| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277 | /** * \file mem_mgr.hpp * \author Dhairya Malhotra, dhairya.malhotra@gmail.com * \date 6-30-2014 * \brief This file contains the definition of a simple memory manager which * uses a pre-allocated buffer of size defined in call to the constructor. */#ifndef _PVFMM_MEM_MGR_HPP_#define _PVFMM_MEM_MGR_HPP_#include <map>#include <stack>#include <vector>#include <cassert>#include <cmath>#include <omp.h>namespace pvfmm{namespace mem{class MemoryManager{  public:    MemoryManager(size_t N){      buff_size=N;      buff=(char*)::malloc(buff_size); assert(buff);      n_dummy_indx=new_node();      size_t n_indx=new_node();      node& n_dummy=node_buff[n_dummy_indx-1];      node& n=node_buff[n_indx-1];      n_dummy.size=0;      n_dummy.free=false;      n_dummy.prev=NULL;      n_dummy.next=n_indx;      n_dummy.mem_ptr=&buff[0];      assert(n_indx);      n.size=N;      n.free=true;      n.prev=n_dummy_indx;      n.next=NULL;      n.mem_ptr=&buff[0];      n.it=free_map.insert(std::make_pair(N,n_indx));      omp_init_lock(&omp_lock);    }    ~MemoryManager(){      node* n=&node_buff[n_dummy_indx-1];      n=&node_buff[n->next-1];      if(n==NULL || !n->free || n->size!=buff_size ||          node_stack.size()!=node_buff.size()-2){        std::cout<<"\nWarning: memory leak detected.\n";      }      omp_destroy_lock(&omp_lock);      if(buff) ::free(buff);    }    void* malloc(size_t size){      if(!size) return NULL;      size+=sizeof(size_t);      std::multimap<size_t, size_t>::iterator it;      omp_set_lock(&omp_lock);      it=free_map.lower_bound(size);      if(it==free_map.end()){        omp_unset_lock(&omp_lock);        return ::malloc(size);      }else if(it->first==size){        size_t n_indx=it->second;        node& n=node_buff[n_indx-1];        //assert(n.size==it->first);        //assert(n.it==it);        //assert(n.free);        n.free=false;        free_map.erase(it);        ((size_t*)n.mem_ptr)[0]=n_indx;        omp_unset_lock(&omp_lock);        return &((size_t*)n.mem_ptr)[1];      }else{        size_t n_indx=it->second;        size_t n_free_indx=new_node();        node& n_free=node_buff[n_free_indx-1];        node& n     =node_buff[n_indx-1];        //assert(n.size==it->first);        //assert(n.it==it);        //assert(n.free);        n_free=n;        n_free.size-=size;        n_free.mem_ptr=(char*)n_free.mem_ptr+size;        n_free.prev=n_indx;        if(n_free.next){          size_t n_next_indx=n_free.next;          node& n_next=node_buff[n_next_indx-1];          n_next.prev=n_free_indx;        }        n.free=false;        n.size=size;        n.next=n_free_indx;        free_map.erase(it);        n_free.it=free_map.insert(std::make_pair(n_free.size,n_free_indx));        ((size_t*)n.mem_ptr)[0]=n_indx;        omp_unset_lock(&omp_lock);        return &((size_t*)n.mem_ptr)[1];      }    }    void free(void* p){      if(p<&buff[0] || p>=&buff[buff_size]) return ::free(p);      size_t n_indx=((size_t*)p)[-1];      assert(n_indx>0 && n_indx<=node_buff.size());      ((size_t*)p)[-1]=0;      omp_set_lock(&omp_lock);      node& n=node_buff[n_indx-1];      assert(!n.free && n.size>0 && n.mem_ptr==&((size_t*)p)[-1]);      n.free=true;      if(n.prev!=NULL && node_buff[n.prev-1].free){        size_t n_prev_indx=n.prev;        node& n_prev=node_buff[n_prev_indx-1];        free_map.erase(n_prev.it);        n.size+=n_prev.size;        n.mem_ptr=n_prev.mem_ptr;        n.prev=n_prev.prev;        delete_node(n_prev_indx);        if(n.prev){          size_t n_prev_indx=n.prev;          node& n_prev=node_buff[n_prev_indx-1];          n_prev.next=n_indx;        }      }      if(n.next!=NULL && node_buff[n.next-1].free){        size_t n_next_indx=n.next;        node& n_next=node_buff[n_next_indx-1];        free_map.erase(n_next.it);        n.size+=n_next.size;        n.next=n_next.next;        delete_node(n_next_indx);        if(n.next){          size_t n_next_indx=n.next;          node& n_next=node_buff[n_next_indx-1];          n_next.prev=n_indx;        }      }      n.it=free_map.insert(std::make_pair(n.size,n_indx));      omp_unset_lock(&omp_lock);    }    void print(){      if(!buff_size) return;      omp_set_lock(&omp_lock);      size_t size=0;      size_t largest_size=0;      node* n=&node_buff[n_dummy_indx-1];      std::cout<<"\n|";      while(n->next){        n=&node_buff[n->next-1];        if(n->free){          std::cout<<' ';          largest_size=std::max(largest_size,n->size);        }        else{          std::cout<<'#';          size+=n->size;        }      }      std::cout<<"|  allocated="<<round(size*1000.0/buff_size)/10<<"%";      std::cout<<"  largest_free="<<round(largest_size*1000.0/buff_size)/10<<"%\n";      omp_unset_lock(&omp_lock);    }    static void test(){      size_t M=2000000000;      { // With memory manager        size_t N=M*sizeof(double)*1.1;        double tt;        double* tmp;        std::cout<<"With memory manager: ";        MemoryManager memgr(N);        for(size_t j=0;j<3;j++){          tmp=(double*)memgr.malloc(M*sizeof(double)); assert(tmp);          tt=omp_get_wtime();          #pragma omp parallel for          for(size_t i=0;i<M;i+=64) tmp[i]=i;          tt=omp_get_wtime()-tt;          std::cout<<tt<<' ';          memgr.free(tmp);        }        std::cout<<'\n';      }      { // Without memory manager        double tt;        double* tmp;        //pvfmm::MemoryManager memgr(N);        std::cout<<"Without memory manager: ";        for(size_t j=0;j<3;j++){          tmp=(double*)::malloc(M*sizeof(double)); assert(tmp);          tt=omp_get_wtime();          #pragma omp parallel for          for(size_t i=0;i<M;i+=64) tmp[i]=i;          tt=omp_get_wtime()-tt;          std::cout<<tt<<' ';          ::free(tmp);        }        std::cout<<'\n';      }    }  private:    struct node{      bool free;      size_t size;      void* mem_ptr;      size_t prev, next;      std::multimap<size_t, size_t>::iterator it;    };    MemoryManager();    MemoryManager(const MemoryManager& m);    size_t new_node(){      if(node_stack.empty()){        node_buff.resize(node_buff.size()+1);        node_stack.push(node_buff.size());      }      size_t indx=node_stack.top();      node_stack.pop();      assert(indx);      return indx;    }    void delete_node(size_t indx){      assert(indx);      assert(indx<=node_buff.size());      node& n=node_buff[indx-1];      n.size=0;      n.prev=0;      n.next=0;      n.mem_ptr=NULL;      node_stack.push(indx);    }    char* buff;    size_t buff_size;    std::vector<node> node_buff;    std::stack<size_t> node_stack;    std::multimap<size_t, size_t> free_map;    size_t n_dummy_indx;    omp_lock_t omp_lock;};}//end namespace}//end namespace#endif //_PVFMM_MEM_MGR_HPP_
 |