| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233 | /** * \file kernel.hpp * \author Dhairya Malhotra, dhairya.malhotra@gmail.com * \date 12-20-2011 * \brief This file contains the definition of the struct Kernel and also the * implementation of various kernels for FMM. */#ifndef _PVFMM_FMM_KERNEL_HPP_#define _PVFMM_FMM_KERNEL_HPP_#include <pvfmm_common.hpp>#include <string>#ifdef __INTEL_OFFLOAD#pragma offload_attribute(push,target(mic))#endifnamespace pvfmm{template <class T>struct Kernel{  public:  /**   * \brief Evaluate potential due to source points at target coordinates.   * \param[in] r_src Coordinates of source points.   * \param[in] src_cnt Number of source points.   * \param[in] v_src Strength of source points.   * \param[in] r_trg Coordinates of target points.   * \param[in] trg_cnt Number of target points.   * \param[out] k_out Output array with potential values.   */  typedef void (*Ker_t)(T* r_src, int src_cnt, T* v_src, int dof,                        T* r_trg, int trg_cnt, T* k_out);  /**   * \brief Constructor.   */  Kernel();  /**   * \brief Constructor.   */  Kernel(Ker_t poten, Ker_t dbl_poten, const char* name, int dim_,         const int (&k_dim)[2], bool homogen_=false, T ker_scale=0,         size_t dev_poten=(size_t)NULL, size_t dev_dbl_poten=(size_t)NULL);  /**   * \brief Compute the transformation matrix (on the source strength vector)   * to get potential at target coordinates due to sources at the given   * coordinates.   * \param[in] r_src Coordinates of source points.   * \param[in] src_cnt Number of source points.   * \param[in] r_trg Coordinates of target points.   * \param[in] trg_cnt Number of target points.   * \param[out] k_out Output array with potential values.   */  void BuildMatrix(T* r_src, int src_cnt,                   T* r_trg, int trg_cnt, T* k_out);  static void Eval(T* r_src, int src_cnt,                   T* r_trg, int trg_cnt, T* k_out,                   Kernel<T>::Ker_t eval_kernel, int* ker_dim);  int dim;  int ker_dim[2];  Ker_t ker_poten;  Ker_t dbl_layer_poten;  size_t dev_ker_poten;  size_t dev_dbl_layer_poten;  bool homogen;  T poten_scale;  std::string ker_name;};template<typename T, void (*A)(T*, int, T*, int, T*, int, T*),                     void (*B)(T*, int, T*, int, T*, int, T*)>Kernel<T> BuildKernel(const char* name, int dim,         const int (&k_dim)[2], bool homogen=false, T ker_scale=0){  size_t dev_ker_poten      ;  size_t dev_dbl_layer_poten;  #ifdef __INTEL_OFFLOAD  #pragma offload target(mic:0)  #endif  {    dev_ker_poten      =(size_t)((typename Kernel<T>::Ker_t)A);    dev_dbl_layer_poten=(size_t)((typename Kernel<T>::Ker_t)B);  }  return Kernel<T>(A, B,                   name, dim, k_dim, homogen, ker_scale,                   dev_ker_poten, dev_dbl_layer_poten);}template<typename T, void (*A)(T*, int, T*, int, T*, int, T*)>Kernel<T> BuildKernel(const char* name, int dim,         const int (&k_dim)[2], bool homogen=false, T ker_scale=0){  size_t dev_ker_poten      ;  #ifdef __INTEL_OFFLOAD  #pragma offload target(mic:0)  #endif  {    dev_ker_poten      =(size_t)((typename Kernel<T>::Ker_t)A);  }  return Kernel<T>(A, NULL,                   name, dim, k_dim, homogen, ker_scale,                   dev_ker_poten, (size_t)NULL);}////////////////////////////////////////////////////////////////////////////////////////                   LAPLACE KERNEL                               /////////////////////////////////////////////////////////////////////////////////////////** * \brief Green's function for the Poisson's equation. Kernel tensor * dimension = 1x1. */template <class T>void laplace_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out);// Laplace double layer potential.template <class T>void laplace_dbl_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out);// Laplace grdient kernel.template <class T>void laplace_grad(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out);int dim_laplace_poten[2]={1,1};const Kernel<double> laplace_potn_d=BuildKernel<double, laplace_poten, laplace_dbl_poten>("laplace"     , 3, dim_laplace_poten, true, 1.0);const Kernel<float > laplace_potn_f=BuildKernel<float , laplace_poten, laplace_dbl_poten>("laplace"     , 3, dim_laplace_poten, true, 1.0);int dim_laplace_grad [2]={1,3};const Kernel<double> laplace_grad_d=BuildKernel<double, laplace_grad                    >("laplace_grad", 3, dim_laplace_grad , true, 2.0);const Kernel<float > laplace_grad_f=BuildKernel<float , laplace_grad                    >("laplace_grad", 3, dim_laplace_grad , true, 2.0);template<class T>struct LaplaceKernel{  static Kernel<T>* potn_ker;  static Kernel<T>* grad_ker;};template<> Kernel<double>* LaplaceKernel<double>::potn_ker=(Kernel<double>*)&laplace_potn_d;template<> Kernel<double>* LaplaceKernel<double>::grad_ker=(Kernel<double>*)&laplace_grad_d;template<> Kernel<float>* LaplaceKernel<float>::potn_ker=(Kernel<float>*)&laplace_potn_f;template<> Kernel<float>* LaplaceKernel<float>::grad_ker=(Kernel<float>*)&laplace_grad_f;////////////////////////////////////////////////////////////////////////////////////////                   STOKES KERNEL                             /////////////////////////////////////////////////////////////////////////////////////////** * \brief Green's function for the Stokes's equation. Kernel tensor * dimension = 3x3. */template <class T>void stokes_vel(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out);template <class T>void stokes_dbl_vel(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out);template <class T>void stokes_press(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out);template <class T>void stokes_stress(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out);template <class T>void stokes_grad(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out);int dim_stokes_vel   [2]={3,3};const Kernel<double> ker_stokes_vel   =BuildKernel<double, stokes_vel, stokes_dbl_vel>("stokes_vel"   , 3, dim_stokes_vel   ,true,1.0);int dim_stokes_press [2]={3,1};const Kernel<double> ker_stokes_press =BuildKernel<double, stokes_press              >("stokes_press" , 3, dim_stokes_press ,true,2.0);int dim_stokes_stress[2]={3,9};const Kernel<double> ker_stokes_stress=BuildKernel<double, stokes_stress             >("stokes_stress", 3, dim_stokes_stress,true,2.0);int dim_stokes_grad  [2]={3,9};const Kernel<double> ker_stokes_grad  =BuildKernel<double, stokes_grad               >("stokes_grad"  , 3, dim_stokes_grad  ,true,2.0);////////////////////////////////////////////////////////////////////////////////////////                  BIOT-SAVART KERNEL                            ////////////////////////////////////////////////////////////////////////////////////////template <class T>void biot_savart(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out);int dim_biot_savart[2]={3,3};const Kernel<double> ker_biot_savart=BuildKernel<double, biot_savart>("biot_savart", 3, dim_biot_savart,true,2.0);////////////////////////////////////////////////////////////////////////////////////////                   HELMHOLTZ KERNEL                             /////////////////////////////////////////////////////////////////////////////////////////** * \brief Green's function for the Helmholtz's equation. Kernel tensor * dimension = 2x2. */template <class T>void helmholtz_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out);template <class T>void helmholtz_grad(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out);int dim_helmholtz     [2]={2,2};const Kernel<double> ker_helmholtz     =BuildKernel<double, helmholtz_poten>("helmholtz"     , 3, dim_helmholtz     );int dim_helmholtz_grad[2]={2,6};const Kernel<double> ker_helmholtz_grad=BuildKernel<double, helmholtz_grad >("helmholtz_grad", 3, dim_helmholtz_grad);}//end namespace#include <kernel.txx>#ifdef __INTEL_OFFLOAD#pragma offload_attribute(pop)#endif#endif //_PVFMM_FMM_KERNEL_HPP_
 |