fmm_pts.txx 137 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510
  1. /**
  2. * \file fmm_pts.txx
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 3-07-2011
  5. * \brief This file contains the implementation of the FMM_Pts class.
  6. */
  7. #include <mpi.h>
  8. #include <set>
  9. #include <sstream>
  10. #include <fft_wrapper.hpp>
  11. #include <mat_utils.hpp>
  12. #ifdef PVFMM_HAVE_SYS_STAT_H
  13. #include <sys/stat.h>
  14. #endif
  15. #ifdef __SSE__
  16. #include <xmmintrin.h>
  17. #endif
  18. #ifdef __SSE3__
  19. #include <pmmintrin.h>
  20. #endif
  21. #ifdef __AVX__
  22. #include <immintrin.h>
  23. #endif
  24. #ifdef __INTEL_OFFLOAD
  25. #include <immintrin.h>
  26. #endif
  27. #ifdef __INTEL_OFFLOAD0
  28. #pragma offload_attribute(push,target(mic))
  29. #endif
  30. namespace pvfmm{
  31. /**
  32. * \brief Returns the coordinates of points on the surface of a cube.
  33. * \param[in] p Number of points on an edge of the cube is (n+1)
  34. * \param[in] c Coordinates to the centre of the cube (3D array).
  35. * \param[in] alpha Scaling factor for the size of the cube.
  36. * \param[in] depth Depth of the cube in the octree.
  37. * \return Vector with coordinates of points on the surface of the cube in the
  38. * format [x0 y0 z0 x1 y1 z1 .... ].
  39. */
  40. template <class Real_t>
  41. std::vector<Real_t> surface(int p, Real_t* c, Real_t alpha, int depth){
  42. size_t n_=(6*(p-1)*(p-1)+2); //Total number of points.
  43. std::vector<Real_t> coord(n_*3);
  44. coord[0]=coord[1]=coord[2]=-1.0;
  45. size_t cnt=1;
  46. for(int i=0;i<p-1;i++)
  47. for(int j=0;j<p-1;j++){
  48. coord[cnt*3 ]=-1.0;
  49. coord[cnt*3+1]=(2.0*(i+1)-p+1)/(p-1);
  50. coord[cnt*3+2]=(2.0*j-p+1)/(p-1);
  51. cnt++;
  52. }
  53. for(int i=0;i<p-1;i++)
  54. for(int j=0;j<p-1;j++){
  55. coord[cnt*3 ]=(2.0*i-p+1)/(p-1);
  56. coord[cnt*3+1]=-1.0;
  57. coord[cnt*3+2]=(2.0*(j+1)-p+1)/(p-1);
  58. cnt++;
  59. }
  60. for(int i=0;i<p-1;i++)
  61. for(int j=0;j<p-1;j++){
  62. coord[cnt*3 ]=(2.0*(i+1)-p+1)/(p-1);
  63. coord[cnt*3+1]=(2.0*j-p+1)/(p-1);
  64. coord[cnt*3+2]=-1.0;
  65. cnt++;
  66. }
  67. for(size_t i=0;i<(n_/2)*3;i++)
  68. coord[cnt*3+i]=-coord[i];
  69. Real_t r = 0.5*pow(0.5,depth);
  70. Real_t b = alpha*r;
  71. for(size_t i=0;i<n_;i++){
  72. coord[i*3+0]=(coord[i*3+0]+1.0)*b+c[0];
  73. coord[i*3+1]=(coord[i*3+1]+1.0)*b+c[1];
  74. coord[i*3+2]=(coord[i*3+2]+1.0)*b+c[2];
  75. }
  76. return coord;
  77. }
  78. /**
  79. * \brief Returns the coordinates of points on the upward check surface of cube.
  80. * \see surface()
  81. */
  82. template <class Real_t>
  83. std::vector<Real_t> u_check_surf(int p, Real_t* c, int depth){
  84. Real_t r=0.5*pow(0.5,depth);
  85. Real_t coord[3]={c[0]-r*(RAD1-1.0),c[1]-r*(RAD1-1.0),c[2]-r*(RAD1-1.0)};
  86. return surface(p,coord,(Real_t)RAD1,depth);
  87. }
  88. /**
  89. * \brief Returns the coordinates of points on the upward equivalent surface of cube.
  90. * \see surface()
  91. */
  92. template <class Real_t>
  93. std::vector<Real_t> u_equiv_surf(int p, Real_t* c, int depth){
  94. Real_t r=0.5*pow(0.5,depth);
  95. Real_t coord[3]={c[0]-r*(RAD0-1.0),c[1]-r*(RAD0-1.0),c[2]-r*(RAD0-1.0)};
  96. return surface(p,coord,(Real_t)RAD0,depth);
  97. }
  98. /**
  99. * \brief Returns the coordinates of points on the downward check surface of cube.
  100. * \see surface()
  101. */
  102. template <class Real_t>
  103. std::vector<Real_t> d_check_surf(int p, Real_t* c, int depth){
  104. Real_t r=0.5*pow(0.5,depth);
  105. Real_t coord[3]={c[0]-r*(RAD0-1.0),c[1]-r*(RAD0-1.0),c[2]-r*(RAD0-1.0)};
  106. return surface(p,coord,(Real_t)RAD0,depth);
  107. }
  108. /**
  109. * \brief Returns the coordinates of points on the downward equivalent surface of cube.
  110. * \see surface()
  111. */
  112. template <class Real_t>
  113. std::vector<Real_t> d_equiv_surf(int p, Real_t* c, int depth){
  114. Real_t r=0.5*pow(0.5,depth);
  115. Real_t coord[3]={c[0]-r*(RAD1-1.0),c[1]-r*(RAD1-1.0),c[2]-r*(RAD1-1.0)};
  116. return surface(p,coord,(Real_t)RAD1,depth);
  117. }
  118. /**
  119. * \brief Defines the 3D grid for convolution in FFT acceleration of V-list.
  120. * \see surface()
  121. */
  122. template <class Real_t>
  123. std::vector<Real_t> conv_grid(int p, Real_t* c, int depth){
  124. Real_t r=pow(0.5,depth);
  125. Real_t a=r*RAD0;
  126. Real_t coord[3]={c[0],c[1],c[2]};
  127. int n1=p*2;
  128. int n2=(int)pow((Real_t)n1,2);
  129. int n3=(int)pow((Real_t)n1,3);
  130. std::vector<Real_t> grid(n3*3);
  131. for(int i=0;i<n1;i++)
  132. for(int j=0;j<n1;j++)
  133. for(int k=0;k<n1;k++){
  134. grid[(i+n1*j+n2*k)*3+0]=(i-p)*a/(p-1)+coord[0];
  135. grid[(i+n1*j+n2*k)*3+1]=(j-p)*a/(p-1)+coord[1];
  136. grid[(i+n1*j+n2*k)*3+2]=(k-p)*a/(p-1)+coord[2];
  137. }
  138. return grid;
  139. }
  140. #ifdef __INTEL_OFFLOAD0
  141. #pragma offload_attribute(pop)
  142. #endif
  143. template <class Real_t>
  144. void FMM_Data<Real_t>::Clear(){
  145. upward_equiv.Resize(0);
  146. }
  147. template <class Real_t>
  148. PackedData FMM_Data<Real_t>::PackMultipole(void* buff_ptr){
  149. PackedData p0; p0.data=buff_ptr;
  150. p0.length=upward_equiv.Dim()*sizeof(Real_t);
  151. if(p0.length==0) return p0;
  152. if(p0.data==NULL) p0.data=(char*)&upward_equiv[0];
  153. else mem::memcopy(p0.data,&upward_equiv[0],p0.length);
  154. return p0;
  155. }
  156. template <class Real_t>
  157. void FMM_Data<Real_t>::AddMultipole(PackedData p0){
  158. Real_t* data=(Real_t*)p0.data;
  159. size_t n=p0.length/sizeof(Real_t);
  160. assert(upward_equiv.Dim()==n);
  161. Matrix<Real_t> v0(1,n,&upward_equiv[0],false);
  162. Matrix<Real_t> v1(1,n,data,false);
  163. v0+=v1;
  164. }
  165. template <class Real_t>
  166. void FMM_Data<Real_t>::InitMultipole(PackedData p0, bool own_data){
  167. Real_t* data=(Real_t*)p0.data;
  168. size_t n=p0.length/sizeof(Real_t);
  169. if(n==0) return;
  170. if(own_data){
  171. upward_equiv=Vector<Real_t>(n, &data[0], false);
  172. }else{
  173. upward_equiv.ReInit(n, &data[0], false);
  174. }
  175. }
  176. template <class FMMNode>
  177. FMM_Pts<FMMNode>::~FMM_Pts() {
  178. if(mat!=NULL){
  179. // int rank;
  180. // MPI_Comm_rank(comm,&rank);
  181. // if(rank==0) mat->Save2File("Precomp.data");
  182. delete mat;
  183. mat=NULL;
  184. }
  185. if(vprecomp_fft_flag) FFTW_t<Real_t>::fft_destroy_plan(vprecomp_fftplan);
  186. #ifdef __INTEL_OFFLOAD0
  187. #pragma offload target(mic:0)
  188. #endif
  189. {
  190. if(vlist_fft_flag ) FFTW_t<Real_t>::fft_destroy_plan(vlist_fftplan );
  191. if(vlist_ifft_flag) FFTW_t<Real_t>::fft_destroy_plan(vlist_ifftplan);
  192. vlist_fft_flag =false;
  193. vlist_ifft_flag=false;
  194. }
  195. }
  196. template <class FMMNode>
  197. void FMM_Pts<FMMNode>::Initialize(int mult_order, const MPI_Comm& comm_, const Kernel<Real_t>* kernel_, const Kernel<Real_t>* aux_kernel_){
  198. Profile::Tic("InitFMM_Pts",&comm_,true);{
  199. multipole_order=mult_order;
  200. comm=comm_;
  201. kernel=*kernel_;
  202. aux_kernel=*(aux_kernel_?aux_kernel_:kernel_);
  203. assert(kernel.ker_dim[0]==aux_kernel.ker_dim[0]);
  204. mat=new PrecompMat<Real_t>(Homogen(), MAX_DEPTH+1);
  205. if(this->mat_fname.size()==0){
  206. std::stringstream st;
  207. st<<PVFMM_PRECOMP_DATA_PATH;
  208. if(!st.str().size()){ // look in PVFMM_DIR
  209. char* pvfmm_dir = getenv ("PVFMM_DIR");
  210. if(pvfmm_dir) st<<pvfmm_dir<<'/';
  211. }
  212. #ifndef STAT_MACROS_BROKEN
  213. if(st.str().size()){ // check if the path is a directory
  214. struct stat stat_buff;
  215. if(stat(st.str().c_str(), &stat_buff) || !S_ISDIR(stat_buff.st_mode)){
  216. std::cout<<"error: path not found: "<<st.str()<<'\n';
  217. exit(0);
  218. }
  219. }
  220. #endif
  221. st<<"Precomp_"<<kernel.ker_name.c_str()<<"_m"<<mult_order<<(typeid(Real_t)==typeid(float)?"_f":"")<<".data";
  222. this->mat_fname=st.str();
  223. }
  224. this->mat->LoadFile(mat_fname.c_str(), this->comm);
  225. interac_list.Initialize(COORD_DIM, this->mat);
  226. Profile::Tic("PrecompUC2UE",&comm,false,4);
  227. this->PrecompAll(UC2UE_Type);
  228. Profile::Toc();
  229. Profile::Tic("PrecompDC2DE",&comm,false,4);
  230. this->PrecompAll(DC2DE_Type);
  231. Profile::Toc();
  232. Profile::Tic("PrecompBC",&comm,false,4);
  233. { /*
  234. int type=BC_Type;
  235. for(int l=0;l<MAX_DEPTH;l++)
  236. for(size_t indx=0;indx<this->interac_list.ListCount((Mat_Type)type);indx++){
  237. Matrix<Real_t>& M=this->mat->Mat(l, (Mat_Type)type, indx);
  238. M.Resize(0,0);
  239. } // */
  240. }
  241. this->PrecompAll(BC_Type,0);
  242. Profile::Toc();
  243. Profile::Tic("PrecompU2U",&comm,false,4);
  244. this->PrecompAll(U2U_Type);
  245. Profile::Toc();
  246. Profile::Tic("PrecompD2D",&comm,false,4);
  247. this->PrecompAll(D2D_Type);
  248. Profile::Toc();
  249. Profile::Tic("PrecompV",&comm,false,4);
  250. this->PrecompAll(V_Type);
  251. Profile::Toc();
  252. Profile::Tic("PrecompV1",&comm,false,4);
  253. this->PrecompAll(V1_Type);
  254. Profile::Toc();
  255. }Profile::Toc();
  256. }
  257. template <class FMMNode>
  258. Permutation<typename FMMNode::Real_t>& FMM_Pts<FMMNode>::PrecompPerm(Mat_Type type, Perm_Type perm_indx){
  259. //Check if the matrix already exists.
  260. Permutation<Real_t>& P_ = mat->Perm((Mat_Type)type, perm_indx);
  261. if(P_.Dim()!=0) return P_;
  262. Matrix<size_t> swap_xy(10,9);
  263. Matrix<size_t> swap_xz(10,9);
  264. {
  265. for(int i=0;i<9;i++)
  266. for(int j=0;j<9;j++){
  267. swap_xy[i][j]=j;
  268. swap_xz[i][j]=j;
  269. }
  270. swap_xy[3][0]=1; swap_xy[3][1]=0; swap_xy[3][2]=2;
  271. swap_xz[3][0]=2; swap_xz[3][1]=1; swap_xz[3][2]=0;
  272. swap_xy[6][0]=1; swap_xy[6][1]=0; swap_xy[6][2]=2;
  273. swap_xy[6][3]=4; swap_xy[6][4]=3; swap_xy[6][5]=5;
  274. swap_xz[6][0]=2; swap_xz[6][1]=1; swap_xz[6][2]=0;
  275. swap_xz[6][3]=5; swap_xz[6][4]=4; swap_xz[6][5]=3;
  276. swap_xy[9][0]=4; swap_xy[9][1]=3; swap_xy[9][2]=5;
  277. swap_xy[9][3]=1; swap_xy[9][4]=0; swap_xy[9][5]=2;
  278. swap_xy[9][6]=7; swap_xy[9][7]=6; swap_xy[9][8]=8;
  279. swap_xz[9][0]=8; swap_xz[9][1]=7; swap_xz[9][2]=6;
  280. swap_xz[9][3]=5; swap_xz[9][4]=4; swap_xz[9][5]=3;
  281. swap_xz[9][6]=2; swap_xz[9][7]=1; swap_xz[9][8]=0;
  282. }
  283. //Compute the matrix.
  284. Permutation<Real_t> P;
  285. switch (type){
  286. case UC2UE_Type:
  287. {
  288. break;
  289. }
  290. case DC2DE_Type:
  291. {
  292. break;
  293. }
  294. case S2U_Type:
  295. {
  296. break;
  297. }
  298. case U2U_Type:
  299. {
  300. P=PrecompPerm(D2D_Type, perm_indx);
  301. break;
  302. }
  303. case D2D_Type:
  304. {
  305. Real_t eps=1e-10;
  306. int dof=kernel.ker_dim[0];
  307. size_t p_indx=perm_indx % C_Perm;
  308. Real_t c[3]={-0.5,-0.5,-0.5};
  309. std::vector<Real_t> trg_coord=d_check_surf(this->MultipoleOrder(),c,0);
  310. int n_trg=trg_coord.size()/3;
  311. P=Permutation<Real_t>(n_trg*dof);
  312. if(p_indx==ReflecX || p_indx==ReflecY || p_indx==ReflecZ){
  313. for(int i=0;i<n_trg;i++)
  314. for(int j=0;j<n_trg;j++){
  315. if(fabs(trg_coord[i*3+0]-trg_coord[j*3+0]*(p_indx==ReflecX?-1.0:1.0))<eps)
  316. if(fabs(trg_coord[i*3+1]-trg_coord[j*3+1]*(p_indx==ReflecY?-1.0:1.0))<eps)
  317. if(fabs(trg_coord[i*3+2]-trg_coord[j*3+2]*(p_indx==ReflecZ?-1.0:1.0))<eps){
  318. for(int k=0;k<dof;k++){
  319. P.perm[j*dof+k]=i*dof+k;
  320. }
  321. }
  322. }
  323. if(dof==3) //stokes_vel (and like kernels)
  324. for(int j=0;j<n_trg;j++)
  325. P.scal[j*dof+(int)p_indx]*=-1.0;
  326. }else if(p_indx==SwapXY || p_indx==SwapXZ)
  327. for(int i=0;i<n_trg;i++)
  328. for(int j=0;j<n_trg;j++){
  329. if(fabs(trg_coord[i*3+0]-trg_coord[j*3+(p_indx==SwapXY?1:2)])<eps)
  330. if(fabs(trg_coord[i*3+1]-trg_coord[j*3+(p_indx==SwapXY?0:1)])<eps)
  331. if(fabs(trg_coord[i*3+2]-trg_coord[j*3+(p_indx==SwapXY?2:0)])<eps){
  332. for(int k=0;k<dof;k++){
  333. P.perm[j*dof+k]=i*dof+(p_indx==SwapXY?swap_xy[dof][k]:swap_xz[dof][k]);
  334. }
  335. }
  336. }
  337. break;
  338. }
  339. case D2T_Type:
  340. {
  341. break;
  342. }
  343. case U0_Type:
  344. {
  345. break;
  346. }
  347. case U1_Type:
  348. {
  349. break;
  350. }
  351. case U2_Type:
  352. {
  353. break;
  354. }
  355. case V_Type:
  356. {
  357. break;
  358. }
  359. case V1_Type:
  360. {
  361. break;
  362. }
  363. case W_Type:
  364. {
  365. break;
  366. }
  367. case X_Type:
  368. {
  369. break;
  370. }
  371. case BC_Type:
  372. {
  373. break;
  374. }
  375. default:
  376. break;
  377. }
  378. //Save the matrix for future use.
  379. #pragma omp critical (PRECOMP_MATRIX_PTS)
  380. {
  381. if(P_.Dim()==0) P_=P;
  382. }
  383. return P_;
  384. }
  385. template <class FMMNode>
  386. Matrix<typename FMMNode::Real_t>& FMM_Pts<FMMNode>::Precomp(int level, Mat_Type type, size_t mat_indx){
  387. if(this->Homogen()) level=0;
  388. //Check if the matrix already exists.
  389. Matrix<Real_t>& M_ = this->mat->Mat(level, type, mat_indx);
  390. if(M_.Dim(0)!=0 && M_.Dim(1)!=0) return M_;
  391. else{ //Compute matrix from symmetry class (if possible).
  392. size_t class_indx = this->interac_list.InteracClass(type, mat_indx);
  393. if(class_indx!=mat_indx){
  394. Matrix<Real_t>& M0 = this->Precomp(level, type, class_indx);
  395. Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, type, mat_indx);
  396. Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, type, mat_indx);
  397. if(Pr.Dim()>0 && Pc.Dim()>0 && M0.Dim(0)>0 && M0.Dim(1)>0) return M_;
  398. }
  399. }
  400. //Compute the matrix.
  401. Matrix<Real_t> M;
  402. int* ker_dim=kernel.ker_dim;
  403. int* aux_ker_dim=aux_kernel.ker_dim;
  404. //int omp_p=omp_get_max_threads();
  405. switch (type){
  406. case UC2UE_Type:
  407. {
  408. if(MultipoleOrder()==0) break;
  409. // Coord of upward check surface
  410. Real_t c[3]={0,0,0};
  411. std::vector<Real_t> uc_coord=u_check_surf(MultipoleOrder(),c,level);
  412. size_t n_uc=uc_coord.size()/3;
  413. // Coord of upward equivalent surface
  414. std::vector<Real_t> ue_coord=u_equiv_surf(MultipoleOrder(),c,level);
  415. size_t n_ue=ue_coord.size()/3;
  416. // Evaluate potential at check surface due to equivalent surface.
  417. Matrix<Real_t> M_e2c(n_ue*aux_ker_dim[0],n_uc*aux_ker_dim[1]);
  418. Kernel<Real_t>::Eval(&ue_coord[0], n_ue,
  419. &uc_coord[0], n_uc, &(M_e2c[0][0]),
  420. aux_kernel.ker_poten, aux_ker_dim);
  421. M=M_e2c.pinv(); //check 2 equivalent
  422. break;
  423. }
  424. case DC2DE_Type:
  425. {
  426. if(MultipoleOrder()==0) break;
  427. // Coord of downward check surface
  428. Real_t c[3]={0,0,0};
  429. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level);
  430. size_t n_ch=check_surf.size()/3;
  431. // Coord of downward equivalent surface
  432. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level);
  433. size_t n_eq=equiv_surf.size()/3;
  434. // Evaluate potential at check surface due to equivalent surface.
  435. Matrix<Real_t> M_e2c(n_eq*aux_ker_dim[0],n_ch*aux_ker_dim[1]);
  436. Kernel<Real_t>::Eval(&equiv_surf[0], n_eq,
  437. &check_surf[0], n_ch, &(M_e2c[0][0]),
  438. aux_kernel.ker_poten,aux_ker_dim);
  439. M=M_e2c.pinv(); //check 2 equivalent
  440. break;
  441. }
  442. case S2U_Type:
  443. {
  444. break;
  445. }
  446. case U2U_Type:
  447. {
  448. if(MultipoleOrder()==0) break;
  449. // Coord of upward check surface
  450. Real_t c[3]={0,0,0};
  451. std::vector<Real_t> check_surf=u_check_surf(MultipoleOrder(),c,level);
  452. size_t n_uc=check_surf.size()/3;
  453. // Coord of child's upward equivalent surface
  454. Real_t s=pow(0.5,(level+2));
  455. int* coord=interac_list.RelativeCoord(type,mat_indx);
  456. Real_t child_coord[3]={(coord[0]+1)*s,(coord[1]+1)*s,(coord[2]+1)*s};
  457. std::vector<Real_t> equiv_surf=u_equiv_surf(MultipoleOrder(),child_coord,level+1);
  458. size_t n_ue=equiv_surf.size()/3;
  459. // Evaluate potential at check surface due to equivalent surface.
  460. Matrix<Real_t> M_ce2c(n_ue*aux_ker_dim[0],n_uc*aux_ker_dim[1]);
  461. Kernel<Real_t>::Eval(&equiv_surf[0], n_ue,
  462. &check_surf[0], n_uc, &(M_ce2c[0][0]),
  463. aux_kernel.ker_poten, aux_ker_dim);
  464. Matrix<Real_t>& M_c2e = Precomp(level, UC2UE_Type, 0);
  465. M=M_ce2c*M_c2e;
  466. break;
  467. }
  468. case D2D_Type:
  469. {
  470. if(MultipoleOrder()==0) break;
  471. // Coord of downward check surface
  472. Real_t s=pow(0.5,level+1);
  473. int* coord=interac_list.RelativeCoord(type,mat_indx);
  474. Real_t c[3]={(coord[0]+1)*s,(coord[1]+1)*s,(coord[2]+1)*s};
  475. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level);
  476. size_t n_dc=check_surf.size()/3;
  477. // Coord of parent's downward equivalent surface
  478. Real_t parent_coord[3]={0,0,0};
  479. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),parent_coord,level-1);
  480. size_t n_de=equiv_surf.size()/3;
  481. // Evaluate potential at check surface due to equivalent surface.
  482. Matrix<Real_t> M_pe2c(n_de*aux_ker_dim[0],n_dc*aux_ker_dim[1]);
  483. Kernel<Real_t>::Eval(&equiv_surf[0], n_de,
  484. &check_surf[0], n_dc, &(M_pe2c[0][0]),
  485. aux_kernel.ker_poten,aux_ker_dim);
  486. Matrix<Real_t>& M_c2e=Precomp(level,DC2DE_Type,0);
  487. M=M_pe2c*M_c2e;
  488. break;
  489. }
  490. case D2T_Type:
  491. {
  492. if(MultipoleOrder()==0) break;
  493. std::vector<Real_t>& rel_trg_coord=mat->RelativeTrgCoord();
  494. // Coord of target points
  495. Real_t r=pow(0.5,level);
  496. size_t n_trg=rel_trg_coord.size()/3;
  497. std::vector<Real_t> trg_coord(n_trg*3);
  498. for(size_t i=0;i<n_trg*COORD_DIM;i++) trg_coord[i]=rel_trg_coord[i]*r;
  499. // Coord of downward equivalent surface
  500. Real_t c[3]={0,0,0};
  501. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level);
  502. size_t n_eq=equiv_surf.size()/3;
  503. // Evaluate potential at target points due to equivalent surface.
  504. {
  505. M .Resize(n_eq*ker_dim [0], n_trg*ker_dim [1]);
  506. kernel.BuildMatrix(&equiv_surf[0], n_eq, &trg_coord[0], n_trg, &(M [0][0]));
  507. }
  508. break;
  509. }
  510. case U0_Type:
  511. {
  512. break;
  513. }
  514. case U1_Type:
  515. {
  516. break;
  517. }
  518. case U2_Type:
  519. {
  520. break;
  521. }
  522. case V_Type:
  523. {
  524. if(MultipoleOrder()==0) break;
  525. int n1=MultipoleOrder()*2;
  526. int n3 =n1*n1*n1;
  527. int n3_=n1*n1*(n1/2+1);
  528. //Compute the matrix.
  529. Real_t s=pow(0.5,level);
  530. int* coord2=interac_list.RelativeCoord(type,mat_indx);
  531. Real_t coord_diff[3]={coord2[0]*s,coord2[1]*s,coord2[2]*s};
  532. //Evaluate potential.
  533. std::vector<Real_t> r_trg(COORD_DIM,0.0);
  534. std::vector<Real_t> conv_poten(n3*aux_ker_dim[0]*aux_ker_dim[1]);
  535. std::vector<Real_t> conv_coord=conv_grid(MultipoleOrder(),coord_diff,level);
  536. Kernel<Real_t>::Eval(&conv_coord[0],n3,&r_trg[0],1,&conv_poten[0],aux_kernel.ker_poten,aux_ker_dim);
  537. //Rearrange data.
  538. Matrix<Real_t> M_conv(n3,aux_ker_dim[0]*aux_ker_dim[1],&conv_poten[0],false);
  539. M_conv=M_conv.Transpose();
  540. //Compute FFTW plan.
  541. int nnn[3]={n1,n1,n1};
  542. void *fftw_in, *fftw_out;
  543. fftw_in = fftw_malloc( n3 *aux_ker_dim[0]*aux_ker_dim[1]*sizeof(Real_t));
  544. fftw_out = fftw_malloc(2*n3_*aux_ker_dim[0]*aux_ker_dim[1]*sizeof(Real_t));
  545. #pragma omp critical (FFTW_PLAN)
  546. {
  547. if (!vprecomp_fft_flag){
  548. vprecomp_fftplan = FFTW_t<Real_t>::fft_plan_many_dft_r2c(COORD_DIM, nnn, aux_ker_dim[0]*aux_ker_dim[1],
  549. (Real_t*)fftw_in, NULL, 1, n3, (typename FFTW_t<Real_t>::cplx*) fftw_out, NULL, 1, n3_, FFTW_ESTIMATE);
  550. vprecomp_fft_flag=true;
  551. }
  552. }
  553. //Compute FFT.
  554. mem::memcopy(fftw_in, &conv_poten[0], n3*aux_ker_dim[0]*aux_ker_dim[1]*sizeof(Real_t));
  555. FFTW_t<Real_t>::fft_execute_dft_r2c(vprecomp_fftplan, (Real_t*)fftw_in, (typename FFTW_t<Real_t>::cplx*)(fftw_out));
  556. Matrix<Real_t> M_(2*n3_*aux_ker_dim[0]*aux_ker_dim[1],1,(Real_t*)fftw_out,false);
  557. M=M_;
  558. //Free memory.
  559. fftw_free(fftw_in);
  560. fftw_free(fftw_out);
  561. break;
  562. }
  563. case V1_Type:
  564. {
  565. if(MultipoleOrder()==0) break;
  566. size_t mat_cnt =interac_list.ListCount( V_Type);
  567. for(size_t k=0;k<mat_cnt;k++) Precomp(level, V_Type, k);
  568. const size_t chld_cnt=1UL<<COORD_DIM;
  569. size_t n1=MultipoleOrder()*2;
  570. size_t M_dim=n1*n1*(n1/2+1);
  571. size_t n3=n1*n1*n1;
  572. Vector<Real_t> zero_vec(M_dim*aux_ker_dim[0]*aux_ker_dim[1]*2);
  573. zero_vec.SetZero();
  574. Vector<Real_t*> M_ptr(chld_cnt*chld_cnt);
  575. for(size_t i=0;i<chld_cnt*chld_cnt;i++) M_ptr[i]=&zero_vec[0];
  576. int* rel_coord_=interac_list.RelativeCoord(V1_Type, mat_indx);
  577. for(int j1=0;j1<chld_cnt;j1++)
  578. for(int j2=0;j2<chld_cnt;j2++){
  579. int rel_coord[3]={rel_coord_[0]*2-(j1/1)%2+(j2/1)%2,
  580. rel_coord_[1]*2-(j1/2)%2+(j2/2)%2,
  581. rel_coord_[2]*2-(j1/4)%2+(j2/4)%2};
  582. for(size_t k=0;k<mat_cnt;k++){
  583. int* ref_coord=interac_list.RelativeCoord(V_Type, k);
  584. if(ref_coord[0]==rel_coord[0] &&
  585. ref_coord[1]==rel_coord[1] &&
  586. ref_coord[2]==rel_coord[2]){
  587. Matrix<Real_t>& M = this->mat->Mat(level, V_Type, k);
  588. M_ptr[j2*chld_cnt+j1]=&M[0][0];
  589. break;
  590. }
  591. }
  592. }
  593. // Build matrix aux_ker_dim0 x aux_ker_dim1 x M_dim x 8 x 8
  594. M.Resize(aux_ker_dim[0]*aux_ker_dim[1]*M_dim, 2*chld_cnt*chld_cnt);
  595. for(int j=0;j<aux_ker_dim[0]*aux_ker_dim[1]*M_dim;j++){
  596. for(size_t k=0;k<chld_cnt*chld_cnt;k++){
  597. M[j][k*2+0]=M_ptr[k][j*2+0]/n3;
  598. M[j][k*2+1]=M_ptr[k][j*2+1]/n3;
  599. }
  600. }
  601. break;
  602. }
  603. case W_Type:
  604. {
  605. if(MultipoleOrder()==0) break;
  606. std::vector<Real_t>& rel_trg_coord=mat->RelativeTrgCoord();
  607. // Coord of target points
  608. Real_t s=pow(0.5,level);
  609. size_t n_trg=rel_trg_coord.size()/3;
  610. std::vector<Real_t> trg_coord(n_trg*3);
  611. for(size_t j=0;j<n_trg*COORD_DIM;j++) trg_coord[j]=rel_trg_coord[j]*s;
  612. // Coord of downward equivalent surface
  613. int* coord2=interac_list.RelativeCoord(type,mat_indx);
  614. Real_t c[3]={(coord2[0]+1)*s*0.25,(coord2[1]+1)*s*0.25,(coord2[2]+1)*s*0.25};
  615. std::vector<Real_t> equiv_surf=u_equiv_surf(MultipoleOrder(),c,level+1);
  616. size_t n_eq=equiv_surf.size()/3;
  617. // Evaluate potential at target points due to equivalent surface.
  618. {
  619. M .Resize(n_eq*ker_dim [0],n_trg*ker_dim [1]);
  620. kernel.BuildMatrix(&equiv_surf[0], n_eq, &trg_coord[0], n_trg, &(M [0][0]));
  621. }
  622. break;
  623. }
  624. case X_Type:
  625. {
  626. break;
  627. }
  628. case BC_Type:
  629. {
  630. if(MultipoleOrder()==0) break;
  631. size_t mat_cnt_m2m=interac_list.ListCount(U2U_Type);
  632. size_t n_surf=(6*(MultipoleOrder()-1)*(MultipoleOrder()-1)+2); //Total number of points.
  633. if((M.Dim(0)!=n_surf*aux_ker_dim[0] || M.Dim(1)!=n_surf*aux_ker_dim[1]) && level==0){
  634. Matrix<Real_t> M_m2m[BC_LEVELS+1];
  635. Matrix<Real_t> M_m2l[BC_LEVELS+1];
  636. Matrix<Real_t> M_l2l[BC_LEVELS+1];
  637. Matrix<Real_t> M_zero_avg(n_surf*aux_ker_dim[0],n_surf*aux_ker_dim[0]);
  638. { // Set average multipole charge to zero. (improves stability for large BC_LEVELS)
  639. M_zero_avg.SetZero();
  640. for(size_t i=0;i<n_surf*aux_ker_dim[0];i++)
  641. M_zero_avg[i][i]+=1;
  642. for(size_t i=0;i<n_surf;i++)
  643. for(size_t j=0;j<n_surf;j++)
  644. for(size_t k=0;k<aux_ker_dim[0];k++)
  645. M_zero_avg[i*aux_ker_dim[0]+k][j*aux_ker_dim[0]+k]-=1.0/n_surf;
  646. }
  647. for(int level=0; level>-BC_LEVELS; level--){
  648. M_l2l[-level] = this->Precomp(level, D2D_Type, 0);
  649. if(M_l2l[-level].Dim(0)==0 || M_l2l[-level].Dim(1)==0){
  650. Matrix<Real_t>& M0 = interac_list.ClassMat(level, D2D_Type, 0);
  651. Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, D2D_Type, 0);
  652. Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, D2D_Type, 0);
  653. M_l2l[-level] = Pr*M0*Pc;
  654. }
  655. M_m2m[-level] = M_zero_avg*this->Precomp(level, U2U_Type, 0);
  656. for(size_t mat_indx=1; mat_indx<mat_cnt_m2m; mat_indx++)
  657. M_m2m[-level] += M_zero_avg*this->Precomp(level, U2U_Type, mat_indx);
  658. }
  659. for(int level=-BC_LEVELS;level<=0;level++){
  660. if(!Homogen() || level==-BC_LEVELS){
  661. Real_t s=(1UL<<(-level));
  662. Real_t ue_coord[3]={0,0,0};
  663. Real_t dc_coord[3]={0,0,0};
  664. std::vector<Real_t> src_coord=u_equiv_surf(MultipoleOrder(), ue_coord, level);
  665. std::vector<Real_t> trg_coord=d_check_surf(MultipoleOrder(), dc_coord, level);
  666. Matrix<Real_t> M_ue2dc(n_surf*aux_ker_dim[0], n_surf*aux_ker_dim[1]);
  667. M_ue2dc.SetZero();
  668. for(int x0=-2;x0<4;x0++)
  669. for(int x1=-2;x1<4;x1++)
  670. for(int x2=-2;x2<4;x2++)
  671. if(abs(x0)>1 || abs(x1)>1 || abs(x2)>1){
  672. ue_coord[0]=x0*s; ue_coord[1]=x1*s; ue_coord[2]=x2*s;
  673. std::vector<Real_t> src_coord=u_equiv_surf(MultipoleOrder(), ue_coord, level);
  674. Matrix<Real_t> M_tmp(n_surf*aux_ker_dim[0], n_surf*aux_ker_dim[1]);
  675. Kernel<Real_t>::Eval(&src_coord[0], n_surf,
  676. &trg_coord[0], n_surf, &(M_tmp[0][0]),
  677. aux_kernel.ker_poten, aux_ker_dim);
  678. M_ue2dc+=M_tmp;
  679. }
  680. // Shift by constant.
  681. Real_t scale_adj=(Homogen()?pow(0.5, level*aux_kernel.poten_scale):1);
  682. for(size_t i=0;i<M_ue2dc.Dim(0);i++){
  683. std::vector<Real_t> avg(aux_ker_dim[1],0);
  684. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  685. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]+=M_ue2dc[i][j+k];
  686. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]/=n_surf;
  687. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  688. for(int k=0; k<aux_ker_dim[1]; k++) M_ue2dc[i][j+k]=(M_ue2dc[i][j+k]-avg[k])*scale_adj;
  689. }
  690. Matrix<Real_t>& M_dc2de = Precomp(level, DC2DE_Type, 0);
  691. M_m2l[-level]=M_ue2dc*M_dc2de;
  692. }else M_m2l[-level]=M_m2l[1-level];
  693. if(level==-BC_LEVELS) M = M_m2l[-level];
  694. else M = M_m2l[-level] + M_m2m[-level]*M*M_l2l[-level];
  695. { // Shift by constant. (improves stability for large BC_LEVELS)
  696. Matrix<Real_t> M_de2dc(n_surf*aux_ker_dim[0], n_surf*aux_ker_dim[1]);
  697. { // M_de2dc TODO: For homogeneous kernels, compute only once.
  698. // Coord of downward check surface
  699. Real_t c[3]={0,0,0};
  700. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,0);
  701. size_t n_ch=check_surf.size()/3;
  702. // Coord of downward equivalent surface
  703. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,0);
  704. size_t n_eq=equiv_surf.size()/3;
  705. // Evaluate potential at check surface due to equivalent surface.
  706. Kernel<Real_t>::Eval(&equiv_surf[0], n_eq,
  707. &check_surf[0], n_ch, &(M_de2dc[0][0]),
  708. aux_kernel.ker_poten,aux_ker_dim);
  709. }
  710. Matrix<Real_t> M_ue2dc=M*M_de2dc;
  711. for(size_t i=0;i<M_ue2dc.Dim(0);i++){
  712. std::vector<Real_t> avg(aux_ker_dim[1],0);
  713. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  714. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]+=M_ue2dc[i][j+k];
  715. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]/=n_surf;
  716. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  717. for(int k=0; k<aux_ker_dim[1]; k++) M_ue2dc[i][j+k]-=avg[k];
  718. }
  719. Matrix<Real_t>& M_dc2de = Precomp(level, DC2DE_Type, 0);
  720. M=M_ue2dc*M_dc2de;
  721. }
  722. }
  723. { // ax+by+cz+d correction.
  724. std::vector<Real_t> corner_pts;
  725. corner_pts.push_back(0); corner_pts.push_back(0); corner_pts.push_back(0);
  726. corner_pts.push_back(1); corner_pts.push_back(0); corner_pts.push_back(0);
  727. corner_pts.push_back(0); corner_pts.push_back(1); corner_pts.push_back(0);
  728. corner_pts.push_back(0); corner_pts.push_back(0); corner_pts.push_back(1);
  729. size_t n_corner=corner_pts.size()/3;
  730. // Coord of downward equivalent surface
  731. Real_t c[3]={0,0,0};
  732. std::vector<Real_t> up_equiv_surf=u_equiv_surf(MultipoleOrder(),c,0);
  733. std::vector<Real_t> dn_equiv_surf=d_equiv_surf(MultipoleOrder(),c,0);
  734. std::vector<Real_t> dn_check_surf=d_check_surf(MultipoleOrder(),c,0);
  735. Matrix<Real_t> M_err;
  736. { // Evaluate potential at corner due to upward and dnward equivalent surface.
  737. { // Error from local expansion.
  738. Matrix<Real_t> M_e2pt(n_surf*aux_ker_dim[0],n_corner*aux_ker_dim[1]);
  739. Kernel<Real_t>::Eval(&dn_equiv_surf[0], n_surf,
  740. &corner_pts[0], n_corner, &(M_e2pt[0][0]),
  741. aux_kernel.ker_poten,aux_ker_dim);
  742. M_err=M*M_e2pt;
  743. }
  744. for(size_t k=0;k<4;k++){ // Error from colleagues of root.
  745. for(int j0=-1;j0<=1;j0++)
  746. for(int j1=-1;j1<=1;j1++)
  747. for(int j2=-1;j2<=1;j2++){
  748. Real_t pt_coord[3]={corner_pts[k*COORD_DIM+0]-j0,
  749. corner_pts[k*COORD_DIM+1]-j1,
  750. corner_pts[k*COORD_DIM+2]-j2};
  751. if(fabs(pt_coord[0]-0.5)>1.0 || fabs(pt_coord[1]-0.5)>1.0 || fabs(pt_coord[2]-0.5)>1.0){
  752. Matrix<Real_t> M_e2pt(n_surf*aux_ker_dim[0],aux_ker_dim[1]);
  753. Kernel<Real_t>::Eval(&up_equiv_surf[0], n_surf,
  754. &pt_coord[0], 1, &(M_e2pt[0][0]),
  755. aux_kernel.ker_poten,aux_ker_dim);
  756. for(size_t i=0;i<M_e2pt.Dim(0);i++)
  757. for(size_t j=0;j<M_e2pt.Dim(1);j++)
  758. M_err[i][k*aux_ker_dim[1]+j]+=M_e2pt[i][j];
  759. }
  760. }
  761. }
  762. }
  763. Matrix<Real_t> M_grad(M_err.Dim(0),n_surf*aux_ker_dim[1]);
  764. for(size_t i=0;i<M_err.Dim(0);i++)
  765. for(size_t k=0;k<aux_ker_dim[1];k++)
  766. for(size_t j=0;j<n_surf;j++){
  767. M_grad[i][j*aux_ker_dim[1]+k]=(M_err[i][0*aux_ker_dim[1]+k] )*1.0 +
  768. (M_err[i][1*aux_ker_dim[1]+k]-M_err[i][0*aux_ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+0]+
  769. (M_err[i][2*aux_ker_dim[1]+k]-M_err[i][0*aux_ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+1]+
  770. (M_err[i][3*aux_ker_dim[1]+k]-M_err[i][0*aux_ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+2];
  771. }
  772. Matrix<Real_t>& M_dc2de = Precomp(0, DC2DE_Type, 0);
  773. M-=M_grad*M_dc2de;
  774. }
  775. { // Free memory
  776. Mat_Type type=D2D_Type;
  777. for(int l=-BC_LEVELS;l<0;l++)
  778. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  779. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  780. M.Resize(0,0);
  781. }
  782. type=U2U_Type;
  783. for(int l=-BC_LEVELS;l<0;l++)
  784. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  785. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  786. M.Resize(0,0);
  787. }
  788. type=DC2DE_Type;
  789. for(int l=-BC_LEVELS;l<0;l++)
  790. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  791. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  792. M.Resize(0,0);
  793. }
  794. type=UC2UE_Type;
  795. for(int l=-BC_LEVELS;l<0;l++)
  796. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  797. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  798. M.Resize(0,0);
  799. }
  800. }
  801. }
  802. break;
  803. }
  804. default:
  805. break;
  806. }
  807. //Save the matrix for future use.
  808. #pragma omp critical (PRECOMP_MATRIX_PTS)
  809. if(M_.Dim(0)==0 && M_.Dim(1)==0){
  810. M_=M;
  811. /*
  812. M_.Resize(M.Dim(0),M.Dim(1));
  813. int dof=aux_ker_dim[0]*aux_ker_dim[1];
  814. for(int j=0;j<dof;j++){
  815. size_t a=(M.Dim(0)*M.Dim(1)* j )/dof;
  816. size_t b=(M.Dim(0)*M.Dim(1)*(j+1))/dof;
  817. #pragma omp parallel for // NUMA
  818. for(int tid=0;tid<omp_p;tid++){
  819. size_t a_=a+((b-a)* tid )/omp_p;
  820. size_t b_=a+((b-a)*(tid+1))/omp_p;
  821. mem::memcopy(&M_[0][a_], &M[0][a_], (b_-a_)*sizeof(Real_t));
  822. }
  823. }
  824. */
  825. }
  826. return M_;
  827. }
  828. template <class FMMNode>
  829. void FMM_Pts<FMMNode>::PrecompAll(Mat_Type type, int level){
  830. int depth=(Homogen()?1:MAX_DEPTH);
  831. if(level==-1){
  832. for(int l=0;l<depth;l++){
  833. std::stringstream level_str;
  834. level_str<<"level="<<l;
  835. PrecompAll(type, l);
  836. }
  837. return;
  838. }
  839. //Compute basic permutations.
  840. for(size_t i=0;i<Perm_Count;i++)
  841. this->PrecompPerm(type, (Perm_Type) i);
  842. {
  843. //Allocate matrices.
  844. size_t mat_cnt=interac_list.ListCount((Mat_Type)type);
  845. mat->Mat(level, (Mat_Type)type, mat_cnt-1);
  846. { // Compute InteracClass matrices.
  847. std::vector<size_t> indx_lst;
  848. for(size_t i=0; i<mat_cnt; i++){
  849. if(interac_list.InteracClass((Mat_Type)type,i)==i)
  850. indx_lst.push_back(i);
  851. }
  852. //Compute Transformations.
  853. //#pragma omp parallel for //lets use fine grained parallelism
  854. for(size_t i=0; i<indx_lst.size(); i++){
  855. Precomp(level, (Mat_Type)type, indx_lst[i]);
  856. }
  857. }
  858. //#pragma omp parallel for //lets use fine grained parallelism
  859. for(size_t mat_indx=0;mat_indx<mat_cnt;mat_indx++){
  860. Matrix<Real_t>& M0=interac_list.ClassMat(level,(Mat_Type)type,mat_indx);
  861. Permutation<Real_t>& pr=interac_list.Perm_R(level, (Mat_Type)type, mat_indx);
  862. Permutation<Real_t>& pc=interac_list.Perm_C(level, (Mat_Type)type, mat_indx);
  863. if(pr.Dim()!=M0.Dim(0) || pc.Dim()!=M0.Dim(1)) Precomp(level, (Mat_Type)type, mat_indx);
  864. }
  865. }
  866. }
  867. template <class FMMNode>
  868. void FMM_Pts<FMMNode>::CollectNodeData(std::vector<FMMNode*>& node, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, std::vector<size_t> extra_size){
  869. if( buff.size()<7) buff.resize(7);
  870. if( n_list.size()<7) n_list.resize(7);
  871. if(node.size()==0) return;
  872. {// 0. upward_equiv
  873. int indx=0;
  874. Matrix<Real_t>& M_uc2ue = this->interac_list.ClassMat(0, UC2UE_Type, 0);
  875. size_t vec_sz=M_uc2ue.Dim(1);
  876. std::vector< FMMNode* > node_lst;
  877. {
  878. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  879. FMMNode_t* r_node=NULL;
  880. for(size_t i=0;i<node.size();i++){
  881. if(!node[i]->IsLeaf())
  882. node_lst_[node[i]->Depth()].push_back(node[i]);
  883. if(node[i]->Depth()==0) r_node=node[i];
  884. }
  885. size_t chld_cnt=1UL<<COORD_DIM;
  886. for(int i=0;i<=MAX_DEPTH;i++)
  887. for(size_t j=0;j<node_lst_[i].size();j++)
  888. for(size_t k=0;k<chld_cnt;k++)
  889. node_lst.push_back((FMMNode_t*)node_lst_[i][j]->Child(k));
  890. if(r_node!=NULL) node_lst.push_back(r_node);
  891. }
  892. n_list[indx]=node_lst;
  893. size_t buff_size=node_lst.size()*vec_sz;
  894. buff_size+=(extra_size.size()>indx?extra_size[indx]:0);
  895. buff[indx].Resize(1,buff_size);
  896. #pragma omp parallel for
  897. for(size_t i=0;i<node_lst.size();i++){
  898. Vector<Real_t>& upward_equiv=node_lst[i]->FMMData()->upward_equiv;
  899. upward_equiv.ReInit(vec_sz, buff[indx][0]+i*vec_sz, false);
  900. upward_equiv.SetZero();
  901. }
  902. buff[indx].AllocDevice(true);
  903. }
  904. {// 1. dnward_equiv
  905. int indx=1;
  906. Matrix<Real_t>& M_dc2de = this->interac_list.ClassMat(0, DC2DE_Type, 0);
  907. size_t vec_sz=M_dc2de.Dim(1);
  908. std::vector< FMMNode* > node_lst;
  909. {
  910. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  911. FMMNode_t* r_node=NULL;
  912. for(size_t i=0;i<node.size();i++){
  913. if(!node[i]->IsLeaf() && !node[i]->IsGhost())
  914. node_lst_[node[i]->Depth()].push_back(node[i]);
  915. if(node[i]->Depth()==0) r_node=node[i];
  916. }
  917. size_t chld_cnt=1UL<<COORD_DIM;
  918. for(int i=0;i<=MAX_DEPTH;i++)
  919. for(size_t j=0;j<node_lst_[i].size();j++)
  920. for(size_t k=0;k<chld_cnt;k++)
  921. node_lst.push_back((FMMNode_t*)node_lst_[i][j]->Child(k));
  922. if(r_node!=NULL) node_lst.push_back(r_node);
  923. }
  924. n_list[indx]=node_lst;
  925. size_t buff_size=node_lst.size()*vec_sz;
  926. buff_size+=(extra_size.size()>indx?extra_size[indx]:0);
  927. buff[indx].Resize(1,buff_size);
  928. #pragma omp parallel for
  929. for(size_t i=0;i<node_lst.size();i++){
  930. Vector<Real_t>& dnward_equiv=node_lst[i]->FMMData()->dnward_equiv;
  931. dnward_equiv.ReInit(vec_sz, buff[indx][0]+i*vec_sz, false);
  932. dnward_equiv.SetZero();
  933. }
  934. buff[indx].AllocDevice(true);
  935. }
  936. {// 2. upward_equiv_fft
  937. int indx=2;
  938. std::vector< FMMNode* > node_lst;
  939. {
  940. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  941. for(size_t i=0;i<node.size();i++)
  942. if(!node[i]->IsLeaf())
  943. node_lst_[node[i]->Depth()].push_back(node[i]);
  944. for(int i=0;i<=MAX_DEPTH;i++)
  945. for(size_t j=0;j<node_lst_[i].size();j++)
  946. node_lst.push_back(node_lst_[i][j]);
  947. }
  948. n_list[indx]=node_lst;
  949. buff[indx].AllocDevice(true);
  950. }
  951. {// 3. dnward_check_fft
  952. int indx=3;
  953. std::vector< FMMNode* > node_lst;
  954. {
  955. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  956. for(size_t i=0;i<node.size();i++)
  957. if(!node[i]->IsLeaf() && !node[i]->IsGhost())
  958. node_lst_[node[i]->Depth()].push_back(node[i]);
  959. for(int i=0;i<=MAX_DEPTH;i++)
  960. for(size_t j=0;j<node_lst_[i].size();j++)
  961. node_lst.push_back(node_lst_[i][j]);
  962. }
  963. n_list[indx]=node_lst;
  964. buff[indx].AllocDevice(true);
  965. }
  966. {// 4. src_val
  967. int indx=4;
  968. int src_dof=kernel.ker_dim[0];
  969. int surf_dof=COORD_DIM+src_dof;
  970. std::vector< FMMNode* > node_lst;
  971. size_t buff_size=0;
  972. for(size_t i=0;i<node.size();i++)
  973. if(node[i]->IsLeaf()){
  974. node_lst.push_back(node[i]);
  975. buff_size+=(node[i]->src_coord.Dim()/COORD_DIM)*src_dof;
  976. buff_size+=(node[i]->surf_coord.Dim()/COORD_DIM)*surf_dof;
  977. }
  978. n_list[indx]=node_lst;
  979. #pragma omp parallel for
  980. for(size_t i=0;i<node_lst.size();i++){ // Move data before resizing buff[indx]
  981. { // src_value
  982. Vector<Real_t>& src_value=node_lst[i]->src_value;
  983. Vector<Real_t> new_buff=src_value;
  984. src_value.ReInit(new_buff.Dim(), &new_buff[0]);
  985. }
  986. { // surf_value
  987. Vector<Real_t>& surf_value=node_lst[i]->surf_value;
  988. Vector<Real_t> new_buff=surf_value;
  989. surf_value.ReInit(new_buff.Dim(), &new_buff[0]);
  990. }
  991. }
  992. buff[indx].Resize(1,buff_size+(extra_size.size()>indx?extra_size[indx]:0));
  993. Real_t* buff_ptr=&buff[indx][0][0];
  994. for(size_t i=0;i<node_lst.size();i++){
  995. FMMData* fmm_data=((FMMData*)node_lst[i]->FMMData());
  996. { // src_value
  997. Vector<Real_t>& src_value=node_lst[i]->src_value;
  998. mem::memcopy(buff_ptr,&src_value[0],src_value.Dim()*sizeof(Real_t));
  999. src_value.ReInit((node_lst[i]->src_coord.Dim()/COORD_DIM)*src_dof, buff_ptr, false);
  1000. buff_ptr+=(node_lst[i]->src_coord.Dim()/COORD_DIM)*src_dof;
  1001. }
  1002. { // surf_value
  1003. Vector<Real_t>& surf_value=node_lst[i]->surf_value;
  1004. mem::memcopy(buff_ptr,&surf_value[0],surf_value.Dim()*sizeof(Real_t));
  1005. surf_value.ReInit((node_lst[i]->surf_coord.Dim()/COORD_DIM)*surf_dof, buff_ptr, false);
  1006. buff_ptr+=(node_lst[i]->surf_coord.Dim()/COORD_DIM)*surf_dof;
  1007. }
  1008. }
  1009. buff[indx].AllocDevice(true);
  1010. }
  1011. {// 5. trg_val
  1012. int indx=5;
  1013. int trg_dof=kernel.ker_dim[1];
  1014. std::vector< FMMNode* > node_lst;
  1015. size_t buff_size=0;
  1016. for(size_t i=0;i<node.size();i++)
  1017. if(node[i]->IsLeaf() && !node[i]->IsGhost()){
  1018. node_lst.push_back(node[i]);
  1019. FMMData* fmm_data=((FMMData*)node[i]->FMMData());
  1020. buff_size+=(node[i]->trg_coord.Dim()/COORD_DIM)*trg_dof;
  1021. }
  1022. n_list[indx]=node_lst;
  1023. buff[indx].Resize(1,buff_size+(extra_size.size()>indx?extra_size[indx]:0));
  1024. Real_t* buff_ptr=&buff[indx][0][0];
  1025. for(size_t i=0;i<node_lst.size();i++){
  1026. FMMData* fmm_data=((FMMData*)node_lst[i]->FMMData());
  1027. { // trg_value
  1028. Vector<Real_t>& trg_value=node_lst[i]->trg_value;
  1029. trg_value.ReInit((node_lst[i]->trg_coord.Dim()/COORD_DIM)*trg_dof, buff_ptr, false);
  1030. buff_ptr+=(node_lst[i]->trg_coord.Dim()/COORD_DIM)*trg_dof;
  1031. }
  1032. }
  1033. #pragma omp parallel for
  1034. for(size_t i=0;i<node_lst.size();i++){
  1035. FMMData* fmm_data=((FMMData*)node_lst[i]->FMMData());
  1036. Vector<Real_t>& trg_value=node_lst[i]->trg_value;
  1037. trg_value.SetZero();
  1038. }
  1039. buff[indx].AllocDevice(true);
  1040. }
  1041. {// 6. pts_coord
  1042. int indx=6;
  1043. size_t m=MultipoleOrder();
  1044. std::vector< FMMNode* > node_lst;
  1045. size_t buff_size=0;
  1046. for(size_t i=0;i<node.size();i++)
  1047. if(node[i]->IsLeaf()){
  1048. node_lst.push_back(node[i]);
  1049. FMMData* fmm_data=((FMMData*)node[i]->FMMData());
  1050. buff_size+=node[i]->src_coord.Dim();
  1051. buff_size+=node[i]->surf_coord.Dim();
  1052. buff_size+=node[i]->trg_coord.Dim();
  1053. }
  1054. n_list[indx]=node_lst;
  1055. #pragma omp parallel for
  1056. for(size_t i=0;i<node_lst.size();i++){ // Move data before resizing buff[indx]
  1057. FMMData* fmm_data=((FMMData*)node_lst[i]->FMMData());
  1058. { // src_coord
  1059. Vector<Real_t>& src_coord=node_lst[i]->src_coord;
  1060. Vector<Real_t> new_buff=src_coord;
  1061. src_coord.ReInit(new_buff.Dim(), &new_buff[0]);
  1062. }
  1063. { // surf_coord
  1064. Vector<Real_t>& surf_coord=node_lst[i]->surf_coord;
  1065. Vector<Real_t> new_buff=surf_coord;
  1066. surf_coord.ReInit(new_buff.Dim(), &new_buff[0]);
  1067. }
  1068. { // trg_coord
  1069. Vector<Real_t>& trg_coord=node_lst[i]->trg_coord;
  1070. Vector<Real_t> new_buff=trg_coord;
  1071. trg_coord.ReInit(new_buff.Dim(), &new_buff[0]);
  1072. }
  1073. }
  1074. buff_size+=(extra_size.size()>indx?extra_size[indx]:0);
  1075. buff_size+=4*MAX_DEPTH*(6*(m-1)*(m-1)+2)*COORD_DIM;
  1076. buff[indx].Resize(1,buff_size);
  1077. Real_t* buff_ptr=&buff[indx][0][0];
  1078. for(size_t i=0;i<node_lst.size();i++){
  1079. FMMData* fmm_data=((FMMData*)node_lst[i]->FMMData());
  1080. { // src_coord
  1081. Vector<Real_t>& src_coord=node_lst[i]->src_coord;
  1082. mem::memcopy(buff_ptr,&src_coord[0],src_coord.Dim()*sizeof(Real_t));
  1083. src_coord.ReInit(node_lst[i]->src_coord.Dim(), buff_ptr, false);
  1084. buff_ptr+=node_lst[i]->src_coord.Dim();
  1085. }
  1086. { // surf_coord
  1087. Vector<Real_t>& surf_coord=node_lst[i]->surf_coord;
  1088. mem::memcopy(buff_ptr,&surf_coord[0],surf_coord.Dim()*sizeof(Real_t));
  1089. surf_coord.ReInit(node_lst[i]->surf_coord.Dim(), buff_ptr, false);
  1090. buff_ptr+=node_lst[i]->surf_coord.Dim();
  1091. }
  1092. { // trg_coord
  1093. Vector<Real_t>& trg_coord=node_lst[i]->trg_coord;
  1094. mem::memcopy(buff_ptr,&trg_coord[0],trg_coord.Dim()*sizeof(Real_t));
  1095. trg_coord.ReInit(node_lst[i]->trg_coord.Dim(), buff_ptr, false);
  1096. buff_ptr+=node_lst[i]->trg_coord.Dim();
  1097. }
  1098. }
  1099. { // check and equiv surfaces.
  1100. upwd_check_surf.resize(MAX_DEPTH);
  1101. upwd_equiv_surf.resize(MAX_DEPTH);
  1102. dnwd_check_surf.resize(MAX_DEPTH);
  1103. dnwd_equiv_surf.resize(MAX_DEPTH);
  1104. for(size_t depth=0;depth<MAX_DEPTH;depth++){
  1105. Real_t c[3]={0.0,0.0,0.0};
  1106. upwd_check_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
  1107. upwd_equiv_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
  1108. dnwd_check_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
  1109. dnwd_equiv_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
  1110. upwd_check_surf[depth]=u_check_surf(m,c,depth);
  1111. upwd_equiv_surf[depth]=u_equiv_surf(m,c,depth);
  1112. dnwd_check_surf[depth]=d_check_surf(m,c,depth);
  1113. dnwd_equiv_surf[depth]=d_equiv_surf(m,c,depth);
  1114. }
  1115. }
  1116. buff[indx].AllocDevice(true);
  1117. }
  1118. }
  1119. template <class FMMNode>
  1120. void FMM_Pts<FMMNode>::SetupPrecomp(SetupData<Real_t>& setup_data, bool device){
  1121. if(setup_data.precomp_data==NULL) return;
  1122. Profile::Tic("SetupPrecomp",&this->comm,true,25);
  1123. { // Build precomp_data
  1124. size_t precomp_offset=0;
  1125. int level=setup_data.level;
  1126. Matrix<char>& precomp_data=*setup_data.precomp_data;
  1127. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  1128. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  1129. Mat_Type& interac_type=interac_type_lst[type_indx];
  1130. this->PrecompAll(interac_type, level); // Compute matrices.
  1131. precomp_offset=this->mat->CompactData(level, interac_type, precomp_data, precomp_offset);
  1132. }
  1133. }
  1134. Profile::Toc();
  1135. if(device){ // Host2Device
  1136. Profile::Tic("Host2Device",&this->comm,false,25);
  1137. setup_data.precomp_data->AllocDevice(true);
  1138. Profile::Toc();
  1139. }
  1140. }
  1141. template <class FMMNode>
  1142. void FMM_Pts<FMMNode>::SetupInterac(SetupData<Real_t>& setup_data, bool device){
  1143. int level=setup_data.level;
  1144. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  1145. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  1146. std::vector<void*>& nodes_out=setup_data.nodes_out;
  1147. Matrix<Real_t>& input_data=*setup_data. input_data;
  1148. Matrix<Real_t>& output_data=*setup_data.output_data;
  1149. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector;
  1150. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector;
  1151. size_t n_in =nodes_in .size();
  1152. size_t n_out=nodes_out.size();
  1153. // Setup precomputed data.
  1154. SetupPrecomp(setup_data,device);
  1155. // Build interac_data
  1156. Profile::Tic("Interac-Data",&this->comm,true,25);
  1157. Matrix<char>& interac_data=setup_data.interac_data;
  1158. if(n_out>0 && n_in >0){ // Build precomp_data, interac_data
  1159. std::vector<size_t> interac_mat;
  1160. std::vector<size_t> interac_cnt;
  1161. std::vector<size_t> interac_blk;
  1162. std::vector<size_t> input_perm;
  1163. std::vector<size_t> output_perm;
  1164. std::vector<Real_t> scaling;
  1165. size_t dof=0, M_dim0=0, M_dim1=0;
  1166. size_t precomp_offset=0;
  1167. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  1168. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  1169. Mat_Type& interac_type=interac_type_lst[type_indx];
  1170. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  1171. Vector<size_t> precomp_data_offset;
  1172. { // Load precomp_data for interac_type.
  1173. Matrix<char>& precomp_data=*setup_data.precomp_data;
  1174. char* indx_ptr=precomp_data[0]+precomp_offset;
  1175. size_t total_size=((size_t*)indx_ptr)[0]; indx_ptr+=sizeof(size_t);
  1176. /*size_t mat_cnt_ =((size_t*)indx_ptr)[0];*/ indx_ptr+=sizeof(size_t);
  1177. precomp_data_offset.ReInit((1+2+2)*mat_cnt, (size_t*)indx_ptr, false);
  1178. precomp_offset+=total_size;
  1179. }
  1180. Matrix<FMMNode*> src_interac_list(n_in ,mat_cnt); src_interac_list.SetZero();
  1181. Matrix<FMMNode*> trg_interac_list(n_out,mat_cnt); trg_interac_list.SetZero();
  1182. { // Build trg_interac_list
  1183. for(size_t i=0;i<n_out;i++){
  1184. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  1185. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  1186. mem::memcopy(&trg_interac_list[i][0], &lst[0], lst.size()*sizeof(FMMNode*));
  1187. assert(lst.size()==mat_cnt);
  1188. }
  1189. }
  1190. }
  1191. { // Build src_interac_list
  1192. for(size_t i=0;i<n_in ;i++) ((FMMNode*)nodes_in [i])->node_id=i;
  1193. for(size_t i=0;i<n_out;i++){
  1194. for(size_t j=0;j<mat_cnt;j++)
  1195. if(trg_interac_list[i][j]!=NULL){
  1196. src_interac_list[trg_interac_list[i][j]->node_id][j]=(FMMNode*)nodes_out[i];
  1197. }
  1198. }
  1199. }
  1200. Matrix<size_t> interac_dsp(n_out,mat_cnt);
  1201. std::vector<size_t> interac_blk_dsp(1,0);
  1202. { // Determine dof, M_dim0, M_dim1
  1203. dof=1;
  1204. Matrix<Real_t>& M0 = this->interac_list.ClassMat(level, interac_type_lst[0], 0);
  1205. M_dim0=M0.Dim(0); M_dim1=M0.Dim(1);
  1206. }
  1207. { // Determine interaction blocks which fit in memory.
  1208. size_t vec_size=(M_dim0+M_dim1)*sizeof(Real_t)*dof;
  1209. for(size_t j=0;j<mat_cnt;j++){// Determine minimum buff_size
  1210. size_t vec_cnt=0;
  1211. for(size_t i=0;i<n_out;i++){
  1212. if(trg_interac_list[i][j]!=NULL) vec_cnt++;
  1213. }
  1214. if(buff_size<vec_cnt*vec_size)
  1215. buff_size=vec_cnt*vec_size;
  1216. }
  1217. size_t interac_dsp_=0;
  1218. for(size_t j=0;j<mat_cnt;j++){
  1219. for(size_t i=0;i<n_out;i++){
  1220. interac_dsp[i][j]=interac_dsp_;
  1221. if(trg_interac_list[i][j]!=NULL) interac_dsp_++;
  1222. }
  1223. if(interac_dsp_*vec_size>buff_size){
  1224. interac_blk.push_back(j-interac_blk_dsp.back());
  1225. interac_blk_dsp.push_back(j);
  1226. size_t offset=interac_dsp[0][j];
  1227. for(size_t i=0;i<n_out;i++) interac_dsp[i][j]-=offset;
  1228. interac_dsp_-=offset;
  1229. assert(interac_dsp_*vec_size<=buff_size); // Problem too big for buff_size.
  1230. }
  1231. interac_mat.push_back(precomp_data_offset[5*this->interac_list.InteracClass(interac_type,j)+0]);
  1232. interac_cnt.push_back(interac_dsp_-interac_dsp[0][j]);
  1233. }
  1234. interac_blk.push_back(mat_cnt-interac_blk_dsp.back());
  1235. interac_blk_dsp.push_back(mat_cnt);
  1236. }
  1237. { // Determine input_perm.
  1238. size_t vec_size=M_dim0*dof;
  1239. for(size_t i=0;i<n_out;i++) ((FMMNode*)nodes_out[i])->node_id=i;
  1240. for(size_t k=1;k<interac_blk_dsp.size();k++){
  1241. for(size_t i=0;i<n_in ;i++){
  1242. for(size_t j=interac_blk_dsp[k-1];j<interac_blk_dsp[k];j++){
  1243. FMMNode_t* trg_node=src_interac_list[i][j];
  1244. if(trg_node!=NULL){
  1245. input_perm .push_back(precomp_data_offset[5*j+1]); // prem
  1246. input_perm .push_back(precomp_data_offset[5*j+2]); // scal
  1247. input_perm .push_back(interac_dsp[trg_node->node_id][j]*vec_size*sizeof(Real_t)); // trg_ptr
  1248. input_perm .push_back((size_t)(& input_vector[i][0][0]- input_data[0])); // src_ptr
  1249. assert(input_vector[i]->Dim()==vec_size);
  1250. }
  1251. }
  1252. }
  1253. }
  1254. }
  1255. { // Determine scaling and output_perm
  1256. size_t vec_size=M_dim1*dof;
  1257. for(size_t k=1;k<interac_blk_dsp.size();k++){
  1258. for(size_t i=0;i<n_out;i++){
  1259. Real_t scaling_=0.0;
  1260. if(!this->Homogen()) scaling_=1.0;
  1261. else if(interac_type==S2U_Type) scaling_=pow(0.5, COORD_DIM *((FMMNode*)nodes_out[i])->Depth());
  1262. else if(interac_type==U2U_Type) scaling_=1.0;
  1263. else if(interac_type==D2D_Type) scaling_=1.0;
  1264. else if(interac_type==D2T_Type) scaling_=pow(0.5, -setup_data.kernel->poten_scale *((FMMNode*)nodes_out[i])->Depth());
  1265. else if(interac_type== U0_Type) scaling_=pow(0.5,(COORD_DIM-setup_data.kernel->poten_scale)*((FMMNode*)nodes_out[i])->Depth());
  1266. else if(interac_type== U1_Type) scaling_=pow(0.5,(COORD_DIM-setup_data.kernel->poten_scale)*((FMMNode*)nodes_out[i])->Depth());
  1267. else if(interac_type== U2_Type) scaling_=pow(0.5,(COORD_DIM-setup_data.kernel->poten_scale)*((FMMNode*)nodes_out[i])->Depth());
  1268. else if(interac_type== W_Type) scaling_=pow(0.5, -setup_data.kernel->poten_scale *((FMMNode*)nodes_out[i])->Depth());
  1269. else if(interac_type== X_Type) scaling_=pow(0.5, COORD_DIM *((FMMNode*)nodes_out[i])->Depth());
  1270. for(size_t j=interac_blk_dsp[k-1];j<interac_blk_dsp[k];j++){
  1271. if(trg_interac_list[i][j]!=NULL){
  1272. scaling.push_back(scaling_); // scaling
  1273. output_perm.push_back(precomp_data_offset[5*j+3]); // prem
  1274. output_perm.push_back(precomp_data_offset[5*j+4]); // scal
  1275. output_perm.push_back(interac_dsp[ i ][j]*vec_size*sizeof(Real_t)); // src_ptr
  1276. output_perm.push_back((size_t)(&output_vector[i][0][0]-output_data[0])); // trg_ptr
  1277. assert(output_vector[i]->Dim()==vec_size);
  1278. }
  1279. }
  1280. }
  1281. }
  1282. }
  1283. }
  1284. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.Resize(buff_size);
  1285. if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.Resize(buff_size);
  1286. { // Set interac_data.
  1287. size_t data_size=sizeof(size_t)*4;
  1288. data_size+=sizeof(size_t)+interac_blk.size()*sizeof(size_t);
  1289. data_size+=sizeof(size_t)+interac_cnt.size()*sizeof(size_t);
  1290. data_size+=sizeof(size_t)+interac_mat.size()*sizeof(size_t);
  1291. data_size+=sizeof(size_t)+ input_perm.size()*sizeof(size_t);
  1292. data_size+=sizeof(size_t)+output_perm.size()*sizeof(size_t);
  1293. data_size+=sizeof(size_t)+scaling.size()*sizeof(Real_t);
  1294. if(interac_data.Dim(0)*interac_data.Dim(1)<sizeof(size_t)){
  1295. data_size+=sizeof(size_t);
  1296. interac_data.Resize(1,data_size);
  1297. ((size_t*)&interac_data[0][0])[0]=sizeof(size_t);
  1298. }else{
  1299. size_t pts_data_size=*((size_t*)&interac_data[0][0]);
  1300. assert(interac_data.Dim(0)*interac_data.Dim(1)>=pts_data_size);
  1301. data_size+=pts_data_size;
  1302. if(data_size>interac_data.Dim(0)*interac_data.Dim(1)){ //Resize and copy interac_data.
  1303. Matrix< char> pts_interac_data=interac_data;
  1304. interac_data.Resize(1,data_size);
  1305. mem::memcopy(&interac_data[0][0],&pts_interac_data[0][0],pts_data_size);
  1306. }
  1307. }
  1308. char* data_ptr=&interac_data[0][0];
  1309. data_ptr+=((size_t*)data_ptr)[0];
  1310. ((size_t*)data_ptr)[0]=data_size; data_ptr+=sizeof(size_t);
  1311. ((size_t*)data_ptr)[0]= M_dim0; data_ptr+=sizeof(size_t);
  1312. ((size_t*)data_ptr)[0]= M_dim1; data_ptr+=sizeof(size_t);
  1313. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  1314. ((size_t*)data_ptr)[0]=interac_blk.size(); data_ptr+=sizeof(size_t);
  1315. mem::memcopy(data_ptr, &interac_blk[0], interac_blk.size()*sizeof(size_t));
  1316. data_ptr+=interac_blk.size()*sizeof(size_t);
  1317. ((size_t*)data_ptr)[0]=interac_cnt.size(); data_ptr+=sizeof(size_t);
  1318. mem::memcopy(data_ptr, &interac_cnt[0], interac_cnt.size()*sizeof(size_t));
  1319. data_ptr+=interac_cnt.size()*sizeof(size_t);
  1320. ((size_t*)data_ptr)[0]=interac_mat.size(); data_ptr+=sizeof(size_t);
  1321. mem::memcopy(data_ptr, &interac_mat[0], interac_mat.size()*sizeof(size_t));
  1322. data_ptr+=interac_mat.size()*sizeof(size_t);
  1323. ((size_t*)data_ptr)[0]= input_perm.size(); data_ptr+=sizeof(size_t);
  1324. mem::memcopy(data_ptr, & input_perm[0], input_perm.size()*sizeof(size_t));
  1325. data_ptr+= input_perm.size()*sizeof(size_t);
  1326. ((size_t*)data_ptr)[0]=output_perm.size(); data_ptr+=sizeof(size_t);
  1327. mem::memcopy(data_ptr, &output_perm[0], output_perm.size()*sizeof(size_t));
  1328. data_ptr+=output_perm.size()*sizeof(size_t);
  1329. ((size_t*)data_ptr)[0]=scaling.size(); data_ptr+=sizeof(size_t);
  1330. mem::memcopy(data_ptr, &scaling[0], scaling.size()*sizeof(Real_t));
  1331. data_ptr+=scaling.size()*sizeof(Real_t);
  1332. }
  1333. }
  1334. Profile::Toc();
  1335. if(device){ // Host2Device
  1336. Profile::Tic("Host2Device",&this->comm,false,25);
  1337. setup_data.interac_data .AllocDevice(true);
  1338. Profile::Toc();
  1339. }
  1340. }
  1341. template <class FMMNode>
  1342. void FMM_Pts<FMMNode>::EvalList_cuda(SetupData<Real_t>& setup_data) {
  1343. typename Vector<char>::Device buff;
  1344. typename Vector<char>::Device buff_d;
  1345. typename Matrix<char>::Device precomp_data;
  1346. typename Matrix<char>::Device precomp_data_d;
  1347. typename Matrix<char>::Device interac_data;
  1348. typename Matrix<char>::Device interac_data_d;
  1349. typename Matrix<Real_t>::Device input_data;
  1350. typename Matrix<Real_t>::Device input_data_d;
  1351. typename Matrix<Real_t>::Device output_data;
  1352. typename Matrix<Real_t>::Device output_data_d;
  1353. /* Take CPU pointer first. */
  1354. {
  1355. buff = this-> cpu_buffer;
  1356. precomp_data=*setup_data.precomp_data;
  1357. interac_data= setup_data.interac_data;
  1358. input_data =*setup_data. input_data;
  1359. output_data =*setup_data. output_data;
  1360. }
  1361. /* Take GPU pointer now. */
  1362. {
  1363. buff_d = this->dev_buffer.AllocDevice(false);
  1364. precomp_data_d = setup_data.precomp_data->AllocDevice(false);
  1365. interac_data_d = setup_data.interac_data.AllocDevice(false);
  1366. input_data_d = setup_data.input_data->AllocDevice(false);
  1367. output_data_d = setup_data.output_data->AllocDevice(false);
  1368. }
  1369. {
  1370. size_t data_size, M_dim0, M_dim1, dof;
  1371. /* CPU pointers */
  1372. Vector<size_t> interac_blk;
  1373. Vector<size_t> interac_cnt;
  1374. Vector<size_t> interac_mat;
  1375. Vector<size_t> input_perm;
  1376. Vector<size_t> output_perm;
  1377. Vector<Real_t> scaling;
  1378. /* GPU pointers */
  1379. char *input_perm_d, *output_perm_d, *scaling_d;
  1380. {
  1381. char* data_ptr=&interac_data[0][0];
  1382. char *dev_ptr;
  1383. /* Take GPU initial pointer for later computation. */
  1384. dev_ptr = (char *) interac_data_d.dev_ptr;
  1385. data_size=((size_t*)data_ptr)[0]; data_ptr+=data_size; dev_ptr += data_size;
  1386. data_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1387. M_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1388. M_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1389. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1390. /* Update CPU and GPU pointers at the same time. */
  1391. /* CPU pointer */
  1392. interac_blk.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1393. data_ptr += sizeof(size_t) + sizeof(size_t)*interac_blk.Dim();
  1394. dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_blk.Dim();
  1395. //len_interac_cnt = ((size_t*)data_ptr)[0];
  1396. /* CPU pointer */
  1397. interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1398. data_ptr += sizeof(size_t) + sizeof(size_t)*interac_cnt.Dim();
  1399. dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_cnt.Dim();
  1400. //len_interac_mat = ((size_t *) data_ptr)[0];
  1401. /* CPU pointer */
  1402. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1403. data_ptr += sizeof(size_t) + sizeof(size_t)*interac_mat.Dim();
  1404. dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_mat.Dim();
  1405. input_perm.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1406. /* GPU pointer */
  1407. input_perm_d = dev_ptr + sizeof(size_t);
  1408. data_ptr += sizeof(size_t) + sizeof(size_t)*input_perm.Dim();
  1409. dev_ptr += sizeof(size_t) + sizeof(size_t)*input_perm.Dim();
  1410. output_perm.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1411. /* GPU pointer */
  1412. output_perm_d = dev_ptr + sizeof(size_t);
  1413. data_ptr += sizeof(size_t) + sizeof(size_t)*output_perm.Dim();
  1414. dev_ptr += sizeof(size_t) + sizeof(size_t)*output_perm.Dim();
  1415. scaling.ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  1416. /* GPU pointer */
  1417. scaling_d = dev_ptr + sizeof(size_t);
  1418. data_ptr += sizeof(size_t) + sizeof(size_t)*scaling.Dim();
  1419. dev_ptr += sizeof(size_t) + sizeof(size_t)*scaling.Dim();
  1420. }
  1421. {
  1422. size_t interac_indx = 0;
  1423. size_t interac_blk_dsp = 0;
  1424. cudaError_t error;
  1425. for (size_t k = 0; k < interac_blk.Dim(); k++) {
  1426. size_t vec_cnt = 0;
  1427. for (size_t j = interac_blk_dsp; j < interac_blk_dsp + interac_blk[k]; j++)
  1428. vec_cnt += interac_cnt[j];
  1429. /* GPU Kernel call */
  1430. char *buff_in_d = (char *) buff_d.dev_ptr;
  1431. char *buff_out_d = (char *) (buff_d.dev_ptr + vec_cnt*dof*M_dim0*sizeof(Real_t));
  1432. cuda_func<Real_t>::in_perm_h ((char *)precomp_data_d.dev_ptr, input_perm_d,
  1433. (char *) input_data_d.dev_ptr, buff_in_d, interac_indx, M_dim0, vec_cnt);
  1434. size_t vec_cnt0 = 0;
  1435. for (size_t j = interac_blk_dsp; j < interac_blk_dsp + interac_blk[k];) {
  1436. size_t vec_cnt1 = 0;
  1437. size_t interac_mat0 = interac_mat[j];
  1438. for (; j < interac_blk_dsp + interac_blk[k] && interac_mat[j] == interac_mat0; j++)
  1439. vec_cnt1 += interac_cnt[j];
  1440. /* GPU Gemm */
  1441. Matrix<Real_t> M_d(M_dim0, M_dim1, (Real_t*)(precomp_data_d.dev_ptr + interac_mat0), false);
  1442. Matrix<Real_t> Ms_d(dof*vec_cnt1, M_dim0, (Real_t*)(buff_in_d + M_dim0*vec_cnt0*dof*sizeof(Real_t)), false);
  1443. Matrix<Real_t> Mt_d(dof*vec_cnt1, M_dim1, (Real_t*)(buff_out_d + M_dim1*vec_cnt0*dof*sizeof(Real_t)), false);
  1444. Matrix<Real_t>::CUBLASXGEMM(Mt_d, Ms_d, M_d);
  1445. vec_cnt0 += vec_cnt1;
  1446. }
  1447. cuda_func<Real_t>::out_perm_h (scaling_d, (char *) precomp_data_d.dev_ptr, output_perm_d,
  1448. (char *) output_data_d.dev_ptr, buff_out_d, interac_indx, M_dim1, vec_cnt);
  1449. interac_indx += vec_cnt;
  1450. interac_blk_dsp += interac_blk[k];
  1451. }
  1452. }
  1453. }
  1454. // Sync.
  1455. //CUDA_Lock::wait(0);
  1456. }
  1457. template <class FMMNode>
  1458. void FMM_Pts<FMMNode>::EvalList(SetupData<Real_t>& setup_data, bool device){
  1459. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  1460. Profile::Tic("Host2Device",&this->comm,false,25);
  1461. Profile::Toc();
  1462. Profile::Tic("DeviceComp",&this->comm,false,20);
  1463. Profile::Toc();
  1464. return;
  1465. }
  1466. #if defined(PVFMM_HAVE_CUDA)
  1467. if (device) {
  1468. EvalList_cuda(setup_data);
  1469. return;
  1470. }
  1471. #endif
  1472. Profile::Tic("Host2Device",&this->comm,false,25);
  1473. typename Vector<char>::Device buff;
  1474. typename Matrix<char>::Device precomp_data;
  1475. typename Matrix<char>::Device interac_data;
  1476. typename Matrix<Real_t>::Device input_data;
  1477. typename Matrix<Real_t>::Device output_data;
  1478. if(device){
  1479. buff = this-> dev_buffer. AllocDevice(false);
  1480. precomp_data= setup_data.precomp_data->AllocDevice(false);
  1481. interac_data= setup_data.interac_data. AllocDevice(false);
  1482. input_data = setup_data. input_data->AllocDevice(false);
  1483. output_data = setup_data. output_data->AllocDevice(false);
  1484. }else{
  1485. buff = this-> cpu_buffer;
  1486. precomp_data=*setup_data.precomp_data;
  1487. interac_data= setup_data.interac_data;
  1488. input_data =*setup_data. input_data;
  1489. output_data =*setup_data. output_data;
  1490. }
  1491. Profile::Toc();
  1492. Profile::Tic("DeviceComp",&this->comm,false,20);
  1493. #ifdef __INTEL_OFFLOAD
  1494. int lock_idx=-1;
  1495. int wait_lock_idx=-1;
  1496. if(device) wait_lock_idx=MIC_Lock::curr_lock();
  1497. if(device) lock_idx=MIC_Lock::get_lock();
  1498. #pragma offload if(device) target(mic:0) signal(&MIC_Lock::lock_vec[device?lock_idx:0])
  1499. #endif
  1500. { // Offloaded computation.
  1501. // Set interac_data.
  1502. size_t data_size, M_dim0, M_dim1, dof;
  1503. Vector<size_t> interac_blk;
  1504. Vector<size_t> interac_cnt;
  1505. Vector<size_t> interac_mat;
  1506. Vector<size_t> input_perm;
  1507. Vector<size_t> output_perm;
  1508. Vector<Real_t> scaling;
  1509. { // Set interac_data.
  1510. char* data_ptr=&interac_data[0][0];
  1511. data_size=((size_t*)data_ptr)[0]; data_ptr+=data_size;
  1512. data_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1513. M_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1514. M_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1515. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1516. interac_blk.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1517. data_ptr+=sizeof(size_t)+interac_blk.Dim()*sizeof(size_t);
  1518. interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1519. data_ptr+=sizeof(size_t)+interac_cnt.Dim()*sizeof(size_t);
  1520. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1521. data_ptr+=sizeof(size_t)+interac_mat.Dim()*sizeof(size_t);
  1522. input_perm .ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1523. data_ptr+=sizeof(size_t)+ input_perm.Dim()*sizeof(size_t);
  1524. output_perm.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1525. data_ptr+=sizeof(size_t)+output_perm.Dim()*sizeof(size_t);
  1526. scaling.ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  1527. data_ptr+=sizeof(size_t)+scaling.Dim()*sizeof(Real_t);
  1528. }
  1529. #ifdef __INTEL_OFFLOAD
  1530. if(device) MIC_Lock::wait_lock(wait_lock_idx);
  1531. #endif
  1532. //Compute interaction from Chebyshev source density.
  1533. { // interactions
  1534. int omp_p=omp_get_max_threads();
  1535. size_t interac_indx=0;
  1536. size_t interac_blk_dsp=0;
  1537. for(size_t k=0;k<interac_blk.Dim();k++){
  1538. size_t vec_cnt=0;
  1539. for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];j++) vec_cnt+=interac_cnt[j];
  1540. char* buff_in =&buff[0];
  1541. char* buff_out=&buff[vec_cnt*dof*M_dim0*sizeof(Real_t)];
  1542. // Input permutation.
  1543. #pragma omp parallel for
  1544. for(int tid=0;tid<omp_p;tid++){
  1545. size_t a=( tid *vec_cnt)/omp_p;
  1546. size_t b=((tid+1)*vec_cnt)/omp_p;
  1547. for(size_t i=a;i<b;i++){
  1548. const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+input_perm[(interac_indx+i)*4+0]);
  1549. const Real_t* scal=( Real_t*)(precomp_data[0]+input_perm[(interac_indx+i)*4+1]);
  1550. const Real_t* v_in =( Real_t*)( input_data[0]+input_perm[(interac_indx+i)*4+3]);
  1551. Real_t* v_out=( Real_t*)( buff_in +input_perm[(interac_indx+i)*4+2]);
  1552. // TODO: Fix for dof>1
  1553. #ifdef __MIC__
  1554. {
  1555. __m512d v8;
  1556. size_t j_start=(((uintptr_t)(v_out ) + (uintptr_t)(MEM_ALIGN-1)) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1557. size_t j_end =(((uintptr_t)(v_out+M_dim0) ) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1558. j_start/=sizeof(Real_t);
  1559. j_end /=sizeof(Real_t);
  1560. assert(((uintptr_t)(v_out))%sizeof(Real_t)==0);
  1561. assert(((uintptr_t)(v_out+j_start))%64==0);
  1562. assert(((uintptr_t)(v_out+j_end ))%64==0);
  1563. size_t j=0;
  1564. for(;j<j_start;j++ ){
  1565. v_out[j]=v_in[perm[j]]*scal[j];
  1566. }
  1567. for(;j<j_end ;j+=8){
  1568. v8=_mm512_setr_pd(
  1569. v_in[perm[j+0]]*scal[j+0],
  1570. v_in[perm[j+1]]*scal[j+1],
  1571. v_in[perm[j+2]]*scal[j+2],
  1572. v_in[perm[j+3]]*scal[j+3],
  1573. v_in[perm[j+4]]*scal[j+4],
  1574. v_in[perm[j+5]]*scal[j+5],
  1575. v_in[perm[j+6]]*scal[j+6],
  1576. v_in[perm[j+7]]*scal[j+7]);
  1577. _mm512_storenrngo_pd(v_out+j,v8);
  1578. }
  1579. for(;j<M_dim0 ;j++ ){
  1580. v_out[j]=v_in[perm[j]]*scal[j];
  1581. }
  1582. }
  1583. #else
  1584. for(size_t j=0;j<M_dim0;j++ ){
  1585. v_out[j]=v_in[perm[j]]*scal[j];
  1586. }
  1587. #endif
  1588. }
  1589. }
  1590. size_t vec_cnt0=0;
  1591. for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];){
  1592. size_t vec_cnt1=0;
  1593. size_t interac_mat0=interac_mat[j];
  1594. for(;j<interac_blk_dsp+interac_blk[k] && interac_mat[j]==interac_mat0;j++) vec_cnt1+=interac_cnt[j];
  1595. Matrix<Real_t> M(M_dim0, M_dim1, (Real_t*)(precomp_data[0]+interac_mat0), false);
  1596. #ifdef __MIC__
  1597. {
  1598. Matrix<Real_t> Ms(dof*vec_cnt1, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t)), false);
  1599. Matrix<Real_t> Mt(dof*vec_cnt1, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t)), false);
  1600. Matrix<Real_t>::DGEMM(Mt,Ms,M);
  1601. }
  1602. #else
  1603. #pragma omp parallel for
  1604. for(int tid=0;tid<omp_p;tid++){
  1605. size_t a=(dof*vec_cnt1*(tid ))/omp_p;
  1606. size_t b=(dof*vec_cnt1*(tid+1))/omp_p;
  1607. Matrix<Real_t> Ms(b-a, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t))+M_dim0*a, false);
  1608. Matrix<Real_t> Mt(b-a, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t))+M_dim1*a, false);
  1609. Matrix<Real_t>::DGEMM(Mt,Ms,M);
  1610. }
  1611. #endif
  1612. vec_cnt0+=vec_cnt1;
  1613. }
  1614. // Output permutation.
  1615. #pragma omp parallel for
  1616. for(int tid=0;tid<omp_p;tid++){
  1617. size_t a=( tid *vec_cnt)/omp_p;
  1618. size_t b=((tid+1)*vec_cnt)/omp_p;
  1619. if(tid> 0 && a<vec_cnt){ // Find 'a' independent of other threads.
  1620. size_t out_ptr=output_perm[(interac_indx+a)*4+3];
  1621. if(tid> 0) while(a<vec_cnt && out_ptr==output_perm[(interac_indx+a)*4+3]) a++;
  1622. }
  1623. if(tid<omp_p-1 && b<vec_cnt){ // Find 'b' independent of other threads.
  1624. size_t out_ptr=output_perm[(interac_indx+b)*4+3];
  1625. if(tid<omp_p-1) while(b<vec_cnt && out_ptr==output_perm[(interac_indx+b)*4+3]) b++;
  1626. }
  1627. for(size_t i=a;i<b;i++){ // Compute permutations.
  1628. Real_t scaling_factor=scaling[interac_indx+i];
  1629. const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+output_perm[(interac_indx+i)*4+0]);
  1630. const Real_t* scal=( Real_t*)(precomp_data[0]+output_perm[(interac_indx+i)*4+1]);
  1631. const Real_t* v_in =( Real_t*)( buff_out +output_perm[(interac_indx+i)*4+2]);
  1632. Real_t* v_out=( Real_t*)( output_data[0]+output_perm[(interac_indx+i)*4+3]);
  1633. // TODO: Fix for dof>1
  1634. #ifdef __MIC__
  1635. {
  1636. __m512d v8;
  1637. __m512d v_old;
  1638. size_t j_start=(((uintptr_t)(v_out ) + (uintptr_t)(MEM_ALIGN-1)) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1639. size_t j_end =(((uintptr_t)(v_out+M_dim1) ) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1640. j_start/=sizeof(Real_t);
  1641. j_end /=sizeof(Real_t);
  1642. assert(((uintptr_t)(v_out))%sizeof(Real_t)==0);
  1643. assert(((uintptr_t)(v_out+j_start))%64==0);
  1644. assert(((uintptr_t)(v_out+j_end ))%64==0);
  1645. size_t j=0;
  1646. for(;j<j_start;j++ ){
  1647. v_out[j]+=v_in[perm[j]]*scal[j]*scaling_factor;
  1648. }
  1649. for(;j<j_end ;j+=8){
  1650. v_old=_mm512_load_pd(v_out+j);
  1651. v8=_mm512_setr_pd(
  1652. v_in[perm[j+0]]*scal[j+0]*scaling_factor,
  1653. v_in[perm[j+1]]*scal[j+1]*scaling_factor,
  1654. v_in[perm[j+2]]*scal[j+2]*scaling_factor,
  1655. v_in[perm[j+3]]*scal[j+3]*scaling_factor,
  1656. v_in[perm[j+4]]*scal[j+4]*scaling_factor,
  1657. v_in[perm[j+5]]*scal[j+5]*scaling_factor,
  1658. v_in[perm[j+6]]*scal[j+6]*scaling_factor,
  1659. v_in[perm[j+7]]*scal[j+7]*scaling_factor);
  1660. v_old=_mm512_add_pd(v_old, v8);
  1661. _mm512_storenrngo_pd(v_out+j,v_old);
  1662. }
  1663. for(;j<M_dim1 ;j++ ){
  1664. v_out[j]+=v_in[perm[j]]*scal[j]*scaling_factor;
  1665. }
  1666. }
  1667. #else
  1668. for(size_t j=0;j<M_dim1;j++ ){
  1669. v_out[j]+=v_in[perm[j]]*scal[j]*scaling_factor;
  1670. }
  1671. #endif
  1672. }
  1673. }
  1674. interac_indx+=vec_cnt;
  1675. interac_blk_dsp+=interac_blk[k];
  1676. }
  1677. }
  1678. #ifdef __INTEL_OFFLOAD
  1679. if(device) MIC_Lock::release_lock(lock_idx);
  1680. #endif
  1681. }
  1682. #ifndef __MIC_ASYNCH__
  1683. #ifdef __INTEL_OFFLOAD
  1684. #pragma offload if(device) target(mic:0)
  1685. {if(device) MIC_Lock::wait_lock(lock_idx);}
  1686. #endif
  1687. #endif
  1688. Profile::Toc();
  1689. }
  1690. template <class FMMNode>
  1691. void FMM_Pts<FMMNode>::Source2UpSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  1692. if(this->MultipoleOrder()==0) return;
  1693. { // Set setup_data
  1694. setup_data.level=level;
  1695. setup_data.kernel=&aux_kernel;
  1696. setup_data.interac_type.resize(1);
  1697. setup_data.interac_type[0]=S2U_Type;
  1698. setup_data. input_data=&buff[4];
  1699. setup_data.output_data=&buff[0];
  1700. setup_data. coord_data=&buff[6];
  1701. Vector<FMMNode_t*>& nodes_in =n_list[4];
  1702. Vector<FMMNode_t*>& nodes_out=n_list[0];
  1703. setup_data.nodes_in .clear();
  1704. setup_data.nodes_out.clear();
  1705. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  1706. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  1707. }
  1708. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  1709. std::vector<void*>& nodes_out=setup_data.nodes_out;
  1710. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  1711. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  1712. for(size_t i=0;i<nodes_in .size();i++){
  1713. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
  1714. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
  1715. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
  1716. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
  1717. }
  1718. for(size_t i=0;i<nodes_out.size();i++){
  1719. output_vector.push_back(&upwd_check_surf[((FMMNode*)nodes_out[i])->Depth()]);
  1720. output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->upward_equiv);
  1721. }
  1722. //Upward check to upward equivalent matrix.
  1723. Matrix<Real_t>& M_uc2ue = this->mat->Mat(level, UC2UE_Type, 0);
  1724. this->SetupInteracPts(setup_data, false, true, &M_uc2ue,device);
  1725. { // Resize device buffer
  1726. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  1727. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  1728. }
  1729. }
  1730. template <class FMMNode>
  1731. void FMM_Pts<FMMNode>::Source2Up(SetupData<Real_t>& setup_data, bool device){
  1732. //Add Source2Up contribution.
  1733. this->EvalListPts(setup_data, device);
  1734. }
  1735. template <class FMMNode>
  1736. void FMM_Pts<FMMNode>::Up2UpSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  1737. if(this->MultipoleOrder()==0) return;
  1738. { // Set setup_data
  1739. setup_data.level=level;
  1740. setup_data.kernel=&aux_kernel;
  1741. setup_data.interac_type.resize(1);
  1742. setup_data.interac_type[0]=U2U_Type;
  1743. setup_data. input_data=&buff[0];
  1744. setup_data.output_data=&buff[0];
  1745. Vector<FMMNode_t*>& nodes_in =n_list[0];
  1746. Vector<FMMNode_t*>& nodes_out=n_list[0];
  1747. setup_data.nodes_in .clear();
  1748. setup_data.nodes_out.clear();
  1749. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level+1) setup_data.nodes_in .push_back(nodes_in [i]);
  1750. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level ) setup_data.nodes_out.push_back(nodes_out[i]);
  1751. }
  1752. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  1753. std::vector<void*>& nodes_out=setup_data.nodes_out;
  1754. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  1755. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  1756. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->upward_equiv);
  1757. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->upward_equiv);
  1758. SetupInterac(setup_data,device);
  1759. }
  1760. template <class FMMNode>
  1761. void FMM_Pts<FMMNode>::Up2Up (SetupData<Real_t>& setup_data, bool device){
  1762. //Add Up2Up contribution.
  1763. EvalList(setup_data, device);
  1764. }
  1765. template <class FMMNode>
  1766. void FMM_Pts<FMMNode>::PeriodicBC(FMMNode* node){
  1767. if(this->MultipoleOrder()==0) return;
  1768. Matrix<Real_t>& M = Precomp(0, BC_Type, 0);
  1769. assert(node->FMMData()->upward_equiv.Dim()>0);
  1770. int dof=1;
  1771. Vector<Real_t>& upward_equiv=node->FMMData()->upward_equiv;
  1772. Vector<Real_t>& dnward_equiv=node->FMMData()->dnward_equiv;
  1773. assert(upward_equiv.Dim()==M.Dim(0)*dof);
  1774. assert(dnward_equiv.Dim()==M.Dim(1)*dof);
  1775. Matrix<Real_t> d_equiv(dof,M.Dim(0),&dnward_equiv[0],false);
  1776. Matrix<Real_t> u_equiv(dof,M.Dim(1),&upward_equiv[0],false);
  1777. Matrix<Real_t>::DGEMM(d_equiv,u_equiv,M);
  1778. }
  1779. template <class FMMNode>
  1780. void FMM_Pts<FMMNode>::FFT_UpEquiv(size_t dof, size_t m, size_t ker_dim0, Vector<size_t>& fft_vec,
  1781. Vector<Real_t>& input_data, Vector<Real_t>& output_data, Vector<Real_t>& buffer_){
  1782. size_t n1=m*2;
  1783. size_t n2=n1*n1;
  1784. size_t n3=n1*n2;
  1785. size_t n3_=n2*(n1/2+1);
  1786. size_t chld_cnt=1UL<<COORD_DIM;
  1787. size_t fftsize_in =2*n3_*chld_cnt*ker_dim0*dof;
  1788. int omp_p=omp_get_max_threads();
  1789. //Load permutation map.
  1790. size_t n=6*(m-1)*(m-1)+2;
  1791. static Vector<size_t> map;
  1792. { // Build map to reorder upward_equiv
  1793. size_t n_old=map.Dim();
  1794. if(n_old!=n){
  1795. Real_t c[3]={0,0,0};
  1796. Vector<Real_t> surf=surface(m, c, (Real_t)(m-1), 0);
  1797. map.Resize(surf.Dim()/COORD_DIM);
  1798. for(size_t i=0;i<map.Dim();i++)
  1799. map[i]=((size_t)(m-1-surf[i*3]+0.5))+((size_t)(m-1-surf[i*3+1]+0.5))*n1+((size_t)(m-1-surf[i*3+2]+0.5))*n2;
  1800. }
  1801. }
  1802. { // Build FFTW plan.
  1803. if(!vlist_fft_flag){
  1804. int nnn[3]={(int)n1,(int)n1,(int)n1};
  1805. void *fftw_in, *fftw_out;
  1806. fftw_in = mem::aligned_malloc<Real_t>( n3 *ker_dim0*chld_cnt);
  1807. fftw_out = mem::aligned_malloc<Real_t>(2*n3_*ker_dim0*chld_cnt);
  1808. vlist_fftplan = FFTW_t<Real_t>::fft_plan_many_dft_r2c(COORD_DIM,nnn,ker_dim0*chld_cnt,
  1809. (Real_t*)fftw_in, NULL, 1, n3, (typename FFTW_t<Real_t>::cplx*)(fftw_out),NULL, 1, n3_, FFTW_ESTIMATE);
  1810. mem::aligned_free<Real_t>((Real_t*)fftw_in );
  1811. mem::aligned_free<Real_t>((Real_t*)fftw_out);
  1812. vlist_fft_flag=true;
  1813. }
  1814. }
  1815. { // Offload section
  1816. size_t n_in = fft_vec.Dim();
  1817. #pragma omp parallel for
  1818. for(int pid=0; pid<omp_p; pid++){
  1819. size_t node_start=(n_in*(pid ))/omp_p;
  1820. size_t node_end =(n_in*(pid+1))/omp_p;
  1821. Vector<Real_t> buffer(fftsize_in, &buffer_[fftsize_in*pid], false);
  1822. for(size_t node_idx=node_start; node_idx<node_end; node_idx++){
  1823. Vector<Real_t*> upward_equiv(chld_cnt);
  1824. for(size_t i=0;i<chld_cnt;i++) upward_equiv[i]=&input_data[0] + fft_vec[node_idx] + n*ker_dim0*dof*i;
  1825. Vector<Real_t> upward_equiv_fft(fftsize_in, &output_data[fftsize_in *node_idx], false);
  1826. upward_equiv_fft.SetZero();
  1827. // Rearrange upward equivalent data.
  1828. for(size_t k=0;k<n;k++){
  1829. size_t idx=map[k];
  1830. for(int j1=0;j1<dof;j1++)
  1831. for(int j0=0;j0<(int)chld_cnt;j0++)
  1832. for(int i=0;i<ker_dim0;i++)
  1833. upward_equiv_fft[idx+(j0+(i+j1*ker_dim0)*chld_cnt)*n3]=upward_equiv[j0][ker_dim0*(n*j1+k)+i];
  1834. }
  1835. // Compute FFT.
  1836. for(int i=0;i<dof;i++)
  1837. FFTW_t<Real_t>::fft_execute_dft_r2c(vlist_fftplan, (Real_t*)&upward_equiv_fft[i* n3 *ker_dim0*chld_cnt],
  1838. (typename FFTW_t<Real_t>::cplx*)&buffer [i*2*n3_*ker_dim0*chld_cnt]);
  1839. //Compute flops.
  1840. #ifndef FFTW3_MKL
  1841. double add, mul, fma;
  1842. fftw_flops(vlist_fftplan, &add, &mul, &fma);
  1843. #ifndef __INTEL_OFFLOAD0
  1844. Profile::Add_FLOP((long long)(add+mul+2*fma));
  1845. #endif
  1846. #endif
  1847. for(int i=0;i<ker_dim0*dof;i++)
  1848. for(size_t j=0;j<n3_;j++)
  1849. for(size_t k=0;k<chld_cnt;k++){
  1850. upward_equiv_fft[2*(chld_cnt*(n3_*i+j)+k)+0]=buffer[2*(n3_*(chld_cnt*i+k)+j)+0];
  1851. upward_equiv_fft[2*(chld_cnt*(n3_*i+j)+k)+1]=buffer[2*(n3_*(chld_cnt*i+k)+j)+1];
  1852. }
  1853. }
  1854. }
  1855. }
  1856. }
  1857. template <class FMMNode>
  1858. void FMM_Pts<FMMNode>::FFT_Check2Equiv(size_t dof, size_t m, size_t ker_dim1, Vector<size_t>& ifft_vec,
  1859. Vector<Real_t>& input_data, Vector<Real_t>& output_data, Vector<Real_t>& buffer_, Matrix<Real_t>& M){
  1860. size_t n1=m*2;
  1861. size_t n2=n1*n1;
  1862. size_t n3=n1*n2;
  1863. size_t n3_=n2*(n1/2+1);
  1864. size_t chld_cnt=1UL<<COORD_DIM;
  1865. size_t fftsize_out=2*n3_*dof*ker_dim1*chld_cnt;
  1866. int omp_p=omp_get_max_threads();
  1867. //Load permutation map.
  1868. size_t n=6*(m-1)*(m-1)+2;
  1869. static Vector<size_t> map;
  1870. { // Build map to reorder dnward_check
  1871. size_t n_old=map.Dim();
  1872. if(n_old!=n){
  1873. Real_t c[3]={0,0,0};
  1874. Vector<Real_t> surf=surface(m, c, (Real_t)(m-1), 0);
  1875. map.Resize(surf.Dim()/COORD_DIM);
  1876. for(size_t i=0;i<map.Dim();i++)
  1877. map[i]=((size_t)(m*2-0.5-surf[i*3]))+((size_t)(m*2-0.5-surf[i*3+1]))*n1+((size_t)(m*2-0.5-surf[i*3+2]))*n2;
  1878. //map;//.AllocDevice(true);
  1879. }
  1880. }
  1881. { // Build FFTW plan.
  1882. if(!vlist_ifft_flag){
  1883. //Build FFTW plan.
  1884. int nnn[3]={(int)n1,(int)n1,(int)n1};
  1885. void *fftw_in, *fftw_out;
  1886. fftw_in = fftw_malloc(2*n3_*ker_dim1*sizeof(Real_t)*chld_cnt);
  1887. fftw_out = fftw_malloc( n3 *ker_dim1*sizeof(Real_t)*chld_cnt);
  1888. vlist_ifftplan = FFTW_t<Real_t>::fft_plan_many_dft_c2r(COORD_DIM,nnn,ker_dim1*chld_cnt,
  1889. (typename FFTW_t<Real_t>::cplx*)fftw_in, NULL, 1, n3_, (Real_t*)(fftw_out),NULL, 1, n3, FFTW_ESTIMATE);
  1890. fftw_free(fftw_in);
  1891. fftw_free(fftw_out);
  1892. vlist_ifft_flag=true;
  1893. }
  1894. }
  1895. { // Offload section
  1896. size_t n_out=ifft_vec.Dim();
  1897. #pragma omp parallel for
  1898. for(int pid=0; pid<omp_p; pid++){
  1899. size_t node_start=(n_out*(pid ))/omp_p;
  1900. size_t node_end =(n_out*(pid+1))/omp_p;
  1901. Vector<Real_t> buffer(fftsize_out, &buffer_[fftsize_out*pid], false);
  1902. for(size_t node_idx=node_start; node_idx<node_end; node_idx++){
  1903. Vector<Real_t> dnward_check_fft(fftsize_out, &input_data[fftsize_out*node_idx], false);
  1904. //De-interleave data.
  1905. for(int i=0;i<ker_dim1*dof;i++)
  1906. for(size_t j=0;j<n3_;j++)
  1907. for(size_t k=0;k<chld_cnt;k++){
  1908. buffer[2*(n3_*(ker_dim1*dof*k+i)+j)+0]=dnward_check_fft[2*(chld_cnt*(n3_*i+j)+k)+0];
  1909. buffer[2*(n3_*(ker_dim1*dof*k+i)+j)+1]=dnward_check_fft[2*(chld_cnt*(n3_*i+j)+k)+1];
  1910. }
  1911. // Compute FFT.
  1912. for(int i=0;i<dof;i++)
  1913. FFTW_t<Real_t>::fft_execute_dft_c2r(vlist_ifftplan, (typename FFTW_t<Real_t>::cplx*)&buffer [i*2*n3_*ker_dim1*chld_cnt],
  1914. (Real_t*)&dnward_check_fft[i* n3 *ker_dim1*chld_cnt]);
  1915. //Compute flops.
  1916. #ifndef FFTW3_MKL
  1917. double add, mul, fma;
  1918. fftw_flops(vlist_ifftplan, &add, &mul, &fma);
  1919. #ifndef __INTEL_OFFLOAD0
  1920. Profile::Add_FLOP((long long)(add+mul+2*fma));
  1921. #endif
  1922. #endif
  1923. // Rearrange downward check data.
  1924. for(size_t k=0;k<n;k++){
  1925. size_t idx=map[k];
  1926. for(int j1=0;j1<dof;j1++)
  1927. for(int j0=0;j0<(int)chld_cnt;j0++)
  1928. for(int i=0;i<ker_dim1;i++)
  1929. buffer[ker_dim1*(n*(dof*j0+j1)+k)+i]=dnward_check_fft[idx+(j1+(i+j0*ker_dim1)*dof)*n3];
  1930. }
  1931. // Compute check to equiv.
  1932. for(size_t j=0;j<chld_cnt;j++){
  1933. Matrix<Real_t> d_check(dof,M.Dim(0),&buffer[n*ker_dim1*dof*j],false);
  1934. Matrix<Real_t> d_equiv(dof,M.Dim(1),&output_data[0] + ifft_vec[node_idx] + M.Dim(1)*dof*j,false);
  1935. Matrix<Real_t>::DGEMM(d_equiv,d_check,M,1.0);
  1936. }
  1937. }
  1938. }
  1939. }
  1940. }
  1941. template <class Real_t>
  1942. void VListHadamard(size_t dof, size_t M_dim, size_t ker_dim0, size_t ker_dim1, Vector<size_t>& interac_dsp,
  1943. Vector<size_t>& interac_vec, Vector<Real_t*>& precomp_mat, Vector<Real_t>& fft_in, Vector<Real_t>& fft_out){
  1944. size_t chld_cnt=1UL<<COORD_DIM;
  1945. size_t fftsize_in =M_dim*ker_dim0*chld_cnt*2;
  1946. size_t fftsize_out=M_dim*ker_dim1*chld_cnt*2;
  1947. Real_t* zero_vec0=mem::aligned_malloc<Real_t>(fftsize_in );
  1948. Real_t* zero_vec1=mem::aligned_malloc<Real_t>(fftsize_out);
  1949. size_t n_out=fft_out.Dim()/fftsize_out;
  1950. // Set buff_out to zero.
  1951. #pragma omp parallel for
  1952. for(size_t k=0;k<n_out;k++){
  1953. Vector<Real_t> dnward_check_fft(fftsize_out, &fft_out[k*fftsize_out], false);
  1954. dnward_check_fft.SetZero();
  1955. }
  1956. // Build list of interaction pairs (in, out vectors).
  1957. size_t mat_cnt=precomp_mat.Dim();
  1958. size_t blk1_cnt=interac_dsp.Dim()/mat_cnt;
  1959. Real_t** IN_ =new Real_t*[2*V_BLK_SIZE*blk1_cnt*mat_cnt];
  1960. Real_t** OUT_=new Real_t*[2*V_BLK_SIZE*blk1_cnt*mat_cnt];
  1961. #pragma omp parallel for
  1962. for(size_t interac_blk1=0; interac_blk1<blk1_cnt*mat_cnt; interac_blk1++){
  1963. size_t interac_dsp0 = (interac_blk1==0?0:interac_dsp[interac_blk1-1]);
  1964. size_t interac_dsp1 = interac_dsp[interac_blk1 ] ;
  1965. size_t interac_cnt = interac_dsp1-interac_dsp0;
  1966. for(size_t j=0;j<interac_cnt;j++){
  1967. IN_ [2*V_BLK_SIZE*interac_blk1 +j]=&fft_in [interac_vec[(interac_dsp0+j)*2+0]];
  1968. OUT_[2*V_BLK_SIZE*interac_blk1 +j]=&fft_out[interac_vec[(interac_dsp0+j)*2+1]];
  1969. }
  1970. IN_ [2*V_BLK_SIZE*interac_blk1 +interac_cnt]=zero_vec0;
  1971. OUT_[2*V_BLK_SIZE*interac_blk1 +interac_cnt]=zero_vec1;
  1972. }
  1973. int omp_p=omp_get_max_threads();
  1974. #pragma omp parallel for
  1975. for(int pid=0; pid<omp_p; pid++){
  1976. size_t a=( pid *M_dim)/omp_p;
  1977. size_t b=((pid+1)*M_dim)/omp_p;
  1978. for(size_t blk1=0; blk1<blk1_cnt; blk1++)
  1979. for(size_t k=a; k< b; k++)
  1980. for(size_t mat_indx=0; mat_indx< mat_cnt;mat_indx++){
  1981. size_t interac_blk1 = blk1*mat_cnt+mat_indx;
  1982. size_t interac_dsp0 = (interac_blk1==0?0:interac_dsp[interac_blk1-1]);
  1983. size_t interac_dsp1 = interac_dsp[interac_blk1 ] ;
  1984. size_t interac_cnt = interac_dsp1-interac_dsp0;
  1985. Real_t** IN = IN_ + 2*V_BLK_SIZE*interac_blk1;
  1986. Real_t** OUT= OUT_+ 2*V_BLK_SIZE*interac_blk1;
  1987. Real_t* M = precomp_mat[mat_indx] + k*chld_cnt*chld_cnt*2;
  1988. #ifdef __SSE__
  1989. if (mat_indx +1 < mat_cnt){ // Prefetch
  1990. _mm_prefetch(((char *)(precomp_mat[mat_indx+1] + k*chld_cnt*chld_cnt*2)), _MM_HINT_T0);
  1991. _mm_prefetch(((char *)(precomp_mat[mat_indx+1] + k*chld_cnt*chld_cnt*2) + 64), _MM_HINT_T0);
  1992. }
  1993. #endif
  1994. for(int in_dim=0;in_dim<ker_dim0;in_dim++)
  1995. for(int ot_dim=0;ot_dim<ker_dim1;ot_dim++){
  1996. for(size_t j=0;j<interac_cnt;j+=2){
  1997. Real_t* M_ = M;
  1998. Real_t* IN0 = IN [j+0] + (in_dim*M_dim+k)*chld_cnt*2;
  1999. Real_t* IN1 = IN [j+1] + (in_dim*M_dim+k)*chld_cnt*2;
  2000. Real_t* OUT0 = OUT[j+0] + (ot_dim*M_dim+k)*chld_cnt*2;
  2001. Real_t* OUT1 = OUT[j+1] + (ot_dim*M_dim+k)*chld_cnt*2;
  2002. #ifdef __SSE__
  2003. if (j+2 < interac_cnt) { // Prefetch
  2004. _mm_prefetch(((char *)(IN[j+2] + (in_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2005. _mm_prefetch(((char *)(IN[j+2] + (in_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2006. _mm_prefetch(((char *)(IN[j+3] + (in_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2007. _mm_prefetch(((char *)(IN[j+3] + (in_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2008. _mm_prefetch(((char *)(OUT[j+2] + (ot_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2009. _mm_prefetch(((char *)(OUT[j+2] + (ot_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2010. _mm_prefetch(((char *)(OUT[j+3] + (ot_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2011. _mm_prefetch(((char *)(OUT[j+3] + (ot_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2012. }
  2013. #endif
  2014. #ifdef __AVX__ //AVX code.
  2015. __m256d out00,out01,out10,out11;
  2016. __m256d out20,out21,out30,out31;
  2017. double* in0__ = IN0;
  2018. double* in1__ = IN1;
  2019. out00 = _mm256_load_pd(OUT0);
  2020. out01 = _mm256_load_pd(OUT1);
  2021. out10 = _mm256_load_pd(OUT0+4);
  2022. out11 = _mm256_load_pd(OUT1+4);
  2023. out20 = _mm256_load_pd(OUT0+8);
  2024. out21 = _mm256_load_pd(OUT1+8);
  2025. out30 = _mm256_load_pd(OUT0+12);
  2026. out31 = _mm256_load_pd(OUT1+12);
  2027. for(int i2=0;i2<8;i2+=2){
  2028. __m256d m00;
  2029. __m256d ot00;
  2030. __m256d mt0,mtt0;
  2031. __m256d in00,in00_r,in01,in01_r;
  2032. in00 = _mm256_broadcast_pd((const __m128d*)in0__);
  2033. in00_r = _mm256_permute_pd(in00,5);
  2034. in01 = _mm256_broadcast_pd((const __m128d*)in1__);
  2035. in01_r = _mm256_permute_pd(in01,5);
  2036. m00 = _mm256_load_pd(M_);
  2037. mt0 = _mm256_unpacklo_pd(m00,m00);
  2038. ot00 = _mm256_mul_pd(mt0,in00);
  2039. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2040. out00 = _mm256_add_pd(out00,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2041. ot00 = _mm256_mul_pd(mt0,in01);
  2042. out01 = _mm256_add_pd(out01,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2043. m00 = _mm256_load_pd(M_+4);
  2044. mt0 = _mm256_unpacklo_pd(m00,m00);
  2045. ot00 = _mm256_mul_pd(mt0,in00);
  2046. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2047. out10 = _mm256_add_pd(out10,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2048. ot00 = _mm256_mul_pd(mt0,in01);
  2049. out11 = _mm256_add_pd(out11,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2050. m00 = _mm256_load_pd(M_+8);
  2051. mt0 = _mm256_unpacklo_pd(m00,m00);
  2052. ot00 = _mm256_mul_pd(mt0,in00);
  2053. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2054. out20 = _mm256_add_pd(out20,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2055. ot00 = _mm256_mul_pd(mt0,in01);
  2056. out21 = _mm256_add_pd(out21,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2057. m00 = _mm256_load_pd(M_+12);
  2058. mt0 = _mm256_unpacklo_pd(m00,m00);
  2059. ot00 = _mm256_mul_pd(mt0,in00);
  2060. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2061. out30 = _mm256_add_pd(out30,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2062. ot00 = _mm256_mul_pd(mt0,in01);
  2063. out31 = _mm256_add_pd(out31,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2064. in00 = _mm256_broadcast_pd((const __m128d*) (in0__+2));
  2065. in00_r = _mm256_permute_pd(in00,5);
  2066. in01 = _mm256_broadcast_pd((const __m128d*) (in1__+2));
  2067. in01_r = _mm256_permute_pd(in01,5);
  2068. m00 = _mm256_load_pd(M_+16);
  2069. mt0 = _mm256_unpacklo_pd(m00,m00);
  2070. ot00 = _mm256_mul_pd(mt0,in00);
  2071. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2072. out00 = _mm256_add_pd(out00,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2073. ot00 = _mm256_mul_pd(mt0,in01);
  2074. out01 = _mm256_add_pd(out01,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2075. m00 = _mm256_load_pd(M_+20);
  2076. mt0 = _mm256_unpacklo_pd(m00,m00);
  2077. ot00 = _mm256_mul_pd(mt0,in00);
  2078. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2079. out10 = _mm256_add_pd(out10,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2080. ot00 = _mm256_mul_pd(mt0,in01);
  2081. out11 = _mm256_add_pd(out11,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2082. m00 = _mm256_load_pd(M_+24);
  2083. mt0 = _mm256_unpacklo_pd(m00,m00);
  2084. ot00 = _mm256_mul_pd(mt0,in00);
  2085. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2086. out20 = _mm256_add_pd(out20,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2087. ot00 = _mm256_mul_pd(mt0,in01);
  2088. out21 = _mm256_add_pd(out21,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2089. m00 = _mm256_load_pd(M_+28);
  2090. mt0 = _mm256_unpacklo_pd(m00,m00);
  2091. ot00 = _mm256_mul_pd(mt0,in00);
  2092. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2093. out30 = _mm256_add_pd(out30,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2094. ot00 = _mm256_mul_pd(mt0,in01);
  2095. out31 = _mm256_add_pd(out31,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2096. M_ += 32;
  2097. in0__ += 4;
  2098. in1__ += 4;
  2099. }
  2100. _mm256_store_pd(OUT0,out00);
  2101. _mm256_store_pd(OUT1,out01);
  2102. _mm256_store_pd(OUT0+4,out10);
  2103. _mm256_store_pd(OUT1+4,out11);
  2104. _mm256_store_pd(OUT0+8,out20);
  2105. _mm256_store_pd(OUT1+8,out21);
  2106. _mm256_store_pd(OUT0+12,out30);
  2107. _mm256_store_pd(OUT1+12,out31);
  2108. #elif defined __SSE3__ // SSE code.
  2109. __m128d out00, out01, out10, out11;
  2110. __m128d in00, in01, in10, in11;
  2111. __m128d m00, m01, m10, m11;
  2112. //#pragma unroll
  2113. for(int i1=0;i1<8;i1+=2){
  2114. double* IN0_=IN0;
  2115. double* IN1_=IN1;
  2116. out00 =_mm_load_pd (OUT0 );
  2117. out10 =_mm_load_pd (OUT0+2);
  2118. out01 =_mm_load_pd (OUT1 );
  2119. out11 =_mm_load_pd (OUT1+2);
  2120. //#pragma unroll
  2121. for(int i2=0;i2<8;i2+=2){
  2122. m00 =_mm_load1_pd (M_ );
  2123. m10 =_mm_load1_pd (M_+ 2);
  2124. m01 =_mm_load1_pd (M_+16);
  2125. m11 =_mm_load1_pd (M_+18);
  2126. in00 =_mm_load_pd (IN0_ );
  2127. in10 =_mm_load_pd (IN0_+2);
  2128. in01 =_mm_load_pd (IN1_ );
  2129. in11 =_mm_load_pd (IN1_+2);
  2130. out00 = _mm_add_pd (out00, _mm_mul_pd(m00 , in00 ));
  2131. out00 = _mm_add_pd (out00, _mm_mul_pd(m01 , in10 ));
  2132. out01 = _mm_add_pd (out01, _mm_mul_pd(m00 , in01 ));
  2133. out01 = _mm_add_pd (out01, _mm_mul_pd(m01 , in11 ));
  2134. out10 = _mm_add_pd (out10, _mm_mul_pd(m10 , in00 ));
  2135. out10 = _mm_add_pd (out10, _mm_mul_pd(m11 , in10 ));
  2136. out11 = _mm_add_pd (out11, _mm_mul_pd(m10 , in01 ));
  2137. out11 = _mm_add_pd (out11, _mm_mul_pd(m11 , in11 ));
  2138. m00 =_mm_load1_pd (M_+ 1);
  2139. m10 =_mm_load1_pd (M_+ 2+1);
  2140. m01 =_mm_load1_pd (M_+16+1);
  2141. m11 =_mm_load1_pd (M_+18+1);
  2142. in00 =_mm_shuffle_pd (in00,in00,_MM_SHUFFLE2(0,1));
  2143. in01 =_mm_shuffle_pd (in01,in01,_MM_SHUFFLE2(0,1));
  2144. in10 =_mm_shuffle_pd (in10,in10,_MM_SHUFFLE2(0,1));
  2145. in11 =_mm_shuffle_pd (in11,in11,_MM_SHUFFLE2(0,1));
  2146. out00 = _mm_addsub_pd(out00, _mm_mul_pd(m00, in00));
  2147. out00 = _mm_addsub_pd(out00, _mm_mul_pd(m01, in10));
  2148. out01 = _mm_addsub_pd(out01, _mm_mul_pd(m00, in01));
  2149. out01 = _mm_addsub_pd(out01, _mm_mul_pd(m01, in11));
  2150. out10 = _mm_addsub_pd(out10, _mm_mul_pd(m10, in00));
  2151. out10 = _mm_addsub_pd(out10, _mm_mul_pd(m11, in10));
  2152. out11 = _mm_addsub_pd(out11, _mm_mul_pd(m10, in01));
  2153. out11 = _mm_addsub_pd(out11, _mm_mul_pd(m11, in11));
  2154. M_+=32; // Jump to (column+2).
  2155. IN0_+=4;
  2156. IN1_+=4;
  2157. }
  2158. _mm_store_pd (OUT0 ,out00);
  2159. _mm_store_pd (OUT0+2,out10);
  2160. _mm_store_pd (OUT1 ,out01);
  2161. _mm_store_pd (OUT1+2,out11);
  2162. M_+=4-64*2; // Jump back to first column (row+2).
  2163. OUT0+=4;
  2164. OUT1+=4;
  2165. }
  2166. #else // Generic code.
  2167. Real_t out_reg000, out_reg001, out_reg010, out_reg011;
  2168. Real_t out_reg100, out_reg101, out_reg110, out_reg111;
  2169. Real_t in_reg000, in_reg001, in_reg010, in_reg011;
  2170. Real_t in_reg100, in_reg101, in_reg110, in_reg111;
  2171. Real_t m_reg000, m_reg001, m_reg010, m_reg011;
  2172. Real_t m_reg100, m_reg101, m_reg110, m_reg111;
  2173. //#pragma unroll
  2174. for(int i1=0;i1<8;i1+=2){
  2175. Real_t* IN0_=IN0;
  2176. Real_t* IN1_=IN1;
  2177. out_reg000=OUT0[ 0]; out_reg001=OUT0[ 1];
  2178. out_reg010=OUT0[ 2]; out_reg011=OUT0[ 3];
  2179. out_reg100=OUT1[ 0]; out_reg101=OUT1[ 1];
  2180. out_reg110=OUT1[ 2]; out_reg111=OUT1[ 3];
  2181. //#pragma unroll
  2182. for(int i2=0;i2<8;i2+=2){
  2183. m_reg000=M_[ 0]; m_reg001=M_[ 1];
  2184. m_reg010=M_[ 2]; m_reg011=M_[ 3];
  2185. m_reg100=M_[16]; m_reg101=M_[17];
  2186. m_reg110=M_[18]; m_reg111=M_[19];
  2187. in_reg000=IN0_[0]; in_reg001=IN0_[1];
  2188. in_reg010=IN0_[2]; in_reg011=IN0_[3];
  2189. in_reg100=IN1_[0]; in_reg101=IN1_[1];
  2190. in_reg110=IN1_[2]; in_reg111=IN1_[3];
  2191. out_reg000 += m_reg000*in_reg000 - m_reg001*in_reg001;
  2192. out_reg001 += m_reg000*in_reg001 + m_reg001*in_reg000;
  2193. out_reg010 += m_reg010*in_reg000 - m_reg011*in_reg001;
  2194. out_reg011 += m_reg010*in_reg001 + m_reg011*in_reg000;
  2195. out_reg000 += m_reg100*in_reg010 - m_reg101*in_reg011;
  2196. out_reg001 += m_reg100*in_reg011 + m_reg101*in_reg010;
  2197. out_reg010 += m_reg110*in_reg010 - m_reg111*in_reg011;
  2198. out_reg011 += m_reg110*in_reg011 + m_reg111*in_reg010;
  2199. out_reg100 += m_reg000*in_reg100 - m_reg001*in_reg101;
  2200. out_reg101 += m_reg000*in_reg101 + m_reg001*in_reg100;
  2201. out_reg110 += m_reg010*in_reg100 - m_reg011*in_reg101;
  2202. out_reg111 += m_reg010*in_reg101 + m_reg011*in_reg100;
  2203. out_reg100 += m_reg100*in_reg110 - m_reg101*in_reg111;
  2204. out_reg101 += m_reg100*in_reg111 + m_reg101*in_reg110;
  2205. out_reg110 += m_reg110*in_reg110 - m_reg111*in_reg111;
  2206. out_reg111 += m_reg110*in_reg111 + m_reg111*in_reg110;
  2207. M_+=32; // Jump to (column+2).
  2208. IN0_+=4;
  2209. IN1_+=4;
  2210. }
  2211. OUT0[ 0]=out_reg000; OUT0[ 1]=out_reg001;
  2212. OUT0[ 2]=out_reg010; OUT0[ 3]=out_reg011;
  2213. OUT1[ 0]=out_reg100; OUT1[ 1]=out_reg101;
  2214. OUT1[ 2]=out_reg110; OUT1[ 3]=out_reg111;
  2215. M_+=4-64*2; // Jump back to first column (row+2).
  2216. OUT0+=4;
  2217. OUT1+=4;
  2218. }
  2219. #endif
  2220. }
  2221. M += M_dim*128;
  2222. }
  2223. }
  2224. }
  2225. // Compute flops.
  2226. {
  2227. Profile::Add_FLOP(8*8*8*(interac_vec.Dim()/2)*M_dim*ker_dim0*ker_dim1*dof);
  2228. }
  2229. // Free memory
  2230. delete[] IN_ ;
  2231. delete[] OUT_;
  2232. mem::aligned_free<Real_t>(zero_vec0);
  2233. mem::aligned_free<Real_t>(zero_vec1);
  2234. }
  2235. template <class FMMNode>
  2236. void FMM_Pts<FMMNode>::V_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2237. if(this->MultipoleOrder()==0) return;
  2238. if(level==0) return;
  2239. { // Set setup_data
  2240. setup_data.level=level;
  2241. setup_data.kernel=&aux_kernel;
  2242. setup_data.interac_type.resize(1);
  2243. setup_data.interac_type[0]=V1_Type;
  2244. setup_data. input_data=&buff[0];
  2245. setup_data.output_data=&buff[1];
  2246. Vector<FMMNode_t*>& nodes_in =n_list[2];
  2247. Vector<FMMNode_t*>& nodes_out=n_list[3];
  2248. setup_data.nodes_in .clear();
  2249. setup_data.nodes_out.clear();
  2250. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2251. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level-1 || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  2252. }
  2253. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2254. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2255. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2256. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2257. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)((FMMNode*)nodes_in [i])->Child(0))->FMMData())->upward_equiv);
  2258. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)((FMMNode*)nodes_out[i])->Child(0))->FMMData())->dnward_equiv);
  2259. /////////////////////////////////////////////////////////////////////////////
  2260. size_t n_in =nodes_in .size();
  2261. size_t n_out=nodes_out.size();
  2262. // Setup precomputed data.
  2263. SetupPrecomp(setup_data,device);
  2264. // Build interac_data
  2265. Profile::Tic("Interac-Data",&this->comm,true,25);
  2266. Matrix<char>& interac_data=setup_data.interac_data;
  2267. if(n_out>0 && n_in >0){ // Build precomp_data, interac_data
  2268. size_t precomp_offset=0;
  2269. Mat_Type& interac_type=setup_data.interac_type[0];
  2270. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  2271. Vector<size_t> precomp_data_offset;
  2272. std::vector<size_t> interac_mat;
  2273. { // Load precomp_data for interac_type.
  2274. Matrix<char>& precomp_data=*setup_data.precomp_data;
  2275. char* indx_ptr=precomp_data[0]+precomp_offset;
  2276. size_t total_size=((size_t*)indx_ptr)[0]; indx_ptr+=sizeof(size_t);
  2277. /*size_t mat_cnt_ =((size_t*)indx_ptr)[0];*/ indx_ptr+=sizeof(size_t);
  2278. precomp_data_offset.ReInit((1+2+2)*mat_cnt, (size_t*)indx_ptr, false);
  2279. precomp_offset+=total_size;
  2280. for(size_t mat_id=0;mat_id<mat_cnt;mat_id++){
  2281. Matrix<Real_t>& M0 = this->mat->Mat(level, interac_type, mat_id);
  2282. assert(M0.Dim(0)>0 && M0.Dim(1)>0); UNUSED(M0);
  2283. interac_mat.push_back(precomp_data_offset[5*mat_id]);
  2284. }
  2285. }
  2286. size_t dof;
  2287. size_t m=MultipoleOrder();
  2288. size_t ker_dim0=setup_data.kernel->ker_dim[0];
  2289. size_t ker_dim1=setup_data.kernel->ker_dim[1];
  2290. size_t fftsize;
  2291. {
  2292. size_t n1=m*2;
  2293. size_t n2=n1*n1;
  2294. size_t n3_=n2*(n1/2+1);
  2295. size_t chld_cnt=1UL<<COORD_DIM;
  2296. fftsize=2*n3_*chld_cnt;
  2297. dof=1;
  2298. }
  2299. int omp_p=omp_get_max_threads();
  2300. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  2301. size_t n_blk0=2*fftsize*dof*(ker_dim0*n_in +ker_dim1*n_out)*sizeof(Real_t)/buff_size;
  2302. if(n_blk0==0) n_blk0=1;
  2303. std::vector<std::vector<size_t> > fft_vec(n_blk0);
  2304. std::vector<std::vector<size_t> > ifft_vec(n_blk0);
  2305. std::vector<std::vector<size_t> > interac_vec(n_blk0);
  2306. std::vector<std::vector<size_t> > interac_dsp(n_blk0);
  2307. {
  2308. Matrix<Real_t>& input_data=*setup_data. input_data;
  2309. Matrix<Real_t>& output_data=*setup_data.output_data;
  2310. std::vector<std::vector<FMMNode*> > nodes_blk_in (n_blk0);
  2311. std::vector<std::vector<FMMNode*> > nodes_blk_out(n_blk0);
  2312. for(size_t i=0;i<n_in;i++) ((FMMNode*)nodes_in[i])->node_id=i;
  2313. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2314. size_t blk0_start=(n_out* blk0 )/n_blk0;
  2315. size_t blk0_end =(n_out*(blk0+1))/n_blk0;
  2316. std::vector<FMMNode*>& nodes_in_ =nodes_blk_in [blk0];
  2317. std::vector<FMMNode*>& nodes_out_=nodes_blk_out[blk0];
  2318. { // Build node list for blk0.
  2319. std::set<void*> nodes_in;
  2320. for(size_t i=blk0_start;i<blk0_end;i++){
  2321. nodes_out_.push_back((FMMNode*)nodes_out[i]);
  2322. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  2323. for(size_t k=0;k<mat_cnt;k++) if(lst[k]!=NULL) nodes_in.insert(lst[k]);
  2324. }
  2325. for(std::set<void*>::iterator node=nodes_in.begin(); node != nodes_in.end(); node++){
  2326. nodes_in_.push_back((FMMNode*)*node);
  2327. }
  2328. size_t input_dim=nodes_in_ .size()*ker_dim0*dof*fftsize;
  2329. size_t output_dim=nodes_out_.size()*ker_dim1*dof*fftsize;
  2330. size_t buffer_dim=(ker_dim0+ker_dim1)*dof*fftsize*omp_p;
  2331. if(buff_size<(input_dim + output_dim + buffer_dim)*sizeof(Real_t))
  2332. buff_size=(input_dim + output_dim + buffer_dim)*sizeof(Real_t);
  2333. }
  2334. { // Set fft vectors.
  2335. for(size_t i=0;i<nodes_in_ .size();i++) fft_vec[blk0].push_back((size_t)(& input_vector[nodes_in_[i]->node_id][0][0]- input_data[0]));
  2336. for(size_t i=0;i<nodes_out_.size();i++)ifft_vec[blk0].push_back((size_t)(&output_vector[blk0_start + i ][0][0]-output_data[0]));
  2337. }
  2338. }
  2339. for(size_t blk0=0;blk0<n_blk0;blk0++){ // Hadamard interactions.
  2340. std::vector<FMMNode*>& nodes_in_ =nodes_blk_in [blk0];
  2341. std::vector<FMMNode*>& nodes_out_=nodes_blk_out[blk0];
  2342. for(size_t i=0;i<nodes_in_.size();i++) nodes_in_[i]->node_id=i;
  2343. { // Next blocking level.
  2344. size_t n_blk1=nodes_out_.size()*(ker_dim0+ker_dim1)/V_BLK_SIZE; //64 vectors should fit in L1.
  2345. if(n_blk1==0) n_blk1=1;
  2346. size_t interac_dsp_=0;
  2347. for(size_t blk1=0;blk1<n_blk1;blk1++){
  2348. size_t blk1_start=(nodes_out_.size()* blk1 )/n_blk1;
  2349. size_t blk1_end =(nodes_out_.size()*(blk1+1))/n_blk1;
  2350. for(size_t k=0;k<mat_cnt;k++){
  2351. for(size_t i=blk1_start;i<blk1_end;i++){
  2352. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out_[i])->interac_list[interac_type];
  2353. if(lst[k]!=NULL){
  2354. interac_vec[blk0].push_back(lst[k]->node_id*fftsize*ker_dim0*dof);
  2355. interac_vec[blk0].push_back( i *fftsize*ker_dim1*dof);
  2356. interac_dsp_++;
  2357. }
  2358. }
  2359. interac_dsp[blk0].push_back(interac_dsp_);
  2360. }
  2361. }
  2362. }
  2363. }
  2364. }
  2365. { // Set interac_data.
  2366. size_t data_size=sizeof(size_t)*5; // m, dof, ker_dim0, ker_dim1, n_blk0
  2367. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2368. data_size+=sizeof(size_t)+ fft_vec[blk0].size()*sizeof(size_t);
  2369. data_size+=sizeof(size_t)+ ifft_vec[blk0].size()*sizeof(size_t);
  2370. data_size+=sizeof(size_t)+interac_vec[blk0].size()*sizeof(size_t);
  2371. data_size+=sizeof(size_t)+interac_dsp[blk0].size()*sizeof(size_t);
  2372. }
  2373. data_size+=sizeof(size_t)+interac_mat.size()*sizeof(size_t);
  2374. if(data_size>interac_data.Dim(0)*interac_data.Dim(1))
  2375. interac_data.Resize(1,data_size);
  2376. char* data_ptr=&interac_data[0][0];
  2377. ((size_t*)data_ptr)[0]=buff_size; data_ptr+=sizeof(size_t);
  2378. ((size_t*)data_ptr)[0]= m; data_ptr+=sizeof(size_t);
  2379. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  2380. ((size_t*)data_ptr)[0]= ker_dim0; data_ptr+=sizeof(size_t);
  2381. ((size_t*)data_ptr)[0]= ker_dim1; data_ptr+=sizeof(size_t);
  2382. ((size_t*)data_ptr)[0]= n_blk0; data_ptr+=sizeof(size_t);
  2383. ((size_t*)data_ptr)[0]= interac_mat.size(); data_ptr+=sizeof(size_t);
  2384. mem::memcopy(data_ptr, &interac_mat[0], interac_mat.size()*sizeof(size_t));
  2385. data_ptr+=interac_mat.size()*sizeof(size_t);
  2386. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2387. ((size_t*)data_ptr)[0]= fft_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2388. mem::memcopy(data_ptr, & fft_vec[blk0][0], fft_vec[blk0].size()*sizeof(size_t));
  2389. data_ptr+= fft_vec[blk0].size()*sizeof(size_t);
  2390. ((size_t*)data_ptr)[0]=ifft_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2391. mem::memcopy(data_ptr, &ifft_vec[blk0][0], ifft_vec[blk0].size()*sizeof(size_t));
  2392. data_ptr+=ifft_vec[blk0].size()*sizeof(size_t);
  2393. ((size_t*)data_ptr)[0]=interac_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2394. mem::memcopy(data_ptr, &interac_vec[blk0][0], interac_vec[blk0].size()*sizeof(size_t));
  2395. data_ptr+=interac_vec[blk0].size()*sizeof(size_t);
  2396. ((size_t*)data_ptr)[0]=interac_dsp[blk0].size(); data_ptr+=sizeof(size_t);
  2397. mem::memcopy(data_ptr, &interac_dsp[blk0][0], interac_dsp[blk0].size()*sizeof(size_t));
  2398. data_ptr+=interac_dsp[blk0].size()*sizeof(size_t);
  2399. }
  2400. }
  2401. }
  2402. Profile::Toc();
  2403. Profile::Tic("Host2Device",&this->comm,false,25);
  2404. if(device){ // Host2Device
  2405. setup_data.interac_data. AllocDevice(true);
  2406. }
  2407. Profile::Toc();
  2408. }
  2409. template <class FMMNode>
  2410. void FMM_Pts<FMMNode>::V_List (SetupData<Real_t>& setup_data, bool device){
  2411. assert(!device); //Can not run on accelerator yet.
  2412. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  2413. Profile::Tic("Host2Device",&this->comm,false,25);
  2414. Profile::Toc();
  2415. Profile::Tic("FFT",&comm,false,100);
  2416. Profile::Toc();
  2417. Profile::Tic("HadamardProduct",&comm,false,100);
  2418. Profile::Toc();
  2419. Profile::Tic("IFFT",&comm,false,100);
  2420. Profile::Toc();
  2421. return;
  2422. }
  2423. Profile::Tic("Host2Device",&this->comm,false,25);
  2424. int level=setup_data.level;
  2425. size_t buff_size=*((size_t*)&setup_data.interac_data[0][0]);
  2426. typename Matrix<Real_t>::Device M_d;
  2427. typename Vector<char>::Device buff;
  2428. typename Matrix<char>::Device precomp_data;
  2429. typename Matrix<char>::Device interac_data;
  2430. typename Matrix<Real_t>::Device input_data;
  2431. typename Matrix<Real_t>::Device output_data;
  2432. Matrix<Real_t>& M = this->mat->Mat(level, DC2DE_Type, 0);
  2433. if(device){
  2434. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.Resize(buff_size);
  2435. M_d = M. AllocDevice(false);
  2436. buff = this-> dev_buffer. AllocDevice(false);
  2437. precomp_data= setup_data.precomp_data->AllocDevice(false);
  2438. interac_data= setup_data.interac_data. AllocDevice(false);
  2439. input_data = setup_data. input_data->AllocDevice(false);
  2440. output_data = setup_data. output_data->AllocDevice(false);
  2441. }else{
  2442. if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.Resize(buff_size);
  2443. M_d = M;
  2444. buff = this-> cpu_buffer;
  2445. precomp_data=*setup_data.precomp_data;
  2446. interac_data= setup_data.interac_data;
  2447. input_data =*setup_data. input_data;
  2448. output_data =*setup_data. output_data;
  2449. }
  2450. Profile::Toc();
  2451. { // Offloaded computation.
  2452. // Set interac_data.
  2453. size_t m, dof, ker_dim0, ker_dim1, n_blk0;
  2454. std::vector<Vector<size_t> > fft_vec;
  2455. std::vector<Vector<size_t> > ifft_vec;
  2456. std::vector<Vector<size_t> > interac_vec;
  2457. std::vector<Vector<size_t> > interac_dsp;
  2458. Vector<Real_t*> precomp_mat;
  2459. { // Set interac_data.
  2460. char* data_ptr=&interac_data[0][0];
  2461. buff_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2462. m =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2463. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2464. ker_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2465. ker_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2466. n_blk0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2467. fft_vec .resize(n_blk0);
  2468. ifft_vec.resize(n_blk0);
  2469. interac_vec.resize(n_blk0);
  2470. interac_dsp.resize(n_blk0);
  2471. Vector<size_t> interac_mat;
  2472. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2473. data_ptr+=sizeof(size_t)+interac_mat.Dim()*sizeof(size_t);
  2474. precomp_mat.Resize(interac_mat.Dim());
  2475. for(size_t i=0;i<interac_mat.Dim();i++){
  2476. precomp_mat[i]=(Real_t*)(precomp_data[0]+interac_mat[i]);
  2477. }
  2478. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2479. fft_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2480. data_ptr+=sizeof(size_t)+fft_vec[blk0].Dim()*sizeof(size_t);
  2481. ifft_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2482. data_ptr+=sizeof(size_t)+ifft_vec[blk0].Dim()*sizeof(size_t);
  2483. interac_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2484. data_ptr+=sizeof(size_t)+interac_vec[blk0].Dim()*sizeof(size_t);
  2485. interac_dsp[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2486. data_ptr+=sizeof(size_t)+interac_dsp[blk0].Dim()*sizeof(size_t);
  2487. }
  2488. }
  2489. int omp_p=omp_get_max_threads();
  2490. size_t M_dim, fftsize;
  2491. {
  2492. size_t n1=m*2;
  2493. size_t n2=n1*n1;
  2494. size_t n3_=n2*(n1/2+1);
  2495. size_t chld_cnt=1UL<<COORD_DIM;
  2496. fftsize=2*n3_*chld_cnt;
  2497. M_dim=n3_;
  2498. }
  2499. for(size_t blk0=0;blk0<n_blk0;blk0++){ // interactions
  2500. size_t n_in = fft_vec[blk0].Dim();
  2501. size_t n_out=ifft_vec[blk0].Dim();
  2502. size_t input_dim=n_in *ker_dim0*dof*fftsize;
  2503. size_t output_dim=n_out*ker_dim1*dof*fftsize;
  2504. size_t buffer_dim=(ker_dim0+ker_dim1)*dof*fftsize*omp_p;
  2505. Vector<Real_t> fft_in ( input_dim, (Real_t*)&buff[ 0 ],false);
  2506. Vector<Real_t> fft_out(output_dim, (Real_t*)&buff[ input_dim *sizeof(Real_t)],false);
  2507. Vector<Real_t> buffer(buffer_dim, (Real_t*)&buff[(input_dim+output_dim)*sizeof(Real_t)],false);
  2508. { // FFT
  2509. Profile::Tic("FFT",&comm,false,100);
  2510. Vector<Real_t> input_data_( input_data.dim[0]* input_data.dim[1], input_data[0], false);
  2511. FFT_UpEquiv(dof, m, ker_dim0, fft_vec[blk0], input_data_, fft_in, buffer);
  2512. Profile::Toc();
  2513. }
  2514. { // Hadamard
  2515. #ifdef PVFMM_HAVE_PAPI
  2516. #ifdef __VERBOSE__
  2517. std::cout << "Starting counters new\n";
  2518. if (PAPI_start(EventSet) != PAPI_OK) std::cout << "handle_error3" << std::endl;
  2519. #endif
  2520. #endif
  2521. Profile::Tic("HadamardProduct",&comm,false,100);
  2522. VListHadamard<Real_t>(dof, M_dim, ker_dim0, ker_dim1, interac_dsp[blk0], interac_vec[blk0], precomp_mat, fft_in, fft_out);
  2523. Profile::Toc();
  2524. #ifdef PVFMM_HAVE_PAPI
  2525. #ifdef __VERBOSE__
  2526. if (PAPI_stop(EventSet, values) != PAPI_OK) std::cout << "handle_error4" << std::endl;
  2527. std::cout << "Stopping counters\n";
  2528. #endif
  2529. #endif
  2530. }
  2531. { // IFFT
  2532. Profile::Tic("IFFT",&comm,false,100);
  2533. Matrix<Real_t> M(M_d.dim[0],M_d.dim[1],M_d[0],false);
  2534. Vector<Real_t> output_data_(output_data.dim[0]*output_data.dim[1], output_data[0], false);
  2535. FFT_Check2Equiv(dof, m, ker_dim1, ifft_vec[blk0], fft_out, output_data_, buffer, M);
  2536. Profile::Toc();
  2537. }
  2538. }
  2539. }
  2540. }
  2541. template <class FMMNode>
  2542. void FMM_Pts<FMMNode>::Down2DownSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2543. if(this->MultipoleOrder()==0) return;
  2544. { // Set setup_data
  2545. setup_data.level=level;
  2546. setup_data.kernel=&aux_kernel;
  2547. setup_data.interac_type.resize(1);
  2548. setup_data.interac_type[0]=D2D_Type;
  2549. setup_data. input_data=&buff[1];
  2550. setup_data.output_data=&buff[1];
  2551. Vector<FMMNode_t*>& nodes_in =n_list[1];
  2552. Vector<FMMNode_t*>& nodes_out=n_list[1];
  2553. setup_data.nodes_in .clear();
  2554. setup_data.nodes_out.clear();
  2555. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2556. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level ) setup_data.nodes_out.push_back(nodes_out[i]);
  2557. }
  2558. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2559. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2560. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2561. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2562. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->dnward_equiv);
  2563. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->dnward_equiv);
  2564. SetupInterac(setup_data,device);
  2565. }
  2566. template <class FMMNode>
  2567. void FMM_Pts<FMMNode>::Down2Down (SetupData<Real_t>& setup_data, bool device){
  2568. //Add Down2Down contribution.
  2569. EvalList(setup_data, device);
  2570. }
  2571. template <class FMMNode>
  2572. void FMM_Pts<FMMNode>::SetupInteracPts(SetupData<Real_t>& setup_data, bool shift_src, bool shift_trg, Matrix<Real_t>* M, bool device){
  2573. int level=setup_data.level;
  2574. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  2575. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2576. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2577. Matrix<Real_t>& output_data=*setup_data.output_data;
  2578. Matrix<Real_t>& input_data=*setup_data. input_data;
  2579. Matrix<Real_t>& coord_data=*setup_data. coord_data;
  2580. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector;
  2581. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector;
  2582. size_t n_in =nodes_in .size();
  2583. size_t n_out=nodes_out.size();
  2584. //setup_data.precomp_data=NULL;
  2585. // Build interac_data
  2586. Profile::Tic("Interac-Data",&this->comm,true,25);
  2587. Matrix<char>& interac_data=setup_data.interac_data;
  2588. if(n_out>0 && n_in >0){
  2589. size_t ker_dim0=setup_data.kernel->ker_dim[0];
  2590. size_t ker_dim1=setup_data.kernel->ker_dim[1];
  2591. size_t dof=1;
  2592. for(size_t i=0;i<n_in ;i++) ((FMMNode*)nodes_in [i])->node_id=i;
  2593. std::vector<size_t> trg_interac_cnt(n_out,0);
  2594. std::vector<size_t> trg_coord(n_out);
  2595. std::vector<size_t> trg_value(n_out);
  2596. std::vector<size_t> trg_cnt(n_out);
  2597. std::vector<Real_t> scaling(n_out,0);
  2598. { // Set trg data
  2599. Mat_Type& interac_type=interac_type_lst[0];
  2600. for(size_t i=0;i<n_out;i++){
  2601. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  2602. trg_cnt [i]=output_vector[i*2+0]->Dim()/COORD_DIM;
  2603. trg_coord[i]=(size_t)(&output_vector[i*2+0][0][0]- coord_data[0]);
  2604. trg_value[i]=(size_t)(&output_vector[i*2+1][0][0]-output_data[0]);
  2605. if(!this->Homogen()) scaling[i]=1.0;
  2606. else if(interac_type==S2U_Type) scaling[i]=pow(0.5, setup_data.kernel->poten_scale *((FMMNode*)nodes_out[i])->Depth());
  2607. else if(interac_type== X_Type) scaling[i]=pow(0.5, setup_data.kernel->poten_scale *((FMMNode*)nodes_out[i])->Depth());
  2608. }
  2609. }
  2610. }
  2611. std::vector<std::vector<size_t> > src_cnt(n_out);
  2612. std::vector<std::vector<size_t> > src_coord(n_out);
  2613. std::vector<std::vector<size_t> > src_value(n_out);
  2614. std::vector<std::vector<Real_t> > shift_coord(n_out);
  2615. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  2616. Mat_Type& interac_type=interac_type_lst[type_indx];
  2617. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  2618. for(size_t i=0;i<n_out;i++){ // For each target node.
  2619. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  2620. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  2621. for(size_t mat_indx=0;mat_indx<mat_cnt;mat_indx++) if(lst[mat_indx]!=NULL){ // For each direction.
  2622. size_t j=lst[mat_indx]->node_id;
  2623. if(input_vector[j*4+0]->Dim()>0 || input_vector[j*4+2]->Dim()>0){
  2624. trg_interac_cnt[i]++;
  2625. { // Determine shift for periodic boundary condition
  2626. Real_t* sc=lst[mat_indx]->Coord();
  2627. Real_t* tc=((FMMNode*)nodes_out[i])->Coord();
  2628. int* rel_coord=this->interac_list.RelativeCoord(interac_type, mat_indx);
  2629. shift_coord[i].push_back((tc[0]>sc[0] && rel_coord[0]>0? 1.0:
  2630. (tc[0]<sc[0] && rel_coord[0]<0?-1.0:0.0)) +
  2631. (shift_src?sc[0]:0) - (shift_trg?tc[0]:0) );
  2632. shift_coord[i].push_back((tc[1]>sc[1] && rel_coord[1]>0? 1.0:
  2633. (tc[1]<sc[1] && rel_coord[1]<0?-1.0:0.0)) +
  2634. (shift_src?sc[1]:0) - (shift_trg?tc[1]:0) );
  2635. shift_coord[i].push_back((tc[2]>sc[2] && rel_coord[2]>0? 1.0:
  2636. (tc[2]<sc[2] && rel_coord[2]<0?-1.0:0.0)) +
  2637. (shift_src?sc[2]:0) - (shift_trg?tc[2]:0) );
  2638. }
  2639. { // Set src data
  2640. if(input_vector[j*4+0]!=NULL){
  2641. src_cnt [i].push_back(input_vector[j*4+0]->Dim()/COORD_DIM);
  2642. src_coord[i].push_back((size_t)(& input_vector[j*4+0][0][0]- coord_data[0]));
  2643. src_value[i].push_back((size_t)(& input_vector[j*4+1][0][0]- input_data[0]));
  2644. }else{
  2645. src_cnt [i].push_back(0);
  2646. src_coord[i].push_back(0);
  2647. src_value[i].push_back(0);
  2648. }
  2649. if(input_vector[j*4+2]!=NULL){
  2650. src_cnt [i].push_back(input_vector[j*4+2]->Dim()/COORD_DIM);
  2651. src_coord[i].push_back((size_t)(& input_vector[j*4+2][0][0]- coord_data[0]));
  2652. src_value[i].push_back((size_t)(& input_vector[j*4+3][0][0]- input_data[0]));
  2653. }else{
  2654. src_cnt [i].push_back(0);
  2655. src_coord[i].push_back(0);
  2656. src_value[i].push_back(0);
  2657. }
  2658. }
  2659. }
  2660. }
  2661. }
  2662. }
  2663. }
  2664. { // Set interac_data.
  2665. size_t data_size=sizeof(size_t)*4;
  2666. data_size+=sizeof(size_t)+trg_interac_cnt.size()*sizeof(size_t);
  2667. data_size+=sizeof(size_t)+trg_coord.size()*sizeof(size_t);
  2668. data_size+=sizeof(size_t)+trg_value.size()*sizeof(size_t);
  2669. data_size+=sizeof(size_t)+trg_cnt .size()*sizeof(size_t);
  2670. data_size+=sizeof(size_t)+scaling .size()*sizeof(Real_t);
  2671. data_size+=sizeof(size_t)*2+(M!=NULL?M->Dim(0)*M->Dim(1)*sizeof(Real_t):0);
  2672. for(size_t i=0;i<n_out;i++){
  2673. data_size+=sizeof(size_t)+src_cnt [i].size()*sizeof(size_t);
  2674. data_size+=sizeof(size_t)+src_coord[i].size()*sizeof(size_t);
  2675. data_size+=sizeof(size_t)+src_value[i].size()*sizeof(size_t);
  2676. data_size+=sizeof(size_t)+shift_coord[i].size()*sizeof(Real_t);
  2677. }
  2678. if(data_size>interac_data.Dim(0)*interac_data.Dim(1))
  2679. interac_data.Resize(1,data_size);
  2680. char* data_ptr=&interac_data[0][0];
  2681. ((size_t*)data_ptr)[0]=data_size; data_ptr+=sizeof(size_t);
  2682. ((size_t*)data_ptr)[0]= ker_dim0; data_ptr+=sizeof(size_t);
  2683. ((size_t*)data_ptr)[0]= ker_dim1; data_ptr+=sizeof(size_t);
  2684. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  2685. ((size_t*)data_ptr)[0]=trg_interac_cnt.size(); data_ptr+=sizeof(size_t);
  2686. mem::memcopy(data_ptr, &trg_interac_cnt[0], trg_interac_cnt.size()*sizeof(size_t));
  2687. data_ptr+=trg_interac_cnt.size()*sizeof(size_t);
  2688. ((size_t*)data_ptr)[0]=trg_coord.size(); data_ptr+=sizeof(size_t);
  2689. mem::memcopy(data_ptr, &trg_coord[0], trg_coord.size()*sizeof(size_t));
  2690. data_ptr+=trg_coord.size()*sizeof(size_t);
  2691. ((size_t*)data_ptr)[0]=trg_value.size(); data_ptr+=sizeof(size_t);
  2692. mem::memcopy(data_ptr, &trg_value[0], trg_value.size()*sizeof(size_t));
  2693. data_ptr+=trg_value.size()*sizeof(size_t);
  2694. ((size_t*)data_ptr)[0]=trg_cnt.size(); data_ptr+=sizeof(size_t);
  2695. mem::memcopy(data_ptr, &trg_cnt[0], trg_cnt.size()*sizeof(size_t));
  2696. data_ptr+=trg_cnt.size()*sizeof(size_t);
  2697. ((size_t*)data_ptr)[0]=scaling.size(); data_ptr+=sizeof(size_t);
  2698. mem::memcopy(data_ptr, &scaling[0], scaling.size()*sizeof(Real_t));
  2699. data_ptr+=scaling.size()*sizeof(Real_t);
  2700. if(M!=NULL){
  2701. ((size_t*)data_ptr)[0]=M->Dim(0); data_ptr+=sizeof(size_t);
  2702. ((size_t*)data_ptr)[0]=M->Dim(1); data_ptr+=sizeof(size_t);
  2703. mem::memcopy(data_ptr, M[0][0], M->Dim(0)*M->Dim(1)*sizeof(Real_t));
  2704. data_ptr+=M->Dim(0)*M->Dim(1)*sizeof(Real_t);
  2705. }else{
  2706. ((size_t*)data_ptr)[0]=0; data_ptr+=sizeof(size_t);
  2707. ((size_t*)data_ptr)[0]=0; data_ptr+=sizeof(size_t);
  2708. }
  2709. for(size_t i=0;i<n_out;i++){
  2710. ((size_t*)data_ptr)[0]=src_cnt[i].size(); data_ptr+=sizeof(size_t);
  2711. mem::memcopy(data_ptr, &src_cnt[i][0], src_cnt[i].size()*sizeof(size_t));
  2712. data_ptr+=src_cnt[i].size()*sizeof(size_t);
  2713. ((size_t*)data_ptr)[0]=src_coord[i].size(); data_ptr+=sizeof(size_t);
  2714. mem::memcopy(data_ptr, &src_coord[i][0], src_coord[i].size()*sizeof(size_t));
  2715. data_ptr+=src_coord[i].size()*sizeof(size_t);
  2716. ((size_t*)data_ptr)[0]=src_value[i].size(); data_ptr+=sizeof(size_t);
  2717. mem::memcopy(data_ptr, &src_value[i][0], src_value[i].size()*sizeof(size_t));
  2718. data_ptr+=src_value[i].size()*sizeof(size_t);
  2719. ((size_t*)data_ptr)[0]=shift_coord[i].size(); data_ptr+=sizeof(size_t);
  2720. mem::memcopy(data_ptr, &shift_coord[i][0], shift_coord[i].size()*sizeof(Real_t));
  2721. data_ptr+=shift_coord[i].size()*sizeof(Real_t);
  2722. }
  2723. }
  2724. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  2725. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.Resize(buff_size);
  2726. if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.Resize(buff_size);
  2727. }
  2728. Profile::Toc();
  2729. Profile::Tic("Host2Device",&this->comm,false,25);
  2730. if(device){ // Host2Device
  2731. setup_data.interac_data .AllocDevice(true);
  2732. }
  2733. Profile::Toc();
  2734. }
  2735. template <class FMMNode>
  2736. void FMM_Pts<FMMNode>::EvalListPts(SetupData<Real_t>& setup_data, bool device){
  2737. return;
  2738. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  2739. Profile::Tic("Host2Device",&this->comm,false,25);
  2740. Profile::Toc();
  2741. Profile::Tic("DeviceComp",&this->comm,false,20);
  2742. Profile::Toc();
  2743. return;
  2744. }
  2745. Profile::Tic("Host2Device",&this->comm,false,25);
  2746. typename Vector<char>::Device buff;
  2747. //typename Matrix<char>::Device precomp_data;
  2748. typename Matrix<char>::Device interac_data;
  2749. typename Matrix<Real_t>::Device coord_data;
  2750. typename Matrix<Real_t>::Device input_data;
  2751. typename Matrix<Real_t>::Device output_data;
  2752. if(device){
  2753. buff = this-> dev_buffer. AllocDevice(false);
  2754. interac_data= setup_data.interac_data. AllocDevice(false);
  2755. //if(setup_data.precomp_data!=NULL) precomp_data= setup_data.precomp_data->AllocDevice(false);
  2756. if(setup_data. coord_data!=NULL) coord_data = setup_data. coord_data->AllocDevice(false);
  2757. if(setup_data. input_data!=NULL) input_data = setup_data. input_data->AllocDevice(false);
  2758. if(setup_data. output_data!=NULL) output_data = setup_data. output_data->AllocDevice(false);
  2759. }else{
  2760. buff = this-> cpu_buffer;
  2761. interac_data= setup_data.interac_data;
  2762. //if(setup_data.precomp_data!=NULL) precomp_data=*setup_data.precomp_data;
  2763. if(setup_data. coord_data!=NULL) coord_data =*setup_data. coord_data;
  2764. if(setup_data. input_data!=NULL) input_data =*setup_data. input_data;
  2765. if(setup_data. output_data!=NULL) output_data =*setup_data. output_data;
  2766. }
  2767. Profile::Toc();
  2768. size_t ptr_single_layer_kernel=(size_t)setup_data.kernel->ker_poten;
  2769. size_t ptr_double_layer_kernel=(size_t)setup_data.kernel->dbl_layer_poten;
  2770. Profile::Tic("DeviceComp",&this->comm,false,20);
  2771. #ifdef __INTEL_OFFLOAD
  2772. int lock_idx=-1;
  2773. int wait_lock_idx=-1;
  2774. if(device) wait_lock_idx=MIC_Lock::curr_lock();
  2775. if(device) lock_idx=MIC_Lock::get_lock();
  2776. if(device) ptr_single_layer_kernel=setup_data.kernel->dev_ker_poten;
  2777. if(device) ptr_double_layer_kernel=setup_data.kernel->dev_dbl_layer_poten;
  2778. #pragma offload if(device) target(mic:0) signal(&MIC_Lock::lock_vec[device?lock_idx:0])
  2779. #endif
  2780. { // Offloaded computation.
  2781. // Set interac_data.
  2782. //size_t data_size;
  2783. //size_t ker_dim0;
  2784. size_t ker_dim1;
  2785. size_t dof, n_out;
  2786. Vector<size_t> trg_interac_cnt;
  2787. Vector<size_t> trg_coord;
  2788. Vector<size_t> trg_value;
  2789. Vector<size_t> trg_cnt;
  2790. Vector<Real_t> scaling;
  2791. Matrix<Real_t> M;
  2792. Vector< Vector<size_t> > src_cnt;
  2793. Vector< Vector<size_t> > src_coord;
  2794. Vector< Vector<size_t> > src_value;
  2795. Vector< Vector<Real_t> > shift_coord;
  2796. { // Set interac_data.
  2797. char* data_ptr=&interac_data[0][0];
  2798. /*data_size=((size_t*)data_ptr)[0];*/ data_ptr+=sizeof(size_t);
  2799. /*ker_dim0=((size_t*)data_ptr)[0];*/ data_ptr+=sizeof(size_t);
  2800. ker_dim1=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2801. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2802. trg_interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2803. data_ptr+=sizeof(size_t)+trg_interac_cnt.Dim()*sizeof(size_t);
  2804. n_out=trg_interac_cnt.Dim();
  2805. trg_coord.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2806. data_ptr+=sizeof(size_t)+trg_coord.Dim()*sizeof(size_t);
  2807. trg_value.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2808. data_ptr+=sizeof(size_t)+trg_value.Dim()*sizeof(size_t);
  2809. trg_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2810. data_ptr+=sizeof(size_t)+trg_cnt.Dim()*sizeof(size_t);
  2811. scaling.ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  2812. data_ptr+=sizeof(size_t)+scaling.Dim()*sizeof(Real_t);
  2813. M.ReInit(((size_t*)data_ptr)[0],((size_t*)data_ptr)[1],(Real_t*)(data_ptr+2*sizeof(size_t)),false);
  2814. data_ptr+=sizeof(size_t)*2+M.Dim(0)*M.Dim(1)*sizeof(Real_t);
  2815. src_cnt.Resize(n_out);
  2816. src_coord.Resize(n_out);
  2817. src_value.Resize(n_out);
  2818. shift_coord.Resize(n_out);
  2819. for(size_t i=0;i<n_out;i++){
  2820. src_cnt[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2821. data_ptr+=sizeof(size_t)+src_cnt[i].Dim()*sizeof(size_t);
  2822. src_coord[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2823. data_ptr+=sizeof(size_t)+src_coord[i].Dim()*sizeof(size_t);
  2824. src_value[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2825. data_ptr+=sizeof(size_t)+src_value[i].Dim()*sizeof(size_t);
  2826. shift_coord[i].ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  2827. data_ptr+=sizeof(size_t)+shift_coord[i].Dim()*sizeof(Real_t);
  2828. }
  2829. }
  2830. #ifdef __INTEL_OFFLOAD
  2831. if(device) MIC_Lock::wait_lock(wait_lock_idx);
  2832. #endif
  2833. //Compute interaction from point sources.
  2834. { // interactions
  2835. typename Kernel<Real_t>::Ker_t single_layer_kernel=(typename Kernel<Real_t>::Ker_t)ptr_single_layer_kernel;
  2836. typename Kernel<Real_t>::Ker_t double_layer_kernel=(typename Kernel<Real_t>::Ker_t)ptr_double_layer_kernel;
  2837. int omp_p=omp_get_max_threads();
  2838. Vector<Real_t*> thread_buff(omp_p);
  2839. size_t thread_buff_size=buff.dim/sizeof(Real_t)/omp_p;
  2840. for(int i=0;i<omp_p;i++) thread_buff[i]=(Real_t*)&buff[i*thread_buff_size*sizeof(Real_t)];
  2841. #pragma omp parallel for
  2842. for(size_t i=0;i<n_out;i++)
  2843. if(trg_interac_cnt[i]>0 && trg_cnt[i]>0){
  2844. int thread_id=omp_get_thread_num();
  2845. Real_t* s_coord=thread_buff[thread_id];
  2846. Real_t* t_value=output_data[0]+trg_value[i];
  2847. if(M.Dim(0)>0 && M.Dim(1)>0){
  2848. s_coord+=dof*M.Dim(0);
  2849. t_value=thread_buff[thread_id];
  2850. for(size_t j=0;j<dof*M.Dim(0);j++) t_value[j]=0;
  2851. }
  2852. size_t interac_cnt=0;
  2853. for(size_t j=0;j<trg_interac_cnt[i];j++){
  2854. if(ptr_single_layer_kernel!=(size_t)NULL){// Single layer kernel
  2855. Real_t* src_coord_=coord_data[0]+src_coord[i][2*j+0];
  2856. assert(thread_buff_size>=dof*M.Dim(0)+src_cnt[i][2*j+0]*COORD_DIM);
  2857. for(size_t k1=0;k1<src_cnt[i][2*j+0];k1++){ // Compute shifted source coordinates.
  2858. for(size_t k0=0;k0<COORD_DIM;k0++){
  2859. s_coord[k1*COORD_DIM+k0]=src_coord_[k1*COORD_DIM+k0]+shift_coord[i][j*COORD_DIM+k0];
  2860. }
  2861. }
  2862. single_layer_kernel( s_coord , src_cnt[i][2*j+0], input_data[0]+src_value[i][2*j+0], dof,
  2863. coord_data[0]+trg_coord[i], trg_cnt[i] , t_value);
  2864. interac_cnt+=src_cnt[i][2*j+0]*trg_cnt[i];
  2865. }
  2866. if(ptr_double_layer_kernel!=(size_t)NULL){// Double layer kernel
  2867. Real_t* src_coord_=coord_data[0]+src_coord[i][2*j+1];
  2868. assert(thread_buff_size>=dof*M.Dim(0)+src_cnt[i][2*j+1]*COORD_DIM);
  2869. for(size_t k1=0;k1<src_cnt[i][2*j+1];k1++){ // Compute shifted source coordinates.
  2870. for(size_t k0=0;k0<COORD_DIM;k0++){
  2871. s_coord[k1*COORD_DIM+k0]=src_coord_[k1*COORD_DIM+k0]+shift_coord[i][j*COORD_DIM+k0];
  2872. }
  2873. }
  2874. double_layer_kernel( s_coord , src_cnt[i][2*j+1], input_data[0]+src_value[i][2*j+1], dof,
  2875. coord_data[0]+trg_coord[i], trg_cnt[i] , t_value);
  2876. interac_cnt+=src_cnt[i][2*j+1]*trg_cnt[i];
  2877. }
  2878. }
  2879. if(M.Dim(0)>0 && M.Dim(1)>0 && interac_cnt>0){
  2880. assert(trg_cnt[i]*ker_dim1==M.Dim(0)); UNUSED(ker_dim1);
  2881. for(size_t j=0;j<dof*M.Dim(0);j++) t_value[j]*=scaling[i];
  2882. Matrix<Real_t> in_vec(dof, M.Dim(0), t_value , false);
  2883. Matrix<Real_t> out_vec(dof, M.Dim(1), output_data[0]+trg_value[i], false);
  2884. Matrix<Real_t>::DGEMM(out_vec, in_vec, M, 1.0);
  2885. }
  2886. }
  2887. }
  2888. #ifdef __INTEL_OFFLOAD
  2889. if(device) MIC_Lock::release_lock(lock_idx);
  2890. #endif
  2891. }
  2892. #ifndef __MIC_ASYNCH__
  2893. #ifdef __INTEL_OFFLOAD
  2894. #pragma offload if(device) target(mic:0)
  2895. {if(device) MIC_Lock::wait_lock(lock_idx);}
  2896. #endif
  2897. #endif
  2898. Profile::Toc();
  2899. }
  2900. template <class FMMNode>
  2901. void FMM_Pts<FMMNode>::X_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2902. if(this->MultipoleOrder()==0) return;
  2903. { // Set setup_data
  2904. setup_data.level=level;
  2905. setup_data.kernel=&aux_kernel;
  2906. setup_data.interac_type.resize(1);
  2907. setup_data.interac_type[0]=X_Type;
  2908. setup_data. input_data=&buff[4];
  2909. setup_data.output_data=&buff[1];
  2910. setup_data. coord_data=&buff[6];
  2911. Vector<FMMNode_t*>& nodes_in =n_list[4];
  2912. Vector<FMMNode_t*>& nodes_out=n_list[1];
  2913. setup_data.nodes_in .clear();
  2914. setup_data.nodes_out.clear();
  2915. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2916. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  2917. }
  2918. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2919. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2920. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2921. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2922. for(size_t i=0;i<nodes_in .size();i++){
  2923. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
  2924. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
  2925. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
  2926. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
  2927. }
  2928. for(size_t i=0;i<nodes_out.size();i++){
  2929. output_vector.push_back(&dnwd_check_surf[((FMMNode*)nodes_out[i])->Depth()]);
  2930. output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->dnward_equiv);
  2931. }
  2932. //Downward check to downward equivalent matrix.
  2933. Matrix<Real_t>& M_dc2de = this->mat->Mat(level, DC2DE_Type, 0);
  2934. this->SetupInteracPts(setup_data, false, true, &M_dc2de,device);
  2935. { // Resize device buffer
  2936. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  2937. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  2938. }
  2939. }
  2940. template <class FMMNode>
  2941. void FMM_Pts<FMMNode>::X_List (SetupData<Real_t>& setup_data, bool device){
  2942. //Add X_List contribution.
  2943. this->EvalListPts(setup_data, device);
  2944. }
  2945. template <class FMMNode>
  2946. void FMM_Pts<FMMNode>::W_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2947. if(this->MultipoleOrder()==0) return;
  2948. { // Set setup_data
  2949. setup_data.level=level;
  2950. setup_data.kernel=&kernel;
  2951. setup_data.interac_type.resize(1);
  2952. setup_data.interac_type[0]=W_Type;
  2953. setup_data. input_data=&buff[0];
  2954. setup_data.output_data=&buff[5];
  2955. setup_data. coord_data=&buff[6];
  2956. Vector<FMMNode_t*>& nodes_in =n_list[0];
  2957. Vector<FMMNode_t*>& nodes_out=n_list[5];
  2958. setup_data.nodes_in .clear();
  2959. setup_data.nodes_out.clear();
  2960. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level+1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2961. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  2962. }
  2963. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2964. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2965. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2966. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2967. for(size_t i=0;i<nodes_in .size();i++){
  2968. input_vector .push_back(&upwd_equiv_surf[((FMMNode*)nodes_in [i])->Depth()]);
  2969. input_vector .push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->upward_equiv);
  2970. input_vector .push_back(NULL);
  2971. input_vector .push_back(NULL);
  2972. }
  2973. for(size_t i=0;i<nodes_out.size();i++){
  2974. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
  2975. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
  2976. }
  2977. this->SetupInteracPts(setup_data, true, false, NULL, device);
  2978. { // Resize device buffer
  2979. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  2980. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  2981. }
  2982. }
  2983. template <class FMMNode>
  2984. void FMM_Pts<FMMNode>::W_List (SetupData<Real_t>& setup_data, bool device){
  2985. //Add W_List contribution.
  2986. this->EvalListPts(setup_data, device);
  2987. }
  2988. template <class FMMNode>
  2989. void FMM_Pts<FMMNode>::U_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2990. { // Set setup_data
  2991. setup_data.level=level;
  2992. setup_data.kernel=&kernel;
  2993. setup_data.interac_type.resize(3);
  2994. setup_data.interac_type[0]=U0_Type;
  2995. setup_data.interac_type[1]=U1_Type;
  2996. setup_data.interac_type[2]=U2_Type;
  2997. setup_data. input_data=&buff[4];
  2998. setup_data.output_data=&buff[5];
  2999. setup_data. coord_data=&buff[6];
  3000. Vector<FMMNode_t*>& nodes_in =n_list[4];
  3001. Vector<FMMNode_t*>& nodes_out=n_list[5];
  3002. setup_data.nodes_in .clear();
  3003. setup_data.nodes_out.clear();
  3004. for(size_t i=0;i<nodes_in .Dim();i++) if((level-1<=nodes_in [i]->Depth() && nodes_in [i]->Depth()<=level+1) || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  3005. for(size_t i=0;i<nodes_out.Dim();i++) if(( nodes_out[i]->Depth()==level ) || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  3006. }
  3007. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3008. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3009. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  3010. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  3011. for(size_t i=0;i<nodes_in .size();i++){
  3012. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
  3013. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
  3014. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
  3015. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
  3016. }
  3017. for(size_t i=0;i<nodes_out.size();i++){
  3018. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
  3019. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
  3020. }
  3021. this->SetupInteracPts(setup_data, false, false, NULL, device);
  3022. { // Resize device buffer
  3023. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  3024. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  3025. }
  3026. }
  3027. template <class FMMNode>
  3028. void FMM_Pts<FMMNode>::U_List (SetupData<Real_t>& setup_data, bool device){
  3029. //Add U_List contribution.
  3030. this->EvalListPts(setup_data, device);
  3031. }
  3032. template <class FMMNode>
  3033. void FMM_Pts<FMMNode>::Down2TargetSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3034. if(this->MultipoleOrder()==0) return;
  3035. { // Set setup_data
  3036. setup_data.level=level;
  3037. setup_data.kernel=&kernel;
  3038. setup_data.interac_type.resize(1);
  3039. setup_data.interac_type[0]=D2T_Type;
  3040. setup_data. input_data=&buff[1];
  3041. setup_data.output_data=&buff[5];
  3042. setup_data. coord_data=&buff[6];
  3043. Vector<FMMNode_t*>& nodes_in =n_list[1];
  3044. Vector<FMMNode_t*>& nodes_out=n_list[5];
  3045. setup_data.nodes_in .clear();
  3046. setup_data.nodes_out.clear();
  3047. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  3048. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  3049. }
  3050. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3051. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3052. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  3053. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  3054. for(size_t i=0;i<nodes_in .size();i++){
  3055. input_vector .push_back(&dnwd_equiv_surf[((FMMNode*)nodes_in [i])->Depth()]);
  3056. input_vector .push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->dnward_equiv);
  3057. input_vector .push_back(NULL);
  3058. input_vector .push_back(NULL);
  3059. }
  3060. for(size_t i=0;i<nodes_out.size();i++){
  3061. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
  3062. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
  3063. }
  3064. this->SetupInteracPts(setup_data, true, false, NULL, device);
  3065. { // Resize device buffer
  3066. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  3067. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  3068. }
  3069. }
  3070. template <class FMMNode>
  3071. void FMM_Pts<FMMNode>::Down2Target(SetupData<Real_t>& setup_data, bool device){
  3072. //Add Down2Target contribution.
  3073. this->EvalListPts(setup_data, device);
  3074. }
  3075. template <class FMMNode>
  3076. void FMM_Pts<FMMNode>::PostProcessing(std::vector<FMMNode_t*>& nodes){
  3077. }
  3078. template <class FMMNode>
  3079. void FMM_Pts<FMMNode>::CopyOutput(FMMNode** nodes, size_t n){
  3080. // for(size_t i=0;i<n;i++){
  3081. // FMMData* fmm_data=((FMMData*)nodes[i]->FMMData());
  3082. // }
  3083. }
  3084. }//end namespace