kernel.txx 74 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252
  1. /**
  2. * \file kernel.txx
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 12-20-2011
  5. * \brief This file contains the implementation of the struct Kernel and also the
  6. * implementation of various kernels for FMM.
  7. */
  8. #include <cmath>
  9. #include <cstdlib>
  10. #include <vector>
  11. #include <mem_mgr.hpp>
  12. #include <profile.hpp>
  13. #include <vector.hpp>
  14. #include <matrix.hpp>
  15. #include <precomp_mat.hpp>
  16. #include <intrin_wrapper.hpp>
  17. namespace pvfmm{
  18. /**
  19. * \brief Constructor.
  20. */
  21. template <class T>
  22. Kernel<T>::Kernel(Ker_t poten, Ker_t dbl_poten, const char* name, int dim_, std::pair<int,int> k_dim,
  23. size_t dev_poten, size_t dev_dbl_poten){
  24. dim=dim_;
  25. ker_dim[0]=k_dim.first;
  26. ker_dim[1]=k_dim.second;
  27. ker_poten=poten;
  28. dbl_layer_poten=dbl_poten;
  29. ker_name=std::string(name);
  30. dev_ker_poten=dev_poten;
  31. dev_dbl_layer_poten=dev_dbl_poten;
  32. k_s2m=NULL;
  33. k_s2l=NULL;
  34. k_s2t=NULL;
  35. k_m2m=NULL;
  36. k_m2l=NULL;
  37. k_m2t=NULL;
  38. k_l2l=NULL;
  39. k_l2t=NULL;
  40. homogen=true;
  41. src_scal.Resize(ker_dim[0]); src_scal.SetZero();
  42. trg_scal.Resize(ker_dim[1]); trg_scal.SetZero();
  43. perm_vec.Resize(Perm_Count);
  44. for(size_t p_type=0;p_type<C_Perm;p_type++){
  45. perm_vec[p_type ]=Permutation<T>(ker_dim[0]);
  46. perm_vec[p_type+C_Perm]=Permutation<T>(ker_dim[1]);
  47. }
  48. init=false;
  49. }
  50. /**
  51. * \brief Initialize the kernel.
  52. */
  53. template <class T>
  54. void Kernel<T>::Initialize(bool verbose) const{
  55. if(init) return;
  56. init=true;
  57. T eps=1.0;
  58. while(eps+(T)1.0>1.0) eps*=0.5;
  59. if(ker_dim[0]*ker_dim[1]>0){ // Determine scal
  60. Matrix<T> M_scal(ker_dim[0],ker_dim[1]);
  61. size_t N=1024;
  62. T eps_=N*eps;
  63. T src_coord[3]={0,0,0};
  64. std::vector<T> trg_coord1(N*COORD_DIM);
  65. std::vector<T> trg_coord2(N*COORD_DIM);
  66. for(size_t i=0;i<N;i++){
  67. T x,y,z,r;
  68. do{
  69. x=(drand48()-0.5);
  70. y=(drand48()-0.5);
  71. z=(drand48()-0.5);
  72. r=sqrt(x*x+y*y+z*z);
  73. }while(r<0.25);
  74. trg_coord1[i*COORD_DIM+0]=x;
  75. trg_coord1[i*COORD_DIM+1]=y;
  76. trg_coord1[i*COORD_DIM+2]=z;
  77. }
  78. for(size_t i=0;i<N*COORD_DIM;i++){
  79. trg_coord2[i]=trg_coord1[i]*0.5;
  80. }
  81. T max_val=0;
  82. Matrix<T> M1(N,ker_dim[0]*ker_dim[1]);
  83. Matrix<T> M2(N,ker_dim[0]*ker_dim[1]);
  84. for(size_t i=0;i<N;i++){
  85. BuildMatrix(&src_coord [ 0], 1,
  86. &trg_coord1[i*COORD_DIM], 1, &(M1[i][0]));
  87. BuildMatrix(&src_coord [ 0], 1,
  88. &trg_coord2[i*COORD_DIM], 1, &(M2[i][0]));
  89. for(size_t j=0;j<ker_dim[0]*ker_dim[1];j++){
  90. max_val=std::max<T>(max_val,M1[i][j]);
  91. max_val=std::max<T>(max_val,M2[i][j]);
  92. }
  93. }
  94. for(size_t i=0;i<ker_dim[0]*ker_dim[1];i++){
  95. T dot11=0, dot12=0, dot22=0;
  96. for(size_t j=0;j<N;j++){
  97. dot11+=M1[j][i]*M1[j][i];
  98. dot12+=M1[j][i]*M2[j][i];
  99. dot22+=M2[j][i]*M2[j][i];
  100. }
  101. if(dot11>max_val*max_val*eps_ &&
  102. dot22>max_val*max_val*eps_ ){
  103. T s=dot12/dot11;
  104. M_scal[0][i]=log(s)/log(2.0);
  105. T err=sqrt(0.5*(dot22/dot11)/(s*s)-0.5);
  106. if(err>eps_){
  107. homogen=false;
  108. M_scal[0][i]=0.0;
  109. }
  110. assert(M_scal[0][i]>=0.0); // Kernel function must decay
  111. }else M_scal[0][i]=-1;
  112. }
  113. src_scal.Resize(ker_dim[0]); src_scal.SetZero();
  114. trg_scal.Resize(ker_dim[1]); trg_scal.SetZero();
  115. if(homogen){
  116. Matrix<T> b(ker_dim[0]*ker_dim[1]+1,1); b.SetZero();
  117. mem::memcopy(&b[0][0],&M_scal[0][0],ker_dim[0]*ker_dim[1]*sizeof(T));
  118. Matrix<T> M(ker_dim[0]*ker_dim[1]+1,ker_dim[0]+ker_dim[1]); M.SetZero();
  119. M[ker_dim[0]*ker_dim[1]][0]=1;
  120. for(size_t i0=0;i0<ker_dim[0];i0++)
  121. for(size_t i1=0;i1<ker_dim[1];i1++){
  122. size_t j=i0*ker_dim[1]+i1;
  123. if(b[j][0]>=0){
  124. M[j][ 0+ i0]=1;
  125. M[j][i1+ker_dim[0]]=1;
  126. }
  127. }
  128. Matrix<T> x=M.pinv()*b;
  129. for(size_t i=0;i<ker_dim[0];i++){
  130. src_scal[i]=x[i][0];
  131. }
  132. for(size_t i=0;i<ker_dim[1];i++){
  133. trg_scal[i]=x[ker_dim[0]+i][0];
  134. }
  135. for(size_t i0=0;i0<ker_dim[0];i0++)
  136. for(size_t i1=0;i1<ker_dim[1];i1++){
  137. if(M_scal[i0][i1]>=0){
  138. if(fabs(src_scal[i0]+trg_scal[i1]-M_scal[i0][i1])>eps_){
  139. homogen=false;
  140. }
  141. }
  142. }
  143. }
  144. if(!homogen){
  145. src_scal.SetZero();
  146. trg_scal.SetZero();
  147. //std::cout<<ker_name<<" not-scale-invariant\n";
  148. }
  149. }
  150. if(ker_dim[0]*ker_dim[1]>0){ // Determine symmetry
  151. size_t N=1024;
  152. T eps_=N*eps;
  153. T src_coord[3]={0,0,0};
  154. std::vector<T> trg_coord1(N*COORD_DIM);
  155. std::vector<T> trg_coord2(N*COORD_DIM);
  156. for(size_t i=0;i<N;i++){
  157. T x,y,z,r;
  158. do{
  159. x=(drand48()-0.5);
  160. y=(drand48()-0.5);
  161. z=(drand48()-0.5);
  162. r=sqrt(x*x+y*y+z*z);
  163. }while(r<0.25);
  164. trg_coord1[i*COORD_DIM+0]=x;
  165. trg_coord1[i*COORD_DIM+1]=y;
  166. trg_coord1[i*COORD_DIM+2]=z;
  167. }
  168. for(size_t p_type=0;p_type<C_Perm;p_type++){ // For each symmetry transform
  169. switch(p_type){ // Set trg_coord2
  170. case ReflecX:
  171. for(size_t i=0;i<N;i++){
  172. trg_coord2[i*COORD_DIM+0]=-trg_coord1[i*COORD_DIM+0];
  173. trg_coord2[i*COORD_DIM+1]= trg_coord1[i*COORD_DIM+1];
  174. trg_coord2[i*COORD_DIM+2]= trg_coord1[i*COORD_DIM+2];
  175. }
  176. break;
  177. case ReflecY:
  178. for(size_t i=0;i<N;i++){
  179. trg_coord2[i*COORD_DIM+0]= trg_coord1[i*COORD_DIM+0];
  180. trg_coord2[i*COORD_DIM+1]=-trg_coord1[i*COORD_DIM+1];
  181. trg_coord2[i*COORD_DIM+2]= trg_coord1[i*COORD_DIM+2];
  182. }
  183. break;
  184. case ReflecZ:
  185. for(size_t i=0;i<N;i++){
  186. trg_coord2[i*COORD_DIM+0]= trg_coord1[i*COORD_DIM+0];
  187. trg_coord2[i*COORD_DIM+1]= trg_coord1[i*COORD_DIM+1];
  188. trg_coord2[i*COORD_DIM+2]=-trg_coord1[i*COORD_DIM+2];
  189. }
  190. break;
  191. case SwapXY:
  192. for(size_t i=0;i<N;i++){
  193. trg_coord2[i*COORD_DIM+0]= trg_coord1[i*COORD_DIM+1];
  194. trg_coord2[i*COORD_DIM+1]= trg_coord1[i*COORD_DIM+0];
  195. trg_coord2[i*COORD_DIM+2]= trg_coord1[i*COORD_DIM+2];
  196. }
  197. break;
  198. case SwapXZ:
  199. for(size_t i=0;i<N;i++){
  200. trg_coord2[i*COORD_DIM+0]= trg_coord1[i*COORD_DIM+2];
  201. trg_coord2[i*COORD_DIM+1]= trg_coord1[i*COORD_DIM+1];
  202. trg_coord2[i*COORD_DIM+2]= trg_coord1[i*COORD_DIM+0];
  203. }
  204. break;
  205. default:
  206. for(size_t i=0;i<N;i++){
  207. trg_coord2[i*COORD_DIM+0]= trg_coord1[i*COORD_DIM+0];
  208. trg_coord2[i*COORD_DIM+1]= trg_coord1[i*COORD_DIM+1];
  209. trg_coord2[i*COORD_DIM+2]= trg_coord1[i*COORD_DIM+2];
  210. }
  211. }
  212. Matrix<long long> M11, M22;
  213. {
  214. Matrix<T> M1(N,ker_dim[0]*ker_dim[1]); M1.SetZero();
  215. Matrix<T> M2(N,ker_dim[0]*ker_dim[1]); M2.SetZero();
  216. for(size_t i=0;i<N;i++){
  217. BuildMatrix(&src_coord [ 0], 1,
  218. &trg_coord1[i*COORD_DIM], 1, &(M1[i][0]));
  219. BuildMatrix(&src_coord [ 0], 1,
  220. &trg_coord2[i*COORD_DIM], 1, &(M2[i][0]));
  221. }
  222. Matrix<T> dot11(ker_dim[0]*ker_dim[1],ker_dim[0]*ker_dim[1]);dot11.SetZero();
  223. Matrix<T> dot12(ker_dim[0]*ker_dim[1],ker_dim[0]*ker_dim[1]);dot12.SetZero();
  224. Matrix<T> dot22(ker_dim[0]*ker_dim[1],ker_dim[0]*ker_dim[1]);dot22.SetZero();
  225. std::vector<T> norm1(ker_dim[0]*ker_dim[1]);
  226. std::vector<T> norm2(ker_dim[0]*ker_dim[1]);
  227. {
  228. for(size_t k=0;k<N;k++)
  229. for(size_t i=0;i<ker_dim[0]*ker_dim[1];i++)
  230. for(size_t j=0;j<ker_dim[0]*ker_dim[1];j++){
  231. dot11[i][j]+=M1[k][i]*M1[k][j];
  232. dot12[i][j]+=M1[k][i]*M2[k][j];
  233. dot22[i][j]+=M2[k][i]*M2[k][j];
  234. }
  235. for(size_t i=0;i<ker_dim[0]*ker_dim[1];i++){
  236. norm1[i]=sqrt(dot11[i][i]);
  237. norm2[i]=sqrt(dot22[i][i]);
  238. }
  239. for(size_t i=0;i<ker_dim[0]*ker_dim[1];i++)
  240. for(size_t j=0;j<ker_dim[0]*ker_dim[1];j++){
  241. dot11[i][j]/=(norm1[i]*norm1[j]);
  242. dot12[i][j]/=(norm1[i]*norm2[j]);
  243. dot22[i][j]/=(norm2[i]*norm2[j]);
  244. }
  245. }
  246. long long flag=1;
  247. M11.Resize(ker_dim[0],ker_dim[1]); M11.SetZero();
  248. M22.Resize(ker_dim[0],ker_dim[1]); M22.SetZero();
  249. for(size_t i=0;i<ker_dim[0]*ker_dim[1];i++){
  250. if(norm1[i]>eps_ && M11[0][i]==0){
  251. for(size_t j=0;j<ker_dim[0]*ker_dim[1];j++){
  252. if(fabs(norm1[i]-norm1[j])<eps_ && fabs(fabs(dot11[i][j])-1.0)<eps_){
  253. M11[0][j]=(dot11[i][j]>0?flag:-flag);
  254. }
  255. if(fabs(norm1[i]-norm2[j])<eps_ && fabs(fabs(dot12[i][j])-1.0)<eps_){
  256. M22[0][j]=(dot12[i][j]>0?flag:-flag);
  257. }
  258. }
  259. flag++;
  260. }
  261. }
  262. }
  263. Matrix<long long> P1, P2;
  264. { // P1
  265. Matrix<long long>& P=P1;
  266. Matrix<long long> M1=M11;
  267. Matrix<long long> M2=M22;
  268. for(size_t i=0;i<M1.Dim(0);i++){
  269. for(size_t j=0;j<M1.Dim(1);j++){
  270. if(M1[i][j]<0) M1[i][j]=-M1[i][j];
  271. if(M2[i][j]<0) M2[i][j]=-M2[i][j];
  272. }
  273. std::sort(&M1[i][0],&M1[i][M1.Dim(1)]);
  274. std::sort(&M2[i][0],&M2[i][M2.Dim(1)]);
  275. }
  276. P.Resize(M1.Dim(0),M1.Dim(0));
  277. for(size_t i=0;i<M1.Dim(0);i++)
  278. for(size_t j=0;j<M1.Dim(0);j++){
  279. P[i][j]=1;
  280. for(size_t k=0;k<M1.Dim(1);k++)
  281. if(M1[i][k]!=M2[j][k]){
  282. P[i][j]=0;
  283. break;
  284. }
  285. }
  286. }
  287. { // P2
  288. Matrix<long long>& P=P2;
  289. Matrix<long long> M1=M11.Transpose();
  290. Matrix<long long> M2=M22.Transpose();
  291. for(size_t i=0;i<M1.Dim(0);i++){
  292. for(size_t j=0;j<M1.Dim(1);j++){
  293. if(M1[i][j]<0) M1[i][j]=-M1[i][j];
  294. if(M2[i][j]<0) M2[i][j]=-M2[i][j];
  295. }
  296. std::sort(&M1[i][0],&M1[i][M1.Dim(1)]);
  297. std::sort(&M2[i][0],&M2[i][M2.Dim(1)]);
  298. }
  299. P.Resize(M1.Dim(0),M1.Dim(0));
  300. for(size_t i=0;i<M1.Dim(0);i++)
  301. for(size_t j=0;j<M1.Dim(0);j++){
  302. P[i][j]=1;
  303. for(size_t k=0;k<M1.Dim(1);k++)
  304. if(M1[i][k]!=M2[j][k]){
  305. P[i][j]=0;
  306. break;
  307. }
  308. }
  309. }
  310. std::vector<Permutation<long long> > P1vec, P2vec;
  311. int dbg_cnt=0;
  312. { // P1vec
  313. Matrix<long long>& Pmat=P1;
  314. std::vector<Permutation<long long> >& Pvec=P1vec;
  315. Permutation<long long> P(Pmat.Dim(0));
  316. Vector<PERM_INT_T>& perm=P.perm;
  317. perm.SetZero();
  318. // First permutation
  319. for(size_t i=0;i<P.Dim();i++)
  320. for(size_t j=0;j<P.Dim();j++){
  321. if(Pmat[i][j]){
  322. perm[i]=j;
  323. break;
  324. }
  325. }
  326. Vector<PERM_INT_T> perm_tmp;
  327. while(true){ // Next permutation
  328. perm_tmp=perm;
  329. std::sort(&perm_tmp[0],&perm_tmp[0]+perm_tmp.Dim());
  330. for(size_t i=0;i<perm_tmp.Dim();i++){
  331. if(perm_tmp[i]!=i) break;
  332. if(i==perm_tmp.Dim()-1){
  333. Pvec.push_back(P);
  334. }
  335. }
  336. bool last=false;
  337. for(size_t i=0;i<P.Dim();i++){
  338. PERM_INT_T tmp=perm[i];
  339. for(size_t j=perm[i]+1;j<P.Dim();j++){
  340. if(Pmat[i][j]){
  341. perm[i]=j;
  342. break;
  343. }
  344. }
  345. if(perm[i]>tmp) break;
  346. for(size_t j=0;j<P.Dim();j++){
  347. if(Pmat[i][j]){
  348. perm[i]=j;
  349. break;
  350. }
  351. }
  352. if(i==P.Dim()-1) last=true;
  353. }
  354. if(last) break;
  355. }
  356. }
  357. { // P2vec
  358. Matrix<long long>& Pmat=P2;
  359. std::vector<Permutation<long long> >& Pvec=P2vec;
  360. Permutation<long long> P(Pmat.Dim(0));
  361. Vector<PERM_INT_T>& perm=P.perm;
  362. perm.SetZero();
  363. // First permutation
  364. for(size_t i=0;i<P.Dim();i++)
  365. for(size_t j=0;j<P.Dim();j++){
  366. if(Pmat[i][j]){
  367. perm[i]=j;
  368. break;
  369. }
  370. }
  371. Vector<PERM_INT_T> perm_tmp;
  372. while(true){ // Next permutation
  373. perm_tmp=perm;
  374. std::sort(&perm_tmp[0],&perm_tmp[0]+perm_tmp.Dim());
  375. for(size_t i=0;i<perm_tmp.Dim();i++){
  376. if(perm_tmp[i]!=i) break;
  377. if(i==perm_tmp.Dim()-1){
  378. Pvec.push_back(P);
  379. }
  380. }
  381. bool last=false;
  382. for(size_t i=0;i<P.Dim();i++){
  383. PERM_INT_T tmp=perm[i];
  384. for(size_t j=perm[i]+1;j<P.Dim();j++){
  385. if(Pmat[i][j]){
  386. perm[i]=j;
  387. break;
  388. }
  389. }
  390. if(perm[i]>tmp) break;
  391. for(size_t j=0;j<P.Dim();j++){
  392. if(Pmat[i][j]){
  393. perm[i]=j;
  394. break;
  395. }
  396. }
  397. if(i==P.Dim()-1) last=true;
  398. }
  399. if(last) break;
  400. }
  401. }
  402. { // Find pairs which acutally work (neglect scaling)
  403. std::vector<Permutation<long long> > P1vec_, P2vec_;
  404. Matrix<long long> M1=M11;
  405. Matrix<long long> M2=M22;
  406. for(size_t i=0;i<M1.Dim(0);i++){
  407. for(size_t j=0;j<M1.Dim(1);j++){
  408. if(M1[i][j]<0) M1[i][j]=-M1[i][j];
  409. if(M2[i][j]<0) M2[i][j]=-M2[i][j];
  410. }
  411. }
  412. Matrix<long long> M;
  413. for(size_t i=0;i<P1vec.size();i++)
  414. for(size_t j=0;j<P2vec.size();j++){
  415. M=P1vec[i]*M2*P2vec[j];
  416. for(size_t k=0;k<M.Dim(0)*M.Dim(1);k++){
  417. if(M[0][k]!=M1[0][k]) break;
  418. if(k==M.Dim(0)*M.Dim(1)-1){
  419. P1vec_.push_back(P1vec[i]);
  420. P2vec_.push_back(P2vec[j]);
  421. }
  422. }
  423. }
  424. P1vec=P1vec_;
  425. P2vec=P2vec_;
  426. }
  427. Permutation<T> P1_, P2_;
  428. { // Find pairs which acutally work
  429. for(size_t k=0;k<P1vec.size();k++){
  430. Permutation<long long> P1=P1vec[k];
  431. Permutation<long long> P2=P2vec[k];
  432. Matrix<long long> M1= M11 ;
  433. Matrix<long long> M2=P1*M22*P2;
  434. Matrix<T> M(M1.Dim(0)*M1.Dim(1)+1,M1.Dim(0)+M1.Dim(1));
  435. M.SetZero(); M[M1.Dim(0)*M1.Dim(1)][0]=1.0;
  436. for(size_t i=0;i<M1.Dim(0);i++)
  437. for(size_t j=0;j<M1.Dim(1);j++){
  438. size_t k=i*M1.Dim(1)+j;
  439. M[k][ i]= M1[i][j];
  440. M[k][M1.Dim(0)+j]=-M2[i][j];
  441. }
  442. M=M.pinv();
  443. { // Construct new permutation
  444. Permutation<long long> P1_(M1.Dim(0));
  445. Permutation<long long> P2_(M1.Dim(1));
  446. for(size_t i=0;i<M1.Dim(0);i++){
  447. P1_.scal[i]=(M[i][M1.Dim(0)*M1.Dim(1)]>0?1:-1);
  448. }
  449. for(size_t i=0;i<M1.Dim(1);i++){
  450. P2_.scal[i]=(M[M1.Dim(0)+i][M1.Dim(0)*M1.Dim(1)]>0?1:-1);
  451. }
  452. P1=P1_*P1 ;
  453. P2=P2 *P2_;
  454. }
  455. bool done=true;
  456. Matrix<long long> Merr=P1*M22*P2-M11;
  457. for(size_t i=0;i<Merr.Dim(0)*Merr.Dim(1);i++){
  458. if(Merr[0][i]){
  459. done=false;
  460. break;
  461. }
  462. }
  463. if(done){
  464. P1_=Permutation<T>(P1.Dim());
  465. P2_=Permutation<T>(P2.Dim());
  466. for(size_t i=0;i<P1.Dim();i++){
  467. P1_.perm[i]=P1.perm[i];
  468. P1_.scal[i]=P1.scal[i];
  469. }
  470. for(size_t i=0;i<P2.Dim();i++){
  471. P2_.perm[i]=P2.perm[i];
  472. P2_.scal[i]=P2.scal[i];
  473. }
  474. break;
  475. }
  476. }
  477. }
  478. //std::cout<<P1_<<'\n';
  479. //std::cout<<P2_<<'\n';
  480. perm_vec[p_type ]=P1_.Transpose();
  481. perm_vec[p_type+C_Perm]=P2_;
  482. }
  483. for(size_t i=0;i<2*C_Perm;i++){
  484. if(perm_vec[i].Dim()==0){
  485. perm_vec.Resize(0);
  486. std::cout<<"no-symmetry for: "<<ker_name<<'\n';
  487. break;
  488. }
  489. }
  490. }
  491. if(verbose){ // Display kernel information
  492. std::cout<<"\n";
  493. std::cout<<"Kernel Name : "<<ker_name<<'\n';
  494. std::cout<<"Precision : "<<(double)eps<<'\n';
  495. std::cout<<"Symmetry : "<<(perm_vec.Dim()>0?"yes":"no")<<'\n';
  496. std::cout<<"Scale Invariant: "<<(homogen?"yes":"no")<<'\n';
  497. if(homogen && ker_dim[0]*ker_dim[1]>0){
  498. std::cout<<"Scaling Matrix :\n";
  499. Matrix<T> Src(ker_dim[0],1);
  500. Matrix<T> Trg(1,ker_dim[1]);
  501. for(size_t i=0;i<ker_dim[0];i++) Src[i][0]=pow(2.0,src_scal[i]);
  502. for(size_t i=0;i<ker_dim[1];i++) Trg[0][i]=pow(2.0,trg_scal[i]);
  503. std::cout<<Src*Trg;
  504. }
  505. if(ker_dim[0]*ker_dim[1]>0){ // Accuracy of multipole expansion
  506. std::cout<<"Error : ";
  507. for(T rad=1.0; rad>1.0e-2; rad*=0.5){
  508. int m=8; // multipole order
  509. std::vector<T> equiv_surf;
  510. std::vector<T> check_surf;
  511. for(int i0=0;i0<m;i0++){
  512. for(int i1=0;i1<m;i1++){
  513. for(int i2=0;i2<m;i2++){
  514. if(i0== 0 || i1== 0 || i2== 0 ||
  515. i0==m-1 || i1==m-1 || i2==m-1){
  516. // Range: [-1/3,1/3]^3
  517. T x=((T)2*i0-(m-1))/(m-1)/3;
  518. T y=((T)2*i1-(m-1))/(m-1)/3;
  519. T z=((T)2*i2-(m-1))/(m-1)/3;
  520. equiv_surf.push_back(x*RAD0*rad);
  521. equiv_surf.push_back(y*RAD0*rad);
  522. equiv_surf.push_back(z*RAD0*rad);
  523. check_surf.push_back(x*RAD1*rad);
  524. check_surf.push_back(y*RAD1*rad);
  525. check_surf.push_back(z*RAD1*rad);
  526. }
  527. }
  528. }
  529. }
  530. size_t n_equiv=equiv_surf.size()/COORD_DIM;
  531. size_t n_check=equiv_surf.size()/COORD_DIM;
  532. size_t n_src=m;
  533. size_t n_trg=m;
  534. std::vector<T> src_coord;
  535. std::vector<T> trg_coord;
  536. for(size_t i=0;i<n_src*COORD_DIM;i++){
  537. src_coord.push_back((2*drand48()-1)/3*rad);
  538. }
  539. for(size_t i=0;i<n_trg;i++){
  540. T x,y,z,r;
  541. do{
  542. x=(drand48()-0.5);
  543. y=(drand48()-0.5);
  544. z=(drand48()-0.5);
  545. r=sqrt(x*x+y*y+z*z);
  546. }while(r==0.0);
  547. trg_coord.push_back(x/r*sqrt((T)COORD_DIM)*rad);
  548. trg_coord.push_back(y/r*sqrt((T)COORD_DIM)*rad);
  549. trg_coord.push_back(z/r*sqrt((T)COORD_DIM)*rad);
  550. }
  551. Matrix<T> M_s2c(n_src*ker_dim[0],n_check*ker_dim[1]);
  552. BuildMatrix( &src_coord[0], n_src,
  553. &check_surf[0], n_check, &(M_s2c[0][0]));
  554. Matrix<T> M_e2c(n_equiv*ker_dim[0],n_check*ker_dim[1]);
  555. BuildMatrix(&equiv_surf[0], n_equiv,
  556. &check_surf[0], n_check, &(M_e2c[0][0]));
  557. Matrix<T> M_c2e=M_e2c.pinv();
  558. Matrix<T> M_e2t(n_equiv*ker_dim[0],n_trg*ker_dim[1]);
  559. BuildMatrix(&equiv_surf[0], n_equiv,
  560. &trg_coord[0], n_trg , &(M_e2t[0][0]));
  561. Matrix<T> M_s2t(n_src*ker_dim[0],n_trg*ker_dim[1]);
  562. BuildMatrix( &src_coord[0], n_src,
  563. &trg_coord[0], n_trg , &(M_s2t[0][0]));
  564. Matrix<T> M=M_s2c*M_c2e*M_e2t-M_s2t;
  565. T max_error=0, max_value=0;
  566. for(size_t i=0;i<M.Dim(0);i++)
  567. for(size_t j=0;j<M.Dim(1);j++){
  568. max_error=std::max<T>(max_error,fabs(M [i][j]));
  569. max_value=std::max<T>(max_value,fabs(M_s2t[i][j]));
  570. }
  571. std::cout<<(double)(max_error/max_value)<<' ';
  572. if(homogen) break;
  573. }
  574. std::cout<<"\n";
  575. }
  576. std::cout<<"\n";
  577. }
  578. { // Initialize auxiliary FMM kernels
  579. if(!k_s2m) k_s2m=this;
  580. if(!k_s2l) k_s2l=this;
  581. if(!k_s2t) k_s2t=this;
  582. if(!k_m2m) k_m2m=this;
  583. if(!k_m2l) k_m2l=this;
  584. if(!k_m2t) k_m2t=this;
  585. if(!k_l2l) k_l2l=this;
  586. if(!k_l2t) k_l2t=this;
  587. assert(k_s2t->ker_dim[0]==ker_dim[0]);
  588. assert(k_s2m->ker_dim[0]==k_s2l->ker_dim[0]);
  589. assert(k_s2m->ker_dim[0]==k_s2t->ker_dim[0]);
  590. assert(k_m2m->ker_dim[0]==k_m2l->ker_dim[0]);
  591. assert(k_m2m->ker_dim[0]==k_m2t->ker_dim[0]);
  592. assert(k_l2l->ker_dim[0]==k_l2t->ker_dim[0]);
  593. assert(k_s2t->ker_dim[1]==ker_dim[1]);
  594. assert(k_s2m->ker_dim[1]==k_m2m->ker_dim[1]);
  595. assert(k_s2l->ker_dim[1]==k_l2l->ker_dim[1]);
  596. assert(k_m2l->ker_dim[1]==k_l2l->ker_dim[1]);
  597. assert(k_s2t->ker_dim[1]==k_m2t->ker_dim[1]);
  598. assert(k_s2t->ker_dim[1]==k_l2t->ker_dim[1]);
  599. k_s2m->Initialize(verbose);
  600. k_s2l->Initialize(verbose);
  601. k_s2t->Initialize(verbose);
  602. k_m2m->Initialize(verbose);
  603. k_m2l->Initialize(verbose);
  604. k_m2t->Initialize(verbose);
  605. k_l2l->Initialize(verbose);
  606. k_l2t->Initialize(verbose);
  607. }
  608. }
  609. /**
  610. * \brief Compute the transformation matrix (on the source strength vector)
  611. * to get potential at target coordinates due to sources at the given
  612. * coordinates.
  613. * \param[in] r_src Coordinates of source points.
  614. * \param[in] src_cnt Number of source points.
  615. * \param[in] r_trg Coordinates of target points.
  616. * \param[in] trg_cnt Number of target points.
  617. * \param[out] k_out Output array with potential values.
  618. */
  619. template <class T>
  620. void Kernel<T>::BuildMatrix(T* r_src, int src_cnt,
  621. T* r_trg, int trg_cnt, T* k_out) const{
  622. int dim=3; //Only supporting 3D
  623. memset(k_out, 0, src_cnt*ker_dim[0]*trg_cnt*ker_dim[1]*sizeof(T));
  624. for(int i=0;i<src_cnt;i++) //TODO Optimize this.
  625. for(int j=0;j<ker_dim[0];j++){
  626. std::vector<T> v_src(ker_dim[0],0);
  627. v_src[j]=1.0;
  628. ker_poten(&r_src[i*dim], 1, &v_src[0], 1, r_trg, trg_cnt,
  629. &k_out[(i*ker_dim[0]+j)*trg_cnt*ker_dim[1]], NULL);
  630. }
  631. }
  632. /**
  633. * \brief Generic kernel which rearranges data for vectorization, calls the
  634. * actual uKernel and copies data to the output array in the original order.
  635. */
  636. template <class Real_t, int SRC_DIM, int TRG_DIM, void (*uKernel)(Matrix<Real_t>&, Matrix<Real_t>&, Matrix<Real_t>&, Matrix<Real_t>&)>
  637. void generic_kernel(Real_t* r_src, int src_cnt, Real_t* v_src, int dof, Real_t* r_trg, int trg_cnt, Real_t* v_trg, mem::MemoryManager* mem_mgr){
  638. assert(dof==1);
  639. int VecLen=8;
  640. if(sizeof(Real_t)==sizeof( float)) VecLen=8;
  641. if(sizeof(Real_t)==sizeof(double)) VecLen=4;
  642. #define STACK_BUFF_SIZE 4096
  643. Real_t stack_buff[STACK_BUFF_SIZE+MEM_ALIGN];
  644. Real_t* buff=NULL;
  645. Matrix<Real_t> src_coord;
  646. Matrix<Real_t> src_value;
  647. Matrix<Real_t> trg_coord;
  648. Matrix<Real_t> trg_value;
  649. { // Rearrange data in src_coord, src_coord, trg_coord, trg_value
  650. size_t src_cnt_, trg_cnt_; // counts after zero padding
  651. src_cnt_=((src_cnt+VecLen-1)/VecLen)*VecLen;
  652. trg_cnt_=((trg_cnt+VecLen-1)/VecLen)*VecLen;
  653. size_t buff_size=src_cnt_*(COORD_DIM+SRC_DIM)+
  654. trg_cnt_*(COORD_DIM+TRG_DIM);
  655. if(buff_size>STACK_BUFF_SIZE){ // Allocate buff
  656. buff=mem::aligned_new<Real_t>(buff_size, mem_mgr);
  657. }
  658. Real_t* buff_ptr=buff;
  659. if(!buff_ptr){ // use stack_buff
  660. uintptr_t ptr=(uintptr_t)stack_buff;
  661. static uintptr_t ALIGN_MINUS_ONE=MEM_ALIGN-1;
  662. static uintptr_t NOT_ALIGN_MINUS_ONE=~ALIGN_MINUS_ONE;
  663. ptr=((ptr+ALIGN_MINUS_ONE) & NOT_ALIGN_MINUS_ONE);
  664. buff_ptr=(Real_t*)ptr;
  665. }
  666. src_coord.ReInit(COORD_DIM, src_cnt_,buff_ptr,false); buff_ptr+=COORD_DIM*src_cnt_;
  667. src_value.ReInit( SRC_DIM, src_cnt_,buff_ptr,false); buff_ptr+= SRC_DIM*src_cnt_;
  668. trg_coord.ReInit(COORD_DIM, trg_cnt_,buff_ptr,false); buff_ptr+=COORD_DIM*trg_cnt_;
  669. trg_value.ReInit( TRG_DIM, trg_cnt_,buff_ptr,false);//buff_ptr+= TRG_DIM*trg_cnt_;
  670. { // Set src_coord
  671. size_t i=0;
  672. for( ;i<src_cnt ;i++){
  673. for(size_t j=0;j<COORD_DIM;j++){
  674. src_coord[j][i]=r_src[i*COORD_DIM+j];
  675. }
  676. }
  677. for( ;i<src_cnt_;i++){
  678. for(size_t j=0;j<COORD_DIM;j++){
  679. src_coord[j][i]=0;
  680. }
  681. }
  682. }
  683. { // Set src_value
  684. size_t i=0;
  685. for( ;i<src_cnt ;i++){
  686. for(size_t j=0;j<SRC_DIM;j++){
  687. src_value[j][i]=v_src[i*SRC_DIM+j];
  688. }
  689. }
  690. for( ;i<src_cnt_;i++){
  691. for(size_t j=0;j<SRC_DIM;j++){
  692. src_value[j][i]=0;
  693. }
  694. }
  695. }
  696. { // Set trg_coord
  697. size_t i=0;
  698. for( ;i<trg_cnt ;i++){
  699. for(size_t j=0;j<COORD_DIM;j++){
  700. trg_coord[j][i]=r_trg[i*COORD_DIM+j];
  701. }
  702. }
  703. for( ;i<trg_cnt_;i++){
  704. for(size_t j=0;j<COORD_DIM;j++){
  705. trg_coord[j][i]=0;
  706. }
  707. }
  708. }
  709. { // Set trg_value
  710. size_t i=0;
  711. for( ;i<trg_cnt_;i++){
  712. for(size_t j=0;j<TRG_DIM;j++){
  713. trg_value[j][i]=0;
  714. }
  715. }
  716. }
  717. }
  718. uKernel(src_coord,src_value,trg_coord,trg_value);
  719. { // Set v_trg
  720. for(size_t i=0;i<trg_cnt ;i++){
  721. for(size_t j=0;j<TRG_DIM;j++){
  722. v_trg[i*TRG_DIM+j]+=trg_value[j][i];
  723. }
  724. }
  725. }
  726. if(buff){ // Free memory: buff
  727. mem::aligned_delete<Real_t>(buff);
  728. }
  729. }
  730. ////////////////////////////////////////////////////////////////////////////////
  731. //////// LAPLACE KERNEL ////////
  732. ////////////////////////////////////////////////////////////////////////////////
  733. /**
  734. * \brief Green's function for the Poisson's equation. Kernel tensor
  735. * dimension = 1x1.
  736. */
  737. template <class Real_t, class Vec_t=Real_t, Vec_t (*RINV_INTRIN)(Vec_t)=rinv_intrin0<Vec_t> >
  738. void laplace_poten_uKernel(Matrix<Real_t>& src_coord, Matrix<Real_t>& src_value, Matrix<Real_t>& trg_coord, Matrix<Real_t>& trg_value){
  739. #define SRC_BLK 1000
  740. size_t VecLen=sizeof(Vec_t)/sizeof(Real_t);
  741. //// Number of newton iterations
  742. size_t NWTN_ITER=0;
  743. if(RINV_INTRIN==rinv_intrin0<Vec_t,Real_t>) NWTN_ITER=0;
  744. if(RINV_INTRIN==rinv_intrin1<Vec_t,Real_t>) NWTN_ITER=1;
  745. if(RINV_INTRIN==rinv_intrin2<Vec_t,Real_t>) NWTN_ITER=2;
  746. if(RINV_INTRIN==rinv_intrin3<Vec_t,Real_t>) NWTN_ITER=3;
  747. Real_t nwtn_scal=1; // scaling factor for newton iterations
  748. for(int i=0;i<NWTN_ITER;i++){
  749. nwtn_scal=2*nwtn_scal*nwtn_scal*nwtn_scal;
  750. }
  751. const Real_t OOFP = 1.0/(4*nwtn_scal*const_pi<Real_t>());
  752. size_t src_cnt_=src_coord.Dim(1);
  753. size_t trg_cnt_=trg_coord.Dim(1);
  754. for(size_t sblk=0;sblk<src_cnt_;sblk+=SRC_BLK){
  755. size_t src_cnt=src_cnt_-sblk;
  756. if(src_cnt>SRC_BLK) src_cnt=SRC_BLK;
  757. for(size_t t=0;t<trg_cnt_;t+=VecLen){
  758. Vec_t tx=load_intrin<Vec_t>(&trg_coord[0][t]);
  759. Vec_t ty=load_intrin<Vec_t>(&trg_coord[1][t]);
  760. Vec_t tz=load_intrin<Vec_t>(&trg_coord[2][t]);
  761. Vec_t tv=zero_intrin<Vec_t>();
  762. for(size_t s=sblk;s<sblk+src_cnt;s++){
  763. Vec_t dx=sub_intrin(tx,bcast_intrin<Vec_t>(&src_coord[0][s]));
  764. Vec_t dy=sub_intrin(ty,bcast_intrin<Vec_t>(&src_coord[1][s]));
  765. Vec_t dz=sub_intrin(tz,bcast_intrin<Vec_t>(&src_coord[2][s]));
  766. Vec_t sv= bcast_intrin<Vec_t>(&src_value[0][s]) ;
  767. Vec_t r2= mul_intrin(dx,dx) ;
  768. r2=add_intrin(r2,mul_intrin(dy,dy));
  769. r2=add_intrin(r2,mul_intrin(dz,dz));
  770. Vec_t rinv=RINV_INTRIN(r2);
  771. tv=add_intrin(tv,mul_intrin(rinv,sv));
  772. }
  773. Vec_t oofp=set_intrin<Vec_t,Real_t>(OOFP);
  774. tv=add_intrin(mul_intrin(tv,oofp),load_intrin<Vec_t>(&trg_value[0][t]));
  775. store_intrin(&trg_value[0][t],tv);
  776. }
  777. }
  778. { // Add FLOPS
  779. #ifndef __MIC__
  780. Profile::Add_FLOP((long long)trg_cnt_*(long long)src_cnt_*(12+4*(NWTN_ITER)));
  781. #endif
  782. }
  783. #undef SRC_BLK
  784. }
  785. template <class T, int newton_iter>
  786. void laplace_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* v_trg, mem::MemoryManager* mem_mgr){
  787. #define LAP_KER_NWTN(nwtn) if(newton_iter==nwtn) \
  788. generic_kernel<Real_t, 1, 1, laplace_poten_uKernel<Real_t,Vec_t, rinv_intrin##nwtn<Vec_t,Real_t> > > \
  789. ((Real_t*)r_src, src_cnt, (Real_t*)v_src, dof, (Real_t*)r_trg, trg_cnt, (Real_t*)v_trg, mem_mgr)
  790. #define LAPLACE_KERNEL LAP_KER_NWTN(0); LAP_KER_NWTN(1); LAP_KER_NWTN(2); LAP_KER_NWTN(3);
  791. if(mem::TypeTraits<T>::ID()==mem::TypeTraits<float>::ID()){
  792. typedef float Real_t;
  793. #if defined __MIC__
  794. #define Vec_t Real_t
  795. #elif defined __AVX__
  796. #define Vec_t __m256
  797. #elif defined __SSE3__
  798. #define Vec_t __m128
  799. #else
  800. #define Vec_t Real_t
  801. #endif
  802. LAPLACE_KERNEL;
  803. #undef Vec_t
  804. }else if(mem::TypeTraits<T>::ID()==mem::TypeTraits<double>::ID()){
  805. typedef double Real_t;
  806. #if defined __MIC__
  807. #define Vec_t Real_t
  808. #elif defined __AVX__
  809. #define Vec_t __m256d
  810. #elif defined __SSE3__
  811. #define Vec_t __m128d
  812. #else
  813. #define Vec_t Real_t
  814. #endif
  815. LAPLACE_KERNEL;
  816. #undef Vec_t
  817. }else{
  818. typedef T Real_t;
  819. #define Vec_t Real_t
  820. LAPLACE_KERNEL;
  821. #undef Vec_t
  822. }
  823. #undef LAP_KER_NWTN
  824. #undef LAPLACE_KERNEL
  825. }
  826. // Laplace double layer potential.
  827. template <class Real_t, class Vec_t=Real_t, Vec_t (*RINV_INTRIN)(Vec_t)=rinv_intrin0<Vec_t> >
  828. void laplace_dbl_uKernel(Matrix<Real_t>& src_coord, Matrix<Real_t>& src_value, Matrix<Real_t>& trg_coord, Matrix<Real_t>& trg_value){
  829. #define SRC_BLK 500
  830. size_t VecLen=sizeof(Vec_t)/sizeof(Real_t);
  831. //// Number of newton iterations
  832. size_t NWTN_ITER=0;
  833. if(RINV_INTRIN==rinv_intrin0<Vec_t,Real_t>) NWTN_ITER=0;
  834. if(RINV_INTRIN==rinv_intrin1<Vec_t,Real_t>) NWTN_ITER=1;
  835. if(RINV_INTRIN==rinv_intrin2<Vec_t,Real_t>) NWTN_ITER=2;
  836. if(RINV_INTRIN==rinv_intrin3<Vec_t,Real_t>) NWTN_ITER=3;
  837. Real_t nwtn_scal=1; // scaling factor for newton iterations
  838. for(int i=0;i<NWTN_ITER;i++){
  839. nwtn_scal=2*nwtn_scal*nwtn_scal*nwtn_scal;
  840. }
  841. const Real_t OOFP = -1.0/(4*nwtn_scal*nwtn_scal*nwtn_scal*const_pi<Real_t>());
  842. size_t src_cnt_=src_coord.Dim(1);
  843. size_t trg_cnt_=trg_coord.Dim(1);
  844. for(size_t sblk=0;sblk<src_cnt_;sblk+=SRC_BLK){
  845. size_t src_cnt=src_cnt_-sblk;
  846. if(src_cnt>SRC_BLK) src_cnt=SRC_BLK;
  847. for(size_t t=0;t<trg_cnt_;t+=VecLen){
  848. Vec_t tx=load_intrin<Vec_t>(&trg_coord[0][t]);
  849. Vec_t ty=load_intrin<Vec_t>(&trg_coord[1][t]);
  850. Vec_t tz=load_intrin<Vec_t>(&trg_coord[2][t]);
  851. Vec_t tv=zero_intrin<Vec_t>();
  852. for(size_t s=sblk;s<sblk+src_cnt;s++){
  853. Vec_t dx=sub_intrin(tx,bcast_intrin<Vec_t>(&src_coord[0][s]));
  854. Vec_t dy=sub_intrin(ty,bcast_intrin<Vec_t>(&src_coord[1][s]));
  855. Vec_t dz=sub_intrin(tz,bcast_intrin<Vec_t>(&src_coord[2][s]));
  856. Vec_t sn0= bcast_intrin<Vec_t>(&src_value[0][s]) ;
  857. Vec_t sn1= bcast_intrin<Vec_t>(&src_value[1][s]) ;
  858. Vec_t sn2= bcast_intrin<Vec_t>(&src_value[2][s]) ;
  859. Vec_t sv= bcast_intrin<Vec_t>(&src_value[3][s]) ;
  860. Vec_t r2= mul_intrin(dx,dx) ;
  861. r2=add_intrin(r2,mul_intrin(dy,dy));
  862. r2=add_intrin(r2,mul_intrin(dz,dz));
  863. Vec_t rinv=RINV_INTRIN(r2);
  864. Vec_t r3inv=mul_intrin(mul_intrin(rinv,rinv),rinv);
  865. Vec_t rdotn= mul_intrin(sn0,dx);
  866. rdotn=add_intrin(rdotn, mul_intrin(sn1,dy));
  867. rdotn=add_intrin(rdotn, mul_intrin(sn2,dz));
  868. sv=mul_intrin(sv,rdotn);
  869. tv=add_intrin(tv,mul_intrin(r3inv,sv));
  870. }
  871. Vec_t oofp=set_intrin<Vec_t,Real_t>(OOFP);
  872. tv=add_intrin(mul_intrin(tv,oofp),load_intrin<Vec_t>(&trg_value[0][t]));
  873. store_intrin(&trg_value[0][t],tv);
  874. }
  875. }
  876. { // Add FLOPS
  877. #ifndef __MIC__
  878. Profile::Add_FLOP((long long)trg_cnt_*(long long)src_cnt_*(20+4*(NWTN_ITER)));
  879. #endif
  880. }
  881. #undef SRC_BLK
  882. }
  883. template <class T, int newton_iter>
  884. void laplace_dbl_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* v_trg, mem::MemoryManager* mem_mgr){
  885. #define LAP_KER_NWTN(nwtn) if(newton_iter==nwtn) \
  886. generic_kernel<Real_t, 4, 1, laplace_dbl_uKernel<Real_t,Vec_t, rinv_intrin##nwtn<Vec_t,Real_t> > > \
  887. ((Real_t*)r_src, src_cnt, (Real_t*)v_src, dof, (Real_t*)r_trg, trg_cnt, (Real_t*)v_trg, mem_mgr)
  888. #define LAPLACE_KERNEL LAP_KER_NWTN(0); LAP_KER_NWTN(1); LAP_KER_NWTN(2); LAP_KER_NWTN(3);
  889. if(mem::TypeTraits<T>::ID()==mem::TypeTraits<float>::ID()){
  890. typedef float Real_t;
  891. #if defined __MIC__
  892. #define Vec_t Real_t
  893. #elif defined __AVX__
  894. #define Vec_t __m256
  895. #elif defined __SSE3__
  896. #define Vec_t __m128
  897. #else
  898. #define Vec_t Real_t
  899. #endif
  900. LAPLACE_KERNEL;
  901. #undef Vec_t
  902. }else if(mem::TypeTraits<T>::ID()==mem::TypeTraits<double>::ID()){
  903. typedef double Real_t;
  904. #if defined __MIC__
  905. #define Vec_t Real_t
  906. #elif defined __AVX__
  907. #define Vec_t __m256d
  908. #elif defined __SSE3__
  909. #define Vec_t __m128d
  910. #else
  911. #define Vec_t Real_t
  912. #endif
  913. LAPLACE_KERNEL;
  914. #undef Vec_t
  915. }else{
  916. typedef T Real_t;
  917. #define Vec_t Real_t
  918. LAPLACE_KERNEL;
  919. #undef Vec_t
  920. }
  921. #undef LAP_KER_NWTN
  922. #undef LAPLACE_KERNEL
  923. }
  924. // Laplace grdient kernel.
  925. template <class Real_t, class Vec_t=Real_t, Vec_t (*RINV_INTRIN)(Vec_t)=rinv_intrin0<Vec_t> >
  926. void laplace_grad_uKernel(Matrix<Real_t>& src_coord, Matrix<Real_t>& src_value, Matrix<Real_t>& trg_coord, Matrix<Real_t>& trg_value){
  927. #define SRC_BLK 500
  928. size_t VecLen=sizeof(Vec_t)/sizeof(Real_t);
  929. //// Number of newton iterations
  930. size_t NWTN_ITER=0;
  931. if(RINV_INTRIN==rinv_intrin0<Vec_t,Real_t>) NWTN_ITER=0;
  932. if(RINV_INTRIN==rinv_intrin1<Vec_t,Real_t>) NWTN_ITER=1;
  933. if(RINV_INTRIN==rinv_intrin2<Vec_t,Real_t>) NWTN_ITER=2;
  934. if(RINV_INTRIN==rinv_intrin3<Vec_t,Real_t>) NWTN_ITER=3;
  935. Real_t nwtn_scal=1; // scaling factor for newton iterations
  936. for(int i=0;i<NWTN_ITER;i++){
  937. nwtn_scal=2*nwtn_scal*nwtn_scal*nwtn_scal;
  938. }
  939. const Real_t OOFP = -1.0/(4*nwtn_scal*nwtn_scal*nwtn_scal*const_pi<Real_t>());
  940. size_t src_cnt_=src_coord.Dim(1);
  941. size_t trg_cnt_=trg_coord.Dim(1);
  942. for(size_t sblk=0;sblk<src_cnt_;sblk+=SRC_BLK){
  943. size_t src_cnt=src_cnt_-sblk;
  944. if(src_cnt>SRC_BLK) src_cnt=SRC_BLK;
  945. for(size_t t=0;t<trg_cnt_;t+=VecLen){
  946. Vec_t tx=load_intrin<Vec_t>(&trg_coord[0][t]);
  947. Vec_t ty=load_intrin<Vec_t>(&trg_coord[1][t]);
  948. Vec_t tz=load_intrin<Vec_t>(&trg_coord[2][t]);
  949. Vec_t tv0=zero_intrin<Vec_t>();
  950. Vec_t tv1=zero_intrin<Vec_t>();
  951. Vec_t tv2=zero_intrin<Vec_t>();
  952. for(size_t s=sblk;s<sblk+src_cnt;s++){
  953. Vec_t dx=sub_intrin(tx,bcast_intrin<Vec_t>(&src_coord[0][s]));
  954. Vec_t dy=sub_intrin(ty,bcast_intrin<Vec_t>(&src_coord[1][s]));
  955. Vec_t dz=sub_intrin(tz,bcast_intrin<Vec_t>(&src_coord[2][s]));
  956. Vec_t sv= bcast_intrin<Vec_t>(&src_value[0][s]) ;
  957. Vec_t r2= mul_intrin(dx,dx) ;
  958. r2=add_intrin(r2,mul_intrin(dy,dy));
  959. r2=add_intrin(r2,mul_intrin(dz,dz));
  960. Vec_t rinv=RINV_INTRIN(r2);
  961. Vec_t r3inv=mul_intrin(mul_intrin(rinv,rinv),rinv);
  962. sv=mul_intrin(sv,r3inv);
  963. tv0=add_intrin(tv0,mul_intrin(sv,dx));
  964. tv1=add_intrin(tv1,mul_intrin(sv,dy));
  965. tv2=add_intrin(tv2,mul_intrin(sv,dz));
  966. }
  967. Vec_t oofp=set_intrin<Vec_t,Real_t>(OOFP);
  968. tv0=add_intrin(mul_intrin(tv0,oofp),load_intrin<Vec_t>(&trg_value[0][t]));
  969. tv1=add_intrin(mul_intrin(tv1,oofp),load_intrin<Vec_t>(&trg_value[1][t]));
  970. tv2=add_intrin(mul_intrin(tv2,oofp),load_intrin<Vec_t>(&trg_value[2][t]));
  971. store_intrin(&trg_value[0][t],tv0);
  972. store_intrin(&trg_value[1][t],tv1);
  973. store_intrin(&trg_value[2][t],tv2);
  974. }
  975. }
  976. { // Add FLOPS
  977. #ifndef __MIC__
  978. Profile::Add_FLOP((long long)trg_cnt_*(long long)src_cnt_*(19+4*(NWTN_ITER)));
  979. #endif
  980. }
  981. #undef SRC_BLK
  982. }
  983. template <class T, int newton_iter>
  984. void laplace_grad(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* v_trg, mem::MemoryManager* mem_mgr){
  985. #define LAP_KER_NWTN(nwtn) if(newton_iter==nwtn) \
  986. generic_kernel<Real_t, 1, 3, laplace_grad_uKernel<Real_t,Vec_t, rinv_intrin##nwtn<Vec_t,Real_t> > > \
  987. ((Real_t*)r_src, src_cnt, (Real_t*)v_src, dof, (Real_t*)r_trg, trg_cnt, (Real_t*)v_trg, mem_mgr)
  988. #define LAPLACE_KERNEL LAP_KER_NWTN(0); LAP_KER_NWTN(1); LAP_KER_NWTN(2); LAP_KER_NWTN(3);
  989. if(mem::TypeTraits<T>::ID()==mem::TypeTraits<float>::ID()){
  990. typedef float Real_t;
  991. #if defined __MIC__
  992. #define Vec_t Real_t
  993. #elif defined __AVX__
  994. #define Vec_t __m256
  995. #elif defined __SSE3__
  996. #define Vec_t __m128
  997. #else
  998. #define Vec_t Real_t
  999. #endif
  1000. LAPLACE_KERNEL;
  1001. #undef Vec_t
  1002. }else if(mem::TypeTraits<T>::ID()==mem::TypeTraits<double>::ID()){
  1003. typedef double Real_t;
  1004. #if defined __MIC__
  1005. #define Vec_t Real_t
  1006. #elif defined __AVX__
  1007. #define Vec_t __m256d
  1008. #elif defined __SSE3__
  1009. #define Vec_t __m128d
  1010. #else
  1011. #define Vec_t Real_t
  1012. #endif
  1013. LAPLACE_KERNEL;
  1014. #undef Vec_t
  1015. }else{
  1016. typedef T Real_t;
  1017. #define Vec_t Real_t
  1018. LAPLACE_KERNEL;
  1019. #undef Vec_t
  1020. }
  1021. #undef LAP_KER_NWTN
  1022. #undef LAPLACE_KERNEL
  1023. }
  1024. ////////////////////////////////////////////////////////////////////////////////
  1025. //////// STOKES KERNEL ////////
  1026. ////////////////////////////////////////////////////////////////////////////////
  1027. /**
  1028. * \brief Green's function for the Stokes's equation. Kernel tensor
  1029. * dimension = 3x3.
  1030. */
  1031. template <class T>
  1032. void stokes_vel(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1033. #ifndef __MIC__
  1034. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(28*dof));
  1035. #endif
  1036. const T mu=1.0;
  1037. const T OOEPMU = 1.0/(8.0*const_pi<T>()*mu);
  1038. for(int t=0;t<trg_cnt;t++){
  1039. for(int i=0;i<dof;i++){
  1040. T p[3]={0,0,0};
  1041. for(int s=0;s<src_cnt;s++){
  1042. T dR[3]={r_trg[3*t ]-r_src[3*s ],
  1043. r_trg[3*t+1]-r_src[3*s+1],
  1044. r_trg[3*t+2]-r_src[3*s+2]};
  1045. T R = (dR[0]*dR[0]+dR[1]*dR[1]+dR[2]*dR[2]);
  1046. if (R!=0){
  1047. T invR2=1.0/R;
  1048. T invR=sqrt(invR2);
  1049. T v_src[3]={v_src_[(s*dof+i)*3 ],
  1050. v_src_[(s*dof+i)*3+1],
  1051. v_src_[(s*dof+i)*3+2]};
  1052. T inner_prod=(v_src[0]*dR[0] +
  1053. v_src[1]*dR[1] +
  1054. v_src[2]*dR[2])* invR2;
  1055. p[0] += (v_src[0] + dR[0]*inner_prod)*invR;
  1056. p[1] += (v_src[1] + dR[1]*inner_prod)*invR;
  1057. p[2] += (v_src[2] + dR[2]*inner_prod)*invR;
  1058. }
  1059. }
  1060. k_out[(t*dof+i)*3+0] += p[0]*OOEPMU;
  1061. k_out[(t*dof+i)*3+1] += p[1]*OOEPMU;
  1062. k_out[(t*dof+i)*3+2] += p[2]*OOEPMU;
  1063. }
  1064. }
  1065. }
  1066. template <class T>
  1067. void stokes_sym_dip(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1068. #ifndef __MIC__
  1069. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(47*dof));
  1070. #endif
  1071. const T mu=1.0;
  1072. const T OOEPMU = -1.0/(8.0*const_pi<T>()*mu);
  1073. for(int t=0;t<trg_cnt;t++){
  1074. for(int i=0;i<dof;i++){
  1075. T p[3]={0,0,0};
  1076. for(int s=0;s<src_cnt;s++){
  1077. T dR[3]={r_trg[3*t ]-r_src[3*s ],
  1078. r_trg[3*t+1]-r_src[3*s+1],
  1079. r_trg[3*t+2]-r_src[3*s+2]};
  1080. T R = (dR[0]*dR[0]+dR[1]*dR[1]+dR[2]*dR[2]);
  1081. if (R!=0){
  1082. T invR2=1.0/R;
  1083. T invR=sqrt(invR2);
  1084. T invR3=invR2*invR;
  1085. T* f=&v_src[(s*dof+i)*6+0];
  1086. T* n=&v_src[(s*dof+i)*6+3];
  1087. T r_dot_n=(n[0]*dR[0]+n[1]*dR[1]+n[2]*dR[2]);
  1088. T r_dot_f=(f[0]*dR[0]+f[1]*dR[1]+f[2]*dR[2]);
  1089. T n_dot_f=(f[0]* n[0]+f[1]* n[1]+f[2]* n[2]);
  1090. p[0] += dR[0]*(n_dot_f - 3*r_dot_n*r_dot_f*invR2)*invR3;
  1091. p[1] += dR[1]*(n_dot_f - 3*r_dot_n*r_dot_f*invR2)*invR3;
  1092. p[2] += dR[2]*(n_dot_f - 3*r_dot_n*r_dot_f*invR2)*invR3;
  1093. }
  1094. }
  1095. k_out[(t*dof+i)*3+0] += p[0]*OOEPMU;
  1096. k_out[(t*dof+i)*3+1] += p[1]*OOEPMU;
  1097. k_out[(t*dof+i)*3+2] += p[2]*OOEPMU;
  1098. }
  1099. }
  1100. }
  1101. template <class T>
  1102. void stokes_press(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1103. #ifndef __MIC__
  1104. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(17*dof));
  1105. #endif
  1106. const T OOFP = 1.0/(4.0*const_pi<T>());
  1107. for(int t=0;t<trg_cnt;t++){
  1108. for(int i=0;i<dof;i++){
  1109. T p=0;
  1110. for(int s=0;s<src_cnt;s++){
  1111. T dR[3]={r_trg[3*t ]-r_src[3*s ],
  1112. r_trg[3*t+1]-r_src[3*s+1],
  1113. r_trg[3*t+2]-r_src[3*s+2]};
  1114. T R = (dR[0]*dR[0]+dR[1]*dR[1]+dR[2]*dR[2]);
  1115. if (R!=0){
  1116. T invR2=1.0/R;
  1117. T invR=sqrt(invR2);
  1118. T invR3=invR2*invR;
  1119. T v_src[3]={v_src_[(s*dof+i)*3 ],
  1120. v_src_[(s*dof+i)*3+1],
  1121. v_src_[(s*dof+i)*3+2]};
  1122. T inner_prod=(v_src[0]*dR[0] +
  1123. v_src[1]*dR[1] +
  1124. v_src[2]*dR[2])* invR3;
  1125. p += inner_prod;
  1126. }
  1127. }
  1128. k_out[t*dof+i] += p*OOFP;
  1129. }
  1130. }
  1131. }
  1132. template <class T>
  1133. void stokes_stress(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1134. #ifndef __MIC__
  1135. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(45*dof));
  1136. #endif
  1137. const T TOFP = -3.0/(4.0*const_pi<T>());
  1138. for(int t=0;t<trg_cnt;t++){
  1139. for(int i=0;i<dof;i++){
  1140. T p[9]={0,0,0,
  1141. 0,0,0,
  1142. 0,0,0};
  1143. for(int s=0;s<src_cnt;s++){
  1144. T dR[3]={r_trg[3*t ]-r_src[3*s ],
  1145. r_trg[3*t+1]-r_src[3*s+1],
  1146. r_trg[3*t+2]-r_src[3*s+2]};
  1147. T R = (dR[0]*dR[0]+dR[1]*dR[1]+dR[2]*dR[2]);
  1148. if (R!=0){
  1149. T invR2=1.0/R;
  1150. T invR=sqrt(invR2);
  1151. T invR3=invR2*invR;
  1152. T invR5=invR3*invR2;
  1153. T v_src[3]={v_src_[(s*dof+i)*3 ],
  1154. v_src_[(s*dof+i)*3+1],
  1155. v_src_[(s*dof+i)*3+2]};
  1156. T inner_prod=(v_src[0]*dR[0] +
  1157. v_src[1]*dR[1] +
  1158. v_src[2]*dR[2])* invR5;
  1159. p[0] += inner_prod*dR[0]*dR[0]; p[1] += inner_prod*dR[1]*dR[0]; p[2] += inner_prod*dR[2]*dR[0];
  1160. p[3] += inner_prod*dR[0]*dR[1]; p[4] += inner_prod*dR[1]*dR[1]; p[5] += inner_prod*dR[2]*dR[1];
  1161. p[6] += inner_prod*dR[0]*dR[2]; p[7] += inner_prod*dR[1]*dR[2]; p[8] += inner_prod*dR[2]*dR[2];
  1162. }
  1163. }
  1164. k_out[(t*dof+i)*9+0] += p[0]*TOFP;
  1165. k_out[(t*dof+i)*9+1] += p[1]*TOFP;
  1166. k_out[(t*dof+i)*9+2] += p[2]*TOFP;
  1167. k_out[(t*dof+i)*9+3] += p[3]*TOFP;
  1168. k_out[(t*dof+i)*9+4] += p[4]*TOFP;
  1169. k_out[(t*dof+i)*9+5] += p[5]*TOFP;
  1170. k_out[(t*dof+i)*9+6] += p[6]*TOFP;
  1171. k_out[(t*dof+i)*9+7] += p[7]*TOFP;
  1172. k_out[(t*dof+i)*9+8] += p[8]*TOFP;
  1173. }
  1174. }
  1175. }
  1176. template <class T>
  1177. void stokes_grad(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1178. #ifndef __MIC__
  1179. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(89*dof));
  1180. #endif
  1181. const T mu=1.0;
  1182. const T OOEPMU = 1.0/(8.0*const_pi<T>()*mu);
  1183. for(int t=0;t<trg_cnt;t++){
  1184. for(int i=0;i<dof;i++){
  1185. T p[9]={0,0,0,
  1186. 0,0,0,
  1187. 0,0,0};
  1188. for(int s=0;s<src_cnt;s++){
  1189. T dR[3]={r_trg[3*t ]-r_src[3*s ],
  1190. r_trg[3*t+1]-r_src[3*s+1],
  1191. r_trg[3*t+2]-r_src[3*s+2]};
  1192. T R = (dR[0]*dR[0]+dR[1]*dR[1]+dR[2]*dR[2]);
  1193. if (R!=0){
  1194. T invR2=1.0/R;
  1195. T invR=sqrt(invR2);
  1196. T invR3=invR2*invR;
  1197. T v_src[3]={v_src_[(s*dof+i)*3 ],
  1198. v_src_[(s*dof+i)*3+1],
  1199. v_src_[(s*dof+i)*3+2]};
  1200. T inner_prod=(v_src[0]*dR[0] +
  1201. v_src[1]*dR[1] +
  1202. v_src[2]*dR[2]);
  1203. p[0] += ( inner_prod*(1-3*dR[0]*dR[0]*invR2))*invR3; //6
  1204. p[1] += (dR[1]*v_src[0]-v_src[1]*dR[0]+inner_prod*( -3*dR[1]*dR[0]*invR2))*invR3; //9
  1205. p[2] += (dR[2]*v_src[0]-v_src[2]*dR[0]+inner_prod*( -3*dR[2]*dR[0]*invR2))*invR3;
  1206. p[3] += (dR[0]*v_src[1]-v_src[0]*dR[1]+inner_prod*( -3*dR[0]*dR[1]*invR2))*invR3;
  1207. p[4] += ( inner_prod*(1-3*dR[1]*dR[1]*invR2))*invR3;
  1208. p[5] += (dR[2]*v_src[1]-v_src[2]*dR[1]+inner_prod*( -3*dR[2]*dR[1]*invR2))*invR3;
  1209. p[6] += (dR[0]*v_src[2]-v_src[0]*dR[2]+inner_prod*( -3*dR[0]*dR[2]*invR2))*invR3;
  1210. p[7] += (dR[1]*v_src[2]-v_src[1]*dR[2]+inner_prod*( -3*dR[1]*dR[2]*invR2))*invR3;
  1211. p[8] += ( inner_prod*(1-3*dR[2]*dR[2]*invR2))*invR3;
  1212. }
  1213. }
  1214. k_out[(t*dof+i)*9+0] += p[0]*OOEPMU;
  1215. k_out[(t*dof+i)*9+1] += p[1]*OOEPMU;
  1216. k_out[(t*dof+i)*9+2] += p[2]*OOEPMU;
  1217. k_out[(t*dof+i)*9+3] += p[3]*OOEPMU;
  1218. k_out[(t*dof+i)*9+4] += p[4]*OOEPMU;
  1219. k_out[(t*dof+i)*9+5] += p[5]*OOEPMU;
  1220. k_out[(t*dof+i)*9+6] += p[6]*OOEPMU;
  1221. k_out[(t*dof+i)*9+7] += p[7]*OOEPMU;
  1222. k_out[(t*dof+i)*9+8] += p[8]*OOEPMU;
  1223. }
  1224. }
  1225. }
  1226. #ifndef __MIC__
  1227. #ifdef USE_SSE
  1228. namespace
  1229. {
  1230. #define IDEAL_ALIGNMENT 16
  1231. #define SIMD_LEN (int)(IDEAL_ALIGNMENT / sizeof(double))
  1232. #define DECL_SIMD_ALIGNED __declspec(align(IDEAL_ALIGNMENT))
  1233. void stokesDirectVecSSE(
  1234. const int ns,
  1235. const int nt,
  1236. const double *sx,
  1237. const double *sy,
  1238. const double *sz,
  1239. const double *tx,
  1240. const double *ty,
  1241. const double *tz,
  1242. const double *srcDen,
  1243. double *trgVal,
  1244. const double cof )
  1245. {
  1246. if ( size_t(sx)%IDEAL_ALIGNMENT || size_t(sy)%IDEAL_ALIGNMENT || size_t(sz)%IDEAL_ALIGNMENT )
  1247. abort();
  1248. double mu = cof;
  1249. double OOEP = 1.0/(8.0*const_pi<double>());
  1250. __m128d tempx;
  1251. __m128d tempy;
  1252. __m128d tempz;
  1253. double oomeu = 1/mu;
  1254. double aux_arr[3*SIMD_LEN+1];
  1255. double *tempvalx;
  1256. double *tempvaly;
  1257. double *tempvalz;
  1258. if (size_t(aux_arr)%IDEAL_ALIGNMENT) // if aux_arr is misaligned
  1259. {
  1260. tempvalx = aux_arr + 1;
  1261. if (size_t(tempvalx)%IDEAL_ALIGNMENT)
  1262. abort();
  1263. }
  1264. else
  1265. tempvalx = aux_arr;
  1266. tempvaly=tempvalx+SIMD_LEN;
  1267. tempvalz=tempvaly+SIMD_LEN;
  1268. /*! One over eight pi */
  1269. __m128d ooep = _mm_set1_pd (OOEP);
  1270. __m128d half = _mm_set1_pd (0.5);
  1271. __m128d opf = _mm_set1_pd (1.5);
  1272. __m128d zero = _mm_setzero_pd ();
  1273. __m128d oomu = _mm_set1_pd (1/mu);
  1274. // loop over sources
  1275. int i = 0;
  1276. for (; i < nt; i++) {
  1277. tempx = _mm_setzero_pd();
  1278. tempy = _mm_setzero_pd();
  1279. tempz = _mm_setzero_pd();
  1280. __m128d txi = _mm_load1_pd (&tx[i]);
  1281. __m128d tyi = _mm_load1_pd (&ty[i]);
  1282. __m128d tzi = _mm_load1_pd (&tz[i]);
  1283. int j = 0;
  1284. // Load and calculate in groups of SIMD_LEN
  1285. for (; j + SIMD_LEN <= ns; j+=SIMD_LEN) {
  1286. __m128d sxj = _mm_load_pd (&sx[j]);
  1287. __m128d syj = _mm_load_pd (&sy[j]);
  1288. __m128d szj = _mm_load_pd (&sz[j]);
  1289. __m128d sdenx = _mm_set_pd (srcDen[(j+1)*3], srcDen[j*3]);
  1290. __m128d sdeny = _mm_set_pd (srcDen[(j+1)*3+1], srcDen[j*3+1]);
  1291. __m128d sdenz = _mm_set_pd (srcDen[(j+1)*3+2], srcDen[j*3+2]);
  1292. __m128d dX, dY, dZ;
  1293. __m128d dR2;
  1294. __m128d S;
  1295. dX = _mm_sub_pd(txi , sxj);
  1296. dY = _mm_sub_pd(tyi , syj);
  1297. dZ = _mm_sub_pd(tzi , szj);
  1298. sxj = _mm_mul_pd(dX, dX);
  1299. syj = _mm_mul_pd(dY, dY);
  1300. szj = _mm_mul_pd(dZ, dZ);
  1301. dR2 = _mm_add_pd(sxj, syj);
  1302. dR2 = _mm_add_pd(szj, dR2);
  1303. __m128d temp = _mm_cmpeq_pd (dR2, zero);
  1304. __m128d xhalf = _mm_mul_pd (half, dR2);
  1305. __m128 dR2_s = _mm_cvtpd_ps(dR2);
  1306. __m128 S_s = _mm_rsqrt_ps(dR2_s);
  1307. __m128d S_d = _mm_cvtps_pd(S_s);
  1308. // To handle the condition when src and trg coincide
  1309. S_d = _mm_andnot_pd (temp, S_d);
  1310. S = _mm_mul_pd (S_d, S_d);
  1311. S = _mm_mul_pd (S, xhalf);
  1312. S = _mm_sub_pd (opf, S);
  1313. S = _mm_mul_pd (S, S_d);
  1314. __m128d dotx = _mm_mul_pd (dX, sdenx);
  1315. __m128d doty = _mm_mul_pd (dY, sdeny);
  1316. __m128d dotz = _mm_mul_pd (dZ, sdenz);
  1317. __m128d dot_sum = _mm_add_pd (dotx, doty);
  1318. dot_sum = _mm_add_pd (dot_sum, dotz);
  1319. dot_sum = _mm_mul_pd (dot_sum, S);
  1320. dot_sum = _mm_mul_pd (dot_sum, S);
  1321. dotx = _mm_mul_pd (dot_sum, dX);
  1322. doty = _mm_mul_pd (dot_sum, dY);
  1323. dotz = _mm_mul_pd (dot_sum, dZ);
  1324. sdenx = _mm_add_pd (sdenx, dotx);
  1325. sdeny = _mm_add_pd (sdeny, doty);
  1326. sdenz = _mm_add_pd (sdenz, dotz);
  1327. sdenx = _mm_mul_pd (sdenx, S);
  1328. sdeny = _mm_mul_pd (sdeny, S);
  1329. sdenz = _mm_mul_pd (sdenz, S);
  1330. tempx = _mm_add_pd (sdenx, tempx);
  1331. tempy = _mm_add_pd (sdeny, tempy);
  1332. tempz = _mm_add_pd (sdenz, tempz);
  1333. }
  1334. tempx = _mm_mul_pd (tempx, ooep);
  1335. tempy = _mm_mul_pd (tempy, ooep);
  1336. tempz = _mm_mul_pd (tempz, ooep);
  1337. tempx = _mm_mul_pd (tempx, oomu);
  1338. tempy = _mm_mul_pd (tempy, oomu);
  1339. tempz = _mm_mul_pd (tempz, oomu);
  1340. _mm_store_pd(tempvalx, tempx);
  1341. _mm_store_pd(tempvaly, tempy);
  1342. _mm_store_pd(tempvalz, tempz);
  1343. for (int k = 0; k < SIMD_LEN; k++) {
  1344. trgVal[i*3] += tempvalx[k];
  1345. trgVal[i*3+1] += tempvaly[k];
  1346. trgVal[i*3+2] += tempvalz[k];
  1347. }
  1348. for (; j < ns; j++) {
  1349. double x = tx[i] - sx[j];
  1350. double y = ty[i] - sy[j];
  1351. double z = tz[i] - sz[j];
  1352. double r2 = x*x + y*y + z*z;
  1353. double r = sqrt(r2);
  1354. double invdr;
  1355. if (r == 0)
  1356. invdr = 0;
  1357. else
  1358. invdr = 1/r;
  1359. double dot = (x*srcDen[j*3] + y*srcDen[j*3+1] + z*srcDen[j*3+2]) * invdr * invdr;
  1360. double denx = srcDen[j*3] + dot*x;
  1361. double deny = srcDen[j*3+1] + dot*y;
  1362. double denz = srcDen[j*3+2] + dot*z;
  1363. trgVal[i*3] += denx*invdr*OOEP*oomeu;
  1364. trgVal[i*3+1] += deny*invdr*OOEP*oomeu;
  1365. trgVal[i*3+2] += denz*invdr*OOEP*oomeu;
  1366. }
  1367. }
  1368. return;
  1369. }
  1370. void stokesPressureSSE(
  1371. const int ns,
  1372. const int nt,
  1373. const double *sx,
  1374. const double *sy,
  1375. const double *sz,
  1376. const double *tx,
  1377. const double *ty,
  1378. const double *tz,
  1379. const double *srcDen,
  1380. double *trgVal)
  1381. {
  1382. if ( size_t(sx)%IDEAL_ALIGNMENT || size_t(sy)%IDEAL_ALIGNMENT || size_t(sz)%IDEAL_ALIGNMENT )
  1383. abort();
  1384. double OOFP = 1.0/(4.0*const_pi<double>());
  1385. __m128d temp_press;
  1386. double aux_arr[SIMD_LEN+1];
  1387. double *tempval_press;
  1388. if (size_t(aux_arr)%IDEAL_ALIGNMENT) // if aux_arr is misaligned
  1389. {
  1390. tempval_press = aux_arr + 1;
  1391. if (size_t(tempval_press)%IDEAL_ALIGNMENT)
  1392. abort();
  1393. }
  1394. else
  1395. tempval_press = aux_arr;
  1396. /*! One over eight pi */
  1397. __m128d oofp = _mm_set1_pd (OOFP);
  1398. __m128d half = _mm_set1_pd (0.5);
  1399. __m128d opf = _mm_set1_pd (1.5);
  1400. __m128d zero = _mm_setzero_pd ();
  1401. // loop over sources
  1402. int i = 0;
  1403. for (; i < nt; i++) {
  1404. temp_press = _mm_setzero_pd();
  1405. __m128d txi = _mm_load1_pd (&tx[i]);
  1406. __m128d tyi = _mm_load1_pd (&ty[i]);
  1407. __m128d tzi = _mm_load1_pd (&tz[i]);
  1408. int j = 0;
  1409. // Load and calculate in groups of SIMD_LEN
  1410. for (; j + SIMD_LEN <= ns; j+=SIMD_LEN) {
  1411. __m128d sxj = _mm_load_pd (&sx[j]);
  1412. __m128d syj = _mm_load_pd (&sy[j]);
  1413. __m128d szj = _mm_load_pd (&sz[j]);
  1414. __m128d sdenx = _mm_set_pd (srcDen[(j+1)*3], srcDen[j*3]);
  1415. __m128d sdeny = _mm_set_pd (srcDen[(j+1)*3+1], srcDen[j*3+1]);
  1416. __m128d sdenz = _mm_set_pd (srcDen[(j+1)*3+2], srcDen[j*3+2]);
  1417. __m128d dX, dY, dZ;
  1418. __m128d dR2;
  1419. __m128d S;
  1420. dX = _mm_sub_pd(txi , sxj);
  1421. dY = _mm_sub_pd(tyi , syj);
  1422. dZ = _mm_sub_pd(tzi , szj);
  1423. sxj = _mm_mul_pd(dX, dX);
  1424. syj = _mm_mul_pd(dY, dY);
  1425. szj = _mm_mul_pd(dZ, dZ);
  1426. dR2 = _mm_add_pd(sxj, syj);
  1427. dR2 = _mm_add_pd(szj, dR2);
  1428. __m128d temp = _mm_cmpeq_pd (dR2, zero);
  1429. __m128d xhalf = _mm_mul_pd (half, dR2);
  1430. __m128 dR2_s = _mm_cvtpd_ps(dR2);
  1431. __m128 S_s = _mm_rsqrt_ps(dR2_s);
  1432. __m128d S_d = _mm_cvtps_pd(S_s);
  1433. // To handle the condition when src and trg coincide
  1434. S_d = _mm_andnot_pd (temp, S_d);
  1435. S = _mm_mul_pd (S_d, S_d);
  1436. S = _mm_mul_pd (S, xhalf);
  1437. S = _mm_sub_pd (opf, S);
  1438. S = _mm_mul_pd (S, S_d);
  1439. __m128d dotx = _mm_mul_pd (dX, sdenx);
  1440. __m128d doty = _mm_mul_pd (dY, sdeny);
  1441. __m128d dotz = _mm_mul_pd (dZ, sdenz);
  1442. __m128d dot_sum = _mm_add_pd (dotx, doty);
  1443. dot_sum = _mm_add_pd (dot_sum, dotz);
  1444. dot_sum = _mm_mul_pd (dot_sum, S);
  1445. dot_sum = _mm_mul_pd (dot_sum, S);
  1446. dot_sum = _mm_mul_pd (dot_sum, S);
  1447. temp_press = _mm_add_pd (dot_sum, temp_press);
  1448. }
  1449. temp_press = _mm_mul_pd (temp_press, oofp);
  1450. _mm_store_pd(tempval_press, temp_press);
  1451. for (int k = 0; k < SIMD_LEN; k++) {
  1452. trgVal[i] += tempval_press[k];
  1453. }
  1454. for (; j < ns; j++) {
  1455. double x = tx[i] - sx[j];
  1456. double y = ty[i] - sy[j];
  1457. double z = tz[i] - sz[j];
  1458. double r2 = x*x + y*y + z*z;
  1459. double r = sqrt(r2);
  1460. double invdr;
  1461. if (r == 0)
  1462. invdr = 0;
  1463. else
  1464. invdr = 1/r;
  1465. double dot = (x*srcDen[j*3] + y*srcDen[j*3+1] + z*srcDen[j*3+2]) * invdr * invdr * invdr;
  1466. trgVal[i] += dot*OOFP;
  1467. }
  1468. }
  1469. return;
  1470. }
  1471. void stokesStressSSE(
  1472. const int ns,
  1473. const int nt,
  1474. const double *sx,
  1475. const double *sy,
  1476. const double *sz,
  1477. const double *tx,
  1478. const double *ty,
  1479. const double *tz,
  1480. const double *srcDen,
  1481. double *trgVal)
  1482. {
  1483. if ( size_t(sx)%IDEAL_ALIGNMENT || size_t(sy)%IDEAL_ALIGNMENT || size_t(sz)%IDEAL_ALIGNMENT )
  1484. abort();
  1485. double TOFP = -3.0/(4.0*const_pi<double>());
  1486. __m128d tempxx; __m128d tempxy; __m128d tempxz;
  1487. __m128d tempyx; __m128d tempyy; __m128d tempyz;
  1488. __m128d tempzx; __m128d tempzy; __m128d tempzz;
  1489. double aux_arr[9*SIMD_LEN+1];
  1490. double *tempvalxx, *tempvalxy, *tempvalxz;
  1491. double *tempvalyx, *tempvalyy, *tempvalyz;
  1492. double *tempvalzx, *tempvalzy, *tempvalzz;
  1493. if (size_t(aux_arr)%IDEAL_ALIGNMENT) // if aux_arr is misaligned
  1494. {
  1495. tempvalxx = aux_arr + 1;
  1496. if (size_t(tempvalxx)%IDEAL_ALIGNMENT)
  1497. abort();
  1498. }
  1499. else
  1500. tempvalxx = aux_arr;
  1501. tempvalxy=tempvalxx+SIMD_LEN;
  1502. tempvalxz=tempvalxy+SIMD_LEN;
  1503. tempvalyx=tempvalxz+SIMD_LEN;
  1504. tempvalyy=tempvalyx+SIMD_LEN;
  1505. tempvalyz=tempvalyy+SIMD_LEN;
  1506. tempvalzx=tempvalyz+SIMD_LEN;
  1507. tempvalzy=tempvalzx+SIMD_LEN;
  1508. tempvalzz=tempvalzy+SIMD_LEN;
  1509. /*! One over eight pi */
  1510. __m128d tofp = _mm_set1_pd (TOFP);
  1511. __m128d half = _mm_set1_pd (0.5);
  1512. __m128d opf = _mm_set1_pd (1.5);
  1513. __m128d zero = _mm_setzero_pd ();
  1514. // loop over sources
  1515. int i = 0;
  1516. for (; i < nt; i++) {
  1517. tempxx = _mm_setzero_pd(); tempxy = _mm_setzero_pd(); tempxz = _mm_setzero_pd();
  1518. tempyx = _mm_setzero_pd(); tempyy = _mm_setzero_pd(); tempyz = _mm_setzero_pd();
  1519. tempzx = _mm_setzero_pd(); tempzy = _mm_setzero_pd(); tempzz = _mm_setzero_pd();
  1520. __m128d txi = _mm_load1_pd (&tx[i]);
  1521. __m128d tyi = _mm_load1_pd (&ty[i]);
  1522. __m128d tzi = _mm_load1_pd (&tz[i]);
  1523. int j = 0;
  1524. // Load and calculate in groups of SIMD_LEN
  1525. for (; j + SIMD_LEN <= ns; j+=SIMD_LEN) {
  1526. __m128d sxj = _mm_load_pd (&sx[j]);
  1527. __m128d syj = _mm_load_pd (&sy[j]);
  1528. __m128d szj = _mm_load_pd (&sz[j]);
  1529. __m128d sdenx = _mm_set_pd (srcDen[(j+1)*3], srcDen[j*3]);
  1530. __m128d sdeny = _mm_set_pd (srcDen[(j+1)*3+1], srcDen[j*3+1]);
  1531. __m128d sdenz = _mm_set_pd (srcDen[(j+1)*3+2], srcDen[j*3+2]);
  1532. __m128d dX, dY, dZ;
  1533. __m128d dR2;
  1534. __m128d S;
  1535. __m128d S2;
  1536. dX = _mm_sub_pd(txi , sxj);
  1537. dY = _mm_sub_pd(tyi , syj);
  1538. dZ = _mm_sub_pd(tzi , szj);
  1539. sxj = _mm_mul_pd(dX, dX);
  1540. syj = _mm_mul_pd(dY, dY);
  1541. szj = _mm_mul_pd(dZ, dZ);
  1542. dR2 = _mm_add_pd(sxj, syj);
  1543. dR2 = _mm_add_pd(szj, dR2);
  1544. __m128d temp = _mm_cmpeq_pd (dR2, zero);
  1545. __m128d xhalf = _mm_mul_pd (half, dR2);
  1546. __m128 dR2_s = _mm_cvtpd_ps(dR2);
  1547. __m128 S_s = _mm_rsqrt_ps(dR2_s);
  1548. __m128d S_d = _mm_cvtps_pd(S_s);
  1549. // To handle the condition when src and trg coincide
  1550. S_d = _mm_andnot_pd (temp, S_d);
  1551. S = _mm_mul_pd (S_d, S_d);
  1552. S = _mm_mul_pd (S, xhalf);
  1553. S = _mm_sub_pd (opf, S);
  1554. S = _mm_mul_pd (S, S_d);
  1555. S2 = _mm_mul_pd (S, S);
  1556. __m128d dotx = _mm_mul_pd (dX, sdenx);
  1557. __m128d doty = _mm_mul_pd (dY, sdeny);
  1558. __m128d dotz = _mm_mul_pd (dZ, sdenz);
  1559. __m128d dot_sum = _mm_add_pd (dotx, doty);
  1560. dot_sum = _mm_add_pd (dot_sum, dotz);
  1561. dot_sum = _mm_mul_pd (dot_sum, S);
  1562. dot_sum = _mm_mul_pd (dot_sum, S2);
  1563. dot_sum = _mm_mul_pd (dot_sum, S2);
  1564. dotx = _mm_mul_pd (dot_sum, dX);
  1565. doty = _mm_mul_pd (dot_sum, dY);
  1566. dotz = _mm_mul_pd (dot_sum, dZ);
  1567. tempxx = _mm_add_pd (_mm_mul_pd(dotx,dX), tempxx);
  1568. tempxy = _mm_add_pd (_mm_mul_pd(dotx,dY), tempxy);
  1569. tempxz = _mm_add_pd (_mm_mul_pd(dotx,dZ), tempxz);
  1570. tempyx = _mm_add_pd (_mm_mul_pd(doty,dX), tempyx);
  1571. tempyy = _mm_add_pd (_mm_mul_pd(doty,dY), tempyy);
  1572. tempyz = _mm_add_pd (_mm_mul_pd(doty,dZ), tempyz);
  1573. tempzx = _mm_add_pd (_mm_mul_pd(dotz,dX), tempzx);
  1574. tempzy = _mm_add_pd (_mm_mul_pd(dotz,dY), tempzy);
  1575. tempzz = _mm_add_pd (_mm_mul_pd(dotz,dZ), tempzz);
  1576. }
  1577. tempxx = _mm_mul_pd (tempxx, tofp);
  1578. tempxy = _mm_mul_pd (tempxy, tofp);
  1579. tempxz = _mm_mul_pd (tempxz, tofp);
  1580. tempyx = _mm_mul_pd (tempyx, tofp);
  1581. tempyy = _mm_mul_pd (tempyy, tofp);
  1582. tempyz = _mm_mul_pd (tempyz, tofp);
  1583. tempzx = _mm_mul_pd (tempzx, tofp);
  1584. tempzy = _mm_mul_pd (tempzy, tofp);
  1585. tempzz = _mm_mul_pd (tempzz, tofp);
  1586. _mm_store_pd(tempvalxx, tempxx); _mm_store_pd(tempvalxy, tempxy); _mm_store_pd(tempvalxz, tempxz);
  1587. _mm_store_pd(tempvalyx, tempyx); _mm_store_pd(tempvalyy, tempyy); _mm_store_pd(tempvalyz, tempyz);
  1588. _mm_store_pd(tempvalzx, tempzx); _mm_store_pd(tempvalzy, tempzy); _mm_store_pd(tempvalzz, tempzz);
  1589. for (int k = 0; k < SIMD_LEN; k++) {
  1590. trgVal[i*9 ] += tempvalxx[k];
  1591. trgVal[i*9+1] += tempvalxy[k];
  1592. trgVal[i*9+2] += tempvalxz[k];
  1593. trgVal[i*9+3] += tempvalyx[k];
  1594. trgVal[i*9+4] += tempvalyy[k];
  1595. trgVal[i*9+5] += tempvalyz[k];
  1596. trgVal[i*9+6] += tempvalzx[k];
  1597. trgVal[i*9+7] += tempvalzy[k];
  1598. trgVal[i*9+8] += tempvalzz[k];
  1599. }
  1600. for (; j < ns; j++) {
  1601. double x = tx[i] - sx[j];
  1602. double y = ty[i] - sy[j];
  1603. double z = tz[i] - sz[j];
  1604. double r2 = x*x + y*y + z*z;
  1605. double r = sqrt(r2);
  1606. double invdr;
  1607. if (r == 0)
  1608. invdr = 0;
  1609. else
  1610. invdr = 1/r;
  1611. double invdr2=invdr*invdr;
  1612. double dot = (x*srcDen[j*3] + y*srcDen[j*3+1] + z*srcDen[j*3+2]) * invdr2 * invdr2 * invdr;
  1613. double denx = dot*x;
  1614. double deny = dot*y;
  1615. double denz = dot*z;
  1616. trgVal[i*9 ] += denx*x*TOFP;
  1617. trgVal[i*9+1] += denx*y*TOFP;
  1618. trgVal[i*9+2] += denx*z*TOFP;
  1619. trgVal[i*9+3] += deny*x*TOFP;
  1620. trgVal[i*9+4] += deny*y*TOFP;
  1621. trgVal[i*9+5] += deny*z*TOFP;
  1622. trgVal[i*9+6] += denz*x*TOFP;
  1623. trgVal[i*9+7] += denz*y*TOFP;
  1624. trgVal[i*9+8] += denz*z*TOFP;
  1625. }
  1626. }
  1627. return;
  1628. }
  1629. void stokesGradSSE(
  1630. const int ns,
  1631. const int nt,
  1632. const double *sx,
  1633. const double *sy,
  1634. const double *sz,
  1635. const double *tx,
  1636. const double *ty,
  1637. const double *tz,
  1638. const double *srcDen,
  1639. double *trgVal,
  1640. const double cof )
  1641. {
  1642. if ( size_t(sx)%IDEAL_ALIGNMENT || size_t(sy)%IDEAL_ALIGNMENT || size_t(sz)%IDEAL_ALIGNMENT )
  1643. abort();
  1644. double mu = cof;
  1645. double OOEP = 1.0/(8.0*const_pi<double>());
  1646. __m128d tempxx; __m128d tempxy; __m128d tempxz;
  1647. __m128d tempyx; __m128d tempyy; __m128d tempyz;
  1648. __m128d tempzx; __m128d tempzy; __m128d tempzz;
  1649. double oomeu = 1/mu;
  1650. double aux_arr[9*SIMD_LEN+1];
  1651. double *tempvalxx, *tempvalxy, *tempvalxz;
  1652. double *tempvalyx, *tempvalyy, *tempvalyz;
  1653. double *tempvalzx, *tempvalzy, *tempvalzz;
  1654. if (size_t(aux_arr)%IDEAL_ALIGNMENT) // if aux_arr is misaligned
  1655. {
  1656. tempvalxx = aux_arr + 1;
  1657. if (size_t(tempvalxx)%IDEAL_ALIGNMENT)
  1658. abort();
  1659. }
  1660. else
  1661. tempvalxx = aux_arr;
  1662. tempvalxy=tempvalxx+SIMD_LEN;
  1663. tempvalxz=tempvalxy+SIMD_LEN;
  1664. tempvalyx=tempvalxz+SIMD_LEN;
  1665. tempvalyy=tempvalyx+SIMD_LEN;
  1666. tempvalyz=tempvalyy+SIMD_LEN;
  1667. tempvalzx=tempvalyz+SIMD_LEN;
  1668. tempvalzy=tempvalzx+SIMD_LEN;
  1669. tempvalzz=tempvalzy+SIMD_LEN;
  1670. /*! One over eight pi */
  1671. __m128d ooep = _mm_set1_pd (OOEP);
  1672. __m128d half = _mm_set1_pd (0.5);
  1673. __m128d opf = _mm_set1_pd (1.5);
  1674. __m128d three = _mm_set1_pd (3.0);
  1675. __m128d zero = _mm_setzero_pd ();
  1676. __m128d oomu = _mm_set1_pd (1/mu);
  1677. __m128d ooepmu = _mm_mul_pd(ooep,oomu);
  1678. // loop over sources
  1679. int i = 0;
  1680. for (; i < nt; i++) {
  1681. tempxx = _mm_setzero_pd(); tempxy = _mm_setzero_pd(); tempxz = _mm_setzero_pd();
  1682. tempyx = _mm_setzero_pd(); tempyy = _mm_setzero_pd(); tempyz = _mm_setzero_pd();
  1683. tempzx = _mm_setzero_pd(); tempzy = _mm_setzero_pd(); tempzz = _mm_setzero_pd();
  1684. __m128d txi = _mm_load1_pd (&tx[i]);
  1685. __m128d tyi = _mm_load1_pd (&ty[i]);
  1686. __m128d tzi = _mm_load1_pd (&tz[i]);
  1687. int j = 0;
  1688. // Load and calculate in groups of SIMD_LEN
  1689. for (; j + SIMD_LEN <= ns; j+=SIMD_LEN) {
  1690. __m128d sxj = _mm_load_pd (&sx[j]);
  1691. __m128d syj = _mm_load_pd (&sy[j]);
  1692. __m128d szj = _mm_load_pd (&sz[j]);
  1693. __m128d sdenx = _mm_set_pd (srcDen[(j+1)*3], srcDen[j*3]);
  1694. __m128d sdeny = _mm_set_pd (srcDen[(j+1)*3+1], srcDen[j*3+1]);
  1695. __m128d sdenz = _mm_set_pd (srcDen[(j+1)*3+2], srcDen[j*3+2]);
  1696. __m128d dX, dY, dZ;
  1697. __m128d dR2;
  1698. __m128d S;
  1699. __m128d S2;
  1700. __m128d S3;
  1701. dX = _mm_sub_pd(txi , sxj);
  1702. dY = _mm_sub_pd(tyi , syj);
  1703. dZ = _mm_sub_pd(tzi , szj);
  1704. sxj = _mm_mul_pd(dX, dX);
  1705. syj = _mm_mul_pd(dY, dY);
  1706. szj = _mm_mul_pd(dZ, dZ);
  1707. dR2 = _mm_add_pd(sxj, syj);
  1708. dR2 = _mm_add_pd(szj, dR2);
  1709. __m128d temp = _mm_cmpeq_pd (dR2, zero);
  1710. __m128d xhalf = _mm_mul_pd (half, dR2);
  1711. __m128 dR2_s = _mm_cvtpd_ps(dR2);
  1712. __m128 S_s = _mm_rsqrt_ps(dR2_s);
  1713. __m128d S_d = _mm_cvtps_pd(S_s);
  1714. // To handle the condition when src and trg coincide
  1715. S_d = _mm_andnot_pd (temp, S_d);
  1716. S = _mm_mul_pd (S_d, S_d);
  1717. S = _mm_mul_pd (S, xhalf);
  1718. S = _mm_sub_pd (opf, S);
  1719. S = _mm_mul_pd (S, S_d);
  1720. S2 = _mm_mul_pd (S, S);
  1721. S3 = _mm_mul_pd (S2, S);
  1722. __m128d dotx = _mm_mul_pd (dX, sdenx);
  1723. __m128d doty = _mm_mul_pd (dY, sdeny);
  1724. __m128d dotz = _mm_mul_pd (dZ, sdenz);
  1725. __m128d dot_sum = _mm_add_pd (dotx, doty);
  1726. dot_sum = _mm_add_pd (dot_sum, dotz);
  1727. dot_sum = _mm_mul_pd (dot_sum, S2);
  1728. tempxx = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dX, sdenx), _mm_mul_pd(sdenx, dX)), _mm_mul_pd(dot_sum, _mm_sub_pd(dR2 , _mm_mul_pd(three, _mm_mul_pd(dX, dX)))))),tempxx);
  1729. tempxy = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dY, sdenx), _mm_mul_pd(sdeny, dX)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dY, dX)))))),tempxy);
  1730. tempxz = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dZ, sdenx), _mm_mul_pd(sdenz, dX)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dZ, dX)))))),tempxz);
  1731. tempyx = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dX, sdeny), _mm_mul_pd(sdenx, dY)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dX, dY)))))),tempyx);
  1732. tempyy = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dY, sdeny), _mm_mul_pd(sdeny, dY)), _mm_mul_pd(dot_sum, _mm_sub_pd(dR2 , _mm_mul_pd(three, _mm_mul_pd(dY, dY)))))),tempyy);
  1733. tempyz = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dZ, sdeny), _mm_mul_pd(sdenz, dY)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dZ, dY)))))),tempyz);
  1734. tempzx = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dX, sdenz), _mm_mul_pd(sdenx, dZ)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dX, dZ)))))),tempzx);
  1735. tempzy = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dY, sdenz), _mm_mul_pd(sdeny, dZ)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dY, dZ)))))),tempzy);
  1736. tempzz = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dZ, sdenz), _mm_mul_pd(sdenz, dZ)), _mm_mul_pd(dot_sum, _mm_sub_pd(dR2 , _mm_mul_pd(three, _mm_mul_pd(dZ, dZ)))))),tempzz);
  1737. }
  1738. tempxx = _mm_mul_pd (tempxx, ooepmu);
  1739. tempxy = _mm_mul_pd (tempxy, ooepmu);
  1740. tempxz = _mm_mul_pd (tempxz, ooepmu);
  1741. tempyx = _mm_mul_pd (tempyx, ooepmu);
  1742. tempyy = _mm_mul_pd (tempyy, ooepmu);
  1743. tempyz = _mm_mul_pd (tempyz, ooepmu);
  1744. tempzx = _mm_mul_pd (tempzx, ooepmu);
  1745. tempzy = _mm_mul_pd (tempzy, ooepmu);
  1746. tempzz = _mm_mul_pd (tempzz, ooepmu);
  1747. _mm_store_pd(tempvalxx, tempxx); _mm_store_pd(tempvalxy, tempxy); _mm_store_pd(tempvalxz, tempxz);
  1748. _mm_store_pd(tempvalyx, tempyx); _mm_store_pd(tempvalyy, tempyy); _mm_store_pd(tempvalyz, tempyz);
  1749. _mm_store_pd(tempvalzx, tempzx); _mm_store_pd(tempvalzy, tempzy); _mm_store_pd(tempvalzz, tempzz);
  1750. for (int k = 0; k < SIMD_LEN; k++) {
  1751. trgVal[i*9 ] += tempvalxx[k];
  1752. trgVal[i*9+1] += tempvalxy[k];
  1753. trgVal[i*9+2] += tempvalxz[k];
  1754. trgVal[i*9+3] += tempvalyx[k];
  1755. trgVal[i*9+4] += tempvalyy[k];
  1756. trgVal[i*9+5] += tempvalyz[k];
  1757. trgVal[i*9+6] += tempvalzx[k];
  1758. trgVal[i*9+7] += tempvalzy[k];
  1759. trgVal[i*9+8] += tempvalzz[k];
  1760. }
  1761. for (; j < ns; j++) {
  1762. double x = tx[i] - sx[j];
  1763. double y = ty[i] - sy[j];
  1764. double z = tz[i] - sz[j];
  1765. double r2 = x*x + y*y + z*z;
  1766. double r = sqrt(r2);
  1767. double invdr;
  1768. if (r == 0)
  1769. invdr = 0;
  1770. else
  1771. invdr = 1/r;
  1772. double invdr2=invdr*invdr;
  1773. double invdr3=invdr2*invdr;
  1774. double dot = (x*srcDen[j*3] + y*srcDen[j*3+1] + z*srcDen[j*3+2]);
  1775. trgVal[i*9 ] += OOEP*oomeu*invdr3*( x*srcDen[j*3 ] - srcDen[j*3 ]*x + dot*(1-3*x*x*invdr2) );
  1776. trgVal[i*9+1] += OOEP*oomeu*invdr3*( y*srcDen[j*3 ] - srcDen[j*3+1]*x + dot*(0-3*y*x*invdr2) );
  1777. trgVal[i*9+2] += OOEP*oomeu*invdr3*( z*srcDen[j*3 ] - srcDen[j*3+2]*x + dot*(0-3*z*x*invdr2) );
  1778. trgVal[i*9+3] += OOEP*oomeu*invdr3*( x*srcDen[j*3+1] - srcDen[j*3 ]*y + dot*(0-3*x*y*invdr2) );
  1779. trgVal[i*9+4] += OOEP*oomeu*invdr3*( y*srcDen[j*3+1] - srcDen[j*3+1]*y + dot*(1-3*y*y*invdr2) );
  1780. trgVal[i*9+5] += OOEP*oomeu*invdr3*( z*srcDen[j*3+1] - srcDen[j*3+2]*y + dot*(0-3*z*y*invdr2) );
  1781. trgVal[i*9+6] += OOEP*oomeu*invdr3*( x*srcDen[j*3+2] - srcDen[j*3 ]*z + dot*(0-3*x*z*invdr2) );
  1782. trgVal[i*9+7] += OOEP*oomeu*invdr3*( y*srcDen[j*3+2] - srcDen[j*3+1]*z + dot*(0-3*y*z*invdr2) );
  1783. trgVal[i*9+8] += OOEP*oomeu*invdr3*( z*srcDen[j*3+2] - srcDen[j*3+2]*z + dot*(1-3*z*z*invdr2) );
  1784. }
  1785. }
  1786. return;
  1787. }
  1788. #undef SIMD_LEN
  1789. #define X(s,k) (s)[(k)*COORD_DIM]
  1790. #define Y(s,k) (s)[(k)*COORD_DIM+1]
  1791. #define Z(s,k) (s)[(k)*COORD_DIM+2]
  1792. void stokesDirectSSEShuffle(const int ns, const int nt, double const src[], double const trg[], double const den[], double pot[], const double kernel_coef, mem::MemoryManager* mem_mgr=NULL)
  1793. {
  1794. std::vector<double> xs(ns+1); std::vector<double> xt(nt);
  1795. std::vector<double> ys(ns+1); std::vector<double> yt(nt);
  1796. std::vector<double> zs(ns+1); std::vector<double> zt(nt);
  1797. int x_shift = size_t(&xs[0]) % IDEAL_ALIGNMENT ? 1:0;
  1798. int y_shift = size_t(&ys[0]) % IDEAL_ALIGNMENT ? 1:0;
  1799. int z_shift = size_t(&zs[0]) % IDEAL_ALIGNMENT ? 1:0;
  1800. //1. reshuffle memory
  1801. for (int k =0;k<ns;k++){
  1802. xs[k+x_shift]=X(src,k);
  1803. ys[k+y_shift]=Y(src,k);
  1804. zs[k+z_shift]=Z(src,k);
  1805. }
  1806. for (int k=0;k<nt;k++){
  1807. xt[k]=X(trg,k);
  1808. yt[k]=Y(trg,k);
  1809. zt[k]=Z(trg,k);
  1810. }
  1811. //2. perform caclulation
  1812. stokesDirectVecSSE(ns,nt,&xs[x_shift],&ys[y_shift],&zs[z_shift],&xt[0],&yt[0],&zt[0],den,pot,kernel_coef);
  1813. return;
  1814. }
  1815. void stokesPressureSSEShuffle(const int ns, const int nt, double const src[], double const trg[], double const den[], double pot[], mem::MemoryManager* mem_mgr=NULL)
  1816. {
  1817. std::vector<double> xs(ns+1); std::vector<double> xt(nt);
  1818. std::vector<double> ys(ns+1); std::vector<double> yt(nt);
  1819. std::vector<double> zs(ns+1); std::vector<double> zt(nt);
  1820. int x_shift = size_t(&xs[0]) % IDEAL_ALIGNMENT ? 1:0;
  1821. int y_shift = size_t(&ys[0]) % IDEAL_ALIGNMENT ? 1:0;
  1822. int z_shift = size_t(&zs[0]) % IDEAL_ALIGNMENT ? 1:0;
  1823. //1. reshuffle memory
  1824. for (int k =0;k<ns;k++){
  1825. xs[k+x_shift]=X(src,k);
  1826. ys[k+y_shift]=Y(src,k);
  1827. zs[k+z_shift]=Z(src,k);
  1828. }
  1829. for (int k=0;k<nt;k++){
  1830. xt[k]=X(trg,k);
  1831. yt[k]=Y(trg,k);
  1832. zt[k]=Z(trg,k);
  1833. }
  1834. //2. perform caclulation
  1835. stokesPressureSSE(ns,nt,&xs[x_shift],&ys[y_shift],&zs[z_shift],&xt[0],&yt[0],&zt[0],den,pot);
  1836. return;
  1837. }
  1838. void stokesStressSSEShuffle(const int ns, const int nt, double const src[], double const trg[], double const den[], double pot[], mem::MemoryManager* mem_mgr=NULL)
  1839. {
  1840. std::vector<double> xs(ns+1); std::vector<double> xt(nt);
  1841. std::vector<double> ys(ns+1); std::vector<double> yt(nt);
  1842. std::vector<double> zs(ns+1); std::vector<double> zt(nt);
  1843. int x_shift = size_t(&xs[0]) % IDEAL_ALIGNMENT ? 1:0;
  1844. int y_shift = size_t(&ys[0]) % IDEAL_ALIGNMENT ? 1:0;
  1845. int z_shift = size_t(&zs[0]) % IDEAL_ALIGNMENT ? 1:0;
  1846. //1. reshuffle memory
  1847. for (int k =0;k<ns;k++){
  1848. xs[k+x_shift]=X(src,k);
  1849. ys[k+y_shift]=Y(src,k);
  1850. zs[k+z_shift]=Z(src,k);
  1851. }
  1852. for (int k=0;k<nt;k++){
  1853. xt[k]=X(trg,k);
  1854. yt[k]=Y(trg,k);
  1855. zt[k]=Z(trg,k);
  1856. }
  1857. //2. perform caclulation
  1858. stokesStressSSE(ns,nt,&xs[x_shift],&ys[y_shift],&zs[z_shift],&xt[0],&yt[0],&zt[0],den,pot);
  1859. return;
  1860. }
  1861. void stokesGradSSEShuffle(const int ns, const int nt, double const src[], double const trg[], double const den[], double pot[], const double kernel_coef, mem::MemoryManager* mem_mgr=NULL)
  1862. {
  1863. std::vector<double> xs(ns+1); std::vector<double> xt(nt);
  1864. std::vector<double> ys(ns+1); std::vector<double> yt(nt);
  1865. std::vector<double> zs(ns+1); std::vector<double> zt(nt);
  1866. int x_shift = size_t(&xs[0]) % IDEAL_ALIGNMENT ? 1:0;
  1867. int y_shift = size_t(&ys[0]) % IDEAL_ALIGNMENT ? 1:0;
  1868. int z_shift = size_t(&zs[0]) % IDEAL_ALIGNMENT ? 1:0;
  1869. //1. reshuffle memory
  1870. for (int k =0;k<ns;k++){
  1871. xs[k+x_shift]=X(src,k);
  1872. ys[k+y_shift]=Y(src,k);
  1873. zs[k+z_shift]=Z(src,k);
  1874. }
  1875. for (int k=0;k<nt;k++){
  1876. xt[k]=X(trg,k);
  1877. yt[k]=Y(trg,k);
  1878. zt[k]=Z(trg,k);
  1879. }
  1880. //2. perform caclulation
  1881. stokesGradSSE(ns,nt,&xs[x_shift],&ys[y_shift],&zs[z_shift],&xt[0],&yt[0],&zt[0],den,pot,kernel_coef);
  1882. return;
  1883. }
  1884. #undef X
  1885. #undef Y
  1886. #undef Z
  1887. #undef IDEAL_ALIGNMENT
  1888. #undef DECL_SIMD_ALIGNED
  1889. }
  1890. template <>
  1891. void stokes_vel<double>(double* r_src, int src_cnt, double* v_src_, int dof, double* r_trg, int trg_cnt, double* k_out, mem::MemoryManager* mem_mgr){
  1892. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(28*dof));
  1893. const double mu=1.0;
  1894. stokesDirectSSEShuffle(src_cnt, trg_cnt, r_src, r_trg, v_src_, k_out, mu, mem_mgr);
  1895. }
  1896. template <>
  1897. void stokes_press<double>(double* r_src, int src_cnt, double* v_src_, int dof, double* r_trg, int trg_cnt, double* k_out, mem::MemoryManager* mem_mgr){
  1898. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(17*dof));
  1899. stokesPressureSSEShuffle(src_cnt, trg_cnt, r_src, r_trg, v_src_, k_out, mem_mgr);
  1900. return;
  1901. }
  1902. template <>
  1903. void stokes_stress<double>(double* r_src, int src_cnt, double* v_src_, int dof, double* r_trg, int trg_cnt, double* k_out, mem::MemoryManager* mem_mgr){
  1904. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(45*dof));
  1905. stokesStressSSEShuffle(src_cnt, trg_cnt, r_src, r_trg, v_src_, k_out, mem_mgr);
  1906. }
  1907. template <>
  1908. void stokes_grad<double>(double* r_src, int src_cnt, double* v_src_, int dof, double* r_trg, int trg_cnt, double* k_out, mem::MemoryManager* mem_mgr){
  1909. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(89*dof));
  1910. const double mu=1.0;
  1911. stokesGradSSEShuffle(src_cnt, trg_cnt, r_src, r_trg, v_src_, k_out, mu, mem_mgr);
  1912. }
  1913. #endif
  1914. #endif
  1915. ////////////////////////////////////////////////////////////////////////////////
  1916. //////// BIOT-SAVART KERNEL ////////
  1917. ////////////////////////////////////////////////////////////////////////////////
  1918. template <class T>
  1919. void biot_savart(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1920. #ifndef __MIC__
  1921. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(26*dof));
  1922. #endif
  1923. const T OOFP = -1.0/(4.0*const_pi<T>());
  1924. for(int t=0;t<trg_cnt;t++){
  1925. for(int i=0;i<dof;i++){
  1926. T p[3]={0,0,0};
  1927. for(int s=0;s<src_cnt;s++){
  1928. T dR[3]={r_trg[3*t ]-r_src[3*s ],
  1929. r_trg[3*t+1]-r_src[3*s+1],
  1930. r_trg[3*t+2]-r_src[3*s+2]};
  1931. T R2 = (dR[0]*dR[0]+dR[1]*dR[1]+dR[2]*dR[2]);
  1932. if (R2!=0){
  1933. T invR2=1.0/R2;
  1934. T invR=sqrt(invR2);
  1935. T invR3=invR*invR2;
  1936. T v_src[3]={v_src_[(s*dof+i)*3 ],
  1937. v_src_[(s*dof+i)*3+1],
  1938. v_src_[(s*dof+i)*3+2]};
  1939. p[0] -= (v_src[1]*dR[2]-v_src[2]*dR[1])*invR3;
  1940. p[1] -= (v_src[2]*dR[0]-v_src[0]*dR[2])*invR3;
  1941. p[2] -= (v_src[0]*dR[1]-v_src[1]*dR[0])*invR3;
  1942. }
  1943. }
  1944. k_out[(t*dof+i)*3+0] += p[0]*OOFP;
  1945. k_out[(t*dof+i)*3+1] += p[1]*OOFP;
  1946. k_out[(t*dof+i)*3+2] += p[2]*OOFP;
  1947. }
  1948. }
  1949. }
  1950. ////////////////////////////////////////////////////////////////////////////////
  1951. //////// HELMHOLTZ KERNEL ////////
  1952. ////////////////////////////////////////////////////////////////////////////////
  1953. /**
  1954. * \brief Green's function for the Helmholtz's equation. Kernel tensor
  1955. * dimension = 2x2.
  1956. */
  1957. template <class T>
  1958. void helmholtz_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1959. #ifndef __MIC__
  1960. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(24*dof));
  1961. #endif
  1962. const T mu = (20.0*const_pi<T>());
  1963. for(int t=0;t<trg_cnt;t++){
  1964. for(int i=0;i<dof;i++){
  1965. T p[2]={0,0};
  1966. for(int s=0;s<src_cnt;s++){
  1967. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  1968. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  1969. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  1970. T R = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  1971. if (R!=0){
  1972. R = sqrt(R);
  1973. T invR=1.0/R;
  1974. T G[2]={cos(mu*R)*invR, sin(mu*R)*invR};
  1975. p[0] += v_src[(s*dof+i)*2+0]*G[0] - v_src[(s*dof+i)*2+1]*G[1];
  1976. p[1] += v_src[(s*dof+i)*2+0]*G[1] + v_src[(s*dof+i)*2+1]*G[0];
  1977. }
  1978. }
  1979. k_out[(t*dof+i)*2+0] += p[0];
  1980. k_out[(t*dof+i)*2+1] += p[1];
  1981. }
  1982. }
  1983. }
  1984. template <class T>
  1985. void helmholtz_grad(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1986. //TODO Implement this.
  1987. }
  1988. }//end namespace