mem_mgr.hpp 6.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278
  1. /**
  2. * \file mem_mgr.hpp
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 6-30-2014
  5. * \brief This file contains the definition of a simple memory manager which
  6. * uses a pre-allocated buffer of size defined in call to the constructor.
  7. */
  8. #ifndef _PVFMM_MEM_MGR_HPP_
  9. #define _PVFMM_MEM_MGR_HPP_
  10. #include <map>
  11. #include <stack>
  12. #include <vector>
  13. #include <cassert>
  14. #include <iostream>
  15. #include <cmath>
  16. #include <omp.h>
  17. namespace pvfmm{
  18. namespace mem{
  19. class MemoryManager{
  20. public:
  21. MemoryManager(size_t N){
  22. buff_size=N;
  23. buff=(char*)::malloc(buff_size); assert(buff);
  24. n_dummy_indx=new_node();
  25. size_t n_indx=new_node();
  26. node& n_dummy=node_buff[n_dummy_indx-1];
  27. node& n=node_buff[n_indx-1];
  28. n_dummy.size=0;
  29. n_dummy.free=false;
  30. n_dummy.prev=NULL;
  31. n_dummy.next=n_indx;
  32. n_dummy.mem_ptr=&buff[0];
  33. assert(n_indx);
  34. n.size=N;
  35. n.free=true;
  36. n.prev=n_dummy_indx;
  37. n.next=NULL;
  38. n.mem_ptr=&buff[0];
  39. n.it=free_map.insert(std::make_pair(N,n_indx));
  40. omp_init_lock(&omp_lock);
  41. }
  42. ~MemoryManager(){
  43. node* n=&node_buff[n_dummy_indx-1];
  44. n=&node_buff[n->next-1];
  45. if(n==NULL || !n->free || n->size!=buff_size ||
  46. node_stack.size()!=node_buff.size()-2){
  47. std::cout<<"\nWarning: memory leak detected.\n";
  48. }
  49. omp_destroy_lock(&omp_lock);
  50. if(buff) ::free(buff);
  51. }
  52. void* malloc(size_t size){
  53. if(!size) return NULL;
  54. size+=sizeof(size_t);
  55. std::multimap<size_t, size_t>::iterator it;
  56. omp_set_lock(&omp_lock);
  57. it=free_map.lower_bound(size);
  58. if(it==free_map.end()){
  59. omp_unset_lock(&omp_lock);
  60. return ::malloc(size);
  61. }else if(it->first==size){
  62. size_t n_indx=it->second;
  63. node& n=node_buff[n_indx-1];
  64. //assert(n.size==it->first);
  65. //assert(n.it==it);
  66. //assert(n.free);
  67. n.free=false;
  68. free_map.erase(it);
  69. ((size_t*)n.mem_ptr)[0]=n_indx;
  70. omp_unset_lock(&omp_lock);
  71. return &((size_t*)n.mem_ptr)[1];
  72. }else{
  73. size_t n_indx=it->second;
  74. size_t n_free_indx=new_node();
  75. node& n_free=node_buff[n_free_indx-1];
  76. node& n =node_buff[n_indx-1];
  77. //assert(n.size==it->first);
  78. //assert(n.it==it);
  79. //assert(n.free);
  80. n_free=n;
  81. n_free.size-=size;
  82. n_free.mem_ptr=(char*)n_free.mem_ptr+size;
  83. n_free.prev=n_indx;
  84. if(n_free.next){
  85. size_t n_next_indx=n_free.next;
  86. node& n_next=node_buff[n_next_indx-1];
  87. n_next.prev=n_free_indx;
  88. }
  89. n.free=false;
  90. n.size=size;
  91. n.next=n_free_indx;
  92. free_map.erase(it);
  93. n_free.it=free_map.insert(std::make_pair(n_free.size,n_free_indx));
  94. ((size_t*)n.mem_ptr)[0]=n_indx;
  95. omp_unset_lock(&omp_lock);
  96. return &((size_t*)n.mem_ptr)[1];
  97. }
  98. }
  99. void free(void* p){
  100. if(p<&buff[0] || p>=&buff[buff_size]) return ::free(p);
  101. size_t n_indx=((size_t*)p)[-1];
  102. assert(n_indx>0 && n_indx<=node_buff.size());
  103. ((size_t*)p)[-1]=0;
  104. omp_set_lock(&omp_lock);
  105. node& n=node_buff[n_indx-1];
  106. assert(!n.free && n.size>0 && n.mem_ptr==&((size_t*)p)[-1]);
  107. n.free=true;
  108. if(n.prev!=NULL && node_buff[n.prev-1].free){
  109. size_t n_prev_indx=n.prev;
  110. node& n_prev=node_buff[n_prev_indx-1];
  111. free_map.erase(n_prev.it);
  112. n.size+=n_prev.size;
  113. n.mem_ptr=n_prev.mem_ptr;
  114. n.prev=n_prev.prev;
  115. delete_node(n_prev_indx);
  116. if(n.prev){
  117. size_t n_prev_indx=n.prev;
  118. node& n_prev=node_buff[n_prev_indx-1];
  119. n_prev.next=n_indx;
  120. }
  121. }
  122. if(n.next!=NULL && node_buff[n.next-1].free){
  123. size_t n_next_indx=n.next;
  124. node& n_next=node_buff[n_next_indx-1];
  125. free_map.erase(n_next.it);
  126. n.size+=n_next.size;
  127. n.next=n_next.next;
  128. delete_node(n_next_indx);
  129. if(n.next){
  130. size_t n_next_indx=n.next;
  131. node& n_next=node_buff[n_next_indx-1];
  132. n_next.prev=n_indx;
  133. }
  134. }
  135. n.it=free_map.insert(std::make_pair(n.size,n_indx));
  136. omp_unset_lock(&omp_lock);
  137. }
  138. void print(){
  139. if(!buff_size) return;
  140. omp_set_lock(&omp_lock);
  141. size_t size=0;
  142. size_t largest_size=0;
  143. node* n=&node_buff[n_dummy_indx-1];
  144. std::cout<<"\n|";
  145. while(n->next){
  146. n=&node_buff[n->next-1];
  147. if(n->free){
  148. std::cout<<' ';
  149. largest_size=std::max(largest_size,n->size);
  150. }
  151. else{
  152. std::cout<<'#';
  153. size+=n->size;
  154. }
  155. }
  156. std::cout<<"| allocated="<<round(size*1000.0/buff_size)/10<<"%";
  157. std::cout<<" largest_free="<<round(largest_size*1000.0/buff_size)/10<<"%\n";
  158. omp_unset_lock(&omp_lock);
  159. }
  160. static void test(){
  161. size_t M=2000000000;
  162. { // With memory manager
  163. size_t N=M*sizeof(double)*1.1;
  164. double tt;
  165. double* tmp;
  166. std::cout<<"With memory manager: ";
  167. MemoryManager memgr(N);
  168. for(size_t j=0;j<3;j++){
  169. tmp=(double*)memgr.malloc(M*sizeof(double)); assert(tmp);
  170. tt=omp_get_wtime();
  171. #pragma omp parallel for
  172. for(size_t i=0;i<M;i+=64) tmp[i]=i;
  173. tt=omp_get_wtime()-tt;
  174. std::cout<<tt<<' ';
  175. memgr.free(tmp);
  176. }
  177. std::cout<<'\n';
  178. }
  179. { // Without memory manager
  180. double tt;
  181. double* tmp;
  182. //pvfmm::MemoryManager memgr(N);
  183. std::cout<<"Without memory manager: ";
  184. for(size_t j=0;j<3;j++){
  185. tmp=(double*)::malloc(M*sizeof(double)); assert(tmp);
  186. tt=omp_get_wtime();
  187. #pragma omp parallel for
  188. for(size_t i=0;i<M;i+=64) tmp[i]=i;
  189. tt=omp_get_wtime()-tt;
  190. std::cout<<tt<<' ';
  191. ::free(tmp);
  192. }
  193. std::cout<<'\n';
  194. }
  195. }
  196. private:
  197. struct node{
  198. bool free;
  199. size_t size;
  200. void* mem_ptr;
  201. size_t prev, next;
  202. std::multimap<size_t, size_t>::iterator it;
  203. };
  204. MemoryManager();
  205. MemoryManager(const MemoryManager& m);
  206. size_t new_node(){
  207. if(node_stack.empty()){
  208. node_buff.resize(node_buff.size()+1);
  209. node_stack.push(node_buff.size());
  210. }
  211. size_t indx=node_stack.top();
  212. node_stack.pop();
  213. assert(indx);
  214. return indx;
  215. }
  216. void delete_node(size_t indx){
  217. assert(indx);
  218. assert(indx<=node_buff.size());
  219. node& n=node_buff[indx-1];
  220. n.size=0;
  221. n.prev=0;
  222. n.next=0;
  223. n.mem_ptr=NULL;
  224. node_stack.push(indx);
  225. }
  226. char* buff;
  227. size_t buff_size;
  228. std::vector<node> node_buff;
  229. std::stack<size_t> node_stack;
  230. std::multimap<size_t, size_t> free_map;
  231. size_t n_dummy_indx;
  232. omp_lock_t omp_lock;
  233. };
  234. }//end namespace
  235. }//end namespace
  236. #endif //_PVFMM_MEM_MGR_HPP_