kernel.hpp 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241
  1. /**
  2. * \file kernel.hpp
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 12-20-2011
  5. * \brief This file contains the definition of the struct Kernel and also the
  6. * implementation of various kernels for FMM.
  7. */
  8. #include <string>
  9. #include <cstdlib>
  10. #include <pvfmm_common.hpp>
  11. #include <mem_mgr.hpp>
  12. #include <vector.hpp>
  13. #include <matrix.hpp>
  14. #ifndef _PVFMM_FMM_KERNEL_HPP_
  15. #define _PVFMM_FMM_KERNEL_HPP_
  16. namespace pvfmm{
  17. template <class T>
  18. struct Kernel{
  19. public:
  20. /**
  21. * \brief Evaluate potential due to source points at target coordinates.
  22. * \param[in] r_src Coordinates of source points.
  23. * \param[in] src_cnt Number of source points.
  24. * \param[in] v_src Strength of source points.
  25. * \param[in] r_trg Coordinates of target points.
  26. * \param[in] trg_cnt Number of target points.
  27. * \param[out] k_out Output array with potential values.
  28. */
  29. typedef void (*Ker_t)(T* r_src, int src_cnt, T* v_src, int dof,
  30. T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  31. /**
  32. * \brief Constructor.
  33. */
  34. Kernel(Ker_t poten, Ker_t dbl_poten, const char* name, int dim_, std::pair<int,int> k_dim,
  35. size_t dev_poten=(size_t)NULL, size_t dev_dbl_poten=(size_t)NULL);
  36. /**
  37. * \brief Initialize the kernel.
  38. */
  39. void Initialize(bool verbose=false) const;
  40. /**
  41. * \brief Compute the transformation matrix (on the source strength vector)
  42. * to get potential at target coordinates due to sources at the given
  43. * coordinates.
  44. * \param[in] r_src Coordinates of source points.
  45. * \param[in] src_cnt Number of source points.
  46. * \param[in] r_trg Coordinates of target points.
  47. * \param[in] trg_cnt Number of target points.
  48. * \param[out] k_out Output array with potential values.
  49. */
  50. void BuildMatrix(T* r_src, int src_cnt,
  51. T* r_trg, int trg_cnt, T* k_out) const;
  52. int dim;
  53. int ker_dim[2];
  54. std::string ker_name;
  55. Ker_t ker_poten;
  56. Ker_t dbl_layer_poten;
  57. size_t dev_ker_poten;
  58. size_t dev_dbl_layer_poten;
  59. mutable bool init;
  60. mutable bool homogen;
  61. mutable Vector<T> src_scal;
  62. mutable Vector<T> trg_scal;
  63. mutable Vector<Permutation<T> > perm_vec;
  64. private:
  65. Kernel();
  66. };
  67. template<typename T, void (*A)(T*, int, T*, int, T*, int, T*, mem::MemoryManager* mem_mgr),
  68. void (*B)(T*, int, T*, int, T*, int, T*, mem::MemoryManager* mem_mgr)>
  69. Kernel<T> BuildKernel(const char* name, int dim, std::pair<int,int> k_dim){
  70. size_t dev_ker_poten ;
  71. size_t dev_dbl_layer_poten;
  72. #ifdef __INTEL_OFFLOAD
  73. #pragma offload target(mic:0)
  74. #endif
  75. {
  76. dev_ker_poten =(size_t)((typename Kernel<T>::Ker_t)A);
  77. dev_dbl_layer_poten=(size_t)((typename Kernel<T>::Ker_t)B);
  78. }
  79. return Kernel<T>(A, B, name, dim, k_dim,
  80. dev_ker_poten, dev_dbl_layer_poten);
  81. }
  82. template<typename T, void (*A)(T*, int, T*, int, T*, int, T*, mem::MemoryManager* mem_mgr)>
  83. Kernel<T> BuildKernel(const char* name, int dim, std::pair<int,int> k_dim){
  84. size_t dev_ker_poten ;
  85. #ifdef __INTEL_OFFLOAD
  86. #pragma offload target(mic:0)
  87. #endif
  88. {
  89. dev_ker_poten =(size_t)((typename Kernel<T>::Ker_t)A);
  90. }
  91. return Kernel<T>(A, NULL, name, dim, k_dim,
  92. dev_ker_poten, (size_t)NULL);
  93. }
  94. }//end namespace
  95. #ifdef __INTEL_OFFLOAD
  96. #pragma offload_attribute(push,target(mic))
  97. #endif
  98. namespace pvfmm{ // Predefined Kernel-functions
  99. ////////////////////////////////////////////////////////////////////////////////
  100. //////// LAPLACE KERNEL ////////
  101. ////////////////////////////////////////////////////////////////////////////////
  102. /**
  103. * \brief Green's function for the Poisson's equation. Kernel tensor
  104. * dimension = 1x1.
  105. */
  106. template <class T>
  107. void laplace_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  108. // Laplace double layer potential.
  109. template <class T>
  110. void laplace_dbl_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  111. // Laplace grdient kernel.
  112. template <class T>
  113. void laplace_grad(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  114. //#ifdef PVFMM_QUAD_T
  115. //const Kernel<QuadReal_t> laplace_potn_q=BuildKernel<QuadReal_t, laplace_poten, laplace_dbl_poten>("laplace" , 3, std::pair<int,int>(1,1));
  116. //const Kernel<QuadReal_t> laplace_grad_q=BuildKernel<QuadReal_t, laplace_grad >("laplace_grad", 3, std::pair<int,int>(1,3));
  117. //#endif
  118. const Kernel<double > laplace_potn_d=BuildKernel<double , laplace_poten, laplace_dbl_poten>("laplace" , 3, std::pair<int,int>(1,1));
  119. const Kernel<double > laplace_grad_d=BuildKernel<double , laplace_grad >("laplace_grad", 3, std::pair<int,int>(1,3));
  120. const Kernel<float > laplace_potn_f=BuildKernel<float , laplace_poten, laplace_dbl_poten>("laplace" , 3, std::pair<int,int>(1,1));
  121. const Kernel<float > laplace_grad_f=BuildKernel<float , laplace_grad >("laplace_grad", 3, std::pair<int,int>(1,3));
  122. template<class T>
  123. struct LaplaceKernel{
  124. inline static const Kernel<T>& potn_ker();
  125. inline static const Kernel<T>& grad_ker();
  126. };
  127. //#ifdef PVFMM_QUAD_T
  128. //template<> const Kernel<QuadReal_t>& LaplaceKernel<QuadReal_t>::potn_ker(){ return laplace_potn_q; };
  129. //template<> const Kernel<QuadReal_t>& LaplaceKernel<QuadReal_t>::grad_ker(){ return laplace_grad_q; };
  130. //#endif
  131. template<> const Kernel<double>& LaplaceKernel<double>::potn_ker(){ return laplace_potn_d; };
  132. template<> const Kernel<double>& LaplaceKernel<double>::grad_ker(){ return laplace_grad_d; };
  133. template<> const Kernel<float>& LaplaceKernel<float>::potn_ker(){ return laplace_potn_f; };
  134. template<> const Kernel<float>& LaplaceKernel<float>::grad_ker(){ return laplace_grad_f; };
  135. ////////////////////////////////////////////////////////////////////////////////
  136. //////// STOKES KERNEL ////////
  137. ////////////////////////////////////////////////////////////////////////////////
  138. /**
  139. * \brief Green's function for the Stokes's equation. Kernel tensor
  140. * dimension = 3x3.
  141. */
  142. template <class T>
  143. void stokes_vel(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  144. template <class T>
  145. void stokes_sym_dip(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  146. template <class T>
  147. void stokes_press(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  148. template <class T>
  149. void stokes_stress(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  150. template <class T>
  151. void stokes_grad(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  152. const Kernel<double> ker_stokes_vel =BuildKernel<double, stokes_vel, stokes_sym_dip>("stokes_vel" , 3, std::pair<int,int>(3,3));
  153. const Kernel<double> ker_stokes_press =BuildKernel<double, stokes_press >("stokes_press" , 3, std::pair<int,int>(3,1));
  154. const Kernel<double> ker_stokes_stress=BuildKernel<double, stokes_stress >("stokes_stress", 3, std::pair<int,int>(3,9));
  155. const Kernel<double> ker_stokes_grad =BuildKernel<double, stokes_grad >("stokes_grad" , 3, std::pair<int,int>(3,9));
  156. ////////////////////////////////////////////////////////////////////////////////
  157. //////// BIOT-SAVART KERNEL ////////
  158. ////////////////////////////////////////////////////////////////////////////////
  159. template <class T>
  160. void biot_savart(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  161. const Kernel<double> ker_biot_savart=BuildKernel<double, biot_savart>("biot_savart", 3, std::pair<int,int>(3,3));
  162. ////////////////////////////////////////////////////////////////////////////////
  163. //////// HELMHOLTZ KERNEL ////////
  164. ////////////////////////////////////////////////////////////////////////////////
  165. /**
  166. * \brief Green's function for the Helmholtz's equation. Kernel tensor
  167. * dimension = 2x2.
  168. */
  169. template <class T>
  170. void helmholtz_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  171. template <class T>
  172. void helmholtz_grad(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  173. const Kernel<double> ker_helmholtz =BuildKernel<double, helmholtz_poten>("helmholtz" , 3, std::pair<int,int>(2,2));
  174. const Kernel<double> ker_helmholtz_grad=BuildKernel<double, helmholtz_grad >("helmholtz_grad", 3, std::pair<int,int>(2,6));
  175. }//end namespace
  176. #ifdef __INTEL_OFFLOAD
  177. #pragma offload_attribute(pop)
  178. #endif
  179. #include <kernel.txx>
  180. #endif //_PVFMM_FMM_KERNEL_HPP_