fmm_pts.txx 203 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372
  1. /**
  2. * \file fmm_pts.txx
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 3-07-2011
  5. * \brief This file contains the implementation of the FMM_Pts class.
  6. */
  7. #include <omp.h>
  8. #include <cmath>
  9. #include <cstdlib>
  10. #include <cassert>
  11. #include <sstream>
  12. #include <iostream>
  13. #include <stdint.h>
  14. #include <set>
  15. #ifdef PVFMM_HAVE_SYS_STAT_H
  16. #include <sys/stat.h>
  17. #endif
  18. #ifdef __SSE__
  19. #include <xmmintrin.h>
  20. #endif
  21. #ifdef __SSE2__
  22. #include <emmintrin.h>
  23. #endif
  24. #ifdef __SSE3__
  25. #include <pmmintrin.h>
  26. #endif
  27. #ifdef __AVX__
  28. #include <immintrin.h>
  29. #endif
  30. #if defined(__MIC__)
  31. #include <immintrin.h>
  32. #endif
  33. #include <profile.hpp>
  34. namespace pvfmm{
  35. /**
  36. * \brief Returns the coordinates of points on the surface of a cube.
  37. * \param[in] p Number of points on an edge of the cube is (n+1)
  38. * \param[in] c Coordinates to the centre of the cube (3D array).
  39. * \param[in] alpha Scaling factor for the size of the cube.
  40. * \param[in] depth Depth of the cube in the octree.
  41. * \return Vector with coordinates of points on the surface of the cube in the
  42. * format [x0 y0 z0 x1 y1 z1 .... ].
  43. */
  44. template <class Real_t>
  45. std::vector<Real_t> surface(int p, Real_t* c, Real_t alpha, int depth){
  46. size_t n_=(6*(p-1)*(p-1)+2); //Total number of points.
  47. std::vector<Real_t> coord(n_*3);
  48. coord[0]=coord[1]=coord[2]=-1.0;
  49. size_t cnt=1;
  50. for(int i=0;i<p-1;i++)
  51. for(int j=0;j<p-1;j++){
  52. coord[cnt*3 ]=-1.0;
  53. coord[cnt*3+1]=(2.0*(i+1)-p+1)/(p-1);
  54. coord[cnt*3+2]=(2.0*j-p+1)/(p-1);
  55. cnt++;
  56. }
  57. for(int i=0;i<p-1;i++)
  58. for(int j=0;j<p-1;j++){
  59. coord[cnt*3 ]=(2.0*i-p+1)/(p-1);
  60. coord[cnt*3+1]=-1.0;
  61. coord[cnt*3+2]=(2.0*(j+1)-p+1)/(p-1);
  62. cnt++;
  63. }
  64. for(int i=0;i<p-1;i++)
  65. for(int j=0;j<p-1;j++){
  66. coord[cnt*3 ]=(2.0*(i+1)-p+1)/(p-1);
  67. coord[cnt*3+1]=(2.0*j-p+1)/(p-1);
  68. coord[cnt*3+2]=-1.0;
  69. cnt++;
  70. }
  71. for(size_t i=0;i<(n_/2)*3;i++)
  72. coord[cnt*3+i]=-coord[i];
  73. Real_t r = 0.5*pow(0.5,depth);
  74. Real_t b = alpha*r;
  75. for(size_t i=0;i<n_;i++){
  76. coord[i*3+0]=(coord[i*3+0]+1.0)*b+c[0];
  77. coord[i*3+1]=(coord[i*3+1]+1.0)*b+c[1];
  78. coord[i*3+2]=(coord[i*3+2]+1.0)*b+c[2];
  79. }
  80. return coord;
  81. }
  82. /**
  83. * \brief Returns the coordinates of points on the upward check surface of cube.
  84. * \see surface()
  85. */
  86. template <class Real_t>
  87. std::vector<Real_t> u_check_surf(int p, Real_t* c, int depth){
  88. Real_t r=0.5*pow(0.5,depth);
  89. Real_t coord[3]={(Real_t)(c[0]-r*(RAD1-1.0)),(Real_t)(c[1]-r*(RAD1-1.0)),(Real_t)(c[2]-r*(RAD1-1.0))};
  90. return surface(p,coord,(Real_t)RAD1,depth);
  91. }
  92. /**
  93. * \brief Returns the coordinates of points on the upward equivalent surface of cube.
  94. * \see surface()
  95. */
  96. template <class Real_t>
  97. std::vector<Real_t> u_equiv_surf(int p, Real_t* c, int depth){
  98. Real_t r=0.5*pow(0.5,depth);
  99. Real_t coord[3]={(Real_t)(c[0]-r*(RAD0-1.0)),(Real_t)(c[1]-r*(RAD0-1.0)),(Real_t)(c[2]-r*(RAD0-1.0))};
  100. return surface(p,coord,(Real_t)RAD0,depth);
  101. }
  102. /**
  103. * \brief Returns the coordinates of points on the downward check surface of cube.
  104. * \see surface()
  105. */
  106. template <class Real_t>
  107. std::vector<Real_t> d_check_surf(int p, Real_t* c, int depth){
  108. Real_t r=0.5*pow(0.5,depth);
  109. Real_t coord[3]={(Real_t)(c[0]-r*(RAD0-1.0)),(Real_t)(c[1]-r*(RAD0-1.0)),(Real_t)(c[2]-r*(RAD0-1.0))};
  110. return surface(p,coord,(Real_t)RAD0,depth);
  111. }
  112. /**
  113. * \brief Returns the coordinates of points on the downward equivalent surface of cube.
  114. * \see surface()
  115. */
  116. template <class Real_t>
  117. std::vector<Real_t> d_equiv_surf(int p, Real_t* c, int depth){
  118. Real_t r=0.5*pow(0.5,depth);
  119. Real_t coord[3]={(Real_t)(c[0]-r*(RAD1-1.0)),(Real_t)(c[1]-r*(RAD1-1.0)),(Real_t)(c[2]-r*(RAD1-1.0))};
  120. return surface(p,coord,(Real_t)RAD1,depth);
  121. }
  122. /**
  123. * \brief Defines the 3D grid for convolution in FFT acceleration of V-list.
  124. * \see surface()
  125. */
  126. template <class Real_t>
  127. std::vector<Real_t> conv_grid(int p, Real_t* c, int depth){
  128. Real_t r=pow(0.5,depth);
  129. Real_t a=r*RAD0;
  130. Real_t coord[3]={c[0],c[1],c[2]};
  131. int n1=p*2;
  132. int n2=(int)pow((Real_t)n1,2);
  133. int n3=(int)pow((Real_t)n1,3);
  134. std::vector<Real_t> grid(n3*3);
  135. for(int i=0;i<n1;i++)
  136. for(int j=0;j<n1;j++)
  137. for(int k=0;k<n1;k++){
  138. grid[(i+n1*j+n2*k)*3+0]=(i-p)*a/(p-1)+coord[0];
  139. grid[(i+n1*j+n2*k)*3+1]=(j-p)*a/(p-1)+coord[1];
  140. grid[(i+n1*j+n2*k)*3+2]=(k-p)*a/(p-1)+coord[2];
  141. }
  142. return grid;
  143. }
  144. template <class Real_t>
  145. void FMM_Data<Real_t>::Clear(){
  146. upward_equiv.Resize(0);
  147. }
  148. template <class Real_t>
  149. PackedData FMM_Data<Real_t>::PackMultipole(void* buff_ptr){
  150. PackedData p0; p0.data=buff_ptr;
  151. p0.length=upward_equiv.Dim()*sizeof(Real_t);
  152. if(p0.length==0) return p0;
  153. if(p0.data==NULL) p0.data=(char*)&upward_equiv[0];
  154. else mem::memcopy(p0.data,&upward_equiv[0],p0.length);
  155. return p0;
  156. }
  157. template <class Real_t>
  158. void FMM_Data<Real_t>::AddMultipole(PackedData p0){
  159. Real_t* data=(Real_t*)p0.data;
  160. size_t n=p0.length/sizeof(Real_t);
  161. assert(upward_equiv.Dim()==n);
  162. Matrix<Real_t> v0(1,n,&upward_equiv[0],false);
  163. Matrix<Real_t> v1(1,n,data,false);
  164. v0+=v1;
  165. }
  166. template <class Real_t>
  167. void FMM_Data<Real_t>::InitMultipole(PackedData p0, bool own_data){
  168. Real_t* data=(Real_t*)p0.data;
  169. size_t n=p0.length/sizeof(Real_t);
  170. if(n==0) return;
  171. if(own_data){
  172. upward_equiv=Vector<Real_t>(n, &data[0], false);
  173. }else{
  174. upward_equiv.ReInit(n, &data[0], false);
  175. }
  176. }
  177. template <class FMMNode>
  178. FMM_Pts<FMMNode>::~FMM_Pts() {
  179. if(mat!=NULL){
  180. // int rank;
  181. // MPI_Comm_rank(comm,&rank);
  182. // if(rank==0) mat->Save2File("Precomp.data");
  183. delete mat;
  184. mat=NULL;
  185. }
  186. if(vprecomp_fft_flag) FFTW_t<Real_t>::fft_destroy_plan(vprecomp_fftplan);
  187. #ifdef __INTEL_OFFLOAD0
  188. #pragma offload target(mic:0)
  189. #endif
  190. {
  191. if(vlist_fft_flag ) FFTW_t<Real_t>::fft_destroy_plan(vlist_fftplan );
  192. if(vlist_ifft_flag) FFTW_t<Real_t>::fft_destroy_plan(vlist_ifftplan);
  193. vlist_fft_flag =false;
  194. vlist_ifft_flag=false;
  195. }
  196. }
  197. template <class FMMNode>
  198. void FMM_Pts<FMMNode>::Initialize(int mult_order, const MPI_Comm& comm_, const Kernel<Real_t>* kernel_){
  199. Profile::Tic("InitFMM_Pts",&comm_,true);{
  200. int rank;
  201. MPI_Comm_rank(comm_,&rank);
  202. bool verbose=false;
  203. #ifndef NDEBUG
  204. #ifdef __VERBOSE__
  205. if(!rank) verbose=true;
  206. #endif
  207. #endif
  208. if(kernel_) kernel_->Initialize(verbose);
  209. multipole_order=mult_order;
  210. comm=comm_;
  211. kernel=kernel_;
  212. assert(kernel!=NULL);
  213. bool save_precomp=false;
  214. mat=new PrecompMat<Real_t>(ScaleInvar());
  215. if(this->mat_fname.size()==0){// && !this->ScaleInvar()){
  216. std::stringstream st;
  217. st<<PVFMM_PRECOMP_DATA_PATH;
  218. if(!st.str().size()){ // look in PVFMM_DIR
  219. char* pvfmm_dir = getenv ("PVFMM_DIR");
  220. if(pvfmm_dir) st<<pvfmm_dir;
  221. }
  222. #ifndef STAT_MACROS_BROKEN
  223. if(st.str().size()){ // check if the path is a directory
  224. struct stat stat_buff;
  225. if(stat(st.str().c_str(), &stat_buff) || !S_ISDIR(stat_buff.st_mode)){
  226. std::cout<<"error: path not found: "<<st.str()<<'\n';
  227. exit(0);
  228. }
  229. }
  230. #endif
  231. if(st.str().size()) st<<'/';
  232. st<<"Precomp_"<<kernel->ker_name.c_str()<<"_m"<<mult_order;
  233. if(sizeof(Real_t)==8) st<<"";
  234. else if(sizeof(Real_t)==4) st<<"_f";
  235. else st<<"_t"<<sizeof(Real_t);
  236. st<<".data";
  237. this->mat_fname=st.str();
  238. save_precomp=true;
  239. }
  240. this->mat->LoadFile(mat_fname.c_str(), this->comm);
  241. interac_list.Initialize(COORD_DIM, this->mat);
  242. Profile::Tic("PrecompUC2UE",&comm,false,4);
  243. this->PrecompAll(UC2UE0_Type);
  244. this->PrecompAll(UC2UE1_Type);
  245. Profile::Toc();
  246. Profile::Tic("PrecompDC2DE",&comm,false,4);
  247. this->PrecompAll(DC2DE0_Type);
  248. this->PrecompAll(DC2DE1_Type);
  249. Profile::Toc();
  250. Profile::Tic("PrecompBC",&comm,false,4);
  251. { /*
  252. int type=BC_Type;
  253. for(int l=0;l<MAX_DEPTH;l++)
  254. for(size_t indx=0;indx<this->interac_list.ListCount((Mat_Type)type);indx++){
  255. Matrix<Real_t>& M=this->mat->Mat(l, (Mat_Type)type, indx);
  256. M.Resize(0,0);
  257. } // */
  258. }
  259. this->PrecompAll(BC_Type,0);
  260. Profile::Toc();
  261. Profile::Tic("PrecompU2U",&comm,false,4);
  262. this->PrecompAll(U2U_Type);
  263. Profile::Toc();
  264. Profile::Tic("PrecompD2D",&comm,false,4);
  265. this->PrecompAll(D2D_Type);
  266. Profile::Toc();
  267. if(save_precomp){
  268. Profile::Tic("Save2File",&this->comm,false,4);
  269. if(!rank){
  270. FILE* f=fopen(this->mat_fname.c_str(),"r");
  271. if(f==NULL) { //File does not exists.
  272. this->mat->Save2File(this->mat_fname.c_str());
  273. }else fclose(f);
  274. }
  275. Profile::Toc();
  276. }
  277. Profile::Tic("PrecompV",&comm,false,4);
  278. this->PrecompAll(V_Type);
  279. Profile::Toc();
  280. Profile::Tic("PrecompV1",&comm,false,4);
  281. this->PrecompAll(V1_Type);
  282. Profile::Toc();
  283. }Profile::Toc();
  284. }
  285. template <class Real_t>
  286. Permutation<Real_t> equiv_surf_perm(size_t m, size_t p_indx, const Permutation<Real_t>& ker_perm, const Vector<Real_t>* scal_exp=NULL){
  287. Real_t eps=1e-10;
  288. int dof=ker_perm.Dim();
  289. Real_t c[3]={-0.5,-0.5,-0.5};
  290. std::vector<Real_t> trg_coord=d_check_surf(m,c,0);
  291. int n_trg=trg_coord.size()/3;
  292. Permutation<Real_t> P=Permutation<Real_t>(n_trg*dof);
  293. if(p_indx==ReflecX || p_indx==ReflecY || p_indx==ReflecZ){ // Set P.perm
  294. for(int i=0;i<n_trg;i++)
  295. for(int j=0;j<n_trg;j++){
  296. if(fabs(trg_coord[i*3+0]-trg_coord[j*3+0]*(p_indx==ReflecX?-1.0:1.0))<eps)
  297. if(fabs(trg_coord[i*3+1]-trg_coord[j*3+1]*(p_indx==ReflecY?-1.0:1.0))<eps)
  298. if(fabs(trg_coord[i*3+2]-trg_coord[j*3+2]*(p_indx==ReflecZ?-1.0:1.0))<eps){
  299. for(int k=0;k<dof;k++){
  300. P.perm[j*dof+k]=i*dof+ker_perm.perm[k];
  301. }
  302. }
  303. }
  304. }else if(p_indx==SwapXY || p_indx==SwapXZ){
  305. for(int i=0;i<n_trg;i++)
  306. for(int j=0;j<n_trg;j++){
  307. if(fabs(trg_coord[i*3+0]-trg_coord[j*3+(p_indx==SwapXY?1:2)])<eps)
  308. if(fabs(trg_coord[i*3+1]-trg_coord[j*3+(p_indx==SwapXY?0:1)])<eps)
  309. if(fabs(trg_coord[i*3+2]-trg_coord[j*3+(p_indx==SwapXY?2:0)])<eps){
  310. for(int k=0;k<dof;k++){
  311. P.perm[j*dof+k]=i*dof+ker_perm.perm[k];
  312. }
  313. }
  314. }
  315. }else{
  316. for(int j=0;j<n_trg;j++){
  317. for(int k=0;k<dof;k++){
  318. P.perm[j*dof+k]=j*dof+ker_perm.perm[k];
  319. }
  320. }
  321. }
  322. if(scal_exp && p_indx==Scaling){ // Set level-by-level scaling
  323. assert(dof==scal_exp->Dim());
  324. Vector<Real_t> scal(scal_exp->Dim());
  325. for(size_t i=0;i<scal.Dim();i++){
  326. scal[i]=pow(2.0,(*scal_exp)[i]);
  327. }
  328. for(int j=0;j<n_trg;j++){
  329. for(int i=0;i<dof;i++){
  330. P.scal[j*dof+i]*=scal[i];
  331. }
  332. }
  333. }
  334. { // Set P.scal
  335. for(int j=0;j<n_trg;j++){
  336. for(int i=0;i<dof;i++){
  337. P.scal[j*dof+i]*=ker_perm.scal[i];
  338. }
  339. }
  340. }
  341. return P;
  342. }
  343. template <class FMMNode>
  344. Permutation<typename FMMNode::Real_t>& FMM_Pts<FMMNode>::PrecompPerm(Mat_Type type, Perm_Type perm_indx){
  345. //Check if the matrix already exists.
  346. Permutation<Real_t>& P_ = mat->Perm((Mat_Type)type, perm_indx);
  347. if(P_.Dim()!=0) return P_;
  348. size_t m=this->MultipoleOrder();
  349. size_t p_indx=perm_indx % C_Perm;
  350. //Compute the matrix.
  351. Permutation<Real_t> P;
  352. switch (type){
  353. case U2U_Type:
  354. {
  355. Vector<Real_t> scal_exp;
  356. Permutation<Real_t> ker_perm;
  357. if(perm_indx<C_Perm){ // Source permutation
  358. ker_perm=kernel->k_m2m->perm_vec[0 +p_indx];
  359. scal_exp=kernel->k_m2m->src_scal;
  360. }else{ // Target permutation
  361. ker_perm=kernel->k_m2m->perm_vec[0 +p_indx];
  362. scal_exp=kernel->k_m2m->src_scal;
  363. for(size_t i=0;i<scal_exp.Dim();i++) scal_exp[i]=-scal_exp[i];
  364. }
  365. P=equiv_surf_perm(m, p_indx, ker_perm, (this->ScaleInvar()?&scal_exp:NULL));
  366. break;
  367. }
  368. case D2D_Type:
  369. {
  370. Vector<Real_t> scal_exp;
  371. Permutation<Real_t> ker_perm;
  372. if(perm_indx<C_Perm){ // Source permutation
  373. ker_perm=kernel->k_l2l->perm_vec[C_Perm+p_indx];
  374. scal_exp=kernel->k_l2l->trg_scal;
  375. for(size_t i=0;i<scal_exp.Dim();i++) scal_exp[i]=-scal_exp[i];
  376. }else{ // Target permutation
  377. ker_perm=kernel->k_l2l->perm_vec[C_Perm+p_indx];
  378. scal_exp=kernel->k_l2l->trg_scal;
  379. }
  380. P=equiv_surf_perm(m, p_indx, ker_perm, (this->ScaleInvar()?&scal_exp:NULL));
  381. break;
  382. }
  383. default:
  384. break;
  385. }
  386. //Save the matrix for future use.
  387. #pragma omp critical (PRECOMP_MATRIX_PTS)
  388. {
  389. if(P_.Dim()==0) P_=P;
  390. }
  391. return P_;
  392. }
  393. template <class FMMNode>
  394. Matrix<typename FMMNode::Real_t>& FMM_Pts<FMMNode>::Precomp(int level, Mat_Type type, size_t mat_indx){
  395. if(this->ScaleInvar()) level=0;
  396. //Check if the matrix already exists.
  397. Matrix<Real_t>& M_ = this->mat->Mat(level, type, mat_indx);
  398. if(M_.Dim(0)!=0 && M_.Dim(1)!=0) return M_;
  399. else{ //Compute matrix from symmetry class (if possible).
  400. size_t class_indx = this->interac_list.InteracClass(type, mat_indx);
  401. if(class_indx!=mat_indx){
  402. Matrix<Real_t>& M0 = this->Precomp(level, type, class_indx);
  403. if(M0.Dim(0)==0 || M0.Dim(1)==0) return M_;
  404. for(size_t i=0;i<Perm_Count;i++) this->PrecompPerm(type, (Perm_Type) i);
  405. Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, type, mat_indx);
  406. Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, type, mat_indx);
  407. if(Pr.Dim()>0 && Pc.Dim()>0 && M0.Dim(0)>0 && M0.Dim(1)>0) return M_;
  408. }
  409. }
  410. //Compute the matrix.
  411. Matrix<Real_t> M;
  412. //int omp_p=omp_get_max_threads();
  413. switch (type){
  414. case UC2UE0_Type:
  415. {
  416. if(MultipoleOrder()==0) break;
  417. const int* ker_dim=kernel->k_m2m->ker_dim;
  418. // Coord of upward check surface
  419. Real_t c[3]={0,0,0};
  420. std::vector<Real_t> uc_coord=u_check_surf(MultipoleOrder(),c,level);
  421. size_t n_uc=uc_coord.size()/3;
  422. // Coord of upward equivalent surface
  423. std::vector<Real_t> ue_coord=u_equiv_surf(MultipoleOrder(),c,level);
  424. size_t n_ue=ue_coord.size()/3;
  425. // Evaluate potential at check surface due to equivalent surface.
  426. Matrix<Real_t> M_e2c(n_ue*ker_dim[0],n_uc*ker_dim[1]);
  427. kernel->k_m2m->BuildMatrix(&ue_coord[0], n_ue,
  428. &uc_coord[0], n_uc, &(M_e2c[0][0]));
  429. Matrix<Real_t> U,S,V;
  430. M_e2c.SVD(U,S,V);
  431. Real_t eps=1, max_S=0;
  432. while(eps*(Real_t)0.5+(Real_t)1.0>1.0) eps*=0.5;
  433. for(size_t i=0;i<std::min(S.Dim(0),S.Dim(1));i++){
  434. if(fabs(S[i][i])>max_S) max_S=fabs(S[i][i]);
  435. }
  436. for(size_t i=0;i<S.Dim(0);i++) S[i][i]=(S[i][i]>eps*max_S*4?1.0/S[i][i]:0.0);
  437. M=V.Transpose()*S;//*U.Transpose();
  438. break;
  439. }
  440. case UC2UE1_Type:
  441. {
  442. if(MultipoleOrder()==0) break;
  443. const int* ker_dim=kernel->k_m2m->ker_dim;
  444. // Coord of upward check surface
  445. Real_t c[3]={0,0,0};
  446. std::vector<Real_t> uc_coord=u_check_surf(MultipoleOrder(),c,level);
  447. size_t n_uc=uc_coord.size()/3;
  448. // Coord of upward equivalent surface
  449. std::vector<Real_t> ue_coord=u_equiv_surf(MultipoleOrder(),c,level);
  450. size_t n_ue=ue_coord.size()/3;
  451. // Evaluate potential at check surface due to equivalent surface.
  452. Matrix<Real_t> M_e2c(n_ue*ker_dim[0],n_uc*ker_dim[1]);
  453. kernel->k_m2m->BuildMatrix(&ue_coord[0], n_ue,
  454. &uc_coord[0], n_uc, &(M_e2c[0][0]));
  455. Matrix<Real_t> U,S,V;
  456. M_e2c.SVD(U,S,V);
  457. M=U.Transpose();
  458. break;
  459. }
  460. case DC2DE0_Type:
  461. {
  462. if(MultipoleOrder()==0) break;
  463. const int* ker_dim=kernel->k_l2l->ker_dim;
  464. // Coord of downward check surface
  465. Real_t c[3]={0,0,0};
  466. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level);
  467. size_t n_ch=check_surf.size()/3;
  468. // Coord of downward equivalent surface
  469. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level);
  470. size_t n_eq=equiv_surf.size()/3;
  471. // Evaluate potential at check surface due to equivalent surface.
  472. Matrix<Real_t> M_e2c(n_eq*ker_dim[0],n_ch*ker_dim[1]);
  473. kernel->k_l2l->BuildMatrix(&equiv_surf[0], n_eq,
  474. &check_surf[0], n_ch, &(M_e2c[0][0]));
  475. Matrix<Real_t> U,S,V;
  476. M_e2c.SVD(U,S,V);
  477. Real_t eps=1, max_S=0;
  478. while(eps*(Real_t)0.5+(Real_t)1.0>1.0) eps*=0.5;
  479. for(size_t i=0;i<std::min(S.Dim(0),S.Dim(1));i++){
  480. if(fabs(S[i][i])>max_S) max_S=fabs(S[i][i]);
  481. }
  482. for(size_t i=0;i<S.Dim(0);i++) S[i][i]=(S[i][i]>eps*max_S*4?1.0/S[i][i]:0.0);
  483. M=V.Transpose()*S;//*U.Transpose();
  484. break;
  485. }
  486. case DC2DE1_Type:
  487. {
  488. if(MultipoleOrder()==0) break;
  489. const int* ker_dim=kernel->k_l2l->ker_dim;
  490. // Coord of downward check surface
  491. Real_t c[3]={0,0,0};
  492. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level);
  493. size_t n_ch=check_surf.size()/3;
  494. // Coord of downward equivalent surface
  495. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level);
  496. size_t n_eq=equiv_surf.size()/3;
  497. // Evaluate potential at check surface due to equivalent surface.
  498. Matrix<Real_t> M_e2c(n_eq*ker_dim[0],n_ch*ker_dim[1]);
  499. kernel->k_l2l->BuildMatrix(&equiv_surf[0], n_eq,
  500. &check_surf[0], n_ch, &(M_e2c[0][0]));
  501. Matrix<Real_t> U,S,V;
  502. M_e2c.SVD(U,S,V);
  503. M=U.Transpose();
  504. break;
  505. }
  506. case U2U_Type:
  507. {
  508. if(MultipoleOrder()==0) break;
  509. const int* ker_dim=kernel->k_m2m->ker_dim;
  510. // Coord of upward check surface
  511. Real_t c[3]={0,0,0};
  512. std::vector<Real_t> check_surf=u_check_surf(MultipoleOrder(),c,level);
  513. size_t n_uc=check_surf.size()/3;
  514. // Coord of child's upward equivalent surface
  515. Real_t s=pow(0.5,(level+2));
  516. int* coord=interac_list.RelativeCoord(type,mat_indx);
  517. Real_t child_coord[3]={(coord[0]+1)*s,(coord[1]+1)*s,(coord[2]+1)*s};
  518. std::vector<Real_t> equiv_surf=u_equiv_surf(MultipoleOrder(),child_coord,level+1);
  519. size_t n_ue=equiv_surf.size()/3;
  520. // Evaluate potential at check surface due to equivalent surface.
  521. Matrix<Real_t> M_ce2c(n_ue*ker_dim[0],n_uc*ker_dim[1]);
  522. kernel->k_m2m->BuildMatrix(&equiv_surf[0], n_ue,
  523. &check_surf[0], n_uc, &(M_ce2c[0][0]));
  524. Matrix<Real_t>& M_c2e0 = Precomp(level, UC2UE0_Type, 0);
  525. Matrix<Real_t>& M_c2e1 = Precomp(level, UC2UE1_Type, 0);
  526. M=(M_ce2c*M_c2e0)*M_c2e1;
  527. break;
  528. }
  529. case D2D_Type:
  530. {
  531. if(MultipoleOrder()==0) break;
  532. const int* ker_dim=kernel->k_l2l->ker_dim;
  533. // Coord of downward check surface
  534. Real_t s=pow(0.5,level+1);
  535. int* coord=interac_list.RelativeCoord(type,mat_indx);
  536. Real_t c[3]={(coord[0]+1)*s,(coord[1]+1)*s,(coord[2]+1)*s};
  537. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level);
  538. size_t n_dc=check_surf.size()/3;
  539. // Coord of parent's downward equivalent surface
  540. Real_t parent_coord[3]={0,0,0};
  541. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),parent_coord,level-1);
  542. size_t n_de=equiv_surf.size()/3;
  543. // Evaluate potential at check surface due to equivalent surface.
  544. Matrix<Real_t> M_pe2c(n_de*ker_dim[0],n_dc*ker_dim[1]);
  545. kernel->k_l2l->BuildMatrix(&equiv_surf[0], n_de,
  546. &check_surf[0], n_dc, &(M_pe2c[0][0]));
  547. Matrix<Real_t> M_c2e0=Precomp(level-1,DC2DE0_Type,0);
  548. Matrix<Real_t> M_c2e1=Precomp(level-1,DC2DE1_Type,0);
  549. if(ScaleInvar()){ // Scale M_c2e0 for level-1
  550. Permutation<Real_t> ker_perm=this->kernel->k_l2l->perm_vec[C_Perm+Scaling];
  551. Vector<Real_t> scal_exp=this->kernel->k_l2l->trg_scal;
  552. Permutation<Real_t> P=equiv_surf_perm(MultipoleOrder(), Scaling, ker_perm, &scal_exp);
  553. M_c2e0=P*M_c2e0;
  554. }
  555. if(ScaleInvar()){ // Scale M_c2e1 for level-1
  556. Permutation<Real_t> ker_perm=this->kernel->k_l2l->perm_vec[0 +Scaling];
  557. Vector<Real_t> scal_exp=this->kernel->k_l2l->src_scal;
  558. Permutation<Real_t> P=equiv_surf_perm(MultipoleOrder(), Scaling, ker_perm, &scal_exp);
  559. M_c2e1=M_c2e1*P;
  560. }
  561. M=M_c2e0*(M_c2e1*M_pe2c);
  562. break;
  563. }
  564. case D2T_Type:
  565. {
  566. if(MultipoleOrder()==0) break;
  567. const int* ker_dim=kernel->k_l2t->ker_dim;
  568. std::vector<Real_t>& rel_trg_coord=mat->RelativeTrgCoord();
  569. // Coord of target points
  570. Real_t r=pow(0.5,level);
  571. size_t n_trg=rel_trg_coord.size()/3;
  572. std::vector<Real_t> trg_coord(n_trg*3);
  573. for(size_t i=0;i<n_trg*COORD_DIM;i++) trg_coord[i]=rel_trg_coord[i]*r;
  574. // Coord of downward equivalent surface
  575. Real_t c[3]={0,0,0};
  576. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level);
  577. size_t n_eq=equiv_surf.size()/3;
  578. // Evaluate potential at target points due to equivalent surface.
  579. {
  580. M .Resize(n_eq*ker_dim [0], n_trg*ker_dim [1]);
  581. kernel->k_l2t->BuildMatrix(&equiv_surf[0], n_eq, &trg_coord[0], n_trg, &(M [0][0]));
  582. }
  583. Matrix<Real_t>& M_c2e0=Precomp(level,DC2DE0_Type,0);
  584. Matrix<Real_t>& M_c2e1=Precomp(level,DC2DE1_Type,0);
  585. M=M_c2e0*(M_c2e1*M);
  586. break;
  587. }
  588. case V_Type:
  589. {
  590. if(MultipoleOrder()==0) break;
  591. const int* ker_dim=kernel->k_m2l->ker_dim;
  592. int n1=MultipoleOrder()*2;
  593. int n3 =n1*n1*n1;
  594. int n3_=n1*n1*(n1/2+1);
  595. //Compute the matrix.
  596. Real_t s=pow(0.5,level);
  597. int* coord2=interac_list.RelativeCoord(type,mat_indx);
  598. Real_t coord_diff[3]={coord2[0]*s,coord2[1]*s,coord2[2]*s};
  599. //Evaluate potential.
  600. std::vector<Real_t> r_trg(COORD_DIM,0.0);
  601. std::vector<Real_t> conv_poten(n3*ker_dim[0]*ker_dim[1]);
  602. std::vector<Real_t> conv_coord=conv_grid(MultipoleOrder(),coord_diff,level);
  603. kernel->k_m2l->BuildMatrix(&conv_coord[0],n3,&r_trg[0],1,&conv_poten[0]);
  604. //Rearrange data.
  605. Matrix<Real_t> M_conv(n3,ker_dim[0]*ker_dim[1],&conv_poten[0],false);
  606. M_conv=M_conv.Transpose();
  607. //Compute FFTW plan.
  608. int nnn[3]={n1,n1,n1};
  609. Real_t *fftw_in, *fftw_out;
  610. fftw_in = mem::aligned_new<Real_t>( n3 *ker_dim[0]*ker_dim[1]*sizeof(Real_t));
  611. fftw_out = mem::aligned_new<Real_t>(2*n3_*ker_dim[0]*ker_dim[1]*sizeof(Real_t));
  612. #pragma omp critical (FFTW_PLAN)
  613. {
  614. if (!vprecomp_fft_flag){
  615. vprecomp_fftplan = FFTW_t<Real_t>::fft_plan_many_dft_r2c(COORD_DIM, nnn, ker_dim[0]*ker_dim[1],
  616. (Real_t*)fftw_in, NULL, 1, n3, (typename FFTW_t<Real_t>::cplx*) fftw_out, NULL, 1, n3_);
  617. vprecomp_fft_flag=true;
  618. }
  619. }
  620. //Compute FFT.
  621. mem::memcopy(fftw_in, &conv_poten[0], n3*ker_dim[0]*ker_dim[1]*sizeof(Real_t));
  622. FFTW_t<Real_t>::fft_execute_dft_r2c(vprecomp_fftplan, (Real_t*)fftw_in, (typename FFTW_t<Real_t>::cplx*)(fftw_out));
  623. Matrix<Real_t> M_(2*n3_*ker_dim[0]*ker_dim[1],1,(Real_t*)fftw_out,false);
  624. M=M_;
  625. //Free memory.
  626. mem::aligned_delete<Real_t>(fftw_in);
  627. mem::aligned_delete<Real_t>(fftw_out);
  628. break;
  629. }
  630. case V1_Type:
  631. {
  632. if(MultipoleOrder()==0) break;
  633. const int* ker_dim=kernel->k_m2l->ker_dim;
  634. size_t mat_cnt =interac_list.ListCount( V_Type);
  635. for(size_t k=0;k<mat_cnt;k++) Precomp(level, V_Type, k);
  636. const size_t chld_cnt=1UL<<COORD_DIM;
  637. size_t n1=MultipoleOrder()*2;
  638. size_t M_dim=n1*n1*(n1/2+1);
  639. size_t n3=n1*n1*n1;
  640. Vector<Real_t> zero_vec(M_dim*ker_dim[0]*ker_dim[1]*2);
  641. zero_vec.SetZero();
  642. Vector<Real_t*> M_ptr(chld_cnt*chld_cnt);
  643. for(size_t i=0;i<chld_cnt*chld_cnt;i++) M_ptr[i]=&zero_vec[0];
  644. int* rel_coord_=interac_list.RelativeCoord(V1_Type, mat_indx);
  645. for(int j1=0;j1<chld_cnt;j1++)
  646. for(int j2=0;j2<chld_cnt;j2++){
  647. int rel_coord[3]={rel_coord_[0]*2-(j1/1)%2+(j2/1)%2,
  648. rel_coord_[1]*2-(j1/2)%2+(j2/2)%2,
  649. rel_coord_[2]*2-(j1/4)%2+(j2/4)%2};
  650. for(size_t k=0;k<mat_cnt;k++){
  651. int* ref_coord=interac_list.RelativeCoord(V_Type, k);
  652. if(ref_coord[0]==rel_coord[0] &&
  653. ref_coord[1]==rel_coord[1] &&
  654. ref_coord[2]==rel_coord[2]){
  655. Matrix<Real_t>& M = this->mat->Mat(level, V_Type, k);
  656. M_ptr[j2*chld_cnt+j1]=&M[0][0];
  657. break;
  658. }
  659. }
  660. }
  661. // Build matrix ker_dim0 x ker_dim1 x M_dim x 8 x 8
  662. M.Resize(ker_dim[0]*ker_dim[1]*M_dim, 2*chld_cnt*chld_cnt);
  663. for(int j=0;j<ker_dim[0]*ker_dim[1]*M_dim;j++){
  664. for(size_t k=0;k<chld_cnt*chld_cnt;k++){
  665. M[j][k*2+0]=M_ptr[k][j*2+0]/n3;
  666. M[j][k*2+1]=M_ptr[k][j*2+1]/n3;
  667. }
  668. }
  669. break;
  670. }
  671. case W_Type:
  672. {
  673. if(MultipoleOrder()==0) break;
  674. const int* ker_dim=kernel->k_m2t->ker_dim;
  675. std::vector<Real_t>& rel_trg_coord=mat->RelativeTrgCoord();
  676. // Coord of target points
  677. Real_t s=pow(0.5,level);
  678. size_t n_trg=rel_trg_coord.size()/3;
  679. std::vector<Real_t> trg_coord(n_trg*3);
  680. for(size_t j=0;j<n_trg*COORD_DIM;j++) trg_coord[j]=rel_trg_coord[j]*s;
  681. // Coord of downward equivalent surface
  682. int* coord2=interac_list.RelativeCoord(type,mat_indx);
  683. Real_t c[3]={(Real_t)((coord2[0]+1)*s*0.25),(Real_t)((coord2[1]+1)*s*0.25),(Real_t)((coord2[2]+1)*s*0.25)};
  684. std::vector<Real_t> equiv_surf=u_equiv_surf(MultipoleOrder(),c,level+1);
  685. size_t n_eq=equiv_surf.size()/3;
  686. // Evaluate potential at target points due to equivalent surface.
  687. {
  688. M .Resize(n_eq*ker_dim [0],n_trg*ker_dim [1]);
  689. kernel->k_m2t->BuildMatrix(&equiv_surf[0], n_eq, &trg_coord[0], n_trg, &(M [0][0]));
  690. }
  691. break;
  692. }
  693. case BC_Type:
  694. {
  695. if(!this->ScaleInvar() || MultipoleOrder()==0) break;
  696. if(kernel->k_m2l->ker_dim[0]!=kernel->k_m2m->ker_dim[0]) break;
  697. if(kernel->k_m2l->ker_dim[1]!=kernel->k_l2l->ker_dim[1]) break;
  698. const int* ker_dim=kernel->k_m2l->ker_dim;
  699. size_t mat_cnt_m2m=interac_list.ListCount(U2U_Type);
  700. size_t n_surf=(6*(MultipoleOrder()-1)*(MultipoleOrder()-1)+2); //Total number of points.
  701. if((M.Dim(0)!=n_surf*ker_dim[0] || M.Dim(1)!=n_surf*ker_dim[1]) && level==0){
  702. Matrix<Real_t> M_m2m[BC_LEVELS+1];
  703. Matrix<Real_t> M_m2l[BC_LEVELS+1];
  704. Matrix<Real_t> M_l2l[BC_LEVELS+1];
  705. Matrix<Real_t> M_equiv_zero_avg(n_surf*ker_dim[0],n_surf*ker_dim[0]);
  706. Matrix<Real_t> M_check_zero_avg(n_surf*ker_dim[1],n_surf*ker_dim[1]);
  707. { // Set average multipole charge to zero. (improves stability for large BC_LEVELS)
  708. M_equiv_zero_avg.SetZero();
  709. for(size_t i=0;i<n_surf*ker_dim[0];i++)
  710. M_equiv_zero_avg[i][i]+=1;
  711. for(size_t i=0;i<n_surf;i++)
  712. for(size_t j=0;j<n_surf;j++)
  713. for(size_t k=0;k<ker_dim[0];k++)
  714. M_equiv_zero_avg[i*ker_dim[0]+k][j*ker_dim[0]+k]-=1.0/n_surf;
  715. }
  716. { // Set average check potential to zero. (improves stability for large BC_LEVELS)
  717. M_check_zero_avg.SetZero();
  718. for(size_t i=0;i<n_surf*ker_dim[1];i++)
  719. M_check_zero_avg[i][i]+=1;
  720. for(size_t i=0;i<n_surf;i++)
  721. for(size_t j=0;j<n_surf;j++)
  722. for(size_t k=0;k<ker_dim[1];k++)
  723. M_check_zero_avg[i*ker_dim[1]+k][j*ker_dim[1]+k]-=1.0/n_surf;
  724. }
  725. for(int level=0; level>=-BC_LEVELS; level--){
  726. { // Compute M_l2l
  727. this->Precomp(level, D2D_Type, 0);
  728. Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, D2D_Type, 0);
  729. Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, D2D_Type, 0);
  730. M_l2l[-level] = M_check_zero_avg * Pr * this->Precomp(level, D2D_Type, this->interac_list.InteracClass(D2D_Type, 0)) * Pc * M_check_zero_avg;
  731. assert(M_l2l[-level].Dim(0)>0 && M_l2l[-level].Dim(1)>0);
  732. }
  733. // Compute M_m2m
  734. for(size_t mat_indx=0; mat_indx<mat_cnt_m2m; mat_indx++){
  735. this->Precomp(level, U2U_Type, mat_indx);
  736. Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, U2U_Type, mat_indx);
  737. Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, U2U_Type, mat_indx);
  738. Matrix<Real_t> M = Pr * this->Precomp(level, U2U_Type, this->interac_list.InteracClass(U2U_Type, mat_indx)) * Pc;
  739. assert(M.Dim(0)>0 && M.Dim(1)>0);
  740. if(mat_indx==0) M_m2m[-level] = M_equiv_zero_avg*M*M_equiv_zero_avg;
  741. else M_m2m[-level] += M_equiv_zero_avg*M*M_equiv_zero_avg;
  742. }
  743. // Compute M_m2l
  744. if(!ScaleInvar() || level==0){
  745. Real_t s=(1UL<<(-level));
  746. Real_t dc_coord[3]={0,0,0};
  747. std::vector<Real_t> trg_coord=d_check_surf(MultipoleOrder(), dc_coord, level);
  748. Matrix<Real_t> M_ue2dc(n_surf*ker_dim[0], n_surf*ker_dim[1]); M_ue2dc.SetZero();
  749. for(int x0=-2;x0<4;x0++)
  750. for(int x1=-2;x1<4;x1++)
  751. for(int x2=-2;x2<4;x2++)
  752. if(abs(x0)>1 || abs(x1)>1 || abs(x2)>1){
  753. Real_t ue_coord[3]={x0*s, x1*s, x2*s};
  754. std::vector<Real_t> src_coord=u_equiv_surf(MultipoleOrder(), ue_coord, level);
  755. Matrix<Real_t> M_tmp(n_surf*ker_dim[0], n_surf*ker_dim[1]);
  756. kernel->k_m2l->BuildMatrix(&src_coord[0], n_surf,
  757. &trg_coord[0], n_surf, &(M_tmp[0][0]));
  758. M_ue2dc+=M_tmp;
  759. }
  760. M_m2l[-level]=M_check_zero_avg*M_ue2dc * M_check_zero_avg;
  761. }else{
  762. M_m2l[-level]=M_equiv_zero_avg * M_m2l[-level-1] * M_check_zero_avg;
  763. if(ScaleInvar()){ // Scale M_m2l
  764. Permutation<Real_t> ker_perm=this->kernel->k_m2l->perm_vec[0 +Scaling];
  765. Vector<Real_t> scal_exp=this->kernel->k_m2l->src_scal;
  766. for(size_t i=0;i<scal_exp.Dim();i++) scal_exp[i]=-scal_exp[i];
  767. Permutation<Real_t> P=equiv_surf_perm(MultipoleOrder(), Scaling, ker_perm, &scal_exp);
  768. M_m2l[-level]=P*M_m2l[-level];
  769. }
  770. if(ScaleInvar()){ // Scale M_m2l
  771. Permutation<Real_t> ker_perm=this->kernel->k_m2l->perm_vec[C_Perm+Scaling];
  772. Vector<Real_t> scal_exp=this->kernel->k_m2l->trg_scal;
  773. for(size_t i=0;i<scal_exp.Dim();i++) scal_exp[i]=-scal_exp[i];
  774. Permutation<Real_t> P=equiv_surf_perm(MultipoleOrder(), Scaling, ker_perm, &scal_exp);
  775. M_m2l[-level]=M_m2l[-level]*P;
  776. }
  777. }
  778. }
  779. for(int level=-BC_LEVELS;level<=0;level++){
  780. if(level==-BC_LEVELS) M = M_m2l[-level];
  781. else M = M_equiv_zero_avg * (M_m2l[-level] + M_m2m[-level]*M*M_l2l[-level]) * M_equiv_zero_avg;
  782. }
  783. { // ax+by+cz+d correction.
  784. std::vector<Real_t> corner_pts;
  785. corner_pts.push_back(0); corner_pts.push_back(0); corner_pts.push_back(0);
  786. corner_pts.push_back(1); corner_pts.push_back(0); corner_pts.push_back(0);
  787. corner_pts.push_back(0); corner_pts.push_back(1); corner_pts.push_back(0);
  788. corner_pts.push_back(0); corner_pts.push_back(0); corner_pts.push_back(1);
  789. size_t n_corner=corner_pts.size()/COORD_DIM;
  790. // Coord of downward equivalent surface
  791. Real_t c[3]={0,0,0};
  792. std::vector<Real_t> up_equiv_surf=u_equiv_surf(MultipoleOrder(),c,0);
  793. std::vector<Real_t> dn_equiv_surf=d_equiv_surf(MultipoleOrder(),c,0);
  794. std::vector<Real_t> dn_check_surf=d_check_surf(MultipoleOrder(),c,0);
  795. Matrix<Real_t> M_err;
  796. { // Evaluate potential at corner due to upward and dnward equivalent surface.
  797. { // Error from local expansion.
  798. Matrix<Real_t> M_e2pt(n_surf*ker_dim[0],n_corner*ker_dim[1]);
  799. kernel->k_m2l->BuildMatrix(&dn_equiv_surf[0], n_surf,
  800. &corner_pts[0], n_corner, &(M_e2pt[0][0]));
  801. Matrix<Real_t>& M_dc2de0 = Precomp(0, DC2DE0_Type, 0);
  802. Matrix<Real_t>& M_dc2de1 = Precomp(0, DC2DE1_Type, 0);
  803. M_err=(M*M_dc2de0)*(M_dc2de1*M_e2pt);
  804. }
  805. for(size_t k=0;k<4;k++){ // Error from colleagues of root.
  806. for(int j0=-1;j0<=1;j0++)
  807. for(int j1=-1;j1<=1;j1++)
  808. for(int j2=-1;j2<=1;j2++){
  809. Real_t pt_coord[3]={corner_pts[k*COORD_DIM+0]-j0,
  810. corner_pts[k*COORD_DIM+1]-j1,
  811. corner_pts[k*COORD_DIM+2]-j2};
  812. if(fabs(pt_coord[0]-0.5)>1.0 || fabs(pt_coord[1]-0.5)>1.0 || fabs(pt_coord[2]-0.5)>1.0){
  813. Matrix<Real_t> M_e2pt(n_surf*ker_dim[0],ker_dim[1]);
  814. kernel->k_m2l->BuildMatrix(&up_equiv_surf[0], n_surf,
  815. &pt_coord[0], 1, &(M_e2pt[0][0]));
  816. for(size_t i=0;i<M_e2pt.Dim(0);i++)
  817. for(size_t j=0;j<M_e2pt.Dim(1);j++)
  818. M_err[i][k*ker_dim[1]+j]+=M_e2pt[i][j];
  819. }
  820. }
  821. }
  822. }
  823. Matrix<Real_t> M_grad(M_err.Dim(0),n_surf*ker_dim[1]);
  824. for(size_t i=0;i<M_err.Dim(0);i++)
  825. for(size_t k=0;k<ker_dim[1];k++)
  826. for(size_t j=0;j<n_surf;j++){
  827. M_grad[i][j*ker_dim[1]+k]=(M_err[i][0*ker_dim[1]+k] )*1.0 +
  828. (M_err[i][1*ker_dim[1]+k]-M_err[i][0*ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+0]+
  829. (M_err[i][2*ker_dim[1]+k]-M_err[i][0*ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+1]+
  830. (M_err[i][3*ker_dim[1]+k]-M_err[i][0*ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+2];
  831. }
  832. M-=M_grad;
  833. }
  834. if(!this->ScaleInvar()){ // Free memory
  835. Mat_Type type=D2D_Type;
  836. for(int l=-BC_LEVELS;l<0;l++)
  837. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  838. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  839. M.Resize(0,0);
  840. }
  841. type=U2U_Type;
  842. for(int l=-BC_LEVELS;l<0;l++)
  843. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  844. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  845. M.Resize(0,0);
  846. }
  847. type=DC2DE0_Type;
  848. for(int l=-BC_LEVELS;l<0;l++)
  849. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  850. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  851. M.Resize(0,0);
  852. }
  853. type=DC2DE1_Type;
  854. for(int l=-BC_LEVELS;l<0;l++)
  855. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  856. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  857. M.Resize(0,0);
  858. }
  859. type=UC2UE0_Type;
  860. for(int l=-BC_LEVELS;l<0;l++)
  861. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  862. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  863. M.Resize(0,0);
  864. }
  865. type=UC2UE1_Type;
  866. for(int l=-BC_LEVELS;l<0;l++)
  867. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  868. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  869. M.Resize(0,0);
  870. }
  871. }
  872. }
  873. break;
  874. }
  875. default:
  876. break;
  877. }
  878. //Save the matrix for future use.
  879. #pragma omp critical (PRECOMP_MATRIX_PTS)
  880. if(M_.Dim(0)==0 && M_.Dim(1)==0){
  881. M_=M;
  882. /*
  883. M_.Resize(M.Dim(0),M.Dim(1));
  884. int dof=ker_dim[0]*ker_dim[1];
  885. for(int j=0;j<dof;j++){
  886. size_t a=(M.Dim(0)*M.Dim(1)* j )/dof;
  887. size_t b=(M.Dim(0)*M.Dim(1)*(j+1))/dof;
  888. #pragma omp parallel for // NUMA
  889. for(int tid=0;tid<omp_p;tid++){
  890. size_t a_=a+((b-a)* tid )/omp_p;
  891. size_t b_=a+((b-a)*(tid+1))/omp_p;
  892. mem::memcopy(&M_[0][a_], &M[0][a_], (b_-a_)*sizeof(Real_t));
  893. }
  894. }
  895. */
  896. }
  897. return M_;
  898. }
  899. template <class FMMNode>
  900. void FMM_Pts<FMMNode>::PrecompAll(Mat_Type type, int level){
  901. if(level==-1){
  902. for(int l=0;l<MAX_DEPTH;l++){
  903. PrecompAll(type, l);
  904. }
  905. return;
  906. }
  907. //Compute basic permutations.
  908. for(size_t i=0;i<Perm_Count;i++)
  909. this->PrecompPerm(type, (Perm_Type) i);
  910. {
  911. //Allocate matrices.
  912. size_t mat_cnt=interac_list.ListCount((Mat_Type)type);
  913. mat->Mat(level, (Mat_Type)type, mat_cnt-1);
  914. { // Compute InteracClass matrices.
  915. std::vector<size_t> indx_lst;
  916. for(size_t i=0; i<mat_cnt; i++){
  917. if(interac_list.InteracClass((Mat_Type)type,i)==i)
  918. indx_lst.push_back(i);
  919. }
  920. //Compute Transformations.
  921. //#pragma omp parallel for //lets use fine grained parallelism
  922. for(size_t i=0; i<indx_lst.size(); i++){
  923. Precomp(level, (Mat_Type)type, indx_lst[i]);
  924. }
  925. }
  926. //#pragma omp parallel for //lets use fine grained parallelism
  927. for(size_t mat_indx=0;mat_indx<mat_cnt;mat_indx++){
  928. Matrix<Real_t>& M0=interac_list.ClassMat(level,(Mat_Type)type,mat_indx);
  929. Permutation<Real_t>& pr=interac_list.Perm_R(level, (Mat_Type)type, mat_indx);
  930. Permutation<Real_t>& pc=interac_list.Perm_C(level, (Mat_Type)type, mat_indx);
  931. if(pr.Dim()!=M0.Dim(0) || pc.Dim()!=M0.Dim(1)) Precomp(level, (Mat_Type)type, mat_indx);
  932. }
  933. }
  934. }
  935. template <class FMMNode>
  936. void FMM_Pts<FMMNode>::CollectNodeData(FMMTree_t* tree, std::vector<FMMNode*>& node, std::vector<Matrix<Real_t> >& buff_list, std::vector<Vector<FMMNode_t*> >& n_list, std::vector<std::vector<Vector<Real_t>* > > vec_list){
  937. if(buff_list.size()<7) buff_list.resize(7);
  938. if( n_list.size()<7) n_list.resize(7);
  939. if( vec_list.size()<7) vec_list.resize(7);
  940. int omp_p=omp_get_max_threads();
  941. if(node.size()==0) return;
  942. {// 0. upward_equiv
  943. int indx=0;
  944. size_t vec_sz;
  945. { // Set vec_sz
  946. Matrix<Real_t>& M_uc2ue = this->interac_list.ClassMat(0, UC2UE1_Type, 0);
  947. vec_sz=M_uc2ue.Dim(1);
  948. }
  949. std::vector< FMMNode* > node_lst;
  950. {// Construct node_lst
  951. node_lst.clear();
  952. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  953. FMMNode_t* r_node=NULL;
  954. for(size_t i=0;i<node.size();i++){
  955. if(!node[i]->IsLeaf()){
  956. node[i]->pt_cnt[0] =0;
  957. node_lst_[node[i]->Depth()].push_back(node[i]);
  958. }else{
  959. node[i]->pt_cnt[0] =node[i]-> src_coord.Dim()/COORD_DIM;
  960. node[i]->pt_cnt[0]+=node[i]->surf_coord.Dim()/COORD_DIM;
  961. if(node[i]->IsGhost()) node[i]->pt_cnt[0]++; // TODO: temporary fix, pt_cnt not known for ghost nodes
  962. }
  963. if(node[i]->Depth()==0) r_node=node[i];
  964. }
  965. size_t chld_cnt=1UL<<COORD_DIM;
  966. for(int i=MAX_DEPTH;i>=0;i--){
  967. for(size_t j=0;j<node_lst_[i].size();j++){
  968. for(size_t k=0;k<chld_cnt;k++){
  969. FMMNode_t* node=(FMMNode_t*)node_lst_[i][j]->Child(k);
  970. node_lst_[i][j]->pt_cnt[0]+=node->pt_cnt[0];
  971. }
  972. }
  973. }
  974. for(int i=0;i<=MAX_DEPTH;i++){
  975. for(size_t j=0;j<node_lst_[i].size();j++){
  976. if(node_lst_[i][j]->pt_cnt[0])
  977. for(size_t k=0;k<chld_cnt;k++){
  978. FMMNode_t* node=(FMMNode_t*)node_lst_[i][j]->Child(k);
  979. node_lst.push_back(node);
  980. }
  981. }
  982. }
  983. if(r_node!=NULL) node_lst.push_back(r_node);
  984. n_list[indx]=node_lst;
  985. }
  986. std::vector<Vector<Real_t>*>& vec_lst=vec_list[indx];
  987. for(size_t i=0;i<node_lst.size();i++){ // Construct vec_lst
  988. FMMNode_t* node=node_lst[i];
  989. Vector<Real_t>& data_vec=node->FMMData()->upward_equiv;
  990. data_vec.ReInit(vec_sz,NULL,false);
  991. vec_lst.push_back(&data_vec);
  992. }
  993. }
  994. {// 1. dnward_equiv
  995. int indx=1;
  996. size_t vec_sz;
  997. { // Set vec_sz
  998. Matrix<Real_t>& M_dc2de0 = this->interac_list.ClassMat(0, DC2DE0_Type, 0);
  999. vec_sz=M_dc2de0.Dim(0);
  1000. }
  1001. std::vector< FMMNode* > node_lst;
  1002. {// Construct node_lst
  1003. node_lst.clear();
  1004. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  1005. FMMNode_t* r_node=NULL;
  1006. for(size_t i=0;i<node.size();i++){
  1007. if(!node[i]->IsLeaf()){
  1008. node[i]->pt_cnt[1]=0;
  1009. node_lst_[node[i]->Depth()].push_back(node[i]);
  1010. }else{
  1011. node[i]->pt_cnt[1]=node[i]->trg_coord.Dim()/COORD_DIM;
  1012. }
  1013. if(node[i]->Depth()==0) r_node=node[i];
  1014. }
  1015. size_t chld_cnt=1UL<<COORD_DIM;
  1016. for(int i=MAX_DEPTH;i>=0;i--){
  1017. for(size_t j=0;j<node_lst_[i].size();j++){
  1018. for(size_t k=0;k<chld_cnt;k++){
  1019. FMMNode_t* node=(FMMNode_t*)node_lst_[i][j]->Child(k);
  1020. node_lst_[i][j]->pt_cnt[1]+=node->pt_cnt[1];
  1021. }
  1022. }
  1023. }
  1024. for(int i=0;i<=MAX_DEPTH;i++){
  1025. for(size_t j=0;j<node_lst_[i].size();j++){
  1026. if(node_lst_[i][j]->pt_cnt[1])
  1027. for(size_t k=0;k<chld_cnt;k++){
  1028. FMMNode_t* node=(FMMNode_t*)node_lst_[i][j]->Child(k);
  1029. node_lst.push_back(node);
  1030. }
  1031. }
  1032. }
  1033. if(r_node!=NULL) node_lst.push_back(r_node);
  1034. n_list[indx]=node_lst;
  1035. }
  1036. std::vector<Vector<Real_t>*>& vec_lst=vec_list[indx];
  1037. for(size_t i=0;i<node_lst.size();i++){ // Construct vec_lst
  1038. FMMNode_t* node=node_lst[i];
  1039. Vector<Real_t>& data_vec=node->FMMData()->dnward_equiv;
  1040. data_vec.ReInit(vec_sz,NULL,false);
  1041. vec_lst.push_back(&data_vec);
  1042. }
  1043. }
  1044. {// 2. upward_equiv_fft
  1045. int indx=2;
  1046. std::vector< FMMNode* > node_lst;
  1047. {
  1048. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  1049. for(size_t i=0;i<node.size();i++)
  1050. if(!node[i]->IsLeaf())
  1051. node_lst_[node[i]->Depth()].push_back(node[i]);
  1052. for(int i=0;i<=MAX_DEPTH;i++)
  1053. for(size_t j=0;j<node_lst_[i].size();j++)
  1054. node_lst.push_back(node_lst_[i][j]);
  1055. }
  1056. n_list[indx]=node_lst;
  1057. }
  1058. {// 3. dnward_check_fft
  1059. int indx=3;
  1060. std::vector< FMMNode* > node_lst;
  1061. {
  1062. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  1063. for(size_t i=0;i<node.size();i++)
  1064. if(!node[i]->IsLeaf() && !node[i]->IsGhost())
  1065. node_lst_[node[i]->Depth()].push_back(node[i]);
  1066. for(int i=0;i<=MAX_DEPTH;i++)
  1067. for(size_t j=0;j<node_lst_[i].size();j++)
  1068. node_lst.push_back(node_lst_[i][j]);
  1069. }
  1070. n_list[indx]=node_lst;
  1071. }
  1072. {// 4. src_val
  1073. int indx=4;
  1074. int src_dof=kernel->ker_dim[0];
  1075. int surf_dof=COORD_DIM+src_dof;
  1076. std::vector< FMMNode* > node_lst;
  1077. for(size_t i=0;i<node.size();i++){// Construct node_lst
  1078. if(node[i]->IsLeaf()){
  1079. node_lst.push_back(node[i]);
  1080. }
  1081. }
  1082. n_list[indx]=node_lst;
  1083. std::vector<Vector<Real_t>*>& vec_lst=vec_list[indx];
  1084. for(size_t i=0;i<node_lst.size();i++){ // Construct vec_lst
  1085. FMMNode_t* node=node_lst[i];
  1086. { // src_value
  1087. Vector<Real_t>& data_vec=node->src_value;
  1088. size_t vec_sz=(node->src_coord.Dim()/COORD_DIM)*src_dof;
  1089. if(data_vec.Dim()!=vec_sz) data_vec.ReInit(vec_sz,NULL,false);
  1090. vec_lst.push_back(&data_vec);
  1091. }
  1092. { // surf_value
  1093. Vector<Real_t>& data_vec=node->surf_value;
  1094. size_t vec_sz=(node->surf_coord.Dim()/COORD_DIM)*surf_dof;
  1095. if(data_vec.Dim()!=vec_sz) data_vec.ReInit(vec_sz,NULL,false);
  1096. vec_lst.push_back(&data_vec);
  1097. }
  1098. }
  1099. }
  1100. {// 5. trg_val
  1101. int indx=5;
  1102. int trg_dof=kernel->ker_dim[1];
  1103. std::vector< FMMNode* > node_lst;
  1104. for(size_t i=0;i<node.size();i++){// Construct node_lst
  1105. if(node[i]->IsLeaf() && !node[i]->IsGhost()){
  1106. node_lst.push_back(node[i]);
  1107. }
  1108. }
  1109. n_list[indx]=node_lst;
  1110. std::vector<Vector<Real_t>*>& vec_lst=vec_list[indx];
  1111. for(size_t i=0;i<node_lst.size();i++){ // Construct vec_lst
  1112. FMMNode_t* node=node_lst[i];
  1113. { // trg_value
  1114. Vector<Real_t>& data_vec=node->trg_value;
  1115. size_t vec_sz=(node->trg_coord.Dim()/COORD_DIM)*trg_dof;
  1116. data_vec.ReInit(vec_sz,NULL,false);
  1117. vec_lst.push_back(&data_vec);
  1118. }
  1119. }
  1120. }
  1121. {// 6. pts_coord
  1122. int indx=6;
  1123. std::vector< FMMNode* > node_lst;
  1124. for(size_t i=0;i<node.size();i++){// Construct node_lst
  1125. if(node[i]->IsLeaf()){
  1126. node_lst.push_back(node[i]);
  1127. }
  1128. }
  1129. n_list[indx]=node_lst;
  1130. std::vector<Vector<Real_t>*>& vec_lst=vec_list[indx];
  1131. for(size_t i=0;i<node_lst.size();i++){ // Construct vec_lst
  1132. FMMNode_t* node=node_lst[i];
  1133. { // src_coord
  1134. Vector<Real_t>& data_vec=node->src_coord;
  1135. vec_lst.push_back(&data_vec);
  1136. }
  1137. { // surf_coord
  1138. Vector<Real_t>& data_vec=node->surf_coord;
  1139. vec_lst.push_back(&data_vec);
  1140. }
  1141. { // trg_coord
  1142. Vector<Real_t>& data_vec=node->trg_coord;
  1143. vec_lst.push_back(&data_vec);
  1144. }
  1145. }
  1146. { // check and equiv surfaces.
  1147. if(tree->upwd_check_surf.size()==0){
  1148. size_t m=MultipoleOrder();
  1149. tree->upwd_check_surf.resize(MAX_DEPTH);
  1150. tree->upwd_equiv_surf.resize(MAX_DEPTH);
  1151. tree->dnwd_check_surf.resize(MAX_DEPTH);
  1152. tree->dnwd_equiv_surf.resize(MAX_DEPTH);
  1153. for(size_t depth=0;depth<MAX_DEPTH;depth++){
  1154. Real_t c[3]={0.0,0.0,0.0};
  1155. tree->upwd_check_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM);
  1156. tree->upwd_equiv_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM);
  1157. tree->dnwd_check_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM);
  1158. tree->dnwd_equiv_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM);
  1159. tree->upwd_check_surf[depth]=u_check_surf(m,c,depth);
  1160. tree->upwd_equiv_surf[depth]=u_equiv_surf(m,c,depth);
  1161. tree->dnwd_check_surf[depth]=d_check_surf(m,c,depth);
  1162. tree->dnwd_equiv_surf[depth]=d_equiv_surf(m,c,depth);
  1163. }
  1164. }
  1165. for(size_t depth=0;depth<MAX_DEPTH;depth++){
  1166. vec_lst.push_back(&tree->upwd_check_surf[depth]);
  1167. vec_lst.push_back(&tree->upwd_equiv_surf[depth]);
  1168. vec_lst.push_back(&tree->dnwd_check_surf[depth]);
  1169. vec_lst.push_back(&tree->dnwd_equiv_surf[depth]);
  1170. }
  1171. }
  1172. }
  1173. // Create extra auxiliary buffer.
  1174. if(buff_list.size()<=vec_list.size()) buff_list.resize(vec_list.size()+1);
  1175. for(size_t indx=0;indx<vec_list.size();indx++){ // Resize buffer
  1176. Matrix<Real_t>& buff=buff_list[indx];
  1177. std::vector<Vector<Real_t>*>& vec_lst= vec_list[indx];
  1178. bool keep_data=(indx==4 || indx==6);
  1179. size_t n_vec=vec_lst.size();
  1180. { // Continue if nothing to be done.
  1181. if(!n_vec) continue;
  1182. if(buff.Dim(0)*buff.Dim(1)>0){
  1183. bool init_buff=false;
  1184. Real_t* buff_start=&buff[0][0];
  1185. Real_t* buff_end=&buff[0][0]+buff.Dim(0)*buff.Dim(1);
  1186. #pragma omp parallel for reduction(||:init_buff)
  1187. for(size_t i=0;i<n_vec;i++){
  1188. if(vec_lst[i]->Dim() && (&(*vec_lst[i])[0]<buff_start || &(*vec_lst[i])[0]>=buff_end)){
  1189. init_buff=true;
  1190. }
  1191. }
  1192. if(!init_buff) continue;
  1193. }
  1194. }
  1195. std::vector<size_t> vec_size(n_vec);
  1196. std::vector<size_t> vec_disp(n_vec);
  1197. if(n_vec){ // Set vec_size and vec_disp
  1198. #pragma omp parallel for
  1199. for(size_t i=0;i<n_vec;i++){ // Set vec_size
  1200. vec_size[i]=vec_lst[i]->Dim();
  1201. }
  1202. vec_disp[0]=0;
  1203. omp_par::scan(&vec_size[0],&vec_disp[0],n_vec);
  1204. }
  1205. size_t buff_size=vec_size[n_vec-1]+vec_disp[n_vec-1];
  1206. if(!buff_size) continue;
  1207. if(keep_data){ // Copy to dev_buffer
  1208. if(dev_buffer.Dim()<buff_size*sizeof(Real_t)){ // Resize dev_buffer
  1209. dev_buffer.ReInit(buff_size*sizeof(Real_t)*1.05);
  1210. }
  1211. #pragma omp parallel for
  1212. for(size_t i=0;i<n_vec;i++){
  1213. if(&(*vec_lst[i])[0]){
  1214. mem::memcopy(((Real_t*)&dev_buffer[0])+vec_disp[i],&(*vec_lst[i])[0],vec_size[i]*sizeof(Real_t));
  1215. }
  1216. }
  1217. }
  1218. if(buff.Dim(0)*buff.Dim(1)<buff_size){ // Resize buff
  1219. buff.ReInit(1,buff_size*1.05);
  1220. }
  1221. if(keep_data){ // Copy to buff (from dev_buffer)
  1222. #pragma omp parallel for
  1223. for(size_t tid=0;tid<omp_p;tid++){
  1224. size_t a=(buff_size*(tid+0))/omp_p;
  1225. size_t b=(buff_size*(tid+1))/omp_p;
  1226. mem::memcopy(&buff[0][0]+a,((Real_t*)&dev_buffer[0])+a,(b-a)*sizeof(Real_t));
  1227. }
  1228. }
  1229. #pragma omp parallel for
  1230. for(size_t i=0;i<n_vec;i++){ // ReInit vectors
  1231. vec_lst[i]->ReInit(vec_size[i],&buff[0][0]+vec_disp[i],false);
  1232. }
  1233. }
  1234. }
  1235. template <class FMMNode>
  1236. void FMM_Pts<FMMNode>::SetupPrecomp(SetupData<Real_t>& setup_data, bool device){
  1237. if(setup_data.precomp_data==NULL || setup_data.level>MAX_DEPTH) return;
  1238. Profile::Tic("SetupPrecomp",&this->comm,true,25);
  1239. { // Build precomp_data
  1240. size_t precomp_offset=0;
  1241. int level=setup_data.level;
  1242. Matrix<char>& precomp_data=*setup_data.precomp_data;
  1243. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  1244. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  1245. Mat_Type& interac_type=interac_type_lst[type_indx];
  1246. this->PrecompAll(interac_type, level); // Compute matrices.
  1247. precomp_offset=this->mat->CompactData(level, interac_type, precomp_data, precomp_offset);
  1248. }
  1249. }
  1250. Profile::Toc();
  1251. if(device){ // Host2Device
  1252. Profile::Tic("Host2Device",&this->comm,false,25);
  1253. setup_data.precomp_data->AllocDevice(true);
  1254. Profile::Toc();
  1255. }
  1256. }
  1257. template <class FMMNode>
  1258. void FMM_Pts<FMMNode>::SetupInterac(SetupData<Real_t>& setup_data, bool device){
  1259. int level=setup_data.level;
  1260. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  1261. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  1262. std::vector<void*>& nodes_out=setup_data.nodes_out;
  1263. Matrix<Real_t>& input_data=*setup_data. input_data;
  1264. Matrix<Real_t>& output_data=*setup_data.output_data;
  1265. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector;
  1266. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector;
  1267. size_t n_in =nodes_in .size();
  1268. size_t n_out=nodes_out.size();
  1269. // Setup precomputed data.
  1270. if(setup_data.precomp_data->Dim(0)*setup_data.precomp_data->Dim(1)==0) SetupPrecomp(setup_data,device);
  1271. // Build interac_data
  1272. Profile::Tic("Interac-Data",&this->comm,true,25);
  1273. Matrix<char>& interac_data=setup_data.interac_data;
  1274. { // Build precomp_data, interac_data
  1275. std::vector<size_t> interac_mat;
  1276. std::vector<size_t> interac_cnt;
  1277. std::vector<size_t> interac_blk;
  1278. std::vector<size_t> input_perm;
  1279. std::vector<size_t> output_perm;
  1280. size_t dof=0, M_dim0=0, M_dim1=0;
  1281. size_t precomp_offset=0;
  1282. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  1283. if(n_out && n_in) for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  1284. Mat_Type& interac_type=interac_type_lst[type_indx];
  1285. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  1286. Matrix<size_t> precomp_data_offset;
  1287. { // Load precomp_data for interac_type.
  1288. struct HeaderData{
  1289. size_t total_size;
  1290. size_t level;
  1291. size_t mat_cnt ;
  1292. size_t max_depth;
  1293. };
  1294. Matrix<char>& precomp_data=*setup_data.precomp_data;
  1295. char* indx_ptr=precomp_data[0]+precomp_offset;
  1296. HeaderData& header=*(HeaderData*)indx_ptr;indx_ptr+=sizeof(HeaderData);
  1297. precomp_data_offset.ReInit(header.mat_cnt,(1+(2+2)*header.max_depth), (size_t*)indx_ptr, false);
  1298. precomp_offset+=header.total_size;
  1299. }
  1300. Matrix<FMMNode*> src_interac_list(n_in ,mat_cnt); src_interac_list.SetZero();
  1301. Matrix<FMMNode*> trg_interac_list(n_out,mat_cnt); trg_interac_list.SetZero();
  1302. { // Build trg_interac_list
  1303. #pragma omp parallel for
  1304. for(size_t i=0;i<n_out;i++){
  1305. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  1306. Vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  1307. mem::memcopy(&trg_interac_list[i][0], &lst[0], lst.Dim()*sizeof(FMMNode*));
  1308. assert(lst.Dim()==mat_cnt);
  1309. }
  1310. }
  1311. }
  1312. { // Build src_interac_list
  1313. #pragma omp parallel for
  1314. for(size_t i=0;i<n_out;i++){
  1315. for(size_t j=0;j<mat_cnt;j++)
  1316. if(trg_interac_list[i][j]!=NULL){
  1317. trg_interac_list[i][j]->node_id=n_in;
  1318. }
  1319. }
  1320. #pragma omp parallel for
  1321. for(size_t i=0;i<n_in ;i++) ((FMMNode*)nodes_in [i])->node_id=i;
  1322. #pragma omp parallel for
  1323. for(size_t i=0;i<n_out;i++){
  1324. for(size_t j=0;j<mat_cnt;j++){
  1325. if(trg_interac_list[i][j]!=NULL){
  1326. if(trg_interac_list[i][j]->node_id==n_in){
  1327. trg_interac_list[i][j]=NULL;
  1328. }else{
  1329. src_interac_list[trg_interac_list[i][j]->node_id][j]=(FMMNode*)nodes_out[i];
  1330. }
  1331. }
  1332. }
  1333. }
  1334. }
  1335. Matrix<size_t> interac_dsp(n_out,mat_cnt);
  1336. std::vector<size_t> interac_blk_dsp(1,0);
  1337. { // Determine dof, M_dim0, M_dim1
  1338. dof=1;
  1339. Matrix<Real_t>& M0 = this->interac_list.ClassMat(level, interac_type_lst[0], 0);
  1340. M_dim0=M0.Dim(0); M_dim1=M0.Dim(1);
  1341. }
  1342. { // Determine interaction blocks which fit in memory.
  1343. size_t vec_size=(M_dim0+M_dim1)*sizeof(Real_t)*dof;
  1344. for(size_t j=0;j<mat_cnt;j++){// Determine minimum buff_size
  1345. size_t vec_cnt=0;
  1346. for(size_t i=0;i<n_out;i++){
  1347. if(trg_interac_list[i][j]!=NULL) vec_cnt++;
  1348. }
  1349. if(buff_size<vec_cnt*vec_size)
  1350. buff_size=vec_cnt*vec_size;
  1351. }
  1352. size_t interac_dsp_=0;
  1353. for(size_t j=0;j<mat_cnt;j++){
  1354. for(size_t i=0;i<n_out;i++){
  1355. interac_dsp[i][j]=interac_dsp_;
  1356. if(trg_interac_list[i][j]!=NULL) interac_dsp_++;
  1357. }
  1358. if(interac_dsp_*vec_size>buff_size) // Comment to disable symmetries.
  1359. {
  1360. interac_blk.push_back(j-interac_blk_dsp.back());
  1361. interac_blk_dsp.push_back(j);
  1362. size_t offset=interac_dsp[0][j];
  1363. for(size_t i=0;i<n_out;i++) interac_dsp[i][j]-=offset;
  1364. interac_dsp_-=offset;
  1365. assert(interac_dsp_*vec_size<=buff_size); // Problem too big for buff_size.
  1366. }
  1367. interac_mat.push_back(precomp_data_offset[this->interac_list.InteracClass(interac_type,j)][0]);
  1368. interac_cnt.push_back(interac_dsp_-interac_dsp[0][j]);
  1369. }
  1370. interac_blk.push_back(mat_cnt-interac_blk_dsp.back());
  1371. interac_blk_dsp.push_back(mat_cnt);
  1372. }
  1373. { // Determine input_perm.
  1374. size_t vec_size=M_dim0*dof;
  1375. for(size_t i=0;i<n_out;i++) ((FMMNode*)nodes_out[i])->node_id=i;
  1376. for(size_t k=1;k<interac_blk_dsp.size();k++){
  1377. for(size_t i=0;i<n_in ;i++){
  1378. for(size_t j=interac_blk_dsp[k-1];j<interac_blk_dsp[k];j++){
  1379. FMMNode_t* trg_node=src_interac_list[i][j];
  1380. if(trg_node!=NULL && trg_node->node_id<n_out){
  1381. size_t depth=(this->ScaleInvar()?trg_node->Depth():0);
  1382. input_perm .push_back(precomp_data_offset[j][1+4*depth+0]); // prem
  1383. input_perm .push_back(precomp_data_offset[j][1+4*depth+1]); // scal
  1384. input_perm .push_back(interac_dsp[trg_node->node_id][j]*vec_size*sizeof(Real_t)); // trg_ptr
  1385. input_perm .push_back((size_t)(& input_vector[i][0][0]- input_data[0])); // src_ptr
  1386. assert(input_vector[i]->Dim()==vec_size);
  1387. }
  1388. }
  1389. }
  1390. }
  1391. }
  1392. { // Determine output_perm
  1393. size_t vec_size=M_dim1*dof;
  1394. for(size_t k=1;k<interac_blk_dsp.size();k++){
  1395. for(size_t i=0;i<n_out;i++){
  1396. for(size_t j=interac_blk_dsp[k-1];j<interac_blk_dsp[k];j++){
  1397. if(trg_interac_list[i][j]!=NULL){
  1398. size_t depth=(this->ScaleInvar()?((FMMNode*)nodes_out[i])->Depth():0);
  1399. output_perm.push_back(precomp_data_offset[j][1+4*depth+2]); // prem
  1400. output_perm.push_back(precomp_data_offset[j][1+4*depth+3]); // scal
  1401. output_perm.push_back(interac_dsp[ i ][j]*vec_size*sizeof(Real_t)); // src_ptr
  1402. output_perm.push_back((size_t)(&output_vector[i][0][0]-output_data[0])); // trg_ptr
  1403. assert(output_vector[i]->Dim()==vec_size);
  1404. }
  1405. }
  1406. }
  1407. }
  1408. }
  1409. }
  1410. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.ReInit(buff_size);
  1411. { // Set interac_data.
  1412. size_t data_size=sizeof(size_t)*4;
  1413. data_size+=sizeof(size_t)+interac_blk.size()*sizeof(size_t);
  1414. data_size+=sizeof(size_t)+interac_cnt.size()*sizeof(size_t);
  1415. data_size+=sizeof(size_t)+interac_mat.size()*sizeof(size_t);
  1416. data_size+=sizeof(size_t)+ input_perm.size()*sizeof(size_t);
  1417. data_size+=sizeof(size_t)+output_perm.size()*sizeof(size_t);
  1418. if(interac_data.Dim(0)*interac_data.Dim(1)<sizeof(size_t)){
  1419. data_size+=sizeof(size_t);
  1420. interac_data.ReInit(1,data_size);
  1421. ((size_t*)&interac_data[0][0])[0]=sizeof(size_t);
  1422. }else{
  1423. size_t pts_data_size=*((size_t*)&interac_data[0][0]);
  1424. assert(interac_data.Dim(0)*interac_data.Dim(1)>=pts_data_size);
  1425. data_size+=pts_data_size;
  1426. if(data_size>interac_data.Dim(0)*interac_data.Dim(1)){ //Resize and copy interac_data.
  1427. Matrix< char> pts_interac_data=interac_data;
  1428. interac_data.ReInit(1,data_size);
  1429. mem::memcopy(&interac_data[0][0],&pts_interac_data[0][0],pts_data_size);
  1430. }
  1431. }
  1432. char* data_ptr=&interac_data[0][0];
  1433. data_ptr+=((size_t*)data_ptr)[0];
  1434. ((size_t*)data_ptr)[0]=data_size; data_ptr+=sizeof(size_t);
  1435. ((size_t*)data_ptr)[0]= M_dim0; data_ptr+=sizeof(size_t);
  1436. ((size_t*)data_ptr)[0]= M_dim1; data_ptr+=sizeof(size_t);
  1437. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  1438. ((size_t*)data_ptr)[0]=interac_blk.size(); data_ptr+=sizeof(size_t);
  1439. mem::memcopy(data_ptr, &interac_blk[0], interac_blk.size()*sizeof(size_t));
  1440. data_ptr+=interac_blk.size()*sizeof(size_t);
  1441. ((size_t*)data_ptr)[0]=interac_cnt.size(); data_ptr+=sizeof(size_t);
  1442. mem::memcopy(data_ptr, &interac_cnt[0], interac_cnt.size()*sizeof(size_t));
  1443. data_ptr+=interac_cnt.size()*sizeof(size_t);
  1444. ((size_t*)data_ptr)[0]=interac_mat.size(); data_ptr+=sizeof(size_t);
  1445. mem::memcopy(data_ptr, &interac_mat[0], interac_mat.size()*sizeof(size_t));
  1446. data_ptr+=interac_mat.size()*sizeof(size_t);
  1447. ((size_t*)data_ptr)[0]= input_perm.size(); data_ptr+=sizeof(size_t);
  1448. mem::memcopy(data_ptr, & input_perm[0], input_perm.size()*sizeof(size_t));
  1449. data_ptr+= input_perm.size()*sizeof(size_t);
  1450. ((size_t*)data_ptr)[0]=output_perm.size(); data_ptr+=sizeof(size_t);
  1451. mem::memcopy(data_ptr, &output_perm[0], output_perm.size()*sizeof(size_t));
  1452. data_ptr+=output_perm.size()*sizeof(size_t);
  1453. }
  1454. }
  1455. Profile::Toc();
  1456. if(device){ // Host2Device
  1457. Profile::Tic("Host2Device",&this->comm,false,25);
  1458. setup_data.interac_data .AllocDevice(true);
  1459. Profile::Toc();
  1460. }
  1461. }
  1462. #if defined(PVFMM_HAVE_CUDA)
  1463. #include <fmm_pts_gpu.hpp>
  1464. template <class Real_t, int SYNC>
  1465. void EvalListGPU(SetupData<Real_t>& setup_data, Vector<char>& dev_buffer, MPI_Comm& comm) {
  1466. cudaStream_t* stream = pvfmm::CUDA_Lock::acquire_stream();
  1467. Profile::Tic("Host2Device",&comm,false,25);
  1468. typename Matrix<char>::Device interac_data;
  1469. typename Vector<char>::Device buff;
  1470. typename Matrix<char>::Device precomp_data_d;
  1471. typename Matrix<char>::Device interac_data_d;
  1472. typename Matrix<Real_t>::Device input_data_d;
  1473. typename Matrix<Real_t>::Device output_data_d;
  1474. interac_data = setup_data.interac_data;
  1475. buff = dev_buffer. AllocDevice(false);
  1476. precomp_data_d= setup_data.precomp_data->AllocDevice(false);
  1477. interac_data_d= setup_data.interac_data. AllocDevice(false);
  1478. input_data_d = setup_data. input_data->AllocDevice(false);
  1479. output_data_d = setup_data. output_data->AllocDevice(false);
  1480. Profile::Toc();
  1481. Profile::Tic("DeviceComp",&comm,false,20);
  1482. { // Offloaded computation.
  1483. size_t data_size, M_dim0, M_dim1, dof;
  1484. Vector<size_t> interac_blk;
  1485. Vector<size_t> interac_cnt;
  1486. Vector<size_t> interac_mat;
  1487. Vector<size_t> input_perm_d;
  1488. Vector<size_t> output_perm_d;
  1489. { // Set interac_data.
  1490. char* data_ptr=&interac_data [0][0];
  1491. char* dev_ptr=&interac_data_d[0][0];
  1492. data_size=((size_t*)data_ptr)[0]; data_ptr+=data_size; dev_ptr += data_size;
  1493. data_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1494. M_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1495. M_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1496. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1497. interac_blk.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1498. data_ptr += sizeof(size_t) + sizeof(size_t)*interac_blk.Dim();
  1499. dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_blk.Dim();
  1500. interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1501. data_ptr += sizeof(size_t) + sizeof(size_t)*interac_cnt.Dim();
  1502. dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_cnt.Dim();
  1503. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1504. data_ptr += sizeof(size_t) + sizeof(size_t)*interac_mat.Dim();
  1505. dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_mat.Dim();
  1506. input_perm_d.ReInit(((size_t*)data_ptr)[0],(size_t*)(dev_ptr+sizeof(size_t)),false);
  1507. data_ptr += sizeof(size_t) + sizeof(size_t)*input_perm_d.Dim();
  1508. dev_ptr += sizeof(size_t) + sizeof(size_t)*input_perm_d.Dim();
  1509. output_perm_d.ReInit(((size_t*)data_ptr)[0],(size_t*)(dev_ptr+sizeof(size_t)),false);
  1510. data_ptr += sizeof(size_t) + sizeof(size_t)*output_perm_d.Dim();
  1511. dev_ptr += sizeof(size_t) + sizeof(size_t)*output_perm_d.Dim();
  1512. }
  1513. { // interactions
  1514. size_t interac_indx = 0;
  1515. size_t interac_blk_dsp = 0;
  1516. cudaError_t error;
  1517. for (size_t k = 0; k < interac_blk.Dim(); k++) {
  1518. size_t vec_cnt=0;
  1519. for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];j++) vec_cnt+=interac_cnt[j];
  1520. if(vec_cnt==0){
  1521. //interac_indx += vec_cnt;
  1522. interac_blk_dsp += interac_blk[k];
  1523. continue;
  1524. }
  1525. char *buff_in_d =&buff[0];
  1526. char *buff_out_d =&buff[vec_cnt*dof*M_dim0*sizeof(Real_t)];
  1527. { // Input permutation.
  1528. in_perm_gpu<Real_t>(&precomp_data_d[0][0], &input_data_d[0][0], buff_in_d,
  1529. &input_perm_d[interac_indx*4], vec_cnt, M_dim0, stream);
  1530. }
  1531. size_t vec_cnt0 = 0;
  1532. for (size_t j = interac_blk_dsp; j < interac_blk_dsp + interac_blk[k];) {
  1533. size_t vec_cnt1 = 0;
  1534. size_t interac_mat0 = interac_mat[j];
  1535. for (; j < interac_blk_dsp + interac_blk[k] && interac_mat[j] == interac_mat0; j++) vec_cnt1 += interac_cnt[j];
  1536. Matrix<Real_t> M_d(M_dim0, M_dim1, (Real_t*)(precomp_data_d.dev_ptr + interac_mat0), false);
  1537. Matrix<Real_t> Ms_d(dof*vec_cnt1, M_dim0, (Real_t*)(buff_in_d + M_dim0*vec_cnt0*dof*sizeof(Real_t)), false);
  1538. Matrix<Real_t> Mt_d(dof*vec_cnt1, M_dim1, (Real_t*)(buff_out_d + M_dim1*vec_cnt0*dof*sizeof(Real_t)), false);
  1539. Matrix<Real_t>::CUBLASGEMM(Mt_d, Ms_d, M_d);
  1540. vec_cnt0 += vec_cnt1;
  1541. }
  1542. { // Output permutation.
  1543. out_perm_gpu<Real_t>(&precomp_data_d[0][0], &output_data_d[0][0], buff_out_d,
  1544. &output_perm_d[interac_indx*4], vec_cnt, M_dim1, stream);
  1545. }
  1546. interac_indx += vec_cnt;
  1547. interac_blk_dsp += interac_blk[k];
  1548. }
  1549. }
  1550. }
  1551. Profile::Toc();
  1552. if(SYNC) CUDA_Lock::wait();
  1553. }
  1554. #endif
  1555. template <class FMMNode>
  1556. template <int SYNC>
  1557. void FMM_Pts<FMMNode>::EvalList(SetupData<Real_t>& setup_data, bool device){
  1558. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  1559. Profile::Tic("Host2Device",&this->comm,false,25);
  1560. Profile::Toc();
  1561. Profile::Tic("DeviceComp",&this->comm,false,20);
  1562. Profile::Toc();
  1563. return;
  1564. }
  1565. #if defined(PVFMM_HAVE_CUDA)
  1566. if (device) {
  1567. EvalListGPU<Real_t, SYNC>(setup_data, this->dev_buffer, this->comm);
  1568. return;
  1569. }
  1570. #endif
  1571. Profile::Tic("Host2Device",&this->comm,false,25);
  1572. typename Vector<char>::Device buff;
  1573. typename Matrix<char>::Device precomp_data;
  1574. typename Matrix<char>::Device interac_data;
  1575. typename Matrix<Real_t>::Device input_data;
  1576. typename Matrix<Real_t>::Device output_data;
  1577. if(device){
  1578. buff = this-> dev_buffer. AllocDevice(false);
  1579. precomp_data= setup_data.precomp_data->AllocDevice(false);
  1580. interac_data= setup_data.interac_data. AllocDevice(false);
  1581. input_data = setup_data. input_data->AllocDevice(false);
  1582. output_data = setup_data. output_data->AllocDevice(false);
  1583. }else{
  1584. buff = this-> dev_buffer;
  1585. precomp_data=*setup_data.precomp_data;
  1586. interac_data= setup_data.interac_data;
  1587. input_data =*setup_data. input_data;
  1588. output_data =*setup_data. output_data;
  1589. }
  1590. Profile::Toc();
  1591. Profile::Tic("DeviceComp",&this->comm,false,20);
  1592. int lock_idx=-1;
  1593. int wait_lock_idx=-1;
  1594. if(device) wait_lock_idx=MIC_Lock::curr_lock();
  1595. if(device) lock_idx=MIC_Lock::get_lock();
  1596. #ifdef __INTEL_OFFLOAD
  1597. #pragma offload if(device) target(mic:0) signal(&MIC_Lock::lock_vec[device?lock_idx:0])
  1598. #endif
  1599. { // Offloaded computation.
  1600. // Set interac_data.
  1601. size_t data_size, M_dim0, M_dim1, dof;
  1602. Vector<size_t> interac_blk;
  1603. Vector<size_t> interac_cnt;
  1604. Vector<size_t> interac_mat;
  1605. Vector<size_t> input_perm;
  1606. Vector<size_t> output_perm;
  1607. { // Set interac_data.
  1608. char* data_ptr=&interac_data[0][0];
  1609. data_size=((size_t*)data_ptr)[0]; data_ptr+=data_size;
  1610. data_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1611. M_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1612. M_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1613. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1614. interac_blk.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1615. data_ptr+=sizeof(size_t)+interac_blk.Dim()*sizeof(size_t);
  1616. interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1617. data_ptr+=sizeof(size_t)+interac_cnt.Dim()*sizeof(size_t);
  1618. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1619. data_ptr+=sizeof(size_t)+interac_mat.Dim()*sizeof(size_t);
  1620. input_perm .ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1621. data_ptr+=sizeof(size_t)+ input_perm.Dim()*sizeof(size_t);
  1622. output_perm.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1623. data_ptr+=sizeof(size_t)+output_perm.Dim()*sizeof(size_t);
  1624. }
  1625. if(device) MIC_Lock::wait_lock(wait_lock_idx);
  1626. //Compute interaction from Chebyshev source density.
  1627. { // interactions
  1628. int omp_p=omp_get_max_threads();
  1629. size_t interac_indx=0;
  1630. size_t interac_blk_dsp=0;
  1631. for(size_t k=0;k<interac_blk.Dim();k++){
  1632. size_t vec_cnt=0;
  1633. for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];j++) vec_cnt+=interac_cnt[j];
  1634. if(vec_cnt==0){
  1635. //interac_indx += vec_cnt;
  1636. interac_blk_dsp += interac_blk[k];
  1637. continue;
  1638. }
  1639. char* buff_in =&buff[0];
  1640. char* buff_out=&buff[vec_cnt*dof*M_dim0*sizeof(Real_t)];
  1641. // Input permutation.
  1642. #pragma omp parallel for
  1643. for(int tid=0;tid<omp_p;tid++){
  1644. size_t a=( tid *vec_cnt)/omp_p;
  1645. size_t b=((tid+1)*vec_cnt)/omp_p;
  1646. for(size_t i=a;i<b;i++){
  1647. const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+input_perm[(interac_indx+i)*4+0]);
  1648. const Real_t* scal=( Real_t*)(precomp_data[0]+input_perm[(interac_indx+i)*4+1]);
  1649. const Real_t* v_in =( Real_t*)( input_data[0]+input_perm[(interac_indx+i)*4+3]);
  1650. Real_t* v_out=( Real_t*)( buff_in +input_perm[(interac_indx+i)*4+2]);
  1651. // TODO: Fix for dof>1
  1652. #ifdef __MIC__
  1653. {
  1654. __m512d v8;
  1655. size_t j_start=(((uintptr_t)(v_out ) + (uintptr_t)(MEM_ALIGN-1)) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1656. size_t j_end =(((uintptr_t)(v_out+M_dim0) ) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1657. j_start/=sizeof(Real_t);
  1658. j_end /=sizeof(Real_t);
  1659. assert(((uintptr_t)(v_out))%sizeof(Real_t)==0);
  1660. assert(((uintptr_t)(v_out+j_start))%64==0);
  1661. assert(((uintptr_t)(v_out+j_end ))%64==0);
  1662. size_t j=0;
  1663. for(;j<j_start;j++ ){
  1664. v_out[j]=v_in[perm[j]]*scal[j];
  1665. }
  1666. for(;j<j_end ;j+=8){
  1667. v8=_mm512_setr_pd(
  1668. v_in[perm[j+0]]*scal[j+0],
  1669. v_in[perm[j+1]]*scal[j+1],
  1670. v_in[perm[j+2]]*scal[j+2],
  1671. v_in[perm[j+3]]*scal[j+3],
  1672. v_in[perm[j+4]]*scal[j+4],
  1673. v_in[perm[j+5]]*scal[j+5],
  1674. v_in[perm[j+6]]*scal[j+6],
  1675. v_in[perm[j+7]]*scal[j+7]);
  1676. _mm512_storenrngo_pd(v_out+j,v8);
  1677. }
  1678. for(;j<M_dim0 ;j++ ){
  1679. v_out[j]=v_in[perm[j]]*scal[j];
  1680. }
  1681. }
  1682. #else
  1683. for(size_t j=0;j<M_dim0;j++ ){
  1684. v_out[j]=v_in[perm[j]]*scal[j];
  1685. }
  1686. #endif
  1687. }
  1688. }
  1689. size_t vec_cnt0=0;
  1690. for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];){
  1691. size_t vec_cnt1=0;
  1692. size_t interac_mat0=interac_mat[j];
  1693. for(;j<interac_blk_dsp+interac_blk[k] && interac_mat[j]==interac_mat0;j++) vec_cnt1+=interac_cnt[j];
  1694. Matrix<Real_t> M(M_dim0, M_dim1, (Real_t*)(precomp_data[0]+interac_mat0), false);
  1695. #ifdef __MIC__
  1696. {
  1697. Matrix<Real_t> Ms(dof*vec_cnt1, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t)), false);
  1698. Matrix<Real_t> Mt(dof*vec_cnt1, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t)), false);
  1699. Matrix<Real_t>::GEMM(Mt,Ms,M);
  1700. }
  1701. #else
  1702. #pragma omp parallel for
  1703. for(int tid=0;tid<omp_p;tid++){
  1704. size_t a=(dof*vec_cnt1*(tid ))/omp_p;
  1705. size_t b=(dof*vec_cnt1*(tid+1))/omp_p;
  1706. Matrix<Real_t> Ms(b-a, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t))+M_dim0*a, false);
  1707. Matrix<Real_t> Mt(b-a, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t))+M_dim1*a, false);
  1708. Matrix<Real_t>::GEMM(Mt,Ms,M);
  1709. }
  1710. #endif
  1711. vec_cnt0+=vec_cnt1;
  1712. }
  1713. // Output permutation.
  1714. #pragma omp parallel for
  1715. for(int tid=0;tid<omp_p;tid++){
  1716. size_t a=( tid *vec_cnt)/omp_p;
  1717. size_t b=((tid+1)*vec_cnt)/omp_p;
  1718. if(tid> 0 && a<vec_cnt){ // Find 'a' independent of other threads.
  1719. size_t out_ptr=output_perm[(interac_indx+a)*4+3];
  1720. if(tid> 0) while(a<vec_cnt && out_ptr==output_perm[(interac_indx+a)*4+3]) a++;
  1721. }
  1722. if(tid<omp_p-1 && b<vec_cnt){ // Find 'b' independent of other threads.
  1723. size_t out_ptr=output_perm[(interac_indx+b)*4+3];
  1724. if(tid<omp_p-1) while(b<vec_cnt && out_ptr==output_perm[(interac_indx+b)*4+3]) b++;
  1725. }
  1726. for(size_t i=a;i<b;i++){ // Compute permutations.
  1727. const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+output_perm[(interac_indx+i)*4+0]);
  1728. const Real_t* scal=( Real_t*)(precomp_data[0]+output_perm[(interac_indx+i)*4+1]);
  1729. const Real_t* v_in =( Real_t*)( buff_out +output_perm[(interac_indx+i)*4+2]);
  1730. Real_t* v_out=( Real_t*)( output_data[0]+output_perm[(interac_indx+i)*4+3]);
  1731. // TODO: Fix for dof>1
  1732. #ifdef __MIC__
  1733. {
  1734. __m512d v8;
  1735. __m512d v_old;
  1736. size_t j_start=(((uintptr_t)(v_out ) + (uintptr_t)(MEM_ALIGN-1)) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1737. size_t j_end =(((uintptr_t)(v_out+M_dim1) ) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1738. j_start/=sizeof(Real_t);
  1739. j_end /=sizeof(Real_t);
  1740. assert(((uintptr_t)(v_out))%sizeof(Real_t)==0);
  1741. assert(((uintptr_t)(v_out+j_start))%64==0);
  1742. assert(((uintptr_t)(v_out+j_end ))%64==0);
  1743. size_t j=0;
  1744. for(;j<j_start;j++ ){
  1745. v_out[j]+=v_in[perm[j]]*scal[j];
  1746. }
  1747. for(;j<j_end ;j+=8){
  1748. v_old=_mm512_load_pd(v_out+j);
  1749. v8=_mm512_setr_pd(
  1750. v_in[perm[j+0]]*scal[j+0],
  1751. v_in[perm[j+1]]*scal[j+1],
  1752. v_in[perm[j+2]]*scal[j+2],
  1753. v_in[perm[j+3]]*scal[j+3],
  1754. v_in[perm[j+4]]*scal[j+4],
  1755. v_in[perm[j+5]]*scal[j+5],
  1756. v_in[perm[j+6]]*scal[j+6],
  1757. v_in[perm[j+7]]*scal[j+7]);
  1758. v_old=_mm512_add_pd(v_old, v8);
  1759. _mm512_storenrngo_pd(v_out+j,v_old);
  1760. }
  1761. for(;j<M_dim1 ;j++ ){
  1762. v_out[j]+=v_in[perm[j]]*scal[j];
  1763. }
  1764. }
  1765. #else
  1766. for(size_t j=0;j<M_dim1;j++ ){
  1767. v_out[j]+=v_in[perm[j]]*scal[j];
  1768. }
  1769. #endif
  1770. }
  1771. }
  1772. interac_indx+=vec_cnt;
  1773. interac_blk_dsp+=interac_blk[k];
  1774. }
  1775. }
  1776. if(device) MIC_Lock::release_lock(lock_idx);
  1777. }
  1778. #ifdef __INTEL_OFFLOAD
  1779. if(SYNC){
  1780. #pragma offload if(device) target(mic:0)
  1781. {if(device) MIC_Lock::wait_lock(lock_idx);}
  1782. }
  1783. #endif
  1784. Profile::Toc();
  1785. }
  1786. template <class FMMNode>
  1787. void FMM_Pts<FMMNode>::Source2UpSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  1788. if(!this->MultipoleOrder()) return;
  1789. { // Set setup_data
  1790. setup_data. level=level;
  1791. setup_data.kernel=kernel->k_s2m;
  1792. setup_data. input_data=&buff[4];
  1793. setup_data.output_data=&buff[0];
  1794. setup_data. coord_data=&buff[6];
  1795. Vector<FMMNode_t*>& nodes_in =n_list[4];
  1796. Vector<FMMNode_t*>& nodes_out=n_list[0];
  1797. setup_data.nodes_in .clear();
  1798. setup_data.nodes_out.clear();
  1799. for(size_t i=0;i<nodes_in .Dim();i++) if((nodes_in [i]->Depth()==level || level==-1) && nodes_in [i]->pt_cnt[0] && nodes_in [i]->IsLeaf() && !nodes_in [i]->IsGhost()) setup_data.nodes_in .push_back(nodes_in [i]);
  1800. for(size_t i=0;i<nodes_out.Dim();i++) if((nodes_out[i]->Depth()==level || level==-1) && nodes_out[i]->pt_cnt[0] && nodes_out[i]->IsLeaf() && !nodes_out[i]->IsGhost()) setup_data.nodes_out.push_back(nodes_out[i]);
  1801. }
  1802. struct PackedData{
  1803. size_t len;
  1804. Matrix<Real_t>* ptr;
  1805. Vector<size_t> cnt;
  1806. Vector<size_t> dsp;
  1807. };
  1808. struct InteracData{
  1809. Vector<size_t> in_node;
  1810. Vector<size_t> scal_idx;
  1811. Vector<Real_t> coord_shift;
  1812. Vector<size_t> interac_cnt;
  1813. Vector<size_t> interac_dsp;
  1814. Vector<Real_t> scal[4*MAX_DEPTH];
  1815. Matrix<Real_t> M[4];
  1816. };
  1817. struct ptSetupData{
  1818. int level;
  1819. const Kernel<Real_t>* kernel;
  1820. PackedData src_coord; // Src coord
  1821. PackedData src_value; // Src density
  1822. PackedData srf_coord; // Srf coord
  1823. PackedData srf_value; // Srf density
  1824. PackedData trg_coord; // Trg coord
  1825. PackedData trg_value; // Trg potential
  1826. InteracData interac_data;
  1827. };
  1828. ptSetupData data;
  1829. data. level=setup_data. level;
  1830. data.kernel=setup_data.kernel;
  1831. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  1832. std::vector<void*>& nodes_out=setup_data.nodes_out;
  1833. { // Set src data
  1834. std::vector<void*>& nodes=nodes_in;
  1835. PackedData& coord=data.src_coord;
  1836. PackedData& value=data.src_value;
  1837. coord.ptr=setup_data. coord_data;
  1838. value.ptr=setup_data. input_data;
  1839. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  1840. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  1841. coord.cnt.ReInit(nodes.size());
  1842. coord.dsp.ReInit(nodes.size());
  1843. value.cnt.ReInit(nodes.size());
  1844. value.dsp.ReInit(nodes.size());
  1845. #pragma omp parallel for
  1846. for(size_t i=0;i<nodes.size();i++){
  1847. ((FMMNode_t*)nodes[i])->node_id=i;
  1848. Vector<Real_t>& coord_vec=((FMMNode*)nodes[i])->src_coord;
  1849. Vector<Real_t>& value_vec=((FMMNode*)nodes[i])->src_value;
  1850. if(coord_vec.Dim()){
  1851. coord.dsp[i]=&coord_vec[0]-coord.ptr[0][0];
  1852. assert(coord.dsp[i]<coord.len);
  1853. coord.cnt[i]=coord_vec.Dim();
  1854. }else{
  1855. coord.dsp[i]=0;
  1856. coord.cnt[i]=0;
  1857. }
  1858. if(value_vec.Dim()){
  1859. value.dsp[i]=&value_vec[0]-value.ptr[0][0];
  1860. assert(value.dsp[i]<value.len);
  1861. value.cnt[i]=value_vec.Dim();
  1862. }else{
  1863. value.dsp[i]=0;
  1864. value.cnt[i]=0;
  1865. }
  1866. }
  1867. }
  1868. { // Set srf data
  1869. std::vector<void*>& nodes=nodes_in;
  1870. PackedData& coord=data.srf_coord;
  1871. PackedData& value=data.srf_value;
  1872. coord.ptr=setup_data. coord_data;
  1873. value.ptr=setup_data. input_data;
  1874. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  1875. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  1876. coord.cnt.ReInit(nodes.size());
  1877. coord.dsp.ReInit(nodes.size());
  1878. value.cnt.ReInit(nodes.size());
  1879. value.dsp.ReInit(nodes.size());
  1880. #pragma omp parallel for
  1881. for(size_t i=0;i<nodes.size();i++){
  1882. Vector<Real_t>& coord_vec=((FMMNode*)nodes[i])->surf_coord;
  1883. Vector<Real_t>& value_vec=((FMMNode*)nodes[i])->surf_value;
  1884. if(coord_vec.Dim()){
  1885. coord.dsp[i]=&coord_vec[0]-coord.ptr[0][0];
  1886. assert(coord.dsp[i]<coord.len);
  1887. coord.cnt[i]=coord_vec.Dim();
  1888. }else{
  1889. coord.dsp[i]=0;
  1890. coord.cnt[i]=0;
  1891. }
  1892. if(value_vec.Dim()){
  1893. value.dsp[i]=&value_vec[0]-value.ptr[0][0];
  1894. assert(value.dsp[i]<value.len);
  1895. value.cnt[i]=value_vec.Dim();
  1896. }else{
  1897. value.dsp[i]=0;
  1898. value.cnt[i]=0;
  1899. }
  1900. }
  1901. }
  1902. { // Set trg data
  1903. std::vector<void*>& nodes=nodes_out;
  1904. PackedData& coord=data.trg_coord;
  1905. PackedData& value=data.trg_value;
  1906. coord.ptr=setup_data. coord_data;
  1907. value.ptr=setup_data.output_data;
  1908. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  1909. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  1910. coord.cnt.ReInit(nodes.size());
  1911. coord.dsp.ReInit(nodes.size());
  1912. value.cnt.ReInit(nodes.size());
  1913. value.dsp.ReInit(nodes.size());
  1914. #pragma omp parallel for
  1915. for(size_t i=0;i<nodes.size();i++){
  1916. Vector<Real_t>& coord_vec=tree->upwd_check_surf[((FMMNode*)nodes[i])->Depth()];
  1917. Vector<Real_t>& value_vec=((FMMData*)((FMMNode*)nodes[i])->FMMData())->upward_equiv;
  1918. if(coord_vec.Dim()){
  1919. coord.dsp[i]=&coord_vec[0]-coord.ptr[0][0];
  1920. assert(coord.dsp[i]<coord.len);
  1921. coord.cnt[i]=coord_vec.Dim();
  1922. }else{
  1923. coord.dsp[i]=0;
  1924. coord.cnt[i]=0;
  1925. }
  1926. if(value_vec.Dim()){
  1927. value.dsp[i]=&value_vec[0]-value.ptr[0][0];
  1928. assert(value.dsp[i]<value.len);
  1929. value.cnt[i]=value_vec.Dim();
  1930. }else{
  1931. value.dsp[i]=0;
  1932. value.cnt[i]=0;
  1933. }
  1934. }
  1935. }
  1936. { // Set interac_data
  1937. int omp_p=omp_get_max_threads();
  1938. std::vector<std::vector<size_t> > in_node_(omp_p);
  1939. std::vector<std::vector<size_t> > scal_idx_(omp_p);
  1940. std::vector<std::vector<Real_t> > coord_shift_(omp_p);
  1941. std::vector<std::vector<size_t> > interac_cnt_(omp_p);
  1942. if(this->ScaleInvar()){ // Set scal
  1943. const Kernel<Real_t>* ker=kernel->k_m2m;
  1944. for(size_t l=0;l<MAX_DEPTH;l++){ // scal[l*4+2]
  1945. Vector<Real_t>& scal=data.interac_data.scal[l*4+2];
  1946. Vector<Real_t>& scal_exp=ker->trg_scal;
  1947. scal.ReInit(scal_exp.Dim());
  1948. for(size_t i=0;i<scal.Dim();i++){
  1949. scal[i]=std::pow(2.0,-scal_exp[i]*l);
  1950. }
  1951. }
  1952. for(size_t l=0;l<MAX_DEPTH;l++){ // scal[l*4+3]
  1953. Vector<Real_t>& scal=data.interac_data.scal[l*4+3];
  1954. Vector<Real_t>& scal_exp=ker->src_scal;
  1955. scal.ReInit(scal_exp.Dim());
  1956. for(size_t i=0;i<scal.Dim();i++){
  1957. scal[i]=std::pow(2.0,-scal_exp[i]*l);
  1958. }
  1959. }
  1960. }
  1961. #pragma omp parallel for
  1962. for(size_t tid=0;tid<omp_p;tid++){
  1963. std::vector<size_t>& in_node =in_node_[tid] ;
  1964. std::vector<size_t>& scal_idx =scal_idx_[tid] ;
  1965. std::vector<Real_t>& coord_shift=coord_shift_[tid];
  1966. std::vector<size_t>& interac_cnt=interac_cnt_[tid];
  1967. size_t a=(nodes_out.size()*(tid+0))/omp_p;
  1968. size_t b=(nodes_out.size()*(tid+1))/omp_p;
  1969. for(size_t i=a;i<b;i++){
  1970. FMMNode_t* tnode=(FMMNode_t*)nodes_out[i];
  1971. Real_t s=std::pow(0.5,tnode->Depth());
  1972. size_t interac_cnt_=0;
  1973. { // S2U_Type
  1974. Mat_Type type=S2U_Type;
  1975. Vector<FMMNode_t*>& intlst=tnode->interac_list[type];
  1976. for(size_t j=0;j<intlst.Dim();j++) if(intlst[j]){
  1977. FMMNode_t* snode=intlst[j];
  1978. size_t snode_id=snode->node_id;
  1979. if(snode_id>=nodes_in.size() || nodes_in[snode_id]!=snode) continue;
  1980. in_node.push_back(snode_id);
  1981. scal_idx.push_back(snode->Depth());
  1982. { // set coord_shift
  1983. const int* rel_coord=interac_list.RelativeCoord(type,j);
  1984. const Real_t* scoord=snode->Coord();
  1985. const Real_t* tcoord=tnode->Coord();
  1986. Real_t shift[COORD_DIM];
  1987. shift[0]=rel_coord[0]*0.5*s-(scoord[0]+0.5*s)+(0+0.5*s);
  1988. shift[1]=rel_coord[1]*0.5*s-(scoord[1]+0.5*s)+(0+0.5*s);
  1989. shift[2]=rel_coord[2]*0.5*s-(scoord[2]+0.5*s)+(0+0.5*s);
  1990. coord_shift.push_back(shift[0]);
  1991. coord_shift.push_back(shift[1]);
  1992. coord_shift.push_back(shift[2]);
  1993. }
  1994. interac_cnt_++;
  1995. }
  1996. }
  1997. interac_cnt.push_back(interac_cnt_);
  1998. }
  1999. }
  2000. { // Combine interac data
  2001. InteracData& interac_data=data.interac_data;
  2002. { // in_node
  2003. typedef size_t ElemType;
  2004. std::vector<std::vector<ElemType> >& vec_=in_node_;
  2005. pvfmm::Vector<ElemType>& vec=interac_data.in_node;
  2006. std::vector<size_t> vec_dsp(omp_p+1,0);
  2007. for(size_t tid=0;tid<omp_p;tid++){
  2008. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  2009. }
  2010. vec.ReInit(vec_dsp[omp_p]);
  2011. #pragma omp parallel for
  2012. for(size_t tid=0;tid<omp_p;tid++){
  2013. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  2014. }
  2015. }
  2016. { // scal_idx
  2017. typedef size_t ElemType;
  2018. std::vector<std::vector<ElemType> >& vec_=scal_idx_;
  2019. pvfmm::Vector<ElemType>& vec=interac_data.scal_idx;
  2020. std::vector<size_t> vec_dsp(omp_p+1,0);
  2021. for(size_t tid=0;tid<omp_p;tid++){
  2022. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  2023. }
  2024. vec.ReInit(vec_dsp[omp_p]);
  2025. #pragma omp parallel for
  2026. for(size_t tid=0;tid<omp_p;tid++){
  2027. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  2028. }
  2029. }
  2030. { // coord_shift
  2031. typedef Real_t ElemType;
  2032. std::vector<std::vector<ElemType> >& vec_=coord_shift_;
  2033. pvfmm::Vector<ElemType>& vec=interac_data.coord_shift;
  2034. std::vector<size_t> vec_dsp(omp_p+1,0);
  2035. for(size_t tid=0;tid<omp_p;tid++){
  2036. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  2037. }
  2038. vec.ReInit(vec_dsp[omp_p]);
  2039. #pragma omp parallel for
  2040. for(size_t tid=0;tid<omp_p;tid++){
  2041. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  2042. }
  2043. }
  2044. { // interac_cnt
  2045. typedef size_t ElemType;
  2046. std::vector<std::vector<ElemType> >& vec_=interac_cnt_;
  2047. pvfmm::Vector<ElemType>& vec=interac_data.interac_cnt;
  2048. std::vector<size_t> vec_dsp(omp_p+1,0);
  2049. for(size_t tid=0;tid<omp_p;tid++){
  2050. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  2051. }
  2052. vec.ReInit(vec_dsp[omp_p]);
  2053. #pragma omp parallel for
  2054. for(size_t tid=0;tid<omp_p;tid++){
  2055. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  2056. }
  2057. }
  2058. { // interac_dsp
  2059. pvfmm::Vector<size_t>& cnt=interac_data.interac_cnt;
  2060. pvfmm::Vector<size_t>& dsp=interac_data.interac_dsp;
  2061. dsp.ReInit(cnt.Dim()); if(dsp.Dim()) dsp[0]=0;
  2062. omp_par::scan(&cnt[0],&dsp[0],dsp.Dim());
  2063. }
  2064. }
  2065. { // Set M[2], M[3]
  2066. InteracData& interac_data=data.interac_data;
  2067. pvfmm::Vector<size_t>& cnt=interac_data.interac_cnt;
  2068. pvfmm::Vector<size_t>& dsp=interac_data.interac_dsp;
  2069. if(cnt.Dim() && cnt[cnt.Dim()-1]+dsp[dsp.Dim()-1]){
  2070. data.interac_data.M[2]=this->mat->Mat(level, UC2UE0_Type, 0);
  2071. data.interac_data.M[3]=this->mat->Mat(level, UC2UE1_Type, 0);
  2072. }else{
  2073. data.interac_data.M[2].ReInit(0,0);
  2074. data.interac_data.M[3].ReInit(0,0);
  2075. }
  2076. }
  2077. }
  2078. PtSetup(setup_data, &data);
  2079. }
  2080. template <class FMMNode>
  2081. void FMM_Pts<FMMNode>::Source2Up(SetupData<Real_t>& setup_data, bool device){
  2082. if(!this->MultipoleOrder()) return;
  2083. //Add Source2Up contribution.
  2084. this->EvalListPts(setup_data, device);
  2085. }
  2086. template <class FMMNode>
  2087. void FMM_Pts<FMMNode>::Up2UpSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2088. if(!this->MultipoleOrder()) return;
  2089. { // Set setup_data
  2090. setup_data.level=level;
  2091. setup_data.kernel=kernel->k_m2m;
  2092. setup_data.interac_type.resize(1);
  2093. setup_data.interac_type[0]=U2U_Type;
  2094. setup_data. input_data=&buff[0];
  2095. setup_data.output_data=&buff[0];
  2096. Vector<FMMNode_t*>& nodes_in =n_list[0];
  2097. Vector<FMMNode_t*>& nodes_out=n_list[0];
  2098. setup_data.nodes_in .clear();
  2099. setup_data.nodes_out.clear();
  2100. for(size_t i=0;i<nodes_in .Dim();i++) if((nodes_in [i]->Depth()==level+1) && nodes_in [i]->pt_cnt[0]) setup_data.nodes_in .push_back(nodes_in [i]);
  2101. for(size_t i=0;i<nodes_out.Dim();i++) if((nodes_out[i]->Depth()==level ) && nodes_out[i]->pt_cnt[0]) setup_data.nodes_out.push_back(nodes_out[i]);
  2102. }
  2103. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2104. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2105. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2106. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2107. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->upward_equiv);
  2108. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->upward_equiv);
  2109. SetupInterac(setup_data,device);
  2110. }
  2111. template <class FMMNode>
  2112. void FMM_Pts<FMMNode>::Up2Up (SetupData<Real_t>& setup_data, bool device){
  2113. if(!this->MultipoleOrder()) return;
  2114. //Add Up2Up contribution.
  2115. EvalList(setup_data, device);
  2116. }
  2117. template <class FMMNode>
  2118. void FMM_Pts<FMMNode>::PeriodicBC(FMMNode* node){
  2119. if(!this->ScaleInvar() || this->MultipoleOrder()==0) return;
  2120. Matrix<Real_t>& M = Precomp(0, BC_Type, 0);
  2121. assert(node->FMMData()->upward_equiv.Dim()>0);
  2122. int dof=1;
  2123. Vector<Real_t>& upward_equiv=node->FMMData()->upward_equiv;
  2124. Vector<Real_t>& dnward_equiv=node->FMMData()->dnward_equiv;
  2125. assert(upward_equiv.Dim()==M.Dim(0)*dof);
  2126. assert(dnward_equiv.Dim()==M.Dim(1)*dof);
  2127. Matrix<Real_t> d_equiv(dof,M.Dim(0),&dnward_equiv[0],false);
  2128. Matrix<Real_t> u_equiv(dof,M.Dim(1),&upward_equiv[0],false);
  2129. Matrix<Real_t>::GEMM(d_equiv,u_equiv,M);
  2130. }
  2131. template <class FMMNode>
  2132. void FMM_Pts<FMMNode>::FFT_UpEquiv(size_t dof, size_t m, size_t ker_dim0, Vector<size_t>& fft_vec, Vector<Real_t>& fft_scal,
  2133. Vector<Real_t>& input_data, Vector<Real_t>& output_data, Vector<Real_t>& buffer_){
  2134. size_t n1=m*2;
  2135. size_t n2=n1*n1;
  2136. size_t n3=n1*n2;
  2137. size_t n3_=n2*(n1/2+1);
  2138. size_t chld_cnt=1UL<<COORD_DIM;
  2139. size_t fftsize_in =2*n3_*chld_cnt*ker_dim0*dof;
  2140. int omp_p=omp_get_max_threads();
  2141. //Load permutation map.
  2142. size_t n=6*(m-1)*(m-1)+2;
  2143. static Vector<size_t> map;
  2144. { // Build map to reorder upward_equiv
  2145. size_t n_old=map.Dim();
  2146. if(n_old!=n){
  2147. Real_t c[3]={0,0,0};
  2148. Vector<Real_t> surf=surface(m, c, (Real_t)(m-1), 0);
  2149. map.Resize(surf.Dim()/COORD_DIM);
  2150. for(size_t i=0;i<map.Dim();i++)
  2151. map[i]=((size_t)(m-1-surf[i*3]+0.5))+((size_t)(m-1-surf[i*3+1]+0.5))*n1+((size_t)(m-1-surf[i*3+2]+0.5))*n2;
  2152. }
  2153. }
  2154. { // Build FFTW plan.
  2155. if(!vlist_fft_flag){
  2156. int nnn[3]={(int)n1,(int)n1,(int)n1};
  2157. void *fftw_in, *fftw_out;
  2158. fftw_in = mem::aligned_new<Real_t>( n3 *ker_dim0*chld_cnt);
  2159. fftw_out = mem::aligned_new<Real_t>(2*n3_*ker_dim0*chld_cnt);
  2160. vlist_fftplan = FFTW_t<Real_t>::fft_plan_many_dft_r2c(COORD_DIM,nnn,ker_dim0*chld_cnt,
  2161. (Real_t*)fftw_in, NULL, 1, n3, (typename FFTW_t<Real_t>::cplx*)(fftw_out),NULL, 1, n3_);
  2162. mem::aligned_delete<Real_t>((Real_t*)fftw_in );
  2163. mem::aligned_delete<Real_t>((Real_t*)fftw_out);
  2164. vlist_fft_flag=true;
  2165. }
  2166. }
  2167. { // Offload section
  2168. size_t n_in = fft_vec.Dim();
  2169. #pragma omp parallel for
  2170. for(int pid=0; pid<omp_p; pid++){
  2171. size_t node_start=(n_in*(pid ))/omp_p;
  2172. size_t node_end =(n_in*(pid+1))/omp_p;
  2173. Vector<Real_t> buffer(fftsize_in, &buffer_[fftsize_in*pid], false);
  2174. for(size_t node_idx=node_start; node_idx<node_end; node_idx++){
  2175. Matrix<Real_t> upward_equiv(chld_cnt,n*ker_dim0*dof,&input_data[0] + fft_vec[node_idx],false);
  2176. Vector<Real_t> upward_equiv_fft(fftsize_in, &output_data[fftsize_in *node_idx], false);
  2177. upward_equiv_fft.SetZero();
  2178. // Rearrange upward equivalent data.
  2179. for(size_t k=0;k<n;k++){
  2180. size_t idx=map[k];
  2181. for(int j1=0;j1<dof;j1++)
  2182. for(int j0=0;j0<(int)chld_cnt;j0++)
  2183. for(int i=0;i<ker_dim0;i++)
  2184. upward_equiv_fft[idx+(j0+(i+j1*ker_dim0)*chld_cnt)*n3]=upward_equiv[j0][ker_dim0*(n*j1+k)+i]*fft_scal[ker_dim0*node_idx+i];
  2185. }
  2186. // Compute FFT.
  2187. for(int i=0;i<dof;i++)
  2188. FFTW_t<Real_t>::fft_execute_dft_r2c(vlist_fftplan, (Real_t*)&upward_equiv_fft[i* n3 *ker_dim0*chld_cnt],
  2189. (typename FFTW_t<Real_t>::cplx*)&buffer [i*2*n3_*ker_dim0*chld_cnt]);
  2190. //Compute flops.
  2191. #ifndef FFTW3_MKL
  2192. double add, mul, fma;
  2193. FFTW_t<Real_t>::fftw_flops(vlist_fftplan, &add, &mul, &fma);
  2194. #ifndef __INTEL_OFFLOAD0
  2195. Profile::Add_FLOP((long long)(add+mul+2*fma));
  2196. #endif
  2197. #endif
  2198. for(int i=0;i<ker_dim0*dof;i++)
  2199. for(size_t j=0;j<n3_;j++)
  2200. for(size_t k=0;k<chld_cnt;k++){
  2201. upward_equiv_fft[2*(chld_cnt*(n3_*i+j)+k)+0]=buffer[2*(n3_*(chld_cnt*i+k)+j)+0];
  2202. upward_equiv_fft[2*(chld_cnt*(n3_*i+j)+k)+1]=buffer[2*(n3_*(chld_cnt*i+k)+j)+1];
  2203. }
  2204. }
  2205. }
  2206. }
  2207. }
  2208. template <class FMMNode>
  2209. void FMM_Pts<FMMNode>::FFT_Check2Equiv(size_t dof, size_t m, size_t ker_dim1, Vector<size_t>& ifft_vec, Vector<Real_t>& ifft_scal,
  2210. Vector<Real_t>& input_data, Vector<Real_t>& output_data, Vector<Real_t>& buffer_){
  2211. size_t n1=m*2;
  2212. size_t n2=n1*n1;
  2213. size_t n3=n1*n2;
  2214. size_t n3_=n2*(n1/2+1);
  2215. size_t chld_cnt=1UL<<COORD_DIM;
  2216. size_t fftsize_out=2*n3_*dof*ker_dim1*chld_cnt;
  2217. int omp_p=omp_get_max_threads();
  2218. //Load permutation map.
  2219. size_t n=6*(m-1)*(m-1)+2;
  2220. static Vector<size_t> map;
  2221. { // Build map to reorder dnward_check
  2222. size_t n_old=map.Dim();
  2223. if(n_old!=n){
  2224. Real_t c[3]={0,0,0};
  2225. Vector<Real_t> surf=surface(m, c, (Real_t)(m-1), 0);
  2226. map.Resize(surf.Dim()/COORD_DIM);
  2227. for(size_t i=0;i<map.Dim();i++)
  2228. map[i]=((size_t)(m*2-0.5-surf[i*3]))+((size_t)(m*2-0.5-surf[i*3+1]))*n1+((size_t)(m*2-0.5-surf[i*3+2]))*n2;
  2229. //map;//.AllocDevice(true);
  2230. }
  2231. }
  2232. { // Build FFTW plan.
  2233. if(!vlist_ifft_flag){
  2234. //Build FFTW plan.
  2235. int nnn[3]={(int)n1,(int)n1,(int)n1};
  2236. Real_t *fftw_in, *fftw_out;
  2237. fftw_in = mem::aligned_new<Real_t>(2*n3_*ker_dim1*chld_cnt);
  2238. fftw_out = mem::aligned_new<Real_t>( n3 *ker_dim1*chld_cnt);
  2239. vlist_ifftplan = FFTW_t<Real_t>::fft_plan_many_dft_c2r(COORD_DIM,nnn,ker_dim1*chld_cnt,
  2240. (typename FFTW_t<Real_t>::cplx*)fftw_in, NULL, 1, n3_, (Real_t*)(fftw_out),NULL, 1, n3);
  2241. mem::aligned_delete<Real_t>(fftw_in);
  2242. mem::aligned_delete<Real_t>(fftw_out);
  2243. vlist_ifft_flag=true;
  2244. }
  2245. }
  2246. { // Offload section
  2247. assert(buffer_.Dim()>=2*fftsize_out*omp_p);
  2248. size_t n_out=ifft_vec.Dim();
  2249. #pragma omp parallel for
  2250. for(int pid=0; pid<omp_p; pid++){
  2251. size_t node_start=(n_out*(pid ))/omp_p;
  2252. size_t node_end =(n_out*(pid+1))/omp_p;
  2253. Vector<Real_t> buffer0(fftsize_out, &buffer_[fftsize_out*(2*pid+0)], false);
  2254. Vector<Real_t> buffer1(fftsize_out, &buffer_[fftsize_out*(2*pid+1)], false);
  2255. for(size_t node_idx=node_start; node_idx<node_end; node_idx++){
  2256. Vector<Real_t> dnward_check_fft(fftsize_out, &input_data[fftsize_out*node_idx], false);
  2257. Vector<Real_t> dnward_equiv(ker_dim1*n*dof*chld_cnt,&output_data[0] + ifft_vec[node_idx],false);
  2258. //De-interleave data.
  2259. for(int i=0;i<ker_dim1*dof;i++)
  2260. for(size_t j=0;j<n3_;j++)
  2261. for(size_t k=0;k<chld_cnt;k++){
  2262. buffer0[2*(n3_*(ker_dim1*dof*k+i)+j)+0]=dnward_check_fft[2*(chld_cnt*(n3_*i+j)+k)+0];
  2263. buffer0[2*(n3_*(ker_dim1*dof*k+i)+j)+1]=dnward_check_fft[2*(chld_cnt*(n3_*i+j)+k)+1];
  2264. }
  2265. // Compute FFT.
  2266. for(int i=0;i<dof;i++)
  2267. FFTW_t<Real_t>::fft_execute_dft_c2r(vlist_ifftplan, (typename FFTW_t<Real_t>::cplx*)&buffer0[i*2*n3_*ker_dim1*chld_cnt],
  2268. (Real_t*)&buffer1[i* n3 *ker_dim1*chld_cnt]);
  2269. //Compute flops.
  2270. #ifndef FFTW3_MKL
  2271. double add, mul, fma;
  2272. FFTW_t<Real_t>::fftw_flops(vlist_ifftplan, &add, &mul, &fma);
  2273. #ifndef __INTEL_OFFLOAD0
  2274. Profile::Add_FLOP((long long)(add+mul+2*fma)*dof);
  2275. #endif
  2276. #endif
  2277. // Rearrange downward check data.
  2278. for(size_t k=0;k<n;k++){
  2279. size_t idx=map[k];
  2280. for(int j1=0;j1<dof;j1++)
  2281. for(int j0=0;j0<(int)chld_cnt;j0++)
  2282. for(int i=0;i<ker_dim1;i++)
  2283. dnward_equiv[ker_dim1*(n*(dof*j0+j1)+k)+i]+=buffer1[idx+(i+(j1+j0*dof)*ker_dim1)*n3]*ifft_scal[ker_dim1*node_idx+i];
  2284. }
  2285. }
  2286. }
  2287. }
  2288. }
  2289. template<class Real_t>
  2290. inline void matmult_8x8x2(Real_t*& M_, Real_t*& IN0, Real_t*& IN1, Real_t*& OUT0, Real_t*& OUT1){
  2291. // Generic code.
  2292. Real_t out_reg000, out_reg001, out_reg010, out_reg011;
  2293. Real_t out_reg100, out_reg101, out_reg110, out_reg111;
  2294. Real_t in_reg000, in_reg001, in_reg010, in_reg011;
  2295. Real_t in_reg100, in_reg101, in_reg110, in_reg111;
  2296. Real_t m_reg000, m_reg001, m_reg010, m_reg011;
  2297. Real_t m_reg100, m_reg101, m_reg110, m_reg111;
  2298. //#pragma unroll
  2299. for(int i1=0;i1<8;i1+=2){
  2300. Real_t* IN0_=IN0;
  2301. Real_t* IN1_=IN1;
  2302. out_reg000=OUT0[ 0]; out_reg001=OUT0[ 1];
  2303. out_reg010=OUT0[ 2]; out_reg011=OUT0[ 3];
  2304. out_reg100=OUT1[ 0]; out_reg101=OUT1[ 1];
  2305. out_reg110=OUT1[ 2]; out_reg111=OUT1[ 3];
  2306. //#pragma unroll
  2307. for(int i2=0;i2<8;i2+=2){
  2308. m_reg000=M_[ 0]; m_reg001=M_[ 1];
  2309. m_reg010=M_[ 2]; m_reg011=M_[ 3];
  2310. m_reg100=M_[16]; m_reg101=M_[17];
  2311. m_reg110=M_[18]; m_reg111=M_[19];
  2312. in_reg000=IN0_[0]; in_reg001=IN0_[1];
  2313. in_reg010=IN0_[2]; in_reg011=IN0_[3];
  2314. in_reg100=IN1_[0]; in_reg101=IN1_[1];
  2315. in_reg110=IN1_[2]; in_reg111=IN1_[3];
  2316. out_reg000 += m_reg000*in_reg000 - m_reg001*in_reg001;
  2317. out_reg001 += m_reg000*in_reg001 + m_reg001*in_reg000;
  2318. out_reg010 += m_reg010*in_reg000 - m_reg011*in_reg001;
  2319. out_reg011 += m_reg010*in_reg001 + m_reg011*in_reg000;
  2320. out_reg000 += m_reg100*in_reg010 - m_reg101*in_reg011;
  2321. out_reg001 += m_reg100*in_reg011 + m_reg101*in_reg010;
  2322. out_reg010 += m_reg110*in_reg010 - m_reg111*in_reg011;
  2323. out_reg011 += m_reg110*in_reg011 + m_reg111*in_reg010;
  2324. out_reg100 += m_reg000*in_reg100 - m_reg001*in_reg101;
  2325. out_reg101 += m_reg000*in_reg101 + m_reg001*in_reg100;
  2326. out_reg110 += m_reg010*in_reg100 - m_reg011*in_reg101;
  2327. out_reg111 += m_reg010*in_reg101 + m_reg011*in_reg100;
  2328. out_reg100 += m_reg100*in_reg110 - m_reg101*in_reg111;
  2329. out_reg101 += m_reg100*in_reg111 + m_reg101*in_reg110;
  2330. out_reg110 += m_reg110*in_reg110 - m_reg111*in_reg111;
  2331. out_reg111 += m_reg110*in_reg111 + m_reg111*in_reg110;
  2332. M_+=32; // Jump to (column+2).
  2333. IN0_+=4;
  2334. IN1_+=4;
  2335. }
  2336. OUT0[ 0]=out_reg000; OUT0[ 1]=out_reg001;
  2337. OUT0[ 2]=out_reg010; OUT0[ 3]=out_reg011;
  2338. OUT1[ 0]=out_reg100; OUT1[ 1]=out_reg101;
  2339. OUT1[ 2]=out_reg110; OUT1[ 3]=out_reg111;
  2340. M_+=4-64*2; // Jump back to first column (row+2).
  2341. OUT0+=4;
  2342. OUT1+=4;
  2343. }
  2344. }
  2345. #if defined(__AVX__) || defined(__SSE3__)
  2346. template<>
  2347. inline void matmult_8x8x2<double>(double*& M_, double*& IN0, double*& IN1, double*& OUT0, double*& OUT1){
  2348. #ifdef __AVX__ //AVX code.
  2349. __m256d out00,out01,out10,out11;
  2350. __m256d out20,out21,out30,out31;
  2351. double* in0__ = IN0;
  2352. double* in1__ = IN1;
  2353. out00 = _mm256_load_pd(OUT0);
  2354. out01 = _mm256_load_pd(OUT1);
  2355. out10 = _mm256_load_pd(OUT0+4);
  2356. out11 = _mm256_load_pd(OUT1+4);
  2357. out20 = _mm256_load_pd(OUT0+8);
  2358. out21 = _mm256_load_pd(OUT1+8);
  2359. out30 = _mm256_load_pd(OUT0+12);
  2360. out31 = _mm256_load_pd(OUT1+12);
  2361. for(int i2=0;i2<8;i2+=2){
  2362. __m256d m00;
  2363. __m256d ot00;
  2364. __m256d mt0,mtt0;
  2365. __m256d in00,in00_r,in01,in01_r;
  2366. in00 = _mm256_broadcast_pd((const __m128d*)in0__);
  2367. in00_r = _mm256_permute_pd(in00,5);
  2368. in01 = _mm256_broadcast_pd((const __m128d*)in1__);
  2369. in01_r = _mm256_permute_pd(in01,5);
  2370. m00 = _mm256_load_pd(M_);
  2371. mt0 = _mm256_unpacklo_pd(m00,m00);
  2372. ot00 = _mm256_mul_pd(mt0,in00);
  2373. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2374. out00 = _mm256_add_pd(out00,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2375. ot00 = _mm256_mul_pd(mt0,in01);
  2376. out01 = _mm256_add_pd(out01,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2377. m00 = _mm256_load_pd(M_+4);
  2378. mt0 = _mm256_unpacklo_pd(m00,m00);
  2379. ot00 = _mm256_mul_pd(mt0,in00);
  2380. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2381. out10 = _mm256_add_pd(out10,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2382. ot00 = _mm256_mul_pd(mt0,in01);
  2383. out11 = _mm256_add_pd(out11,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2384. m00 = _mm256_load_pd(M_+8);
  2385. mt0 = _mm256_unpacklo_pd(m00,m00);
  2386. ot00 = _mm256_mul_pd(mt0,in00);
  2387. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2388. out20 = _mm256_add_pd(out20,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2389. ot00 = _mm256_mul_pd(mt0,in01);
  2390. out21 = _mm256_add_pd(out21,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2391. m00 = _mm256_load_pd(M_+12);
  2392. mt0 = _mm256_unpacklo_pd(m00,m00);
  2393. ot00 = _mm256_mul_pd(mt0,in00);
  2394. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2395. out30 = _mm256_add_pd(out30,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2396. ot00 = _mm256_mul_pd(mt0,in01);
  2397. out31 = _mm256_add_pd(out31,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2398. in00 = _mm256_broadcast_pd((const __m128d*) (in0__+2));
  2399. in00_r = _mm256_permute_pd(in00,5);
  2400. in01 = _mm256_broadcast_pd((const __m128d*) (in1__+2));
  2401. in01_r = _mm256_permute_pd(in01,5);
  2402. m00 = _mm256_load_pd(M_+16);
  2403. mt0 = _mm256_unpacklo_pd(m00,m00);
  2404. ot00 = _mm256_mul_pd(mt0,in00);
  2405. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2406. out00 = _mm256_add_pd(out00,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2407. ot00 = _mm256_mul_pd(mt0,in01);
  2408. out01 = _mm256_add_pd(out01,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2409. m00 = _mm256_load_pd(M_+20);
  2410. mt0 = _mm256_unpacklo_pd(m00,m00);
  2411. ot00 = _mm256_mul_pd(mt0,in00);
  2412. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2413. out10 = _mm256_add_pd(out10,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2414. ot00 = _mm256_mul_pd(mt0,in01);
  2415. out11 = _mm256_add_pd(out11,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2416. m00 = _mm256_load_pd(M_+24);
  2417. mt0 = _mm256_unpacklo_pd(m00,m00);
  2418. ot00 = _mm256_mul_pd(mt0,in00);
  2419. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2420. out20 = _mm256_add_pd(out20,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2421. ot00 = _mm256_mul_pd(mt0,in01);
  2422. out21 = _mm256_add_pd(out21,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2423. m00 = _mm256_load_pd(M_+28);
  2424. mt0 = _mm256_unpacklo_pd(m00,m00);
  2425. ot00 = _mm256_mul_pd(mt0,in00);
  2426. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2427. out30 = _mm256_add_pd(out30,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2428. ot00 = _mm256_mul_pd(mt0,in01);
  2429. out31 = _mm256_add_pd(out31,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2430. M_ += 32;
  2431. in0__ += 4;
  2432. in1__ += 4;
  2433. }
  2434. _mm256_store_pd(OUT0,out00);
  2435. _mm256_store_pd(OUT1,out01);
  2436. _mm256_store_pd(OUT0+4,out10);
  2437. _mm256_store_pd(OUT1+4,out11);
  2438. _mm256_store_pd(OUT0+8,out20);
  2439. _mm256_store_pd(OUT1+8,out21);
  2440. _mm256_store_pd(OUT0+12,out30);
  2441. _mm256_store_pd(OUT1+12,out31);
  2442. #elif defined __SSE3__ // SSE code.
  2443. __m128d out00, out01, out10, out11;
  2444. __m128d in00, in01, in10, in11;
  2445. __m128d m00, m01, m10, m11;
  2446. //#pragma unroll
  2447. for(int i1=0;i1<8;i1+=2){
  2448. double* IN0_=IN0;
  2449. double* IN1_=IN1;
  2450. out00 =_mm_load_pd (OUT0 );
  2451. out10 =_mm_load_pd (OUT0+2);
  2452. out01 =_mm_load_pd (OUT1 );
  2453. out11 =_mm_load_pd (OUT1+2);
  2454. //#pragma unroll
  2455. for(int i2=0;i2<8;i2+=2){
  2456. m00 =_mm_load1_pd (M_ );
  2457. m10 =_mm_load1_pd (M_+ 2);
  2458. m01 =_mm_load1_pd (M_+16);
  2459. m11 =_mm_load1_pd (M_+18);
  2460. in00 =_mm_load_pd (IN0_ );
  2461. in10 =_mm_load_pd (IN0_+2);
  2462. in01 =_mm_load_pd (IN1_ );
  2463. in11 =_mm_load_pd (IN1_+2);
  2464. out00 = _mm_add_pd (out00, _mm_mul_pd(m00 , in00 ));
  2465. out00 = _mm_add_pd (out00, _mm_mul_pd(m01 , in10 ));
  2466. out01 = _mm_add_pd (out01, _mm_mul_pd(m00 , in01 ));
  2467. out01 = _mm_add_pd (out01, _mm_mul_pd(m01 , in11 ));
  2468. out10 = _mm_add_pd (out10, _mm_mul_pd(m10 , in00 ));
  2469. out10 = _mm_add_pd (out10, _mm_mul_pd(m11 , in10 ));
  2470. out11 = _mm_add_pd (out11, _mm_mul_pd(m10 , in01 ));
  2471. out11 = _mm_add_pd (out11, _mm_mul_pd(m11 , in11 ));
  2472. m00 =_mm_load1_pd (M_+ 1);
  2473. m10 =_mm_load1_pd (M_+ 2+1);
  2474. m01 =_mm_load1_pd (M_+16+1);
  2475. m11 =_mm_load1_pd (M_+18+1);
  2476. in00 =_mm_shuffle_pd (in00,in00,_MM_SHUFFLE2(0,1));
  2477. in01 =_mm_shuffle_pd (in01,in01,_MM_SHUFFLE2(0,1));
  2478. in10 =_mm_shuffle_pd (in10,in10,_MM_SHUFFLE2(0,1));
  2479. in11 =_mm_shuffle_pd (in11,in11,_MM_SHUFFLE2(0,1));
  2480. out00 = _mm_addsub_pd(out00, _mm_mul_pd(m00, in00));
  2481. out00 = _mm_addsub_pd(out00, _mm_mul_pd(m01, in10));
  2482. out01 = _mm_addsub_pd(out01, _mm_mul_pd(m00, in01));
  2483. out01 = _mm_addsub_pd(out01, _mm_mul_pd(m01, in11));
  2484. out10 = _mm_addsub_pd(out10, _mm_mul_pd(m10, in00));
  2485. out10 = _mm_addsub_pd(out10, _mm_mul_pd(m11, in10));
  2486. out11 = _mm_addsub_pd(out11, _mm_mul_pd(m10, in01));
  2487. out11 = _mm_addsub_pd(out11, _mm_mul_pd(m11, in11));
  2488. M_+=32; // Jump to (column+2).
  2489. IN0_+=4;
  2490. IN1_+=4;
  2491. }
  2492. _mm_store_pd (OUT0 ,out00);
  2493. _mm_store_pd (OUT0+2,out10);
  2494. _mm_store_pd (OUT1 ,out01);
  2495. _mm_store_pd (OUT1+2,out11);
  2496. M_+=4-64*2; // Jump back to first column (row+2).
  2497. OUT0+=4;
  2498. OUT1+=4;
  2499. }
  2500. #endif
  2501. }
  2502. #endif
  2503. #if defined(__SSE3__)
  2504. template<>
  2505. inline void matmult_8x8x2<float>(float*& M_, float*& IN0, float*& IN1, float*& OUT0, float*& OUT1){
  2506. #if defined __SSE3__ // SSE code.
  2507. __m128 out00,out01,out10,out11;
  2508. __m128 out20,out21,out30,out31;
  2509. float* in0__ = IN0;
  2510. float* in1__ = IN1;
  2511. out00 = _mm_load_ps(OUT0);
  2512. out01 = _mm_load_ps(OUT1);
  2513. out10 = _mm_load_ps(OUT0+4);
  2514. out11 = _mm_load_ps(OUT1+4);
  2515. out20 = _mm_load_ps(OUT0+8);
  2516. out21 = _mm_load_ps(OUT1+8);
  2517. out30 = _mm_load_ps(OUT0+12);
  2518. out31 = _mm_load_ps(OUT1+12);
  2519. for(int i2=0;i2<8;i2+=2){
  2520. __m128 m00;
  2521. __m128 mt0,mtt0;
  2522. __m128 in00,in00_r,in01,in01_r;
  2523. in00 = _mm_castpd_ps(_mm_load_pd1((const double*)in0__));
  2524. in00_r = _mm_shuffle_ps(in00,in00,_MM_SHUFFLE(2,3,0,1));
  2525. in01 = _mm_castpd_ps(_mm_load_pd1((const double*)in1__));
  2526. in01_r = _mm_shuffle_ps(in01,in01,_MM_SHUFFLE(2,3,0,1));
  2527. m00 = _mm_load_ps(M_);
  2528. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2529. out00= _mm_add_ps (out00,_mm_mul_ps( mt0,in00 ));
  2530. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2531. out00= _mm_addsub_ps(out00,_mm_mul_ps(mtt0,in00_r));
  2532. out01 = _mm_add_ps (out01,_mm_mul_ps( mt0,in01 ));
  2533. out01 = _mm_addsub_ps(out01,_mm_mul_ps(mtt0,in01_r));
  2534. m00 = _mm_load_ps(M_+4);
  2535. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2536. out10= _mm_add_ps (out10,_mm_mul_ps( mt0,in00 ));
  2537. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2538. out10= _mm_addsub_ps(out10,_mm_mul_ps(mtt0,in00_r));
  2539. out11 = _mm_add_ps (out11,_mm_mul_ps( mt0,in01 ));
  2540. out11 = _mm_addsub_ps(out11,_mm_mul_ps(mtt0,in01_r));
  2541. m00 = _mm_load_ps(M_+8);
  2542. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2543. out20= _mm_add_ps (out20,_mm_mul_ps( mt0,in00 ));
  2544. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2545. out20= _mm_addsub_ps(out20,_mm_mul_ps(mtt0,in00_r));
  2546. out21 = _mm_add_ps (out21,_mm_mul_ps( mt0,in01 ));
  2547. out21 = _mm_addsub_ps(out21,_mm_mul_ps(mtt0,in01_r));
  2548. m00 = _mm_load_ps(M_+12);
  2549. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2550. out30= _mm_add_ps (out30,_mm_mul_ps( mt0, in00));
  2551. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2552. out30= _mm_addsub_ps(out30,_mm_mul_ps(mtt0,in00_r));
  2553. out31 = _mm_add_ps (out31,_mm_mul_ps( mt0,in01 ));
  2554. out31 = _mm_addsub_ps(out31,_mm_mul_ps(mtt0,in01_r));
  2555. in00 = _mm_castpd_ps(_mm_load_pd1((const double*) (in0__+2)));
  2556. in00_r = _mm_shuffle_ps(in00,in00,_MM_SHUFFLE(2,3,0,1));
  2557. in01 = _mm_castpd_ps(_mm_load_pd1((const double*) (in1__+2)));
  2558. in01_r = _mm_shuffle_ps(in01,in01,_MM_SHUFFLE(2,3,0,1));
  2559. m00 = _mm_load_ps(M_+16);
  2560. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2561. out00= _mm_add_ps (out00,_mm_mul_ps( mt0,in00 ));
  2562. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2563. out00= _mm_addsub_ps(out00,_mm_mul_ps(mtt0,in00_r));
  2564. out01 = _mm_add_ps (out01,_mm_mul_ps( mt0,in01 ));
  2565. out01 = _mm_addsub_ps(out01,_mm_mul_ps(mtt0,in01_r));
  2566. m00 = _mm_load_ps(M_+20);
  2567. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2568. out10= _mm_add_ps (out10,_mm_mul_ps( mt0,in00 ));
  2569. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2570. out10= _mm_addsub_ps(out10,_mm_mul_ps(mtt0,in00_r));
  2571. out11 = _mm_add_ps (out11,_mm_mul_ps( mt0,in01 ));
  2572. out11 = _mm_addsub_ps(out11,_mm_mul_ps(mtt0,in01_r));
  2573. m00 = _mm_load_ps(M_+24);
  2574. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2575. out20= _mm_add_ps (out20,_mm_mul_ps( mt0,in00 ));
  2576. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2577. out20= _mm_addsub_ps(out20,_mm_mul_ps(mtt0,in00_r));
  2578. out21 = _mm_add_ps (out21,_mm_mul_ps( mt0,in01 ));
  2579. out21 = _mm_addsub_ps(out21,_mm_mul_ps(mtt0,in01_r));
  2580. m00 = _mm_load_ps(M_+28);
  2581. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2582. out30= _mm_add_ps (out30,_mm_mul_ps( mt0,in00 ));
  2583. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2584. out30= _mm_addsub_ps(out30,_mm_mul_ps(mtt0,in00_r));
  2585. out31 = _mm_add_ps (out31,_mm_mul_ps( mt0,in01 ));
  2586. out31 = _mm_addsub_ps(out31,_mm_mul_ps(mtt0,in01_r));
  2587. M_ += 32;
  2588. in0__ += 4;
  2589. in1__ += 4;
  2590. }
  2591. _mm_store_ps(OUT0,out00);
  2592. _mm_store_ps(OUT1,out01);
  2593. _mm_store_ps(OUT0+4,out10);
  2594. _mm_store_ps(OUT1+4,out11);
  2595. _mm_store_ps(OUT0+8,out20);
  2596. _mm_store_ps(OUT1+8,out21);
  2597. _mm_store_ps(OUT0+12,out30);
  2598. _mm_store_ps(OUT1+12,out31);
  2599. #endif
  2600. }
  2601. #endif
  2602. template <class Real_t>
  2603. void VListHadamard(size_t dof, size_t M_dim, size_t ker_dim0, size_t ker_dim1, Vector<size_t>& interac_dsp,
  2604. Vector<size_t>& interac_vec, Vector<Real_t*>& precomp_mat, Vector<Real_t>& fft_in, Vector<Real_t>& fft_out){
  2605. size_t chld_cnt=1UL<<COORD_DIM;
  2606. size_t fftsize_in =M_dim*ker_dim0*chld_cnt*2;
  2607. size_t fftsize_out=M_dim*ker_dim1*chld_cnt*2;
  2608. Real_t* zero_vec0=mem::aligned_new<Real_t>(fftsize_in );
  2609. Real_t* zero_vec1=mem::aligned_new<Real_t>(fftsize_out);
  2610. size_t n_out=fft_out.Dim()/fftsize_out;
  2611. // Set buff_out to zero.
  2612. #pragma omp parallel for
  2613. for(size_t k=0;k<n_out;k++){
  2614. Vector<Real_t> dnward_check_fft(fftsize_out, &fft_out[k*fftsize_out], false);
  2615. dnward_check_fft.SetZero();
  2616. }
  2617. // Build list of interaction pairs (in, out vectors).
  2618. size_t mat_cnt=precomp_mat.Dim();
  2619. size_t blk1_cnt=interac_dsp.Dim()/mat_cnt;
  2620. const size_t V_BLK_SIZE=V_BLK_CACHE*64/sizeof(Real_t);
  2621. Real_t** IN_ =mem::aligned_new<Real_t*>(2*V_BLK_SIZE*blk1_cnt*mat_cnt);
  2622. Real_t** OUT_=mem::aligned_new<Real_t*>(2*V_BLK_SIZE*blk1_cnt*mat_cnt);
  2623. #pragma omp parallel for
  2624. for(size_t interac_blk1=0; interac_blk1<blk1_cnt*mat_cnt; interac_blk1++){
  2625. size_t interac_dsp0 = (interac_blk1==0?0:interac_dsp[interac_blk1-1]);
  2626. size_t interac_dsp1 = interac_dsp[interac_blk1 ] ;
  2627. size_t interac_cnt = interac_dsp1-interac_dsp0;
  2628. for(size_t j=0;j<interac_cnt;j++){
  2629. IN_ [2*V_BLK_SIZE*interac_blk1 +j]=&fft_in [interac_vec[(interac_dsp0+j)*2+0]];
  2630. OUT_[2*V_BLK_SIZE*interac_blk1 +j]=&fft_out[interac_vec[(interac_dsp0+j)*2+1]];
  2631. }
  2632. IN_ [2*V_BLK_SIZE*interac_blk1 +interac_cnt]=zero_vec0;
  2633. OUT_[2*V_BLK_SIZE*interac_blk1 +interac_cnt]=zero_vec1;
  2634. }
  2635. int omp_p=omp_get_max_threads();
  2636. #pragma omp parallel for
  2637. for(int pid=0; pid<omp_p; pid++){
  2638. size_t a=( pid *M_dim)/omp_p;
  2639. size_t b=((pid+1)*M_dim)/omp_p;
  2640. for(int in_dim=0;in_dim<ker_dim0;in_dim++)
  2641. for(int ot_dim=0;ot_dim<ker_dim1;ot_dim++)
  2642. for(size_t blk1=0; blk1<blk1_cnt; blk1++)
  2643. for(size_t k=a; k< b; k++)
  2644. for(size_t mat_indx=0; mat_indx< mat_cnt;mat_indx++){
  2645. size_t interac_blk1 = blk1*mat_cnt+mat_indx;
  2646. size_t interac_dsp0 = (interac_blk1==0?0:interac_dsp[interac_blk1-1]);
  2647. size_t interac_dsp1 = interac_dsp[interac_blk1 ] ;
  2648. size_t interac_cnt = interac_dsp1-interac_dsp0;
  2649. Real_t** IN = IN_ + 2*V_BLK_SIZE*interac_blk1;
  2650. Real_t** OUT= OUT_+ 2*V_BLK_SIZE*interac_blk1;
  2651. Real_t* M = precomp_mat[mat_indx] + k*chld_cnt*chld_cnt*2 + (ot_dim+in_dim*ker_dim1)*M_dim*128;
  2652. {
  2653. for(size_t j=0;j<interac_cnt;j+=2){
  2654. Real_t* M_ = M;
  2655. Real_t* IN0 = IN [j+0] + (in_dim*M_dim+k)*chld_cnt*2;
  2656. Real_t* IN1 = IN [j+1] + (in_dim*M_dim+k)*chld_cnt*2;
  2657. Real_t* OUT0 = OUT[j+0] + (ot_dim*M_dim+k)*chld_cnt*2;
  2658. Real_t* OUT1 = OUT[j+1] + (ot_dim*M_dim+k)*chld_cnt*2;
  2659. #ifdef __SSE__
  2660. if (j+2 < interac_cnt) { // Prefetch
  2661. _mm_prefetch(((char *)(IN[j+2] + (in_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2662. _mm_prefetch(((char *)(IN[j+2] + (in_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2663. _mm_prefetch(((char *)(IN[j+3] + (in_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2664. _mm_prefetch(((char *)(IN[j+3] + (in_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2665. _mm_prefetch(((char *)(OUT[j+2] + (ot_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2666. _mm_prefetch(((char *)(OUT[j+2] + (ot_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2667. _mm_prefetch(((char *)(OUT[j+3] + (ot_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2668. _mm_prefetch(((char *)(OUT[j+3] + (ot_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2669. }
  2670. #endif
  2671. matmult_8x8x2(M_, IN0, IN1, OUT0, OUT1);
  2672. }
  2673. }
  2674. }
  2675. }
  2676. // Compute flops.
  2677. {
  2678. Profile::Add_FLOP(8*8*8*(interac_vec.Dim()/2)*M_dim*ker_dim0*ker_dim1*dof);
  2679. }
  2680. // Free memory
  2681. mem::aligned_delete<Real_t*>(IN_ );
  2682. mem::aligned_delete<Real_t*>(OUT_);
  2683. mem::aligned_delete<Real_t>(zero_vec0);
  2684. mem::aligned_delete<Real_t>(zero_vec1);
  2685. }
  2686. template <class FMMNode>
  2687. void FMM_Pts<FMMNode>::V_ListSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2688. if(!this->MultipoleOrder()) return;
  2689. if(level==0) return;
  2690. { // Set setup_data
  2691. setup_data.level=level;
  2692. setup_data.kernel=kernel->k_m2l;
  2693. setup_data.interac_type.resize(1);
  2694. setup_data.interac_type[0]=V1_Type;
  2695. setup_data. input_data=&buff[0];
  2696. setup_data.output_data=&buff[1];
  2697. Vector<FMMNode_t*>& nodes_in =n_list[2];
  2698. Vector<FMMNode_t*>& nodes_out=n_list[3];
  2699. setup_data.nodes_in .clear();
  2700. setup_data.nodes_out.clear();
  2701. for(size_t i=0;i<nodes_in .Dim();i++) if((nodes_in [i]->Depth()==level-1 || level==-1) && nodes_in [i]->pt_cnt[0]) setup_data.nodes_in .push_back(nodes_in [i]);
  2702. for(size_t i=0;i<nodes_out.Dim();i++) if((nodes_out[i]->Depth()==level-1 || level==-1) && nodes_out[i]->pt_cnt[1]) setup_data.nodes_out.push_back(nodes_out[i]);
  2703. }
  2704. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2705. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2706. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2707. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2708. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)((FMMNode*)nodes_in [i])->Child(0))->FMMData())->upward_equiv);
  2709. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)((FMMNode*)nodes_out[i])->Child(0))->FMMData())->dnward_equiv);
  2710. /////////////////////////////////////////////////////////////////////////////
  2711. Real_t eps=1e-10;
  2712. size_t n_in =nodes_in .size();
  2713. size_t n_out=nodes_out.size();
  2714. // Setup precomputed data.
  2715. //if(setup_data.precomp_data->Dim(0)*setup_data.precomp_data->Dim(1)==0) SetupPrecomp(setup_data,device);
  2716. // Build interac_data
  2717. Profile::Tic("Interac-Data",&this->comm,true,25);
  2718. Matrix<char>& interac_data=setup_data.interac_data;
  2719. if(n_out>0 && n_in >0){ // Build precomp_data, interac_data
  2720. size_t precomp_offset=0;
  2721. Mat_Type& interac_type=setup_data.interac_type[0];
  2722. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  2723. Matrix<size_t> precomp_data_offset;
  2724. std::vector<size_t> interac_mat;
  2725. std::vector<Real_t*> interac_mat_ptr;
  2726. #if 0 // Since we skip SetupPrecomp for V-list
  2727. { // Load precomp_data for interac_type.
  2728. struct HeaderData{
  2729. size_t total_size;
  2730. size_t level;
  2731. size_t mat_cnt ;
  2732. size_t max_depth;
  2733. };
  2734. Matrix<char>& precomp_data=*setup_data.precomp_data;
  2735. char* indx_ptr=precomp_data[0]+precomp_offset;
  2736. HeaderData& header=*(HeaderData*)indx_ptr;indx_ptr+=sizeof(HeaderData);
  2737. precomp_data_offset.ReInit(header.mat_cnt,1+(2+2)*header.max_depth, (size_t*)indx_ptr, false);
  2738. precomp_offset+=header.total_size;
  2739. for(size_t mat_id=0;mat_id<mat_cnt;mat_id++){
  2740. Matrix<Real_t>& M0 = this->mat->Mat(level, interac_type, mat_id);
  2741. assert(M0.Dim(0)>0 && M0.Dim(1)>0); UNUSED(M0);
  2742. interac_mat.push_back(precomp_data_offset[mat_id][0]);
  2743. }
  2744. }
  2745. #else
  2746. {
  2747. for(size_t mat_id=0;mat_id<mat_cnt;mat_id++){
  2748. Matrix<Real_t>& M = this->mat->Mat(level, interac_type, mat_id);
  2749. interac_mat_ptr.push_back(&M[0][0]);
  2750. }
  2751. }
  2752. #endif
  2753. size_t dof;
  2754. size_t m=MultipoleOrder();
  2755. size_t ker_dim0=setup_data.kernel->ker_dim[0];
  2756. size_t ker_dim1=setup_data.kernel->ker_dim[1];
  2757. size_t fftsize;
  2758. {
  2759. size_t n1=m*2;
  2760. size_t n2=n1*n1;
  2761. size_t n3_=n2*(n1/2+1);
  2762. size_t chld_cnt=1UL<<COORD_DIM;
  2763. fftsize=2*n3_*chld_cnt;
  2764. dof=1;
  2765. }
  2766. int omp_p=omp_get_max_threads();
  2767. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  2768. size_t n_blk0=2*fftsize*dof*(ker_dim0*n_in +ker_dim1*n_out)*sizeof(Real_t)/buff_size;
  2769. if(n_blk0==0) n_blk0=1;
  2770. std::vector<std::vector<size_t> > fft_vec(n_blk0);
  2771. std::vector<std::vector<size_t> > ifft_vec(n_blk0);
  2772. std::vector<std::vector<Real_t> > fft_scl(n_blk0);
  2773. std::vector<std::vector<Real_t> > ifft_scl(n_blk0);
  2774. std::vector<std::vector<size_t> > interac_vec(n_blk0);
  2775. std::vector<std::vector<size_t> > interac_dsp(n_blk0);
  2776. {
  2777. Matrix<Real_t>& input_data=*setup_data. input_data;
  2778. Matrix<Real_t>& output_data=*setup_data.output_data;
  2779. std::vector<std::vector<FMMNode*> > nodes_blk_in (n_blk0);
  2780. std::vector<std::vector<FMMNode*> > nodes_blk_out(n_blk0);
  2781. Vector<Real_t> src_scal=this->kernel->k_m2l->src_scal;
  2782. Vector<Real_t> trg_scal=this->kernel->k_m2l->trg_scal;
  2783. for(size_t i=0;i<n_in;i++) ((FMMNode*)nodes_in[i])->node_id=i;
  2784. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2785. size_t blk0_start=(n_out* blk0 )/n_blk0;
  2786. size_t blk0_end =(n_out*(blk0+1))/n_blk0;
  2787. std::vector<FMMNode*>& nodes_in_ =nodes_blk_in [blk0];
  2788. std::vector<FMMNode*>& nodes_out_=nodes_blk_out[blk0];
  2789. { // Build node list for blk0.
  2790. std::set<void*> nodes_in;
  2791. for(size_t i=blk0_start;i<blk0_end;i++){
  2792. nodes_out_.push_back((FMMNode*)nodes_out[i]);
  2793. Vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  2794. for(size_t k=0;k<mat_cnt;k++) if(lst[k]!=NULL && lst[k]->pt_cnt[0]) nodes_in.insert(lst[k]);
  2795. }
  2796. for(std::set<void*>::iterator node=nodes_in.begin(); node != nodes_in.end(); node++){
  2797. nodes_in_.push_back((FMMNode*)*node);
  2798. }
  2799. size_t input_dim=nodes_in_ .size()*ker_dim0*dof*fftsize;
  2800. size_t output_dim=nodes_out_.size()*ker_dim1*dof*fftsize;
  2801. size_t buffer_dim=2*(ker_dim0+ker_dim1)*dof*fftsize*omp_p;
  2802. if(buff_size<(input_dim + output_dim + buffer_dim)*sizeof(Real_t))
  2803. buff_size=(input_dim + output_dim + buffer_dim)*sizeof(Real_t);
  2804. }
  2805. { // Set fft vectors.
  2806. for(size_t i=0;i<nodes_in_ .size();i++) fft_vec[blk0].push_back((size_t)(& input_vector[nodes_in_[i]->node_id][0][0]- input_data[0]));
  2807. for(size_t i=0;i<nodes_out_.size();i++)ifft_vec[blk0].push_back((size_t)(&output_vector[blk0_start + i ][0][0]-output_data[0]));
  2808. size_t scal_dim0=src_scal.Dim();
  2809. size_t scal_dim1=trg_scal.Dim();
  2810. fft_scl [blk0].resize(nodes_in_ .size()*scal_dim0);
  2811. ifft_scl[blk0].resize(nodes_out_.size()*scal_dim1);
  2812. for(size_t i=0;i<nodes_in_ .size();i++){
  2813. size_t depth=nodes_in_[i]->Depth()+1;
  2814. for(size_t j=0;j<scal_dim0;j++){
  2815. fft_scl[blk0][i*scal_dim0+j]=pow(2.0, src_scal[j]*depth);
  2816. }
  2817. }
  2818. for(size_t i=0;i<nodes_out_.size();i++){
  2819. size_t depth=nodes_out_[i]->Depth()+1;
  2820. for(size_t j=0;j<scal_dim1;j++){
  2821. ifft_scl[blk0][i*scal_dim1+j]=pow(2.0, trg_scal[j]*depth);
  2822. }
  2823. }
  2824. }
  2825. }
  2826. for(size_t blk0=0;blk0<n_blk0;blk0++){ // Hadamard interactions.
  2827. std::vector<FMMNode*>& nodes_in_ =nodes_blk_in [blk0];
  2828. std::vector<FMMNode*>& nodes_out_=nodes_blk_out[blk0];
  2829. for(size_t i=0;i<nodes_in_.size();i++) nodes_in_[i]->node_id=i;
  2830. { // Next blocking level.
  2831. size_t n_blk1=nodes_out_.size()*(2)*sizeof(Real_t)/(64*V_BLK_CACHE);
  2832. if(n_blk1==0) n_blk1=1;
  2833. size_t interac_dsp_=0;
  2834. for(size_t blk1=0;blk1<n_blk1;blk1++){
  2835. size_t blk1_start=(nodes_out_.size()* blk1 )/n_blk1;
  2836. size_t blk1_end =(nodes_out_.size()*(blk1+1))/n_blk1;
  2837. for(size_t k=0;k<mat_cnt;k++){
  2838. for(size_t i=blk1_start;i<blk1_end;i++){
  2839. Vector<FMMNode*>& lst=((FMMNode*)nodes_out_[i])->interac_list[interac_type];
  2840. if(lst[k]!=NULL && lst[k]->pt_cnt[0]){
  2841. interac_vec[blk0].push_back(lst[k]->node_id*fftsize*ker_dim0*dof);
  2842. interac_vec[blk0].push_back( i *fftsize*ker_dim1*dof);
  2843. interac_dsp_++;
  2844. }
  2845. }
  2846. interac_dsp[blk0].push_back(interac_dsp_);
  2847. }
  2848. }
  2849. }
  2850. }
  2851. }
  2852. { // Set interac_data.
  2853. size_t data_size=sizeof(size_t)*6; // buff_size, m, dof, ker_dim0, ker_dim1, n_blk0
  2854. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2855. data_size+=sizeof(size_t)+ fft_vec[blk0].size()*sizeof(size_t);
  2856. data_size+=sizeof(size_t)+ ifft_vec[blk0].size()*sizeof(size_t);
  2857. data_size+=sizeof(size_t)+ fft_scl[blk0].size()*sizeof(Real_t);
  2858. data_size+=sizeof(size_t)+ ifft_scl[blk0].size()*sizeof(Real_t);
  2859. data_size+=sizeof(size_t)+interac_vec[blk0].size()*sizeof(size_t);
  2860. data_size+=sizeof(size_t)+interac_dsp[blk0].size()*sizeof(size_t);
  2861. }
  2862. data_size+=sizeof(size_t)+interac_mat.size()*sizeof(size_t);
  2863. data_size+=sizeof(size_t)+interac_mat_ptr.size()*sizeof(Real_t*);
  2864. if(data_size>interac_data.Dim(0)*interac_data.Dim(1))
  2865. interac_data.ReInit(1,data_size);
  2866. char* data_ptr=&interac_data[0][0];
  2867. ((size_t*)data_ptr)[0]=buff_size; data_ptr+=sizeof(size_t);
  2868. ((size_t*)data_ptr)[0]= m; data_ptr+=sizeof(size_t);
  2869. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  2870. ((size_t*)data_ptr)[0]= ker_dim0; data_ptr+=sizeof(size_t);
  2871. ((size_t*)data_ptr)[0]= ker_dim1; data_ptr+=sizeof(size_t);
  2872. ((size_t*)data_ptr)[0]= n_blk0; data_ptr+=sizeof(size_t);
  2873. ((size_t*)data_ptr)[0]= interac_mat.size(); data_ptr+=sizeof(size_t);
  2874. mem::memcopy(data_ptr, &interac_mat[0], interac_mat.size()*sizeof(size_t));
  2875. data_ptr+=interac_mat.size()*sizeof(size_t);
  2876. ((size_t*)data_ptr)[0]= interac_mat_ptr.size(); data_ptr+=sizeof(size_t);
  2877. mem::memcopy(data_ptr, &interac_mat_ptr[0], interac_mat_ptr.size()*sizeof(Real_t*));
  2878. data_ptr+=interac_mat_ptr.size()*sizeof(Real_t*);
  2879. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2880. ((size_t*)data_ptr)[0]= fft_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2881. mem::memcopy(data_ptr, & fft_vec[blk0][0], fft_vec[blk0].size()*sizeof(size_t));
  2882. data_ptr+= fft_vec[blk0].size()*sizeof(size_t);
  2883. ((size_t*)data_ptr)[0]=ifft_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2884. mem::memcopy(data_ptr, &ifft_vec[blk0][0], ifft_vec[blk0].size()*sizeof(size_t));
  2885. data_ptr+=ifft_vec[blk0].size()*sizeof(size_t);
  2886. ((size_t*)data_ptr)[0]= fft_scl[blk0].size(); data_ptr+=sizeof(size_t);
  2887. mem::memcopy(data_ptr, & fft_scl[blk0][0], fft_scl[blk0].size()*sizeof(Real_t));
  2888. data_ptr+= fft_scl[blk0].size()*sizeof(Real_t);
  2889. ((size_t*)data_ptr)[0]=ifft_scl[blk0].size(); data_ptr+=sizeof(size_t);
  2890. mem::memcopy(data_ptr, &ifft_scl[blk0][0], ifft_scl[blk0].size()*sizeof(Real_t));
  2891. data_ptr+=ifft_scl[blk0].size()*sizeof(Real_t);
  2892. ((size_t*)data_ptr)[0]=interac_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2893. mem::memcopy(data_ptr, &interac_vec[blk0][0], interac_vec[blk0].size()*sizeof(size_t));
  2894. data_ptr+=interac_vec[blk0].size()*sizeof(size_t);
  2895. ((size_t*)data_ptr)[0]=interac_dsp[blk0].size(); data_ptr+=sizeof(size_t);
  2896. mem::memcopy(data_ptr, &interac_dsp[blk0][0], interac_dsp[blk0].size()*sizeof(size_t));
  2897. data_ptr+=interac_dsp[blk0].size()*sizeof(size_t);
  2898. }
  2899. }
  2900. }
  2901. Profile::Toc();
  2902. if(device){ // Host2Device
  2903. Profile::Tic("Host2Device",&this->comm,false,25);
  2904. setup_data.interac_data. AllocDevice(true);
  2905. Profile::Toc();
  2906. }
  2907. }
  2908. template <class FMMNode>
  2909. void FMM_Pts<FMMNode>::V_List (SetupData<Real_t>& setup_data, bool device){
  2910. if(!this->MultipoleOrder()) return;
  2911. assert(!device); //Can not run on accelerator yet.
  2912. int np;
  2913. MPI_Comm_size(comm,&np);
  2914. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  2915. if(np>1) Profile::Tic("Host2Device",&this->comm,false,25);
  2916. if(np>1) Profile::Toc();
  2917. return;
  2918. }
  2919. Profile::Tic("Host2Device",&this->comm,false,25);
  2920. int level=setup_data.level;
  2921. size_t buff_size=*((size_t*)&setup_data.interac_data[0][0]);
  2922. typename Vector<char>::Device buff;
  2923. //typename Matrix<char>::Device precomp_data;
  2924. typename Matrix<char>::Device interac_data;
  2925. typename Matrix<Real_t>::Device input_data;
  2926. typename Matrix<Real_t>::Device output_data;
  2927. if(device){
  2928. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.ReInit(buff_size);
  2929. buff = this-> dev_buffer. AllocDevice(false);
  2930. //precomp_data= setup_data.precomp_data->AllocDevice(false);
  2931. interac_data= setup_data.interac_data. AllocDevice(false);
  2932. input_data = setup_data. input_data->AllocDevice(false);
  2933. output_data = setup_data. output_data->AllocDevice(false);
  2934. }else{
  2935. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.ReInit(buff_size);
  2936. buff = this-> dev_buffer;
  2937. //precomp_data=*setup_data.precomp_data;
  2938. interac_data= setup_data.interac_data;
  2939. input_data =*setup_data. input_data;
  2940. output_data =*setup_data. output_data;
  2941. }
  2942. Profile::Toc();
  2943. { // Offloaded computation.
  2944. // Set interac_data.
  2945. size_t m, dof, ker_dim0, ker_dim1, n_blk0;
  2946. std::vector<Vector<size_t> > fft_vec;
  2947. std::vector<Vector<size_t> > ifft_vec;
  2948. std::vector<Vector<Real_t> > fft_scl;
  2949. std::vector<Vector<Real_t> > ifft_scl;
  2950. std::vector<Vector<size_t> > interac_vec;
  2951. std::vector<Vector<size_t> > interac_dsp;
  2952. Vector<Real_t*> precomp_mat;
  2953. { // Set interac_data.
  2954. char* data_ptr=&interac_data[0][0];
  2955. buff_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2956. m =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2957. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2958. ker_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2959. ker_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2960. n_blk0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2961. fft_vec .resize(n_blk0);
  2962. ifft_vec.resize(n_blk0);
  2963. fft_scl .resize(n_blk0);
  2964. ifft_scl.resize(n_blk0);
  2965. interac_vec.resize(n_blk0);
  2966. interac_dsp.resize(n_blk0);
  2967. Vector<size_t> interac_mat;
  2968. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2969. data_ptr+=sizeof(size_t)+interac_mat.Dim()*sizeof(size_t);
  2970. Vector<Real_t*> interac_mat_ptr;
  2971. interac_mat_ptr.ReInit(((size_t*)data_ptr)[0],(Real_t**)(data_ptr+sizeof(size_t)),false);
  2972. data_ptr+=sizeof(size_t)+interac_mat_ptr.Dim()*sizeof(Real_t*);
  2973. #if 0 // Since we skip SetupPrecomp for V-list
  2974. precomp_mat.Resize(interac_mat.Dim());
  2975. for(size_t i=0;i<interac_mat.Dim();i++){
  2976. precomp_mat[i]=(Real_t*)(precomp_data[0]+interac_mat[i]);
  2977. }
  2978. #else
  2979. precomp_mat.Resize(interac_mat_ptr.Dim());
  2980. for(size_t i=0;i<interac_mat_ptr.Dim();i++){
  2981. precomp_mat[i]=interac_mat_ptr[i];
  2982. }
  2983. #endif
  2984. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2985. fft_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2986. data_ptr+=sizeof(size_t)+fft_vec[blk0].Dim()*sizeof(size_t);
  2987. ifft_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2988. data_ptr+=sizeof(size_t)+ifft_vec[blk0].Dim()*sizeof(size_t);
  2989. fft_scl[blk0].ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  2990. data_ptr+=sizeof(size_t)+fft_scl[blk0].Dim()*sizeof(Real_t);
  2991. ifft_scl[blk0].ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  2992. data_ptr+=sizeof(size_t)+ifft_scl[blk0].Dim()*sizeof(Real_t);
  2993. interac_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2994. data_ptr+=sizeof(size_t)+interac_vec[blk0].Dim()*sizeof(size_t);
  2995. interac_dsp[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2996. data_ptr+=sizeof(size_t)+interac_dsp[blk0].Dim()*sizeof(size_t);
  2997. }
  2998. }
  2999. int omp_p=omp_get_max_threads();
  3000. size_t M_dim, fftsize;
  3001. {
  3002. size_t n1=m*2;
  3003. size_t n2=n1*n1;
  3004. size_t n3_=n2*(n1/2+1);
  3005. size_t chld_cnt=1UL<<COORD_DIM;
  3006. fftsize=2*n3_*chld_cnt;
  3007. M_dim=n3_;
  3008. }
  3009. for(size_t blk0=0;blk0<n_blk0;blk0++){ // interactions
  3010. size_t n_in = fft_vec[blk0].Dim();
  3011. size_t n_out=ifft_vec[blk0].Dim();
  3012. size_t input_dim=n_in *ker_dim0*dof*fftsize;
  3013. size_t output_dim=n_out*ker_dim1*dof*fftsize;
  3014. size_t buffer_dim=2*(ker_dim0+ker_dim1)*dof*fftsize*omp_p;
  3015. Vector<Real_t> fft_in ( input_dim, (Real_t*)&buff[ 0 ],false);
  3016. Vector<Real_t> fft_out(output_dim, (Real_t*)&buff[ input_dim *sizeof(Real_t)],false);
  3017. Vector<Real_t> buffer(buffer_dim, (Real_t*)&buff[(input_dim+output_dim)*sizeof(Real_t)],false);
  3018. { // FFT
  3019. if(np==1) Profile::Tic("FFT",&comm,false,100);
  3020. Vector<Real_t> input_data_( input_data.dim[0]* input_data.dim[1], input_data[0], false);
  3021. FFT_UpEquiv(dof, m, ker_dim0, fft_vec[blk0], fft_scl[blk0], input_data_, fft_in, buffer);
  3022. if(np==1) Profile::Toc();
  3023. }
  3024. { // Hadamard
  3025. #ifdef PVFMM_HAVE_PAPI
  3026. #ifdef __VERBOSE__
  3027. std::cout << "Starting counters new\n";
  3028. if (PAPI_start(EventSet) != PAPI_OK) std::cout << "handle_error3" << std::endl;
  3029. #endif
  3030. #endif
  3031. if(np==1) Profile::Tic("HadamardProduct",&comm,false,100);
  3032. VListHadamard<Real_t>(dof, M_dim, ker_dim0, ker_dim1, interac_dsp[blk0], interac_vec[blk0], precomp_mat, fft_in, fft_out);
  3033. if(np==1) Profile::Toc();
  3034. #ifdef PVFMM_HAVE_PAPI
  3035. #ifdef __VERBOSE__
  3036. if (PAPI_stop(EventSet, values) != PAPI_OK) std::cout << "handle_error4" << std::endl;
  3037. std::cout << "Stopping counters\n";
  3038. #endif
  3039. #endif
  3040. }
  3041. { // IFFT
  3042. if(np==1) Profile::Tic("IFFT",&comm,false,100);
  3043. Vector<Real_t> output_data_(output_data.dim[0]*output_data.dim[1], output_data[0], false);
  3044. FFT_Check2Equiv(dof, m, ker_dim1, ifft_vec[blk0], ifft_scl[blk0], fft_out, output_data_, buffer);
  3045. if(np==1) Profile::Toc();
  3046. }
  3047. }
  3048. }
  3049. }
  3050. template <class FMMNode>
  3051. void FMM_Pts<FMMNode>::Down2DownSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3052. if(!this->MultipoleOrder()) return;
  3053. { // Set setup_data
  3054. setup_data.level=level;
  3055. setup_data.kernel=kernel->k_l2l;
  3056. setup_data.interac_type.resize(1);
  3057. setup_data.interac_type[0]=D2D_Type;
  3058. setup_data. input_data=&buff[1];
  3059. setup_data.output_data=&buff[1];
  3060. Vector<FMMNode_t*>& nodes_in =n_list[1];
  3061. Vector<FMMNode_t*>& nodes_out=n_list[1];
  3062. setup_data.nodes_in .clear();
  3063. setup_data.nodes_out.clear();
  3064. for(size_t i=0;i<nodes_in .Dim();i++) if((nodes_in [i]->Depth()==level-1) && nodes_in [i]->pt_cnt[1]) setup_data.nodes_in .push_back(nodes_in [i]);
  3065. for(size_t i=0;i<nodes_out.Dim();i++) if((nodes_out[i]->Depth()==level ) && nodes_out[i]->pt_cnt[1]) setup_data.nodes_out.push_back(nodes_out[i]);
  3066. }
  3067. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3068. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3069. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  3070. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  3071. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->dnward_equiv);
  3072. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->dnward_equiv);
  3073. SetupInterac(setup_data,device);
  3074. }
  3075. template <class FMMNode>
  3076. void FMM_Pts<FMMNode>::Down2Down (SetupData<Real_t>& setup_data, bool device){
  3077. if(!this->MultipoleOrder()) return;
  3078. //Add Down2Down contribution.
  3079. EvalList(setup_data, device);
  3080. }
  3081. template <class FMMNode>
  3082. void FMM_Pts<FMMNode>::PtSetup(SetupData<Real_t>& setup_data, void* data_){
  3083. struct PackedData{
  3084. size_t len;
  3085. Matrix<Real_t>* ptr;
  3086. Vector<size_t> cnt;
  3087. Vector<size_t> dsp;
  3088. };
  3089. struct InteracData{
  3090. Vector<size_t> in_node;
  3091. Vector<size_t> scal_idx;
  3092. Vector<Real_t> coord_shift;
  3093. Vector<size_t> interac_cnt;
  3094. Vector<size_t> interac_dsp;
  3095. Vector<Real_t> scal[4*MAX_DEPTH];
  3096. Matrix<Real_t> M[4];
  3097. };
  3098. struct ptSetupData{
  3099. int level;
  3100. const Kernel<Real_t>* kernel;
  3101. PackedData src_coord; // Src coord
  3102. PackedData src_value; // Src density
  3103. PackedData srf_coord; // Srf coord
  3104. PackedData srf_value; // Srf density
  3105. PackedData trg_coord; // Trg coord
  3106. PackedData trg_value; // Trg potential
  3107. InteracData interac_data;
  3108. };
  3109. ptSetupData& data=*(ptSetupData*)data_;
  3110. { // pack data
  3111. struct PackedSetupData{
  3112. size_t size;
  3113. int level;
  3114. const Kernel<Real_t>* kernel;
  3115. Matrix<Real_t>* src_coord; // Src coord
  3116. Matrix<Real_t>* src_value; // Src density
  3117. Matrix<Real_t>* srf_coord; // Srf coord
  3118. Matrix<Real_t>* srf_value; // Srf density
  3119. Matrix<Real_t>* trg_coord; // Trg coord
  3120. Matrix<Real_t>* trg_value; // Trg potential
  3121. size_t src_coord_cnt_size; size_t src_coord_cnt_offset;
  3122. size_t src_coord_dsp_size; size_t src_coord_dsp_offset;
  3123. size_t src_value_cnt_size; size_t src_value_cnt_offset;
  3124. size_t src_value_dsp_size; size_t src_value_dsp_offset;
  3125. size_t srf_coord_cnt_size; size_t srf_coord_cnt_offset;
  3126. size_t srf_coord_dsp_size; size_t srf_coord_dsp_offset;
  3127. size_t srf_value_cnt_size; size_t srf_value_cnt_offset;
  3128. size_t srf_value_dsp_size; size_t srf_value_dsp_offset;
  3129. size_t trg_coord_cnt_size; size_t trg_coord_cnt_offset;
  3130. size_t trg_coord_dsp_size; size_t trg_coord_dsp_offset;
  3131. size_t trg_value_cnt_size; size_t trg_value_cnt_offset;
  3132. size_t trg_value_dsp_size; size_t trg_value_dsp_offset;
  3133. // interac_data
  3134. size_t in_node_size; size_t in_node_offset;
  3135. size_t scal_idx_size; size_t scal_idx_offset;
  3136. size_t coord_shift_size; size_t coord_shift_offset;
  3137. size_t interac_cnt_size; size_t interac_cnt_offset;
  3138. size_t interac_dsp_size; size_t interac_dsp_offset;
  3139. size_t scal_dim[4*MAX_DEPTH]; size_t scal_offset[4*MAX_DEPTH];
  3140. size_t Mdim[4][2]; size_t M_offset[4];
  3141. };
  3142. PackedSetupData pkd_data;
  3143. { // Set pkd_data
  3144. size_t offset=mem::align_ptr(sizeof(PackedSetupData));
  3145. pkd_data. level=data. level;
  3146. pkd_data.kernel=data.kernel;
  3147. pkd_data.src_coord=data.src_coord.ptr;
  3148. pkd_data.src_value=data.src_value.ptr;
  3149. pkd_data.srf_coord=data.srf_coord.ptr;
  3150. pkd_data.srf_value=data.srf_value.ptr;
  3151. pkd_data.trg_coord=data.trg_coord.ptr;
  3152. pkd_data.trg_value=data.trg_value.ptr;
  3153. pkd_data.src_coord_cnt_offset=offset; pkd_data.src_coord_cnt_size=data.src_coord.cnt.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.src_coord_cnt_size);
  3154. pkd_data.src_coord_dsp_offset=offset; pkd_data.src_coord_dsp_size=data.src_coord.dsp.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.src_coord_dsp_size);
  3155. pkd_data.src_value_cnt_offset=offset; pkd_data.src_value_cnt_size=data.src_value.cnt.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.src_value_cnt_size);
  3156. pkd_data.src_value_dsp_offset=offset; pkd_data.src_value_dsp_size=data.src_value.dsp.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.src_value_dsp_size);
  3157. pkd_data.srf_coord_cnt_offset=offset; pkd_data.srf_coord_cnt_size=data.srf_coord.cnt.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.srf_coord_cnt_size);
  3158. pkd_data.srf_coord_dsp_offset=offset; pkd_data.srf_coord_dsp_size=data.srf_coord.dsp.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.srf_coord_dsp_size);
  3159. pkd_data.srf_value_cnt_offset=offset; pkd_data.srf_value_cnt_size=data.srf_value.cnt.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.srf_value_cnt_size);
  3160. pkd_data.srf_value_dsp_offset=offset; pkd_data.srf_value_dsp_size=data.srf_value.dsp.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.srf_value_dsp_size);
  3161. pkd_data.trg_coord_cnt_offset=offset; pkd_data.trg_coord_cnt_size=data.trg_coord.cnt.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.trg_coord_cnt_size);
  3162. pkd_data.trg_coord_dsp_offset=offset; pkd_data.trg_coord_dsp_size=data.trg_coord.dsp.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.trg_coord_dsp_size);
  3163. pkd_data.trg_value_cnt_offset=offset; pkd_data.trg_value_cnt_size=data.trg_value.cnt.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.trg_value_cnt_size);
  3164. pkd_data.trg_value_dsp_offset=offset; pkd_data.trg_value_dsp_size=data.trg_value.dsp.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.trg_value_dsp_size);
  3165. InteracData& intdata=data.interac_data;
  3166. pkd_data. in_node_offset=offset; pkd_data. in_node_size=intdata. in_node.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data. in_node_size);
  3167. pkd_data. scal_idx_offset=offset; pkd_data. scal_idx_size=intdata. scal_idx.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data. scal_idx_size);
  3168. pkd_data.coord_shift_offset=offset; pkd_data.coord_shift_size=intdata.coord_shift.Dim(); offset+=mem::align_ptr(sizeof(Real_t)*pkd_data.coord_shift_size);
  3169. pkd_data.interac_cnt_offset=offset; pkd_data.interac_cnt_size=intdata.interac_cnt.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.interac_cnt_size);
  3170. pkd_data.interac_dsp_offset=offset; pkd_data.interac_dsp_size=intdata.interac_dsp.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.interac_dsp_size);
  3171. for(size_t i=0;i<4*MAX_DEPTH;i++){
  3172. pkd_data.scal_offset[i]=offset; pkd_data.scal_dim[i]=intdata.scal[i].Dim(); offset+=mem::align_ptr(sizeof(Real_t)*pkd_data.scal_dim[i]);
  3173. }
  3174. for(size_t i=0;i<4;i++){
  3175. size_t& Mdim0=pkd_data.Mdim[i][0];
  3176. size_t& Mdim1=pkd_data.Mdim[i][1];
  3177. pkd_data.M_offset[i]=offset; Mdim0=intdata.M[i].Dim(0); Mdim1=intdata.M[i].Dim(1); offset+=mem::align_ptr(sizeof(Real_t)*Mdim0*Mdim1);
  3178. }
  3179. pkd_data.size=offset;
  3180. }
  3181. { // Set setup_data.interac_data
  3182. Matrix<char>& buff=setup_data.interac_data;
  3183. if(pkd_data.size>buff.Dim(0)*buff.Dim(1)){
  3184. buff.ReInit(1,pkd_data.size);
  3185. }
  3186. ((PackedSetupData*)buff[0])[0]=pkd_data;
  3187. if(pkd_data.src_coord_cnt_size) memcpy(&buff[0][pkd_data.src_coord_cnt_offset], &data.src_coord.cnt[0], pkd_data.src_coord_cnt_size*sizeof(size_t));
  3188. if(pkd_data.src_coord_dsp_size) memcpy(&buff[0][pkd_data.src_coord_dsp_offset], &data.src_coord.dsp[0], pkd_data.src_coord_dsp_size*sizeof(size_t));
  3189. if(pkd_data.src_value_cnt_size) memcpy(&buff[0][pkd_data.src_value_cnt_offset], &data.src_value.cnt[0], pkd_data.src_value_cnt_size*sizeof(size_t));
  3190. if(pkd_data.src_value_dsp_size) memcpy(&buff[0][pkd_data.src_value_dsp_offset], &data.src_value.dsp[0], pkd_data.src_value_dsp_size*sizeof(size_t));
  3191. if(pkd_data.srf_coord_cnt_size) memcpy(&buff[0][pkd_data.srf_coord_cnt_offset], &data.srf_coord.cnt[0], pkd_data.srf_coord_cnt_size*sizeof(size_t));
  3192. if(pkd_data.srf_coord_dsp_size) memcpy(&buff[0][pkd_data.srf_coord_dsp_offset], &data.srf_coord.dsp[0], pkd_data.srf_coord_dsp_size*sizeof(size_t));
  3193. if(pkd_data.srf_value_cnt_size) memcpy(&buff[0][pkd_data.srf_value_cnt_offset], &data.srf_value.cnt[0], pkd_data.srf_value_cnt_size*sizeof(size_t));
  3194. if(pkd_data.srf_value_dsp_size) memcpy(&buff[0][pkd_data.srf_value_dsp_offset], &data.srf_value.dsp[0], pkd_data.srf_value_dsp_size*sizeof(size_t));
  3195. if(pkd_data.trg_coord_cnt_size) memcpy(&buff[0][pkd_data.trg_coord_cnt_offset], &data.trg_coord.cnt[0], pkd_data.trg_coord_cnt_size*sizeof(size_t));
  3196. if(pkd_data.trg_coord_dsp_size) memcpy(&buff[0][pkd_data.trg_coord_dsp_offset], &data.trg_coord.dsp[0], pkd_data.trg_coord_dsp_size*sizeof(size_t));
  3197. if(pkd_data.trg_value_cnt_size) memcpy(&buff[0][pkd_data.trg_value_cnt_offset], &data.trg_value.cnt[0], pkd_data.trg_value_cnt_size*sizeof(size_t));
  3198. if(pkd_data.trg_value_dsp_size) memcpy(&buff[0][pkd_data.trg_value_dsp_offset], &data.trg_value.dsp[0], pkd_data.trg_value_dsp_size*sizeof(size_t));
  3199. InteracData& intdata=data.interac_data;
  3200. if(pkd_data. in_node_size) memcpy(&buff[0][pkd_data. in_node_offset], &intdata. in_node[0], pkd_data. in_node_size*sizeof(size_t));
  3201. if(pkd_data. scal_idx_size) memcpy(&buff[0][pkd_data. scal_idx_offset], &intdata. scal_idx[0], pkd_data. scal_idx_size*sizeof(size_t));
  3202. if(pkd_data.coord_shift_size) memcpy(&buff[0][pkd_data.coord_shift_offset], &intdata.coord_shift[0], pkd_data.coord_shift_size*sizeof(Real_t));
  3203. if(pkd_data.interac_cnt_size) memcpy(&buff[0][pkd_data.interac_cnt_offset], &intdata.interac_cnt[0], pkd_data.interac_cnt_size*sizeof(size_t));
  3204. if(pkd_data.interac_dsp_size) memcpy(&buff[0][pkd_data.interac_dsp_offset], &intdata.interac_dsp[0], pkd_data.interac_dsp_size*sizeof(size_t));
  3205. for(size_t i=0;i<4*MAX_DEPTH;i++){
  3206. if(intdata.scal[i].Dim()) memcpy(&buff[0][pkd_data.scal_offset[i]], &intdata.scal[i][0], intdata.scal[i].Dim()*sizeof(Real_t));
  3207. }
  3208. for(size_t i=0;i<4;i++){
  3209. if(intdata.M[i].Dim(0)*intdata.M[i].Dim(1)) memcpy(&buff[0][pkd_data.M_offset[i]], &intdata.M[i][0][0], intdata.M[i].Dim(0)*intdata.M[i].Dim(1)*sizeof(Real_t));
  3210. }
  3211. }
  3212. }
  3213. { // Resize device buffer
  3214. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  3215. if(this->dev_buffer.Dim()<n) this->dev_buffer.ReInit(n);
  3216. }
  3217. }
  3218. template <class FMMNode>
  3219. template <int SYNC>
  3220. void FMM_Pts<FMMNode>::EvalListPts(SetupData<Real_t>& setup_data, bool device){
  3221. if(setup_data.kernel->ker_dim[0]*setup_data.kernel->ker_dim[1]==0) return;
  3222. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  3223. Profile::Tic("Host2Device",&this->comm,false,25);
  3224. Profile::Toc();
  3225. Profile::Tic("DeviceComp",&this->comm,false,20);
  3226. Profile::Toc();
  3227. return;
  3228. }
  3229. bool have_gpu=false;
  3230. #if defined(PVFMM_HAVE_CUDA)
  3231. have_gpu=true;
  3232. #endif
  3233. Profile::Tic("Host2Device",&this->comm,false,25);
  3234. typename Vector<char>::Device dev_buff;
  3235. typename Matrix<char>::Device interac_data;
  3236. typename Matrix<Real_t>::Device coord_data;
  3237. typename Matrix<Real_t>::Device input_data;
  3238. typename Matrix<Real_t>::Device output_data;
  3239. size_t ptr_single_layer_kernel=(size_t)NULL;
  3240. size_t ptr_double_layer_kernel=(size_t)NULL;
  3241. if(device && !have_gpu){
  3242. dev_buff = this-> dev_buffer. AllocDevice(false);
  3243. interac_data= setup_data.interac_data. AllocDevice(false);
  3244. if(setup_data. coord_data!=NULL) coord_data = setup_data. coord_data->AllocDevice(false);
  3245. if(setup_data. input_data!=NULL) input_data = setup_data. input_data->AllocDevice(false);
  3246. if(setup_data. output_data!=NULL) output_data = setup_data. output_data->AllocDevice(false);
  3247. ptr_single_layer_kernel=setup_data.kernel->dev_ker_poten;
  3248. ptr_double_layer_kernel=setup_data.kernel->dev_dbl_layer_poten;
  3249. }else{
  3250. dev_buff = this-> dev_buffer;
  3251. interac_data= setup_data.interac_data;
  3252. if(setup_data. coord_data!=NULL) coord_data =*setup_data. coord_data;
  3253. if(setup_data. input_data!=NULL) input_data =*setup_data. input_data;
  3254. if(setup_data. output_data!=NULL) output_data =*setup_data. output_data;
  3255. ptr_single_layer_kernel=(size_t)setup_data.kernel->ker_poten;
  3256. ptr_double_layer_kernel=(size_t)setup_data.kernel->dbl_layer_poten;
  3257. }
  3258. Profile::Toc();
  3259. Profile::Tic("DeviceComp",&this->comm,false,20);
  3260. int lock_idx=-1;
  3261. int wait_lock_idx=-1;
  3262. if(device) wait_lock_idx=MIC_Lock::curr_lock();
  3263. if(device) lock_idx=MIC_Lock::get_lock();
  3264. #ifdef __INTEL_OFFLOAD
  3265. #pragma offload if(device) target(mic:0) signal(&MIC_Lock::lock_vec[device?lock_idx:0])
  3266. #endif
  3267. { // Offloaded computation.
  3268. struct PackedData{
  3269. size_t len;
  3270. Matrix<Real_t>* ptr;
  3271. Vector<size_t> cnt;
  3272. Vector<size_t> dsp;
  3273. };
  3274. struct InteracData{
  3275. Vector<size_t> in_node;
  3276. Vector<size_t> scal_idx;
  3277. Vector<Real_t> coord_shift;
  3278. Vector<size_t> interac_cnt;
  3279. Vector<size_t> interac_dsp;
  3280. Vector<Real_t> scal[4*MAX_DEPTH];
  3281. Matrix<Real_t> M[4];
  3282. };
  3283. struct ptSetupData{
  3284. int level;
  3285. const Kernel<Real_t>* kernel;
  3286. PackedData src_coord; // Src coord
  3287. PackedData src_value; // Src density
  3288. PackedData srf_coord; // Srf coord
  3289. PackedData srf_value; // Srf density
  3290. PackedData trg_coord; // Trg coord
  3291. PackedData trg_value; // Trg potential
  3292. InteracData interac_data;
  3293. };
  3294. ptSetupData data;
  3295. { // Initialize data
  3296. struct PackedSetupData{
  3297. size_t size;
  3298. int level;
  3299. const Kernel<Real_t>* kernel;
  3300. Matrix<Real_t>* src_coord; // Src coord
  3301. Matrix<Real_t>* src_value; // Src density
  3302. Matrix<Real_t>* srf_coord; // Srf coord
  3303. Matrix<Real_t>* srf_value; // Srf density
  3304. Matrix<Real_t>* trg_coord; // Trg coord
  3305. Matrix<Real_t>* trg_value; // Trg potential
  3306. size_t src_coord_cnt_size; size_t src_coord_cnt_offset;
  3307. size_t src_coord_dsp_size; size_t src_coord_dsp_offset;
  3308. size_t src_value_cnt_size; size_t src_value_cnt_offset;
  3309. size_t src_value_dsp_size; size_t src_value_dsp_offset;
  3310. size_t srf_coord_cnt_size; size_t srf_coord_cnt_offset;
  3311. size_t srf_coord_dsp_size; size_t srf_coord_dsp_offset;
  3312. size_t srf_value_cnt_size; size_t srf_value_cnt_offset;
  3313. size_t srf_value_dsp_size; size_t srf_value_dsp_offset;
  3314. size_t trg_coord_cnt_size; size_t trg_coord_cnt_offset;
  3315. size_t trg_coord_dsp_size; size_t trg_coord_dsp_offset;
  3316. size_t trg_value_cnt_size; size_t trg_value_cnt_offset;
  3317. size_t trg_value_dsp_size; size_t trg_value_dsp_offset;
  3318. // interac_data
  3319. size_t in_node_size; size_t in_node_offset;
  3320. size_t scal_idx_size; size_t scal_idx_offset;
  3321. size_t coord_shift_size; size_t coord_shift_offset;
  3322. size_t interac_cnt_size; size_t interac_cnt_offset;
  3323. size_t interac_dsp_size; size_t interac_dsp_offset;
  3324. size_t scal_dim[4*MAX_DEPTH]; size_t scal_offset[4*MAX_DEPTH];
  3325. size_t Mdim[4][2]; size_t M_offset[4];
  3326. };
  3327. typename Matrix<char>::Device& setupdata=interac_data;
  3328. PackedSetupData& pkd_data=*((PackedSetupData*)setupdata[0]);
  3329. data. level=pkd_data. level;
  3330. data.kernel=pkd_data.kernel;
  3331. data.src_coord.ptr=pkd_data.src_coord;
  3332. data.src_value.ptr=pkd_data.src_value;
  3333. data.srf_coord.ptr=pkd_data.srf_coord;
  3334. data.srf_value.ptr=pkd_data.srf_value;
  3335. data.trg_coord.ptr=pkd_data.trg_coord;
  3336. data.trg_value.ptr=pkd_data.trg_value;
  3337. data.src_coord.cnt.ReInit(pkd_data.src_coord_cnt_size, (size_t*)&setupdata[0][pkd_data.src_coord_cnt_offset], false);
  3338. data.src_coord.dsp.ReInit(pkd_data.src_coord_dsp_size, (size_t*)&setupdata[0][pkd_data.src_coord_dsp_offset], false);
  3339. data.src_value.cnt.ReInit(pkd_data.src_value_cnt_size, (size_t*)&setupdata[0][pkd_data.src_value_cnt_offset], false);
  3340. data.src_value.dsp.ReInit(pkd_data.src_value_dsp_size, (size_t*)&setupdata[0][pkd_data.src_value_dsp_offset], false);
  3341. data.srf_coord.cnt.ReInit(pkd_data.srf_coord_cnt_size, (size_t*)&setupdata[0][pkd_data.srf_coord_cnt_offset], false);
  3342. data.srf_coord.dsp.ReInit(pkd_data.srf_coord_dsp_size, (size_t*)&setupdata[0][pkd_data.srf_coord_dsp_offset], false);
  3343. data.srf_value.cnt.ReInit(pkd_data.srf_value_cnt_size, (size_t*)&setupdata[0][pkd_data.srf_value_cnt_offset], false);
  3344. data.srf_value.dsp.ReInit(pkd_data.srf_value_dsp_size, (size_t*)&setupdata[0][pkd_data.srf_value_dsp_offset], false);
  3345. data.trg_coord.cnt.ReInit(pkd_data.trg_coord_cnt_size, (size_t*)&setupdata[0][pkd_data.trg_coord_cnt_offset], false);
  3346. data.trg_coord.dsp.ReInit(pkd_data.trg_coord_dsp_size, (size_t*)&setupdata[0][pkd_data.trg_coord_dsp_offset], false);
  3347. data.trg_value.cnt.ReInit(pkd_data.trg_value_cnt_size, (size_t*)&setupdata[0][pkd_data.trg_value_cnt_offset], false);
  3348. data.trg_value.dsp.ReInit(pkd_data.trg_value_dsp_size, (size_t*)&setupdata[0][pkd_data.trg_value_dsp_offset], false);
  3349. InteracData& intdata=data.interac_data;
  3350. intdata. in_node.ReInit(pkd_data. in_node_size, (size_t*)&setupdata[0][pkd_data. in_node_offset],false);
  3351. intdata. scal_idx.ReInit(pkd_data. scal_idx_size, (size_t*)&setupdata[0][pkd_data. scal_idx_offset],false);
  3352. intdata.coord_shift.ReInit(pkd_data.coord_shift_size, (Real_t*)&setupdata[0][pkd_data.coord_shift_offset],false);
  3353. intdata.interac_cnt.ReInit(pkd_data.interac_cnt_size, (size_t*)&setupdata[0][pkd_data.interac_cnt_offset],false);
  3354. intdata.interac_dsp.ReInit(pkd_data.interac_dsp_size, (size_t*)&setupdata[0][pkd_data.interac_dsp_offset],false);
  3355. for(size_t i=0;i<4*MAX_DEPTH;i++){
  3356. intdata.scal[i].ReInit(pkd_data.scal_dim[i], (Real_t*)&setupdata[0][pkd_data.scal_offset[i]],false);
  3357. }
  3358. for(size_t i=0;i<4;i++){
  3359. intdata.M[i].ReInit(pkd_data.Mdim[i][0], pkd_data.Mdim[i][1], (Real_t*)&setupdata[0][pkd_data.M_offset[i]],false);
  3360. }
  3361. }
  3362. if(device) MIC_Lock::wait_lock(wait_lock_idx);
  3363. { // Compute interactions
  3364. InteracData& intdata=data.interac_data;
  3365. typename Kernel<Real_t>::Ker_t single_layer_kernel=(typename Kernel<Real_t>::Ker_t)ptr_single_layer_kernel;
  3366. typename Kernel<Real_t>::Ker_t double_layer_kernel=(typename Kernel<Real_t>::Ker_t)ptr_double_layer_kernel;
  3367. int omp_p=omp_get_max_threads();
  3368. #pragma omp parallel for
  3369. for(size_t tid=0;tid<omp_p;tid++){
  3370. Matrix<Real_t> src_coord, src_value;
  3371. Matrix<Real_t> srf_coord, srf_value;
  3372. Matrix<Real_t> trg_coord, trg_value;
  3373. Vector<Real_t> buff;
  3374. { // init buff
  3375. size_t thread_buff_size=dev_buff.dim/sizeof(Real_t)/omp_p;
  3376. buff.ReInit(thread_buff_size, (Real_t*)&dev_buff[tid*thread_buff_size*sizeof(Real_t)], false);
  3377. }
  3378. size_t vcnt=0;
  3379. std::vector<Matrix<Real_t> > vbuff(6);
  3380. { // init vbuff[0:5]
  3381. size_t vdim_=0, vdim[6];
  3382. for(size_t indx=0;indx<6;indx++){
  3383. vdim[indx]=0;
  3384. switch(indx){
  3385. case 0:
  3386. vdim[indx]=intdata.M[0].Dim(0); break;
  3387. case 1:
  3388. assert(intdata.M[0].Dim(1)==intdata.M[1].Dim(0));
  3389. vdim[indx]=intdata.M[0].Dim(1); break;
  3390. case 2:
  3391. vdim[indx]=intdata.M[1].Dim(1); break;
  3392. case 3:
  3393. vdim[indx]=intdata.M[2].Dim(0); break;
  3394. case 4:
  3395. assert(intdata.M[2].Dim(1)==intdata.M[3].Dim(0));
  3396. vdim[indx]=intdata.M[2].Dim(1); break;
  3397. case 5:
  3398. vdim[indx]=intdata.M[3].Dim(1); break;
  3399. default:
  3400. vdim[indx]=0; break;
  3401. }
  3402. vdim_+=vdim[indx];
  3403. }
  3404. if(vdim_){
  3405. vcnt=buff.Dim()/vdim_/2;
  3406. assert(vcnt>0); // Thread buffer is too small
  3407. }
  3408. for(size_t indx=0;indx<6;indx++){ // init vbuff[0:5]
  3409. vbuff[indx].ReInit(vcnt,vdim[indx],&buff[0],false);
  3410. buff.ReInit(buff.Dim()-vdim[indx]*vcnt, &buff[vdim[indx]*vcnt], false);
  3411. }
  3412. }
  3413. size_t trg_a=((tid+0)*intdata.interac_cnt.Dim())/omp_p;
  3414. size_t trg_b=((tid+1)*intdata.interac_cnt.Dim())/omp_p;
  3415. for(size_t trg0=trg_a;trg0<trg_b;){
  3416. size_t trg1_max=1;
  3417. if(vcnt){ // Find trg1_max
  3418. size_t interac_cnt=intdata.interac_cnt[trg0];
  3419. while(trg0+trg1_max<trg_b){
  3420. interac_cnt+=intdata.interac_cnt[trg0+trg1_max];
  3421. if(interac_cnt>vcnt){
  3422. interac_cnt-=intdata.interac_cnt[trg0+trg1_max];
  3423. break;
  3424. }
  3425. trg1_max++;
  3426. }
  3427. assert(interac_cnt<=vcnt);
  3428. for(size_t k=0;k<6;k++){
  3429. if(vbuff[k].Dim(0)*vbuff[k].Dim(1)){
  3430. vbuff[k].ReInit(interac_cnt,vbuff[k].Dim(1),vbuff[k][0]);
  3431. }
  3432. }
  3433. }else{
  3434. trg1_max=trg_b-trg0;
  3435. }
  3436. if(intdata.M[0].Dim(0) && intdata.M[0].Dim(1) && intdata.M[1].Dim(0) && intdata.M[1].Dim(1)){ // src mat-vec
  3437. size_t interac_idx=0;
  3438. for(size_t trg1=0;trg1<trg1_max;trg1++){ // Copy src_value to vbuff[0]
  3439. size_t trg=trg0+trg1;
  3440. for(size_t i=0;i<intdata.interac_cnt[trg];i++){
  3441. size_t int_id=intdata.interac_dsp[trg]+i;
  3442. size_t src=intdata.in_node[int_id];
  3443. src_value.ReInit(1, data.src_value.cnt[src], &data.src_value.ptr[0][0][data.src_value.dsp[src]], false);
  3444. { // Copy src_value to vbuff[0]
  3445. size_t vdim=vbuff[0].Dim(1);
  3446. assert(src_value.Dim(1)==vdim);
  3447. for(size_t j=0;j<vdim;j++) vbuff[0][interac_idx][j]=src_value[0][j];
  3448. }
  3449. size_t scal_idx=intdata.scal_idx[int_id];
  3450. { // scaling
  3451. Matrix<Real_t>& vec=vbuff[0];
  3452. Vector<Real_t>& scal=intdata.scal[scal_idx*4+0];
  3453. size_t scal_dim=scal.Dim();
  3454. if(scal_dim){
  3455. size_t vdim=vec.Dim(1);
  3456. for(size_t j=0;j<vdim;j+=scal_dim){
  3457. for(size_t k=0;k<scal_dim;k++){
  3458. vec[interac_idx][j+k]*=scal[k];
  3459. }
  3460. }
  3461. }
  3462. }
  3463. interac_idx++;
  3464. }
  3465. }
  3466. Matrix<Real_t>::GEMM(vbuff[1],vbuff[0],intdata.M[0]);
  3467. Matrix<Real_t>::GEMM(vbuff[2],vbuff[1],intdata.M[1]);
  3468. interac_idx=0;
  3469. for(size_t trg1=0;trg1<trg1_max;trg1++){
  3470. size_t trg=trg0+trg1;
  3471. for(size_t i=0;i<intdata.interac_cnt[trg];i++){
  3472. size_t int_id=intdata.interac_dsp[trg]+i;
  3473. size_t scal_idx=intdata.scal_idx[int_id];
  3474. { // scaling
  3475. Matrix<Real_t>& vec=vbuff[2];
  3476. Vector<Real_t>& scal=intdata.scal[scal_idx*4+1];
  3477. size_t scal_dim=scal.Dim();
  3478. if(scal_dim){
  3479. size_t vdim=vec.Dim(1);
  3480. for(size_t j=0;j<vdim;j+=scal_dim){
  3481. for(size_t k=0;k<scal_dim;k++){
  3482. vec[interac_idx][j+k]*=scal[k];
  3483. }
  3484. }
  3485. }
  3486. }
  3487. interac_idx++;
  3488. }
  3489. }
  3490. }
  3491. if(intdata.M[2].Dim(0) && intdata.M[2].Dim(1) && intdata.M[3].Dim(0) && intdata.M[3].Dim(1)){ // init vbuff[3]
  3492. size_t vdim=vbuff[3].Dim(0)*vbuff[3].Dim(1);
  3493. for(size_t i=0;i<vdim;i++) vbuff[3][0][i]=0;
  3494. }
  3495. { // Evaluate kernel functions
  3496. size_t interac_idx=0;
  3497. for(size_t trg1=0;trg1<trg1_max;trg1++){
  3498. size_t trg=trg0+trg1;
  3499. trg_coord.ReInit(1, data.trg_coord.cnt[trg], &data.trg_coord.ptr[0][0][data.trg_coord.dsp[trg]], false);
  3500. trg_value.ReInit(1, data.trg_value.cnt[trg], &data.trg_value.ptr[0][0][data.trg_value.dsp[trg]], false);
  3501. for(size_t i=0;i<intdata.interac_cnt[trg];i++){
  3502. size_t int_id=intdata.interac_dsp[trg]+i;
  3503. size_t src=intdata.in_node[int_id];
  3504. src_coord.ReInit(1, data.src_coord.cnt[src], &data.src_coord.ptr[0][0][data.src_coord.dsp[src]], false);
  3505. src_value.ReInit(1, data.src_value.cnt[src], &data.src_value.ptr[0][0][data.src_value.dsp[src]], false);
  3506. srf_coord.ReInit(1, data.srf_coord.cnt[src], &data.srf_coord.ptr[0][0][data.srf_coord.dsp[src]], false);
  3507. srf_value.ReInit(1, data.srf_value.cnt[src], &data.srf_value.ptr[0][0][data.srf_value.dsp[src]], false);
  3508. Real_t* vbuff2_ptr=(vbuff[2].Dim(0)*vbuff[2].Dim(1)?vbuff[2][interac_idx]:src_value[0]);
  3509. Real_t* vbuff3_ptr=(vbuff[3].Dim(0)*vbuff[3].Dim(1)?vbuff[3][interac_idx]:trg_value[0]);
  3510. { // coord_shift
  3511. Real_t* shift=&intdata.coord_shift[int_id*COORD_DIM];
  3512. if(shift[0]!=0 || shift[1]!=0 || shift[2]!=0){
  3513. size_t vdim=src_coord.Dim(1);
  3514. Vector<Real_t> new_coord(vdim, &buff[0], false);
  3515. assert(buff.Dim()>=vdim); // Thread buffer is too small
  3516. //buff.ReInit(buff.Dim()-vdim, &buff[vdim], false);
  3517. for(size_t j=0;j<vdim;j+=COORD_DIM){
  3518. for(size_t k=0;k<COORD_DIM;k++){
  3519. new_coord[j+k]=src_coord[0][j+k]+shift[k];
  3520. }
  3521. }
  3522. src_coord.ReInit(1, vdim, &new_coord[0], false);
  3523. }
  3524. }
  3525. if(src_coord.Dim(1)){
  3526. assert(ptr_single_layer_kernel); // assert(Single-layer kernel is implemented)
  3527. single_layer_kernel(src_coord[0], src_coord.Dim(1)/COORD_DIM, vbuff2_ptr, 1,
  3528. trg_coord[0], trg_coord.Dim(1)/COORD_DIM, vbuff3_ptr, NULL);
  3529. }
  3530. if(srf_coord.Dim(1)){
  3531. assert(ptr_double_layer_kernel); // assert(Double-layer kernel is implemented)
  3532. double_layer_kernel(srf_coord[0], srf_coord.Dim(1)/COORD_DIM, srf_value[0], 1,
  3533. trg_coord[0], trg_coord.Dim(1)/COORD_DIM, trg_value[0], NULL);
  3534. }
  3535. interac_idx++;
  3536. }
  3537. }
  3538. }
  3539. if(intdata.M[2].Dim(0) && intdata.M[2].Dim(1) && intdata.M[3].Dim(0) && intdata.M[3].Dim(1)){ // trg mat-vec
  3540. size_t interac_idx=0;
  3541. for(size_t trg1=0;trg1<trg1_max;trg1++){
  3542. size_t trg=trg0+trg1;
  3543. for(size_t i=0;i<intdata.interac_cnt[trg];i++){
  3544. size_t int_id=intdata.interac_dsp[trg]+i;
  3545. size_t scal_idx=intdata.scal_idx[int_id];
  3546. { // scaling
  3547. Matrix<Real_t>& vec=vbuff[3];
  3548. Vector<Real_t>& scal=intdata.scal[scal_idx*4+2];
  3549. size_t scal_dim=scal.Dim();
  3550. if(scal_dim){
  3551. size_t vdim=vec.Dim(1);
  3552. for(size_t j=0;j<vdim;j+=scal_dim){
  3553. for(size_t k=0;k<scal_dim;k++){
  3554. vec[interac_idx][j+k]*=scal[k];
  3555. }
  3556. }
  3557. }
  3558. }
  3559. interac_idx++;
  3560. }
  3561. }
  3562. Matrix<Real_t>::GEMM(vbuff[4],vbuff[3],intdata.M[2]);
  3563. Matrix<Real_t>::GEMM(vbuff[5],vbuff[4],intdata.M[3]);
  3564. interac_idx=0;
  3565. for(size_t trg1=0;trg1<trg1_max;trg1++){
  3566. size_t trg=trg0+trg1;
  3567. trg_value.ReInit(1, data.trg_value.cnt[trg], &data.trg_value.ptr[0][0][data.trg_value.dsp[trg]], false);
  3568. for(size_t i=0;i<intdata.interac_cnt[trg];i++){
  3569. size_t int_id=intdata.interac_dsp[trg]+i;
  3570. size_t scal_idx=intdata.scal_idx[int_id];
  3571. { // scaling
  3572. Matrix<Real_t>& vec=vbuff[5];
  3573. Vector<Real_t>& scal=intdata.scal[scal_idx*4+3];
  3574. size_t scal_dim=scal.Dim();
  3575. if(scal_dim){
  3576. size_t vdim=vec.Dim(1);
  3577. for(size_t j=0;j<vdim;j+=scal_dim){
  3578. for(size_t k=0;k<scal_dim;k++){
  3579. vec[interac_idx][j+k]*=scal[k];
  3580. }
  3581. }
  3582. }
  3583. }
  3584. { // Add vbuff[5] to trg_value
  3585. size_t vdim=vbuff[5].Dim(1);
  3586. assert(trg_value.Dim(1)==vdim);
  3587. for(size_t i=0;i<vdim;i++) trg_value[0][i]+=vbuff[5][interac_idx][i];
  3588. }
  3589. interac_idx++;
  3590. }
  3591. }
  3592. }
  3593. trg0+=trg1_max;
  3594. }
  3595. }
  3596. }
  3597. if(device) MIC_Lock::release_lock(lock_idx);
  3598. }
  3599. #ifdef __INTEL_OFFLOAD
  3600. if(SYNC){
  3601. #pragma offload if(device) target(mic:0)
  3602. {if(device) MIC_Lock::wait_lock(lock_idx);}
  3603. }
  3604. #endif
  3605. Profile::Toc();
  3606. }
  3607. template <class FMMNode>
  3608. void FMM_Pts<FMMNode>::X_ListSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3609. if(!this->MultipoleOrder()) return;
  3610. { // Set setup_data
  3611. setup_data. level=level;
  3612. setup_data.kernel=kernel->k_s2l;
  3613. setup_data. input_data=&buff[4];
  3614. setup_data.output_data=&buff[1];
  3615. setup_data. coord_data=&buff[6];
  3616. Vector<FMMNode_t*>& nodes_in =n_list[4];
  3617. Vector<FMMNode_t*>& nodes_out=n_list[1];
  3618. setup_data.nodes_in .clear();
  3619. setup_data.nodes_out.clear();
  3620. for(size_t i=0;i<nodes_in .Dim();i++) if((level==0 || level==-1) && nodes_in [i]->pt_cnt[0] && nodes_in [i]->IsLeaf() ) setup_data.nodes_in .push_back(nodes_in [i]);
  3621. for(size_t i=0;i<nodes_out.Dim();i++) if((level==0 || level==-1) && nodes_out[i]->pt_cnt[1] && !nodes_out[i]->IsGhost()) setup_data.nodes_out.push_back(nodes_out[i]);
  3622. }
  3623. struct PackedData{
  3624. size_t len;
  3625. Matrix<Real_t>* ptr;
  3626. Vector<size_t> cnt;
  3627. Vector<size_t> dsp;
  3628. };
  3629. struct InteracData{
  3630. Vector<size_t> in_node;
  3631. Vector<size_t> scal_idx;
  3632. Vector<Real_t> coord_shift;
  3633. Vector<size_t> interac_cnt;
  3634. Vector<size_t> interac_dsp;
  3635. Vector<Real_t> scal[4*MAX_DEPTH];
  3636. Matrix<Real_t> M[4];
  3637. };
  3638. struct ptSetupData{
  3639. int level;
  3640. const Kernel<Real_t>* kernel;
  3641. PackedData src_coord; // Src coord
  3642. PackedData src_value; // Src density
  3643. PackedData srf_coord; // Srf coord
  3644. PackedData srf_value; // Srf density
  3645. PackedData trg_coord; // Trg coord
  3646. PackedData trg_value; // Trg potential
  3647. InteracData interac_data;
  3648. };
  3649. ptSetupData data;
  3650. data. level=setup_data. level;
  3651. data.kernel=setup_data.kernel;
  3652. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3653. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3654. { // Set src data
  3655. std::vector<void*>& nodes=nodes_in;
  3656. PackedData& coord=data.src_coord;
  3657. PackedData& value=data.src_value;
  3658. coord.ptr=setup_data. coord_data;
  3659. value.ptr=setup_data. input_data;
  3660. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  3661. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  3662. coord.cnt.ReInit(nodes.size());
  3663. coord.dsp.ReInit(nodes.size());
  3664. value.cnt.ReInit(nodes.size());
  3665. value.dsp.ReInit(nodes.size());
  3666. #pragma omp parallel for
  3667. for(size_t i=0;i<nodes.size();i++){
  3668. ((FMMNode_t*)nodes[i])->node_id=i;
  3669. Vector<Real_t>& coord_vec=((FMMNode_t*)nodes[i])->src_coord;
  3670. Vector<Real_t>& value_vec=((FMMNode_t*)nodes[i])->src_value;
  3671. if(coord_vec.Dim()){
  3672. coord.dsp[i]=&coord_vec[0]-coord.ptr[0][0];
  3673. assert(coord.dsp[i]<coord.len);
  3674. coord.cnt[i]=coord_vec.Dim();
  3675. }else{
  3676. coord.dsp[i]=0;
  3677. coord.cnt[i]=0;
  3678. }
  3679. if(value_vec.Dim()){
  3680. value.dsp[i]=&value_vec[0]-value.ptr[0][0];
  3681. assert(value.dsp[i]<value.len);
  3682. value.cnt[i]=value_vec.Dim();
  3683. }else{
  3684. value.dsp[i]=0;
  3685. value.cnt[i]=0;
  3686. }
  3687. }
  3688. }
  3689. { // Set srf data
  3690. std::vector<void*>& nodes=nodes_in;
  3691. PackedData& coord=data.srf_coord;
  3692. PackedData& value=data.srf_value;
  3693. coord.ptr=setup_data. coord_data;
  3694. value.ptr=setup_data. input_data;
  3695. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  3696. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  3697. coord.cnt.ReInit(nodes.size());
  3698. coord.dsp.ReInit(nodes.size());
  3699. value.cnt.ReInit(nodes.size());
  3700. value.dsp.ReInit(nodes.size());
  3701. #pragma omp parallel for
  3702. for(size_t i=0;i<nodes.size();i++){
  3703. Vector<Real_t>& coord_vec=((FMMNode_t*)nodes[i])->surf_coord;
  3704. Vector<Real_t>& value_vec=((FMMNode_t*)nodes[i])->surf_value;
  3705. if(coord_vec.Dim()){
  3706. coord.dsp[i]=&coord_vec[0]-coord.ptr[0][0];
  3707. assert(coord.dsp[i]<coord.len);
  3708. coord.cnt[i]=coord_vec.Dim();
  3709. }else{
  3710. coord.dsp[i]=0;
  3711. coord.cnt[i]=0;
  3712. }
  3713. if(value_vec.Dim()){
  3714. value.dsp[i]=&value_vec[0]-value.ptr[0][0];
  3715. assert(value.dsp[i]<value.len);
  3716. value.cnt[i]=value_vec.Dim();
  3717. }else{
  3718. value.dsp[i]=0;
  3719. value.cnt[i]=0;
  3720. }
  3721. }
  3722. }
  3723. { // Set trg data
  3724. std::vector<void*>& nodes=nodes_out;
  3725. PackedData& coord=data.trg_coord;
  3726. PackedData& value=data.trg_value;
  3727. coord.ptr=setup_data. coord_data;
  3728. value.ptr=setup_data.output_data;
  3729. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  3730. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  3731. coord.cnt.ReInit(nodes.size());
  3732. coord.dsp.ReInit(nodes.size());
  3733. value.cnt.ReInit(nodes.size());
  3734. value.dsp.ReInit(nodes.size());
  3735. #pragma omp parallel for
  3736. for(size_t i=0;i<nodes.size();i++){
  3737. Vector<Real_t>& coord_vec=tree->dnwd_check_surf[((FMMNode*)nodes[i])->Depth()];
  3738. Vector<Real_t>& value_vec=((FMMData*)((FMMNode*)nodes[i])->FMMData())->dnward_equiv;
  3739. if(coord_vec.Dim()){
  3740. coord.dsp[i]=&coord_vec[0]-coord.ptr[0][0];
  3741. assert(coord.dsp[i]<coord.len);
  3742. coord.cnt[i]=coord_vec.Dim();
  3743. }else{
  3744. coord.dsp[i]=0;
  3745. coord.cnt[i]=0;
  3746. }
  3747. if(value_vec.Dim()){
  3748. value.dsp[i]=&value_vec[0]-value.ptr[0][0];
  3749. assert(value.dsp[i]<value.len);
  3750. value.cnt[i]=value_vec.Dim();
  3751. }else{
  3752. value.dsp[i]=0;
  3753. value.cnt[i]=0;
  3754. }
  3755. }
  3756. }
  3757. { // Set interac_data
  3758. int omp_p=omp_get_max_threads();
  3759. std::vector<std::vector<size_t> > in_node_(omp_p);
  3760. std::vector<std::vector<size_t> > scal_idx_(omp_p);
  3761. std::vector<std::vector<Real_t> > coord_shift_(omp_p);
  3762. std::vector<std::vector<size_t> > interac_cnt_(omp_p);
  3763. size_t m=this->MultipoleOrder();
  3764. size_t Nsrf=(6*(m-1)*(m-1)+2);
  3765. #pragma omp parallel for
  3766. for(size_t tid=0;tid<omp_p;tid++){
  3767. std::vector<size_t>& in_node =in_node_[tid] ;
  3768. std::vector<size_t>& scal_idx =scal_idx_[tid] ;
  3769. std::vector<Real_t>& coord_shift=coord_shift_[tid];
  3770. std::vector<size_t>& interac_cnt=interac_cnt_[tid] ;
  3771. size_t a=(nodes_out.size()*(tid+0))/omp_p;
  3772. size_t b=(nodes_out.size()*(tid+1))/omp_p;
  3773. for(size_t i=a;i<b;i++){
  3774. FMMNode_t* tnode=(FMMNode_t*)nodes_out[i];
  3775. if(tnode->IsLeaf() && tnode->pt_cnt[1]<=Nsrf){ // skip: handled in U-list
  3776. interac_cnt.push_back(0);
  3777. continue;
  3778. }
  3779. Real_t s=std::pow(0.5,tnode->Depth());
  3780. size_t interac_cnt_=0;
  3781. { // X_Type
  3782. Mat_Type type=X_Type;
  3783. Vector<FMMNode_t*>& intlst=tnode->interac_list[type];
  3784. for(size_t j=0;j<intlst.Dim();j++) if(intlst[j]){
  3785. FMMNode_t* snode=intlst[j];
  3786. size_t snode_id=snode->node_id;
  3787. if(snode_id>=nodes_in.size() || nodes_in[snode_id]!=snode) continue;
  3788. in_node.push_back(snode_id);
  3789. scal_idx.push_back(snode->Depth());
  3790. { // set coord_shift
  3791. const int* rel_coord=interac_list.RelativeCoord(type,j);
  3792. const Real_t* scoord=snode->Coord();
  3793. const Real_t* tcoord=tnode->Coord();
  3794. Real_t shift[COORD_DIM];
  3795. shift[0]=rel_coord[0]*0.5*s-(scoord[0]+1.0*s)+(0+0.5*s);
  3796. shift[1]=rel_coord[1]*0.5*s-(scoord[1]+1.0*s)+(0+0.5*s);
  3797. shift[2]=rel_coord[2]*0.5*s-(scoord[2]+1.0*s)+(0+0.5*s);
  3798. coord_shift.push_back(shift[0]);
  3799. coord_shift.push_back(shift[1]);
  3800. coord_shift.push_back(shift[2]);
  3801. }
  3802. interac_cnt_++;
  3803. }
  3804. }
  3805. interac_cnt.push_back(interac_cnt_);
  3806. }
  3807. }
  3808. { // Combine interac data
  3809. InteracData& interac_data=data.interac_data;
  3810. { // in_node
  3811. typedef size_t ElemType;
  3812. std::vector<std::vector<ElemType> >& vec_=in_node_;
  3813. pvfmm::Vector<ElemType>& vec=interac_data.in_node;
  3814. std::vector<size_t> vec_dsp(omp_p+1,0);
  3815. for(size_t tid=0;tid<omp_p;tid++){
  3816. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  3817. }
  3818. vec.ReInit(vec_dsp[omp_p]);
  3819. #pragma omp parallel for
  3820. for(size_t tid=0;tid<omp_p;tid++){
  3821. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  3822. }
  3823. }
  3824. { // scal_idx
  3825. typedef size_t ElemType;
  3826. std::vector<std::vector<ElemType> >& vec_=scal_idx_;
  3827. pvfmm::Vector<ElemType>& vec=interac_data.scal_idx;
  3828. std::vector<size_t> vec_dsp(omp_p+1,0);
  3829. for(size_t tid=0;tid<omp_p;tid++){
  3830. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  3831. }
  3832. vec.ReInit(vec_dsp[omp_p]);
  3833. #pragma omp parallel for
  3834. for(size_t tid=0;tid<omp_p;tid++){
  3835. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  3836. }
  3837. }
  3838. { // coord_shift
  3839. typedef Real_t ElemType;
  3840. std::vector<std::vector<ElemType> >& vec_=coord_shift_;
  3841. pvfmm::Vector<ElemType>& vec=interac_data.coord_shift;
  3842. std::vector<size_t> vec_dsp(omp_p+1,0);
  3843. for(size_t tid=0;tid<omp_p;tid++){
  3844. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  3845. }
  3846. vec.ReInit(vec_dsp[omp_p]);
  3847. #pragma omp parallel for
  3848. for(size_t tid=0;tid<omp_p;tid++){
  3849. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  3850. }
  3851. }
  3852. { // interac_cnt
  3853. typedef size_t ElemType;
  3854. std::vector<std::vector<ElemType> >& vec_=interac_cnt_;
  3855. pvfmm::Vector<ElemType>& vec=interac_data.interac_cnt;
  3856. std::vector<size_t> vec_dsp(omp_p+1,0);
  3857. for(size_t tid=0;tid<omp_p;tid++){
  3858. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  3859. }
  3860. vec.ReInit(vec_dsp[omp_p]);
  3861. #pragma omp parallel for
  3862. for(size_t tid=0;tid<omp_p;tid++){
  3863. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  3864. }
  3865. }
  3866. { // interac_dsp
  3867. pvfmm::Vector<size_t>& cnt=interac_data.interac_cnt;
  3868. pvfmm::Vector<size_t>& dsp=interac_data.interac_dsp;
  3869. dsp.ReInit(cnt.Dim()); if(dsp.Dim()) dsp[0]=0;
  3870. omp_par::scan(&cnt[0],&dsp[0],dsp.Dim());
  3871. }
  3872. }
  3873. }
  3874. PtSetup(setup_data, &data);
  3875. }
  3876. template <class FMMNode>
  3877. void FMM_Pts<FMMNode>::X_List (SetupData<Real_t>& setup_data, bool device){
  3878. if(!this->MultipoleOrder()) return;
  3879. //Add X_List contribution.
  3880. this->EvalListPts(setup_data, device);
  3881. }
  3882. template <class FMMNode>
  3883. void FMM_Pts<FMMNode>::W_ListSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3884. if(!this->MultipoleOrder()) return;
  3885. { // Set setup_data
  3886. setup_data. level=level;
  3887. setup_data.kernel=kernel->k_m2t;
  3888. setup_data. input_data=&buff[0];
  3889. setup_data.output_data=&buff[5];
  3890. setup_data. coord_data=&buff[6];
  3891. Vector<FMMNode_t*>& nodes_in =n_list[0];
  3892. Vector<FMMNode_t*>& nodes_out=n_list[5];
  3893. setup_data.nodes_in .clear();
  3894. setup_data.nodes_out.clear();
  3895. for(size_t i=0;i<nodes_in .Dim();i++) if((level==0 || level==-1) && nodes_in [i]->pt_cnt[0] ) setup_data.nodes_in .push_back(nodes_in [i]);
  3896. for(size_t i=0;i<nodes_out.Dim();i++) if((level==0 || level==-1) && nodes_out[i]->pt_cnt[1] && nodes_out[i]->IsLeaf() && !nodes_out[i]->IsGhost()) setup_data.nodes_out.push_back(nodes_out[i]);
  3897. }
  3898. struct PackedData{
  3899. size_t len;
  3900. Matrix<Real_t>* ptr;
  3901. Vector<size_t> cnt;
  3902. Vector<size_t> dsp;
  3903. };
  3904. struct InteracData{
  3905. Vector<size_t> in_node;
  3906. Vector<size_t> scal_idx;
  3907. Vector<Real_t> coord_shift;
  3908. Vector<size_t> interac_cnt;
  3909. Vector<size_t> interac_dsp;
  3910. Vector<Real_t> scal[4*MAX_DEPTH];
  3911. Matrix<Real_t> M[4];
  3912. };
  3913. struct ptSetupData{
  3914. int level;
  3915. const Kernel<Real_t>* kernel;
  3916. PackedData src_coord; // Src coord
  3917. PackedData src_value; // Src density
  3918. PackedData srf_coord; // Srf coord
  3919. PackedData srf_value; // Srf density
  3920. PackedData trg_coord; // Trg coord
  3921. PackedData trg_value; // Trg potential
  3922. InteracData interac_data;
  3923. };
  3924. ptSetupData data;
  3925. data. level=setup_data. level;
  3926. data.kernel=setup_data.kernel;
  3927. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3928. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3929. { // Set src data
  3930. std::vector<void*>& nodes=nodes_in;
  3931. PackedData& coord=data.src_coord;
  3932. PackedData& value=data.src_value;
  3933. coord.ptr=setup_data. coord_data;
  3934. value.ptr=setup_data. input_data;
  3935. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  3936. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  3937. coord.cnt.ReInit(nodes.size());
  3938. coord.dsp.ReInit(nodes.size());
  3939. value.cnt.ReInit(nodes.size());
  3940. value.dsp.ReInit(nodes.size());
  3941. #pragma omp parallel for
  3942. for(size_t i=0;i<nodes.size();i++){
  3943. ((FMMNode_t*)nodes[i])->node_id=i;
  3944. Vector<Real_t>& coord_vec=tree->upwd_equiv_surf[((FMMNode*)nodes[i])->Depth()];
  3945. Vector<Real_t>& value_vec=((FMMData*)((FMMNode*)nodes[i])->FMMData())->upward_equiv;
  3946. if(coord_vec.Dim()){
  3947. coord.dsp[i]=&coord_vec[0]-coord.ptr[0][0];
  3948. assert(coord.dsp[i]<coord.len);
  3949. coord.cnt[i]=coord_vec.Dim();
  3950. }else{
  3951. coord.dsp[i]=0;
  3952. coord.cnt[i]=0;
  3953. }
  3954. if(value_vec.Dim()){
  3955. value.dsp[i]=&value_vec[0]-value.ptr[0][0];
  3956. assert(value.dsp[i]<value.len);
  3957. value.cnt[i]=value_vec.Dim();
  3958. }else{
  3959. value.dsp[i]=0;
  3960. value.cnt[i]=0;
  3961. }
  3962. }
  3963. }
  3964. { // Set srf data
  3965. std::vector<void*>& nodes=nodes_in;
  3966. PackedData& coord=data.srf_coord;
  3967. PackedData& value=data.srf_value;
  3968. coord.ptr=setup_data. coord_data;
  3969. value.ptr=setup_data. input_data;
  3970. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  3971. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  3972. coord.cnt.ReInit(nodes.size());
  3973. coord.dsp.ReInit(nodes.size());
  3974. value.cnt.ReInit(nodes.size());
  3975. value.dsp.ReInit(nodes.size());
  3976. #pragma omp parallel for
  3977. for(size_t i=0;i<nodes.size();i++){
  3978. coord.dsp[i]=0;
  3979. coord.cnt[i]=0;
  3980. value.dsp[i]=0;
  3981. value.cnt[i]=0;
  3982. }
  3983. }
  3984. { // Set trg data
  3985. std::vector<void*>& nodes=nodes_out;
  3986. PackedData& coord=data.trg_coord;
  3987. PackedData& value=data.trg_value;
  3988. coord.ptr=setup_data. coord_data;
  3989. value.ptr=setup_data.output_data;
  3990. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  3991. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  3992. coord.cnt.ReInit(nodes.size());
  3993. coord.dsp.ReInit(nodes.size());
  3994. value.cnt.ReInit(nodes.size());
  3995. value.dsp.ReInit(nodes.size());
  3996. #pragma omp parallel for
  3997. for(size_t i=0;i<nodes.size();i++){
  3998. Vector<Real_t>& coord_vec=((FMMNode_t*)nodes[i])->trg_coord;
  3999. Vector<Real_t>& value_vec=((FMMNode_t*)nodes[i])->trg_value;
  4000. if(coord_vec.Dim()){
  4001. coord.dsp[i]=&coord_vec[0]-coord.ptr[0][0];
  4002. assert(coord.dsp[i]<coord.len);
  4003. coord.cnt[i]=coord_vec.Dim();
  4004. }else{
  4005. coord.dsp[i]=0;
  4006. coord.cnt[i]=0;
  4007. }
  4008. if(value_vec.Dim()){
  4009. value.dsp[i]=&value_vec[0]-value.ptr[0][0];
  4010. assert(value.dsp[i]<value.len);
  4011. value.cnt[i]=value_vec.Dim();
  4012. }else{
  4013. value.dsp[i]=0;
  4014. value.cnt[i]=0;
  4015. }
  4016. }
  4017. }
  4018. { // Set interac_data
  4019. int omp_p=omp_get_max_threads();
  4020. std::vector<std::vector<size_t> > in_node_(omp_p);
  4021. std::vector<std::vector<size_t> > scal_idx_(omp_p);
  4022. std::vector<std::vector<Real_t> > coord_shift_(omp_p);
  4023. std::vector<std::vector<size_t> > interac_cnt_(omp_p);
  4024. size_t m=this->MultipoleOrder();
  4025. size_t Nsrf=(6*(m-1)*(m-1)+2);
  4026. #pragma omp parallel for
  4027. for(size_t tid=0;tid<omp_p;tid++){
  4028. std::vector<size_t>& in_node =in_node_[tid] ;
  4029. std::vector<size_t>& scal_idx =scal_idx_[tid] ;
  4030. std::vector<Real_t>& coord_shift=coord_shift_[tid];
  4031. std::vector<size_t>& interac_cnt=interac_cnt_[tid] ;
  4032. size_t a=(nodes_out.size()*(tid+0))/omp_p;
  4033. size_t b=(nodes_out.size()*(tid+1))/omp_p;
  4034. for(size_t i=a;i<b;i++){
  4035. FMMNode_t* tnode=(FMMNode_t*)nodes_out[i];
  4036. Real_t s=std::pow(0.5,tnode->Depth());
  4037. size_t interac_cnt_=0;
  4038. { // W_Type
  4039. Mat_Type type=W_Type;
  4040. Vector<FMMNode_t*>& intlst=tnode->interac_list[type];
  4041. for(size_t j=0;j<intlst.Dim();j++) if(intlst[j]){
  4042. FMMNode_t* snode=intlst[j];
  4043. size_t snode_id=snode->node_id;
  4044. if(snode_id>=nodes_in.size() || nodes_in[snode_id]!=snode) continue;
  4045. if(snode->IsGhost() && snode->src_coord.Dim()+snode->surf_coord.Dim()==0){ // Is non-leaf ghost node
  4046. }else if(snode->IsLeaf() && snode->pt_cnt[0]<=Nsrf) continue; // skip: handled in U-list
  4047. in_node.push_back(snode_id);
  4048. scal_idx.push_back(snode->Depth());
  4049. { // set coord_shift
  4050. const int* rel_coord=interac_list.RelativeCoord(type,j);
  4051. const Real_t* scoord=snode->Coord();
  4052. const Real_t* tcoord=tnode->Coord();
  4053. Real_t shift[COORD_DIM];
  4054. shift[0]=rel_coord[0]*0.25*s-(0+0.25*s)+(tcoord[0]+0.5*s);
  4055. shift[1]=rel_coord[1]*0.25*s-(0+0.25*s)+(tcoord[1]+0.5*s);
  4056. shift[2]=rel_coord[2]*0.25*s-(0+0.25*s)+(tcoord[2]+0.5*s);
  4057. coord_shift.push_back(shift[0]);
  4058. coord_shift.push_back(shift[1]);
  4059. coord_shift.push_back(shift[2]);
  4060. }
  4061. interac_cnt_++;
  4062. }
  4063. }
  4064. interac_cnt.push_back(interac_cnt_);
  4065. }
  4066. }
  4067. { // Combine interac data
  4068. InteracData& interac_data=data.interac_data;
  4069. { // in_node
  4070. typedef size_t ElemType;
  4071. std::vector<std::vector<ElemType> >& vec_=in_node_;
  4072. pvfmm::Vector<ElemType>& vec=interac_data.in_node;
  4073. std::vector<size_t> vec_dsp(omp_p+1,0);
  4074. for(size_t tid=0;tid<omp_p;tid++){
  4075. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  4076. }
  4077. vec.ReInit(vec_dsp[omp_p]);
  4078. #pragma omp parallel for
  4079. for(size_t tid=0;tid<omp_p;tid++){
  4080. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  4081. }
  4082. }
  4083. { // scal_idx
  4084. typedef size_t ElemType;
  4085. std::vector<std::vector<ElemType> >& vec_=scal_idx_;
  4086. pvfmm::Vector<ElemType>& vec=interac_data.scal_idx;
  4087. std::vector<size_t> vec_dsp(omp_p+1,0);
  4088. for(size_t tid=0;tid<omp_p;tid++){
  4089. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  4090. }
  4091. vec.ReInit(vec_dsp[omp_p]);
  4092. #pragma omp parallel for
  4093. for(size_t tid=0;tid<omp_p;tid++){
  4094. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  4095. }
  4096. }
  4097. { // coord_shift
  4098. typedef Real_t ElemType;
  4099. std::vector<std::vector<ElemType> >& vec_=coord_shift_;
  4100. pvfmm::Vector<ElemType>& vec=interac_data.coord_shift;
  4101. std::vector<size_t> vec_dsp(omp_p+1,0);
  4102. for(size_t tid=0;tid<omp_p;tid++){
  4103. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  4104. }
  4105. vec.ReInit(vec_dsp[omp_p]);
  4106. #pragma omp parallel for
  4107. for(size_t tid=0;tid<omp_p;tid++){
  4108. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  4109. }
  4110. }
  4111. { // interac_cnt
  4112. typedef size_t ElemType;
  4113. std::vector<std::vector<ElemType> >& vec_=interac_cnt_;
  4114. pvfmm::Vector<ElemType>& vec=interac_data.interac_cnt;
  4115. std::vector<size_t> vec_dsp(omp_p+1,0);
  4116. for(size_t tid=0;tid<omp_p;tid++){
  4117. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  4118. }
  4119. vec.ReInit(vec_dsp[omp_p]);
  4120. #pragma omp parallel for
  4121. for(size_t tid=0;tid<omp_p;tid++){
  4122. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  4123. }
  4124. }
  4125. { // interac_dsp
  4126. pvfmm::Vector<size_t>& cnt=interac_data.interac_cnt;
  4127. pvfmm::Vector<size_t>& dsp=interac_data.interac_dsp;
  4128. dsp.ReInit(cnt.Dim()); if(dsp.Dim()) dsp[0]=0;
  4129. omp_par::scan(&cnt[0],&dsp[0],dsp.Dim());
  4130. }
  4131. }
  4132. }
  4133. PtSetup(setup_data, &data);
  4134. }
  4135. template <class FMMNode>
  4136. void FMM_Pts<FMMNode>::W_List (SetupData<Real_t>& setup_data, bool device){
  4137. if(!this->MultipoleOrder()) return;
  4138. //Add W_List contribution.
  4139. this->EvalListPts(setup_data, device);
  4140. }
  4141. template <class FMMNode>
  4142. void FMM_Pts<FMMNode>::U_ListSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  4143. { // Set setup_data
  4144. setup_data. level=level;
  4145. setup_data.kernel=kernel->k_s2t;
  4146. setup_data. input_data=&buff[4];
  4147. setup_data.output_data=&buff[5];
  4148. setup_data. coord_data=&buff[6];
  4149. Vector<FMMNode_t*>& nodes_in =n_list[4];
  4150. Vector<FMMNode_t*>& nodes_out=n_list[5];
  4151. setup_data.nodes_in .clear();
  4152. setup_data.nodes_out.clear();
  4153. for(size_t i=0;i<nodes_in .Dim();i++) if((level==0 || level==-1) && nodes_in [i]->pt_cnt[0] && nodes_in [i]->IsLeaf() ) setup_data.nodes_in .push_back(nodes_in [i]);
  4154. for(size_t i=0;i<nodes_out.Dim();i++) if((level==0 || level==-1) && nodes_out[i]->pt_cnt[1] && nodes_out[i]->IsLeaf() && !nodes_out[i]->IsGhost()) setup_data.nodes_out.push_back(nodes_out[i]);
  4155. }
  4156. struct PackedData{
  4157. size_t len;
  4158. Matrix<Real_t>* ptr;
  4159. Vector<size_t> cnt;
  4160. Vector<size_t> dsp;
  4161. };
  4162. struct InteracData{
  4163. Vector<size_t> in_node;
  4164. Vector<size_t> scal_idx;
  4165. Vector<Real_t> coord_shift;
  4166. Vector<size_t> interac_cnt;
  4167. Vector<size_t> interac_dsp;
  4168. Vector<Real_t> scal[4*MAX_DEPTH];
  4169. Matrix<Real_t> M[4];
  4170. };
  4171. struct ptSetupData{
  4172. int level;
  4173. const Kernel<Real_t>* kernel;
  4174. PackedData src_coord; // Src coord
  4175. PackedData src_value; // Src density
  4176. PackedData srf_coord; // Srf coord
  4177. PackedData srf_value; // Srf density
  4178. PackedData trg_coord; // Trg coord
  4179. PackedData trg_value; // Trg potential
  4180. InteracData interac_data;
  4181. };
  4182. ptSetupData data;
  4183. data. level=setup_data. level;
  4184. data.kernel=setup_data.kernel;
  4185. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  4186. std::vector<void*>& nodes_out=setup_data.nodes_out;
  4187. { // Set src data
  4188. std::vector<void*>& nodes=nodes_in;
  4189. PackedData& coord=data.src_coord;
  4190. PackedData& value=data.src_value;
  4191. coord.ptr=setup_data. coord_data;
  4192. value.ptr=setup_data. input_data;
  4193. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  4194. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  4195. coord.cnt.ReInit(nodes.size());
  4196. coord.dsp.ReInit(nodes.size());
  4197. value.cnt.ReInit(nodes.size());
  4198. value.dsp.ReInit(nodes.size());
  4199. #pragma omp parallel for
  4200. for(size_t i=0;i<nodes.size();i++){
  4201. ((FMMNode_t*)nodes[i])->node_id=i;
  4202. Vector<Real_t>& coord_vec=((FMMNode_t*)nodes[i])->src_coord;
  4203. Vector<Real_t>& value_vec=((FMMNode_t*)nodes[i])->src_value;
  4204. if(coord_vec.Dim()){
  4205. coord.dsp[i]=&coord_vec[0]-coord.ptr[0][0];
  4206. assert(coord.dsp[i]<coord.len);
  4207. coord.cnt[i]=coord_vec.Dim();
  4208. }else{
  4209. coord.dsp[i]=0;
  4210. coord.cnt[i]=0;
  4211. }
  4212. if(value_vec.Dim()){
  4213. value.dsp[i]=&value_vec[0]-value.ptr[0][0];
  4214. assert(value.dsp[i]<value.len);
  4215. value.cnt[i]=value_vec.Dim();
  4216. }else{
  4217. value.dsp[i]=0;
  4218. value.cnt[i]=0;
  4219. }
  4220. }
  4221. }
  4222. { // Set srf data
  4223. std::vector<void*>& nodes=nodes_in;
  4224. PackedData& coord=data.srf_coord;
  4225. PackedData& value=data.srf_value;
  4226. coord.ptr=setup_data. coord_data;
  4227. value.ptr=setup_data. input_data;
  4228. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  4229. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  4230. coord.cnt.ReInit(nodes.size());
  4231. coord.dsp.ReInit(nodes.size());
  4232. value.cnt.ReInit(nodes.size());
  4233. value.dsp.ReInit(nodes.size());
  4234. #pragma omp parallel for
  4235. for(size_t i=0;i<nodes.size();i++){
  4236. Vector<Real_t>& coord_vec=((FMMNode_t*)nodes[i])->surf_coord;
  4237. Vector<Real_t>& value_vec=((FMMNode_t*)nodes[i])->surf_value;
  4238. if(coord_vec.Dim()){
  4239. coord.dsp[i]=&coord_vec[0]-coord.ptr[0][0];
  4240. assert(coord.dsp[i]<coord.len);
  4241. coord.cnt[i]=coord_vec.Dim();
  4242. }else{
  4243. coord.dsp[i]=0;
  4244. coord.cnt[i]=0;
  4245. }
  4246. if(value_vec.Dim()){
  4247. value.dsp[i]=&value_vec[0]-value.ptr[0][0];
  4248. assert(value.dsp[i]<value.len);
  4249. value.cnt[i]=value_vec.Dim();
  4250. }else{
  4251. value.dsp[i]=0;
  4252. value.cnt[i]=0;
  4253. }
  4254. }
  4255. }
  4256. { // Set trg data
  4257. std::vector<void*>& nodes=nodes_out;
  4258. PackedData& coord=data.trg_coord;
  4259. PackedData& value=data.trg_value;
  4260. coord.ptr=setup_data. coord_data;
  4261. value.ptr=setup_data.output_data;
  4262. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  4263. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  4264. coord.cnt.ReInit(nodes.size());
  4265. coord.dsp.ReInit(nodes.size());
  4266. value.cnt.ReInit(nodes.size());
  4267. value.dsp.ReInit(nodes.size());
  4268. #pragma omp parallel for
  4269. for(size_t i=0;i<nodes.size();i++){
  4270. Vector<Real_t>& coord_vec=((FMMNode_t*)nodes[i])->trg_coord;
  4271. Vector<Real_t>& value_vec=((FMMNode_t*)nodes[i])->trg_value;
  4272. if(coord_vec.Dim()){
  4273. coord.dsp[i]=&coord_vec[0]-coord.ptr[0][0];
  4274. assert(coord.dsp[i]<coord.len);
  4275. coord.cnt[i]=coord_vec.Dim();
  4276. }else{
  4277. coord.dsp[i]=0;
  4278. coord.cnt[i]=0;
  4279. }
  4280. if(value_vec.Dim()){
  4281. value.dsp[i]=&value_vec[0]-value.ptr[0][0];
  4282. assert(value.dsp[i]<value.len);
  4283. value.cnt[i]=value_vec.Dim();
  4284. }else{
  4285. value.dsp[i]=0;
  4286. value.cnt[i]=0;
  4287. }
  4288. }
  4289. }
  4290. { // Set interac_data
  4291. int omp_p=omp_get_max_threads();
  4292. std::vector<std::vector<size_t> > in_node_(omp_p);
  4293. std::vector<std::vector<size_t> > scal_idx_(omp_p);
  4294. std::vector<std::vector<Real_t> > coord_shift_(omp_p);
  4295. std::vector<std::vector<size_t> > interac_cnt_(omp_p);
  4296. size_t m=this->MultipoleOrder();
  4297. size_t Nsrf=(6*(m-1)*(m-1)+2);
  4298. #pragma omp parallel for
  4299. for(size_t tid=0;tid<omp_p;tid++){
  4300. std::vector<size_t>& in_node =in_node_[tid] ;
  4301. std::vector<size_t>& scal_idx =scal_idx_[tid] ;
  4302. std::vector<Real_t>& coord_shift=coord_shift_[tid];
  4303. std::vector<size_t>& interac_cnt=interac_cnt_[tid] ;
  4304. size_t a=(nodes_out.size()*(tid+0))/omp_p;
  4305. size_t b=(nodes_out.size()*(tid+1))/omp_p;
  4306. for(size_t i=a;i<b;i++){
  4307. FMMNode_t* tnode=(FMMNode_t*)nodes_out[i];
  4308. Real_t s=std::pow(0.5,tnode->Depth());
  4309. size_t interac_cnt_=0;
  4310. { // U0_Type
  4311. Mat_Type type=U0_Type;
  4312. Vector<FMMNode_t*>& intlst=tnode->interac_list[type];
  4313. for(size_t j=0;j<intlst.Dim();j++) if(intlst[j]){
  4314. FMMNode_t* snode=intlst[j];
  4315. size_t snode_id=snode->node_id;
  4316. if(snode_id>=nodes_in.size() || nodes_in[snode_id]!=snode) continue;
  4317. in_node.push_back(snode_id);
  4318. scal_idx.push_back(snode->Depth());
  4319. { // set coord_shift
  4320. const int* rel_coord=interac_list.RelativeCoord(type,j);
  4321. const Real_t* scoord=snode->Coord();
  4322. const Real_t* tcoord=tnode->Coord();
  4323. Real_t shift[COORD_DIM];
  4324. shift[0]=rel_coord[0]*0.5*s-(scoord[0]+1.0*s)+(tcoord[0]+0.5*s);
  4325. shift[1]=rel_coord[1]*0.5*s-(scoord[1]+1.0*s)+(tcoord[1]+0.5*s);
  4326. shift[2]=rel_coord[2]*0.5*s-(scoord[2]+1.0*s)+(tcoord[2]+0.5*s);
  4327. coord_shift.push_back(shift[0]);
  4328. coord_shift.push_back(shift[1]);
  4329. coord_shift.push_back(shift[2]);
  4330. }
  4331. interac_cnt_++;
  4332. }
  4333. }
  4334. { // U1_Type
  4335. Mat_Type type=U1_Type;
  4336. Vector<FMMNode_t*>& intlst=tnode->interac_list[type];
  4337. for(size_t j=0;j<intlst.Dim();j++) if(intlst[j]){
  4338. FMMNode_t* snode=intlst[j];
  4339. size_t snode_id=snode->node_id;
  4340. if(snode_id>=nodes_in.size() || nodes_in[snode_id]!=snode) continue;
  4341. in_node.push_back(snode_id);
  4342. scal_idx.push_back(snode->Depth());
  4343. { // set coord_shift
  4344. const int* rel_coord=interac_list.RelativeCoord(type,j);
  4345. const Real_t* scoord=snode->Coord();
  4346. const Real_t* tcoord=tnode->Coord();
  4347. Real_t shift[COORD_DIM];
  4348. shift[0]=rel_coord[0]*1.0*s-(scoord[0]+0.5*s)+(tcoord[0]+0.5*s);
  4349. shift[1]=rel_coord[1]*1.0*s-(scoord[1]+0.5*s)+(tcoord[1]+0.5*s);
  4350. shift[2]=rel_coord[2]*1.0*s-(scoord[2]+0.5*s)+(tcoord[2]+0.5*s);
  4351. coord_shift.push_back(shift[0]);
  4352. coord_shift.push_back(shift[1]);
  4353. coord_shift.push_back(shift[2]);
  4354. }
  4355. interac_cnt_++;
  4356. }
  4357. }
  4358. { // U2_Type
  4359. Mat_Type type=U2_Type;
  4360. Vector<FMMNode_t*>& intlst=tnode->interac_list[type];
  4361. for(size_t j=0;j<intlst.Dim();j++) if(intlst[j]){
  4362. FMMNode_t* snode=intlst[j];
  4363. size_t snode_id=snode->node_id;
  4364. if(snode_id>=nodes_in.size() || nodes_in[snode_id]!=snode) continue;
  4365. in_node.push_back(snode_id);
  4366. scal_idx.push_back(snode->Depth());
  4367. { // set coord_shift
  4368. const int* rel_coord=interac_list.RelativeCoord(type,j);
  4369. const Real_t* scoord=snode->Coord();
  4370. const Real_t* tcoord=tnode->Coord();
  4371. Real_t shift[COORD_DIM];
  4372. shift[0]=rel_coord[0]*0.25*s-(scoord[0]+0.25*s)+(tcoord[0]+0.5*s);
  4373. shift[1]=rel_coord[1]*0.25*s-(scoord[1]+0.25*s)+(tcoord[1]+0.5*s);
  4374. shift[2]=rel_coord[2]*0.25*s-(scoord[2]+0.25*s)+(tcoord[2]+0.5*s);
  4375. coord_shift.push_back(shift[0]);
  4376. coord_shift.push_back(shift[1]);
  4377. coord_shift.push_back(shift[2]);
  4378. }
  4379. interac_cnt_++;
  4380. }
  4381. }
  4382. { // X_Type
  4383. Mat_Type type=X_Type;
  4384. Vector<FMMNode_t*>& intlst=tnode->interac_list[type];
  4385. if(tnode->pt_cnt[1]<=Nsrf)
  4386. for(size_t j=0;j<intlst.Dim();j++) if(intlst[j]){
  4387. FMMNode_t* snode=intlst[j];
  4388. size_t snode_id=snode->node_id;
  4389. if(snode_id>=nodes_in.size() || nodes_in[snode_id]!=snode) continue;
  4390. in_node.push_back(snode_id);
  4391. scal_idx.push_back(snode->Depth());
  4392. { // set coord_shift
  4393. const int* rel_coord=interac_list.RelativeCoord(type,j);
  4394. const Real_t* scoord=snode->Coord();
  4395. const Real_t* tcoord=tnode->Coord();
  4396. Real_t shift[COORD_DIM];
  4397. shift[0]=rel_coord[0]*0.5*s-(scoord[0]+1.0*s)+(tcoord[0]+0.5*s);
  4398. shift[1]=rel_coord[1]*0.5*s-(scoord[1]+1.0*s)+(tcoord[1]+0.5*s);
  4399. shift[2]=rel_coord[2]*0.5*s-(scoord[2]+1.0*s)+(tcoord[2]+0.5*s);
  4400. coord_shift.push_back(shift[0]);
  4401. coord_shift.push_back(shift[1]);
  4402. coord_shift.push_back(shift[2]);
  4403. }
  4404. interac_cnt_++;
  4405. }
  4406. }
  4407. { // W_Type
  4408. Mat_Type type=W_Type;
  4409. Vector<FMMNode_t*>& intlst=tnode->interac_list[type];
  4410. for(size_t j=0;j<intlst.Dim();j++) if(intlst[j]){
  4411. FMMNode_t* snode=intlst[j];
  4412. size_t snode_id=snode->node_id;
  4413. if(snode_id>=nodes_in.size() || nodes_in[snode_id]!=snode) continue;
  4414. if(snode->IsGhost() && snode->src_coord.Dim()+snode->surf_coord.Dim()==0) continue; // Is non-leaf ghost node
  4415. if(snode->pt_cnt[0]> Nsrf) continue;
  4416. in_node.push_back(snode_id);
  4417. scal_idx.push_back(snode->Depth());
  4418. { // set coord_shift
  4419. const int* rel_coord=interac_list.RelativeCoord(type,j);
  4420. const Real_t* scoord=snode->Coord();
  4421. const Real_t* tcoord=tnode->Coord();
  4422. Real_t shift[COORD_DIM];
  4423. shift[0]=rel_coord[0]*0.25*s-(scoord[0]+0.25*s)+(tcoord[0]+0.5*s);
  4424. shift[1]=rel_coord[1]*0.25*s-(scoord[1]+0.25*s)+(tcoord[1]+0.5*s);
  4425. shift[2]=rel_coord[2]*0.25*s-(scoord[2]+0.25*s)+(tcoord[2]+0.5*s);
  4426. coord_shift.push_back(shift[0]);
  4427. coord_shift.push_back(shift[1]);
  4428. coord_shift.push_back(shift[2]);
  4429. }
  4430. interac_cnt_++;
  4431. }
  4432. }
  4433. interac_cnt.push_back(interac_cnt_);
  4434. }
  4435. }
  4436. { // Combine interac data
  4437. InteracData& interac_data=data.interac_data;
  4438. { // in_node
  4439. typedef size_t ElemType;
  4440. std::vector<std::vector<ElemType> >& vec_=in_node_;
  4441. pvfmm::Vector<ElemType>& vec=interac_data.in_node;
  4442. std::vector<size_t> vec_dsp(omp_p+1,0);
  4443. for(size_t tid=0;tid<omp_p;tid++){
  4444. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  4445. }
  4446. vec.ReInit(vec_dsp[omp_p]);
  4447. #pragma omp parallel for
  4448. for(size_t tid=0;tid<omp_p;tid++){
  4449. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  4450. }
  4451. }
  4452. { // scal_idx
  4453. typedef size_t ElemType;
  4454. std::vector<std::vector<ElemType> >& vec_=scal_idx_;
  4455. pvfmm::Vector<ElemType>& vec=interac_data.scal_idx;
  4456. std::vector<size_t> vec_dsp(omp_p+1,0);
  4457. for(size_t tid=0;tid<omp_p;tid++){
  4458. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  4459. }
  4460. vec.ReInit(vec_dsp[omp_p]);
  4461. #pragma omp parallel for
  4462. for(size_t tid=0;tid<omp_p;tid++){
  4463. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  4464. }
  4465. }
  4466. { // coord_shift
  4467. typedef Real_t ElemType;
  4468. std::vector<std::vector<ElemType> >& vec_=coord_shift_;
  4469. pvfmm::Vector<ElemType>& vec=interac_data.coord_shift;
  4470. std::vector<size_t> vec_dsp(omp_p+1,0);
  4471. for(size_t tid=0;tid<omp_p;tid++){
  4472. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  4473. }
  4474. vec.ReInit(vec_dsp[omp_p]);
  4475. #pragma omp parallel for
  4476. for(size_t tid=0;tid<omp_p;tid++){
  4477. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  4478. }
  4479. }
  4480. { // interac_cnt
  4481. typedef size_t ElemType;
  4482. std::vector<std::vector<ElemType> >& vec_=interac_cnt_;
  4483. pvfmm::Vector<ElemType>& vec=interac_data.interac_cnt;
  4484. std::vector<size_t> vec_dsp(omp_p+1,0);
  4485. for(size_t tid=0;tid<omp_p;tid++){
  4486. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  4487. }
  4488. vec.ReInit(vec_dsp[omp_p]);
  4489. #pragma omp parallel for
  4490. for(size_t tid=0;tid<omp_p;tid++){
  4491. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  4492. }
  4493. }
  4494. { // interac_dsp
  4495. pvfmm::Vector<size_t>& cnt=interac_data.interac_cnt;
  4496. pvfmm::Vector<size_t>& dsp=interac_data.interac_dsp;
  4497. dsp.ReInit(cnt.Dim()); if(dsp.Dim()) dsp[0]=0;
  4498. omp_par::scan(&cnt[0],&dsp[0],dsp.Dim());
  4499. }
  4500. }
  4501. }
  4502. PtSetup(setup_data, &data);
  4503. }
  4504. template <class FMMNode>
  4505. void FMM_Pts<FMMNode>::U_List (SetupData<Real_t>& setup_data, bool device){
  4506. //Add U_List contribution.
  4507. this->EvalListPts(setup_data, device);
  4508. }
  4509. template <class FMMNode>
  4510. void FMM_Pts<FMMNode>::Down2TargetSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  4511. if(!this->MultipoleOrder()) return;
  4512. { // Set setup_data
  4513. setup_data. level=level;
  4514. setup_data.kernel=kernel->k_l2t;
  4515. setup_data. input_data=&buff[1];
  4516. setup_data.output_data=&buff[5];
  4517. setup_data. coord_data=&buff[6];
  4518. Vector<FMMNode_t*>& nodes_in =n_list[1];
  4519. Vector<FMMNode_t*>& nodes_out=n_list[5];
  4520. setup_data.nodes_in .clear();
  4521. setup_data.nodes_out.clear();
  4522. for(size_t i=0;i<nodes_in .Dim();i++) if((nodes_in [i]->Depth()==level || level==-1) && nodes_in [i]->pt_cnt[1] && nodes_in [i]->IsLeaf() && !nodes_in [i]->IsGhost()) setup_data.nodes_in .push_back(nodes_in [i]);
  4523. for(size_t i=0;i<nodes_out.Dim();i++) if((nodes_out[i]->Depth()==level || level==-1) && nodes_out[i]->pt_cnt[1] && nodes_out[i]->IsLeaf() && !nodes_out[i]->IsGhost()) setup_data.nodes_out.push_back(nodes_out[i]);
  4524. }
  4525. struct PackedData{
  4526. size_t len;
  4527. Matrix<Real_t>* ptr;
  4528. Vector<size_t> cnt;
  4529. Vector<size_t> dsp;
  4530. };
  4531. struct InteracData{
  4532. Vector<size_t> in_node;
  4533. Vector<size_t> scal_idx;
  4534. Vector<Real_t> coord_shift;
  4535. Vector<size_t> interac_cnt;
  4536. Vector<size_t> interac_dsp;
  4537. Vector<Real_t> scal[4*MAX_DEPTH];
  4538. Matrix<Real_t> M[4];
  4539. };
  4540. struct ptSetupData{
  4541. int level;
  4542. const Kernel<Real_t>* kernel;
  4543. PackedData src_coord; // Src coord
  4544. PackedData src_value; // Src density
  4545. PackedData srf_coord; // Srf coord
  4546. PackedData srf_value; // Srf density
  4547. PackedData trg_coord; // Trg coord
  4548. PackedData trg_value; // Trg potential
  4549. InteracData interac_data;
  4550. };
  4551. ptSetupData data;
  4552. data. level=setup_data. level;
  4553. data.kernel=setup_data.kernel;
  4554. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  4555. std::vector<void*>& nodes_out=setup_data.nodes_out;
  4556. { // Set src data
  4557. std::vector<void*>& nodes=nodes_in;
  4558. PackedData& coord=data.src_coord;
  4559. PackedData& value=data.src_value;
  4560. coord.ptr=setup_data. coord_data;
  4561. value.ptr=setup_data. input_data;
  4562. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  4563. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  4564. coord.cnt.ReInit(nodes.size());
  4565. coord.dsp.ReInit(nodes.size());
  4566. value.cnt.ReInit(nodes.size());
  4567. value.dsp.ReInit(nodes.size());
  4568. #pragma omp parallel for
  4569. for(size_t i=0;i<nodes.size();i++){
  4570. ((FMMNode_t*)nodes[i])->node_id=i;
  4571. Vector<Real_t>& coord_vec=tree->dnwd_equiv_surf[((FMMNode*)nodes[i])->Depth()];
  4572. Vector<Real_t>& value_vec=((FMMData*)((FMMNode*)nodes[i])->FMMData())->dnward_equiv;
  4573. if(coord_vec.Dim()){
  4574. coord.dsp[i]=&coord_vec[0]-coord.ptr[0][0];
  4575. assert(coord.dsp[i]<coord.len);
  4576. coord.cnt[i]=coord_vec.Dim();
  4577. }else{
  4578. coord.dsp[i]=0;
  4579. coord.cnt[i]=0;
  4580. }
  4581. if(value_vec.Dim()){
  4582. value.dsp[i]=&value_vec[0]-value.ptr[0][0];
  4583. assert(value.dsp[i]<value.len);
  4584. value.cnt[i]=value_vec.Dim();
  4585. }else{
  4586. value.dsp[i]=0;
  4587. value.cnt[i]=0;
  4588. }
  4589. }
  4590. }
  4591. { // Set srf data
  4592. std::vector<void*>& nodes=nodes_in;
  4593. PackedData& coord=data.srf_coord;
  4594. PackedData& value=data.srf_value;
  4595. coord.ptr=setup_data. coord_data;
  4596. value.ptr=setup_data. input_data;
  4597. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  4598. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  4599. coord.cnt.ReInit(nodes.size());
  4600. coord.dsp.ReInit(nodes.size());
  4601. value.cnt.ReInit(nodes.size());
  4602. value.dsp.ReInit(nodes.size());
  4603. #pragma omp parallel for
  4604. for(size_t i=0;i<nodes.size();i++){
  4605. coord.dsp[i]=0;
  4606. coord.cnt[i]=0;
  4607. value.dsp[i]=0;
  4608. value.cnt[i]=0;
  4609. }
  4610. }
  4611. { // Set trg data
  4612. std::vector<void*>& nodes=nodes_out;
  4613. PackedData& coord=data.trg_coord;
  4614. PackedData& value=data.trg_value;
  4615. coord.ptr=setup_data. coord_data;
  4616. value.ptr=setup_data.output_data;
  4617. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  4618. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  4619. coord.cnt.ReInit(nodes.size());
  4620. coord.dsp.ReInit(nodes.size());
  4621. value.cnt.ReInit(nodes.size());
  4622. value.dsp.ReInit(nodes.size());
  4623. #pragma omp parallel for
  4624. for(size_t i=0;i<nodes.size();i++){
  4625. Vector<Real_t>& coord_vec=((FMMNode_t*)nodes[i])->trg_coord;
  4626. Vector<Real_t>& value_vec=((FMMNode_t*)nodes[i])->trg_value;
  4627. if(coord_vec.Dim()){
  4628. coord.dsp[i]=&coord_vec[0]-coord.ptr[0][0];
  4629. assert(coord.dsp[i]<coord.len);
  4630. coord.cnt[i]=coord_vec.Dim();
  4631. }else{
  4632. coord.dsp[i]=0;
  4633. coord.cnt[i]=0;
  4634. }
  4635. if(value_vec.Dim()){
  4636. value.dsp[i]=&value_vec[0]-value.ptr[0][0];
  4637. assert(value.dsp[i]<value.len);
  4638. value.cnt[i]=value_vec.Dim();
  4639. }else{
  4640. value.dsp[i]=0;
  4641. value.cnt[i]=0;
  4642. }
  4643. }
  4644. }
  4645. { // Set interac_data
  4646. int omp_p=omp_get_max_threads();
  4647. std::vector<std::vector<size_t> > in_node_(omp_p);
  4648. std::vector<std::vector<size_t> > scal_idx_(omp_p);
  4649. std::vector<std::vector<Real_t> > coord_shift_(omp_p);
  4650. std::vector<std::vector<size_t> > interac_cnt_(omp_p);
  4651. if(this->ScaleInvar()){ // Set scal
  4652. const Kernel<Real_t>* ker=kernel->k_l2l;
  4653. for(size_t l=0;l<MAX_DEPTH;l++){ // scal[l*4+0]
  4654. Vector<Real_t>& scal=data.interac_data.scal[l*4+0];
  4655. Vector<Real_t>& scal_exp=ker->trg_scal;
  4656. scal.ReInit(scal_exp.Dim());
  4657. for(size_t i=0;i<scal.Dim();i++){
  4658. scal[i]=std::pow(2.0,-scal_exp[i]*l);
  4659. }
  4660. }
  4661. for(size_t l=0;l<MAX_DEPTH;l++){ // scal[l*4+1]
  4662. Vector<Real_t>& scal=data.interac_data.scal[l*4+1];
  4663. Vector<Real_t>& scal_exp=ker->src_scal;
  4664. scal.ReInit(scal_exp.Dim());
  4665. for(size_t i=0;i<scal.Dim();i++){
  4666. scal[i]=std::pow(2.0,-scal_exp[i]*l);
  4667. }
  4668. }
  4669. }
  4670. #pragma omp parallel for
  4671. for(size_t tid=0;tid<omp_p;tid++){
  4672. std::vector<size_t>& in_node =in_node_[tid] ;
  4673. std::vector<size_t>& scal_idx =scal_idx_[tid] ;
  4674. std::vector<Real_t>& coord_shift=coord_shift_[tid];
  4675. std::vector<size_t>& interac_cnt=interac_cnt_[tid];
  4676. size_t a=(nodes_out.size()*(tid+0))/omp_p;
  4677. size_t b=(nodes_out.size()*(tid+1))/omp_p;
  4678. for(size_t i=a;i<b;i++){
  4679. FMMNode_t* tnode=(FMMNode_t*)nodes_out[i];
  4680. Real_t s=std::pow(0.5,tnode->Depth());
  4681. size_t interac_cnt_=0;
  4682. { // D2T_Type
  4683. Mat_Type type=D2T_Type;
  4684. Vector<FMMNode_t*>& intlst=tnode->interac_list[type];
  4685. for(size_t j=0;j<intlst.Dim();j++) if(intlst[j]){
  4686. FMMNode_t* snode=intlst[j];
  4687. size_t snode_id=snode->node_id;
  4688. if(snode_id>=nodes_in.size() || nodes_in[snode_id]!=snode) continue;
  4689. in_node.push_back(snode_id);
  4690. scal_idx.push_back(snode->Depth());
  4691. { // set coord_shift
  4692. const int* rel_coord=interac_list.RelativeCoord(type,j);
  4693. const Real_t* scoord=snode->Coord();
  4694. const Real_t* tcoord=tnode->Coord();
  4695. Real_t shift[COORD_DIM];
  4696. shift[0]=rel_coord[0]*0.5*s-(0+0.5*s)+(tcoord[0]+0.5*s);
  4697. shift[1]=rel_coord[1]*0.5*s-(0+0.5*s)+(tcoord[1]+0.5*s);
  4698. shift[2]=rel_coord[2]*0.5*s-(0+0.5*s)+(tcoord[2]+0.5*s);
  4699. coord_shift.push_back(shift[0]);
  4700. coord_shift.push_back(shift[1]);
  4701. coord_shift.push_back(shift[2]);
  4702. }
  4703. interac_cnt_++;
  4704. }
  4705. }
  4706. interac_cnt.push_back(interac_cnt_);
  4707. }
  4708. }
  4709. { // Combine interac data
  4710. InteracData& interac_data=data.interac_data;
  4711. { // in_node
  4712. typedef size_t ElemType;
  4713. std::vector<std::vector<ElemType> >& vec_=in_node_;
  4714. pvfmm::Vector<ElemType>& vec=interac_data.in_node;
  4715. std::vector<size_t> vec_dsp(omp_p+1,0);
  4716. for(size_t tid=0;tid<omp_p;tid++){
  4717. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  4718. }
  4719. vec.ReInit(vec_dsp[omp_p]);
  4720. #pragma omp parallel for
  4721. for(size_t tid=0;tid<omp_p;tid++){
  4722. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  4723. }
  4724. }
  4725. { // scal_idx
  4726. typedef size_t ElemType;
  4727. std::vector<std::vector<ElemType> >& vec_=scal_idx_;
  4728. pvfmm::Vector<ElemType>& vec=interac_data.scal_idx;
  4729. std::vector<size_t> vec_dsp(omp_p+1,0);
  4730. for(size_t tid=0;tid<omp_p;tid++){
  4731. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  4732. }
  4733. vec.ReInit(vec_dsp[omp_p]);
  4734. #pragma omp parallel for
  4735. for(size_t tid=0;tid<omp_p;tid++){
  4736. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  4737. }
  4738. }
  4739. { // coord_shift
  4740. typedef Real_t ElemType;
  4741. std::vector<std::vector<ElemType> >& vec_=coord_shift_;
  4742. pvfmm::Vector<ElemType>& vec=interac_data.coord_shift;
  4743. std::vector<size_t> vec_dsp(omp_p+1,0);
  4744. for(size_t tid=0;tid<omp_p;tid++){
  4745. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  4746. }
  4747. vec.ReInit(vec_dsp[omp_p]);
  4748. #pragma omp parallel for
  4749. for(size_t tid=0;tid<omp_p;tid++){
  4750. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  4751. }
  4752. }
  4753. { // interac_cnt
  4754. typedef size_t ElemType;
  4755. std::vector<std::vector<ElemType> >& vec_=interac_cnt_;
  4756. pvfmm::Vector<ElemType>& vec=interac_data.interac_cnt;
  4757. std::vector<size_t> vec_dsp(omp_p+1,0);
  4758. for(size_t tid=0;tid<omp_p;tid++){
  4759. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  4760. }
  4761. vec.ReInit(vec_dsp[omp_p]);
  4762. #pragma omp parallel for
  4763. for(size_t tid=0;tid<omp_p;tid++){
  4764. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  4765. }
  4766. }
  4767. { // interac_dsp
  4768. pvfmm::Vector<size_t>& cnt=interac_data.interac_cnt;
  4769. pvfmm::Vector<size_t>& dsp=interac_data.interac_dsp;
  4770. dsp.ReInit(cnt.Dim()); if(dsp.Dim()) dsp[0]=0;
  4771. omp_par::scan(&cnt[0],&dsp[0],dsp.Dim());
  4772. }
  4773. }
  4774. { // Set M[0], M[1]
  4775. InteracData& interac_data=data.interac_data;
  4776. pvfmm::Vector<size_t>& cnt=interac_data.interac_cnt;
  4777. pvfmm::Vector<size_t>& dsp=interac_data.interac_dsp;
  4778. if(cnt.Dim() && cnt[cnt.Dim()-1]+dsp[dsp.Dim()-1]){
  4779. data.interac_data.M[0]=this->mat->Mat(level, DC2DE0_Type, 0);
  4780. data.interac_data.M[1]=this->mat->Mat(level, DC2DE1_Type, 0);
  4781. }else{
  4782. data.interac_data.M[0].ReInit(0,0);
  4783. data.interac_data.M[1].ReInit(0,0);
  4784. }
  4785. }
  4786. }
  4787. PtSetup(setup_data, &data);
  4788. }
  4789. template <class FMMNode>
  4790. void FMM_Pts<FMMNode>::Down2Target(SetupData<Real_t>& setup_data, bool device){
  4791. if(!this->MultipoleOrder()) return;
  4792. //Add Down2Target contribution.
  4793. this->EvalListPts(setup_data, device);
  4794. }
  4795. template <class FMMNode>
  4796. void FMM_Pts<FMMNode>::PostProcessing(std::vector<FMMNode_t*>& nodes){
  4797. }
  4798. template <class FMMNode>
  4799. void FMM_Pts<FMMNode>::CopyOutput(FMMNode** nodes, size_t n){
  4800. }
  4801. }//end namespace