mem_mgr.hpp 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295
  1. /**
  2. * \file mem_mgr.hpp
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 6-30-2014
  5. * \brief This file contains the definition of a simple memory manager which
  6. * uses a pre-allocated buffer of size defined in call to the constructor.
  7. */
  8. #include <omp.h>
  9. #include <cstdlib>
  10. #include <stdint.h>
  11. #include <algorithm>
  12. #include <iostream>
  13. #include <cassert>
  14. #include <vector>
  15. #include <stack>
  16. #include <map>
  17. #include <pvfmm_common.hpp>
  18. #ifndef _PVFMM_MEM_MGR_HPP_
  19. #define _PVFMM_MEM_MGR_HPP_
  20. #ifdef __INTEL_OFFLOAD
  21. #pragma offload_attribute(push,target(mic))
  22. #endif
  23. namespace pvfmm{
  24. namespace mem{
  25. class MemoryManager{
  26. public:
  27. MemoryManager(size_t N){
  28. buff_size=N;
  29. buff=(char*)::malloc(buff_size); assert(buff);
  30. n_dummy_indx=new_node();
  31. size_t n_indx=new_node();
  32. node& n_dummy=node_buff[n_dummy_indx-1];
  33. node& n=node_buff[n_indx-1];
  34. n_dummy.size=0;
  35. n_dummy.free=false;
  36. n_dummy.prev=0;
  37. n_dummy.next=n_indx;
  38. n_dummy.mem_ptr=&buff[0];
  39. assert(n_indx);
  40. n.size=N;
  41. n.free=true;
  42. n.prev=n_dummy_indx;
  43. n.next=0;
  44. n.mem_ptr=&buff[0];
  45. n.it=free_map.insert(std::make_pair(N,n_indx));
  46. omp_init_lock(&omp_lock);
  47. }
  48. ~MemoryManager(){
  49. node* n=&node_buff[n_dummy_indx-1];
  50. n=&node_buff[n->next-1];
  51. if(n==NULL || !n->free || n->size!=buff_size ||
  52. node_stack.size()!=node_buff.size()-2){
  53. std::cout<<"\nWarning: memory leak detected.\n";
  54. }
  55. omp_destroy_lock(&omp_lock);
  56. if(buff) ::free(buff);
  57. }
  58. void* malloc(size_t size){
  59. size_t alignment=MEM_ALIGN;
  60. assert(alignment <= 0x8000);
  61. if(!size) return NULL;
  62. size+=sizeof(size_t) + --alignment + 2;
  63. std::multimap<size_t, size_t>::iterator it;
  64. uintptr_t r=0;
  65. omp_set_lock(&omp_lock);
  66. it=free_map.lower_bound(size);
  67. if(it==free_map.end()){ // Use system malloc
  68. r = (uintptr_t)::malloc(size);
  69. }else if(it->first==size){ // Found exact size block
  70. size_t n_indx=it->second;
  71. node& n=node_buff[n_indx-1];
  72. //assert(n.size==it->first);
  73. //assert(n.it==it);
  74. //assert(n.free);
  75. n.free=false;
  76. free_map.erase(it);
  77. ((size_t*)n.mem_ptr)[0]=n_indx;
  78. r = (uintptr_t)&((size_t*)n.mem_ptr)[1];
  79. }else{ // Found larger block.
  80. size_t n_indx=it->second;
  81. size_t n_free_indx=new_node();
  82. node& n_free=node_buff[n_free_indx-1];
  83. node& n =node_buff[n_indx-1];
  84. //assert(n.size==it->first);
  85. //assert(n.it==it);
  86. //assert(n.free);
  87. n_free=n;
  88. n_free.size-=size;
  89. n_free.mem_ptr=(char*)n_free.mem_ptr+size;
  90. n_free.prev=n_indx;
  91. if(n_free.next){
  92. size_t n_next_indx=n_free.next;
  93. node& n_next=node_buff[n_next_indx-1];
  94. n_next.prev=n_free_indx;
  95. }
  96. n.free=false;
  97. n.size=size;
  98. n.next=n_free_indx;
  99. free_map.erase(it);
  100. n_free.it=free_map.insert(std::make_pair(n_free.size,n_free_indx));
  101. ((size_t*)n.mem_ptr)[0]=n_indx;
  102. r = (uintptr_t) &((size_t*)n.mem_ptr)[1];
  103. }
  104. omp_unset_lock(&omp_lock);
  105. uintptr_t o = (uintptr_t)(r + 2 + alignment) & ~(uintptr_t)alignment;
  106. ((uint16_t*)o)[-1] = (uint16_t)(o-r);
  107. return (void*)o;
  108. }
  109. void free(void* p_){
  110. if(!p_) return;
  111. void* p=((void*)((uintptr_t)p_-((uint16_t*)p_)[-1]));
  112. if(p<&buff[0] || p>=&buff[buff_size]) return ::free(p);
  113. size_t n_indx=((size_t*)p)[-1];
  114. assert(n_indx>0 && n_indx<=node_buff.size());
  115. ((size_t*)p)[-1]=0;
  116. omp_set_lock(&omp_lock);
  117. node& n=node_buff[n_indx-1];
  118. assert(!n.free && n.size>0 && n.mem_ptr==&((size_t*)p)[-1]);
  119. n.free=true;
  120. if(n.prev!=0 && node_buff[n.prev-1].free){
  121. size_t n_prev_indx=n.prev;
  122. node& n_prev=node_buff[n_prev_indx-1];
  123. free_map.erase(n_prev.it);
  124. n.size+=n_prev.size;
  125. n.mem_ptr=n_prev.mem_ptr;
  126. n.prev=n_prev.prev;
  127. delete_node(n_prev_indx);
  128. if(n.prev){
  129. size_t n_prev_indx=n.prev;
  130. node& n_prev=node_buff[n_prev_indx-1];
  131. n_prev.next=n_indx;
  132. }
  133. }
  134. if(n.next!=0 && node_buff[n.next-1].free){
  135. size_t n_next_indx=n.next;
  136. node& n_next=node_buff[n_next_indx-1];
  137. free_map.erase(n_next.it);
  138. n.size+=n_next.size;
  139. n.next=n_next.next;
  140. delete_node(n_next_indx);
  141. if(n.next){
  142. size_t n_next_indx=n.next;
  143. node& n_next=node_buff[n_next_indx-1];
  144. n_next.prev=n_indx;
  145. }
  146. }
  147. n.it=free_map.insert(std::make_pair(n.size,n_indx));
  148. omp_unset_lock(&omp_lock);
  149. }
  150. void print(){
  151. if(!buff_size) return;
  152. omp_set_lock(&omp_lock);
  153. size_t size=0;
  154. size_t largest_size=0;
  155. node* n=&node_buff[n_dummy_indx-1];
  156. std::cout<<"\n|";
  157. while(n->next){
  158. n=&node_buff[n->next-1];
  159. if(n->free){
  160. std::cout<<' ';
  161. largest_size=std::max(largest_size,n->size);
  162. }
  163. else{
  164. std::cout<<'#';
  165. size+=n->size;
  166. }
  167. }
  168. std::cout<<"| allocated="<<round(size*1000.0/buff_size)/10<<"%";
  169. std::cout<<" largest_free="<<round(largest_size*1000.0/buff_size)/10<<"%\n";
  170. omp_unset_lock(&omp_lock);
  171. }
  172. static void test(){
  173. size_t M=2000000000;
  174. { // With memory manager
  175. size_t N=M*sizeof(double)*1.1;
  176. double tt;
  177. double* tmp;
  178. std::cout<<"With memory manager: ";
  179. MemoryManager memgr(N);
  180. for(size_t j=0;j<3;j++){
  181. tmp=(double*)memgr.malloc(M*sizeof(double)); assert(tmp);
  182. tt=omp_get_wtime();
  183. #pragma omp parallel for
  184. for(size_t i=0;i<M;i+=64) tmp[i]=i;
  185. tt=omp_get_wtime()-tt;
  186. std::cout<<tt<<' ';
  187. memgr.free(tmp);
  188. }
  189. std::cout<<'\n';
  190. }
  191. { // Without memory manager
  192. double tt;
  193. double* tmp;
  194. //pvfmm::MemoryManager memgr(N);
  195. std::cout<<"Without memory manager: ";
  196. for(size_t j=0;j<3;j++){
  197. tmp=(double*)::malloc(M*sizeof(double)); assert(tmp);
  198. tt=omp_get_wtime();
  199. #pragma omp parallel for
  200. for(size_t i=0;i<M;i+=64) tmp[i]=i;
  201. tt=omp_get_wtime()-tt;
  202. std::cout<<tt<<' ';
  203. ::free(tmp);
  204. }
  205. std::cout<<'\n';
  206. }
  207. }
  208. private:
  209. struct node{
  210. bool free;
  211. size_t size;
  212. void* mem_ptr;
  213. size_t prev, next;
  214. std::multimap<size_t, size_t>::iterator it;
  215. };
  216. MemoryManager();
  217. MemoryManager(const MemoryManager& m);
  218. size_t new_node(){
  219. if(node_stack.empty()){
  220. node_buff.resize(node_buff.size()+1);
  221. node_stack.push(node_buff.size());
  222. }
  223. size_t indx=node_stack.top();
  224. node_stack.pop();
  225. assert(indx);
  226. return indx;
  227. }
  228. void delete_node(size_t indx){
  229. assert(indx);
  230. assert(indx<=node_buff.size());
  231. node& n=node_buff[indx-1];
  232. n.size=0;
  233. n.prev=0;
  234. n.next=0;
  235. n.mem_ptr=NULL;
  236. node_stack.push(indx);
  237. }
  238. char* buff;
  239. size_t buff_size;
  240. std::vector<node> node_buff;
  241. std::stack<size_t> node_stack;
  242. std::multimap<size_t, size_t> free_map;
  243. size_t n_dummy_indx;
  244. omp_lock_t omp_lock;
  245. };
  246. }//end namespace
  247. }//end namespace
  248. #ifdef __INTEL_OFFLOAD
  249. #pragma offload_attribute(pop)
  250. #endif
  251. #endif //_PVFMM_MEM_MGR_HPP_