kernel.txx 82 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568
  1. /**
  2. * \file kernel.txx
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 12-20-2011
  5. * \brief This file contains the implementation of the struct Kernel and also the
  6. * implementation of various kernels for FMM.
  7. */
  8. #include <cmath>
  9. #include <cstdlib>
  10. #include <vector>
  11. #include <mem_mgr.hpp>
  12. #include <profile.hpp>
  13. #include <vector.hpp>
  14. #include <matrix.hpp>
  15. #include <precomp_mat.hpp>
  16. #ifdef __SSE__
  17. #include <xmmintrin.h>
  18. #endif
  19. #ifdef __SSE2__
  20. #include <emmintrin.h>
  21. #endif
  22. #ifdef __SSE3__
  23. #include <pmmintrin.h>
  24. #endif
  25. #ifdef __AVX__
  26. #include <immintrin.h>
  27. #endif
  28. #if defined(__MIC__)
  29. #include <immintrin.h>
  30. #endif
  31. namespace pvfmm{
  32. /**
  33. * \brief Constructor.
  34. */
  35. template <class T>
  36. Kernel<T>::Kernel(Ker_t poten, Ker_t dbl_poten, const char* name, int dim_, std::pair<int,int> k_dim,
  37. size_t dev_poten, size_t dev_dbl_poten){
  38. dim=dim_;
  39. ker_dim[0]=k_dim.first;
  40. ker_dim[1]=k_dim.second;
  41. ker_poten=poten;
  42. dbl_layer_poten=dbl_poten;
  43. ker_name=std::string(name);
  44. dev_ker_poten=dev_poten;
  45. dev_dbl_layer_poten=dev_dbl_poten;
  46. homogen=false;
  47. init=false;
  48. }
  49. /**
  50. * \brief Initialize the kernel.
  51. */
  52. template <class T>
  53. void Kernel<T>::Initialize(bool verbose) const{
  54. if(init) return;
  55. init=true;
  56. T eps=1.0;
  57. while(eps+(T)1.0>1.0) eps*=0.5;
  58. { // Determine scal
  59. homogen=true;
  60. Matrix<T> M_scal(ker_dim[0],ker_dim[1]);
  61. size_t N=1024;
  62. T eps_=N*eps;
  63. T src_coord[3]={0,0,0};
  64. std::vector<T> trg_coord1(N*COORD_DIM);
  65. std::vector<T> trg_coord2(N*COORD_DIM);
  66. for(size_t i=0;i<N;i++){
  67. T x,y,z,r;
  68. do{
  69. x=(drand48()-0.5);
  70. y=(drand48()-0.5);
  71. z=(drand48()-0.5);
  72. r=sqrt(x*x+y*y+z*z);
  73. }while(r<0.25);
  74. trg_coord1[i*COORD_DIM+0]=x;
  75. trg_coord1[i*COORD_DIM+1]=y;
  76. trg_coord1[i*COORD_DIM+2]=z;
  77. }
  78. for(size_t i=0;i<N*COORD_DIM;i++){
  79. trg_coord2[i]=trg_coord1[i]*0.5;
  80. }
  81. T max_val=0;
  82. Matrix<T> M1(N,ker_dim[0]*ker_dim[1]);
  83. Matrix<T> M2(N,ker_dim[0]*ker_dim[1]);
  84. for(size_t i=0;i<N;i++){
  85. BuildMatrix(&src_coord [ 0], 1,
  86. &trg_coord1[i*COORD_DIM], 1, &(M1[i][0]));
  87. BuildMatrix(&src_coord [ 0], 1,
  88. &trg_coord2[i*COORD_DIM], 1, &(M2[i][0]));
  89. for(size_t j=0;j<ker_dim[0]*ker_dim[1];j++){
  90. max_val=std::max<T>(max_val,M1[i][j]);
  91. max_val=std::max<T>(max_val,M2[i][j]);
  92. }
  93. }
  94. for(size_t i=0;i<ker_dim[0]*ker_dim[1];i++){
  95. T dot11=0, dot12=0, dot22=0;
  96. for(size_t j=0;j<N;j++){
  97. dot11+=M1[j][i]*M1[j][i];
  98. dot12+=M1[j][i]*M2[j][i];
  99. dot22+=M2[j][i]*M2[j][i];
  100. }
  101. if(dot11>max_val*max_val*eps_ &&
  102. dot22>max_val*max_val*eps_ ){
  103. T s=dot12/dot11;
  104. M_scal[0][i]=log(s)/log(2.0);
  105. T err=sqrt(0.5*(dot22/dot11)/(s*s)-0.5);
  106. if(err>eps_){
  107. homogen=false;
  108. M_scal[0][i]=0.0;
  109. }
  110. assert(M_scal[0][i]>=0.0); // Kernel function must decay
  111. }else M_scal[0][i]=-1;
  112. }
  113. src_scal.Resize(ker_dim[0]); src_scal.SetZero();
  114. trg_scal.Resize(ker_dim[1]); trg_scal.SetZero();
  115. if(homogen){
  116. Matrix<T> b(ker_dim[0]*ker_dim[1]+1,1); b.SetZero();
  117. mem::memcopy(&b[0][0],&M_scal[0][0],ker_dim[0]*ker_dim[1]*sizeof(T));
  118. Matrix<T> M(ker_dim[0]*ker_dim[1]+1,ker_dim[0]+ker_dim[1]); M.SetZero();
  119. M[ker_dim[0]*ker_dim[1]][0]=1;
  120. for(size_t i0=0;i0<ker_dim[0];i0++)
  121. for(size_t i1=0;i1<ker_dim[1];i1++){
  122. size_t j=i0*ker_dim[1]+i1;
  123. if(b[j][0]>=0){
  124. M[j][ 0+ i0]=1;
  125. M[j][i1+ker_dim[0]]=1;
  126. }
  127. }
  128. Matrix<T> x=M.pinv()*b;
  129. for(size_t i=0;i<ker_dim[0];i++){
  130. src_scal[i]=x[i][0];
  131. }
  132. for(size_t i=0;i<ker_dim[1];i++){
  133. trg_scal[i]=x[ker_dim[0]+i][0];
  134. }
  135. for(size_t i0=0;i0<ker_dim[0];i0++)
  136. for(size_t i1=0;i1<ker_dim[1];i1++){
  137. if(M_scal[i0][i1]>=0){
  138. if(fabs(src_scal[i0]+trg_scal[i1]-M_scal[i0][i1])>eps_){
  139. homogen=false;
  140. }
  141. }
  142. }
  143. }
  144. if(!homogen){
  145. src_scal.SetZero();
  146. trg_scal.SetZero();
  147. //std::cout<<ker_name<<" not-scale-invariant\n";
  148. }
  149. }
  150. { // Determine symmetry
  151. perm_vec.Resize(Perm_Count);
  152. size_t N=1024;
  153. T eps_=N*eps;
  154. T src_coord[3]={0,0,0};
  155. std::vector<T> trg_coord1(N*COORD_DIM);
  156. std::vector<T> trg_coord2(N*COORD_DIM);
  157. for(size_t i=0;i<N;i++){
  158. T x,y,z,r;
  159. do{
  160. x=(drand48()-0.5);
  161. y=(drand48()-0.5);
  162. z=(drand48()-0.5);
  163. r=sqrt(x*x+y*y+z*z);
  164. }while(r<0.25);
  165. trg_coord1[i*COORD_DIM+0]=x;
  166. trg_coord1[i*COORD_DIM+1]=y;
  167. trg_coord1[i*COORD_DIM+2]=z;
  168. }
  169. for(size_t p_type=0;p_type<C_Perm;p_type++){ // For each symmetry transform
  170. switch(p_type){ // Set trg_coord2
  171. case ReflecX:
  172. for(size_t i=0;i<N;i++){
  173. trg_coord2[i*COORD_DIM+0]=-trg_coord1[i*COORD_DIM+0];
  174. trg_coord2[i*COORD_DIM+1]= trg_coord1[i*COORD_DIM+1];
  175. trg_coord2[i*COORD_DIM+2]= trg_coord1[i*COORD_DIM+2];
  176. }
  177. break;
  178. case ReflecY:
  179. for(size_t i=0;i<N;i++){
  180. trg_coord2[i*COORD_DIM+0]= trg_coord1[i*COORD_DIM+0];
  181. trg_coord2[i*COORD_DIM+1]=-trg_coord1[i*COORD_DIM+1];
  182. trg_coord2[i*COORD_DIM+2]= trg_coord1[i*COORD_DIM+2];
  183. }
  184. break;
  185. case ReflecZ:
  186. for(size_t i=0;i<N;i++){
  187. trg_coord2[i*COORD_DIM+0]= trg_coord1[i*COORD_DIM+0];
  188. trg_coord2[i*COORD_DIM+1]= trg_coord1[i*COORD_DIM+1];
  189. trg_coord2[i*COORD_DIM+2]=-trg_coord1[i*COORD_DIM+2];
  190. }
  191. break;
  192. case SwapXY:
  193. for(size_t i=0;i<N;i++){
  194. trg_coord2[i*COORD_DIM+0]= trg_coord1[i*COORD_DIM+1];
  195. trg_coord2[i*COORD_DIM+1]= trg_coord1[i*COORD_DIM+0];
  196. trg_coord2[i*COORD_DIM+2]= trg_coord1[i*COORD_DIM+2];
  197. }
  198. break;
  199. case SwapXZ:
  200. for(size_t i=0;i<N;i++){
  201. trg_coord2[i*COORD_DIM+0]= trg_coord1[i*COORD_DIM+2];
  202. trg_coord2[i*COORD_DIM+1]= trg_coord1[i*COORD_DIM+1];
  203. trg_coord2[i*COORD_DIM+2]= trg_coord1[i*COORD_DIM+0];
  204. }
  205. break;
  206. default:
  207. for(size_t i=0;i<N;i++){
  208. trg_coord2[i*COORD_DIM+0]= trg_coord1[i*COORD_DIM+0];
  209. trg_coord2[i*COORD_DIM+1]= trg_coord1[i*COORD_DIM+1];
  210. trg_coord2[i*COORD_DIM+2]= trg_coord1[i*COORD_DIM+2];
  211. }
  212. }
  213. Matrix<long long> M11, M22;
  214. {
  215. Matrix<T> M1(N,ker_dim[0]*ker_dim[1]); M1.SetZero();
  216. Matrix<T> M2(N,ker_dim[0]*ker_dim[1]); M2.SetZero();
  217. for(size_t i=0;i<N;i++){
  218. BuildMatrix(&src_coord [ 0], 1,
  219. &trg_coord1[i*COORD_DIM], 1, &(M1[i][0]));
  220. BuildMatrix(&src_coord [ 0], 1,
  221. &trg_coord2[i*COORD_DIM], 1, &(M2[i][0]));
  222. }
  223. Matrix<T> dot11(ker_dim[0]*ker_dim[1],ker_dim[0]*ker_dim[1]);dot11.SetZero();
  224. Matrix<T> dot12(ker_dim[0]*ker_dim[1],ker_dim[0]*ker_dim[1]);dot12.SetZero();
  225. Matrix<T> dot22(ker_dim[0]*ker_dim[1],ker_dim[0]*ker_dim[1]);dot22.SetZero();
  226. std::vector<T> norm1(ker_dim[0]*ker_dim[1]);
  227. std::vector<T> norm2(ker_dim[0]*ker_dim[1]);
  228. {
  229. for(size_t k=0;k<N;k++)
  230. for(size_t i=0;i<ker_dim[0]*ker_dim[1];i++)
  231. for(size_t j=0;j<ker_dim[0]*ker_dim[1];j++){
  232. dot11[i][j]+=M1[k][i]*M1[k][j];
  233. dot12[i][j]+=M1[k][i]*M2[k][j];
  234. dot22[i][j]+=M2[k][i]*M2[k][j];
  235. }
  236. for(size_t i=0;i<ker_dim[0]*ker_dim[1];i++){
  237. norm1[i]=sqrt(dot11[i][i]);
  238. norm2[i]=sqrt(dot22[i][i]);
  239. }
  240. for(size_t i=0;i<ker_dim[0]*ker_dim[1];i++)
  241. for(size_t j=0;j<ker_dim[0]*ker_dim[1];j++){
  242. dot11[i][j]/=(norm1[i]*norm1[j]);
  243. dot12[i][j]/=(norm1[i]*norm2[j]);
  244. dot22[i][j]/=(norm2[i]*norm2[j]);
  245. }
  246. }
  247. long long flag=1;
  248. M11.Resize(ker_dim[0],ker_dim[1]); M11.SetZero();
  249. M22.Resize(ker_dim[0],ker_dim[1]); M22.SetZero();
  250. for(size_t i=0;i<ker_dim[0]*ker_dim[1];i++){
  251. if(norm1[i]>eps_ && M11[0][i]==0){
  252. for(size_t j=0;j<ker_dim[0]*ker_dim[1];j++){
  253. if(fabs(norm1[i]-norm1[j])<eps_ && fabs(fabs(dot11[i][j])-1.0)<eps_){
  254. M11[0][j]=(dot11[i][j]>0?flag:-flag);
  255. }
  256. if(fabs(norm1[i]-norm2[j])<eps_ && fabs(fabs(dot12[i][j])-1.0)<eps_){
  257. M22[0][j]=(dot12[i][j]>0?flag:-flag);
  258. }
  259. }
  260. flag++;
  261. }
  262. }
  263. }
  264. Matrix<long long> P1, P2;
  265. { // P1
  266. Matrix<long long>& P=P1;
  267. Matrix<long long> M1=M11;
  268. Matrix<long long> M2=M22;
  269. for(size_t i=0;i<M1.Dim(0);i++){
  270. for(size_t j=0;j<M1.Dim(1);j++){
  271. if(M1[i][j]<0) M1[i][j]=-M1[i][j];
  272. if(M2[i][j]<0) M2[i][j]=-M2[i][j];
  273. }
  274. std::sort(&M1[i][0],&M1[i][M1.Dim(1)]);
  275. std::sort(&M2[i][0],&M2[i][M2.Dim(1)]);
  276. }
  277. P.Resize(M1.Dim(0),M1.Dim(0));
  278. for(size_t i=0;i<M1.Dim(0);i++)
  279. for(size_t j=0;j<M1.Dim(0);j++){
  280. P[i][j]=1;
  281. for(size_t k=0;k<M1.Dim(1);k++)
  282. if(M1[i][k]!=M2[j][k]){
  283. P[i][j]=0;
  284. break;
  285. }
  286. }
  287. }
  288. { // P2
  289. Matrix<long long>& P=P2;
  290. Matrix<long long> M1=M11.Transpose();
  291. Matrix<long long> M2=M22.Transpose();
  292. for(size_t i=0;i<M1.Dim(0);i++){
  293. for(size_t j=0;j<M1.Dim(1);j++){
  294. if(M1[i][j]<0) M1[i][j]=-M1[i][j];
  295. if(M2[i][j]<0) M2[i][j]=-M2[i][j];
  296. }
  297. std::sort(&M1[i][0],&M1[i][M1.Dim(1)]);
  298. std::sort(&M2[i][0],&M2[i][M2.Dim(1)]);
  299. }
  300. P.Resize(M1.Dim(0),M1.Dim(0));
  301. for(size_t i=0;i<M1.Dim(0);i++)
  302. for(size_t j=0;j<M1.Dim(0);j++){
  303. P[i][j]=1;
  304. for(size_t k=0;k<M1.Dim(1);k++)
  305. if(M1[i][k]!=M2[j][k]){
  306. P[i][j]=0;
  307. break;
  308. }
  309. }
  310. }
  311. std::vector<Permutation<long long> > P1vec, P2vec;
  312. int dbg_cnt=0;
  313. { // P1vec
  314. Matrix<long long>& Pmat=P1;
  315. std::vector<Permutation<long long> >& Pvec=P1vec;
  316. Permutation<long long> P(Pmat.Dim(0));
  317. Vector<PERM_INT_T>& perm=P.perm;
  318. perm.SetZero();
  319. // First permutation
  320. for(size_t i=0;i<P.Dim();i++)
  321. for(size_t j=0;j<P.Dim();j++){
  322. if(Pmat[i][j]){
  323. perm[i]=j;
  324. break;
  325. }
  326. }
  327. Vector<PERM_INT_T> perm_tmp;
  328. while(true){ // Next permutation
  329. perm_tmp=perm;
  330. std::sort(&perm_tmp[0],&perm_tmp[0]+perm_tmp.Dim());
  331. for(size_t i=0;i<perm_tmp.Dim();i++){
  332. if(perm_tmp[i]!=i) break;
  333. if(i==perm_tmp.Dim()-1){
  334. Pvec.push_back(P);
  335. }
  336. }
  337. bool last=false;
  338. for(size_t i=0;i<P.Dim();i++){
  339. PERM_INT_T tmp=perm[i];
  340. for(size_t j=perm[i]+1;j<P.Dim();j++){
  341. if(Pmat[i][j]){
  342. perm[i]=j;
  343. break;
  344. }
  345. }
  346. if(perm[i]>tmp) break;
  347. for(size_t j=0;j<P.Dim();j++){
  348. if(Pmat[i][j]){
  349. perm[i]=j;
  350. break;
  351. }
  352. }
  353. if(i==P.Dim()-1) last=true;
  354. }
  355. if(last) break;
  356. }
  357. }
  358. { // P2vec
  359. Matrix<long long>& Pmat=P2;
  360. std::vector<Permutation<long long> >& Pvec=P2vec;
  361. Permutation<long long> P(Pmat.Dim(0));
  362. Vector<PERM_INT_T>& perm=P.perm;
  363. perm.SetZero();
  364. // First permutation
  365. for(size_t i=0;i<P.Dim();i++)
  366. for(size_t j=0;j<P.Dim();j++){
  367. if(Pmat[i][j]){
  368. perm[i]=j;
  369. break;
  370. }
  371. }
  372. Vector<PERM_INT_T> perm_tmp;
  373. while(true){ // Next permutation
  374. perm_tmp=perm;
  375. std::sort(&perm_tmp[0],&perm_tmp[0]+perm_tmp.Dim());
  376. for(size_t i=0;i<perm_tmp.Dim();i++){
  377. if(perm_tmp[i]!=i) break;
  378. if(i==perm_tmp.Dim()-1){
  379. Pvec.push_back(P);
  380. }
  381. }
  382. bool last=false;
  383. for(size_t i=0;i<P.Dim();i++){
  384. PERM_INT_T tmp=perm[i];
  385. for(size_t j=perm[i]+1;j<P.Dim();j++){
  386. if(Pmat[i][j]){
  387. perm[i]=j;
  388. break;
  389. }
  390. }
  391. if(perm[i]>tmp) break;
  392. for(size_t j=0;j<P.Dim();j++){
  393. if(Pmat[i][j]){
  394. perm[i]=j;
  395. break;
  396. }
  397. }
  398. if(i==P.Dim()-1) last=true;
  399. }
  400. if(last) break;
  401. }
  402. }
  403. { // Find pairs which acutally work (neglect scaling)
  404. std::vector<Permutation<long long> > P1vec_, P2vec_;
  405. Matrix<long long> M1=M11;
  406. Matrix<long long> M2=M22;
  407. for(size_t i=0;i<M1.Dim(0);i++){
  408. for(size_t j=0;j<M1.Dim(1);j++){
  409. if(M1[i][j]<0) M1[i][j]=-M1[i][j];
  410. if(M2[i][j]<0) M2[i][j]=-M2[i][j];
  411. }
  412. }
  413. Matrix<long long> M;
  414. for(size_t i=0;i<P1vec.size();i++)
  415. for(size_t j=0;j<P2vec.size();j++){
  416. M=P1vec[i]*M2*P2vec[j];
  417. for(size_t k=0;k<M.Dim(0)*M.Dim(1);k++){
  418. if(M[0][k]!=M1[0][k]) break;
  419. if(k==M.Dim(0)*M.Dim(1)-1){
  420. P1vec_.push_back(P1vec[i]);
  421. P2vec_.push_back(P2vec[j]);
  422. }
  423. }
  424. }
  425. P1vec=P1vec_;
  426. P2vec=P2vec_;
  427. }
  428. Permutation<T> P1_, P2_;
  429. { // Find pairs which acutally work
  430. for(size_t k=0;k<P1vec.size();k++){
  431. Permutation<long long> P1=P1vec[k];
  432. Permutation<long long> P2=P2vec[k];
  433. Matrix<long long> M1= M11 ;
  434. Matrix<long long> M2=P1*M22*P2;
  435. Matrix<T> M(M1.Dim(0)*M1.Dim(1)+1,M1.Dim(0)+M1.Dim(1));
  436. M.SetZero(); M[M1.Dim(0)*M1.Dim(1)][0]=1.0;
  437. for(size_t i=0;i<M1.Dim(0);i++)
  438. for(size_t j=0;j<M1.Dim(1);j++){
  439. size_t k=i*M1.Dim(1)+j;
  440. M[k][ i]= M1[i][j];
  441. M[k][M1.Dim(0)+j]=-M2[i][j];
  442. }
  443. M=M.pinv();
  444. { // Construct new permutation
  445. Permutation<long long> P1_(M1.Dim(0));
  446. Permutation<long long> P2_(M1.Dim(1));
  447. for(size_t i=0;i<M1.Dim(0);i++){
  448. P1_.scal[i]=(M[i][M1.Dim(0)*M1.Dim(1)]>0?1:-1);
  449. }
  450. for(size_t i=0;i<M1.Dim(1);i++){
  451. P2_.scal[i]=(M[M1.Dim(0)+i][M1.Dim(0)*M1.Dim(1)]>0?1:-1);
  452. }
  453. P1=P1_*P1 ;
  454. P2=P2 *P2_;
  455. }
  456. bool done=true;
  457. Matrix<long long> Merr=P1*M22*P2-M11;
  458. for(size_t i=0;i<Merr.Dim(0)*Merr.Dim(1);i++){
  459. if(Merr[0][i]){
  460. done=false;
  461. break;
  462. }
  463. }
  464. if(done){
  465. P1_=Permutation<T>(P1.Dim());
  466. P2_=Permutation<T>(P2.Dim());
  467. for(size_t i=0;i<P1.Dim();i++){
  468. P1_.perm[i]=P1.perm[i];
  469. P1_.scal[i]=P1.scal[i];
  470. }
  471. for(size_t i=0;i<P2.Dim();i++){
  472. P2_.perm[i]=P2.perm[i];
  473. P2_.scal[i]=P2.scal[i];
  474. }
  475. break;
  476. }
  477. }
  478. }
  479. //std::cout<<P1_<<'\n';
  480. //std::cout<<P2_<<'\n';
  481. perm_vec[p_type ]=P1_.Transpose();
  482. perm_vec[p_type+C_Perm]=P2_;
  483. }
  484. for(size_t i=0;i<2*C_Perm;i++){
  485. if(perm_vec[i].Dim()==0){
  486. perm_vec.Resize(0);
  487. std::cout<<"no-symmetry for: "<<ker_name<<'\n';
  488. break;
  489. }
  490. }
  491. }
  492. if(verbose){ // Display kernel information
  493. std::cout<<"\n";
  494. std::cout<<"Kernel Name : "<<ker_name<<'\n';
  495. std::cout<<"Precision : "<<(double)eps<<'\n';
  496. std::cout<<"Symmetry : "<<(perm_vec.Dim()>0?"yes":"no")<<'\n';
  497. std::cout<<"Scale Invariant: "<<(homogen?"yes":"no")<<'\n';
  498. if(homogen){
  499. std::cout<<"Scaling Matrix :\n";
  500. Matrix<T> Src(ker_dim[0],1);
  501. Matrix<T> Trg(1,ker_dim[1]);
  502. for(size_t i=0;i<ker_dim[0];i++) Src[i][0]=pow(2.0,src_scal[i]);
  503. for(size_t i=0;i<ker_dim[1];i++) Trg[0][i]=pow(2.0,trg_scal[i]);
  504. std::cout<<Src*Trg;
  505. }
  506. std::cout<<"Error : ";
  507. for(T rad=1.0; rad>1.0e-2; rad*=0.5){ // Accuracy of multipole expansion
  508. int m=8; // multipole order
  509. std::vector<T> equiv_surf;
  510. std::vector<T> check_surf;
  511. for(int i0=0;i0<m;i0++){
  512. for(int i1=0;i1<m;i1++){
  513. for(int i2=0;i2<m;i2++){
  514. if(i0== 0 || i1== 0 || i2== 0 ||
  515. i0==m-1 || i1==m-1 || i2==m-1){
  516. // Range: [-1/3,1/3]^3
  517. T x=((T)2*i0-(m-1))/(m-1)/3;
  518. T y=((T)2*i1-(m-1))/(m-1)/3;
  519. T z=((T)2*i2-(m-1))/(m-1)/3;
  520. equiv_surf.push_back(x*RAD0*rad);
  521. equiv_surf.push_back(y*RAD0*rad);
  522. equiv_surf.push_back(z*RAD0*rad);
  523. check_surf.push_back(x*RAD1*rad);
  524. check_surf.push_back(y*RAD1*rad);
  525. check_surf.push_back(z*RAD1*rad);
  526. }
  527. }
  528. }
  529. }
  530. size_t n_equiv=equiv_surf.size()/COORD_DIM;
  531. size_t n_check=equiv_surf.size()/COORD_DIM;
  532. size_t n_src=m;
  533. size_t n_trg=m;
  534. std::vector<T> src_coord;
  535. std::vector<T> trg_coord;
  536. for(size_t i=0;i<n_src*COORD_DIM;i++){
  537. src_coord.push_back((2*drand48()-1)/3*rad);
  538. }
  539. for(size_t i=0;i<n_trg;i++){
  540. T x,y,z,r;
  541. do{
  542. x=(drand48()-0.5);
  543. y=(drand48()-0.5);
  544. z=(drand48()-0.5);
  545. r=sqrt(x*x+y*y+z*z);
  546. }while(r==0.0);
  547. trg_coord.push_back(x/r*sqrt((T)COORD_DIM)*rad);
  548. trg_coord.push_back(y/r*sqrt((T)COORD_DIM)*rad);
  549. trg_coord.push_back(z/r*sqrt((T)COORD_DIM)*rad);
  550. }
  551. Matrix<T> M_s2c(n_src*ker_dim[0],n_check*ker_dim[1]);
  552. BuildMatrix( &src_coord[0], n_src,
  553. &check_surf[0], n_check, &(M_s2c[0][0]));
  554. Matrix<T> M_e2c(n_equiv*ker_dim[0],n_check*ker_dim[1]);
  555. BuildMatrix(&equiv_surf[0], n_equiv,
  556. &check_surf[0], n_check, &(M_e2c[0][0]));
  557. Matrix<T> M_c2e=M_e2c.pinv();
  558. Matrix<T> M_e2t(n_equiv*ker_dim[0],n_trg*ker_dim[1]);
  559. BuildMatrix(&equiv_surf[0], n_equiv,
  560. &trg_coord[0], n_trg , &(M_e2t[0][0]));
  561. Matrix<T> M_s2t(n_src*ker_dim[0],n_trg*ker_dim[1]);
  562. BuildMatrix( &src_coord[0], n_src,
  563. &trg_coord[0], n_trg , &(M_s2t[0][0]));
  564. Matrix<T> M=M_s2c*M_c2e*M_e2t-M_s2t;
  565. T max_error=0, max_value=0;
  566. for(size_t i=0;i<M.Dim(0);i++)
  567. for(size_t j=0;j<M.Dim(1);j++){
  568. max_error=std::max<T>(max_error,fabs(M [i][j]));
  569. max_value=std::max<T>(max_value,fabs(M_s2t[i][j]));
  570. }
  571. std::cout<<(double)(max_error/max_value)<<' ';
  572. if(homogen) break;
  573. }
  574. std::cout<<"\n";
  575. std::cout<<"\n";
  576. }
  577. }
  578. /**
  579. * \brief Compute the transformation matrix (on the source strength vector)
  580. * to get potential at target coordinates due to sources at the given
  581. * coordinates.
  582. * \param[in] r_src Coordinates of source points.
  583. * \param[in] src_cnt Number of source points.
  584. * \param[in] r_trg Coordinates of target points.
  585. * \param[in] trg_cnt Number of target points.
  586. * \param[out] k_out Output array with potential values.
  587. */
  588. template <class T>
  589. void Kernel<T>::BuildMatrix(T* r_src, int src_cnt,
  590. T* r_trg, int trg_cnt, T* k_out) const{
  591. int dim=3; //Only supporting 3D
  592. memset(k_out, 0, src_cnt*ker_dim[0]*trg_cnt*ker_dim[1]*sizeof(T));
  593. for(int i=0;i<src_cnt;i++) //TODO Optimize this.
  594. for(int j=0;j<ker_dim[0];j++){
  595. std::vector<T> v_src(ker_dim[0],0);
  596. v_src[j]=1.0;
  597. ker_poten(&r_src[i*dim], 1, &v_src[0], 1, r_trg, trg_cnt,
  598. &k_out[(i*ker_dim[0]+j)*trg_cnt*ker_dim[1]], NULL);
  599. }
  600. }
  601. ////////////////////////////////////////////////////////////////////////////////
  602. //////// LAPLACE KERNEL ////////
  603. ////////////////////////////////////////////////////////////////////////////////
  604. /**
  605. * \brief Green's function for the Poisson's equation. Kernel tensor
  606. * dimension = 1x1.
  607. */
  608. template <class T>
  609. void laplace_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  610. #ifndef __MIC__
  611. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(12*dof));
  612. #endif
  613. const T OOFP = 1.0/(4.0*const_pi<T>());
  614. for(int t=0;t<trg_cnt;t++){
  615. for(int i=0;i<dof;i++){
  616. T p=0;
  617. for(int s=0;s<src_cnt;s++){
  618. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  619. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  620. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  621. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  622. if (invR!=0) invR = 1.0/sqrt(invR);
  623. p += v_src[s*dof+i]*invR;
  624. }
  625. k_out[t*dof+i] += p*OOFP;
  626. }
  627. }
  628. }
  629. template <class T>
  630. void laplace_poten_(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  631. //void laplace_poten(T* r_src_, int src_cnt, T* v_src_, int dof, T* r_trg_, int trg_cnt, T* k_out_){
  632. // int dim=3; //Only supporting 3D
  633. // T* r_src=mem::aligned_malloc<T>(src_cnt*dim);
  634. // T* r_trg=mem::aligned_malloc<T>(trg_cnt*dim);
  635. // T* v_src=mem::aligned_malloc<T>(src_cnt );
  636. // T* k_out=mem::aligned_malloc<T>(trg_cnt );
  637. // mem::memcopy(r_src,r_src_,src_cnt*dim*sizeof(T));
  638. // mem::memcopy(r_trg,r_trg_,trg_cnt*dim*sizeof(T));
  639. // mem::memcopy(v_src,v_src_,src_cnt *sizeof(T));
  640. // mem::memcopy(k_out,k_out_,trg_cnt *sizeof(T));
  641. #define EVAL_BLKSZ 32
  642. #define MAX_DOF 100
  643. //Compute source to target interactions.
  644. const T OOFP = 1.0/(4.0*const_pi<T>());
  645. if(dof==1){
  646. for (int t_=0; t_<trg_cnt; t_+=EVAL_BLKSZ)
  647. for (int s_=0; s_<src_cnt; s_+=EVAL_BLKSZ){
  648. int src_blk=s_+EVAL_BLKSZ; src_blk=(src_blk>src_cnt?src_cnt:src_blk);
  649. int trg_blk=t_+EVAL_BLKSZ; trg_blk=(trg_blk>trg_cnt?trg_cnt:trg_blk);
  650. for(int t=t_;t<trg_blk;t++){
  651. T p=0;
  652. for(int s=s_;s<src_blk;s++){
  653. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  654. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  655. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  656. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  657. if (invR!=0) invR = 1.0/sqrt(invR);
  658. p += v_src[s]*invR;
  659. }
  660. k_out[t] += p*OOFP;
  661. }
  662. }
  663. }else if(dof==2){
  664. T p[MAX_DOF];
  665. for (int t_=0; t_<trg_cnt; t_+=EVAL_BLKSZ)
  666. for (int s_=0; s_<src_cnt; s_+=EVAL_BLKSZ){
  667. int src_blk=s_+EVAL_BLKSZ; src_blk=(src_blk>src_cnt?src_cnt:src_blk);
  668. int trg_blk=t_+EVAL_BLKSZ; trg_blk=(trg_blk>trg_cnt?trg_cnt:trg_blk);
  669. for(int t=t_;t<trg_blk;t++){
  670. p[0]=0; p[1]=0;
  671. for(int s=s_;s<src_blk;s++){
  672. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  673. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  674. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  675. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  676. if (invR!=0) invR = 1.0/sqrt(invR);
  677. p[0] += v_src[s*dof+0]*invR;
  678. p[1] += v_src[s*dof+1]*invR;
  679. }
  680. k_out[t*dof+0] += p[0]*OOFP;
  681. k_out[t*dof+1] += p[1]*OOFP;
  682. }
  683. }
  684. }else if(dof==3){
  685. T p[MAX_DOF];
  686. for (int t_=0; t_<trg_cnt; t_+=EVAL_BLKSZ)
  687. for (int s_=0; s_<src_cnt; s_+=EVAL_BLKSZ){
  688. int src_blk=s_+EVAL_BLKSZ; src_blk=(src_blk>src_cnt?src_cnt:src_blk);
  689. int trg_blk=t_+EVAL_BLKSZ; trg_blk=(trg_blk>trg_cnt?trg_cnt:trg_blk);
  690. for(int t=t_;t<trg_blk;t++){
  691. p[0]=0; p[1]=0; p[2]=0;
  692. for(int s=s_;s<src_blk;s++){
  693. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  694. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  695. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  696. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  697. if (invR!=0) invR = 1.0/sqrt(invR);
  698. p[0] += v_src[s*dof+0]*invR;
  699. p[1] += v_src[s*dof+1]*invR;
  700. p[2] += v_src[s*dof+2]*invR;
  701. }
  702. k_out[t*dof+0] += p[0]*OOFP;
  703. k_out[t*dof+1] += p[1]*OOFP;
  704. k_out[t*dof+2] += p[2]*OOFP;
  705. }
  706. }
  707. }else{
  708. T p[MAX_DOF];
  709. for (int t_=0; t_<trg_cnt; t_+=EVAL_BLKSZ)
  710. for (int s_=0; s_<src_cnt; s_+=EVAL_BLKSZ){
  711. int src_blk=s_+EVAL_BLKSZ; src_blk=(src_blk>src_cnt?src_cnt:src_blk);
  712. int trg_blk=t_+EVAL_BLKSZ; trg_blk=(trg_blk>trg_cnt?trg_cnt:trg_blk);
  713. for(int t=t_;t<trg_blk;t++){
  714. for(int i=0;i<dof;i++) p[i]=0;
  715. for(int s=s_;s<src_blk;s++){
  716. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  717. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  718. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  719. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  720. if (invR!=0) invR = 1.0/sqrt(invR);
  721. for(int i=0;i<dof;i++)
  722. p[i] += v_src[s*dof+i]*invR;
  723. }
  724. for(int i=0;i<dof;i++)
  725. k_out[t*dof+i] += p[i]*OOFP;
  726. }
  727. }
  728. }
  729. #ifndef __MIC__
  730. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(10+2*dof));
  731. #endif
  732. #undef MAX_DOF
  733. #undef EVAL_BLKSZ
  734. // for (int t=0; t<trg_cnt; t++)
  735. // k_out_[t] += k_out[t];
  736. // mem::aligned_free(r_src);
  737. // mem::aligned_free(r_trg);
  738. // mem::aligned_free(v_src);
  739. // mem::aligned_free(k_out);
  740. }
  741. // Laplace double layer potential.
  742. template <class T>
  743. void laplace_dbl_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  744. #ifndef __MIC__
  745. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(19*dof));
  746. #endif
  747. const T OOFP = -1.0/(4.0*const_pi<T>());
  748. for(int t=0;t<trg_cnt;t++){
  749. for(int i=0;i<dof;i++){
  750. T p=0;
  751. for(int s=0;s<src_cnt;s++){
  752. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  753. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  754. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  755. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  756. if (invR!=0) invR = 1.0/sqrt(invR);
  757. p = v_src[(s*dof+i)*4+3]*invR*invR*invR;
  758. k_out[t*dof+i] += p*OOFP*( dX_reg*v_src[(s*dof+i)*4+0] +
  759. dY_reg*v_src[(s*dof+i)*4+1] +
  760. dZ_reg*v_src[(s*dof+i)*4+2] );
  761. }
  762. }
  763. }
  764. }
  765. // Laplace grdient kernel.
  766. template <class T>
  767. void laplace_grad(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  768. #ifndef __MIC__
  769. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(10+12*dof));
  770. #endif
  771. const T OOFP = -1.0/(4.0*const_pi<T>());
  772. if(dof==1){
  773. for(int t=0;t<trg_cnt;t++){
  774. T p=0;
  775. for(int s=0;s<src_cnt;s++){
  776. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  777. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  778. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  779. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  780. if (invR!=0) invR = 1.0/sqrt(invR);
  781. p = v_src[s]*invR*invR*invR;
  782. k_out[(t)*3+0] += p*OOFP*dX_reg;
  783. k_out[(t)*3+1] += p*OOFP*dY_reg;
  784. k_out[(t)*3+2] += p*OOFP*dZ_reg;
  785. }
  786. }
  787. }else if(dof==2){
  788. for(int t=0;t<trg_cnt;t++){
  789. T p=0;
  790. for(int s=0;s<src_cnt;s++){
  791. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  792. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  793. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  794. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  795. if (invR!=0) invR = 1.0/sqrt(invR);
  796. p = v_src[s*dof+0]*invR*invR*invR;
  797. k_out[(t*dof+0)*3+0] += p*OOFP*dX_reg;
  798. k_out[(t*dof+0)*3+1] += p*OOFP*dY_reg;
  799. k_out[(t*dof+0)*3+2] += p*OOFP*dZ_reg;
  800. p = v_src[s*dof+1]*invR*invR*invR;
  801. k_out[(t*dof+1)*3+0] += p*OOFP*dX_reg;
  802. k_out[(t*dof+1)*3+1] += p*OOFP*dY_reg;
  803. k_out[(t*dof+1)*3+2] += p*OOFP*dZ_reg;
  804. }
  805. }
  806. }else if(dof==3){
  807. for(int t=0;t<trg_cnt;t++){
  808. T p=0;
  809. for(int s=0;s<src_cnt;s++){
  810. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  811. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  812. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  813. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  814. if (invR!=0) invR = 1.0/sqrt(invR);
  815. p = v_src[s*dof+0]*invR*invR*invR;
  816. k_out[(t*dof+0)*3+0] += p*OOFP*dX_reg;
  817. k_out[(t*dof+0)*3+1] += p*OOFP*dY_reg;
  818. k_out[(t*dof+0)*3+2] += p*OOFP*dZ_reg;
  819. p = v_src[s*dof+1]*invR*invR*invR;
  820. k_out[(t*dof+1)*3+0] += p*OOFP*dX_reg;
  821. k_out[(t*dof+1)*3+1] += p*OOFP*dY_reg;
  822. k_out[(t*dof+1)*3+2] += p*OOFP*dZ_reg;
  823. p = v_src[s*dof+2]*invR*invR*invR;
  824. k_out[(t*dof+2)*3+0] += p*OOFP*dX_reg;
  825. k_out[(t*dof+2)*3+1] += p*OOFP*dY_reg;
  826. k_out[(t*dof+2)*3+2] += p*OOFP*dZ_reg;
  827. }
  828. }
  829. }else{
  830. for(int t=0;t<trg_cnt;t++){
  831. for(int i=0;i<dof;i++){
  832. T p=0;
  833. for(int s=0;s<src_cnt;s++){
  834. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  835. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  836. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  837. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  838. if (invR!=0) invR = 1.0/sqrt(invR);
  839. p = v_src[s*dof+i]*invR*invR*invR;
  840. k_out[(t*dof+i)*3+0] += p*OOFP*dX_reg;
  841. k_out[(t*dof+i)*3+1] += p*OOFP*dY_reg;
  842. k_out[(t*dof+i)*3+2] += p*OOFP*dZ_reg;
  843. }
  844. }
  845. }
  846. }
  847. }
  848. #ifndef __MIC__
  849. #ifdef USE_SSE
  850. namespace
  851. {
  852. #define IDEAL_ALIGNMENT 16
  853. #define SIMD_LEN (int)(IDEAL_ALIGNMENT / sizeof(double))
  854. #define DECL_SIMD_ALIGNED __declspec(align(IDEAL_ALIGNMENT))
  855. void laplaceSSE(
  856. const int ns,
  857. const int nt,
  858. const double *sx,
  859. const double *sy,
  860. const double *sz,
  861. const double *tx,
  862. const double *ty,
  863. const double *tz,
  864. const double *srcDen,
  865. double *trgVal)
  866. {
  867. if ( size_t(sx)%IDEAL_ALIGNMENT || size_t(sy)%IDEAL_ALIGNMENT || size_t(sz)%IDEAL_ALIGNMENT )
  868. abort();
  869. double OOFP = 1.0/(4.0*const_pi<double>());
  870. __m128d temp;
  871. double aux_arr[SIMD_LEN+1];
  872. double *tempval;
  873. // if aux_arr is misaligned
  874. if (size_t(aux_arr)%IDEAL_ALIGNMENT) tempval = aux_arr + 1;
  875. else tempval = aux_arr;
  876. if (size_t(tempval)%IDEAL_ALIGNMENT) abort();
  877. /*! One over four pi */
  878. __m128d oofp = _mm_set1_pd (OOFP);
  879. __m128d half = _mm_set1_pd (0.5);
  880. __m128d opf = _mm_set1_pd (1.5);
  881. __m128d zero = _mm_setzero_pd ();
  882. // loop over sources
  883. int i = 0;
  884. for (; i < nt; i++) {
  885. temp = _mm_setzero_pd();
  886. __m128d txi = _mm_load1_pd (&tx[i]);
  887. __m128d tyi = _mm_load1_pd (&ty[i]);
  888. __m128d tzi = _mm_load1_pd (&tz[i]);
  889. int j = 0;
  890. // Load and calculate in groups of SIMD_LEN
  891. for (; j + SIMD_LEN <= ns; j+=SIMD_LEN) {
  892. __m128d sxj = _mm_load_pd (&sx[j]);
  893. __m128d syj = _mm_load_pd (&sy[j]);
  894. __m128d szj = _mm_load_pd (&sz[j]);
  895. __m128d sden = _mm_set_pd (srcDen[j+1], srcDen[j]);
  896. __m128d dX, dY, dZ;
  897. __m128d dR2;
  898. __m128d S;
  899. dX = _mm_sub_pd(txi , sxj);
  900. dY = _mm_sub_pd(tyi , syj);
  901. dZ = _mm_sub_pd(tzi , szj);
  902. sxj = _mm_mul_pd(dX, dX);
  903. syj = _mm_mul_pd(dY, dY);
  904. szj = _mm_mul_pd(dZ, dZ);
  905. dR2 = _mm_add_pd(sxj, syj);
  906. dR2 = _mm_add_pd(szj, dR2);
  907. __m128d reqzero = _mm_cmpeq_pd (dR2, zero);
  908. __m128d xhalf = _mm_mul_pd (half, dR2);
  909. __m128 dR2_s = _mm_cvtpd_ps(dR2);
  910. __m128 S_s = _mm_rsqrt_ps(dR2_s);
  911. __m128d S_d = _mm_cvtps_pd(S_s);
  912. // To handle the condition when src and trg coincide
  913. S_d = _mm_andnot_pd (reqzero, S_d);
  914. S = _mm_mul_pd (S_d, S_d);
  915. S = _mm_mul_pd (S, xhalf);
  916. S = _mm_sub_pd (opf, S);
  917. S = _mm_mul_pd (S, S_d);
  918. sden = _mm_mul_pd (sden, S);
  919. temp = _mm_add_pd (sden, temp);
  920. }
  921. temp = _mm_mul_pd (temp, oofp);
  922. _mm_store_pd(tempval, temp);
  923. for (int k = 0; k < SIMD_LEN; k++) {
  924. trgVal[i] += tempval[k];
  925. }
  926. for (; j < ns; j++) {
  927. double x = tx[i] - sx[j];
  928. double y = ty[i] - sy[j];
  929. double z = tz[i] - sz[j];
  930. double r2 = x*x + y*y + z*z;
  931. double r = sqrt(r2);
  932. double invdr;
  933. if (r == 0)
  934. invdr = 0;
  935. else
  936. invdr = 1/r;
  937. double den = srcDen[j];
  938. trgVal[i] += den*invdr*OOFP;
  939. }
  940. }
  941. return;
  942. }
  943. void laplaceDblSSE(
  944. const int ns,
  945. const int nt,
  946. const double *sx,
  947. const double *sy,
  948. const double *sz,
  949. const double *tx,
  950. const double *ty,
  951. const double *tz,
  952. const double *srcDen,
  953. double *trgVal)
  954. {
  955. if ( size_t(sx)%IDEAL_ALIGNMENT || size_t(sy)%IDEAL_ALIGNMENT || size_t(sz)%IDEAL_ALIGNMENT )
  956. abort();
  957. double OOFP = 1.0/(4.0*const_pi<double>());
  958. __m128d temp;
  959. double aux_arr[SIMD_LEN+1];
  960. double *tempval;
  961. // if aux_arr is misaligned
  962. if (size_t(aux_arr)%IDEAL_ALIGNMENT) tempval = aux_arr + 1;
  963. else tempval = aux_arr;
  964. if (size_t(tempval)%IDEAL_ALIGNMENT) abort();
  965. /*! One over four pi */
  966. __m128d oofp = _mm_set1_pd (OOFP);
  967. __m128d half = _mm_set1_pd (0.5);
  968. __m128d opf = _mm_set1_pd (1.5);
  969. __m128d zero = _mm_setzero_pd ();
  970. // loop over sources
  971. int i = 0;
  972. for (; i < nt; i++) {
  973. temp = _mm_setzero_pd();
  974. __m128d txi = _mm_load1_pd (&tx[i]);
  975. __m128d tyi = _mm_load1_pd (&ty[i]);
  976. __m128d tzi = _mm_load1_pd (&tz[i]);
  977. int j = 0;
  978. // Load and calculate in groups of SIMD_LEN
  979. for (; j + SIMD_LEN <= ns; j+=SIMD_LEN) {
  980. __m128d sxj = _mm_load_pd (&sx[j]);
  981. __m128d syj = _mm_load_pd (&sy[j]);
  982. __m128d szj = _mm_load_pd (&sz[j]);
  983. __m128d snormx = _mm_set_pd (srcDen[(j+1)*4+0], srcDen[j*4+0]);
  984. __m128d snormy = _mm_set_pd (srcDen[(j+1)*4+1], srcDen[j*4+1]);
  985. __m128d snormz = _mm_set_pd (srcDen[(j+1)*4+2], srcDen[j*4+2]);
  986. __m128d sden = _mm_set_pd (srcDen[(j+1)*4+3], srcDen[j*4+3]);
  987. __m128d dX, dY, dZ;
  988. __m128d dR2;
  989. __m128d S;
  990. __m128d S2;
  991. __m128d S3;
  992. dX = _mm_sub_pd(txi , sxj);
  993. dY = _mm_sub_pd(tyi , syj);
  994. dZ = _mm_sub_pd(tzi , szj);
  995. sxj = _mm_mul_pd(dX, dX);
  996. syj = _mm_mul_pd(dY, dY);
  997. szj = _mm_mul_pd(dZ, dZ);
  998. dR2 = _mm_add_pd(sxj, syj);
  999. dR2 = _mm_add_pd(szj, dR2);
  1000. __m128d reqzero = _mm_cmpeq_pd (dR2, zero);
  1001. __m128d xhalf = _mm_mul_pd (half, dR2);
  1002. __m128 dR2_s = _mm_cvtpd_ps(dR2);
  1003. __m128 S_s = _mm_rsqrt_ps(dR2_s);
  1004. __m128d S_d = _mm_cvtps_pd(S_s);
  1005. // To handle the condition when src and trg coincide
  1006. S_d = _mm_andnot_pd (reqzero, S_d);
  1007. S = _mm_mul_pd (S_d, S_d);
  1008. S = _mm_mul_pd (S, xhalf);
  1009. S = _mm_sub_pd (opf, S);
  1010. S = _mm_mul_pd (S, S_d);
  1011. S2 = _mm_mul_pd (S, S);
  1012. S3 = _mm_mul_pd (S2, S);
  1013. __m128d S3_sden=_mm_mul_pd(S3, sden);
  1014. __m128d dot_sum = _mm_add_pd(_mm_mul_pd(snormx,dX),_mm_mul_pd(snormy,dY));
  1015. dot_sum = _mm_add_pd(dot_sum,_mm_mul_pd(snormz,dZ));
  1016. temp = _mm_add_pd(_mm_mul_pd(S3_sden,dot_sum),temp);
  1017. }
  1018. temp = _mm_mul_pd (temp, oofp);
  1019. _mm_store_pd(tempval, temp);
  1020. for (int k = 0; k < SIMD_LEN; k++) {
  1021. trgVal[i] += tempval[k];
  1022. }
  1023. for (; j < ns; j++) {
  1024. double x = tx[i] - sx[j];
  1025. double y = ty[i] - sy[j];
  1026. double z = tz[i] - sz[j];
  1027. double r2 = x*x + y*y + z*z;
  1028. double r = sqrt(r2);
  1029. double invdr;
  1030. if (r == 0)
  1031. invdr = 0;
  1032. else
  1033. invdr = 1/r;
  1034. double invdr2=invdr*invdr;
  1035. double invdr3=invdr2*invdr;
  1036. double dot_sum = x*srcDen[j*4+0] + y*srcDen[j*4+1] + z*srcDen[j*4+2];
  1037. trgVal[i] += OOFP*invdr3*x*srcDen[j*4+3]*dot_sum;
  1038. }
  1039. }
  1040. return;
  1041. }
  1042. void laplaceGradSSE(
  1043. const int ns,
  1044. const int nt,
  1045. const double *sx,
  1046. const double *sy,
  1047. const double *sz,
  1048. const double *tx,
  1049. const double *ty,
  1050. const double *tz,
  1051. const double *srcDen,
  1052. double *trgVal)
  1053. {
  1054. if ( size_t(sx)%IDEAL_ALIGNMENT || size_t(sy)%IDEAL_ALIGNMENT || size_t(sz)%IDEAL_ALIGNMENT )
  1055. abort();
  1056. double OOFP = 1.0/(4.0*const_pi<double>());
  1057. __m128d tempx; __m128d tempy; __m128d tempz;
  1058. double aux_arr[3*SIMD_LEN+1];
  1059. double *tempvalx, *tempvaly, *tempvalz;
  1060. // if aux_arr is misaligned
  1061. if (size_t(aux_arr)%IDEAL_ALIGNMENT) tempvalx = aux_arr + 1;
  1062. else tempvalx = aux_arr;
  1063. if (size_t(tempvalx)%IDEAL_ALIGNMENT) abort();
  1064. tempvaly=tempvalx+SIMD_LEN;
  1065. tempvalz=tempvaly+SIMD_LEN;
  1066. /*! One over four pi */
  1067. __m128d oofp = _mm_set1_pd (OOFP);
  1068. __m128d half = _mm_set1_pd (0.5);
  1069. __m128d opf = _mm_set1_pd (1.5);
  1070. __m128d zero = _mm_setzero_pd ();
  1071. // loop over sources
  1072. int i = 0;
  1073. for (; i < nt; i++) {
  1074. tempx = _mm_setzero_pd();
  1075. tempy = _mm_setzero_pd();
  1076. tempz = _mm_setzero_pd();
  1077. __m128d txi = _mm_load1_pd (&tx[i]);
  1078. __m128d tyi = _mm_load1_pd (&ty[i]);
  1079. __m128d tzi = _mm_load1_pd (&tz[i]);
  1080. int j = 0;
  1081. // Load and calculate in groups of SIMD_LEN
  1082. for (; j + SIMD_LEN <= ns; j+=SIMD_LEN) {
  1083. __m128d sxj = _mm_load_pd (&sx[j]);
  1084. __m128d syj = _mm_load_pd (&sy[j]);
  1085. __m128d szj = _mm_load_pd (&sz[j]);
  1086. __m128d sden = _mm_set_pd (srcDen[j+1], srcDen[j]);
  1087. __m128d dX, dY, dZ;
  1088. __m128d dR2;
  1089. __m128d S;
  1090. __m128d S2;
  1091. __m128d S3;
  1092. dX = _mm_sub_pd(txi , sxj);
  1093. dY = _mm_sub_pd(tyi , syj);
  1094. dZ = _mm_sub_pd(tzi , szj);
  1095. sxj = _mm_mul_pd(dX, dX);
  1096. syj = _mm_mul_pd(dY, dY);
  1097. szj = _mm_mul_pd(dZ, dZ);
  1098. dR2 = _mm_add_pd(sxj, syj);
  1099. dR2 = _mm_add_pd(szj, dR2);
  1100. __m128d reqzero = _mm_cmpeq_pd (dR2, zero);
  1101. __m128d xhalf = _mm_mul_pd (half, dR2);
  1102. __m128 dR2_s = _mm_cvtpd_ps(dR2);
  1103. __m128 S_s = _mm_rsqrt_ps(dR2_s);
  1104. __m128d S_d = _mm_cvtps_pd(S_s);
  1105. // To handle the condition when src and trg coincide
  1106. S_d = _mm_andnot_pd (reqzero, S_d);
  1107. S = _mm_mul_pd (S_d, S_d);
  1108. S = _mm_mul_pd (S, xhalf);
  1109. S = _mm_sub_pd (opf, S);
  1110. S = _mm_mul_pd (S, S_d);
  1111. S2 = _mm_mul_pd (S, S);
  1112. S3 = _mm_mul_pd (S2, S);
  1113. __m128d S3_sden=_mm_mul_pd(S3, sden);
  1114. tempx = _mm_add_pd(_mm_mul_pd(S3_sden,dX),tempx);
  1115. tempy = _mm_add_pd(_mm_mul_pd(S3_sden,dY),tempy);
  1116. tempz = _mm_add_pd(_mm_mul_pd(S3_sden,dZ),tempz);
  1117. }
  1118. tempx = _mm_mul_pd (tempx, oofp);
  1119. tempy = _mm_mul_pd (tempy, oofp);
  1120. tempz = _mm_mul_pd (tempz, oofp);
  1121. _mm_store_pd(tempvalx, tempx);
  1122. _mm_store_pd(tempvaly, tempy);
  1123. _mm_store_pd(tempvalz, tempz);
  1124. for (int k = 0; k < SIMD_LEN; k++) {
  1125. trgVal[i*3 ] += tempvalx[k];
  1126. trgVal[i*3+1] += tempvaly[k];
  1127. trgVal[i*3+2] += tempvalz[k];
  1128. }
  1129. for (; j < ns; j++) {
  1130. double x = tx[i] - sx[j];
  1131. double y = ty[i] - sy[j];
  1132. double z = tz[i] - sz[j];
  1133. double r2 = x*x + y*y + z*z;
  1134. double r = sqrt(r2);
  1135. double invdr;
  1136. if (r == 0)
  1137. invdr = 0;
  1138. else
  1139. invdr = 1/r;
  1140. double invdr2=invdr*invdr;
  1141. double invdr3=invdr2*invdr;
  1142. trgVal[i*3 ] += OOFP*invdr3*x*srcDen[j];
  1143. trgVal[i*3+1] += OOFP*invdr3*y*srcDen[j];
  1144. trgVal[i*3+2] += OOFP*invdr3*z*srcDen[j];
  1145. }
  1146. }
  1147. return;
  1148. }
  1149. #undef SIMD_LEN
  1150. #define X(s,k) (s)[(k)*COORD_DIM]
  1151. #define Y(s,k) (s)[(k)*COORD_DIM+1]
  1152. #define Z(s,k) (s)[(k)*COORD_DIM+2]
  1153. void laplaceSSEShuffle(const int ns, const int nt, float const src[], float const trg[], float const den[], float pot[], mem::MemoryManager* mem_mgr=NULL)
  1154. {
  1155. // TODO
  1156. }
  1157. void laplaceSSEShuffle(const int ns, const int nt, double const src[], double const trg[], double const den[], double pot[], mem::MemoryManager* mem_mgr=NULL)
  1158. {
  1159. double* buff=NULL;
  1160. buff=mem::aligned_new<double>((ns+1+nt)*3,mem_mgr);
  1161. double* buff_=buff;
  1162. pvfmm::Vector<double> xs(ns+1,buff_,false); buff_+=ns+1;
  1163. pvfmm::Vector<double> ys(ns+1,buff_,false); buff_+=ns+1;
  1164. pvfmm::Vector<double> zs(ns+1,buff_,false); buff_+=ns+1;
  1165. pvfmm::Vector<double> xt(nt ,buff_,false); buff_+=nt ;
  1166. pvfmm::Vector<double> yt(nt ,buff_,false); buff_+=nt ;
  1167. pvfmm::Vector<double> zt(nt ,buff_,false); buff_+=nt ;
  1168. //std::vector<double> xs(ns+1);
  1169. //std::vector<double> ys(ns+1);
  1170. //std::vector<double> zs(ns+1);
  1171. //std::vector<double> xt(nt );
  1172. //std::vector<double> yt(nt );
  1173. //std::vector<double> zt(nt );
  1174. int x_shift = size_t(&xs[0]) % IDEAL_ALIGNMENT ? 1:0;
  1175. int y_shift = size_t(&ys[0]) % IDEAL_ALIGNMENT ? 1:0;
  1176. int z_shift = size_t(&zs[0]) % IDEAL_ALIGNMENT ? 1:0;
  1177. //1. reshuffle memory
  1178. for (int k =0;k<ns;k++){
  1179. xs[k+x_shift]=X(src,k);
  1180. ys[k+y_shift]=Y(src,k);
  1181. zs[k+z_shift]=Z(src,k);
  1182. }
  1183. for (int k=0;k<nt;k++){
  1184. xt[k]=X(trg,k);
  1185. yt[k]=Y(trg,k);
  1186. zt[k]=Z(trg,k);
  1187. }
  1188. //2. perform caclulation
  1189. laplaceSSE(ns,nt,&xs[x_shift],&ys[y_shift],&zs[z_shift],&xt[0],&yt[0],&zt[0],den,pot);
  1190. mem::aligned_delete<double>(buff,mem_mgr);
  1191. return;
  1192. }
  1193. void laplaceDblSSEShuffle(const int ns, const int nt, float const src[], float const trg[], float const den[], float pot[], mem::MemoryManager* mem_mgr=NULL)
  1194. {
  1195. // TODO
  1196. }
  1197. void laplaceDblSSEShuffle(const int ns, const int nt, double const src[], double const trg[], double const den[], double pot[], mem::MemoryManager* mem_mgr=NULL)
  1198. {
  1199. std::vector<double> xs(ns+1); std::vector<double> xt(nt);
  1200. std::vector<double> ys(ns+1); std::vector<double> yt(nt);
  1201. std::vector<double> zs(ns+1); std::vector<double> zt(nt);
  1202. int x_shift = size_t(&xs[0]) % IDEAL_ALIGNMENT ? 1:0;
  1203. int y_shift = size_t(&ys[0]) % IDEAL_ALIGNMENT ? 1:0;
  1204. int z_shift = size_t(&zs[0]) % IDEAL_ALIGNMENT ? 1:0;
  1205. //1. reshuffle memory
  1206. for (int k =0;k<ns;k++){
  1207. xs[k+x_shift]=X(src,k);
  1208. ys[k+y_shift]=Y(src,k);
  1209. zs[k+z_shift]=Z(src,k);
  1210. }
  1211. for (int k=0;k<nt;k++){
  1212. xt[k]=X(trg,k);
  1213. yt[k]=Y(trg,k);
  1214. zt[k]=Z(trg,k);
  1215. }
  1216. //2. perform caclulation
  1217. laplaceDblSSE(ns,nt,&xs[x_shift],&ys[y_shift],&zs[z_shift],&xt[0],&yt[0],&zt[0],den,pot);
  1218. return;
  1219. }
  1220. void laplaceGradSSEShuffle(const int ns, const int nt, float const src[], float const trg[], float const den[], float pot[], mem::MemoryManager* mem_mgr=NULL)
  1221. {
  1222. // TODO
  1223. }
  1224. void laplaceGradSSEShuffle(const int ns, const int nt, double const src[], double const trg[], double const den[], double pot[], mem::MemoryManager* mem_mgr=NULL)
  1225. {
  1226. int tid=omp_get_thread_num();
  1227. static std::vector<std::vector<double> > xs_(100); static std::vector<std::vector<double> > xt_(100);
  1228. static std::vector<std::vector<double> > ys_(100); static std::vector<std::vector<double> > yt_(100);
  1229. static std::vector<std::vector<double> > zs_(100); static std::vector<std::vector<double> > zt_(100);
  1230. std::vector<double>& xs=xs_[tid]; std::vector<double>& xt=xt_[tid];
  1231. std::vector<double>& ys=ys_[tid]; std::vector<double>& yt=yt_[tid];
  1232. std::vector<double>& zs=zs_[tid]; std::vector<double>& zt=zt_[tid];
  1233. xs.resize(ns+1); xt.resize(nt);
  1234. ys.resize(ns+1); yt.resize(nt);
  1235. zs.resize(ns+1); zt.resize(nt);
  1236. int x_shift = size_t(&xs[0]) % IDEAL_ALIGNMENT ? 1:0;
  1237. int y_shift = size_t(&ys[0]) % IDEAL_ALIGNMENT ? 1:0;
  1238. int z_shift = size_t(&zs[0]) % IDEAL_ALIGNMENT ? 1:0;
  1239. //1. reshuffle memory
  1240. for (int k =0;k<ns;k++){
  1241. xs[k+x_shift]=X(src,k);
  1242. ys[k+y_shift]=Y(src,k);
  1243. zs[k+z_shift]=Z(src,k);
  1244. }
  1245. for (int k=0;k<nt;k++){
  1246. xt[k]=X(trg,k);
  1247. yt[k]=Y(trg,k);
  1248. zt[k]=Z(trg,k);
  1249. }
  1250. //2. perform caclulation
  1251. laplaceGradSSE(ns,nt,&xs[x_shift],&ys[y_shift],&zs[z_shift],&xt[0],&yt[0],&zt[0],den,pot);
  1252. return;
  1253. }
  1254. #undef X
  1255. #undef Y
  1256. #undef Z
  1257. #undef IDEAL_ALIGNMENT
  1258. #undef DECL_SIMD_ALIGNED
  1259. }
  1260. template <>
  1261. void laplace_poten<double>(double* r_src, int src_cnt, double* v_src, int dof, double* r_trg, int trg_cnt, double* k_out, mem::MemoryManager* mem_mgr){
  1262. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(12*dof));
  1263. if(dof==1){
  1264. laplaceSSEShuffle(src_cnt, trg_cnt, r_src, r_trg, v_src, k_out, mem_mgr);
  1265. return;
  1266. }
  1267. }
  1268. template <>
  1269. void laplace_dbl_poten<double>(double* r_src, int src_cnt, double* v_src, int dof, double* r_trg, int trg_cnt, double* k_out, mem::MemoryManager* mem_mgr){
  1270. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(19*dof));
  1271. if(dof==1){
  1272. laplaceDblSSEShuffle(src_cnt, trg_cnt, r_src, r_trg, v_src, k_out, mem_mgr);
  1273. return;
  1274. }
  1275. }
  1276. template <>
  1277. void laplace_grad<double>(double* r_src, int src_cnt, double* v_src, int dof, double* r_trg, int trg_cnt, double* k_out, mem::MemoryManager* mem_mgr){
  1278. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(10+12*dof));
  1279. if(dof==1){
  1280. laplaceGradSSEShuffle(src_cnt, trg_cnt, r_src, r_trg, v_src, k_out, mem_mgr);
  1281. return;
  1282. }
  1283. }
  1284. #endif
  1285. #endif
  1286. ////////////////////////////////////////////////////////////////////////////////
  1287. //////// STOKES KERNEL ////////
  1288. ////////////////////////////////////////////////////////////////////////////////
  1289. /**
  1290. * \brief Green's function for the Stokes's equation. Kernel tensor
  1291. * dimension = 3x3.
  1292. */
  1293. template <class T>
  1294. void stokes_vel(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1295. #ifndef __MIC__
  1296. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(28*dof));
  1297. #endif
  1298. const T mu=1.0;
  1299. const T OOEPMU = 1.0/(8.0*const_pi<T>()*mu);
  1300. for(int t=0;t<trg_cnt;t++){
  1301. for(int i=0;i<dof;i++){
  1302. T p[3]={0,0,0};
  1303. for(int s=0;s<src_cnt;s++){
  1304. T dR[3]={r_trg[3*t ]-r_src[3*s ],
  1305. r_trg[3*t+1]-r_src[3*s+1],
  1306. r_trg[3*t+2]-r_src[3*s+2]};
  1307. T R = (dR[0]*dR[0]+dR[1]*dR[1]+dR[2]*dR[2]);
  1308. if (R!=0){
  1309. T invR2=1.0/R;
  1310. T invR=sqrt(invR2);
  1311. T v_src[3]={v_src_[(s*dof+i)*3 ],
  1312. v_src_[(s*dof+i)*3+1],
  1313. v_src_[(s*dof+i)*3+2]};
  1314. T inner_prod=(v_src[0]*dR[0] +
  1315. v_src[1]*dR[1] +
  1316. v_src[2]*dR[2])* invR2;
  1317. p[0] += (v_src[0] + dR[0]*inner_prod)*invR;
  1318. p[1] += (v_src[1] + dR[1]*inner_prod)*invR;
  1319. p[2] += (v_src[2] + dR[2]*inner_prod)*invR;
  1320. }
  1321. }
  1322. k_out[(t*dof+i)*3+0] += p[0]*OOEPMU;
  1323. k_out[(t*dof+i)*3+1] += p[1]*OOEPMU;
  1324. k_out[(t*dof+i)*3+2] += p[2]*OOEPMU;
  1325. }
  1326. }
  1327. }
  1328. template <class T>
  1329. void stokes_sym_dip(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1330. #ifndef __MIC__
  1331. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(47*dof));
  1332. #endif
  1333. const T mu=1.0;
  1334. const T OOEPMU = -1.0/(8.0*const_pi<T>()*mu);
  1335. for(int t=0;t<trg_cnt;t++){
  1336. for(int i=0;i<dof;i++){
  1337. T p[3]={0,0,0};
  1338. for(int s=0;s<src_cnt;s++){
  1339. T dR[3]={r_trg[3*t ]-r_src[3*s ],
  1340. r_trg[3*t+1]-r_src[3*s+1],
  1341. r_trg[3*t+2]-r_src[3*s+2]};
  1342. T R = (dR[0]*dR[0]+dR[1]*dR[1]+dR[2]*dR[2]);
  1343. if (R!=0){
  1344. T invR2=1.0/R;
  1345. T invR=sqrt(invR2);
  1346. T invR3=invR2*invR;
  1347. T* f=&v_src[(s*dof+i)*6+0];
  1348. T* n=&v_src[(s*dof+i)*6+3];
  1349. T r_dot_n=(n[0]*dR[0]+n[1]*dR[1]+n[2]*dR[2]);
  1350. T r_dot_f=(f[0]*dR[0]+f[1]*dR[1]+f[2]*dR[2]);
  1351. T n_dot_f=(f[0]* n[0]+f[1]* n[1]+f[2]* n[2]);
  1352. p[0] += dR[0]*(n_dot_f - 3*r_dot_n*r_dot_f*invR2)*invR3;
  1353. p[1] += dR[1]*(n_dot_f - 3*r_dot_n*r_dot_f*invR2)*invR3;
  1354. p[2] += dR[2]*(n_dot_f - 3*r_dot_n*r_dot_f*invR2)*invR3;
  1355. }
  1356. }
  1357. k_out[(t*dof+i)*3+0] += p[0]*OOEPMU;
  1358. k_out[(t*dof+i)*3+1] += p[1]*OOEPMU;
  1359. k_out[(t*dof+i)*3+2] += p[2]*OOEPMU;
  1360. }
  1361. }
  1362. }
  1363. template <class T>
  1364. void stokes_press(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1365. #ifndef __MIC__
  1366. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(17*dof));
  1367. #endif
  1368. const T OOFP = 1.0/(4.0*const_pi<T>());
  1369. for(int t=0;t<trg_cnt;t++){
  1370. for(int i=0;i<dof;i++){
  1371. T p=0;
  1372. for(int s=0;s<src_cnt;s++){
  1373. T dR[3]={r_trg[3*t ]-r_src[3*s ],
  1374. r_trg[3*t+1]-r_src[3*s+1],
  1375. r_trg[3*t+2]-r_src[3*s+2]};
  1376. T R = (dR[0]*dR[0]+dR[1]*dR[1]+dR[2]*dR[2]);
  1377. if (R!=0){
  1378. T invR2=1.0/R;
  1379. T invR=sqrt(invR2);
  1380. T invR3=invR2*invR;
  1381. T v_src[3]={v_src_[(s*dof+i)*3 ],
  1382. v_src_[(s*dof+i)*3+1],
  1383. v_src_[(s*dof+i)*3+2]};
  1384. T inner_prod=(v_src[0]*dR[0] +
  1385. v_src[1]*dR[1] +
  1386. v_src[2]*dR[2])* invR3;
  1387. p += inner_prod;
  1388. }
  1389. }
  1390. k_out[t*dof+i] += p*OOFP;
  1391. }
  1392. }
  1393. }
  1394. template <class T>
  1395. void stokes_stress(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1396. #ifndef __MIC__
  1397. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(45*dof));
  1398. #endif
  1399. const T TOFP = -3.0/(4.0*const_pi<T>());
  1400. for(int t=0;t<trg_cnt;t++){
  1401. for(int i=0;i<dof;i++){
  1402. T p[9]={0,0,0,
  1403. 0,0,0,
  1404. 0,0,0};
  1405. for(int s=0;s<src_cnt;s++){
  1406. T dR[3]={r_trg[3*t ]-r_src[3*s ],
  1407. r_trg[3*t+1]-r_src[3*s+1],
  1408. r_trg[3*t+2]-r_src[3*s+2]};
  1409. T R = (dR[0]*dR[0]+dR[1]*dR[1]+dR[2]*dR[2]);
  1410. if (R!=0){
  1411. T invR2=1.0/R;
  1412. T invR=sqrt(invR2);
  1413. T invR3=invR2*invR;
  1414. T invR5=invR3*invR2;
  1415. T v_src[3]={v_src_[(s*dof+i)*3 ],
  1416. v_src_[(s*dof+i)*3+1],
  1417. v_src_[(s*dof+i)*3+2]};
  1418. T inner_prod=(v_src[0]*dR[0] +
  1419. v_src[1]*dR[1] +
  1420. v_src[2]*dR[2])* invR5;
  1421. p[0] += inner_prod*dR[0]*dR[0]; p[1] += inner_prod*dR[1]*dR[0]; p[2] += inner_prod*dR[2]*dR[0];
  1422. p[3] += inner_prod*dR[0]*dR[1]; p[4] += inner_prod*dR[1]*dR[1]; p[5] += inner_prod*dR[2]*dR[1];
  1423. p[6] += inner_prod*dR[0]*dR[2]; p[7] += inner_prod*dR[1]*dR[2]; p[8] += inner_prod*dR[2]*dR[2];
  1424. }
  1425. }
  1426. k_out[(t*dof+i)*9+0] += p[0]*TOFP;
  1427. k_out[(t*dof+i)*9+1] += p[1]*TOFP;
  1428. k_out[(t*dof+i)*9+2] += p[2]*TOFP;
  1429. k_out[(t*dof+i)*9+3] += p[3]*TOFP;
  1430. k_out[(t*dof+i)*9+4] += p[4]*TOFP;
  1431. k_out[(t*dof+i)*9+5] += p[5]*TOFP;
  1432. k_out[(t*dof+i)*9+6] += p[6]*TOFP;
  1433. k_out[(t*dof+i)*9+7] += p[7]*TOFP;
  1434. k_out[(t*dof+i)*9+8] += p[8]*TOFP;
  1435. }
  1436. }
  1437. }
  1438. template <class T>
  1439. void stokes_grad(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1440. #ifndef __MIC__
  1441. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(89*dof));
  1442. #endif
  1443. const T mu=1.0;
  1444. const T OOEPMU = 1.0/(8.0*const_pi<T>()*mu);
  1445. for(int t=0;t<trg_cnt;t++){
  1446. for(int i=0;i<dof;i++){
  1447. T p[9]={0,0,0,
  1448. 0,0,0,
  1449. 0,0,0};
  1450. for(int s=0;s<src_cnt;s++){
  1451. T dR[3]={r_trg[3*t ]-r_src[3*s ],
  1452. r_trg[3*t+1]-r_src[3*s+1],
  1453. r_trg[3*t+2]-r_src[3*s+2]};
  1454. T R = (dR[0]*dR[0]+dR[1]*dR[1]+dR[2]*dR[2]);
  1455. if (R!=0){
  1456. T invR2=1.0/R;
  1457. T invR=sqrt(invR2);
  1458. T invR3=invR2*invR;
  1459. T v_src[3]={v_src_[(s*dof+i)*3 ],
  1460. v_src_[(s*dof+i)*3+1],
  1461. v_src_[(s*dof+i)*3+2]};
  1462. T inner_prod=(v_src[0]*dR[0] +
  1463. v_src[1]*dR[1] +
  1464. v_src[2]*dR[2]);
  1465. p[0] += ( inner_prod*(1-3*dR[0]*dR[0]*invR2))*invR3; //6
  1466. p[1] += (dR[1]*v_src[0]-v_src[1]*dR[0]+inner_prod*( -3*dR[1]*dR[0]*invR2))*invR3; //9
  1467. p[2] += (dR[2]*v_src[0]-v_src[2]*dR[0]+inner_prod*( -3*dR[2]*dR[0]*invR2))*invR3;
  1468. p[3] += (dR[0]*v_src[1]-v_src[0]*dR[1]+inner_prod*( -3*dR[0]*dR[1]*invR2))*invR3;
  1469. p[4] += ( inner_prod*(1-3*dR[1]*dR[1]*invR2))*invR3;
  1470. p[5] += (dR[2]*v_src[1]-v_src[2]*dR[1]+inner_prod*( -3*dR[2]*dR[1]*invR2))*invR3;
  1471. p[6] += (dR[0]*v_src[2]-v_src[0]*dR[2]+inner_prod*( -3*dR[0]*dR[2]*invR2))*invR3;
  1472. p[7] += (dR[1]*v_src[2]-v_src[1]*dR[2]+inner_prod*( -3*dR[1]*dR[2]*invR2))*invR3;
  1473. p[8] += ( inner_prod*(1-3*dR[2]*dR[2]*invR2))*invR3;
  1474. }
  1475. }
  1476. k_out[(t*dof+i)*9+0] += p[0]*OOEPMU;
  1477. k_out[(t*dof+i)*9+1] += p[1]*OOEPMU;
  1478. k_out[(t*dof+i)*9+2] += p[2]*OOEPMU;
  1479. k_out[(t*dof+i)*9+3] += p[3]*OOEPMU;
  1480. k_out[(t*dof+i)*9+4] += p[4]*OOEPMU;
  1481. k_out[(t*dof+i)*9+5] += p[5]*OOEPMU;
  1482. k_out[(t*dof+i)*9+6] += p[6]*OOEPMU;
  1483. k_out[(t*dof+i)*9+7] += p[7]*OOEPMU;
  1484. k_out[(t*dof+i)*9+8] += p[8]*OOEPMU;
  1485. }
  1486. }
  1487. }
  1488. #ifndef __MIC__
  1489. #ifdef USE_SSE
  1490. namespace
  1491. {
  1492. #define IDEAL_ALIGNMENT 16
  1493. #define SIMD_LEN (int)(IDEAL_ALIGNMENT / sizeof(double))
  1494. #define DECL_SIMD_ALIGNED __declspec(align(IDEAL_ALIGNMENT))
  1495. void stokesDirectVecSSE(
  1496. const int ns,
  1497. const int nt,
  1498. const double *sx,
  1499. const double *sy,
  1500. const double *sz,
  1501. const double *tx,
  1502. const double *ty,
  1503. const double *tz,
  1504. const double *srcDen,
  1505. double *trgVal,
  1506. const double cof )
  1507. {
  1508. if ( size_t(sx)%IDEAL_ALIGNMENT || size_t(sy)%IDEAL_ALIGNMENT || size_t(sz)%IDEAL_ALIGNMENT )
  1509. abort();
  1510. double mu = cof;
  1511. double OOEP = 1.0/(8.0*const_pi<double>());
  1512. __m128d tempx;
  1513. __m128d tempy;
  1514. __m128d tempz;
  1515. double oomeu = 1/mu;
  1516. double aux_arr[3*SIMD_LEN+1];
  1517. double *tempvalx;
  1518. double *tempvaly;
  1519. double *tempvalz;
  1520. if (size_t(aux_arr)%IDEAL_ALIGNMENT) // if aux_arr is misaligned
  1521. {
  1522. tempvalx = aux_arr + 1;
  1523. if (size_t(tempvalx)%IDEAL_ALIGNMENT)
  1524. abort();
  1525. }
  1526. else
  1527. tempvalx = aux_arr;
  1528. tempvaly=tempvalx+SIMD_LEN;
  1529. tempvalz=tempvaly+SIMD_LEN;
  1530. /*! One over eight pi */
  1531. __m128d ooep = _mm_set1_pd (OOEP);
  1532. __m128d half = _mm_set1_pd (0.5);
  1533. __m128d opf = _mm_set1_pd (1.5);
  1534. __m128d zero = _mm_setzero_pd ();
  1535. __m128d oomu = _mm_set1_pd (1/mu);
  1536. // loop over sources
  1537. int i = 0;
  1538. for (; i < nt; i++) {
  1539. tempx = _mm_setzero_pd();
  1540. tempy = _mm_setzero_pd();
  1541. tempz = _mm_setzero_pd();
  1542. __m128d txi = _mm_load1_pd (&tx[i]);
  1543. __m128d tyi = _mm_load1_pd (&ty[i]);
  1544. __m128d tzi = _mm_load1_pd (&tz[i]);
  1545. int j = 0;
  1546. // Load and calculate in groups of SIMD_LEN
  1547. for (; j + SIMD_LEN <= ns; j+=SIMD_LEN) {
  1548. __m128d sxj = _mm_load_pd (&sx[j]);
  1549. __m128d syj = _mm_load_pd (&sy[j]);
  1550. __m128d szj = _mm_load_pd (&sz[j]);
  1551. __m128d sdenx = _mm_set_pd (srcDen[(j+1)*3], srcDen[j*3]);
  1552. __m128d sdeny = _mm_set_pd (srcDen[(j+1)*3+1], srcDen[j*3+1]);
  1553. __m128d sdenz = _mm_set_pd (srcDen[(j+1)*3+2], srcDen[j*3+2]);
  1554. __m128d dX, dY, dZ;
  1555. __m128d dR2;
  1556. __m128d S;
  1557. dX = _mm_sub_pd(txi , sxj);
  1558. dY = _mm_sub_pd(tyi , syj);
  1559. dZ = _mm_sub_pd(tzi , szj);
  1560. sxj = _mm_mul_pd(dX, dX);
  1561. syj = _mm_mul_pd(dY, dY);
  1562. szj = _mm_mul_pd(dZ, dZ);
  1563. dR2 = _mm_add_pd(sxj, syj);
  1564. dR2 = _mm_add_pd(szj, dR2);
  1565. __m128d temp = _mm_cmpeq_pd (dR2, zero);
  1566. __m128d xhalf = _mm_mul_pd (half, dR2);
  1567. __m128 dR2_s = _mm_cvtpd_ps(dR2);
  1568. __m128 S_s = _mm_rsqrt_ps(dR2_s);
  1569. __m128d S_d = _mm_cvtps_pd(S_s);
  1570. // To handle the condition when src and trg coincide
  1571. S_d = _mm_andnot_pd (temp, S_d);
  1572. S = _mm_mul_pd (S_d, S_d);
  1573. S = _mm_mul_pd (S, xhalf);
  1574. S = _mm_sub_pd (opf, S);
  1575. S = _mm_mul_pd (S, S_d);
  1576. __m128d dotx = _mm_mul_pd (dX, sdenx);
  1577. __m128d doty = _mm_mul_pd (dY, sdeny);
  1578. __m128d dotz = _mm_mul_pd (dZ, sdenz);
  1579. __m128d dot_sum = _mm_add_pd (dotx, doty);
  1580. dot_sum = _mm_add_pd (dot_sum, dotz);
  1581. dot_sum = _mm_mul_pd (dot_sum, S);
  1582. dot_sum = _mm_mul_pd (dot_sum, S);
  1583. dotx = _mm_mul_pd (dot_sum, dX);
  1584. doty = _mm_mul_pd (dot_sum, dY);
  1585. dotz = _mm_mul_pd (dot_sum, dZ);
  1586. sdenx = _mm_add_pd (sdenx, dotx);
  1587. sdeny = _mm_add_pd (sdeny, doty);
  1588. sdenz = _mm_add_pd (sdenz, dotz);
  1589. sdenx = _mm_mul_pd (sdenx, S);
  1590. sdeny = _mm_mul_pd (sdeny, S);
  1591. sdenz = _mm_mul_pd (sdenz, S);
  1592. tempx = _mm_add_pd (sdenx, tempx);
  1593. tempy = _mm_add_pd (sdeny, tempy);
  1594. tempz = _mm_add_pd (sdenz, tempz);
  1595. }
  1596. tempx = _mm_mul_pd (tempx, ooep);
  1597. tempy = _mm_mul_pd (tempy, ooep);
  1598. tempz = _mm_mul_pd (tempz, ooep);
  1599. tempx = _mm_mul_pd (tempx, oomu);
  1600. tempy = _mm_mul_pd (tempy, oomu);
  1601. tempz = _mm_mul_pd (tempz, oomu);
  1602. _mm_store_pd(tempvalx, tempx);
  1603. _mm_store_pd(tempvaly, tempy);
  1604. _mm_store_pd(tempvalz, tempz);
  1605. for (int k = 0; k < SIMD_LEN; k++) {
  1606. trgVal[i*3] += tempvalx[k];
  1607. trgVal[i*3+1] += tempvaly[k];
  1608. trgVal[i*3+2] += tempvalz[k];
  1609. }
  1610. for (; j < ns; j++) {
  1611. double x = tx[i] - sx[j];
  1612. double y = ty[i] - sy[j];
  1613. double z = tz[i] - sz[j];
  1614. double r2 = x*x + y*y + z*z;
  1615. double r = sqrt(r2);
  1616. double invdr;
  1617. if (r == 0)
  1618. invdr = 0;
  1619. else
  1620. invdr = 1/r;
  1621. double dot = (x*srcDen[j*3] + y*srcDen[j*3+1] + z*srcDen[j*3+2]) * invdr * invdr;
  1622. double denx = srcDen[j*3] + dot*x;
  1623. double deny = srcDen[j*3+1] + dot*y;
  1624. double denz = srcDen[j*3+2] + dot*z;
  1625. trgVal[i*3] += denx*invdr*OOEP*oomeu;
  1626. trgVal[i*3+1] += deny*invdr*OOEP*oomeu;
  1627. trgVal[i*3+2] += denz*invdr*OOEP*oomeu;
  1628. }
  1629. }
  1630. return;
  1631. }
  1632. void stokesPressureSSE(
  1633. const int ns,
  1634. const int nt,
  1635. const double *sx,
  1636. const double *sy,
  1637. const double *sz,
  1638. const double *tx,
  1639. const double *ty,
  1640. const double *tz,
  1641. const double *srcDen,
  1642. double *trgVal)
  1643. {
  1644. if ( size_t(sx)%IDEAL_ALIGNMENT || size_t(sy)%IDEAL_ALIGNMENT || size_t(sz)%IDEAL_ALIGNMENT )
  1645. abort();
  1646. double OOFP = 1.0/(4.0*const_pi<double>());
  1647. __m128d temp_press;
  1648. double aux_arr[SIMD_LEN+1];
  1649. double *tempval_press;
  1650. if (size_t(aux_arr)%IDEAL_ALIGNMENT) // if aux_arr is misaligned
  1651. {
  1652. tempval_press = aux_arr + 1;
  1653. if (size_t(tempval_press)%IDEAL_ALIGNMENT)
  1654. abort();
  1655. }
  1656. else
  1657. tempval_press = aux_arr;
  1658. /*! One over eight pi */
  1659. __m128d oofp = _mm_set1_pd (OOFP);
  1660. __m128d half = _mm_set1_pd (0.5);
  1661. __m128d opf = _mm_set1_pd (1.5);
  1662. __m128d zero = _mm_setzero_pd ();
  1663. // loop over sources
  1664. int i = 0;
  1665. for (; i < nt; i++) {
  1666. temp_press = _mm_setzero_pd();
  1667. __m128d txi = _mm_load1_pd (&tx[i]);
  1668. __m128d tyi = _mm_load1_pd (&ty[i]);
  1669. __m128d tzi = _mm_load1_pd (&tz[i]);
  1670. int j = 0;
  1671. // Load and calculate in groups of SIMD_LEN
  1672. for (; j + SIMD_LEN <= ns; j+=SIMD_LEN) {
  1673. __m128d sxj = _mm_load_pd (&sx[j]);
  1674. __m128d syj = _mm_load_pd (&sy[j]);
  1675. __m128d szj = _mm_load_pd (&sz[j]);
  1676. __m128d sdenx = _mm_set_pd (srcDen[(j+1)*3], srcDen[j*3]);
  1677. __m128d sdeny = _mm_set_pd (srcDen[(j+1)*3+1], srcDen[j*3+1]);
  1678. __m128d sdenz = _mm_set_pd (srcDen[(j+1)*3+2], srcDen[j*3+2]);
  1679. __m128d dX, dY, dZ;
  1680. __m128d dR2;
  1681. __m128d S;
  1682. dX = _mm_sub_pd(txi , sxj);
  1683. dY = _mm_sub_pd(tyi , syj);
  1684. dZ = _mm_sub_pd(tzi , szj);
  1685. sxj = _mm_mul_pd(dX, dX);
  1686. syj = _mm_mul_pd(dY, dY);
  1687. szj = _mm_mul_pd(dZ, dZ);
  1688. dR2 = _mm_add_pd(sxj, syj);
  1689. dR2 = _mm_add_pd(szj, dR2);
  1690. __m128d temp = _mm_cmpeq_pd (dR2, zero);
  1691. __m128d xhalf = _mm_mul_pd (half, dR2);
  1692. __m128 dR2_s = _mm_cvtpd_ps(dR2);
  1693. __m128 S_s = _mm_rsqrt_ps(dR2_s);
  1694. __m128d S_d = _mm_cvtps_pd(S_s);
  1695. // To handle the condition when src and trg coincide
  1696. S_d = _mm_andnot_pd (temp, S_d);
  1697. S = _mm_mul_pd (S_d, S_d);
  1698. S = _mm_mul_pd (S, xhalf);
  1699. S = _mm_sub_pd (opf, S);
  1700. S = _mm_mul_pd (S, S_d);
  1701. __m128d dotx = _mm_mul_pd (dX, sdenx);
  1702. __m128d doty = _mm_mul_pd (dY, sdeny);
  1703. __m128d dotz = _mm_mul_pd (dZ, sdenz);
  1704. __m128d dot_sum = _mm_add_pd (dotx, doty);
  1705. dot_sum = _mm_add_pd (dot_sum, dotz);
  1706. dot_sum = _mm_mul_pd (dot_sum, S);
  1707. dot_sum = _mm_mul_pd (dot_sum, S);
  1708. dot_sum = _mm_mul_pd (dot_sum, S);
  1709. temp_press = _mm_add_pd (dot_sum, temp_press);
  1710. }
  1711. temp_press = _mm_mul_pd (temp_press, oofp);
  1712. _mm_store_pd(tempval_press, temp_press);
  1713. for (int k = 0; k < SIMD_LEN; k++) {
  1714. trgVal[i] += tempval_press[k];
  1715. }
  1716. for (; j < ns; j++) {
  1717. double x = tx[i] - sx[j];
  1718. double y = ty[i] - sy[j];
  1719. double z = tz[i] - sz[j];
  1720. double r2 = x*x + y*y + z*z;
  1721. double r = sqrt(r2);
  1722. double invdr;
  1723. if (r == 0)
  1724. invdr = 0;
  1725. else
  1726. invdr = 1/r;
  1727. double dot = (x*srcDen[j*3] + y*srcDen[j*3+1] + z*srcDen[j*3+2]) * invdr * invdr * invdr;
  1728. trgVal[i] += dot*OOFP;
  1729. }
  1730. }
  1731. return;
  1732. }
  1733. void stokesStressSSE(
  1734. const int ns,
  1735. const int nt,
  1736. const double *sx,
  1737. const double *sy,
  1738. const double *sz,
  1739. const double *tx,
  1740. const double *ty,
  1741. const double *tz,
  1742. const double *srcDen,
  1743. double *trgVal)
  1744. {
  1745. if ( size_t(sx)%IDEAL_ALIGNMENT || size_t(sy)%IDEAL_ALIGNMENT || size_t(sz)%IDEAL_ALIGNMENT )
  1746. abort();
  1747. double TOFP = -3.0/(4.0*const_pi<double>());
  1748. __m128d tempxx; __m128d tempxy; __m128d tempxz;
  1749. __m128d tempyx; __m128d tempyy; __m128d tempyz;
  1750. __m128d tempzx; __m128d tempzy; __m128d tempzz;
  1751. double aux_arr[9*SIMD_LEN+1];
  1752. double *tempvalxx, *tempvalxy, *tempvalxz;
  1753. double *tempvalyx, *tempvalyy, *tempvalyz;
  1754. double *tempvalzx, *tempvalzy, *tempvalzz;
  1755. if (size_t(aux_arr)%IDEAL_ALIGNMENT) // if aux_arr is misaligned
  1756. {
  1757. tempvalxx = aux_arr + 1;
  1758. if (size_t(tempvalxx)%IDEAL_ALIGNMENT)
  1759. abort();
  1760. }
  1761. else
  1762. tempvalxx = aux_arr;
  1763. tempvalxy=tempvalxx+SIMD_LEN;
  1764. tempvalxz=tempvalxy+SIMD_LEN;
  1765. tempvalyx=tempvalxz+SIMD_LEN;
  1766. tempvalyy=tempvalyx+SIMD_LEN;
  1767. tempvalyz=tempvalyy+SIMD_LEN;
  1768. tempvalzx=tempvalyz+SIMD_LEN;
  1769. tempvalzy=tempvalzx+SIMD_LEN;
  1770. tempvalzz=tempvalzy+SIMD_LEN;
  1771. /*! One over eight pi */
  1772. __m128d tofp = _mm_set1_pd (TOFP);
  1773. __m128d half = _mm_set1_pd (0.5);
  1774. __m128d opf = _mm_set1_pd (1.5);
  1775. __m128d zero = _mm_setzero_pd ();
  1776. // loop over sources
  1777. int i = 0;
  1778. for (; i < nt; i++) {
  1779. tempxx = _mm_setzero_pd(); tempxy = _mm_setzero_pd(); tempxz = _mm_setzero_pd();
  1780. tempyx = _mm_setzero_pd(); tempyy = _mm_setzero_pd(); tempyz = _mm_setzero_pd();
  1781. tempzx = _mm_setzero_pd(); tempzy = _mm_setzero_pd(); tempzz = _mm_setzero_pd();
  1782. __m128d txi = _mm_load1_pd (&tx[i]);
  1783. __m128d tyi = _mm_load1_pd (&ty[i]);
  1784. __m128d tzi = _mm_load1_pd (&tz[i]);
  1785. int j = 0;
  1786. // Load and calculate in groups of SIMD_LEN
  1787. for (; j + SIMD_LEN <= ns; j+=SIMD_LEN) {
  1788. __m128d sxj = _mm_load_pd (&sx[j]);
  1789. __m128d syj = _mm_load_pd (&sy[j]);
  1790. __m128d szj = _mm_load_pd (&sz[j]);
  1791. __m128d sdenx = _mm_set_pd (srcDen[(j+1)*3], srcDen[j*3]);
  1792. __m128d sdeny = _mm_set_pd (srcDen[(j+1)*3+1], srcDen[j*3+1]);
  1793. __m128d sdenz = _mm_set_pd (srcDen[(j+1)*3+2], srcDen[j*3+2]);
  1794. __m128d dX, dY, dZ;
  1795. __m128d dR2;
  1796. __m128d S;
  1797. __m128d S2;
  1798. dX = _mm_sub_pd(txi , sxj);
  1799. dY = _mm_sub_pd(tyi , syj);
  1800. dZ = _mm_sub_pd(tzi , szj);
  1801. sxj = _mm_mul_pd(dX, dX);
  1802. syj = _mm_mul_pd(dY, dY);
  1803. szj = _mm_mul_pd(dZ, dZ);
  1804. dR2 = _mm_add_pd(sxj, syj);
  1805. dR2 = _mm_add_pd(szj, dR2);
  1806. __m128d temp = _mm_cmpeq_pd (dR2, zero);
  1807. __m128d xhalf = _mm_mul_pd (half, dR2);
  1808. __m128 dR2_s = _mm_cvtpd_ps(dR2);
  1809. __m128 S_s = _mm_rsqrt_ps(dR2_s);
  1810. __m128d S_d = _mm_cvtps_pd(S_s);
  1811. // To handle the condition when src and trg coincide
  1812. S_d = _mm_andnot_pd (temp, S_d);
  1813. S = _mm_mul_pd (S_d, S_d);
  1814. S = _mm_mul_pd (S, xhalf);
  1815. S = _mm_sub_pd (opf, S);
  1816. S = _mm_mul_pd (S, S_d);
  1817. S2 = _mm_mul_pd (S, S);
  1818. __m128d dotx = _mm_mul_pd (dX, sdenx);
  1819. __m128d doty = _mm_mul_pd (dY, sdeny);
  1820. __m128d dotz = _mm_mul_pd (dZ, sdenz);
  1821. __m128d dot_sum = _mm_add_pd (dotx, doty);
  1822. dot_sum = _mm_add_pd (dot_sum, dotz);
  1823. dot_sum = _mm_mul_pd (dot_sum, S);
  1824. dot_sum = _mm_mul_pd (dot_sum, S2);
  1825. dot_sum = _mm_mul_pd (dot_sum, S2);
  1826. dotx = _mm_mul_pd (dot_sum, dX);
  1827. doty = _mm_mul_pd (dot_sum, dY);
  1828. dotz = _mm_mul_pd (dot_sum, dZ);
  1829. tempxx = _mm_add_pd (_mm_mul_pd(dotx,dX), tempxx);
  1830. tempxy = _mm_add_pd (_mm_mul_pd(dotx,dY), tempxy);
  1831. tempxz = _mm_add_pd (_mm_mul_pd(dotx,dZ), tempxz);
  1832. tempyx = _mm_add_pd (_mm_mul_pd(doty,dX), tempyx);
  1833. tempyy = _mm_add_pd (_mm_mul_pd(doty,dY), tempyy);
  1834. tempyz = _mm_add_pd (_mm_mul_pd(doty,dZ), tempyz);
  1835. tempzx = _mm_add_pd (_mm_mul_pd(dotz,dX), tempzx);
  1836. tempzy = _mm_add_pd (_mm_mul_pd(dotz,dY), tempzy);
  1837. tempzz = _mm_add_pd (_mm_mul_pd(dotz,dZ), tempzz);
  1838. }
  1839. tempxx = _mm_mul_pd (tempxx, tofp);
  1840. tempxy = _mm_mul_pd (tempxy, tofp);
  1841. tempxz = _mm_mul_pd (tempxz, tofp);
  1842. tempyx = _mm_mul_pd (tempyx, tofp);
  1843. tempyy = _mm_mul_pd (tempyy, tofp);
  1844. tempyz = _mm_mul_pd (tempyz, tofp);
  1845. tempzx = _mm_mul_pd (tempzx, tofp);
  1846. tempzy = _mm_mul_pd (tempzy, tofp);
  1847. tempzz = _mm_mul_pd (tempzz, tofp);
  1848. _mm_store_pd(tempvalxx, tempxx); _mm_store_pd(tempvalxy, tempxy); _mm_store_pd(tempvalxz, tempxz);
  1849. _mm_store_pd(tempvalyx, tempyx); _mm_store_pd(tempvalyy, tempyy); _mm_store_pd(tempvalyz, tempyz);
  1850. _mm_store_pd(tempvalzx, tempzx); _mm_store_pd(tempvalzy, tempzy); _mm_store_pd(tempvalzz, tempzz);
  1851. for (int k = 0; k < SIMD_LEN; k++) {
  1852. trgVal[i*9 ] += tempvalxx[k];
  1853. trgVal[i*9+1] += tempvalxy[k];
  1854. trgVal[i*9+2] += tempvalxz[k];
  1855. trgVal[i*9+3] += tempvalyx[k];
  1856. trgVal[i*9+4] += tempvalyy[k];
  1857. trgVal[i*9+5] += tempvalyz[k];
  1858. trgVal[i*9+6] += tempvalzx[k];
  1859. trgVal[i*9+7] += tempvalzy[k];
  1860. trgVal[i*9+8] += tempvalzz[k];
  1861. }
  1862. for (; j < ns; j++) {
  1863. double x = tx[i] - sx[j];
  1864. double y = ty[i] - sy[j];
  1865. double z = tz[i] - sz[j];
  1866. double r2 = x*x + y*y + z*z;
  1867. double r = sqrt(r2);
  1868. double invdr;
  1869. if (r == 0)
  1870. invdr = 0;
  1871. else
  1872. invdr = 1/r;
  1873. double invdr2=invdr*invdr;
  1874. double dot = (x*srcDen[j*3] + y*srcDen[j*3+1] + z*srcDen[j*3+2]) * invdr2 * invdr2 * invdr;
  1875. double denx = dot*x;
  1876. double deny = dot*y;
  1877. double denz = dot*z;
  1878. trgVal[i*9 ] += denx*x*TOFP;
  1879. trgVal[i*9+1] += denx*y*TOFP;
  1880. trgVal[i*9+2] += denx*z*TOFP;
  1881. trgVal[i*9+3] += deny*x*TOFP;
  1882. trgVal[i*9+4] += deny*y*TOFP;
  1883. trgVal[i*9+5] += deny*z*TOFP;
  1884. trgVal[i*9+6] += denz*x*TOFP;
  1885. trgVal[i*9+7] += denz*y*TOFP;
  1886. trgVal[i*9+8] += denz*z*TOFP;
  1887. }
  1888. }
  1889. return;
  1890. }
  1891. void stokesGradSSE(
  1892. const int ns,
  1893. const int nt,
  1894. const double *sx,
  1895. const double *sy,
  1896. const double *sz,
  1897. const double *tx,
  1898. const double *ty,
  1899. const double *tz,
  1900. const double *srcDen,
  1901. double *trgVal,
  1902. const double cof )
  1903. {
  1904. if ( size_t(sx)%IDEAL_ALIGNMENT || size_t(sy)%IDEAL_ALIGNMENT || size_t(sz)%IDEAL_ALIGNMENT )
  1905. abort();
  1906. double mu = cof;
  1907. double OOEP = 1.0/(8.0*const_pi<double>());
  1908. __m128d tempxx; __m128d tempxy; __m128d tempxz;
  1909. __m128d tempyx; __m128d tempyy; __m128d tempyz;
  1910. __m128d tempzx; __m128d tempzy; __m128d tempzz;
  1911. double oomeu = 1/mu;
  1912. double aux_arr[9*SIMD_LEN+1];
  1913. double *tempvalxx, *tempvalxy, *tempvalxz;
  1914. double *tempvalyx, *tempvalyy, *tempvalyz;
  1915. double *tempvalzx, *tempvalzy, *tempvalzz;
  1916. if (size_t(aux_arr)%IDEAL_ALIGNMENT) // if aux_arr is misaligned
  1917. {
  1918. tempvalxx = aux_arr + 1;
  1919. if (size_t(tempvalxx)%IDEAL_ALIGNMENT)
  1920. abort();
  1921. }
  1922. else
  1923. tempvalxx = aux_arr;
  1924. tempvalxy=tempvalxx+SIMD_LEN;
  1925. tempvalxz=tempvalxy+SIMD_LEN;
  1926. tempvalyx=tempvalxz+SIMD_LEN;
  1927. tempvalyy=tempvalyx+SIMD_LEN;
  1928. tempvalyz=tempvalyy+SIMD_LEN;
  1929. tempvalzx=tempvalyz+SIMD_LEN;
  1930. tempvalzy=tempvalzx+SIMD_LEN;
  1931. tempvalzz=tempvalzy+SIMD_LEN;
  1932. /*! One over eight pi */
  1933. __m128d ooep = _mm_set1_pd (OOEP);
  1934. __m128d half = _mm_set1_pd (0.5);
  1935. __m128d opf = _mm_set1_pd (1.5);
  1936. __m128d three = _mm_set1_pd (3.0);
  1937. __m128d zero = _mm_setzero_pd ();
  1938. __m128d oomu = _mm_set1_pd (1/mu);
  1939. __m128d ooepmu = _mm_mul_pd(ooep,oomu);
  1940. // loop over sources
  1941. int i = 0;
  1942. for (; i < nt; i++) {
  1943. tempxx = _mm_setzero_pd(); tempxy = _mm_setzero_pd(); tempxz = _mm_setzero_pd();
  1944. tempyx = _mm_setzero_pd(); tempyy = _mm_setzero_pd(); tempyz = _mm_setzero_pd();
  1945. tempzx = _mm_setzero_pd(); tempzy = _mm_setzero_pd(); tempzz = _mm_setzero_pd();
  1946. __m128d txi = _mm_load1_pd (&tx[i]);
  1947. __m128d tyi = _mm_load1_pd (&ty[i]);
  1948. __m128d tzi = _mm_load1_pd (&tz[i]);
  1949. int j = 0;
  1950. // Load and calculate in groups of SIMD_LEN
  1951. for (; j + SIMD_LEN <= ns; j+=SIMD_LEN) {
  1952. __m128d sxj = _mm_load_pd (&sx[j]);
  1953. __m128d syj = _mm_load_pd (&sy[j]);
  1954. __m128d szj = _mm_load_pd (&sz[j]);
  1955. __m128d sdenx = _mm_set_pd (srcDen[(j+1)*3], srcDen[j*3]);
  1956. __m128d sdeny = _mm_set_pd (srcDen[(j+1)*3+1], srcDen[j*3+1]);
  1957. __m128d sdenz = _mm_set_pd (srcDen[(j+1)*3+2], srcDen[j*3+2]);
  1958. __m128d dX, dY, dZ;
  1959. __m128d dR2;
  1960. __m128d S;
  1961. __m128d S2;
  1962. __m128d S3;
  1963. dX = _mm_sub_pd(txi , sxj);
  1964. dY = _mm_sub_pd(tyi , syj);
  1965. dZ = _mm_sub_pd(tzi , szj);
  1966. sxj = _mm_mul_pd(dX, dX);
  1967. syj = _mm_mul_pd(dY, dY);
  1968. szj = _mm_mul_pd(dZ, dZ);
  1969. dR2 = _mm_add_pd(sxj, syj);
  1970. dR2 = _mm_add_pd(szj, dR2);
  1971. __m128d temp = _mm_cmpeq_pd (dR2, zero);
  1972. __m128d xhalf = _mm_mul_pd (half, dR2);
  1973. __m128 dR2_s = _mm_cvtpd_ps(dR2);
  1974. __m128 S_s = _mm_rsqrt_ps(dR2_s);
  1975. __m128d S_d = _mm_cvtps_pd(S_s);
  1976. // To handle the condition when src and trg coincide
  1977. S_d = _mm_andnot_pd (temp, S_d);
  1978. S = _mm_mul_pd (S_d, S_d);
  1979. S = _mm_mul_pd (S, xhalf);
  1980. S = _mm_sub_pd (opf, S);
  1981. S = _mm_mul_pd (S, S_d);
  1982. S2 = _mm_mul_pd (S, S);
  1983. S3 = _mm_mul_pd (S2, S);
  1984. __m128d dotx = _mm_mul_pd (dX, sdenx);
  1985. __m128d doty = _mm_mul_pd (dY, sdeny);
  1986. __m128d dotz = _mm_mul_pd (dZ, sdenz);
  1987. __m128d dot_sum = _mm_add_pd (dotx, doty);
  1988. dot_sum = _mm_add_pd (dot_sum, dotz);
  1989. dot_sum = _mm_mul_pd (dot_sum, S2);
  1990. tempxx = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dX, sdenx), _mm_mul_pd(sdenx, dX)), _mm_mul_pd(dot_sum, _mm_sub_pd(dR2 , _mm_mul_pd(three, _mm_mul_pd(dX, dX)))))),tempxx);
  1991. tempxy = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dY, sdenx), _mm_mul_pd(sdeny, dX)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dY, dX)))))),tempxy);
  1992. tempxz = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dZ, sdenx), _mm_mul_pd(sdenz, dX)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dZ, dX)))))),tempxz);
  1993. tempyx = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dX, sdeny), _mm_mul_pd(sdenx, dY)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dX, dY)))))),tempyx);
  1994. tempyy = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dY, sdeny), _mm_mul_pd(sdeny, dY)), _mm_mul_pd(dot_sum, _mm_sub_pd(dR2 , _mm_mul_pd(three, _mm_mul_pd(dY, dY)))))),tempyy);
  1995. tempyz = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dZ, sdeny), _mm_mul_pd(sdenz, dY)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dZ, dY)))))),tempyz);
  1996. tempzx = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dX, sdenz), _mm_mul_pd(sdenx, dZ)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dX, dZ)))))),tempzx);
  1997. tempzy = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dY, sdenz), _mm_mul_pd(sdeny, dZ)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dY, dZ)))))),tempzy);
  1998. tempzz = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dZ, sdenz), _mm_mul_pd(sdenz, dZ)), _mm_mul_pd(dot_sum, _mm_sub_pd(dR2 , _mm_mul_pd(three, _mm_mul_pd(dZ, dZ)))))),tempzz);
  1999. }
  2000. tempxx = _mm_mul_pd (tempxx, ooepmu);
  2001. tempxy = _mm_mul_pd (tempxy, ooepmu);
  2002. tempxz = _mm_mul_pd (tempxz, ooepmu);
  2003. tempyx = _mm_mul_pd (tempyx, ooepmu);
  2004. tempyy = _mm_mul_pd (tempyy, ooepmu);
  2005. tempyz = _mm_mul_pd (tempyz, ooepmu);
  2006. tempzx = _mm_mul_pd (tempzx, ooepmu);
  2007. tempzy = _mm_mul_pd (tempzy, ooepmu);
  2008. tempzz = _mm_mul_pd (tempzz, ooepmu);
  2009. _mm_store_pd(tempvalxx, tempxx); _mm_store_pd(tempvalxy, tempxy); _mm_store_pd(tempvalxz, tempxz);
  2010. _mm_store_pd(tempvalyx, tempyx); _mm_store_pd(tempvalyy, tempyy); _mm_store_pd(tempvalyz, tempyz);
  2011. _mm_store_pd(tempvalzx, tempzx); _mm_store_pd(tempvalzy, tempzy); _mm_store_pd(tempvalzz, tempzz);
  2012. for (int k = 0; k < SIMD_LEN; k++) {
  2013. trgVal[i*9 ] += tempvalxx[k];
  2014. trgVal[i*9+1] += tempvalxy[k];
  2015. trgVal[i*9+2] += tempvalxz[k];
  2016. trgVal[i*9+3] += tempvalyx[k];
  2017. trgVal[i*9+4] += tempvalyy[k];
  2018. trgVal[i*9+5] += tempvalyz[k];
  2019. trgVal[i*9+6] += tempvalzx[k];
  2020. trgVal[i*9+7] += tempvalzy[k];
  2021. trgVal[i*9+8] += tempvalzz[k];
  2022. }
  2023. for (; j < ns; j++) {
  2024. double x = tx[i] - sx[j];
  2025. double y = ty[i] - sy[j];
  2026. double z = tz[i] - sz[j];
  2027. double r2 = x*x + y*y + z*z;
  2028. double r = sqrt(r2);
  2029. double invdr;
  2030. if (r == 0)
  2031. invdr = 0;
  2032. else
  2033. invdr = 1/r;
  2034. double invdr2=invdr*invdr;
  2035. double invdr3=invdr2*invdr;
  2036. double dot = (x*srcDen[j*3] + y*srcDen[j*3+1] + z*srcDen[j*3+2]);
  2037. trgVal[i*9 ] += OOEP*oomeu*invdr3*( x*srcDen[j*3 ] - srcDen[j*3 ]*x + dot*(1-3*x*x*invdr2) );
  2038. trgVal[i*9+1] += OOEP*oomeu*invdr3*( y*srcDen[j*3 ] - srcDen[j*3+1]*x + dot*(0-3*y*x*invdr2) );
  2039. trgVal[i*9+2] += OOEP*oomeu*invdr3*( z*srcDen[j*3 ] - srcDen[j*3+2]*x + dot*(0-3*z*x*invdr2) );
  2040. trgVal[i*9+3] += OOEP*oomeu*invdr3*( x*srcDen[j*3+1] - srcDen[j*3 ]*y + dot*(0-3*x*y*invdr2) );
  2041. trgVal[i*9+4] += OOEP*oomeu*invdr3*( y*srcDen[j*3+1] - srcDen[j*3+1]*y + dot*(1-3*y*y*invdr2) );
  2042. trgVal[i*9+5] += OOEP*oomeu*invdr3*( z*srcDen[j*3+1] - srcDen[j*3+2]*y + dot*(0-3*z*y*invdr2) );
  2043. trgVal[i*9+6] += OOEP*oomeu*invdr3*( x*srcDen[j*3+2] - srcDen[j*3 ]*z + dot*(0-3*x*z*invdr2) );
  2044. trgVal[i*9+7] += OOEP*oomeu*invdr3*( y*srcDen[j*3+2] - srcDen[j*3+1]*z + dot*(0-3*y*z*invdr2) );
  2045. trgVal[i*9+8] += OOEP*oomeu*invdr3*( z*srcDen[j*3+2] - srcDen[j*3+2]*z + dot*(1-3*z*z*invdr2) );
  2046. }
  2047. }
  2048. return;
  2049. }
  2050. #undef SIMD_LEN
  2051. #define X(s,k) (s)[(k)*COORD_DIM]
  2052. #define Y(s,k) (s)[(k)*COORD_DIM+1]
  2053. #define Z(s,k) (s)[(k)*COORD_DIM+2]
  2054. void stokesDirectSSEShuffle(const int ns, const int nt, double const src[], double const trg[], double const den[], double pot[], const double kernel_coef, mem::MemoryManager* mem_mgr=NULL)
  2055. {
  2056. std::vector<double> xs(ns+1); std::vector<double> xt(nt);
  2057. std::vector<double> ys(ns+1); std::vector<double> yt(nt);
  2058. std::vector<double> zs(ns+1); std::vector<double> zt(nt);
  2059. int x_shift = size_t(&xs[0]) % IDEAL_ALIGNMENT ? 1:0;
  2060. int y_shift = size_t(&ys[0]) % IDEAL_ALIGNMENT ? 1:0;
  2061. int z_shift = size_t(&zs[0]) % IDEAL_ALIGNMENT ? 1:0;
  2062. //1. reshuffle memory
  2063. for (int k =0;k<ns;k++){
  2064. xs[k+x_shift]=X(src,k);
  2065. ys[k+y_shift]=Y(src,k);
  2066. zs[k+z_shift]=Z(src,k);
  2067. }
  2068. for (int k=0;k<nt;k++){
  2069. xt[k]=X(trg,k);
  2070. yt[k]=Y(trg,k);
  2071. zt[k]=Z(trg,k);
  2072. }
  2073. //2. perform caclulation
  2074. stokesDirectVecSSE(ns,nt,&xs[x_shift],&ys[y_shift],&zs[z_shift],&xt[0],&yt[0],&zt[0],den,pot,kernel_coef);
  2075. return;
  2076. }
  2077. void stokesPressureSSEShuffle(const int ns, const int nt, double const src[], double const trg[], double const den[], double pot[], mem::MemoryManager* mem_mgr=NULL)
  2078. {
  2079. std::vector<double> xs(ns+1); std::vector<double> xt(nt);
  2080. std::vector<double> ys(ns+1); std::vector<double> yt(nt);
  2081. std::vector<double> zs(ns+1); std::vector<double> zt(nt);
  2082. int x_shift = size_t(&xs[0]) % IDEAL_ALIGNMENT ? 1:0;
  2083. int y_shift = size_t(&ys[0]) % IDEAL_ALIGNMENT ? 1:0;
  2084. int z_shift = size_t(&zs[0]) % IDEAL_ALIGNMENT ? 1:0;
  2085. //1. reshuffle memory
  2086. for (int k =0;k<ns;k++){
  2087. xs[k+x_shift]=X(src,k);
  2088. ys[k+y_shift]=Y(src,k);
  2089. zs[k+z_shift]=Z(src,k);
  2090. }
  2091. for (int k=0;k<nt;k++){
  2092. xt[k]=X(trg,k);
  2093. yt[k]=Y(trg,k);
  2094. zt[k]=Z(trg,k);
  2095. }
  2096. //2. perform caclulation
  2097. stokesPressureSSE(ns,nt,&xs[x_shift],&ys[y_shift],&zs[z_shift],&xt[0],&yt[0],&zt[0],den,pot);
  2098. return;
  2099. }
  2100. void stokesStressSSEShuffle(const int ns, const int nt, double const src[], double const trg[], double const den[], double pot[], mem::MemoryManager* mem_mgr=NULL)
  2101. {
  2102. std::vector<double> xs(ns+1); std::vector<double> xt(nt);
  2103. std::vector<double> ys(ns+1); std::vector<double> yt(nt);
  2104. std::vector<double> zs(ns+1); std::vector<double> zt(nt);
  2105. int x_shift = size_t(&xs[0]) % IDEAL_ALIGNMENT ? 1:0;
  2106. int y_shift = size_t(&ys[0]) % IDEAL_ALIGNMENT ? 1:0;
  2107. int z_shift = size_t(&zs[0]) % IDEAL_ALIGNMENT ? 1:0;
  2108. //1. reshuffle memory
  2109. for (int k =0;k<ns;k++){
  2110. xs[k+x_shift]=X(src,k);
  2111. ys[k+y_shift]=Y(src,k);
  2112. zs[k+z_shift]=Z(src,k);
  2113. }
  2114. for (int k=0;k<nt;k++){
  2115. xt[k]=X(trg,k);
  2116. yt[k]=Y(trg,k);
  2117. zt[k]=Z(trg,k);
  2118. }
  2119. //2. perform caclulation
  2120. stokesStressSSE(ns,nt,&xs[x_shift],&ys[y_shift],&zs[z_shift],&xt[0],&yt[0],&zt[0],den,pot);
  2121. return;
  2122. }
  2123. void stokesGradSSEShuffle(const int ns, const int nt, double const src[], double const trg[], double const den[], double pot[], const double kernel_coef, mem::MemoryManager* mem_mgr=NULL)
  2124. {
  2125. std::vector<double> xs(ns+1); std::vector<double> xt(nt);
  2126. std::vector<double> ys(ns+1); std::vector<double> yt(nt);
  2127. std::vector<double> zs(ns+1); std::vector<double> zt(nt);
  2128. int x_shift = size_t(&xs[0]) % IDEAL_ALIGNMENT ? 1:0;
  2129. int y_shift = size_t(&ys[0]) % IDEAL_ALIGNMENT ? 1:0;
  2130. int z_shift = size_t(&zs[0]) % IDEAL_ALIGNMENT ? 1:0;
  2131. //1. reshuffle memory
  2132. for (int k =0;k<ns;k++){
  2133. xs[k+x_shift]=X(src,k);
  2134. ys[k+y_shift]=Y(src,k);
  2135. zs[k+z_shift]=Z(src,k);
  2136. }
  2137. for (int k=0;k<nt;k++){
  2138. xt[k]=X(trg,k);
  2139. yt[k]=Y(trg,k);
  2140. zt[k]=Z(trg,k);
  2141. }
  2142. //2. perform caclulation
  2143. stokesGradSSE(ns,nt,&xs[x_shift],&ys[y_shift],&zs[z_shift],&xt[0],&yt[0],&zt[0],den,pot,kernel_coef);
  2144. return;
  2145. }
  2146. #undef X
  2147. #undef Y
  2148. #undef Z
  2149. #undef IDEAL_ALIGNMENT
  2150. #undef DECL_SIMD_ALIGNED
  2151. }
  2152. template <>
  2153. void stokes_vel<double>(double* r_src, int src_cnt, double* v_src_, int dof, double* r_trg, int trg_cnt, double* k_out, mem::MemoryManager* mem_mgr){
  2154. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(28*dof));
  2155. const double mu=1.0;
  2156. stokesDirectSSEShuffle(src_cnt, trg_cnt, r_src, r_trg, v_src_, k_out, mu, mem_mgr);
  2157. }
  2158. template <>
  2159. void stokes_press<double>(double* r_src, int src_cnt, double* v_src_, int dof, double* r_trg, int trg_cnt, double* k_out, mem::MemoryManager* mem_mgr){
  2160. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(17*dof));
  2161. stokesPressureSSEShuffle(src_cnt, trg_cnt, r_src, r_trg, v_src_, k_out, mem_mgr);
  2162. return;
  2163. }
  2164. template <>
  2165. void stokes_stress<double>(double* r_src, int src_cnt, double* v_src_, int dof, double* r_trg, int trg_cnt, double* k_out, mem::MemoryManager* mem_mgr){
  2166. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(45*dof));
  2167. stokesStressSSEShuffle(src_cnt, trg_cnt, r_src, r_trg, v_src_, k_out, mem_mgr);
  2168. }
  2169. template <>
  2170. void stokes_grad<double>(double* r_src, int src_cnt, double* v_src_, int dof, double* r_trg, int trg_cnt, double* k_out, mem::MemoryManager* mem_mgr){
  2171. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(89*dof));
  2172. const double mu=1.0;
  2173. stokesGradSSEShuffle(src_cnt, trg_cnt, r_src, r_trg, v_src_, k_out, mu, mem_mgr);
  2174. }
  2175. #endif
  2176. #endif
  2177. ////////////////////////////////////////////////////////////////////////////////
  2178. //////// BIOT-SAVART KERNEL ////////
  2179. ////////////////////////////////////////////////////////////////////////////////
  2180. template <class T>
  2181. void biot_savart(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  2182. #ifndef __MIC__
  2183. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(26*dof));
  2184. #endif
  2185. const T OOFP = -1.0/(4.0*const_pi<T>());
  2186. for(int t=0;t<trg_cnt;t++){
  2187. for(int i=0;i<dof;i++){
  2188. T p[3]={0,0,0};
  2189. for(int s=0;s<src_cnt;s++){
  2190. T dR[3]={r_trg[3*t ]-r_src[3*s ],
  2191. r_trg[3*t+1]-r_src[3*s+1],
  2192. r_trg[3*t+2]-r_src[3*s+2]};
  2193. T R2 = (dR[0]*dR[0]+dR[1]*dR[1]+dR[2]*dR[2]);
  2194. if (R2!=0){
  2195. T invR2=1.0/R2;
  2196. T invR=sqrt(invR2);
  2197. T invR3=invR*invR2;
  2198. T v_src[3]={v_src_[(s*dof+i)*3 ],
  2199. v_src_[(s*dof+i)*3+1],
  2200. v_src_[(s*dof+i)*3+2]};
  2201. p[0] -= (v_src[1]*dR[2]-v_src[2]*dR[1])*invR3;
  2202. p[1] -= (v_src[2]*dR[0]-v_src[0]*dR[2])*invR3;
  2203. p[2] -= (v_src[0]*dR[1]-v_src[1]*dR[0])*invR3;
  2204. }
  2205. }
  2206. k_out[(t*dof+i)*3+0] += p[0]*OOFP;
  2207. k_out[(t*dof+i)*3+1] += p[1]*OOFP;
  2208. k_out[(t*dof+i)*3+2] += p[2]*OOFP;
  2209. }
  2210. }
  2211. }
  2212. ////////////////////////////////////////////////////////////////////////////////
  2213. //////// HELMHOLTZ KERNEL ////////
  2214. ////////////////////////////////////////////////////////////////////////////////
  2215. /**
  2216. * \brief Green's function for the Helmholtz's equation. Kernel tensor
  2217. * dimension = 2x2.
  2218. */
  2219. template <class T>
  2220. void helmholtz_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  2221. #ifndef __MIC__
  2222. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(24*dof));
  2223. #endif
  2224. const T mu = (20.0*const_pi<T>());
  2225. for(int t=0;t<trg_cnt;t++){
  2226. for(int i=0;i<dof;i++){
  2227. T p[2]={0,0};
  2228. for(int s=0;s<src_cnt;s++){
  2229. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  2230. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  2231. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  2232. T R = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  2233. if (R!=0){
  2234. R = sqrt(R);
  2235. T invR=1.0/R;
  2236. T G[2]={cos(mu*R)*invR, sin(mu*R)*invR};
  2237. p[0] += v_src[(s*dof+i)*2+0]*G[0] - v_src[(s*dof+i)*2+1]*G[1];
  2238. p[1] += v_src[(s*dof+i)*2+0]*G[1] + v_src[(s*dof+i)*2+1]*G[0];
  2239. }
  2240. }
  2241. k_out[(t*dof+i)*2+0] += p[0];
  2242. k_out[(t*dof+i)*2+1] += p[1];
  2243. }
  2244. }
  2245. }
  2246. template <class T>
  2247. void helmholtz_grad(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  2248. //TODO Implement this.
  2249. }
  2250. }//end namespace