.0/R2;
  1660. T invR=sqrt(invR2);
  1661. T invR3=invR*invR2;
  1662. T v_src[3]={v_src_[(s*dof+i)*3 ],
  1663. v_src_[(s*dof+i)*3+1],
  1664. v_src_[(s*dof+i)*3+2]};
  1665. p[0] -= (v_src[1]*dR[2]-v_src[2]*dR[1])*invR3;
  1666. p[1] -= (v_src[2]*dR[0]-v_src[0]*dR[2])*invR3;
  1667. p[2] -= (v_src[0]*dR[1]-v_src[1]*dR[0])*invR3;
  1668. }
  1669. }
  1670. k_out[(t*dof+i)*3+0] += p[0]*OOFP;
  1671. k_out[(t*dof+i)*3+1] += p[1]*OOFP;
  1672. k_out[(t*dof+i)*3+2] += p[2]*OOFP;
  1673. }
  1674. }
  1675. }
  1676. ////////////////////////////////////////////////////////////////////////////////
  1677. //////// HELMHOLTZ KERNEL ////////
  1678. ////////////////////////////////////////////////////////////////////////////////
  1679. /**
  1680. * \brief Green's function for the Helmholtz's equation. Kernel tensor
  1681. * dimension = 2x2.
  1682. */
  1683. template <class T>
  1684. void helmholtz_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1685. #ifndef __MIC__
  1686. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(24*dof));
  1687. #endif
  1688. const T mu = (20.0*M_PI);
  1689. for(int t=0;t<trg_cnt;t++){
  1690. for(int i=0;i<dof;i++){
  1691. T p[2]={0,0};
  1692. for(int s=0;s<src_cnt;s++){
  1693. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  1694. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  1695. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  1696. T R = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  1697. if (R!=0){
  1698. R = sqrt(R);
  1699. T invR=1.0/R;
  1700. T G[2]={cos(mu*R)*invR, sin(mu*R)*invR};
  1701. p[0] += v_src[(s*dof+i)*2+0]*G[0] - v_src[(s*dof+i)*2+1]*G[1];
  1702. p[1] += v_src[(s*dof+i)*2+0]*G[1] + v_src[(s*dof+i)*2+1]*G[0];
  1703. }
  1704. }
  1705. k_out[(t*dof+i)*2+0] += p[0];
  1706. k_out[(t*dof+i)*2+1] += p[1];
  1707. }
  1708. }
  1709. }
  1710. template <class T>
  1711. void helmholtz_grad(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1712. //TODO Implement this.
  1713. }
  1714. }//end namespace